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In classical newsvendor games, vendors collaborate to serve their aggregate demand whose joint distribution

is assumed known with certainty. We investigate a new class of newsvendor games with ambiguity in the

joint demand distributions, which is represented by a Fréchet class of distributions with some, possibly

overlapping, marginal information. To model this new class of games, we use ideas from distributionally

robust optimization to handle distributional ambiguity and study the robust newsvendor games. We provide

conditions for the existence of core solutions of these games using the structural analysis of the worst-case

joint demand distributions of the corresponding distributionally robust newsvendor optimization problem.

Key words : Cooperative games; uncertain payoffs; newsvendor games; robust optimization; stability

1. Introduction

A joint venture is usually an effective approach for individual players in the market to share costs,

reduce risk, and increase the total joint revenue or profit. For example, individual retailers can

decide whether to order inventories together and share the (expected) profit from selling ordered

products later. Cooperative game theory provides a mathematical framework for addressing this

problem, which is modeled as a newsvendor centralization game (or newsvendor game for short)

(see, e.g., Hartman [15]).

Traditionally, the underlying assumption in newsvendor games is that the joint demand distri-

bution is known with certainty. In reality, it can be sometimes difficult to justify this assumption,

especially when retailers need to decide whether to cooperate with each other before observing and

sharing records of joint demands. In this paper, we focus on newsvendor games with uncertain pay-

offs, i.e., expected profits, with uncertainty captured and represented in the payoff functions of the
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games. Our research departs from existing models of uncertain cooperative games with a different

approach of how to represent and handle uncertainty. We are going to model the uncertainty of

the payoffs through an uncertainty set derived directly from the ambiguity of the joint demand

distribution as in the framework of distributionally robust optimization.

Given that individual retailers usually collect historical demands independently before they join

any coalition, it is reasonable to assume the knowledge of joint demand distributions of subsets

of retailers, e.g., those that are located close to each other. Therefore, we focus on uncertainty

sets constructed with known (multivariate) marginal distributions in this paper. The sets of joint

distributions with fixed marginal distributions are referred to as Fréchet classes of distributions

(see, e.g., Rüschendorf [25]) with applications in risk management [11], project management [7] and

portfolio optimization [8]. We provide further details about how our research fits in and departs

from the broader literature of uncertain cooperative games and newsvendor games in Section 1.2.

1.1. Contributions and paper outline

In this paper, we focus on the newsvendor games with ambiguity in the joint demand distribution

represented by Fréchet classes of distributions. Specifically, our contributions and the structure of

the paper are as follows:

(1) We propose a new framework based on the principles of robust optimization to handle

newsvendor games with ambiguity in demand distributions, which we call robust newsvendor

games, in Section 2.

(2) We provide conditions of the existence of individually rational and stable payoff distributions

of these robust newsvendor games under distributional ambiguity represented by Fréchet classes of

distributions in Section 3. These conditions are shown using the structural analysis of the worst-case

joint demand distributions of the corresponding distributionally robust newsvendor optimization

problem.

1.2. Related Literature and Modeling Choices

The newsvendor games were first introduced by Hartman [15], which uses expected profit as the

payoff. Dror et al. [9] refer to these newsvendor games as newsvendor expected games to distinguish

them from newsvendor realization games, which focus on the realized profits given arbitrary demand

realization. For newsvendor expected games, the uncertainty of random demand is absorbed in

the calculation of the expected profit as payoff, which makes these games deterministic if the joint

demand distribution is known with certainty. If one allows distributional ambiguity, the payoff

becomes uncertain. In the literature, there are several different approaches of how to represent
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Figure 1 Modeling choices for cooperative games under uncertainty and newsvendor games

and handle uncertainty in cooperative games. Figure 1 provides a picture of what these modeling

choices are and how they might be applied in the context of newsvendor games.

The first approach is stochastic cooperative games where the payoff of each individual coalition

is assumed to be a random variable with known distribution. Charnes and Granot [5] propose a

two-stage payoff distribution scheme. This approach assumes risk-neutral behaviors among players.

Suijs et al. [27] study a different payoff distribution scheme for stochastic cooperative games using

preference orders for random payoffs, which can handle different types of risk behavior. Timmer

et al. [28] propose a similar payoff distribution scheme for stochastic cooperative games without

monetary exchange in which a multiple of the random coalition payoff is allocated to each indi-

vidual. Fernández et al. [12] also consider this payoff distribution scheme as a special case while

investigating general stochastic payoff distributions using stochastic orders for stochastic coopera-

tive games. Uhan [30] generalizes the payoff distribution scheme for stochastic linear programming

games with applications in inventory centralization and network fortification.

Recently, motivated by the centralized inventory allocation problem, new cooperative game mod-

els have been proposed to handle the dynamic nature of the games. Dror et al. [9] study repeated

stochastic cooperative games and apply them to dynamic newsvendor realization games. Bauso and

Timmer [1], on the other hand, study dynamic cooperative games under the setting of a family of

games whose coalition values are uncertain. Toriello and Uhan [29] investigate the dynamic linear

programming games with risk-averse players. Lehrer [20] investigates payoff distribution processes

in repeated deterministic cooperative games and shows that these processes converge to some

well-known solutions of cooperative games under appropriate allocation rules.
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The third approach is Bayesian cooperative games that study cooperative games with incomplete

information [17, 21, 4, 13]. This body of literature models situations where there is asymmetry in

what the players know about the other players, their contributions, and the states of the world.

In this paper, we focus on payoff sharing schemes of newsvendor expected games under dis-

tributional ambiguity. As discussed in Chen and Zhang [6], these sharing schemes of newsvendor

expected games can be used to allocate actual profits given an arbitrary demand realization. We

use principles of robust optimization to find payoff allocation schemes which makes these games

stable under all possible realizations of the joint demand distribution, i.e., to immunize against the

uncertainty. We call the resulting games from this approach robust games and in this paper, we

shall analyze the existence of core solutions of robust newsvendor games.

