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Abstract

Measurement of diminishing or divergent cross section dispersion in a panel plays an
important role in the assessment of convergence or divergence over time in key economic
indicators. Econometric methods, known as weak σ-convergence tests, have recently
been developed (Kong et al., 2019)) to evaluate such trends in dispersion in panel data
using simple linear trend regressions. To achieve generality in applications, these tests
rely on heteroskedastic and autocorrelation consistent (HAC) variance estimates. The
present paper examines the behavior of these convergence tests when heteroskedas-
tic and autocorrelation robust (HAR) variance estimates using fixed-b methods are
employed instead of HAC estimates. Asymptotic theory for both HAC and HAR con-
vergence tests is derived and numerical simulations are used to assess performance
in null (no convergence) and alternative (convergence) cases. While the use of HAR
statistics tends to reduce size distortion, as has been found in earlier analytic and
numerical research, use of HAR estimates in nonparametric standardization leads to
significant power differences asymptotically, which are reflected in finite sample perfor-
mance in numerical exercises. The explanation is that weak σ-convergence tests rely on
intentionally misspecified linear trend regression formulations of unknown trend decay
functions that model convergence behavior rather than regressions with correctly speci-
fied trend decay functions. Some new results on the use of HAR inference with trending
regressors are derived and an empirical application to assess diminishing variation in
US State unemployment rates is included.
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1 Introduction

Convergence studies flourished in the cross-country growth literature during 1980s and 1990s.

During that time much attention among empirical researchers was given to econometric tests

of convergence. But the original discussions of convergence began earlier in the 1930s with a

debate between Secrist (1933) and Hotelling (1933). That debate was revived in the work of

Barro and Sala-i-Martin (1992) and Friedman (1992). One group argued that the convergence

between rich and poor countries required much faster growth among initially poor countries

than among those countries that were initially rich (Secrist, 1933; Barro and Sala-i-Martin,

1992). This type of the convergence was termed ‘β−convergence’as it focused on the relevant
regression coeffi cient estimates. The other group was critical of β-convergence comparisons as

a statistical artifice and instead suggested that the most appropriate concept for convergence

should focus on consistent diminution of cross sectional variance (Hotelling, 1933; Friedman,

1992). Phillips and Sul (2007) and Kong, Phillips and Sul (2019) showed statistical problems

with β−convergence tests and proposed new approaches to assessing convergence based on
notions of relative and weak σ−convergence which analyze cross section variation directly
for diminution. Sul (2019) provides a detailed discussion of these various convergence tests.

Amongst the many issues for which panel data enable empirical investigation, these ques-

tions of convergence and divergence over time have attracted high interest. In the study of

cross country economic performance, research has focussed particularly on examining evi-

dence of diminishing dispersion in key indicator variables such as income or consumption

levels, poverty, and unemployment rates. These indicators figure in politico-economic dis-

course at both public and professional levels.

The general idea of diminishing variance is well understood, as is the notion of catch-up

effects in economic development. Empirical testing of these concepts is much more subtle and

has enlisted various econometric techniques, ranging from simple trend regression (Bunzel

and Vogelsang, 2005; Campbell et al., 2001) to modern methods of cluster analysis, con-

vergence, and classification (Phillips and Sul, 2007a, 2007b, 2009; Bonhomme and Manresa,

2015; Su et al., 2016; Wang et al. 2019) partly founded on machine learning methodologies.

The latter techniques draw heavily on the discriminatory power of partial cross section aver-

aging which forms one of the many advantages of panel data which were collectively explored

in the masterful treatise by Cheng Hsiao (2014) that is now in a third updated edition.

A central concept in much of the empirical analysis is σ-convergence, which examines

whether cross sectional variation diminishes over time. Econometric detection of this type
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of convergence typically relies on the assessment of statistical significance in any observed

reductions in dispersion toward some ultimate (asymptotic) level associated with an ergodic

limit distribution. Trend regression may then be formulated in terms of trend functions that

decay over time. Regressions that employ such evaporating trends, as they are sometimes

called, may be analyzed asympotically and limit theory has been developed (Phillips, 2007;

Robinson, 1995) to aid inference. Like all trend regressions, however, empirical formula-

tions typically lack explicit justifications from economic theory and may be assumed to be

misspecified. In consequence, the regression residuals are inevitably serially dependent and

heterogeneous making robust inferential methods essential in validating such regressions.

In recent work (Kong, Phillips and Sul, 2019; KPS henceforth), the present authors de-

veloped a weak version of the σ−convergence concept that accommodates various forms of
diminishing variation in the data and developed a linear trend regression method for its

detection in empirical data. The approach relies on a simple t-statistic and explicitly al-

lows for the fact that this linear trend regression is misspecified under diminishing variation

but it makes use the fact that the behavior of the test statistic has a recognizable asymp-

totic signature that can be used in practical work to identify σ−convergence. In order to
achieve robustness, the formulation of the t-statistic makes use of a HAC standard error

normalization.

Inferential robustness has received a great deal of attention in econometrics since the

1980s and many different forms of heteroskedastic and autocorrelation consistent (HAC)

and closely related heteroskedastic and autocorrelation robust (HAR) estimators have been

suggested. The current paper explores the asymptotic and sampling properties of several of

the main alternative procedures in the context of t-tests for σ−convergence. An important
aspect of this analysis is that the properties are studied under the trend regression misspec-

ification that is a general feature of this approach to convergence testing. We note that

this is an area of research of extending the domain of validity in statistical testing where

other ongoing work is relevant, including attempts to achieve valid regression testing in non-

stationary regressions that include both cointegrated and spurious regression formulations

(Chen and Tu, 2019; Wang, Phillips and Tu, 2019).

The paper is organized is as follows. Section 2 provides some background discussion

of recent work on methods of robust inference concerning trend in time series and panel

regression. Section 3 overviews the main features of the trend decay model, the simple

fitted linear trend regression model recommended for practical implementation, and the
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σ−convergence concept for cross section dispersion developed in KPS (2019). Section 4
examines alternative robust methods of testing σ−convergence, including the ‘fixed-b’lag
truncation rule (Kiefer, Vogelsang and Bunzel, 2000; Kiefer and Vogelsang, 2002a, 2000b;

Hwang and Sun, 2018), extending the asymptotic theory of KPS to those test procedures. A

simulation experiment to assess the finite sample perforance of the various tests is reported in

Section 5, together with an empirical application to assess convergence among unemployment

rates in the 48 contiguous states of the USA. Section 6 concludes. Proofs of the main results,

other technical derivations, and assumptions employed are given in the Appendix. The paper

uses the same notation as KPS (2019) to assist in cross-referencing the derivations and results.

2 Preliminaries on Robust Inference concerning Trend

Methods to control for the effects of serial dependence and heterogeneity in regression errors

play a key role in achieving robustness in inference. While conventional HAC methods

have good asymptotic performance they are susceptible to large size distortions in practical

work. Several alternatives have been proposed in the recent literature to improve finite

sample performance. Among these, the ‘fixed-b’lag truncation rule (Kiefer, Vogelsang and

Bunzel, 2000; Kiefer and Vogelsang, 2002a, 2000b) has attracted considerable interest. The

method uses a truncation lag M that is proportional to the sample size T (i.e., M ∼ bT

for some fixed b ∈ (0, 1)) and sacrifices consistent estimation in the interest of achieving

improved performance in statistical testing by mirroring finite sample characteristics of test

statistics in the asymptotic theory. The formation of t-ratio and Wald statistics based on

HAC estimators without truncation belongs to a general class of HAR test statistics1. There

are known analytic advantages to the fixed-b approach, primarily related to controlling size

distortion. In particular, research by Jansson (2004) and Sun et al (2008) has shown evidence

from Edgeworth expansions of enhanced higher order asymptotic size control in the use of

these tests. Recently, Müller (2014), Lazarus, Lewis, Stock and Watson (2018), and Sun

(2018) have surveyed work in this literature and provided some further suggestions and

recommendations for practical implementation.

One area where methods of achieving valid statistical inference has proved especially im-

1Kiefer and Vogelsang (2002a, 2000b) introduced the fixed-b approach to heteroscedastic and autocorre-

lation robust construction of test statistics. The HAR terminology was used by Phillips (2005a) in an article

concerned with the development of automated mechanisms of valid robust inference in econometrics.
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portant in practice are regressions that involve trending variables, cointegration and possible

spurious relationships. Spurious regressions misleadingly produce asymptotically divergent

test statistics when there is no meaningful relationship (Phillips, 1986). In studying this

phenomena more carefully, Phillips (1998) showed that the use of HAC methods attenuated

the misleading divergence rate (under the null hypothesis of no association) by the extent

to which the truncation lag M → ∞. In particular, the divergence rate of the t statistic
in a spurious regression involving independent I (1) variables is Op

(√
T/M

)
rather than

Op

(√
T
)
. Concordant with this finding, Sun (2004) showed that the use of fixed-b methods

(whereM = bT →∞ at the same rate as the sample size) in spurious regressions produces t

statistics of order Op (1) with convergent limit distributions. These discoveries revealed that

prudent use of HAR techniques in regression testing can widen the range of valid inference

to include spurious regression.

In the same spirit as Sun (2004, 2014), Phillips, Zhang andWang (2012; PZW henceforth)

considered possible advantages in using HAR test statistics in the context of simple trend

regressions of the form

xt = at+ zt, (1)

where zt is I (1) as well as similar trend regressions on orthonormal polynomials and in-

dependent random walks. For trend assessment in fitted models of the type (1) it is of

interest to test the null hypothesis H0 : a = 0 of the absence of a deterministic trend in (1).

PZW (2012) show that, upon least squares estimation of (1) with â =
∑T

t=1 xtt/
∑T

t=1 t
2, the

conventional t-statistic.

ta =
â{

T−1
∑T

t=1 ẑ
2
t

(∑T
t=1 t

2
)−1
}1/2

= Op

(√
T
)
, (2)

is divergent under the null, as is the t-ratio formed with a HAC estimator in sandwich form

for which

tHACa =
â{(∑T

t=1 t
2
)−1 [

T Ω̂HAC

] (∑T
t=1 t

2
)−1
}1/2

= Op

(√
T

L

)
, (3)

where Ω̂HAC = 1
T

∑T
t=1 $

2
t + 2

T

∑L
`=1

∑T−`
t=1

(
1− `

L+1

)
$t$t+`, with $t = ẑtt and ẑt = xt −

ât, L = bT κc for κ ∈ (0, 1) . In contrast the t-ratio formed with a HAR estimator in sandwich
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form as

tHARa =
â{(∑T

t=1 t
2
)−1 [

T Ω̂HAR

] (∑T
t=1 t

2
)−1
}1/2

= Op (1) , (4)

where Ω̂HAR = 1
T

∑T
t=1$

2
t + 2

T

∑M
`=1

∑T−`
t=1

(
1− `

M+1

)
$t$t+`, has a nuisance parameter free

limit distribution when M = bbT c for some b ∈ (0, 1). The intuition is clear: As the extent

of the serial dependence in the regression error zt rises, use of longer lag lengths to control

this dependence help in controlling the size of the test statistic in both finite samples and

in the limit theory. When the error becomes nonstationary, the infinite lag length in the

limit when it is reproduced to match the rate at which T →∞ leads to a t-ratio with a well

defined pivotal limit distribution and tHARa = Op (1) .

3 Testing Convergence

The present paper pursues these ideas on robust inference in the context of empirical work

on convergence. We are motivated by a similar goal —to investigate whether HAR modifica-

tions to conventional testing have the capacity to improve tests for σ-convergence, examining

whether cross sectional variation diminishes over time. It is widely understood that trend

specifications in applied econometric work are almost always inadequate approximations to

the underlying trend mechanism. This limitation applies equally well to trend decay specifi-

cations in modeling convergence behavior in cross sectional variation. Our work involves the

use of simple linear trend regressions of the form (1) but with intentional misspecification

of the model to assess trend effects that enable testing for weak σ-convergence using the

approach developed recently in KPS (2019). The advantage of this methodology for appli-

cations is that linear trend regression is simple to use in empirical work and its capacity to

detect trend decay is unaffected by the deliberate misspecification of the fitted regression.

The fitted model is just a device to determine whether there is evidence in the data to

support trend decay and convergence.

KPS (2019) consider a data generating process for a (trend decay) panel yit which can

be written in terms of the general factor augmented system

yit = θ′iFt + xit, xit = ai + µit
−α + εitt

−β, (5)

where Ft is a vector of common factors, θi is a vector of factor loadings, xit has a possible

deterministic trend decay function t−α when α > 0, and the error process εitt−β has uncon-
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ditional variance decay σ2
ε t
−2β where σ2

ε is the variance of εit and β > 0. For our following

analysis we assume that εit is strictly stationary over t with 1-summable autocovariance se-

quence (γi (h)) and long run variance Ω2
e =

∑∞
h=−∞ γi (h) > 0, but independently distributed

over i with uniform fourth moments, and the slope coeffi cients ai and µi are cross sectionally

independent with finite second moments. Full details are given in Assumptions A and B in

the Appendix.

In this context, the convergence behavior of xit is of primary interest. To simplify the

presentation of the main effects of HAR inference here, we consider only the case where

α = µi = 0 and β > 0 (This case is designated as model M2 in KPS). As shown in KPS

(2019)2 these and other regularity conditions ensure that after fitting the common factor

component of (5) the residual x̂it = yit − θ̂
′
iF̂t = xit +Op

(
C−1
nT

)
where CnT = min

[√
n,
√
T
]

and asymptotic analysis of the convergence tests is unaffected by working with xit in place

of x̂it.

