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Abstract. Fog computing is a promising Internet of Things (IoT)
paradigm in which data is processed near its source. Here, efficient re-
source allocation mechanisms are needed to assign limited fog resources
to competing IoT tasks. To this end, we consider two challenges: (1) near-
optimal resource allocation in a fog computing system; (2) incentivising
self-interested fog users to report their tasks truthfully. To address these
challenges, we develop a truthful online resource allocation mechanism
called flexible online greedy. The key idea is that the mechanism only
commits a certain amount of computational resources to a task when
it arrives. However, when and where to allocate resources stays flexible
until the completion of the task. We compare our mechanism to four
benchmarks and show that it outperforms all of them in terms of social
welfare by up to 10% and achieves a social welfare of about 90% of the
offline optimal upper bound.

Keywords: Mechanism design · Fog computing · IoT · Resource allo-
cation.

1 Introduction
The Internet of Things (IoT) is developing rapidly, and it is estimated that by
2025, 22 billion active devices will be in the IoT (Lueth, 2018). Since it is impossi-
ble to let the often low-powered IoT devices perform all computing tasks, some of
which are highly computationally demanding, a common solution is to combine
IoT and cloud computing (Doukas and Maglogiannis, 2012; Sajid et al., 2016).
However, cloud computing alone cannot satisfy all the computing requirements
from the IoT (Bonomi et al., 2012). The main reason is that transferring all the
data from the IoT to the cloud to analyse requires a huge amount of bandwidth,
and many IoT applications, such as autonomous vehicles, augmented reality and
virtual reality, need very low latency, which cloud computing cannot guarantee.
Consequently, fog computing has been proposed to make up for these shortcom-
ings (Bonomi et al., 2012). In simple terms, the key difference is that the fog is
closer to the IoT devices than the cloud (CIS, 2015). To make the most of the
fog resources and maximise the efficiency, good resource allocation mechanisms
for fog computing are needed. However, unlike cloud computing, fog computing



cannot ignore bandwidth constraints because it is common to send large volumes
of traffic between IoT devices and fog nodes (FNs). Another difference is that
many tasks in the fog are time-oriented, which means that they need a certain
amount of computational time to achieve their maximum value, but they can
still achieve part of the value if they are allocated less time. For example, sup-
pose a user wants to run a video surveillance application with facial recognition
to surveil their shops for 24 hours. In this case, the large volume of video streams
from the cameras in their shops will be sent to a nearby FN instead of a remote
data centre to do the compute-intensive analysis. Furthermore, it is still of value
to them if the surveillance lasts less than 24 hours, say, 18 hours.

To address these challenges, researchers have proposed many resource allo-
cation mechanisms for fog computing (or similar computing paradigms such as
cloud computing, edge computing or geo-distributed clouds) in order to save en-
ergy, reduce cost or improve quality of service (Aazam and Huh, 2015; Cardellini
et al., 2015; Gu et al., 2018). However, most of these mechanisms were not specif-
ically designed for settings where users act strategically to maximise their utility
(e.g., users may misreport higher value for their tasks to increase their chances of
acceptance). To address this problem, some researchers have proposed truthful
mechanisms that incentivise users to truthfully reveal their private informa-
tion. However, these approaches cannot be applied directly to our model due
to subtle but important differences. For example, several truthful mechanisms
are designed to schedule tasks in the cloud (Wang et al., 2012; Lucier et al.,
2013; Wang et al., 2015; Chawla et al., 2017; Zhu et al., 2018). However, they
all assume single-minded agents (i.e., agents who do not get any value for a
partially executed task). In addition, the model by Lucier et al. (2013) assumes
that each task requires a certain amount of resource to complete rather than a
certain running time, which is very different from the time-oriented tasks in the
fog. Furthermore, Zhang et al. (2015) and Shi et al. (2017) also propose truthful
mechanisms for single-minded users in a geo-distributed cloud, and they assume
users can specify all the details about the placement of resources among data cen-
tres for their tasks, which is not very practical mainly because users rarely have
the knowledge of the system structure. Finally, Hayakawa et al. (2018) intro-
duce the price-based mechanisms for homogeneous resource allocation, whereas
there are several heterogeneous resources in the fog. So their resource allocation
framework needs to be adapted in this case. In addition, we choose online greedy
(OG) and Social Welfare Maximisation Online Auction 2 (SWMOA2), which are
adapted from mechanisms in (Wang et al., 2012; Shi et al., 2017) respectively,
as the state-of-the-art benchmarks that we will evaluate our mechanism against.

