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Abstract: 

In this paper, the mixed mode function–modified MPS method was adopted to simulate the water-

structure dynamic interaction during slamming impacts on the cross deck of trimaran. The water 

was considered as an incompressible inviscid fluid and the “conceptual particle” model was used to 

enhance the stability of the intense free surface interaction during the “filling-up” process under the 

cross deck. The numerical model for the coupled rigid and flexible modal superposition model was 

derived for the dynamics of the trimaran hull with rigid and flexible arches, and the flexible arch 

was simplified by a beam structure. The fluid and structure solvers were coupled in a standard 

iterative way. The results for rigid-body arch cases obtained with the use of improved free surface 

condition show good improvement, in comparison to the experiment data. From the study of flexible 

arch cases with different flexibilities, it is found that the relatively soft structure can reduce the local 

pressure and slamming load. 
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1. Introduction 

The multi-hull ships (including catamaran and trimaran) provide large deck area, which offer 

more spaces for both commercial and military purposes [1]. However due to the special cross deck 

structure, apart from the slamming on the hulls, the slamming underneath the cross deck (often 

referred to as “wet deck slamming” ) can cause large impulsive load and consequent whipping 

response of the whole ship. This could result in very serious damage of the structures. Fig. 1.1-1.2 

show two typical structural failures of catamarans under slamming load. 



 

Fig. 1.1. The external plate buckling of 

INCAT Hull after an extreme slam event[2] 

Fig. 1.2. Severe damage of Ocean LaLa 

following an extreme wet-deck slam event [3] 

As a result, the research on the nature of slamming, predicting the magnitude of the load and 

finally reducing it has been an active topic of the scientific community. The full-scale measurement 

of load and impact pressure on ships during their operation can provide much valuable information 

about the features of the load under different conditions and consequently a better understanding of 

this complex phenomena. A number of such experiments have been successfully conducted, e.g. the 

series measurements of INCAT vessels by Thomas et al[4] and Amin et al[5], the slamming behavior 

investigation of the catamaran HSV-2 Swift by Jacobi et al[6]. Model-scale hydroelasticity tests have 

also been conducted to investigate the slamming induced global response such as whipping for 

catamaran ([2, 7]). On the other hand, the 2D dropping tests have been regarded as a more common 

and efficient way to investigate the characteristics of slamming load ([8, 9]), many of which were 

conducted for structure with simple geometries such as wedge ([10-12]). For multi-hulls, Whelan[13] 

has studies a series of 2D free falling tests for hulls with different forms. Hassoon et al.[14-16] have 

also conducted experiments and numerical simulations to study the performance of composite 

structure subject to slamming force and its failure mechanism during the slamming event. 

The theoretical study of slamming load can be found at least as early as in the 1930s by von 

Karman[17] and Wagner[18]. Following their pioneering work, a number of models have been 

proposed such as similarity solutions for wedges[19], matched asymptotic expansions for small 

dead-rise angle impacts[20] and modified added mass method[9] etc. Moreover, the time domain 

boundary element method has also been successfully applied on the wedge and circular shape 

section dropping problems[21]. However, the difficulties of handling complex geometry and large 

deformation of the free surface make theoretical or potential flow based methods not as practical as 

the models that directly solve the Navier-Stokes equations (i.e. Computational Fluid Dynamics 

methods or CFD for short). Many mesh-based CFD methods have been coupled with FEM solvers 

for simulating the fluid structure interaction process during slamming, e.g. wave impact load on 

wave-piercing catamaran by commercial software StarCCM+ [3], one-way FSI (Fluid Structure 

Interaction) method to calculate the slam-induced bending of INCAT catamaran also using 

StarCCM+[7]. But the mesh-based CFD methods face their own challenges when dealing with large 

free surface deformation and solid boundary displacement. Also, the feature of large rigid-body 

displacement plus relatively small elastic deformation for the dynamics of typical marine structures 

makes the FEM method not necessarily time consuming for this kind of problems. 