Using the notation ε̃it = εit − n−1
∑n

i=1 εit for deviations from cross section means of εit
and similar notation for other variables, KPS (2019) show that the cross sectional variance

Knt := 1
n

∑n
i=1 x̃

2
it of xit can be decomposed as follows

Knt =
1

n

∑n

i=1

(
xit −

1

n

∑n

i=1
xit

)2

= σ2
a,n + ηn,t + εn,t, (6)

where σ2
a,n = n−1

∑n
i=1 ã

2
i , ηn,t = σ2

ε,nT t
−2β is the finite sample trend decay function, and

εn,t = 2n−1
∑n

i=1
ãiε̃itt

−β +
(
σ2
ε,nt − σ2

ε,nT

)
t−2β, (7)

with σ2
ε,nt = n−1

∑n
i=1 ε̃

2
it, σ

2
ε,nT = T−1

∑T
t=1 σ

2
ε,nt. Since the coeffi cient on the time decay

function ηn,t in (6) is random, the following representation of the decomposition is useful in

the asymptotic development

Knt = σ2
a,n + ηt + εn,t + ξn,t, (8)

where ηt = σ2
ε t
−λ, λ = 2β, ξn,t = ηn,t − ηt =

(
σ2
ε,nT − σ2

ε

)
t−λ and σ2

ε is the variance of εit. It

is easy to show that ξn,t = Op

(
n−1/2

)
uniformly in t for all λ ≥ 0.

To test weak σ-convergence KPS (2019) propose the following simple linear trend regres-

sion fitted with T time series observations

Knt = ânT + φ̂nT t+ ût, (9)

2See footnote 9 in KPS for more discussion of this issue involving the prior removal of a factor component

from the data.
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using a robust t-statistic on the least squares regression coeffi cient φ̂nT . It is convenient to

decompose φ̂nT into component form as follows

φ̂nT =
∑T

t=1
atT η̃t +

∑T

t=1
atT ξ̃n,t +

∑T

t=1
atT ε̃n,t =: IA + IB + IC , (10)

where atT = t̃/
(∑T

s=1 s̃
2
)
, η̃t = σ2

ε t̃
−λ, t̃−λ = t−λ−T−1

∑T
t=1 t

−λ, ξ̃n,t = ξn,t − T−1
∑T

t=1 ξn,t

and ε̃n,t = εn,t−T−1
∑T

t=1 εnt. The separate components IA, IB and IC are useful in the proofs

and are analyzed in full in KPS (2019). In view of the form of ηt = σ2
ε t
−λ and the presence

of ηn,t in (6), the linear trend regression (9) is evidently misspecified unless λ = 2β = −1, in

which case there is a specific form of divergence over time rather than convergence, or unless

λ = 2β = 0, in which case there is neither convergence nor divergence over time. Weak σ-

convergence of Knt is formally defined in equation (2) of KPS (2019) and essentially requires

that K̄t =plimn→∞Knt exists and decays over time to some constant value c ∈ [0,∞). In

what follows we refer to this concept as σ-convergence or more simply as convergence.

As indicated above, the model specification (9) is intentionally simple and inappropriate

except for the special cases λ = 0,−1 where there is no cross section convergence. In partic-

ular, the linear trend specification would seem to be a poor proxy for capturing evaporating

trend decay in variation which is inherently nonlinear because of the zero lower bound on

variation. Nonetheless, while any particular parametric trend specification is likely to be mis-

specified and (9) itself is most likely quite wrong in practical work, intuition from spurious

trend regression theory (Phillips, 1986; Durlauf and Phillips, 1988) suggests that a simple

reduced form regression specification such as (9) is likely to reveal the presence of any trend

effects that are manifest in the temporal evolution of Knt. Thus, in spite of misspecification,

the fitted trend regression (9) turns out to be revealing of both convergence and divergence

in cross section dispersion.

KPS (2019) pursue this intuition by developing a formal test procedure with asymptotic

theory that can be used to assess the presence of diminishing variation in Knt. In mobi-

lizing this test, some attention to serial dependence in the error is appropriate in view of

the aggregated time series data and the simplicity and likely misspecification of the fitted

model. The specific question that interests us in this paper is whether there is an advantage

asymptotically or in finite samples in using fixed-b HAR estimators rather than standard

HAC estimators in the construction of the tests in this context of testing for σ-convergence.
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To fix ideas on testing using the fitted model (9), consider the following t-ratio

t1 =
φ̂nT√

Ω̂2
1

(∑T
t=1 t̃

2
)−1

, (11)

where φ̂nT is the least squares estimate of the slope coeffi cient in (9), t̃ = t−T−1
∑T

t=1 t, and

Ω̂2
1 is defined as

Ω̂2
1 =

1

T

∑T

t=1
û2
t +

2

T

∑L

`=1

∑T−`

t=1

(
1− `

L+ 1

)
ûtût+`, (12)

where ût = K̃nt − φ̂nT t̃ with K̃nt = Knt − T−1
∑T

t=1Knt, L = bT κc for κ ∈ (0, 1) , and more

specifically k = 1/3, as in the Bartlett-Newey-West estimator.

Depending on the asymptotic behavior of the fitted coeffi cient φ̂nT , the regression residu-

als ût then bear the effects of a spurious imported trend from the regression, which influences

the properties of long run variance estimators such as (12) that are used in the construc-

tion of the t-statistic. These effects, in turn, influence the asymptotic behavior of the test

statistic. KPS (2019) show that in spite of its misspecification the fitted regression (9) en-

ables a satisfactory test of σ−convergence. Here we investigate whether or not a HAR type
correction, instead of a HAC correction, improves the testing procedure proposed by KPS

(2019).

4 Robust Testing

4.1 Null and alternative hypotheses

As in KPS (2019), the hypothesis of interest is σ−convergence of Knt, which naturally

corresponds to the case where λ > 0. The null hypothesis is no convergence and has the

composite form3

H0 : λ ≤ 0. (13)

The directed alternative hypothesis HA : λ > 0 implies that testing for convergence is

one-sided. Critical values are then delivered by the limit distribution under the point null

λ = 0.

3The null hypothesis given in (13) is for the case µi = α = 0 in (5). This model is designated model M2

in KPS (2019) and other models are considered there, to which readers are referred for greater generality in

HAC standardized t-ratio testing.

9



Even though the null and alternative hypotheses are well defined in terms of the unob-

served parameter λ in the parametric trend decay model, testing is accomplished using the

fitted coeffi cient φ̂nT in the regression (9). It is hard to write down a generally applicable

hypothesis of convergence in terms of (9) because this regression is misspecified and there

are many possible forms of misspecification, including nonparametric specifications involv-

ing both mean and variance. In fact, as KPS (2019) show, the least squares estimator φ̂nT
approaches zero as n, T → ∞ when λ > 0. Nonetheless, the t1 statistic in (11) diverges

to negative infinity if 0 < λ < 1. This limit theory shows that use of the fitted regression

(9) leads to a consistent one-sided test of convergence in spite of misspecification of the

regression model (9). The test is a left-sided test based on φ̂nT . In fact, even when the decay

parameter value λ→∞ and the decay in variation Knt is infinitely fast (implying that only

a finite number of observations are helpful in detecting convergence), the t1 statistic still

remains negative, converging in probability to −
√

3 = −1.732 < −1.65. So the test remains

consistent at a 5% nominal size level in a one-sided asymptotic normal test in this extreme

situation. Theorem 2 in KPS (2019) provides further details and discussion. Obviously the

test becomes inconsistent in this extreme situation where λ→∞ when a smaller nominal size

is employed (e.g. for 4% nominal size the critical value is 1.75 and −
√

3 = −1.732 > −1.75).

The use of a 5% test is therefore relevant in determining asymptotic properties of the test

in this extreme case where λ→∞.
The t1 statistic is discontinuous in the limit around λ = 0 which includes the null hypoth-

esis of no convergence. In this case when λ = 0, the limiting distribution of the t1 statistic

is standard normal, as shown in Theorem 1 below. This limit theory provides a convenient

left-sided critical value for the test for convergence, i.e., convergent variation in Knt over

time.

When λ < 0, the t1 statistic diverges to positive infinity, showing that the test is pow-

erful in detecting divergent variation in Knt (using a right-sided test) as well as convergent

variation in Knt (using the left-sided test).

4.2 Test statistics and alternative nonparametric studentization

The t1 test statistic defined by (11) involves a standard HAC studentization formula. We now

consider the following t-ratios constructed using alternative variance estimates to standardize

the coeffi cient estimate φ̂nT in the fitted regression (9). The first statistic is analogous to t1
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but uses a fixed-b variance estimate

t2 =
φ̂nT√

Ω̂2
2

(∑T
t=1 t̃

2
)−1

, (14)

where Ω̂2
2 is given below in (19). In this formula and that for Ω̂2

M below it is convenient to

use the fixed-b lag truncation notationM = bbT c with b ∈ (0, 1). The next two statistics use

sandwich formulae in the self normalization. Let κ̃t = ûtt̃, and define

tHAR =
φ̂nT√(∑T

t=1 t̃
2
)−1

T Ω̂2
M

(∑T
t=1 t̃

2
)−1

, (15)

tHAC =
φ̂nT√(∑T

t=1 t̃
2
)−1

T Ω̂2
L

(∑T
t=1 t̃

2
)−1

, (16)

where M = bbT c for some b ∈ (0, 1) and L = bT κc for some κ ∈ (0, κ̄) with κ̄ < 1. Next

define

Ω̂2
M =

1

T

∑T

t=1
κ̃2
t +

2

T

∑M

`=1

∑T−`

t=1

(
1− `

M + 1

)
κ̃tκ̃t+`, (17)

Ω̂2
L =

1

T

∑T

t=1
κ̃2
t +

2

T

∑L

`=1

∑T−`

t=1

(
1− `

L+ 1

)
κ̃tκ̃t+`, (18)

Ω̂2
2 =

1

T

∑T

t=1
û2
t +

2

T

∑M

`=1

∑T−`

t=1

(
1− `

M + 1

)
ûtût+`. (19)

With the formulation (19), the t2 statistic has the same form as the t1 statistic but uses a

HAR variance estimator Ω̂2
2 (with fixed-b coeffi cient in lag truncationM = bbT c) in place of a

HAC estimator. The two statistics tHAC and tHAR use sandwich formulae for the construction

of the variance, with the HAR estimate Ω̂2
M in tHAR and the HAC estimate Ω̂2

L in tHAC. Under

the null hypothesis, the asymptotic behavior of the tHAC statistic is the same as that of the

original t1 statistic used in KPS (2019), as might be expected because both statistics use

consistent estimates of the long run variance. The asymptotic properties under the null of

the tHAR and t2 statistics differ from that tHAC and t1, again as might be expected from

standard limit theory for HAR testing. Versions of (17) - (19) with other kernels than the

Bartlett kernel are possible and are considered in the Appendix.
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4.3 Limit theory under the null

We now derive the limit theory of the statistics {t1, t2, tHAC, tHAR} . It is convenient for testing
to consider asymptotic behavior under the null hypothesis of no convergence or divergence,

i.e. when λ = 0. This null is useful because it enables directional test sof convergence (λ > 0)

and divergence (λ < 0).

When λ = 0, it is easy to see that IC is the only constituent part in (10). Under the null

the OLS coeffi cient estimate in (9) can therefore be written in the simple form4

φ̂nT =
∑T

t=1
atT ε̃n,t = IC ,

and φ̂nT is asymptotically normal. However, the proof is not immediate and, nor is the

asymptotic variance formula, because of the complexity of the component variates ε̃n,t =

εn,t − T−1
∑T

t=1 εn,t and εn,t in (7). In particular, the element εn,t involves first and second

sample moments of the original variates εit and these sample moments induce the presence of

higher order moments in the limit theory, as shown in the following result whose proof is given

in the Appendix together with the assumptions used in the derivations. In the statement

and proof of the theorem the notation  denotes both convergence of random sequences in

distribution and weak convergence of random elements in the associated function space.

Theorem 1 (Asymptotics under the Null)

Under the null hypothesis λ = 0 and under Assumption A in the Appendix the

coeffi cient estimate φ̂nT and associated t-ratio statistics have the following as-

ymptotic behavior as T, n→∞.

(i)
√
nT 3/2φ̂nT  N

(
0, 12Ω2

φ

)
,where Ω2

φ = 4σ2
aΩ

2
ε + Ω2

ε2 , Ω2
ε is the long run

variance of εt, Ω2
ε2 is the long run variance of ε

2
t , and σ

2
a = E (ai − a)2 .

(ii) t1  N (0, 1) .

(iii) t2 =
φ̂nT√

Ω̂2
2

(∑T
t=1 t̃

2
)−1
 Z{∫ 1

0

∫ 1

0

(
1− |r − s|

b

)
dW τ (r) dW τ (s)

}1/2
.

(iv) tHAR =
φ̂nT√(∑T

t=1 t̃
2
)−1

T Ω̂2
M

(∑T
t=1 t̃

2
)−1
 Z{∫ 1

0

∫ 1

0

(
1− |r − s|

b

)
r̃s̃dW τ (r) dW τ (s)

}1/2
.