In this paper, we are the first to address these shortcomings. Specifically,
we design dominant-strategy incentive compatible (DSIC) and individually ratio-
nal (IR) mechanisms for realistic fog settings to maximise social welfare4. DSIC
mechanisms guarantee that regardless of others’ behaviours, users always max-
imise their utility by reporting truthfully. Furthermore, under an IR mechanism,

4 We define social welfare as the difference between the value of all fog tasks and the
operational costs of all fog tasks.



no user will get a negative utility by participation. Such mechanisms provide two
major benefits. First, they can elicit the true information about the tasks. Sec-
ond, fog users do not need to invest their resources into optimally manipulating
their bids to increase their utility. In addition, we focus on improving social
welfare in this paper and leave the objective of maximising the fog provider’s
revenue to future work.

To design a truthful mechanism which addresses these problems, we signifi-
cantly extend the framework proposed by Hayakawa et al. (2018) to our problem
model. This is because their resource allocation model is similar to ours, and they
show that a well-defined price-based mechanism can achieve high efficiency. In
brief, we extend the state of the art as follows:
– We are the first to formulate the resource allocation in fog computing

(RAFC) problem as a constraint optimisation problem that considers the
bandwidth constraints and allows flexible allocation of virtual machines
(VMs) (i.e., emulations of real computers that contain all the necessary ele-
ments to run fog tasks) and of the bandwidth. We also show that it can be
modelled as an online mechanism design problem where a fog user requests
an amount of usage time with a given resource configuration.

– We design a DSIC and IR online mechanism called flexible online greedy
(FlexOG) for RAFC and show by extensive simulations, that it achieves a
social welfare better than that achieved by the state-of-the-art benchmarks
(up to 10%) and is close to the offline optimal value (around 90%).
The remainder of the paper is organised as follows: In Section 2, we propose

a formal model of the RAFC problem. In Section 3, we present our proposed
resource allocation mechanism as well as other benchmark mechanisms. In Sec-
tion 4, we show the results of simulations and evaluate the performance of our
mechanism. Finally, in Section 5, we conclude the paper.

2 The Fog Resource Model
We briefly describe our model of RAFC. The fog computing system is owned
by a fog provider. It contains a set P of geo-distributed FNs and a set L of
locations, which are interconnected through a set E of data links, as shown in
Figure 1. Furthermore, there is a set El of IoT devices in each location l. An IoT
device (e.g., a smart TV, surveillance camera, smart speaker or smartphone)
is denoted as e ∈ El. Every FN p ∈ P has a set R of limited computational
resources (e.g., CPU, RAM and disk storage). Moreover, there are Ap,r units of
type r ∈ R resources in FN p, and the unit operational cost of resource r in
FN p is op,r. In addition, the bandwidth capacity and the unit operational cost
of link (j, k) ∈ E are bj,k and oj,k respectively. For simplicity, we assume that
the bandwidth capacity and unit bandwidth costs are symmetrical for all links
(i.e., bj,k = bk,j , oj,k = ok,j , ∀(j, k) ∈ E). FNs and data links together offer their
resources to satisfy the needs of fog users. In particular, we assume that VMs can
be created in an FN to run fog tasks as long as there are enough computational
resources in that FN, and the total resource requirements of several virtual
machines are just the sum of their resource requirements. Furthermore, the fog
provider controls the resource allocation of the fog through a central control



Fig. 1: General view of a fog computing system.

system, which is a server that receives reports of tasks from fog users, makes
decisions of how to allocate resources and executes them through control links.