2. Framework for Robust Newsvendor Games

2.1. Newsvendor Games

Consider the set N of N retailers and let d̃i ∈R+ be the random demand for retailer i, i ∈N . In

the setting of newsvendor games, we assume that the unit ordering cost c and the unit selling price

p are the same for all retailers, 0 < c < p. Given an ordering quantity y, the expected profit (or

payoff) of retailer i is

vi(y) =EPi

[
pmin{d̃i, y}− cy

]
, i∈N , (1)

where Pi is the distribution function of d̃i for all i ∈ N . Individual retailer i needs to decide the

optimal ordering quantity y∗i to maximize the expected profit (or payoff), y∗i ∈ arg max
y≥0

vi(y), which

is the (p−c)/p-quantile of Pi. The optimal expected profit is v̄i = vi(y
∗
i ) =EPi

[
pmin{d̃i, y∗i }− cy∗i

]
.

In the setting of newsvendor games, individual retailers consider whether they should form a

coalition to make orders together, share inventories with each other, and serve their aggregate

demand. For a coalition S ⊆ N , the aggregate demand is d̃(S) =
∑
i∈S

d̃i, which follows the joint

distribution P (S) of d̃i, i∈ S. Given an ordering quantity y, the total expected profit is

v(y,S) =EP (S)

[
pmin{d̃(S), y}− cy

]
. (2)

Similarly, coalition S of retailers needs to decide the optimal ordering quantity y∗(S) to maximize

the total expected profit,

y∗(S)∈ arg max
y≥0

v(y,S), (3)

which again is the (p− c)/p-quantile of the distribution of d̃(S). The optimal expected profit is

v̄(S) = v(y∗(S),S) =EP (S)

[
pmin{d̃(S), y∗(S)}− cy∗(S)

]
. (4)
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This expected profit function v̄(·) is the characteristic function of newsvendor games under the

assumption that the joint demand distribution is known with certainty. We are interested in finding

an allocation x ∈ RN to distribute the total expected profit v̄(N ) among individual retailers. As

discussed in Chen and Zhang [6], if one focuses on the allocation of the actual profit given each

demand realization, any allocation with respect to the expected profit of newsvendor games can

be considered as a profit allocation rule that retailers can agree on before the demand is realized.

Among allocations of newsvendor games, we are interested in imputations, allocations which are

efficient, i.e.,
∑
i∈N

xi = v̄(N ), and individually rational, i.e., xi ≥ v̄({i}) for all i∈N or equivalently,

all individual retailers are better off in joining the grand coalition N . Individual rationality is not

sufficient to guarantee that some retailers would prefer the grand coalition N to a smaller coalition

S ( N . We are therefore, also interested in core allocations, allocations which are efficient and

stable, i.e.,
∑
i∈S

xi ≥ v̄(S) for all coalitions S (N .

For newsvendor games, Hartman [15] shows that the characteristic function v̄ is super-additive.

This shows that newsvendor games always have imputations. For normally distributed demands,

Hartman et al. [16] show that the cores of these games are non-empty. Müller et al. [23] prove that

every newsvendor game has a non-empty core no matter what distributions of random demands

are. Chen and Zhang [6] use stochastic linear programming duality to show the non-emptiness

of the core in inventory centralization games and to provide a constructive approach for finding

one. For newsvendor games, this dual approach provides a simple closed-form solution. Similarly,

Montrucchio and Scarsini [22] also show how to construct an allocation in the core of newsvendor

games. In the next section, we study solution concepts of newsvendor games under the ambiguity

of the joint demand distribution.

2.2. Robust Newsvendor Games

We consider the situation when the joint demand distribution P is uncertain, i.e., P belongs to

an ambiguity set P such as a Fréchet class of distributions. This makes the payoffs of coalitions

uncertain and the above framework of newsvendor games cannot be applied any more. Sujis et

al. [27] propose a general framework for cooperative games with stochastic payoffs which requires

additional elements such as actions of coalitions, payoff allocation rules, and individual preferences

of stochastic payoffs which are used to define the stability of the grand coalition. We use this

extended structure to develop a new framework for newsvendor games under distributional ambi-

guity with a relevant payoff allocation rule and a new approach to define stability based on the

principles of robust optimization.
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2.2.1. Retailer Actions For newsvendor games, the action which retailers can take is to

determine the ordering quantity. Here, we note that, if retailers in a coalition S ⊆ N do not

fully know their joint demand distribution, there is no ordering quantity to achieve the “optimal”

expected profit, i.e., the retailers can take different actions when facing uncertainty. Given an

ordering quantity y, the total expected profit vP (y,S) = EP (S)

[
pmin{d̃(S), y}− cy

]
is uncertain

since in general, the marginal demand distribution P (S) of P ∈ P also belongs to an ambiguity

set. This leads us to the discussion of payoff allocation rules and the break-away incentive next.

2.2.2. Profit Allocation Rule Facing the uncertain expected profit vP (y,S), P ∈P, we are

interested in finding a profit allocation rule that retailers can agree on before joining the coalition.

In this paper, we use a proportional payoff distribution scheme which follows the natural process of

joint-venture negotiation where the stakeholders agree on some proportions of their shares of the

future unknown profits. It is also motivated by the discussion on how the actual profit might be

allocated (proportionally) given each demand realization mentioned in Chen and Zhang [6, Remark

3] using the allocation of expected profit in newsvendor games. In the context of cooperative games,

the proportional rule is first used by Timmer et al. [28]. Formally, for a coalition S, an allocation

rule is represented by z ∈R|S| such that for a given ordering quantity y, the uncertain allocation

for each retailer i, i ∈ S, is xPi = vP (y,S) · zi for P ∈P. An allocation rule is efficient if
∑
i∈S

zi = 1,

which implies the uncertain allocation xP is efficient given any realization of P ∈P.