Particle methods such as MPS (Moving Particle Semi-implicit) method [22] and SPH 

(Smoothed Particle Hydrodynamics) are mesh-less and Lagrangian CFD methods, which means no 

mesh distortion and automatic flow configuration updating in time domain. These features make it 



very suitable for the problems like slamming. As a matter of fact, there have been many successful 

applications of particle methods for various highly non-linear fluid structure interaction problems 

[23-26] such as slamming (for. rigid or flexible wedge, curved surface structure etc.), sloshing etc. 

In this paper, in order to investigate the flow details of slamming during the filling-up process 

underneath a trimaran hull and the effect of elastic arches on overall load and local pressure 

distribution, the 2D model that couples modified MPS method and modal superposition (rigid and 

flexible) method is developed. The rest of this paper is organized as follows: the fluid and structure 

numerical models are illustrated in Section 2; and the details of the experiment used for the 

validation of numerical models are given in Section 3. Section 4 provides the detailed discussion of 

the simulation results; and finally the conclusion is drawn in the last section. 

2. Numerical model for fluid and structure dynamics 

In this study, the modified MPS method and coupled rigid-body/elastic modes method are used 

for the simulation of slamming process on trimaran hull. A brief illustration of the numerical models 

is given in this section[23]. 

2.1 Fluid solver 

2.1.1 Modified MPS method 

Since the viscosity effect is negligible in the slamming process, the incompressible inviscid 

Navier-Stokes equation and continuity equation in the Langrangian frame are used in this study, as 

shown in Eq. (2.1.1): 
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where 𝒖, 𝑝 and 𝜌 represent fluid velocity, pressure and density, [0,- ]gg is the vector pointing 

to the gravity direction.  

The continuous operators are discretized on scattered particles in a weighted averaging manner 

as in Eq. (2.1.2) 
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in which andΦ represent arbitrary scalar and vector variables, dm is the dimension of the problems, 

and N is the number of particles within the radius er  of the compact support domain for the current 

particle that is being discretized. The weight function  ijW r , particle density n and parameter  

are defined in Eq. (2.1.3)-(2.1.4), respectively. 
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The incompressibility condition is enforced by managing the particle distribution to be as even 

as possible, which involves three steps: firstly, the flow is advanced to the intermediate state by just 

the inertia and gravity without considering the pressure; secondly, a pressure Poisson equation is 

derived based on the continuity equation; lastly, the position and velocity of the fluid are updated 

by the newly computed pressure. In the modified MPS model[23], in order to achieve the balance 

between even particle distribution and small unphysical pressure fluctuation, the following pressure 

Poisson equation was derived: 
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where
0n and

nn are particle density for initial and nth time step, respectively. The coefficient is 

defined in Eq. (2.1.7). 
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The form of  requires no special calibration according to different problems, which makes it 

a more robust model compared to other similar forms[27, 28]. 

Several other techniques were also developed in modified MPS model to improve the accuracy, 

stability and efficiency, which include particle shifting, new efficient way of performing neighbor 

particle searching, the use of Neumann type boundary condition, the consistent way of updating the 

intermediate velocity of the solid boundary particles and virtual particle outside the solid boundary. 

More implementation details could be found in ref[23]. 

On the free surface, the solving of the Poisson equation Eq. (2.1.6) requires the identification 

of free surface particles and imposing zero pressure boundary condition on it. In modified MPS 

model, the simplified version of the technique used by Koh[29] was developed. However, when 

solving the problems which involve the intensive free surface particle interaction such as the filling 

up of fluid under the arch of trimaran, the sudden change of the particle status from free surface to 

inner particles may cause instability in the simulation. To overcome this problem, an improved free 

surface condition proposed by Chen et al[30] are incorporated with the modified MPS method 

developed by the authors. More details are given in the following section. 