Fog users with tasks arrive over time and I denotes the set of all tasks. Note
that we adopt a continuous time system, but the tasks can only start execution
at discrete time steps, denoted by the set T = {1, 2, . . . , |T |}. Each task i ∈ I
is owned by a user, which is also denoted as i for simplicity. In addition, the
arrival time of task i is T ai ∈ [0, |T |], which is the time when user i becomes
aware of its task i, and the time interval that the task can run is from its
start time T si to its finish time T fi . Here, we assume that no tasks arrive at the

exact same time. User i reports its task’s type θ̂i (as defined in the following)
at time T̂ ai to run a certain application (e.g., a video surveillance application
or a picture processing application). We assume that user i wants to know the
number of time steps t̃i it will get and the payment p̃i for its task also by time
T̂ ai because users want to run the tasks locally or elsewhere if their tasks get
rejected. The operational cost of task i is denoted as oi, which is the sum of costs
of all resources allocated to task i, including the cost of bandwidth. Furthermore,
we also assume that every task only requires one VM to run but may require
connections to several IoT devices e ∈ E (in the same location or in different
locations) because this is common in an IoT system. Users are also assumed to
be stationary, which means that the IoT devices of users do not change locations
over time. Furthermore, we also assume VMs can migrate between FNs and the
migration costs are negligible, and all tasks are preemptible, which means that
they can always be paused and resumed. Finally, we focus on one type of task
called time-oriented tasks (e.g., video surveillance and video processing tasks),
which are common in fog computing. Such a task i needs a certain capacity



of resources for a time length ti to get its full value, but can still get part of
the value if the processing time is less than ti. Formally, the type of task i: θi
is a tuple (T ai , T

s
i , T

f
i ,vi, {ai,r}r∈R, {Γ il }l∈L), where ai,r denotes the amount of

resource r ∈ R required, and Γ il denotes the bandwidth demand between its VM
and location l ∈ L. For simplicity, bandwidth demands are symmetrical. That
is, Γ il denotes both the bandwidth demands to and from location l ∈ L. In this
paper, the valuation function vi = {vi,0, vi,1, . . . , vi,ti}, where vi,t is the value
when task i gets usage time of t time steps and ti denotes the usage time needed
to get the full value of the task. We make a mild assumption that the value
monotonically increases with usage time (i.e., vi,t′ ≥ vi,t′′ ,∀t′ ≥ t′′). We choose
this type of valuation function because it corresponds to many applications in
the fog, which achieve better results as processing time increases. Moreover, the
reported type of task i: θ̂i is a tuple (T̂ ai , T̂

s
i , T̂

f
i , v̂i, {âi,r}r∈R, {Γ̂ il }l∈L), and θ̂〈t〉

denotes the set of all reported types until and including time t.

Now, a key assumption in our work is that users are strategic, so θ̂i may not be
equal to θi. Moreover, we assume limited misreports (Nisan et al., 2007) based on

the nature of our problem (i.e. T̂ ai ≥ T ai , T̂ si ≥ T si , T̂
f
i ≤ T

f
i , âi,r ≥ ai,r, Γ̂ il ≥ Γ il ).

This is reasonable because a user cannot bid for a task before it becomes aware
of it, and cannot bid a looser time constraint ( T̂ si < T si or T̂ fi > T fi ) because the

provider can check whether i is ready to run at T̂ si and withhold the results for

i until T̂ fi . So bidding T̂ si < T si will be detected and penalised by cancelling the

task and bidding T̂ fi > T fi will get no value. Finally, user i will not misreport a
lower resource requirement because its task cannot run in that case.

Next, when receiving the bid θ̂i for task i, the fog provider will decide the
resource allocation scheme λi to this task, how much usage time t̃i will be al-
located, and the payment p̃i right away because of the assumption we made
earlier. Formally, the fog provider solves a constraint optimisation problem, and
the decision variables are: (1) {zip,t ∈ {0, 1}}i∈I,p∈P,t∈T , indicating that the VM

of task i is placed in FN p (zip,t = 1), or not (zip,t = 0) at time step t. (2)

{f il,p,j,k,t ∈ R+}i∈I,l∈L,p∈P,(j,k)∈E,t∈T , indicating allocation of the bandwidth on

each link for task i at time step t. (3) p̃i(λi, θ̂
〈T̂ai 〉) ∈ R+, denoting the payment

of task i, which is a function of the allocation: λi and all information received

by T̂ ai : θ̂〈T̂
a
i 〉. So, for task i, its usage time t̃i =

∑
p∈P,t∈T

zip,t, resource allocation

scheme λi = {zip,t}i∈I,p∈P,t∈T ∪ {f il,p,j,k,t}i∈I,l∈L,p∈P,(j,k)∈E,t∈T and its utility is

ui = vi(t̃i) − p̃i(λi, θ̂〈T̂
a
i 〉). The objective function of this optimisation problem

maximises the social welfare:

maximise
λi

∑
i∈I

vi(
∑

p∈P,t∈T
zip,t)− o (1)

where o =
∑
i∈I,r∈R,p∈P,t∈T ai,rz

i
p,top,r +

∑
i∈I,l∈L,p∈P,(j,k)∈E,t∈T 2oj,kf

i
l,p,j,k,t

The constraints of the optimisation problem include resource constraints in
the fog system and time constraints for fog tasks. Please refer to Bi et al. (2019)



for details on these constraints. This is a mixed integer linear programming prob-
lem, and we use the IBM ILOG CPLEX optimiser to solve it in our simulations.