Remark 1. When P is a singleton, i.e., P = {P̄}, the set of all possible allocation rules z ∈R|S|

covers every possible allocation xS with the corresponding expected profit of v̄(S) = vP̄ (y∗(S),S)

for a coalition S if v̄(S) 6= 0. Restrictions happen only when v̄(S) = 0. In this case, any allocation

rule z ∈R|S| will result in xS = 0. However, for newsvendor games, v̄(S) is generally postive under

some mild assumptions on P̄ and we can claim that in general the proposed allocation rule for

uncertain newsvendor games with the class of distribution P reduces to the actual allocation for

deterministic newsvendor games when P is a singleton.

Remark 2. With the proportional allocation rule, we make an implicit assumption that there is no

monetary exchange in the contract agreement between retailers in our proposed newsvendor game

model. Monetary exchange is considered in some other allocation rules such as the one proposed by

Suijs et al. [27]. The allocation rule proposed by Suijs et al. [27] is represented by (d,r)∈R|S|×R|S|+

with di as the monetary exchange component in the uncertain allocation xPi = di + vP (y,S) · ri for

retailer i, i∈ S, given an ordering quantity y. The proposed framework can be developed with Suijs’

allocation rule (or any other allocation rules) together with the definition of break-away incentive

in Section 2.2.3; however, the analysis of existence of imputations and core decisions established in



Doan and Nguyen: Robust Newsvendor Games
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 7

the paper using vmax(y,S) is only applied to the proportional allocation rule (see Lemmas 1 and

3 for more details). It cannot be applied directly to other allocation rules and different analysis

techniques will be required.

2.2.3. Break-Away Incentive Another important consideration of newsvendor games is how

to characterize the incentive to break away from the grand coalition of individuals as well as

coalitions of retailers. When the expected profit function v̄(·) is known, an individual retailer i

has the incentive to break away if v̄({i})> xi, where x is the allocation considered by the grand

coalition. A coalition S (N has the incentive to break away if there exists an efficient allocation

x̂ of v̄(S), i.e.,
∑
i∈S

x̂i = v̄(S), which strongly dominates the allocation x of the grand coalition,

i.e., x̂i >xi for all i∈ S (see, e.g., Gillies [14]). The concept of dominance (and Pareto optimality)

has been widely used in economics since it was first introduced by Pareto [24]. In mathematical

optimization, it was used to describe efficient solutions of (vector) optimization problems in the

seminal paper by Kuhn and Tucker [19] and eventually became a cornerstone of multi-objective

optimization (see, e.g. Ehrgott [10]).

When facing uncertainty in multi-objective optimization problems, Bitran [3] defined the con-

cepts of necessary and sufficient efficiency by considering efficiency in each realization of uncer-

tainty. These realization-based concepts of efficiency for multi-objective optimization under uncer-

tainty appear again under different names, flimsily and highly robust efficiency, in Ide and Schöbel

[18]. In this paper, we use a similar realization-based approach to define the break-away incentive

of coalitions of retailers. This approach is different from the individual-based approaches where

preferences of retailers are redefined based on their uncertain payoffs (see, e.g., Sujis and Borm

[26]). Our proposed realization-based approach uses the standard allocation domination for fixed

distributions P ∈P to define the break-away incentive as follows.

Let us consider an efficient decision (y,z) with ordering quantity y and efficient allocation rule

z for the grand coalition N . Given a fixed distribution P̄ ∈ P, the resulting allocations, xP̄i =

vP̄ (y,N ) ·zi, i∈N , are known with certainty. Similarly, a coalition S (N with an efficient decision

(ŷ, ẑ) will also obtain well-defined allocation with x̂P̄i = vP̄ (S)(ŷ,S) · ẑi for all i∈ S, given the fixed

distribution P̄ ∈ P. Assuming P̄ is the realized distribution, as in the deterministic newsvendor

games with a known joint demand distribution, it is clear that S has the incentive to break away

if there exists a decision (ŷ, ẑ) whose resulting allocation x̂ strongly dominates the allocation x

obtained from the grand coalition, i.e., x̂P̄i >x
P̄
i for all i∈ S. We can use this standard break-away

incentive given realized distributions to define the break-away incentive when facing the uncertain

distribution P ∈P as follows.
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Definition 1. Given the ambiguity set P and an efficient decision (y,z) of the grand coalition

N , a coalition S (N has the incentive to break away from the grand coalition N if there exists

an efficient decision (ŷ, ẑ) for the coalition S such that the resulting allocation x̂P̄ (ŷ, ẑ) strongly

dominates the allocation xP̄ (y,z) of the grand coalition under at least one realization of P̄ ∈P.

Remark 3. When P is a singleton, i.e., P = {P̄}, given the relationship between allocation rules

and their resulting allocations, it is clear that the proposed definition of the break-away incentive

reduces to that of the standard break-away incentive since there is only a single distribution.

Given this definition of break-away incentive, we can define imputations and core decisions. An

imputation is an individually rational decision (y,z) if no individual retailer has the incentive to

break away from the grand coalition and z is an efficient allocation rule. Similarly, a core decision

is defined as a stable decision (y,z), i.e., no coalition S (N has the incentive to break away from

the grand coalition, where z is again an efficient allocation rule. A coalition S (N has no incentive

to break away if no matter which efficient decision (ŷ, ẑ) it takes and no matter which distribution

P ∈P is realized, not all of its members are better off. With this interpretation of the break-away

incentive, the stability of the grand coalition is clearly immunized against uncertainty, which follows

the principle of robust optimization (see Ben-Tal et al. [2] and references therein). We therefore

call newsvendor games with this definition of the break-away incentive robust newsvendor games.

In this paper, we are interested in the existence of imputations and core decisions of the proposed

robust newsvendor games with Fréchet classes of demand distributions as ambiguity sets.