2.1.2 Improved free surface condition 

In the area where particles suddenly change their status from free surface to inner particles, the 

Laplacian operator of the nearby particles will be affected dramatically and consequently cause 

instability or breakdown of the computation under the traditional zero-pressure free surface 

boundary condition, especially when these changes occur to a group of particles with more than just 

one or two particles. As shown in Fig. 2.1, most of the free surface particles (marked as red) around 

particle A change into inner particles (marked as blue circles and dots) after the transition from tn to 

tn+1 time step. In the traditional zero-pressure boundary condition, which means the coefficients 

associated to free surface particles will be eliminated in the discretization of Laplacian operator for 

particle A, this sudden change in time step tn+1 will cause a corresponding sudden change of the 



Laplacian coefficient structure of particle A (equivalent to suddenly add several particles in the 

neighbor of particle A). This means the resultant pressure will be dramatically increased or even 

cause local explosion if this increase is too large. 

 

Fig. 2.1 Schematic diagram of dramatic change of free surface status 

In order to tackle this issue in this study, the technique so-called conceptual particle[30] model 

was added to the modified MPS method. The implementation details are illustrated briefly as 

follows: 

For free surface particles (whose particle density is smaller than
0n ), instead of imposing zero-

pressure condition, the Poisson equation will also be solved for inner fluid particles. The so-called 

conceptual particles with zero pressure are added in the support domain of the concerned particle to 

make sure its particle density becomes
0n . As a result, the zero pressure condition is imposed on 

the conceptual particles instead of the free surface particles. And this means the change from free 

surface to inner particles will not cause the sudden change of coefficient in Laplacian discretization 

as mentioned before. Then by substituting both real and conceptual particles into the Laplacian 

discretization (i.e. Eqn. (2.1.2)-(2)), the coefficient corresponding to the concerned particle will be

 0 02 2n d n d  . Since the pressure of the conceptual particles is zero, the coefficient of the 

other real particles will not be affected and the existing of the conceptual particles will not be 

explicitly represented in the equation (i.e. new degrees of freedom) as well. This means that the 

positions of the conceptual particles will not be needed.  

One final issue with this technique is that if the particle density of a free surface particle is 

larger than 
0n  (i.e. when there are particles that are very close to this free surface particle), the 

conceptual particle should at least make the final particle density larger than that value (otherwise, 

imposing the value of 
0n by the conceptual particles actually reduce the coefficient for the 

concerned particle, which means reducing the resultant pressure). In this case, the target particle 

density for the concerned particle is calculated by Eqn. (2.1.8). 
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in which Nr is the number of particles inside the circle with radius of l0 centered by the concerned 

particle. Finally, the Poisson equation for all fluid particles is discretized by Eqn. (2.1.9). 
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where ni, n and ni,n+1 mean the particle density for ith particle at t=tn and t=tn+1 respectively. 

 

2.2 Structure solver 

The flexibility of the arches (where the highest load occurs) will be considered in this study. 



The coupled rigid-body and elastic modes model developed by the authors [24] are applied here. A 

brief derivation is given below. The model is based on Lagrangian equation as given in Eqn. (2.2.1): 
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where T and U are the kinetic and potential energy of the structure system, respectively, qj is the 

general coordinates for any rigid/flexible mode, and Qj represents the non-conservative forces 

corresponding to jth coordinate. The specific forms of T, U, qj and Qj for the trimaran hull structure 

with rigid/flexible arches are given later in this section. 

The global fixed X-O-Y system and local body-attached s-O-w system are used for the 

description of the trimaran hull structure as shown in Fig. 2.2. Two identical arches are represented 

by beam model with fixed ends on both sides (the origin of the s-O-w system is placed at the center 

of the beam). The dynamics of the trimaran hull could be represented by the deflection of the beam 

η and the position of the gravity center (i.e. OR)  ,R R R

T
X YX .  

 

Fig. 2.2 Sketch of the model for trimaran hull with rigid/flexible arches 

 

The position of any point on the flexible arches can be calculated by Eqn. (2.2.2): 

R X X ξ                           (2.2.2) 

in which  ,
T

s ξ . Considering the symmetry feature of the configuration and the consequent 

dynamic response during the slamming process, the X direction translation and rotation of the body 

are restricted in the model, i.e. .RX const . The elastic deformation η is represented by the modal 

superposition approach. More specifically, the spatial and time dimensions of η are treated separated 

by a set of mode function  1 2 3, , ,...
T

  φ and the corresponding general coordinates

 1 2 3, , ,...
T

q q qq . As a result, the deflection is formulated as Eqn. (2.2.3): 