4When λ = 0, t̃−0 = t0 − T−1
∑T
t=1 t

0 = 0 so that η̃t = σ2ε t̃
−0 = 0. Also note that ξn,t = ηn,t − ηt =(

σ2ε,nT − σ2ε
)
t−λ = σ2ε,nT − σ2ε , and ξ̃n,t = ξn,t − T−1

∑T
t=1 ξnt = 0.
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(v) tHAC =
φ̂nT√(∑T

t=1 t̃
2
)−1

T Ω̂2
L

(∑T
t=1 t̃

2
)−1
 N (0, 1) .

In (iv) r̃ = r −
∫ 1

0
sds. In (iii) and (iv) the stochastic process W τ (·) is the

generalized standard Brownian Bridge W τ (r) = W (r) − αB − βBr, which is

the linearly L2 [0, 1] detrended version of the standard Brownian motion W (r) .

The coeffi cients (αW , βW ) are the solution of the L2 [0, 1] optimization problem

(Phillips, 1988; Park and Phillips, 1988, 1989;)[
αB

βB

]
= arg min

(a,b)

∫ 1

0

{W (r)− a− br}2 dr.

As discussed in the proof, two long run variance components
(
Ω2
ε ,Ω

2
ε2

)
appear in the as-

ymptotic variance Ω2
φ of
√
nT 3/2φ̂nT . This complication arises because the residual term εn,t

in the expression for the dependent variableKnt involves the two second order moment quan-

tities 2n−1
∑n

i=1 ãiε̃it and n
−1
∑n

i=1

(
ε̃2it − σ2

ε

)
that contribute to long run variation through

the variable ζ it = 2ãiε̃it+
(
ε̃2it − σ2

ε

)
. The quantity Ω2

φ = 4σ2
aΩ

2
ε +Ω2

ε2 is the long run variance

of ζ it.

The t1 statistic employed by KPS (2019) utilizes the fact that the linear trend is de-

terministic and independent of the regression error. Standard theories of HAC and HAR

estimation can therefore be applied directly and we might expect from earlier research that

both t1 and tHAC suffer from finite sample size distortion relative to asymptotic nominal size

when the usual HAC formula with lag truncation parameter L = bT κc and κ = 1/3 is em-

ployed. Also, as is apparent in (iii) and (iv), the limit theory for t2 and tHAR is non-normal

but still pivotal. This finding is consonant with standard fixed-b limit theory, although the

limit theory is of a different form due to the presence of the linear trend in the fitted re-

gression. Both t2 and tHAR typically show departures from normality in finite samples. and

especially as b approaches unity.

4.4 Limit theory under the alternative of convergence

We first discuss the sign of the coeffi cient φ̂nT . As shown in KPS (2019), the deterministic

term IA always dominates IB and IC under the alternative. In what follows we use the
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notation anT ∼a cnT if anT/cnT →p 1 as n, T →∞. Then

φ̂nT ∼a IA =
∑T

t=1
atT η̃t = {1 + op (1)}


−σ2

εLλT
−1−λ if λ < 1,

−6σ2
εT
−2 lnT if λ = 1,

−6σ2
εZ (λ)T−2 if λ > 1.

(20)

where Lλ = 6λ[(2− λ) (1− λ)]−1 and Z (λ) =
∑∞

t=1 t
−λ is the Riemann zeta function. As

n, T → ∞, φ̂nT is always negative when λ > 0 and the sign of the t-statistic is the same as

φ̂nT . The denominators of the t-ratios become functions of σ
2
ε and the smoothing parameters

κ and b in variance estimation. The precise form of this functional dependence affects on

the individual statistic. For example, the long run variance estimate used in the t1 statistic

in (12) is a function of ût and κ. As shown in KPS (2019), when n, T → ∞, the dominant
term of ût becomes

ût = η̃n,t − φ̂nT t̃+ ε̃nT ∼a η̃n,t − φ̂nT t̃,

but

η̃n,t − φ̂nT t̃ = η̃t − IAt̃+ ξ̃n,t − t̃ (IB + IC) ∼a η̃t − IAt̃.

Hence the residual can be approximated as

ût ∼a η̃t −
[∑T

t=1
atT η̃t

]
t̃, (21)

which is a linearly detrended form of η̃t. From the definitions following (10), η̃t = σ2
ε t̃
−λ and

is a linear function of σ2
ε . So, in conjunction with (20), it is apparent that the t1 test statistic

is free from the scale nuisance parameter of σ2
ε .

We now study the asymptotic properties of the other three t-statistics under σ−convergence.
For the t1 and tHAC statistics the alternative hypothesis of convergence in which λ > 0 can

be written in terms of left-sided critical values and lead to a rejection of the null hypothesis

of non convergence at the 5% level when t1 < −1.65. The same is true for the HAR test

statistics except that the left sided critical values depend on the pivotal limit theory given

in Theorem 1 (iii) and (iv). These critical values can be obtained by simulation and this is

done in the numerical exercises reported later. The following theorem provides details of the

asymptotic behavior of these statistics.

Theorem 2 (Asymptotics under the Alternative)
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Under weak σ-convergence with λ > 0 and under the regularity conditions given

in Assumption A and B in the Appendix and Theorem 1 of KPS (2019), the

t-ratio statistics have the following asymptotic behavior as n, T →∞ :

t1 =



Op

(
T 1/2−κ/2) if 0 < λ < 1/2,

Op

(
T 1/2−κ/2 (lnT )−1/2

)
if λ = 1/2,

Op

(
T 1−λ−κ/2) if 1/2 < λ < 1/ (1 + κ) ,

Op

(
T (1−λ)(1−κ)/2

)
if 1/ (1 + κ) ≤ λ < 1,

O (1) + op (1) if λ ≥ 1

, (22)

where the primary term of O (1) with λ ≥ 1 is given by

plimn,T→∞t1 =


−
√

6/κ2 if λ = 1,

−Z (λ)
√

3 if 1 < λ <∞,
−
√

3 if λ→∞.
(23)

where κ > 0 is defined by the lag truncation parameter L = bT κc in the Bartlett-
Newey-West long run variance estimator. The function Z (λ) := Z (λ)

(∑∞
t=1 t

−λZ (λ, t)
)−1/2

>

1 for all λ > 1, where Z (λ, t) =
∑∞

s=1 (s+ t)−λ is the Hurwitz zeta function.

t2 = Op (1) if λ > 0 (24)

tHAR = Op (1) if λ > 0 (25)

tHAC = Op

(
T 1/2−κ/2) if λ > 0 (26)

As (n, T )→∞ the statistics t1, t2, tHAR and tHAC are all negative under convergence since

their signs are determined by the trend regression coeffi cient φ̂nT which is always negative

when λ > 0. Except for a few specific cases shown in the statement of the theorem, the

asymptotic orders of the t-ratios that rely on HAR estimates can be obtained by replacing

κ by unity in (22). This accords with the understanding that the HAR statistics rely on the

use of lag truncation parameters proportional to the sample size.

Theorem 2 provides the order of magnitude of each t statistic under the alternative

hypothesis of convergence, which is important for determining whether the associated test is

consistent. The HAR test statistics tHAR and t2 are Op (1) and their large sample behavior

can be illustrated graphically. Figure 1a shows the empirical distribution of the t2 statistic
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under the following data generating process: yit = εitt
−0.25 where εit ∼ iidN (0, 1) . Evidently

as n increases, the distribution of the t2 statistic concentrates around a value close to -3.8.

When T increases as well, the distribution collapses more rapidly and to a slightly smaller

value close to -3.4, as shown in Figure 1b. The limit behavior of the t2 and tHAR statistics

depends on the value of λ and the smoothing parameter b. This behavior is explored in the

numerical simulations that follow.
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Figure 1a: Densities of the t2 statistic Figure 1b: Densities of the t2 statistic

T = 100, β = 0.25 and b = 0.3 β = 0.25 and b = 0.3

The orders of magnitude of the tHAC and the tHAR statistics given in (25) bear a similar

relation to those of the tHACa and the tHARa statistics given earlier in (3) and (4) for testing the

significance of the slope coeffi cient in the linear trend regression (1). Since under HAC esti-

mation L = bT κc, the order of magnitude of the tHAC statistic is Op

(√
T/L

)
= Op

(
T (1−κ)/2

)
just as in (3); and tHAR = Op (1) as in the case of tHARa . Note that the asymptotic properties

of both tHACa and tHARa were obtained under the null hypothesis of a = 0 in (1), but the linear

trend regression in that model was misspecified (just as in the present case) and the error was

I (1) , so the data trends were stochastic rather deterministic in that case. The asymptotic

properties of the tHAC and the tHAR test statistics for convergence are here driven under the

alternative hypothesis (rather than the null) where λ > 0. But when λ > 0, the linear trend

regression (9) is also misspecified and the regression residual in (21) has deterministic terms

because ηt = σ2
ε t
−λ and the regression weight atT is deterministic. Hence the residual ũt has

persistent time series behavior. As will be apparent in the empirical example considered

later, and as accords with earlier analyses of misspecification, the fitted AR(1) coeffi cient

tends to be close to unity in this case. These properties lead to the asymptotic results for
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tHAR and tHAC given in (25) and to asymptotic behavior analogous to the tHACa and tHARa

statistics in (1).

It is worth noting that the asymptotic behavior of the t1 test differs from that of the tHAC
test when λ > 1/2. As Phillips and Park (1988; theorem 3.1) and Park and Phillips (1988, pp.

486-487) show, in general trend regression where regressors have stochastic or deterministic

trends but the regression errors are stationary, the commonly used sandwich variance matrix

form can be further reduced to the form given in the t1 statistic involving a suitable long run

variance estimate. This result suggests that a similar equivalence in behavior (irrespective

of the method of variance estimate construction) might be expected in the present context.

However, as the trend decay parameter λ increases, the fitted linear trend regression equation

(9) reverts to the null specification as the effective regressor ηt = σ2
ε t
−λ in the true model has

negligible deterministic trend properties when λ increases and the trend decay component

is ultimately zero as λ → ∞. Thus, as λ increases we may expect differences to arise in
finite sample and asymptotic behavior between the t1 and tHAC statistics. We investigate

this difference more carefully by means of numerical simulations in what follows (see, in

particular, Figures 2 and 4 below).

To conduct simulations we first note that the data Knt = n−1
∑n

i=1

(
xit − 1

n

∑n
i=1 xit

)2

become nonstochastic as n → ∞. In particular, from (6) we have Knt = σ2
a,n + ηn,t + εn,t

and it is easy to see that σ2
a,n →p σ

2
a, ηn,t →p σ

2
ε t
−λ, and εn,t →p 0 as n → ∞. Hence, for

large n we have the deterministic representation Knt ∼a σ2
a + σ2

ε t
−λ. This large n setting

for Knt provides a convenient mechanism for studying the behavior of the trend coeffi cient

estimate φ̂nT and the corresponding t-ratios in the fitted trend regression model (9). We use

this device in the numerical exercises that follow, which should therefore be interpreted as

simulations for very large n.

Figure 2 plots all four t-ratios over various λ values with κ = b = 1/3 and T = 1, 000.

Evidently, all four t-ratios are discontinuous at λ = 0, where the model passes through the

null hypothesis from convergence to divergence. Further, as λ increases all the t-ratios seem

to converge to a certain point. The t1 and tHAC statistics converge to the same point−
√

3 and

the t1 statistic evidently has greater discriminatory power than tHAC over the full range of λ.

It is also apparent in Figure 2 that the t2 and tHAR statistics both converge to the same point

−
√

3 as λ→∞ and this asymptotic behavior seems to be independent of the value of b. The

magnitude (in absolute value) of the test statistics is as follows: |t1| ≥ |tHAC| ≥ |t2| ≥ |tHAR|
for all values of λ with b = 1/3. Only for very large λ does equality hold. Subject to size
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correction, this outcome suggests that the t1 statistic provides the most powerful test.

We next vary the setting of the time series sample size T to examine the behavior of

the t2 and tHAR statistics with big changes in T and as λ changes. We maintain the setting

κ = b = 1/3 for comparability. Figure 3 shows the t2 and tHAR statistic values as λ changes

with different values of T (T = 1, 000 v.s. T = 5, 000) . It is apparent that there are only very

minor, virtually undetectable differences in test behavior between these large sample sizes.

This finding corroborates the result in Theorem 2 that these two tests haveOp (1) order under

the alternative and are not dependent on T as T →∞. Moreover, since Knt ∼a σ2
a + σ2

ε t
−λ

under the alternative, as λ increases, we can expect the discriminatory power for detecting

convergence to dissipate rapidly for large t because the impact on Knt of σ2
ε t
−λ is small when

t is large and λ is not small. The gain in moving from T = 1, 000 to T = 5, 000 can be

expected to be negligible in this case, as evidenced in Figure 3 and in the companion Figure

4. Figure 4 dispays the t1 and tHAC statistics for the same two values of T. As Theorem 1

predicts, both t1 and tHAC are time series sample size dependent as T →∞. As T increases,
both test statistics become noticeably larger in absolute value when λ is moderately small.

With a large λ, the effects of rising T are attenuated for the reason explained above and

both statistics converge to −
√

3 as λ increases indefinitely.