3. Robust Newsvendor Games with Fréchet Classes of Demand Distributions

Retailers usually need to make a decision whether to join a coalition without knowing the complete

joint demand distribution. They normally collect their demand data independently and it is rea-

sonable to assume that we know some marginal distributions, e.g., those of retailers located close

to each other and serving customers from the same area. We use the information of these marginal

distributions to represent the ambiguity in the joint demand distributions as follows.

Let us consider a cover of N with R subsets N1, . . . ,NR, Nr (N for all r = 1, . . . ,R, and N =
R⋃
r=1

Nr. Given a vector d∈RN , let dr ∈RNr denote the sub-vector formed with the elements in the

rth subset Nr where Nr = |Nr| is the size of the subset. We assume that probability measures Pr

of random vectors d̃r are known for all r= 1, . . . ,R. The Fréchet class of joint probability measures

of the random vector d̃ consistent with the prescribed probability measures of the random vectors

d̃r for all r = 1, . . . ,R can be written as P(P1, . . . , PR) =
{
P |projNr

(P ) = Pr, r= 1, . . . ,R
}

, where

projNr
(P ) is the corresponding marginal joint distribution of d̃i, i∈Nr, derived from P .
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Remark 4. We assume that the ambiguity set P(P1, . . . , PR) is non-empty, which implies the

necessary pairwise consistency requirements for the marginal distributions Pr, i.e., for all r 6= s, if

Nr∩Ns 6= ∅, projNr∩Ns
(Pr) = projNr∩Ns

(Ps). Note that if the cover is a partition, i.e., Nr∩Ns for all

r 6= s, we do not need the pairwise consistency requirements and the ambiguity set P(P1, . . . , PR) is

always non-empty with the independent measure among the sub-vectors as a feasible distribution.

Given a coalition S ⊆N , the distribution P (S) := projS(P ), which is the corresponding marginal

joint distribution of d̃i, i ∈ S, derived from P , is unknown in general and coalition S can choose

the ordering quantity from Y(S), the set of feasible ordering quantities. To keep it simple, we

shall let Y(S) = R+ given the fact that the ordering quantities are non-negative for all S ( N .

If S ⊆Nr for some r, we shall restrict Y(S) = {y∗(S)} since the joint distribution of d̃i, i ∈ S, is

completely known. Given an ordering quantity y ∈Y(S), as in (2), the expected profit of coalition

S for P ∈P(P1, . . . , PR) is

vP (y,S) =EP (S)

[
pmin{d̃(S), y}− cy

]
= (p− c)y− pEP (S)

[(
y− d̃(S)

)+
]
. (5)

For the grand coalition N , we shall consider only ordering quantities which guarantee positive

profits under any circumstances, i.e., Y(N ) = {y ∈R+ |vP (y,N )> 0, ∀P ∈P(P1, . . . , PR)}. This is

a reasonable consideration, which implies that in general, the grand coalition would be beneficial

for retailers to join in. The condition will be technically necessary for the analysis of the proposed

allocation rule. In order to make sure that Y(N ) 6= ∅, we impose the following simple assumption.

Assumption 1. There is at least one subset Nr of retailers, r = 1, . . . ,R, whose joint demand is

positive almost surely, i.e., P(d̃(Nr)> 0) = 1.

This assumption of positive demand is quite reasonable in reality for a variety of essential prod-

ucts which everyone needs to buy regularly. We provide the detailed proof of the non-emptiness

of Y(N ) under Assumption 1 in Lemma 5 in Appendix A. Throughout the paper, for clarity of

exposition, we only provide the statements of the theoretical results, their implications, and brief

proof ideas where necessary, while leaving the detailed proofs in the appendices. We are now ready

to characterize the properties of imputations and core solutions of the robust newsvendor games

with the ambiguity set P(P1, . . . , PR).

3.1. Existence of Imputations

The newsvendor games with known joint demand distributions always have imputations since the

corresponding characteristic function is super-additive. We will show the same imputation existence

result for the robust newsvendor game. For each S (N , let us define

vmax(y,S) = max
P∈P(P1,...,PR)

{
maxys∈Y(S) vP (ys,S)

vP (y,N )

}
.

We first need the following lemma.
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Lemma 1. Given a decision (y,z) of the grand coalition, a retailer i∈N has no incentive to break

away if and only if zi ≥ vmax(y,{i}).

The proof of the lemma is provided in Appendix B.1. Here, we literally transform Definition 1 into

the condition for a retailer to break away from the grand coalition. Next, we study the worst-case

optimal ordering quantity y∗wc(S), which will allow us to construct individually rational decisions

used later to prove the existence of imputations of the proposed robust newsvendor games:

y∗wc(S)∈ arg max
y≥0

{
(p− c)y− p max

P∈P(P1,...,PR)
EP
[(
y− d̃(S)

)+
]}

. (6)

Let Pwc(S) denote the worst-case distribution and let us also define vwc(S) as the maximum worst-

case expected profit for coalition S, i.e.,

vwc(S) = (p− c)y∗wc(S)− p ·EPwc(S)

[(
y∗wc(S)− d̃(S)

)+
]
. (7)

When S ⊆Nr for some r, clearly, y∗wc(S) = y∗(S), the (p− c)/p-quantile of the known distribution

of d̃(S), and vwc(S) = v̄(S) as defined in (4). In general, it will be difficult to analytically compute

y∗wc(S) and vwc(S) given a general Fréchet class of distributions P(P1, . . . , PR). However, when

N1, . . . ,NR is a partition or equivalently, a non-overlapping cover, i.e., Nr ∩Ns = ∅ for all r 6= s, we

can calculate the worst-case optimal ordering quantity y∗wc(S) and the worst-case expected profit

vwc(S) and characterize the structure of the worst-case distribution Pwc(S) for an arbitrary S ⊆N
using the following lemma.

Lemma 2. Assuming that N1, . . . ,NR is a partition, i.e., Nr ∩Ns = ∅ for all r 6= s, then the fol-

lowing statements hold:

(a) The worst-case optimal ordering quantity y∗wc(S) for a coalition S ⊆N as defined in (6) can

be calculated as y∗wc(S) =
R∑
r=1

y∗(Sr), where Sr = S ∩Nr for all r= 1, . . . ,R, y∗(Sr) is the (p− c)/p-

quantile of the known distribution of d̃(Sr), and y∗(∅) = 0.