T  φ q                             (2.2.3) 

 The following orthogonal conditions in Eqn. (2.2.4)-(2.2.5) are satisfied by the mode function 

φ.  
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The fixed-fixed type beam is used to represent the flexible arch, and the mode shape function 
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is given in Eqn. (2.2.6): 
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where L is the length of the flexible arch, x is the distance from the –L/2 of the axis in s-O-w system 

to any point on the beam in Fig. 2.2. The parameter 
i corresponding to the first three modes, are 

given by: 
1 2 34.7300407446, 7.8532046242, 10.9956078382     . 

The kinetic energy T and potential energy U of the whole trimaran hull system could be 

calculated by adding the contribution from flexible arches and the rest rigid-body parts together as 

in Eqn. (2.2.7)-(2.2.8): 
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where MR and MF represent the mass of the rigid-body and flexible parts respectively. The subscript 

A or B indicates that the corresponding value is for beam A or B, EI is the stiffness, and ρ is the line 

density of the beam. 

 

In Eqn. (2.2.7),
0ψ is defined as: 
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After substituting Eqn. (2.2.7)-(2.2.8) into Eqn. (2.2.1), the governing equations for the 

dynamics of the trimaran hull with flexible arches are derived in Eqn. (2.2.10) 
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The non-conservative forces for rigid and flexible variables are given in Eqn. (2.2.11): 
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where n=[nx,ny] is the normal vector of the structure surface pointing towards the inside of the solid 



boundary, and e is the unit vector of O-η axis. Based on the symmetry feature of the structure, the 

model could be further simplified as follows:  
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where q and qQ are defined in Eqn. (2.2.13) under the assumption that qA=qB. 
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The governing equation for structure, i.e. Eqn. (2.2.12) is first discretized in time domain by 

Newmark method[31], and then the roots for the resultant equations are solved by Newton method. 

For the rigid-body case, the structure model reduces to the following equation: 

RR R Y RM Y Q M g                              (2.2.14) 

For the fluid and structure interaction process, the standard iterative approach is adopted until 

certain criterion is met. The detailed information can be found in ref[24] and will not be listed here 

for simplicity reason. 

3. Experiment setup 

The experiment reported in ref [32] is used for the validation of the numerical model in this 

study. The basic set-up information is briefly illustrated here. 

As shown in Fig. 3.1, the 4.52kg trimaran hull made of 5mm thickness PMMA (Poly Methyl 

MethAcrylate) was placed on top of a tank. The tank is filled with 0.623m depth of water, and the 

distance from the tip of the main hull to the water surface is h=0.147m. According to the dynamics 

of free falling object (i.e. 2gh V ), its water entry velocity is V=1.7m/s. The other dimensions of 

the tank and the trimaran hull are shown in Fig.3.1-3.2. Both pressure and acceleration are monitored 

in this experiment. More specially, from the bottom of the main hull up to underneath the arches, 

totally 5 pressure sensors are located as shown in Fig. 3.2 (along the o-x axis). They are only placed 

on one side of the trimaran and the sampling frequency is 1000Hz. Three acceleration sensors are 

placed along the tip of the trimaran main hull to check if a good posture is maintained during the 

impact process; and their arrangement are shown in Fig. 3.1 (along o-y axis).  

For the purpose of examining the uncertainty of the slamming process, 10 trials of the dropping 

tests are used for the analysis. The Savitzky-Golay filter (with polynomial order and frame size 

chosen to be 3 and 11) is used to eliminate the high frequency noise from the original pressure and 

acceleration signals. 

In order to investigate the free surface deformation during the filling-up underneath the arches, 

a laser source and high-speed camera were placed under and in front of the tank respectively. Due 

to the symmetric property of the flow, only half of the field was captured and recorded. The laser 

sheet is located at the mid-span of the specimen with the thickness of 1mm. The spatial resolution 

of the camera is 1280×800 pixels, and the acquisition frequency is 200Hz. 