Figure 5 explains how the smoothing parameter b influences the tHAR statistic across

various λ values. At a given λ, the absolute value of the tHAR statistic decreases initially

as b increases, but then reaches a minimum and begins to increase slowly as b increases

further towards unity. This functional dependence of tHAR on b is highly nonlinear. The

behavior is somewhat expected since it is known that as b approaches to zero, the tHAR
statistic approaches the tHAC statistic whose asymptotic behavior and dependence on T is

very different from the fixed-b HAR statistic, as indeed is indicated in Theorem 2.
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5 Monte Carlo Simulations and An Empirical Example

First we report results of a simulation experiment designed to assess the finite sample perfor-

mance of the convergence tests based on the various HAC and HAR estimator normalizations

that were studied in the previous section. We also report an empirical application of the

methods to study convergence behavior in unemployment rates among the 48 contiguous

states of the USA.

5.1 Monte Carlo Simulations

We use the same data generating process considered by KPS (2019), viz.,

yit = ai + µit
−α + εitt

−β, (27)

where εit = ρεit−1 + vit, ai ∼ iidN (0, 1) , µi ∼ iidN (0, 1) , vit ∼ iidN (0, 1) , and ρ = 0.5.

We evaluate the size properties based on the restrictions µi = α = β = 0 under which

the model is simply yit = ai + εit and there is no convergence. Given the non-normal limit

theory of the HAR test statistics, we use simulations to obtain the asymptotic critical values

for these statistics. To do so we set n = T = 500 and ρ = 0.9 with yit = ai + εit. We run the

fitted trend regression and from 50,000 replications compute the empirical distributions of

t2 and tHAR with b = 0.1, 0.2 and 0.3. Table 1 reports the asymptotic critical values at the

5% level obtained in this manner. Evidently, as b increases, the critical values also increase

in absolute value, which corroborates the limit theory that indicates greater departures from

normality as b departs from zero and approaches unity.

Table 1: Simulated 5% critical values for t2 and tHAR

t2 tHAR

b = 0.1 b = 0.2 b = 0.3 b = 0.1 b = 0.2 b = 0.3

-2.155 -2.499 -2.938 -2.341 -2.746 -3.118

Table 2 shows test size based on a nominal asymptotic 5% rejection rate. Evidently, the

statistics t2 and tHAR that are based on HAR corrections exhibit much milder size distortion

compared with the t1 and tHAC statistics. The size distortion for all statistics diminishes as

T increases and the number of the cross sectional units n has little influence on test size,
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which is as expected since the tests all focus on trend behavior. Since we use asymptotic

critical values calculated for each smoothing parameter b (from Table 1), the size distortions

in the HAR statistics are little affected by the value of b. Interestingly, size distortions in

the t1 test are uniformly smaller than those of tHAC, showing that the sandwich correction

in the latter is a source of greater distortion.

Table 3 shows size adjusted test powers under the model (27) with α = 0 and β = 0.05

(so that λ = 2β = 0.1), corresponding to model M2 in KPS (2019). As n and T increase, test

power goes to unity in all cases. Generally, as b increases for a given n and T, the test powers

of t2 and tHAR decline, showing that the use of fixed-b methods typically diminishes power

as the lag truncation parameter rises. Most importantly, with few exceptions, the power

of the t1 test uniformly exceeds that of the other tests. For example, when T = n = 100,

the power of the test based on t1 equals 0.636 and the next most powerful test is t2 with

b = 0.1 (0.604). These simulation results corroborate the limit theory in Theorem 2 and the

numerical findings shown in Figure 3 and 4.

Table 4 reports size adjusted test powers for the model (27) with α = 0.05 (so that

λ = 0.05) and β = 0, corresponding to model M1 in KPS (2019). The results mirror the

simulation findings for model M2 reported in Table 3 and, as for that model, the t1 test is

evidently the most powerful of the four tests. Again, it is noticeable that powers of the tests

t2 and tHAR that use HAR corrections decrease as the value of b increases.

5.2 Empirical Example: State Unemployment Rates

Here we revisit one of the empirical examples used in KPS (2019) concerning potential con-

vergence among unemployment rates in the 48 contiguous States of the USA from 2009:M8

to 2016:M7. Panel A of Figure 7 in KPS (2019) shows that the t-ratio tφ̂ is −21.95. Figure

6 below shows the time path of the sample cross section variance among the 48 unemploy-

ment rates, wherein there is clear visual evidence of diminishing variation over this historical

period. The fitted values in (9) are as follows

Knt = 4.433− 0.047× t+ ût, ût = 1.005× ût−1 + v̂t.

In terms of these estimated coeffi cients, this case is similar to the one that Phillips et al

(2012) consider. But as we will show it is not realistic to assume that the unemployment

rate cross section variation measure Knt follows a trend regression with a nonstationary

regression error. Nevertheless there is vivid evidence for weak σ−convergence in the data.
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The cross sectional variance seems to stabilize around unity towards the end of the sample

period over 2015-2016. If that is so, then one potential inference from these data is that it

has taken around 5-6 years for the economy to adjust to the shock on the labor market of

the subprime mortgage crisis. The stabilization period is part of the adjustment process and

one that is not accounted for directly in a linear trend regression.

Suppose that the true DGP for Knt can be represented in the form

Knt = a+ gt−λ + et. (28)

By a rough calculation, assuming a 5 year adjustment, the trend decay rate parameter is

approximately 0.3 if a = 0 and g = 1 in (28) since we have

λ = −
[

1− ln 4.5

ln 5

]
' 0.313.

This crude estimate of λ gives an approximate idea of how the test statistics should behave,

based on the limit theory and numerical calculations reported above. Since this calculated

value of λ is less than 1/2, the large n−asymptotic limits of both the tHAR and t2 tests
approach negative constants.
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Figure 6: Cross section variance of unemployment rates

over the 48 US contiguous States

Table 5 reports the empirical findings for the t-ratios including various choices of the

fixed-b smoothing parameter. As noted in Figures 2 and 3, the t1 statistic is typically larger

than tHAC in absolute value, and also |t2| < |t1| and |tHAR| < |tHAC| . The empirical values of

23



the test statistics all satisfy these inequalities. Specific values of t2 and tHAR change along

with the different values of b, but clearly the values in the table are far distant from the

asymptotic critical values given in Table 1 for the HAR test statistics. And the empirical

outcomes of the t1 and tHAC statistics a far distant from the nominal 5% critical value -1.65.

It follows that the generally supportive evidence for convergence does not change and is little

influenced by the choice of the long run variance (LRV) estimate used in standardizing the

various t-ratios, including the choice of smoothing parameter b in HAR standardizations.

Table 5: Effectiveness of Various HAC/HAR Tests

k t−ratio k t−ratio
t1 4 -21.948 tHAC 4 -19.636

t2 b =0.1 9 -16.860 tHAR b =0.1 9 -15.931

b =0.2 17 -14.446 b =0.2 17 -14.767

b =0.3 30 -14.254 b =0.3 30 -15.732

To highlight the differences among the various LRV estimators, we consider a longer

time series trajectory. Figure 7 plots the first and second central cross section moments

of the unemployment rates —giving the cross section mean and variance — from 1976.M1

to 2018.M8. The trajectory of the cross section mean or national average does not appear

to have an overall positive or negative trend behavior since the twin (recession associated)

peaks (around 1982 and 2009) in the series are roughly comparable in magnitude. On the

other hand, the cross section variation does show evidence of a decline over time, subject to

the interlude of a rapid rise of the unemployment rate in 2009 and noting that the peak rate

in 2009 is noticeably lower than the peak rate in 1982.
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Figure 7: Time Varying Patterns of Cross Section Mean and Variance

in US State Unemployment Rates over 42 years

Figure 8 shows recursive t-ratios computed for the trend regression with the four different

LRV estimators giving time series for the trajectories of the test statistics t1, t2, tHAC and

tHAR. The starting point in the recursions is fixed and the end point in the sample moves

over time. Around 1992, all of the four t-ratios pass through zero, indicating a move towards

convergence. After this point, as the recursive calculations continue the t-ratios t1 and

tHAC show very similar values. Both are much smaller than the t2 and tHAR statistics with

smoothing parameter b = 0.1, a pattern that reflects that of Figure 2. Higher values of b

do not lead to major differences in these time paths for t2 or tHAR. When the end point in

the recursion is around 2006, the total number of observations is around 360, so that we

can include around 36 lags in the computation. Adding more lags in the LRV calculation

makes little difference from this point. However, irrespective of the sample end point in the

recursion the t1 and tHAC trajectories are always below the 5% critical value of −1.65 from

around 1995 forwards. On the other hand, both t2 and tHAR trajectories exceed the normal

critical value −1.65 (and therefore conservative critical value, given the HAR critical values

in Table 1) for several years in the aftermath of the subprime mortgage crisis before falling

below this critical value again around 2017. Thus, all four series show some evidence of

σ-convergence but the evidence is stronger and more sustained over the full sample period

in the t1 and tHAC trajectories than for t2 and tHAR. This outcome squares with the analytic

and simulation evidence that the t1 and tHAC tests tend to have the greater discriminatory
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Figure 8: Recursive t-ratios

6 Concluding Remarks

We investigate the use of various HAC, HAR and sandwich-type long run variance estima-

tors in testing weak σ-convergence. These tests are particularly useful in assessing evidence

for sustained diminution in cross section dispersion over time. The approach is easy to use

in practice and is based on a simple linear trend regression with cross sectional variance as

the dependent variable, as suggested in recent research by Kong et al. (2019). Under the

null of no convergence, the trend regression is generally well specified since the trend slope

coeffi cient is zero and the regression errors are taken as stationary time series. So standard

normal limit theory for nonparametric studentization (with consistent variance estimates)

of t-tests continues to hold under the null. Non-normal limit theory applies to fixed-b HAR

studentized t-tests, which in the present case needs to account for the complexities induced

by the trend regression with cross section averaged data. Under convergence, the empirical

linear trend regression is generally misspecified because it does not correctly capture trend

decay formulations of diminishing variation. Conventional asymptotic theory for nonpara-

metrically studentized t-tests fails to apply in such regressions and the tests have different

asymptotic behavior in the presence of σ-convergence depending on the specific nature of

the studentization.

The limit theory in the paper shows that t-ratios formed using traditional HAC variance

estimates have better asymptotic behavioral characteristics in terms of discriminatory power
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for distinguishing convergence than those based on fixed-b HAR variance estimates. These

asymptotics are supported by numerical explorations of the finite sample power properties

of the various tests. There is also evidence in the simulations that HAR tests have less

size distortion than HAC tests in finite samples, supporting earlier findings from both limit

theory and simulations in traditional location model and GMM settings (Jansson, 2004; Sun

et al, 2008). The results from simulations and limit theory further suggest that simple HAC

standardizations outperform sandwich formula standardizations in terms of discriminatory

power.

Application of these methods to assess diminishing variation in US State unemployment

rates is largely confirmatory of the diminution over time, particularly in the latter period

following the 2008 financial crisis. The empirical findings also corroborate the differences

and power orderings in the HAC and HAR test behavior noted in the limit theory and

simulations.
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Table 2: Sizes of Various Tests (Nominal Size: 5%)

t2 tHAR

T n t1 tHAC b =0.1 b =0.2 b =0.3 b =0.1 b =0.2 b =0.3

25 25 0.131 0.154 0.089 0.076 0.075 0.094 0.076 0.073

25 50 0.131 0.149 0.079 0.070 0.070 0.084 0.070 0.065

25 100 0.146 0.165 0.085 0.073 0.073 0.083 0.071 0.069

25 200 0.135 0.155 0.088 0.074 0.074 0.094 0.078 0.071

25 500 0.132 0.152 0.081 0.073 0.074 0.088 0.071 0.069

50 25 0.114 0.128 0.061 0.060 0.059 0.063 0.059 0.056

50 50 0.100 0.117 0.057 0.055 0.054 0.060 0.053 0.051

50 100 0.104 0.119 0.056 0.053 0.052 0.059 0.053 0.051

50 200 0.110 0.128 0.059 0.056 0.053 0.062 0.058 0.054

50 500 0.105 0.121 0.062 0.057 0.055 0.063 0.059 0.055

100 25 0.089 0.101 0.048 0.048 0.047 0.047 0.043 0.044

100 50 0.096 0.107 0.048 0.050 0.049 0.048 0.048 0.045

100 100 0.092 0.102 0.048 0.047 0.048 0.046 0.046 0.046

100 200 0.083 0.097 0.048 0.050 0.045 0.049 0.049 0.046

100 500 0.092 0.101 0.046 0.046 0.042 0.047 0.045 0.044

200 25 0.076 0.083 0.035 0.038 0.037 0.038 0.037 0.036

200 50 0.076 0.081 0.040 0.043 0.042 0.040 0.040 0.042

200 100 0.086 0.093 0.041 0.043 0.044 0.036 0.040 0.040

200 200 0.080 0.086 0.041 0.041 0.041 0.040 0.041 0.040

200 500 0.078 0.084 0.043 0.046 0.043 0.044 0.047 0.046

28



Table 3: Power Comparison under M2 (Size Adjusted): λ = 2β = 0.1

t2 tHAR

T n t1 tHAC b =0.1 b =0.2 b =0.3 b =0.1 b =0.2 b =0.3

25 25 0.126 0.124 0.126 0.122 0.119 0.124 0.118 0.116

25 50 0.182 0.181 0.182 0.173 0.165 0.181 0.176 0.176

25 100 0.244 0.230 0.244 0.230 0.223 0.230 0.224 0.212

25 200 0.398 0.377 0.398 0.380 0.366 0.377 0.367 0.363

25 500 0.649 0.598 0.649 0.609 0.569 0.598 0.565 0.561

50 25 0.187 0.161 0.178 0.174 0.164 0.161 0.158 0.159

50 50 0.267 0.247 0.261 0.243 0.231 0.240 0.239 0.232

50 100 0.418 0.385 0.409 0.368 0.336 0.379 0.354 0.347

50 200 0.608 0.558 0.595 0.544 0.503 0.550 0.511 0.491

50 500 0.901 0.835 0.889 0.810 0.747 0.823 0.740 0.705

100 25 0.277 0.256 0.261 0.238 0.227 0.249 0.227 0.221

100 50 0.430 0.399 0.404 0.374 0.350 0.368 0.342 0.332

100 100 0.636 0.616 0.604 0.542 0.508 0.571 0.518 0.495

100 200 0.878 0.829 0.848 0.769 0.683 0.771 0.705 0.663

100 500 0.997 0.988 0.990 0.960 0.921 0.973 0.912 0.871

200 25 0.410 0.402 0.398 0.366 0.337 0.362 0.339 0.328

200 50 0.657 0.626 0.609 0.546 0.509 0.571 0.503 0.484

200 100 0.880 0.854 0.839 0.763 0.708 0.771 0.686 0.651

200 200 0.991 0.982 0.977 0.938 0.873 0.936 0.866 0.814

200 500 1.000 1.000 1.000 0.998 0.982 0.997 0.979 0.947
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Table 4: Power Comparison under M1 (Size Adjusted): λ = α = 0.05