(b) The maximum worst-case expected profit is vwc(S) =
R∑
r=1

vwc(Sr) =
R∑
r=1

v̄(Sr).

(c) For all d ∈ supp(Pwc(S)), i.e., d belongs to the support of Pwc(S), either d(Sr)≤ y∗(Sr) for

all r= 1, . . . ,R, or d(Sr)≥ y∗(Sr) for all r= 1, . . . ,R.

The proof of the lemma is provided in Appendix B.2. The proof exploits structural properties

of the Fréchet class of distribution with non-overlapping covers. Results from Lemmas 1 and 2

allow us to show the existence of imputations of robust newsvendor games with the ambiguity set

P(P1, . . . , PR) as stated in the following theorem.

Theorem 1. Robust newsvendor games with the Fréchet ambiguity set P(P1, . . . , PR) always have

imputations.
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The proof of Theorem 1 is provided in Appendix B.3. The key idea is to use the fact that the

demand distribution for each individual retailer is known for any joint demand distribution P ∈
P(P1, . . . , PR). Theorem 1 shows that individual retailers would prefer to join the grand coalition

even when the joint demand distribution is not known with certainty. It is clear that any two

retailers (N = 2) would join up for better expected profits no matter what the joint demand

distribution is. However, we cannot claim the same for more retailers, i.e., when N > 2. We will

discuss the existence of core solutions of these robust newsvendor games in the next section.

3.2. Existence of Core Solutions

In order to study the existence of the core, we first analyse the condition for a coalition to break

away from the grand coalition as stated in the following lemma.

Lemma 3. Given an individually rational decision (y,z) of the grand coalition, a coalition S (N
has the incentive to break away if and only if

∑
i∈S

zi < vmax(y,S).

The proof of the lemma is provided in Appendix C.1, which is similar to that of Lemma 1. Note that

here, we focus only on individually rational decisions given that core decisions always need to be

individually rational. Now, given the ambiguity of joint demand distribution, the existence of core

solutions depends on how much distributional information is provided. As previously mentioned,

newsvendor games with known joint demand distributions always have core solutions. We will show

that core solutions also exist if sufficient marginal information is given. Let Ci = N \ {i} for all

i ∈ N and assume that N marginal distributions Qc
i , i ∈ N , of the cover (C1, . . . ,CN) are known.

Note that the ambiguity set P(Qc
1, . . . ,Q

c
N), which is constructed using the marginal information

of these large overlapping subsets, is not a singleton in general. The following theorem shows the

existence of core solutions of the robust newsvendor games given the ambiguity set P(Qc
1, . . . ,Q

c
N).

Theorem 2. Robust newsvendor games with the Fréchet ambiguity set P(Qc
1, . . . ,Q

c
N) always have

core solutions.

The detailed proof is provided in Appendix C.2. Similar to Theorem 1, the key idea in the proof

of Theorem 2 is to use the fact that the demand distribution of any coalition except the grand

coalition is known to show the existence of core solutions. Next, on the other extreme, we will

show that when N1, . . . ,NR is a partition, i.e., a non-overlapping cover, core solutions in general do

not exist. To that end, we first show a property of the core decision in the following lemma (with

detailed proof provided in Appendix C.3.)

Lemma 4. Assuming that N1, . . . ,NR is a partition, i.e., Nr ∩Ns = ∅ for all r 6= s, if (y,z) is a

core solution of a robust newsvendor game defined with the Fréchet ambiguity set P(P1, . . . , PR),

then the ordering quantity y is the worst-case optimal ordering quantity, i.e., y= y∗wc(N ).
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The result of Lemma 4 can be regarded as an extension of that from Lemma 2. We now utilise

both lemmas to show that the core solutions in general do not exist for non-overlapping covers. For

the sake of simplicity, we shall consider discrete demand distributions in the following theorem even

though its proof can be modified to accommodate continuous demand distributions. In addition,

when demand distributions are discrete, further analyses can be done as shown in Propositions 1

and 2.

Theorem 3. Assuming that N1, . . . ,NR is a partition, i.e., Nr ∩Ns = ∅ for all r 6= s, and R≥ 3,

then the robust newsvendor game defined with the ambiguity set P(P1, . . . , PR), where Pr are disrete

distributions for all r = 1, . . . ,R, has no core solution if y∗(Nr)> 0 for all r = 1, . . . ,R, and there

exist r1, r2 ∈ {1, . . . ,R}, r1 6= r2, such that y∗(Nr1) > dmin(Nr1) and y∗(Nr2) < dmax(Nr2), where

dmin(S) = min{d(S) |d∈ P (S)} and dmax(S) = max{d(S) |d∈ P (S)} for S ⊆N .

The detailed proof is provided in Appendix C.4. The key idea is to perturb a worst-case distri-

bution and construct a new distribution in the ambiguity set such that conditions for the existence

of core solutions are violated. To this end, we exploit results from Lemma 2(c) on the structure

of worst-case distributions, which indicates that a demand vector d belonging to the support of

a worst-case distribution if any only if y∗(Sr)− d(Sr) has the same sign for all r = 1, . . . ,R. The

perturbed distribution violates this condition with some demand vectors d in its support such

that (y∗(Sr1)− d(Sr1))(y∗(Sr2)− d(Sr2))< 0 for some r1, r2. With this perturbed distribution, we

are able to establish a lower bound on vmax(ywc(N ),Nr1 ∪Nr2), which is then used to show the

instability of the grand coalition.