    

Fig. 3.1 Sketch of the experiment set-up 
Fig. 3.2 Sketch of the trimaran cross section 

and pressure sensor layout 

4. Result and discussion 

4.1 Rigid-body case 

In this section, the implementation details and results of the rigid-body case are discussed. The 

initial particle distance and time interval are chosen to be 0.01m and be 0.0005s respectively, and 

the size of time step is controlled by CFL (Courant-Friedrich-Levy) condition. The size of the 

computational domain is set to be the same as the experiment, i.e. 1.5m×0.623m. Totally 10856 

particles are used for the discretization, in which 9536 particles are used for fluid domain. Since this 

is a 2D computation, the computational mass is chosen to be the value corresponding to 1m thick 

model i.e. 4.52/0.3=15.067kg. The dynamics of the trimaran hull is computed by Eqn. (2.2.13). 
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Fig. 4.1 Comparison of experimental and numerical acceleration results ((a)-(c) corresponding to 

No.1 -3 in Fig. 3.1) 

Fig. 4.1 shows comparison of experimental and numerical results for the acceleration time 

histories. The acceleration results from three sensors show good consistency, which prove that the 

specimen has not tilted during the slamming process and therefore the 2D flow assumption is 

reasonable. By cross checking the time histories with the images from the camera, the instant when 

the tip of the main hull enters into water was identified and set to be t=0 in the following analysis. 

The small fluctuation of the signals before t=0 could be due to the air cushion effect. The 

experimental results include the mean value, one/two times of the standard deviations and envelop 

lines. As shown in Fig. 4.1, the result from the model with new free surface condition performs 

better than the original modified MPS method [14] in the sense of predicting the value and time for 

both initial and mean peak. In the result of original modified MPS result (blue dash line), there is a 

local peak at t=0.8s, which is caused by the sudden change of free surface distribution and 

consequently the abrupt increase of pressure as explained in section 2.1.2. This unphysical change 

of the particle and pressure distribution also results in the advancing of main peak. The result from 

the model with improved free surface condition proves that this problem has been successfully 

solved by the introducing this modification. 
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Fig. 4.2 Comparison of the pressure time histories between experimental and numerical results 

((a)-(e) corresponds to p1-p5 in Fig. 3.2)  
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Fig. 4.3 Comparison of the pressure contour (from numerical results) and free surface profiles 

(from experimental results) 

 

The pressure time histories at the positions p1-p5 as marked in Fig.3.2 are shown in Fig. 4.2. 



The significant improvement of the pressure prediction can be seen in Fig. 4.2 (a), where both the 

time and value of the positive and negative peaks are captured reasonably well compared with the 

original modified MPS model. It is also worth noticing in Fig. 4.2 (a) that there will be a negative 

pressure local peak at the tip of the main hull when the slamming to the arch occurs. The main 

features of the pressure history (peak position and negative value after the peak in Fig. 4.2 (c)-(d)) 

around the middle of the arches are successfully captured. The value of the peaks for both numerical 

results are slightly higher than the mean values (closer to the upper bound of 2 times standard 

deviation lines), this could be due to the fact that in the experiment, the flow is not completely 

restricted along the direction of the main hull tip line (the tank is longer than the trimaran hull in 

this direction), this 3D effect tends to reduce the pressure on the hull, which cannot be captured in 

the 2D simulation. The major discrepancy occurs at p5 (Fig. 4.2 (e)), where the pressure time history 

computed by the model with new free surface boundary condition shows roughly 0.01s of delay. 

The pressure contour and free surface profiles of the numerical and experimental results are 

compared in Fig. 4.3. The good symmetry and smoothness of the pressure field prove the feasibility 

of modified MPS method for slamming simulation. It is worth to mention that along the o-y axis (in 

Fig. 3.1), the trimaran hull is shorter than the tank, and therefore the undisturbed water level in Fig. 

4.3 actually shows the status of the surrounding water around the trimaran hull. For the area 

underneath the trimaran arches, the water filling-up process in the numerical prediction is generally 

consistent with the experimental result. By cross-checking with the Fig. 4.1, the maximum 

acceleration occurs when the region underneath the arches are completely filled with water (at 

around 0.985s) as corrected predicted by the numerical simulation. However the flow separation 

around the main hull of the trimaran is not clearly observed in the experiment.  