3 Allocation Mechanisms

In this section, we present the details of the mechanisms used in this paper.

3.1 Price-based Mechanisms
First, we introduce a class of online resource allocation mechanisms called price-
based mechanisms that guarantee DSIC and IR for our resource allocation prob-
lem. Specifically, the properties that this class of mechanisms should have are:

Definition 1. A monotonic payment function is (weakly) monotonically in-
creasing over T̂ ai , T̂ si , t̂i, âi,r, r ∈ R and Γ̂ il , l ∈ L, and (weakly) monotonically

decreasing over T̂ fi .
Definition 2. An online mechanism belongs to the price-based mechanisms
class if it has the following properties:

1. The mechanism computes the payment p̃i for any possible allocation λi to

task i by using a payment function p̃i(λi, θ̂
〈T̂ai 〉) that is independent of v̂i and

monotonic.
2. The payment for tasks with no resource allocated is zero.
3. The resource allocation scheme λi for task i maximises v̂i − p̃i (over all λi

that can be made to task i for any v̂i).

Then, the following theorem guarantees that any mechanism in the class of
price-based mechanisms is DSIC and IR.

Theorem 1. Any online mechanism that satisfies Definition 2 is DSIC and IR.

This theorem can be proved in a similar way to Theorem 1 in (Hayakawa et al.,
2018), and the proof is omitted for space reasons.

3.2 Benchmark Mechanisms
We describe the benchmark mechanisms used in this paper in detail below.

Offline Optimal Mechanism Under this mechanism, we assume that we know
all the information about future tasks and allocate resources to optimise the so-
cial welfare with no need to incentivise fog users to bid truthfully. This theoretical
and idealised case can be achieved by solving the optimisation problem 1.

Online Optimal Mechanism This mechanism is similar to the offline optimal
except that the optimisation problem is solved at each time step with knowledge
only of the tasks that have arrived so far (and not of future tasks). Note that this
mechanism is non-truthful, but we use this to determine the social welfare that
could be achieved in an online setting if all users report truthfully. In Section 4,
we also evaluate this mechanism in settings where some users misreport.

Online Greedy Mechanism (OG) This mechanism is an extension of the
greedy algorithm from (Wang et al., 2012), and greedily allocates resources to
maximise the utility of a task when it arrives and commits to this allocation.
Furthermore, it computes the payment as this task’s corresponding operational
costs (p̃i = oi =

∑
r∈R,p∈P,t∈T (ai,rz

i
p,top,r)+

∑
l∈L,p∈P,(j,k)∈E,t∈T (2oj,kf

i
l,p,j,k,t)).

Note that OG belongs to the price-based mechanisms and thus is DSIC and IR.



SWMOA2 Although the Social Welfare Maximisation Online Auction
(SWMOA) mechanism from (Shi et al., 2017) cannot be directly applied to
our model, we develop a variant of it called SWMOA2 as a suitable bench-
mark. The main difference between this mechanism (given in Algorithm 1)
and OG is that it keeps a virtual cost instead of an operational cost for ev-
ery resource. For convenience, we use M to denote the set of every compu-
tational resource at each FN and the bandwidth resource on each link, and
m is one type of them. To compute the virtual costs, we define the load fac-
tor κm,t to be the proportion of occupied resource m at time step t. Then,
the virtual cost accordingly is: cm,t = µκm,t − 1,∀t ∈ T,m ∈ M , where
µ = 2|M |F + 2, and F is the upper limit of the ratio between the high-
est and the lowest task valuation per time step. Then, the virtual cost of
task i is ci =

∑
r∈R,p∈P,t∈T (ai,rz

i
p,tcp,r,t) +

∑
l∈L,p∈P,(j,k)∈E,t∈T (2cj,k,tf

i
l,p,j,k,t).