Remark 5. i) The condition y∗(Nr) > 0 is equivalent to P
(
d̃(Nr) = 0

)
<
p− c
p

given that

y∗(Nr) is the (p − c)/p-quantile of the known distribution of d̃(Nr). One simple sufficient con-

dition could be that the demand d̃(Nr) is positive almost surely, i.e., P
(
d̃(Nr)> 0

)
= 1, for all

r= 1, . . . ,R.

ii) The condition y∗(Nr) > dmin(Nr) holds if the probability P
(
d̃(Nr) = dmin(Nr)

)
is small

enough, P
(
d̃(Nr) = dmin(Nr)

)
<
p− c
p

. Similarly, the condition y∗(Nr) < dmax(Nr) holds if the

probability P
(
d̃(Nr) = dmax(Nr)

)
is small enough, P

(
d̃(Nr) = dmax(Nr)

)
<
c

p
. These conditions

are usually satisfied, i.e., the optimal ordering quantities are not extremal values.

iii) The proof of this theorem can be modified to accommodate continuous demand dis-

tributions using the same idea of worst-case distribution perturbation. Given that y∗(Nr) ∈

(dmin(Nr), dmax(Nr)) if Pr is continuous for all r= 1, . . . ,R, one can show that robust newsvendor

games defined as in Theorem 3 with continuous demand distributions always has no core when

R≥ 3.
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In the next proposition, we utilize Remark 5ii) to show that if random demands have heavy skew

discrete distributions in some extreme cases, core solutions of the robust newsvendor game when

N1, . . . ,NR is a partition could exist.

Proposition 1. Assuming that N1, . . . ,NR is a partition, i.e., Nr ∩Ns = ∅ for all r 6= s, then core

solutions of the robust newsvendor game defined with the ambiguity set P(P1, . . . , PR), where Pr

are disrete distributions for all r= 1, . . . ,R, exist if P
(
d̃(Sr) = dmin(Sr)

)
≥ 1− c

Rp
for all Sr ⊆Nr,

r= 1, . . . ,R, or P
(
d̃(Sr) = dmax(Sr)

)
≥ 1− p− c

Rp
for all Sr ⊆Nr, r= 1, . . . ,R.

There is still a gap between the conditions derived in Theorem 3 and Proposition 1 for the

existence and non-existence of core solutions under the general settings. The following proposition

shows that the gap can be closed for some special cases.

Proposition 2. Assuming that Ni = {i} and Pi ≡ P0 with supp(P0) = [dmin, dmax], where dmin <

dmax, for all i = 1, . . . ,N , then the robust newsvendor game defined with the ambiguity set

P(P1, . . . , PN), where Pi are disrete distributions for all i = 1, . . . ,N , has no core solution if and

only if N ≥ 3, PP0

(
d̃= dmin

)
< 1− c

(N − 1)p
, and PP0

(
d̃= dmax

)
< 1− p− c

(N − 1)p
.

The proofs of Propositions 1 and 2 are provided in Appendices C.5 and C.6, respectively. Theo-

rems 2, 3 and Propositions 1, 2 show different conditions for the existence (and non-existence) of

robust solutions. In general, robust solutions exist when there is enough distributional information

or under some special cases.

4. Conclusion

In this paper, we develop a framework for newsvendor expected games with ambiguity in demand

distributions, which we call robust newsvendor games. We use Fréchet classes of distributions to

handle practical situations in the newsvendor games where only partial information of general

(overlapping) marginal distributions is available. We are able to derive conditions for the existence

(and non-existence) of core solutions of these robust newsvendor games using structural analysis of

the worst-case distributions of the corresponding distributionally robust newsvendor optimization

problem. Future research directions include how to generalize the concept of break-away incentive

and use it to handle the conservativeness of the proposed framework of robust cooperative games.

In addition, other allocation rules should also be considered. Development of a computational

framework to find core (and least core) decisions of these robust cooperative games is another

challenging research topic.
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Appendix A: Non-emptiness of Y(N )

Lemma 5. Under Assumption 1, Y(N ) 6= ∅.

Proof. We have d̃(N ) =
R∑
r=1

d̃(Nr). Under Assumption 1, max
r=1,...,R

dmin(Nr) > 0, where dmin(S) =

min{d(S) |d∈ supp(P (S))} for S ⊆N . Thus, we have

dmin(N )≥
R∑
r=1

dmin(Nr)> 0.

For y ∈ [0, dmin(N)], vP (y,N ) = (p−c)y, which is strictly increasing for any P ∈P(P1, . . . , PR) given

the fact that p > c. In addition, for y≥ dmax(N ), where dmax(S) = max{d(S) |d∈ supp(P (S))} for

S ⊆N , vP (y,N ) =−cy+ p
R∑
r=1

EPr

[
d̃(Nr)

]
, which is strictly decreasing for any P ∈ P(P1, . . . , PR)

given the fact that c > 0.

Now consider the function v̄(y,N ) = min
P∈P(P1,...,PR)

vP (y,N ). It is clear that v̄(·,N ) is again strictly

increasing in [0, dmin(N )] and strictly decreasing in [dmax(N ),+∞). Thus, we have

arg max
y≥0

v̄(y,N )∈ [dmin(N ), dmax(N )],

and

max
y≥0

v̄(y,N )≥ v̄(dmin(N ),N ) = (p− c)dmin(N )> 0.

Thus, there exists y ≥ 0 such that v̄(y,N ) > 0, or equivalently, vP (y,N ) > 0 for all P ∈

P(P1, . . . , PR). This shows that Y(N ) 6= ∅. �

Appendix B: Proofs for Results Related to Imputation Existence

B.1. Proof of Lemma 1

Proof. The profit allocation of retailer i, i ∈N , is xPi = vP (y,N ) · zi for any P ∈ P(P1, . . . , PR).

According to Definition 1, retailer i does not have the incentive to break away if and only if

vP (yi,{i})≤ vP (y,N ) · zi, ∀yi ∈Y({i}), P ∈P(P1, . . . , PR).