4.2 Flexible arch case 

The arches are the places where the maximum load for the whole trimaran hull would occur. 

In this section, the effect of flexible arches on the load and overall dynamics of the trimaran hull are 

investigated. The material property, thickness and circular frequencies (first three orders) of the 

flexible arches are given in Table 1. It is worth mentioning that the stiffness (i.e. EI) and mass of the 

arches for “Soft 1” and “Soft 2” cases are the same, hence the resulting arch deformation and overall 

dynamics of the trimaran hull are the same (according to the formation of the structure solver). 

However the stresses of the arches are different and this difference is discussed later in this session. 

 

Table 1. Parameters of the flexible arches used in the numerical simulation 

Name 
Density ρs 

(kg/m3) 

Young’s modulus 

E (Gpa) 

Thickness 

th (mm) 
1 (rad/s) 2 (rad/s) 

3 (rad/s) 

Soft 1 1190 3.25 0.7 508.4265 1401.4972 2747.4948 

Soft 2 1190/2 3.25/8 1.4 508.4265 1401.4972 2747.4948 

Stiff 1190 3.25 1.4 1016.8530 2802.9943 5494.9896 

 

The configuration and discretization of the computational domain are the same as that in the 

rigid-body case. Moreover, the Nyquist–Shannon sampling theorem is satisfied since the highest 

vibration frequency is smaller than half of the computational sampling rate (i.e. 2π/0.0005= 

12566.3706 rad/s), which guarantees that the dynamic features of the system can be fully captured 

by the simulation. 



 

Fig. 4.4 The acceleration time history of rigid-body and flexible-arch cases 

 

Fig. 4.4 shows comparison of acceleration between rigid-body and flexible arch cases. The 

lines of rigid-body and flexible arches almost coincide with each other before the impact on the 

arches (at about 0.08s, as shown in Fig. 4.3). After the instant when the arches are in contact with 

water, the flexibility of the arches starts to significantly affect the dynamics of the acceleration 

(which can be seen from the load result in Fig. 4.5 as well). Generally, apart from the obvious 

vibrations that are roughly consistent with the frequencies of the corresponding first order natural 

frequency (0.02s and 0.05s for stiff and soft cases respectively), the increase of flexibility will 

postpone the time of peak and reduce its value. This means that relatively soft arches could ease the 

dynamic impact of slamming for the whole structure. Another important feature for the flexible 

arches cases is that the negative peak has the same order of magnitude as its positive counterpart, 

which indicates that the flexible vibration causes large negative pressure under the arches (which is 

shown in Fig. 4.8). However as explained in Section 4.1 (rigid-body cases), since the flow along the 

tip of the hull in 3D flow cannot be captured, the pressure tends to be slightly higher in 2D flow. 

The same reasoning is also applicable to flexible cases, i.e. the absolute value of the negative 

pressure may be actually smaller in the 3D flow. This means the positive and negative peaks for 

flexible arches could be smaller in 3D situations, which is even better in the sense of reducing 

dynamic slamming impact. But this has to be verified by 3D experiment or simulation in the future.  

 

 

Fig. 4.5 The load time history of rigid-body and flexible-arch cases 

 

Fig. 4.5 shows the time histories of load under the arches for rigid and flexible cases. The 

trends of the load are very consistent with the acceleration result in Fig. 4.4, which confirms that 



the load applied on the arches are the dominant factor that affect the dynamics of the trimaran hull. 

The average loads over the arches for a given time of period are summarized in Table 2. The second 

column shows the time average load during the first positive peaks for different cases, which 

indicates that soft arches, compared to stiff and rigid case, can reduce the load by about 6%. In the 

third column of Table 2, compared to the rigid body case, the time average load from the instant 

when water touching the arches to 0.4s (when the load for all cases tend to zero) are reduced by 

roughly 16% and 36% (absolute value) for the two flexible cases, respectively. The comparison 

between stiff and soft cases show that the soft arch tends to perform better in the sense of reducing 

the peak and average value during the slamming event (i.e. the first peak), while the stiff arch would 

give a lower average load for a longer period after the slamming event. 