SWMOA2 also belongs to the price-based mechanisms and is DSIC and IR.

Algorithm 1: The SWMOA2 mechanism
θall ← ∅ . The set of arrived tasks
Λ← ∅ . The set of committed allocation decisions
κm,t ← 0, ∀m, t . The load factors of resources
cm,t ← 0, ∀m, t . The virtual costs of resources
for t in T do

while new tasks arrive within t do
When a new task i arrives . Tasks arrive over time
θall ← θall ∪ i . Update the set of arrived tasks
Solve the maximum virtual utility allocation for task i (i.e.,
argmax

λi

(v̂i(λi)− ci(λi))) . Find the allocation that maximises task i’s

virtual utility
Λ← Λ ∪ λi . Commit this allocation
p̃i ← ci(λi) . Compute the payment for task i

κm,t ← κm,t + zip,tai,r/Ap,r, ∀m ∈ P × R, t ∈ T . Update load factors of

computational resources

κm,t ← κm,t +
∑

l∈L,p∈P
fil,p,j,k,t/bj,k, ∀m ∈ E, t ∈ T . Update load factors of

bandwidth resources
cm,t = µκm,t − 1, ∀t ∈ T,m ∈M . Update the virtual costs of resources

end
Allocate resources for next time step (t+ 1) according to Λ

end

3.3 Flexible Online Greedy Mechanism (FlexOG)
Our mechanism, FlexOG (Algorithm 2), builds upon OG by allocating newly
arrived tasks greedily but keeps their specific allocation schemes flexible. This
gives it the DSIC property of OG but adds more flexibility. This also results in
higher social welfare because there is more space for optimisation when high-
value tasks arrive in the future. After receiving a report of task i, FlexOG finds
the allocation that maximises the social welfare of all flexible tasks given the
constraints of their committed usage time. Then, FlexOG computes the usage
time t̃i for task i from its corresponding allocation scheme, and commits it to
task i, which means that task i is guaranteed to get t̃i usage time before its
reported finish time T̂ fi . Afterwards, FlexOG requires payment for task i as the
marginal total operational cost, and task i is put to the set of flexible tasks. In
addition, at the end of each time step, FlexOG allocates resources for the next
time step according to the latest allocation schemes. Finally, if a task will get



Algorithm 2: The FlexOG mechanism
θall ← ∅ . The set of arrived tasks
θflex ← ∅ . The set of flexible tasks
o← 0 . The total operational costs

T̃ ← ∅ . The set of committed processing times
for t in T do

while new tasks arrive within t do
When a new task i arrives . Tasks arrive over time
θall ← θall ∪ i . Update the set of arrived tasks
θflex ← θflex ∪ i . Update the set of flexible tasks

Solve the maximum utility allocation for tasks in θflex (i.e.,
argmax

λj

∑
j∈θflex

(v̂j(λj)− oj(λj))) . Find the allocation for tasks in θflex

that maximise their social welfare, given their committed usage time

T̃ ← T̃ ∪ t̃i(λi) . Commit the processing time to i
p̃i ←

∑
j∈θall

oj(λj)− o . Compute the payment for i

o←
∑

j∈θall
oj(λj) . Update the total operational costs

end
for i in θflex do

Allocate resources for the next time step (t+ 1) according to λi
t̃i ← t̃i −

∑
p∈P

zip,t+1 . Update the remaining processing time of task i

if t̃i = 0 then
θflex ← θflex \ i . Delete task i from flexible tasks if it gets its
comitted usage time

end
end

end

all of its committed usage time in the next time step, it will be removed from
the set of flexible tasks. In summary, the key idea of our mechanism is that we
only commit the usage time t̃i to task i but keep its allocation scheme flexible.

Theorem 2. The FlexOG mechanism is DSIC and IR.

We only give a proof sketch here because of space reasons. Obviously, FlexOG
satisfies condition 2 in Definition 2 by charging zero to a rejected task. The pay-

ment p̃i(λi, θ̂
〈T̂ai 〉) is independent of v̂ because by maximising

∑
j∈θflex(v̂j(λj)−

oj(λj)) FlexOG actually minimises the total operational cost, which is indepen-

dent of v̂. The payment function is also monotonic because increasing T̂ ai , T̂
s
i ,

t̂i, {âi,r}r∈R, {Γ̂ il }l∈L or decreasing T̂ fi can only increase the total operational
cost

∑
j∈θflexoj . Hence, this mechanism satisfies condition 1. The mechanism

also satisfies condition 3 because it maximises
∑
j∈θflex(v̂j(λj)− oj(λj)), which

is equivalent to maximise (v̂i − p̃i) according to how the payment is computed
by FlexOG. From the above, FlexOG is DSIC and IR by Theorem 1.