Since vP (y,N ) > 0 for P ∈ P(P1, . . . , PR), the above condition is equivalent to zi ≥

max
yi∈Y({i})

vP (yi,{i})
vP (y,N )

for all P ∈P(P1, . . . , PR), i.e.,

zi ≥ max
P∈P(P1,...,PR)


max

yi∈Y({i})
vP (yi,{i})

vP (y,N )

= vmax(y,{i}).

�
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B.2. Proof of Lemma 2

Proof. Consider the optimization problem in (6). For y ≤ dmin(S) := min{d̃(S)}, we can write

(p−c)y−pEP
[(
y− d̃(S)

)+
]

= (p−c)y for any distribution P . Since (p−c)> 0, this is an increasing

function in y in (−∞;dmin(S)]. Since dmin(S)≥ 0, we can then remove the non-negative constraint

y≥ 0 from (6) when calculating y∗wc(S). Now, consider the inner optimization problem of (6). This

is an instance of the distributionally robust optimization problem studied in Doan and Natarajan

[7] with Fréchet classes of distributions under the setting that N1, . . . ,NR is a partition. Without

loss of generality, we can assume that Sr 6= ∅ for all r= 1, . . . ,R knowing that y∗(∅) = 0. Applying

Proposition 1(ii) from [7], we obtain the following reformulation:

max
P∈P(P1,...,PR)

EP
[(
y− d̃(S)

)+
]

= min
x

R∑
r=1

EPr

[(
xr− d̃(Sr)

)+
]

s.t.
R∑
r=1

xr = y.

Thus, in order to find y∗wc(S), we can solve the following optimization problem

max
y,x

(p− c)y− p
R∑
r=1

EPr

[(
xr− d̃(Sr)

)+
]

s.t.
R∑
r=1

xr = y.

The optimal ordering quantity y∗wc(S) can then be calculated as y∗wc(S) =
R∑
r=1

x∗r, where x∗ is the

optimal solution of the following separable optimization problem:

max
x

R∑
r=1

(
(p− c)xr− p

R∑
r=1

EPr

[(
xr− d̃(Sr)

)+
])

,

or equivalently,
R∑
r=1

max
xr

(
(p− c)xr− pEPr

[(
xr− d̃(Sr)

)+
])

.

For each sub-problem, x∗r is the (p− c)/p-quantile of the distribution of d̃(Sr), which means x∗r =

y∗(Sr) for all r = 1, . . . ,R, according to (3). Thus, we have y∗wc(S) =
R∑
r=1

y∗(Sr). This also leads to

vwc(S) =
R∑
r=1

vwc(Sr) =
R∑
r=1

v̄(Sr). Here, the joint demand distribution for players in Sr is known

and hence the worst-case expected profit vwc(Sr) is exactly the same with the expected profit v̄(Sr)
shown in (4).

Now, given the fact that x+ + y+ ≥ (x+ y)+ for all x, y ∈R, we have

EPwc(S)

[(
y∗wc(S)− d̃(S)

)+
]
≤

R∑
r=1

EP (Sr)

[(
y∗(Sr)− d̃(Sr)

)+
]
.
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The optimality of (y∗wc(S), Pwc(S)) implies the equality of the above inequality, which holds if and

only

(y∗wc(S)− d(S))
+

=
R∑
r=1

(y∗(Sr)− d(Sr))+
, ∀d∈ supp(Pwc(S)).

This condition is equivalent to the fact that for all d ∈ supp(Pwc(S)), y∗(Sr)− d(Sr) has to be

either non-negative or non-positive for all r= 1, . . . ,R. This is precisely what is stated in the lemma

regarding the support of the worst-case distribution Pwc(S). �

B.3. Proof of Theorem 1

Proof. We will show the existence of imputations by constructing an individually rational deci-

sion. Let Qi be the marginal distribution of retailer i, i = 1, . . . ,N . Since N1, . . . ,NR is a cover

of N , i.e.,
R⋃
r=1

Nr = N , all the marginal distributions Qi, i = 1, . . . ,N , are known. In addition,

Qi is the marginal distribution of some distribution Pr, r = 1, . . . ,R, for all i = 1, . . . ,N . Thus,

P(P1, . . . , PR)⊆P(Q1, . . . ,QN).

For each individual retailer i, the demand distribution Qi is known; therefore Y({i}) = {y∗i },
where y∗i be the (p− c)/p-quantile of the distribution function of d̃i. Thus,

max
yi∈Y({i})

vP (yi,{i}) = vi(y
∗
i ) = v̄i ≥ 0, ∀P ∈P(Q1, . . . ,QN).

Consider vmax(y,{i}), i∈N , for y ∈Y(N ), we have

vmax(y,{i}) = max
P∈P(P1,...,PR)


max

yi∈Y({i})
vP (yi,{i})

vP (y,N )

=
v̄i

min
P∈P(P1,...,PR)

vP (y,N )
.

In order to construct an individually rational decision, we consider the worst-case optimal

ordering quantity y∗wc(N ) as defined in (6). Clearly, we have y∗wc(N ) ∈ Y(N ) and vwc(N ) =

min
P∈P(P1,...,PR)

vP (y∗wc(N ),N )> 0. We then have

vmax(y∗wc(N ),{i}) =
v̄i

vwc(N )
.

Let x be an imputation of the corresponding deterministic newsvendor game with demand

distribution P ∗wc(N ); that is, x solves
∑
i∈N

xi = vwc(N ) and xi ≥ v̄i. Let us define z =x/v̄wc(N ). We

then have z(N ) =x(N )/vwc(N ) = 1 and hence z is an efficient allocation rule. We also have

zi =
xi

vwc(N )
≥ v̄i
vwc(N )

= vmax(y∗wc(N ),{i}).

According to Lemma 1, the decision (y∗wc(N ),z) is individually rational. Thus, it is an imputation

given that allocation rule z is also efficient. This shows that robust newsvendor games with an

arbitrary ambiguity set P(P1, . . . , PR) always have imputations.