t2 tHAR

t n t1 tHAC b = 0.1 b = 0.2 b = 0.3 b = 0.1 b = 0.2 b = 0.3

25 25 0.081 0.086 0.081 0.080 0.082 0.086 0.084 0.083

25 50 0.111 0.111 0.111 0.108 0.102 0.111 0.109 0.108

25 100 0.135 0.128 0.135 0.128 0.124 0.128 0.127 0.124

25 200 0.182 0.183 0.182 0.176 0.176 0.183 0.177 0.176

25 500 0.306 0.303 0.306 0.293 0.284 0.303 0.285 0.290

50 25 0.102 0.098 0.100 0.103 0.100 0.099 0.097 0.094

50 50 0.135 0.126 0.131 0.123 0.120 0.125 0.120 0.118

50 100 0.187 0.185 0.185 0.168 0.159 0.183 0.170 0.171

50 200 0.262 0.253 0.256 0.243 0.235 0.250 0.239 0.234

50 500 0.472 0.446 0.462 0.417 0.390 0.440 0.405 0.391

100 25 0.129 0.127 0.123 0.119 0.112 0.122 0.113 0.112

100 50 0.185 0.189 0.179 0.172 0.158 0.179 0.170 0.165

100 100 0.262 0.266 0.252 0.238 0.236 0.255 0.237 0.234

100 200 0.407 0.395 0.390 0.353 0.325 0.365 0.348 0.337

100 500 0.732 0.688 0.694 0.627 0.592 0.658 0.592 0.563

200 25 0.167 0.173 0.165 0.158 0.153 0.163 0.158 0.154

200 50 0.252 0.247 0.240 0.227 0.217 0.236 0.219 0.217

200 100 0.399 0.390 0.366 0.337 0.319 0.343 0.314 0.310

200 200 0.624 0.596 0.586 0.528 0.490 0.526 0.495 0.470

200 500 0.918 0.884 0.871 0.792 0.729 0.806 0.716 0.672
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Appendix

Assumptions

We base our conditions in Assumption A below on those employed in KPS (2019), augmented

by conditions on the existence of the long run variance of ε2it. The kernel conditions given

in Assumption B are similar to those employed by Sun et al (2008) and Sun (2014) and are

satisfied by the Bartlett-Newey-West kernel used in the body of the paper.

Assumption A:

(i) The model error term εit ∼ iid (0, σ2
ε) over i with finite fourth moment

E (ε4it) <∞ and is strictly stationary over t. The autocovariance sequence γε (h) =

E (εitεit+h) of εit satisfies the summability condition
∑∞

h=1 h |γε (h)| <∞ and εit
has long run variance Ω2

ε =
∑∞

h=−∞ γε (h) > 0. The autocovariance sequence

γε2 (h) = E
{

(ε2it − σ2
ε)
(
ε2it+h − σ2

ε

)}
of ε2it satisfies the summability condition∑∞

h=1 h |γε2 (h)| <∞ and ε2it has long run variance Ω2
ε2 =

∑∞
h=−∞ γε2 (h) > 0.

(ii) The coeffi cients ai ∼ iid (a, σ2
a) and are independent of εjs for all {i, j, s, t} .

Assumption B:

(i) k(x) : R → [0, 1] is symmetric, piecewise smooth with k (x) = 0 for |x| > 1,

k(0) = 1, and
∫ 1

−1
k (x) dx = 1.

(ii) The Parzen characteristic exponent defined by

q = max{q0 : q0 ∈ Z+, gq0 = lim
x→0

1− k(x)

|x|q0 <∞} (29)

is greater than or equal to 1.

(iii) k(x) is positive semidefinite, i.e., for any square integrable function f(x),∫∞
0

∫∞
0
k(s− t)f(s)f(t)dsdt ≥ 0.

The identical distribution assumption in A(i) and A(ii) is convenient in what follows but

can no doubt be relaxed under stronger uniform moment conditions that assure the validity

of laws of large numbers and central limit theory. Some changes in the formulae for the

variances and long run variances in those cases would be needed. Assumption B is similar
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to the kernel conditions in Sun et al (2008) and Sun (2014), assures a nonnegative long run

variance estimator, and is suffi cient to validate first order and some higher order asymptotics,

although the latter are not considered here. The conditions in Assumption B are satisfied

by the Bartlett-Newey-West estimator employed in the long run variance estimators (17) -

(19) used in the text.

Generating mechanism under the null hypothesis

In view of (6) and (8), the data on Knt are obtained by cross section aggregation as follows

Knt =
1

n

∑n

i=1

(
xit −

1

n

∑n

i=1
xit

)2

= σ2
a,n + ηn,t + εn,t, (30)

where σ2
a,n = n−1

∑n
i=1 ã

2
i , ηn,t = σ2

ε,nT t
−2β is the finite sample trend decay function, and

εn,t = 2n−1
∑n

i=1
ãiε̃itt

−β +
(
σ2
ε,nt − σ2

ε,nT

)
t−2β, (31)

with σ2
ε,nt = n−1

∑n
i=1 ε̃

2
it, σ

2
ε,nT = T−1

∑T
t=1 σ

2
ε,nt, and where the notation ε̃it = εit −

n−1
∑n

j=1 εjt is used for deviations from cross section means. It follows that

Knt = σ2
a,n + ηt + εn,t + ξn,t,

where ηt = σ2
ε t
−λ, λ = 2β, ξn,t = ηn,t − ηt =

(
σ2
ε,nT − σ2

ε

)
t−λ and σ2

ε is the variance of εit.

Since we assume ai ∼ iid (a, σ2
a) , we have σ

2
a,n = σ2

a + Op

(
1√
n

)
, n−1

∑n
i=1 ãiε̃it =

Op

(
1√
n

)
, σ2

ε,nt = n−1
∑n

i=1 ε̃
2
it = σ2

ε+Op

(
1√
n

)
uniformly in t ≤ T, and σ2

ε,nT = T−1
∑T

t=1 σ
2
ε,nt =

σ2
ε +Op

(
1√
n

)
. It follows that

σ2
ε,nt − σ2

ε,nT = n−1

n∑
i=1

ε̃2it − T−1

T∑
t=1

σ2
ε,nt

= n−1

n∑
i=1

(
ε̃2it − σ2

ε

)
− 1

nT

T∑
t=1

n∑
i=1

(
ε̃2it − σ2

ε

)
= n−1

n∑
i=1

(
ε̃2it − σ2

ε

)
+Op

(
1√
nT

)
,

and then, when λ = 2β = 0, we deduce that

Knt = σ2
a,n + σ2

ε + 2n−1
∑n

i=1
ãiε̃it +

(
σ2
ε,nt − σ2

ε,nT

)
+
(
σ2
ε,nT − σ2

ε

)
= σ2

n + 2n−1
∑n

i=1
ãiε̃it + n−1

n∑
i=1

(
ε̃2it − σ2

ε

)
+Op

(
1√
nT

)
, (32)
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with σ2
n = σ2

a,n + σ2
ε +

(
σ2
ε,nT − σ2

ε

)
. We can write (32) as

Knt = σ2
n + unt, with unt =

1√
n
ζnt +Op

(
1√
nT

)
, (33)

and

ζnt =
2√
n

∑n

i=1
ãiε̃it +

1√
n

n∑
i=1

(
ε̃2it − σ2

ε

)
=

1√
n

n∑
i=1

ζ it, (34)

ζ it = 2ãiε̃it +
(
ε̃2it − σ2

ε

)
(35)

The generating mechanism (33) is a panel location model in which the error term unt ∼
1√
n
ζnt = Op

(
1√
n

)
, which is a consequence of the cross section aggregation involved in the

definition of Knt. Upon taking deviations from time series means, we have

K̃nt = Knt − T−1

T∑
t=1

Knt = unt − T−1

T∑
t=1

unt = ũnt = unt +Op

(
1√
nT

)
, (36)

since

1

nT

T∑
t=1

n∑
i=1

ãiε̃it = Op

(
1√
nT

)
and

1

nT

T∑
t=1

n∑
i=1

(
ε̃2it − σ2

ε

)
= Op

(
1√
nT

)
.

Thus, the error term in the effective model under the null stems from equations (33) and

(34), viz.,

Knt = σ2
n + unt = σ2

n +
1√
n

n∑
i=1

ζ it +Op

(
1√
nT

)
, (37)

which is a simple location model in which the effective error unt involves ζ it and hence both

first and second centred sample moments of εit in view of (35).

Proof of Theorem 1

Proof of (i) The fitted trend regression of Knt on a linear time trend is

Knt = ânT + φ̂nT t+ ût. (38)

The regression coeffi cient φ̂nT has the explicit form

φ̂nT =
∑T

t=1
ctT K̃nt =

∑T

t=1
ctTunt, with ctT = t̃/

(∑T

s=1
s̃2
)
.
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From (33) and (36) we have Knt = σ2
n + unt, with unt = 1√

n
ζnt +Op

(
1√
nT

)
, and so

φ̂nT =
∑T

t=1
ctT K̃nt =

∑T

t=1
ctTunt

=
∑T

t=1
ctT

[
2n−1

∑n

i=1
ãiε̃it + n−1

n∑
i=1

(
ε̃2it − σ2

ε

)
+Op

(
1√
nT

)]

=
1√
n

∑T

t=1
ctT

[
2√
n

∑n

i=1
ãiε̃it +

1√
n

n∑
i=1

(
ε̃2it − σ2

ε

)
+Op

(
1√
T

)]
.

Then,

√
nT 3/2φ̂nT =

1√
T

∑T

t=1

t̃

T∑T
s=1 s̃

2

T 3

[
2√
n

∑n

i=1
ãiε̃it +

1√
n

n∑
i=1

(
ε̃2it − σ2

ε

)
+Op

(
1√
T

)]

=
12√
T

∑T

t=1

t̃

T

{
2√
n

∑n

i=1
ãiε̃it +

1√
n

n∑
i=1

(
ε̃2it − σ2

ε

)}
+ op (1)

 (n,T→∞) N
(
0, 12Ω2

φ

)
. (39)

We proceed to prove (39). In this expression for the limit theory the variance Ω2
φ depends

on the two components 2√
n

∑n
i=1 ãiε̃it and

1√
n

∑n
i=1

(
ε̃2it − σ2

ε

)
.We can use sequential asymp-

totics to simplify the derivation and appeal to joint asymptotics using the limit theory of

Phillips and Moon (1999) which applies under Assumption A. Note that 2√
n

∑n
i=1 ãiε̃it and

1√
n

∑n
i=1

(
ε̃2it − σ2

ε

)
are asymptotically normal and independent in view of the independence

of ai and εit as

E
{

(ai − a) εit
(
ε2is − σ2

ε

)}
= E (ai − a)E

{
εit
(
ε2is − σ2

ε

)}
= 0, for all t, s

Using ε̃it = εit−n−1
∑n

j=1 εjt = εit+Op

(
n−1/2

)
and ãi = ai−a +Op

(
n−1/2

)
, under Assumtion

A the limit theory of the two components as T →∞ is therefore given by 1√
T

∑T
t=1

t̃

T
ãiε̃it

1√
T

∑T
t=1

t̃

T

(
ε̃2it − σ2

ε

)
 (T→∞) N

(
0,

1

12

[
σ2
aΩ

2
ε 0

0 Ω2
ε2

])
. (40)

In the limit distribution (40) Ω2
ε is the long run variance of εit, and Ω2

ε2 is the long run

variance of ε2it. Then, as in Phillips and Moon (1999), we deduce the joint limit theory 1√
nT

∑n
i=1

∑T
t=1

t̃

T
ãiε̃it

1√
nT

∑n
i=1

∑T
t=1

t̃

T

(
ε̃2it − σ2

ε

)
 (n,T→∞) N

(
0,

1

12

[
σ2
aΩ

2
ε 0

0 Ω2
ε2

])
, (41)
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where σ2
a = E (ai − a)2 . The long run variance of ζ it =

{
2ãiε̃it +

(
ε̃2it − σ2

ε

)}
is Ω2

φ = 4σ2
aΩ

2
ε +

Ω2
ε2 and it follows from (41) that

1√
nT

n∑
i=1

∑T

t=1
ζ it =

1√
nT

n∑
i=1

∑T

t=1

{
2ãiε̃it +

(
ε̃2it − σ2

ε

)}
 (n,T→∞) N

(
0,Ω2

φ

)
. (42)

We deduce that

√
nT 3/2φ̂nT =

12√
T

∑T

t=1

t̃

T

[
2√
n

∑n

i=1
ãiε̃it +

1√
n

n∑
i=1

(
ε̃2it − σ2

ε

)]
+ op (1)

 (n,T→∞) Zφ ≡ N
(
0, 12Ω2

φ

)
, with Ω2

φ = 4σ2
aΩ

2
ε + Ω2

ε2 . (43)

The formula for the limiting long run variance, Ω2
φ = 4σ2

aΩ
2
ε + Ω2

ε2 , is the sum of two compo-

nents: One arises from the sample covariance term
∑n

i=1

∑T
t=1

t̃

T
ãiε̃it, which is linear in εit;

and the other from the term
∑n

i=1

∑T
t=1

(
ε̃2it − σ2

ε

)
, which is quadratic in εit.