4 Simulations and Analysis
In this section, we describe the setup of our experiments and evaluate our pro-
posed mechanism by simulations. The aim is to compare the social welfare
achieved by FlexOG to benchmark mechanisms in different situations.

4.1 Experimental Setup
We generate the following synthetic data to use in simulations because there
currently exists no comprehensive data set of real-world fog computing tasks.



The basic parameters of the synthetic data are as follows. The time span of our
discrete time period is |T | = 12. The fog provider has 6 FNs (|P |=6) and 6
locations (|L|=6). The topology of this setup is shown in Figure 2. Additionally,
there are |R| = 3 types of computational resources (CPU, RAM, and disk stor-
age) at each FN. We choose this small setting so that we can run more trials in
a reasonable time for all mechanisms, and we get similar results in other settings
on a similar scale.

Fig. 2: The topology of the fog computing system.

The number of tasks in this time period is |I| = 40. The arrival time T ai
follows a continuous uniform distribution U(0, 10), so that no tasks arrive at
exactly the same time. Moreover, the number of IoT devices for each task Ei is
generated uniformly from {1, 2, . . . , 6}. The location of each IoT device uie,l is
chosen uniformly at random from all locations L with replacement.

Furthermore, we choose a special valuation function vi in our simulation for
simplicity, which is a non-decreasing linear function of the usage time t̃i.

vi(t̃i) =

{
gi × t̃i if t̃i ≤ ti
gi × ti if t̃i > ti

where the coefficient gi represents task i’s obtained value per usage time.
To make the resource allocation more realistic, there are two types of tasks

in this synthetic data: low-value tasks and high-value tasks, and the proportion
of high-value tasks is denoted as q ∈ [0, 1]. For task i of either type: ai,r,∀r ∈ R
and Γ il are all generated from a Gaussian distribution N (1, 1) with negative
results discarded. The usage duration ti is a positive integer uniformly chosen
from {1, 2, 3, 4}, and the start time T si is an integer uniformly chosen within 2
time steps after the arrival time: {dT ai e, dT ai e + 1, dT ai e + 2}. Furthermore, the

finish time T fi is an integer uniformly chosen between a and b time steps after the
earliest finish time (not exceeding the last time step): {T si + ti− 1 + a, T si + ti +
a, . . . ,min(T si + ti − 1 + b, |T |)}, and (a, b) defines the deadline slackness of the
task, which is an important parameter because it reflects the task’s flexibility.
For low-value task i, gi is uniformly chosen from a continuous interval: [8, 30].
However, for high-value task i, gi is uniformly chosen from a continuous interval:
[180, 200]. Thus, F = 200/8 = 25 in this case. Finally, users who misreport only
misreport their valuation coefficient as one million.

Furthermore, the overall resource capacity of each computational resource r:∑
p∈P Ap,r is set to be a k fraction of the corresponding total resource demand:



∑
i∈I ai,r, and the overall bandwidth capacity:

∑
(j,k)∈E bj,k is set to be a 2k

fraction of the total bandwidth demands:
∑
i∈I,l∈L Γ

i
l . Then, each FN receives

the same fraction of resource r:
∑
p∈P Ap,r

|P | , and each data link receives the same

fraction of the available total bandwidth:
∑

(j,k)∈E bj,k

|E| . Finally, the unit opera-

tional costs at different FNs and links: op,r, p ∈ P, r ∈ R, oj,k, (j, k) ∈ E are all
generated uniformly from [0.03, 0.1].

4.2 Simulation Results

We have tested the robustness of our mechanism by running simulations with
different parameters, such as the number of tasks, the value distribution, the
arrival time distribution, the operational costs of resources, deadline slackness,
and resource scarcity in FNs and data links. We only show representative results
below due to the space limitation. Across all of these settings, trends are similar.
In particular, the FlexOG’s performance in social welfare is typically around 90%
of the offline optimal, and between 5− 10% better than OG’s.