 

Table 2. Load on the arches 

Name 
Average load of the first 

positive peak (N) 

Average load from touching 

water to 0.4s (N) 

Soft 1 and Soft 2 151.6 10.3 

Stiff  159.9 -7.9 

Rigid 161.7 12.3 

 

The time histories of the arch deflection at the middle point for soft and stiff cases are shown 

in Fig. 4.6. The maximum deflection of the soft case is about 5 times larger than that of the stiff one. 

The frequency of the oscillation is roughly consistent with the first order natural frequency of the 

arches, respectively.  

 

Fig. 4.6 Deflection time histories at the middle of the arch with different stiffness  

 

Fig. 4.7 Stress time histories at the middle of the arch with different stiffness  
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Fig. 4.8 Comparison of the pressure time histories between rigid-body and flexible arches cases 

((a)-(e) correspond to p1-p5 in Fig. 3.2) 



As for the stresses of the arch, the case (i.e. Soft 1 in Table 1) with smaller Young’s modulus 

gives much smaller stresses compared to the case with the same stiffness (i.e. Soft 2 in Table 1), 

though their deformation and overall dynamics are the same. This indicates that the usage of a 

relatively soft material can ease the slamming load (by allowing a limited deformation) without 

causing the dramatic increase of stress level. 

The above discussion about load and stress suggests that by adding a relatively soft buffer layer 

of structure (with properly chosen material properties such as Young’s modulus and density) on top 

of the arch area, the slamming load could be effectively eased without negatively affecting the 

original structure integrity. Also the usage of material with small Young’s modulus can help to 

control the stress of the buffer layer in a relatively low level. 

The pressure time histories at p1-p5 for flexible arches cases are shown in Fig. 4.6. The major 

difference between rigid-body and flexible arches cases occur on the middle of the arch, i.e. Fig. 4.6 

(c) and (d). The oscillation of the flexible arches causes corresponding fluctuation of pressure, and 

the order of magnitude for positive and negative peaks in Fig. 4.6 (c) and (d) are approximately the 

same. Moreover, the peak pressures for the soft arch case is relatively lower (especially the middle 

of the arch p4 in Fig. 4.6 (d)) than the rigid-body and stiff arch cases. This means a flexible layer of 

structure with proper choice of stiffness can reduce the slamming pressure, which is consistent with 

the findings in Fig. 4.4. This is an aspect worth investigating further in the future both numerically 

and experimentally. 

The pressure distribution at the instants of the first positive and negative acceleration peak for 

each case are shown in Fig. 4.7. The pressure field shows good symmetry and smoothness. The stiff 

arch tends to generate lower pressure than the soft arch at the corresponding instants when negative 

acceleration peaks occur. The slight flow separation around the main hull can also be observed in 

the flexible arch cases. 



 

Fig. 4.9 Pressure contour and arch deflections for different stiffness cases 

5. Conclusion 

The slamming load and pressure distribution was investigated numerically in this paper. For 

the fluid part, the so-called “conceptual particle” model was used in the modified MPS method to 

improve its performance for the flow with intensive free surface deformation and interaction. Both 

rigid-body and flexible arch cases were simulated. The coupled rigid and flexible modal 

superposition model was derived to calculate the dynamics of the trimaran hull with flexible arches. 

The fluid and structure interaction model was validated against the experimental results and 

relatively good agreement was obtained, which show the feasibility of using the developed model 

to simulate this type of problems.  

It is found that the increase of arch flexibility would postpone the time of maximum impact 

load/pressure under the arch, and also reduce their peak values significantly. This indicates that by 

adding a relatively soft buffer layer of structures on top of the original structure with properly chosen 

stiffness and material properties, the impact force of slamming underneath the arch can be 

potentially eased without significantly affecting the local strength of the original structure. This 

needs to be further studied numerically or experimentally in 3D in the future. 
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