In (43) the dependence of the asymptotic variance Ω2
φ of
√
nT 3/2φ̂nT on the two long run

variance components
(
Ω2
ε ,Ω

2
ε2

)
is to be expected. This is because the dependent variable in

the fitted trend regression Knt given by (30) involves second order quantities that measure

variation. Correspondingly, the ‘error’ term εn,t given in (31) involves both a first order

(cross product) sample moment and a second order moment. These appear in (32) as the

components 2n−1
∑n

i=1 ãiε̃it and n
−1
∑n

i=1

(
ε̃2it − σ2

ε

)
, which in turn lead to the more complex

limiting variance matrix Ω2
φ, which depends on fourth moments of εit.

Proof of (ii) The t1 statistic can be written as

t1 =
φ̂nT√

Ω̂2
1

(∑T
t=1 t̃

2
)−1

=

√
nT 3/2φ̂nT√

nΩ̂2
1

(
T−3

∑T
t=1 t̃

2
)−1

,

where Ω̂2
1 is the standard HAC estimator (with Bartlett-Newey-West kernel)

Ω̂2
1 =

1

T

∑T

t=1
û2
t +

2

T

∑L

`=1

∑T−`

t=1

(
1− `

L+ 1

)
ûtût+`.

We first derive asymptotics of the HAC estimator Ω̂2
1. We start with an analysis of the

residuals in the fitted regression (38). Under the null, the data Knt has the location model

form Knt = σ2
n + unt = σ2

n + 1√
n

∑n
i=1 ζ it + Op

(
1√
nT

)
given in (37). The intercept in the

39



regression (38) therefore satisfies

ânT =
1

T

T∑
t=1

(
Knt − φ̂nT t

)
= σ2

n + T−1

T∑
t=1

unt −
1

2

√
nT 3/2φ̂nT

(T + 1)√
nT 3/2

= σ2
n +Op

(
1√
nT

)
,

using (36) and (39). Hence, the residual in (38), ût, becomes

ût = Knt − ânT − φ̂nT t = ũnt − φ̂nT t̃

= ũnt −
(∑T

t=1
ctT ũnt

)
t̃, (44)

where ût is simply linearly detrended unt. Since unt = 1√
n
ζnt, it follows that ût = n−1/2ζτnt

where ζτnt = ζ̃nt−
(∑T

t=1 ctT ζ̃nt

)
t̃ is linearly detrended ζ̃nt where ζ̃nt = ζnt−T−1

∑T
t=1 ζnt. In

view of the independence over i and weak dependence over t, we have, following the analysis

in Theorem 1 (i) and (42), the limit theory

1√
T

T∑
t=1

ζnt =
1√
nT

T∑
t=1

n∑
i=1

ζ it + op (1) (n,T→∞) N
(
0,Ω2

ζ

)
, (45)

where Ω2
ζ = Ω2

φ = 4σ2
aΩ

2
ε + Ω2

ε2 is the long run variance of ζ it = 2ãiεit + (ε2it − σ2
ε) , Ω2

ε is

the long run variance of εit, and Ω2
ε2 is the long run variance of ε

2
it. Similarly, we have the

functional laws

1√
T

bT ·c∑
t=1

ζnt  (n,T→∞) BΩ2ζ
(·) and

1√
T

bT ·c∑
t=1

ζτnt  (n,T→∞) Bτ
Ω2ζ

(·) , (46)

where BΩ2ζ
(·) is Brownian motion with variance Ω2

ζ = Ω2
φ, and B

τ
Ω2ζ

(·) is the generalized
Brownian Bridge process Bτ

Ω2φ
(r) = BΩ2ζ

(r) − αB − βBr, which is the linearly L2 [0, 1] de-

trended version of BΩ2ζ
(r) in which the coeffi cients (αB, βB) are the solution of the L2 [0, 1]

optimization problem (Phillips, 1988; Park and Phillips, 1988, 1989.)[
αB

βB

]
= arg min

(a,b)

∫ 1

0

{
BΩ2ζ

(r)− a− br
}2

dr.

It follows that second moments of the residuals ûnt have asymptotic behavior determined by

ζnt = n−1/2
∑n

i=1 ζ it + op (1)  n→∞ ζ0
t where ζ

0
t has the same time series behavior as the

stationary process ζ it. We are effectively demeaning and detrending the errors unt by the

trend regression which, from (44), gives the residuals

ût = ũnt −
(∑T

t=1
ctT ũnt

)
t̃ = ũnt −

t̃

T
×Op

(
1√
nT

)
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so that, since unt = n−1/2ζnt, we have

√
nût = ζnt −

t̃

T
×Op

(
1√
T

)
=

1√
n

∑n

i=1
ζ it + op (1) n→∞ ζ0

t .

Thus, the sample second moments of the residuals ût are asymptotically, as n→∞, equiv-
alent to those of ζ0

t . It follows that the sample second moments and autocovariances of ût
have the following limit behavior after scaling by n

nγ̂û (0) =
n

T

T∑
t=1

û2
t =

1

T

T∑
t=1

{
1√
n

∑n

i=1
ζ it + op (1)

}2

→p E
(
ζ2
it

)
= 4E

{
(ai − a)2 ε2it

}
+ E

(
ε2it − σ2

ε

)2
= 4σ2

aσ
2
ε + σ2

ε2 . (47)

Similarly, setting γ̂û (j) :=
n

T

∑
1≤t,t−j≤T ûtût−j, we have

nγ̂û (j) =
n

T

∑
1≤t,t−j≤T

ûtût−j =
1

T

∑
1≤t,t−j≤T

ζτntζ
τ
nt−j

→ p E
(
ζ itζ it−j

)
= 4E (ai − a)2 E (εitεit−j) + E

(
ε2it − σ2

ε

) (
ε2it−j − σ2

ε

)
= 4σ2

aΓε (j) + Γε2 (j) , (48)

where we use the notation Γv (j) = E {(vt − Evt) (vt−j − Evt−j)} . We deduce that the HAC
estimator has the following asymptotic behavior as T → ∞ with L = bT 1/3c as in the
Bartlett-Newey-West estimator

nΩ̂2
1 =

1

T

∑T

t=1
û2
t +

2

T

∑L

`=1

∑T−`

t=1

(
1− `

L+ 1

)
ûtût+`

=
1

T

∑T

t=1

(
ζ0
t

)2
+

2

T

∑L

`=1

∑T−`

t=1

(
1− `

L+ 1

)
ζ0
t ζ

0
t+` + op (1)

→ p

∞∑
j=−∞

{
4σ2

aΓε (j) + Γε2 (j)
}

= Ω2
ζ = Ω2

φ. (49)

The final result for the limit distribution of the t1 statistic

t1 =

√
nT 3/2φ̂nT√

nΩ̂2
1

(
T−3

∑T
t=1 t̃

2
)−1
 
N
(
0, 12Ω2

φ

)√
12Ω2

φ

≡ N (0, 1) ,

now follows.

Proof of (iii) We next consider the analogous t statistic

t2 =
φ̂nT√

Ω̂2
2

(∑T
t=1 t̃

2
)−1

=

√
nT 3/2φ̂nT√

nΩ̂2
2

(
T−3

∑T
t=1 t̃

2
)−1

,
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in which the fixed-b HAR long run variance estimate

Ω̂2
2 =

1

T

∑T

t=1
û2
t +

2

T

∑M

`=1

∑T−`

t=1

(
1− `

M + 1

)
ûtût+`,

from (19) is employed. In the analysis that follows it is convenient to use a general kernel

function k (x) satisfying Assumption B.

We start by considering the scaled full sample (with fixed-b parameter b = 1 and M =

T − 1) HAR estimate

nΩ̂2
2 = n

∑T−1

j=1−T
k

(
j

T

)
γ̂û (j) =

n

T

∑T−1

j=1−T
k

(
j

T

) ∑
1≤t,t−j≤T

ûtût−j

=
n

T

∑T

t=1

∑T

p=1
k

(
t− p
T

)
ûtûp =

1

T

∑T

t=1

∑T

p=1
k

(
t− p
T

)
ζτntζ

τ
np.

In view of the functional laws (46) and using the same arguments as in Kiefer and Vogelsang

(2002, 2005), Sun et al. (2008) and Sun (2014) we find that

nΩ̂2
2 =

∑T

t=1

∑T

p=1
k

(
t− p
T

)
ζτnt√
T

ζτnt√
T
 (n,T→∞)

∫ 1

0

∫ 1

0

k (r − s) dBτ
Ω2ζ

(r) dBτ
Ω2ζ

(s) .

(50)

Using Ω2
ζ = Ω2

φ, the HAR t statistic for testing the significance of the linear trend in the

empirical regression (38) therefore has the following limit theory as (n, T →∞)

t2 =

√
nT 3/2φ̂nT√

nΩ̂2
2

(
T−3

∑T
t=1 t̃

2
)−1

 (n,T→∞)
Zφ{

12
∫ 1

0

∫ 1

0
k (r − s) dBτ

Ω2φ
(r) dBτ

Ω2φ
(s)
}1/2

(51)

=

√
12ΩφZ{

12Ω2
φ

∫ 1

0

∫ 1

0
k (r − s) dW τ (r) dW τ (s)

}1/2
≡ Z{∫ 1

0

∫ 1

0
k (r − s) dW τ (r) dW τ (s)

}1/2
,(52)

where Zφ ≡ N
(
0, 12Ω2

φ

)
, Z ≡ N (0, 1) , and Bτ

Ω2ξ
(r) = ΩξW

τ (r) where W τ (r) is detrended

standard brownian motion W (r) ≡ BM (1) . Since Z and W τ (r) are independent, the final

expression for the limit theory given in (52) is therefore free of nuisance parameters.

When the fixed-b kernel smoothing parameter b satisfies b ∈ (0, 1) scale adjustments in

the derivations show that the corresponding limit theory is given by

tHAR  (n,T→∞)
Z{∫ 1

0

∫ 1

0
k

(
r − s
b

)
dW τ (r) dW τ (s)

}1/2
,
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just as in Kiefer and Vogelsang (2002, 2005), Phillips et al. (2007), Sun et al. (2008) and

Sun (2014).

Proof of (iv) In this case we use the variance estimate in sandwich form with t ratio

tHAR =
φ̂nT√(∑T

t=1 t̃
2
)−1

T Ω̂2
M

(∑T
t=1 t̃

2
)−1

using Ω̂2
M = 1

T

∑T
t=1 κ̃2

t + 2
T

∑M
`=1

∑T−`
t=1

(
1− `

M+1

)
κ̃tκ̃t+`. In what follows, it is again conve-

nient to use a general kernel k (x) satisfying Assumption B.