First, we compare the total social welfare achieved by FlexOG with other
benchmarks under different resource coefficients k indicating the scarcity of the
resources in Figure 3.5 Note that we normalise the results to the performance
of offline optimal so that it is easier to compare the performance of different
mechanisms. The figure shows that FlexOG consistently achieves better social
welfare than other truthful benchmark mechanisms. In particular, SWMOA2
always has the worst performance mainly because its virtual price function is
exponential to the amount of occupied resource, and this hinders tasks from
getting allocated even when there is enough resource for them. It is worth noting
that, although the price function of SWMOA can guarantee that the allocation
will not break the resource constraints for the problem model in (Shi et al., 2017),
it no longer has this function in our model. The reason FlexOG performs better
than OG is the way in which committed time steps are allocated to tasks is
flexible, and so it can reschedule unfinished tasks to allocate more time steps for
the newly arrived task. In addition, our mechanism also performs close to offline
optimal, achieving around 90%, which indicates that our mechanism is efficient
even though it is online. Although online optimal performs about 10% better
than FlexOG, its performance drops below that of FlexOG when just 20% of
users misreport. In addition, we have also tested whether users have the incentive
to misreport by comparing utilities of truthful and non-truthful users, and the
result shows on average non-truthful users get a higher utility. This means that,
in a strategic setting where users can misreport, FlexOG can actually achieve
significantly more social welfare than online optimal. The figure also shows that
the performance difference between FlexOG and OG shrinks when the resource
coefficient k is relatively low or high. Intuitively, this is because when there are
few resources or there are abundant resources the performance of OG will be

5 All figures are with 95% confidence intervals based on 200 trials, and the relative
tolerance is set to 1% for offline optimal, and 5 % for others. (A 1% tolerance means
that the CPLEX optimiser stops when a solution is within 1% of optimality)



closer to the optimal, and there is less space for FlexOG to improve social welfare
by rescheduling tasks.

Next, we compare the performance in social welfare under different levels
of task slackness in Figure 4. A task with more slackness has more time steps
between its earliest and latest finish times. Such tasks are more flexible to allo-
cate. As can be seen from the figure, the gap between FlexOG and OG increases
as the tasks becomes more slack. This is because when tasks are more slack,
FlexOG is more likely to reschedule low-value tasks to allocate more high-value
tasks, while OG cannot benefit from this since its resource allocation schemes
are fixed once they have been made.

Fig. 3: Social welfare achieved by the mechanisms ((a, b) = (5, 10), F = 25, q = 0.1)

Fig. 4: Social welfare achieved by the mechanisms ((a, b) =
{(0, 5), (1, 6), (2, 7)(3, 8), (4, 9), (5, 10)}, F = 25, q = 0.1, k = 0.3).

Finally, the evaluation of processing time is shown in Figure 5. We plot the
processing time of all mechanism only under resource coefficient 0.25, 0.35 and
0,45 because the trend is similar under other coefficients. Note that the boxes



show the lower to upper 25% values of the data with whiskers showing 5 − 95
percentile of the data, and the outliers are not shown in the figure. It can be
seen from the figure that in general, offline optimal takes the least processing
time, online optimal, OG, and SWMOA2 take more, and FlexOG uses the most
time. This is mainly because offline optimal only needs to solve the optimisation
problem once, while all other mechanisms need to solve the optimisation problem
multiple times. FlexOG not only needs to solve the optimisation problem |I| = 40
times, but its optimisation problems also have more decision variables. Thus
FlexOG is feasible for tasks where users can forecast their time constraints.
Whereas for task requests that need immediate processing or task requests that
come very frequently, the processing time of FlexOG would become an issue.

Fig. 5: Processing time of the mechanisms ((a, b) = (5, 10), F = 25, q = 0.1).

5 Conclusions
This paper formulates the RAFC problem as a constrained optimisation problem
and proposes a novel truthful online mechanism for solving it. We made two key
contributions. The first is that we extend price-based online mechanisms to our
RAFC problem. The second is that we propose a truthful fog resource allocation
mechanism called FlexOG, and we show its performance in terms of social welfare
is significantly better than state-of-the-art mechanisms.

In the future, we plan to improve the scalability of FlexOG and to combine
online mechanism design and machine learning to enhance social welfare further.
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