In Ω̂2
M , the variate κ̃t = ûtt̃ = 1√

n
ζτntt̃. Setting γ̂κ̃ (j) :=

n

T

∑
1≤t,t−j≤T κ̃tκ̃t−j, and pro-

ceeding as in (47) - (48), we have

n

T 2
γ̂κ̃ (0) =

n

T

∑
1≤t≤T

û2
t

(
t̃

T

)2

=
1

T

∑
1≤t≤T

(ζτnt)
2

(
t̃

T

)2

(53)

→ p 12E
{(
ζ0
t

)2
}

= 12
[
4σ2

aΓε (0) + Γε2 (0)
]
, (54)

and similarly for all j such that j
T
→ 0

n

T 2
γ̂κ̃ (j) =

n

T

∑
1≤t,t−j≤T

ûtût−j
t̃

T

(
t̃− j
T

)
=

1

T

∑
1≤t,t−j≤T

ζτntζ
τ
nt−j

t̃

T

(
t̃− j
T

)
→ p 12E

(
ζ0
t ζ

0
t−j
)

= 12
[
4Ea2

iE (εitεit−j) + E
(
ε2it − σ2

ε

) (
ε2it−j − σ2

ε

)]
‘

= 12
[
4σ2

aΓε (j) + Γε2 (j)
]
. (55)

We may now proceed as in (50). Using the functional laws (46) and the arguments of

Kiefer and Vogelsang (2002, 2005), Sun et al. (2008) and Sun (2014) we find that for the

full sample (b = 1) estimator

n

T 2
Ω̂b=1
M =

n

T 2

∑T−1

j=1−T
k

(
j

T

)
γ̂κ̃ (j) =

∑T

t=1

∑T

p=1
k

(
t− p
T

)
ζτnt√
T

ζτnp√
T

t̃

T

(
p̃

T

)
 (n,T→∞)

∫ 1

0

∫ 1

0

k (r − s) r̃s̃dB̃Ω2ζ
(r) dB̃Ω2ζ

(s) ,

where r̃ = r − 1
2
and s̃ = s − 1

2
. In the same way, we have for the fixed-b estimator with

b ∈ (0, 1)
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n

T 2
Ω̂b
M :=

n

T 2

∑T−1

j=1−T
kb

(
j

T

)
γ̂κ̃ (j) =

n

T 2

∑T−1

j=1−T
k

(
j

bT

)
1

T

∑
1≤t,t−j≤T

κ̃tκ̃t−j

=
∑T

t=1

∑T

p=1
k

(
t− p
bT

)
ζτnt√
T

ζτnp√
T

t̃

T

(
p̃

T

)
 (n,T→∞)

∫ 1

0

∫ 1

0

k

(
r − s
b

)
r̃s̃dBτ

Ω2ξ
(r) dBτ

Ω2ξ
(s) = 12

{∫ 1

0

∫ 1

0

k

(
r − s
b

)
r̃s̃dW τ (r) dW τ (s)

}
with kb (r) = k (r/b) . See equation (14) of Sun et al. (2008) for a comparable result in

the simple time series location model. It follows that the t ratio test under sandwich HAR

variance estimation has the limit theory

tHARb  (n,T→∞)
Zφ{

12Ω2
ξ

∫ 1

0

∫ 1

0
k

(
r − s
b

)
r̃s̃dW τ (r) dW τ (s)

}1/2

=
Z{∫ 1

0

∫ 1

0
k

(
r − s
b

)
r̃s̃dW τ (r) dW τ (s)

}1/2
,

as stated.

Proof of (v) Finally, we consider the t ratio based on the sandwich form

tHAC =
φ̂nT√(∑T

t=1 t̃
2
)−1

T Ω̂2
L

(∑T
t=1 t̃

2
)−1

=

√
nT 3φ̂nT√(

T−3
∑T

t=1 t̃
2
)−1

nT−2Ω̂2
L

(
T−3

∑T
t=1 t̃

2
)−1

with HAC estimate Ω̂2
L as given in (18). The limit behavior of Ω̂2

L as (T, n) → ∞ with lag

trunction L = bT 1/3c is deduced as follows ,

n

T 2
Ω̂2
L =

n

T

∑T

t=1
κ̃2
t +

2n

T

∑L

`=1

∑T−`

t=1

(
1− `

L+ 1

)
κ̃tκ̃t+`

=
1

T

∑T

t=1
(ζτnt)

2

(
t̃

T

)2

+
2

T

∑L

`=1

∑T−`

t=1

(
1− `

L+ 1

)
ζτnt ζ

τ
nt+`

t̃

T

(
t̃+ `

T

)

=
1

T

∑T

t=1

(
t̃

T

)2

E
(
ζ0
t

)2
+

2

T

∑L

`=1

∑T−`

t=1

(
1− `

L+ 1

)
t̃

T

(
t̃+ `

T

)
E
(
ζ0
t ζ

0
t+`

)
+ op (1)

=
1

T

∑T

t=1

(
t̃

T

)2{
E
(
ζ0
t

)2
+

2

T

∑L

`=1

∑T−`

t=1

(
1− `

L+ 1

)
E
(
ζ0
t ζ

0
t+`

)}
+ op (1)

→p
1

12

∞∑
j=−∞

Eζ0
t ζ

0
t+j =

1

12

∞∑
j=−∞

{
4σ2

aΓε (j) + Γε2 (j)
}

=
1

12
Ω2
ζ =

1

12
Ω2
φ.
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Similar results on consistency of the HAC estimator apply with other kernels satisfying

Assumption B. It follows that

tHAC =

√
nT 3φ̂nT√(

T−3
∑T

t=1 t̃
2
)−1

nT−2Ω̂2
L

(
1
T 3

∑T
t=1 t̃

2
)−1
 (n,T→∞)

Zφ√
12Ω2

φ

≡ Z,

giving the stated result.

Proof of Theorem 2

Proof of (25)

We consider the exact orders of Ω̂2
L and Ω̂2

M first. Use ϑ`L = 1 − `/ (1 + L) to denote the

Bartlett lag kernel. The residuals from the trend regression are

ût = K̃nt − φ̂nT t̃ =
(
η̃n,t − φ̂nT t̃

)
+ ε̃nt =: M̃nt + ε̃nt.

We decompose Ω̂2
L, the long run variance estimate with lag truncation parameter L and ϑ`L

as follows.

Ω̂2
L =

1

T

∑T

t=1
t̃2û2

t + 2
1

T

∑L

`=1
ϑ`L
∑T−`

t=1
t̃(̃t+ `)ûtût+`

=
1

T

∑T

t=1
t̃2
(
M̃nt + ε̃nt

)2

+ 2
1

T

∑L

`=1
ϑ`L
∑T−`

t=1
t̃(̃t+ `)

(
M̃nt + ε̃nt

)(
M̃nt+` + ε̃nt+`

)
=

1

T

∑T

t=1
t̃2M̃2

nt + 2
1

T

∑L

`=1
ϑ`L
∑T−`

t=1
t̃(̃t+ `)M̃ntM̃nt+`

+
1

T

∑T

t=1
t̃2ε̃2

nt + 2
1

T

∑L

`=1
ϑ`L
∑T−`

t=1
t̃(̃t+ `)ε̃ntε̃nt+`

+2
1

T

∑T

t=1
t̃2M̃ntε̃nt + 2

1

T

∑L

`=1
ϑ`L
∑T−`

t=1
t̃(̃t+ `)

(
M̃ntε̃nt+` + ε̃ntM̃nt+`

)
: = Ω̂2

l + Ω̂2
ε + 2Ω̂lε,

where

Ω̂2
l =

1

T

∑T

t=1
t̃2M̃2

nt +
2

T

∑L

`=1

∑T−`

t=1
ϑ`Lt̃(̃t+ `)M̃ntM̃nt+`.
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It has been shown in KPS (2019) that the dominating term in Ω̂2
L is Ω̂2

l . Note that

Ω̂2
l =

1

T

∑T

t=1
t̃2M̃2

nt +
2

T

∑L

`=1

∑T−`

t=1
ϑ`Lt̃(̃t+ `)M̃ntM̃nt+`

=
1

T

∑T

t=1
t̃2 (m̃t +Rnt)

2 +
2

T

∑L

`=1

∑T−`

t=1
ϑ`Lt̃(̃t+ `) (m̃t +Rnt) (m̃t+` +Rnt+`)

=
1

T

∑T

t=1
t̃2m̃2

t +
2

T

∑L

`=1

∑T−`

t=1
ϑ`Lt̃(̃t+ `)m̃tm̃t+`

+
1

T

∑T

t=1
t̃2R2

nt +
2

T

∑L

`=1

∑T−`

t=1
ϑ`Lt̃(̃t+ `)RntRnt+`

+2
1

T

∑T

t=1
t̃2m̃tRnt +

2

T

∑L

`=1

∑T−`

t=1
ϑ`Lt̃(̃t+ `) (m̃tRnt+` +Rntm̃t+`) .

Let

Ω2
l =

1

T

∑T

t=1
t̃2m̃2

t +
2

T

∑L

`=1

∑T−`

t=1
ϑ`Lt̃(̃t+ `)m̃tm̃t+`.

We have shown that Rnt = op (m̃t) uniformly in t ≤ T, from which it follows that the

dominating term in Ω̂2
l is Ω2

l , which is represented by Ω̂2
l ∼ Ω2

l . The decomposition of Ω̂2
M is

similar to that of Ω̂2
L. We denote the dominating term in Ω̂2

M by Ω2
m.

Let p̃t = m̃tt̃. Note that as T →∞, we have

1

T

∑T

t=1
p̃2
t =

1

T

∑T

t=1
t̃2m̃2

t

=
1

T

∑T

t=1
t̃2
[
t̃−λ − t̃

(∑T

t=1
t̃t̃−λ

)(∑T

t=1
t̃2
)−1
]2

=



O
(
T 2−2λ

)
if λ < 1

O (1) if λ = 1

O
(
T 2−2λ

)
if 1 < λ < 3/2

O (T−1 lnT ) if λ = 3/2

O (T−1) if λ > 3/2

Next, let

PL (T, λ) =
1

T

∑L

`=1

∑T−`

t=1

(
1− `

L+ 1

)
p̃tp̃t+`,

and

PM (T, λ) =
1

T

∑M

`=1

∑T−`

t=1

(
1− `

M + 1

)
p̃tp̃t+`.
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We expand PM as

1

T

∑M

`=1

∑T−`

t=1

(
1− `

M + 1

)
p̃tp̃t+`

=
1

T

∑M

`=1

∑T−`

t=1

(
1− `

M + 1

)
t̃1−λ ˜(t+ `)1−λ

−TT (1, λ)T−4
∑M

`=1

∑T−`

t=1

(
1− `

M + 1

)
t̃1−λ ˜(t+ `)2

−TT (1, λ)T−4
∑M

`=1

∑T−`

t=1

(
1− `

M + 1

)
t̃2 ˜(t+ `)1−λ

+ (TT (1, λ))2 T−7
∑M

`=1

∑T−`

t=1

(
1− `

M + 1

)
˜(t+ `)2t̃2

: = ΨM
1 −ΨM

2 −ΨM
3 + ΨM

4 ,

where TT (1, α) =
∑T

t=1 t̃t̃
−α, which is defined in Lemma 4 in KPS (2019). Further note that

ΨM
1 =

1

T

∑M

`=1

(
1− `

M + 1

)∑T−`

t=1
t̃1−λ ˜(t+ `)1−λ

=
1

T

∑M

`=1

(
1− `

M + 1

)∑T−`

t=1

(
t2 + t`

)1−λ

− 1

T

∑M

`=1

(
1− `

M + 1

)(
1

T − `
∑T−`

t=1
t1−λ

)∑T−`

t=1
(t+ `)1−λ

: = ΨM
11 −ΨM

12 ,

ΨM
2 = TT (1, λ)T−4

∑M

`=1

∑T−`

t=1

(
1− `

M + 1

)
t̃1−λ (t+ `)2

= TT (1, λ)T−4
∑M

`=1

(
1− `

M + 1

)∑T−`

t=1
t1−λ (t+ `)2

−TT (1, λ)T−4
∑M

`=1

(
1− `

M + 1

)
1

T − `

(∑T−`

t=1
t1−λ

)∑T−`

t=1
(t+ `)2

: = ΨM
21 −ΨM

22 ,
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ΨM
3 = TT (1, λ)T−4

∑M

`=1

∑T−`

t=1

(
1− `

M + 1

)
t̃2 ˜(t+ `)1−λ

= TT (1, λ)T−4
∑M

`=1

∑T−`

t=1

(
1− `

M + 1

)
t2 (t+ `)1−λ

−TT (1, λ)T−4
∑M

`=1

(
1− `

M + 1

)
1

T − `

(∑T−`

t=1
t2
)∑T−`

t=1
(t+ `)1−λ

: = ΨM
31 −ΨM

32 .

Direct calculation gives the order of each term. Rather than record all the derivations

we show here how to get the exact order of ΨL
21 and ΨM

21 . Note that

ΨL
21 = TT (1, λ)T−4

∑L

`=1

(
1− `

L+ 1

)∑T−`

t=1
t1−λ (t+ `)2

= TT (1, λ)T−4
∑L

`=1

(
1− `

L+ 1

)∑T−`

t=1

(
t3−λ + t1−λ`2 + 2t2−λ`

)
.

Consider each term.

∑L

`=1

(
1− `

L+ 1

)∑T−`

t=1
t3−λ =

∑L

`=1

(
1− `

L+ 1

)
1

4−λ (T − `)4−λ if λ < 4

ln (T − `) if λ = 4

ζ (λ− 3) if λ > 4

=


O
(
T 4−λL

)
if λ < 4

O (L lnT ) if λ = 4

O (L) if λ > 4

,

∑L

`=1

(
1− `

L+ 1

)∑T−`

t=1
t1−λ`2 =

∑L

`=1

(
1− `

L+ 1

)
`2
∑T−`

t=1
t1−λ

=
∑L

`=1

(
1− `

L+ 1

)
`2


1

2−λ (T − `)2−λ if λ < 2

ln (T − `) if λ = 2

ζ (λ− 1) if λ > 2

=


O
(
T 4−λL

)
if λ < 2

O (T 2L lnT ) if λ = 2

O (T 2L) if λ > 2

,
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and∑L

`=1

(
1− `

L+ 1

)∑T−`

t=1
2t2−λ` = 2

∑L

`=1

(
1− `

L+ 1

)
`
∑T−`

t=1
t2−λ

= 2
∑L

`=1

(
1− `

L+ 1

)
`


1

3−λ (T − `)3−λ if λ < 3

ln (T − `) if λ = 3

ζ (λ− 2) if λ > 3

=


O
(
T 4−λL

)
if λ < 3

O (TL lnT ) if λ = 3

O (TL) if λ > 3

.

Combining all terms yeilds

ΨL
21 = TT (1, λ)T−4

∑L

`=1

(
1− `

L+ 1

)∑T−`

t=1
t1−λ (t+ `)2

= TT (1, λ)T−4


O
(
T 4−λL

)
if λ < 4

O (L lnT ) if λ = 4

O (L) if λ > 4

+ TT (1, λ)T−4


O
(
T 4−λL

)
if λ < 2

O (T 2L lnT ) if λ = 2

O (T 2L) if λ > 2

+TT (1, λ)T−4


O
(
T 4−λL

)
if λ < 3

O (TL lnT ) if λ = 3

O (TL) if λ > 3

= TT (1, λ)T−4


O
(
T 4−λL

)
if λ < 2

O (T 2L lnT ) if λ = 2

O (T 2L) if λ > 2

.

Next, replacing L by T κ leads to

ΨL
21 = TT (1, λ)


O
(
T−λ+κ

)
if λ < 2

O (T−2+κ lnT ) if λ = 2

O (T−2+κ) if λ > 2

=


T 2−λ if λ < 1

T lnT if λ = 1

ζ (λ)T if λ > 1

×


O
(
T−λ+κ

)
if λ < 2

O (T−2+κ lnT ) if λ = 2

O (T−2+κ) if λ > 2
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=



O
(
T 2−2λ+κ

)
if λ < 1

O (T κ lnT ) if λ = 1

O
(
T 1−λ+κ

)
if 1 < λ < 2

O (T−1+κ lnT ) if λ = 2

O (T−1+κ) if λ > 2

.

To calculate the order of ΨM
21 , we replace M by bT. That is,

ΨM
21 = TT (1, λ)T−4


O
(
T 4−λM

)
if λ < 2

O (T 2M lnT ) if λ = 2

O (T 2M) if λ > 2

= TT (1, λ)


O
(
T 5−λ) if λ < 2

O (T 3 lnT ) if λ = 2

O (T 3) if λ > 2

=


T 2−λ if λ < 1

T lnT if λ = 1

ζ (λ)T if λ > 1

×


O
(
T 5−λ) if λ < 2

O (T 3 lnT ) if λ = 2

O (T 3) if λ > 2

=



O
(
T 3−2λ

)
if λ < 1

O
(
T 2−λ lnT

)
if λ = 1

O
(
T 2−λ) if 1 < λ < 2

O (lnT ) if λ = 2

O (1) if λ > 2

.

In the expressions below we provide the final order of each term.

ΨM
11 =


O
(
T 3−2λ

)
if λ < 3/2

O (lnT ) if λ = 3/2

O (1) if λ > 3/2

ΨL
11 =


O
(
T 2−2λ+κ

)
if λ < 3/2

O (T−1+κ lnT ) if λ = 3/2

O (T−1+κ) if λ > 3/2

ΨM
12 =


O
(
T 3−2λ

)
if λ < 2

O
(
T−1 ln2 T

)
if λ = 2

O (T−1) if λ > 2

ΨL
12 =


O
(
T 2−2λ+κ

)
if λ < 2

O
(
T−2+κ ln2 T

)
if λ = 2

O (T−2+κ) if λ > 2

Hence

ΨM
1 =


O
(
T 3−2λ

)
if λ < 3/2

O (lnT ) if λ = 3/2

O (1) if λ > 3/2

, and ΨL
1 =


O
(
T 2−2λ+κ

)
if λ < 3/2

O (T−1+κ lnT ) if λ = 3/2

O (T−1+κ) if λ > 3/2

50



Next

ΨM
21 =



O
(
T 3−2λ

)
if λ < 1

O
(
T 2−λ lnT

)
if λ = 1

O
(
T 2−λ) if 1 < λ < 2

O (lnT ) if λ = 2

O (1) if λ > 2

ΨL
21 =



O
(
T 2−2λ+κ

)
if λ < 1

O
(
T 1−λ+κ lnT

)
if λ = 1

O
(
T 1−λ+κ

)
if 1 < λ < 2

O (T−1+κ lnT ) if λ = 2

O (T−1+κ) if λ > 2

ΨM
22 =



O
(
T 3−2λ

)
if λ < 1

O
(
T 2−λ lnT

)
if λ = 1

O
(
T 2−λ) if 1 < λ < 2

O (lnT ) if λ = 2

O (1) if λ > 2

ΨL
22 =



O
(
T 2−2λ+κ

)
if λ < 1

O
(
T 1−λ+κ lnT

)
if λ = 1

O
(
T 1−λ+κ

)
if 1 < λ < 2

O (T−1+κ lnT ) if λ = 2

O (T−1+κ) if λ > 2

Combining these two leads to

ΨL
2 =



O
(
T 3−2λ

)
if λ < 1

O
(
T 2−λ lnT

)
if λ = 1

O
(
T 2−λ) if 1 < λ < 2

O (lnT ) if λ = 2

O (1) if λ > 2

ΨM
2 =



O
(
T 2−2λ+κ

)
if λ < 1

O
(
T 1−λ+κ lnT

)
if λ = 1

O
(
T 1−λ+κ

)
if 1 < λ < 2

O (T−1+κ lnT ) if λ = 2

O (T−1+κ) if λ > 2

The third term becomes

ΨM
31 =



O
(
T 2−2λ

)
if λ < 1

O
(
T 1−λ lnT

)
if λ = 1

O
(
T 1−λ) if 1 < λ < 2

O (lnT ) if λ = 2

O (1) if λ > 2

ΨL
31 =



O
(
T (5−λ)κ−2−λ) if λ < 1,

O
(
T (5−λ)κ−3 lnT

)
if λ = 1,

O
(
T (5−λ)κ−3

)
if 1 < λ < 2,

O (T 3κ−3 lnT ) if λ = 2,

O (T 3κ−3) if λ > 2,

ΨM
32 =



O
(
T 3−2λ

)
if λ < 1

O
(
T 2−λ lnT

)
if λ = 1

O
(
T 2−λ) if 1 < λ < 2

O (lnT ) if λ = 2

O (1) if λ > 2

ΨL
32 =



O
(
T 2−2λ+κ

)
if λ < 1

O
(
T 1−λ+κ lnT

)
if λ = 1

O
(
T 1−λ+κ

)
if 1 < λ < 2

O (T−1+κ lnT ) if λ = 2

O (T−1+κ) if λ > 2
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Combining these two terms yeilds

ΨM
3 =



O
(
T 3−2λ

)
if λ < 1,

O
(
T 2−λ lnT

)
if λ = 1,

O
(
T 2−λ) if 1 < λ < 2,

O (lnT ) if λ = 2,

O (1) if λ > 2,

, ΨL
3 =



O
(
T 2−2λ+κ

)
if λ < 1,

O
(
T 1−λ+κ lnT

)
if λ = 1,

O
(
T 1−λ+κ

)
if 1 < λ < 2,

O (T−1+κ lnT ) if λ = 2,

O (T−1+κ) if λ > 2,

Last, the fourth term becomes

ΨM
4 =


O
(
T 3−2λ

)
if λ < 1

O
(
T ln2 T

)
if λ = 1

O (T ) if λ > 1

, ΨL
4 =


O
(
T 2−2λ+κ

)
if λ < 1

O
(
T κ ln2 T

)
if λ = 1

O (T κ) if λ > 1

After combining all terms, we have

PM (T, λ) =


O
(
T 3−2λ

)
if λ < 1

O
(
T ln2 T

)
if λ = 1

O (T ) if λ > 1

, PL (T, λ) =


O
(
T 2−2λ+κ

)
if λ < 1

O
(
T κ ln2 T

)
if λ = 1

O (T κ) if λ > 1

.

Finally,

Ω̂2
M ∼ 1

T

∑T

t=1
p̃2
t + 2PM (T, λ) =


O
(
T 3−2λ

)
if λ < 1

O
(
T ln2 T

)
if λ = 1

O (T ) if λ > 1

Ω̂2
L ∼

1

T

∑T

t=1
p̃2
t + 2PL (T, λ) =


O
(
T 2−2λ+κ

)
if λ < 1

O
(
T κ ln2 T

)
if λ = 1

O (T κ) if λ > 1

Therefore we have

tHAR ∼ a


Op

(
T−1−λ

T 1/2T 3/2−λ
T 3
)

= Op (1) if λ < 1

Op

(
T−2 lnT

T 1/2T 1/2 lnT
T 3
)

= Op (1) if λ = 1

Op

(
T−2

T 1/2T 1/2
T 3
)

= Op (1) if λ > 1

,

tHAC ∼ a


Op

(
T−1−λ

T 1/2T 1−λ+κ/2
T 3
)

= Op

(
T (1−κ)/2

)
if λ < 1

Op

(
T−2 lnT

T 1/2(Tκ ln2 T)
1/2T

3

)
= Op

(
T (1−κ)/2

)
if λ = 1

Op

(
T−2

T 1/2Tκ/2
T 3
)

= Op

(
T (1−κ)/2

)
if λ > 1
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using representations in terms of the dominant deterministic order.

Proof of (24)

PL (T, λ) has been calculated in KPS(2019) as

PL (T, λ) =



O
(
T−2λ+κ

)
if λ < 1/2

O (T κ−1 lnT ) if λ = 1/2

O (T κ−1) if 1/2 < λ < 1/ (1 + κ)

O
(
T−λ+κ−λκ) if 1/ (1 + κ) ≤ λ < 1

O
(
T−1 ln2 T

)
if λ = 1

O (T−1) if λ > 1

As shown in the previous proof, the order of the t-ratio based on the HAR estimator can

be directly obtained by replacing κ by 1,except when λ > 1/2. Below we show the main

difference only. When L = bT κc, and 0 < κ < 1,we have

1

T

∑L

`=1

(
1− `

L+ 1

)∑T−`

t=1

(
t2 + t`

)−λ

<


min

[
O
(
T−2λ+κ

)
, O
(
T−λ+κ−λκ)] = O

(
T−2λ+κ

)
if λ < 1/2

min
[
O (T κ−1 lnT ) , O

(
T κ−1/2−κ/2)] = O (T κ−1 lnT ) if λ = 1/2

min
[
O (T κ−1) , O

(
T−λ+κ−λκ)] = O (T κ−1) if 1/2 < λ < 1/ (1 + κ)

min
[
O (T κ−1) , O

(
T−λ+κ−λκ)] = O

(
T−λ+κ−λκ) if 1/ (1 + κ) ≤ λ < 1

Details can be found in KPS(2019). But when M = bbT c, which corresponds to κ = 1,

1

T

∑M

`=1

(
1− `

M + 1

)∑T−`

t=1

(
t2 + t`

)−λ
<


min

[
O
(
T−2λ+1

)
, O
(
T−2λ+1

)]
= O

(
T−2λ+1

)
if λ < 1/2

min
[
O (lnT ) , O

(
T−2λ+1

)]
= O (1) if λ = 1/2

min
[
O (1) , O

(
T−2λ+1

)]
= O

(
T−2λ+1

)
if λ > 1/2

This difference resultd in the difference in the order of ΨM
11 and ΨL

11.
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Below we only show the details of the decompostion for PM (T, λ) .

ΨM
11 =


O
(
T−2λ+1

)
if λ < 1

O
(
T−1 ln2 T

)
if λ = 1

O (T−1) if λ > 1

ΨM
12 =


O
(
T 1−2λ

)
if λ < 1

O
(
T−1 ln2 T

)
if λ = 1

O (T−1) if λ > 1

ΨM
21 =


O
(
T 1−2λ

)
if λ < 1

O
(
T−1 ln2 T

)
if λ = 1

O (T−1) if λ > 1

ΨM
22 =


O
(
T 1−2λ

)
if λ < 1

O
(
T−1 ln2 T

)
if λ = 1

O (T−1) if λ > 1

ΨM
31 =


O
(
T 1−2λ

)
if λ < 1

O
(
T−1 ln2 T

)
if λ = 1

O (T−1) if λ > 1

ΨM
32 =


O
(
T 1−2λ

)
if λ < 1

O
(
T−1 ln2 T

)
if λ = 1

O (T−1) if λ > 1

ΨM
4 =


O
(
T 1−2λ

)
if λ < 1

O
(
T−1 ln2 T

)
if λ = 1

O (T−1) if λ > 1

Hence,

PM (T, λ) = Ψ1 −Ψ2 −Ψ3 + Ψ4

∼ a


O
(
T−2λ+1

)
if λ < 1

O
(
T−1 ln2 T

)
if λ = 1

O (T−1) if λ > 1

Then

t2 ∼ a

φ̂nT
(∑

t̃2
)1/2√

Ω2
m

=


Op

(
T−1−λ

T 1/2−λ
T 3/2

)
= Op (1) if λ < 1

Op

(
T−2 lnT
T−1/2 lnT

T 3/2
)

= Op (1) if λ = 1

Op

(
T−2

T−1/2
T 3/2

)
= Op (1) if λ > 1

where again the representations are given in terms of the dominating deterministic order.
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