�



Doan and Nguyen: Robust Newsvendor Games
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 19

Appendix C: Proofs for Results Related to Robust Core Existence

C.1. Proof of Lemma 3

Proof. Given an individually rational decision (y,z), a coalition S has the incentive to break

away if there exists an efficient decision (ŷ, ẑ) for S and a demand distribution P ∈P(P1, . . . , PR)

such that for all retailers i, i∈ S,

vP (ŷ,S) · ẑi > vP (y,N ) · zi.

Since ẑ is an efficient allocation for S, we have:
∑
i∈S

ẑi = 1. Summing the inequality above over all

i∈ S, we then obtain the following statement:

∃P ∈P(P1, . . . , PR) : vP (y,N ) ·
∑
i∈S

zi < vP (ŷ,S) ·
∑
i∈S

ẑi = vP (ŷ,S).

Equivalently, since vP (y,N )> 0 for P ∈P(P1, . . . , PR), we have

∃P ∈P(P1, . . . , PR) :
∑
i∈S

zi <
vP (ŷ,S)

vP (y,N )
⇔
∑
i∈S

zi < max
P∈P(P1,...,PR)

{
vP (ŷ,S)

vP (y,N )

}
.

We have

max
P∈P(P1,...,PR)

{
vP (ŷ,S)

vP (y,N )

}
≤ max

yS∈Y(S)
max

P∈P(P1,...,PR)

{
vP (yS ,S)

vP (y,N )

}
= max

P∈P(P1,...,PR)
max

yS∈Y(S)

{
vP (yS ,S)

vP (y,N )

}
= max

P∈P(P1,...,PR)


max

yS∈Y(S)
vP (yS ,S)

vP (y,N )

 .

The second equality is due to the fact that vP (y,N ) > 0 for all P ∈ P(P1, . . . , PR) given that

y ∈Y(N ). Thus, if a coalition S has the incentive to break away, then

∑
i∈S

zi < max
P∈P(P1,...,PR)


max

yS∈Y(S)
vP (yS ,S)

vP (y,N )

= vmax(y,S).

Now, suppose
∑
i∈S

zi < vmax(y,S). We will show that coalition S has the incentive to break

away. We need to show the existence of an efficient decision (ŷ, ẑ) and a demand distribution

P ∈P(P1, . . . , PR) such that for all retailers i, i∈ S,

vP (ŷ,S) · ẑi > vP (y,N ) · zi.

Let (ŷ, P̂ )∈ arg max
yS∈Y(S)

max
P∈P(P1,...,PR)

{
vP (yS ,S)

vP (y,N )

}
. Clearly, we have

vP̂ (ŷ,S)

vP̂ (y,N )
= max

yS∈Y(S)
max

P∈P(P1,...,PR)

{
vP (yS ,S)

vP (y,N )

}
= max

P∈P(P1,...,PR)


max

yS∈Y(S)
vP (yS ,S)

vP (y,N )

= vmax(y,S).



Doan and Nguyen: Robust Newsvendor Games
20 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

From Lemma 1, we have zi ≥ vmax(y,{i})≥ 0 since (y,z) is an individually rational decision (i.e.,

an imputation). Thus, vmax(y,S)>
∑
i∈S

zi ≥ 0 and hence vP̂ (ŷ,S) 6= 0.

Let ε=
1

|S|

(
vmax(y,S)−

∑
i∈S

zi

)
> 0 and define ẑi =

zi + ε

vmax(y,S)
for all i ∈ S. Clearly,

∑
i∈S

ẑi = 1

given the definition of ε. In addition, for all i∈ S, we have:

vP̂ (ŷ,S) · ẑi = vP̂ (y,N ) · zi + vP̂ (y,N ) · ε > vP̂ (y,N ) · zi.

Thus, (ŷ, ẑ) is an efficient decision and the inequality above shows that coalition S indeed has the

incentive to break away. �

C.2. Proof of Theorem 2

Proof. For an arbitrary coalition S (N , there always exists i ∈ N such that S ⊆ Ci. Thus, the

joint demand distribution P (S) is known since it is a marginal distribution of Qc
i for some i ∈N .

Consider the worst-case optimal ordering quantity y∗wc(N ) as defined in (6). We have

vmax(y∗wc(N ),S) = max
P∈P(Qc

1,...,Q
c
N

)


max

yS∈Y(S)
vP (yS ,S)

vP (y∗wc(N ),N )


=

max
yS∈Y(S)

vP (S)(yS ,S)

min
P∈P(Qc

1,...,Q
c
N

)
vP (y∗wc(N ),N )

=
vwc(S)

vwc(N )
=

v̄(S)

vwc(N )
.

Now consider a worst-case distribution P ∗wc(N ) ∈ arg min
P∈P(Qc

1,...,Q
c
N

)
vP (y∗wc(N ),N ). We have

vP∗wc(N )(y
∗
wc(N ),N ) = vwc(N ).

Let x be a core solution of the corresponding deterministic newsvendor game with demand

distribution P ∗wc(N ). We then have
∑
i∈N

xi = vwc(N ) and
∑
i∈S

xi ≥ max
yS∈Y(S)

vP (S)(yS ,S) = v̄(S) for all

S (N . Let us define z = x/v̄wc(N ). We then have z(N ) = x(N )/vwc(N ) = 1 and hence z is an

efficient allocation rule. For each S (N , we have

∑
i∈S

zi =

∑
i∈S

xi

vwc(N )
≥ v̄(S)

vwc(N )
= vmax(y∗wc(N ),S). (8)

Thus, the decision (y∗wc(N ),z) is a core decision of the robust newsvendor game with the ambi-

guity set P(Qc
1, . . . ,Q

c
N).

�
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C.3. Proof of Lemma 4

Proof. Let us consider a core solution (y,z) of the robust newsvendor game with the ambiguity

set P(P1, . . . , Pr). For each coalition Nr, r= 1, . . . ,R, we have

vmax(y,Nr) = max
P∈P(P1,...,PR)


max

yr∈Y(Nr)
vP (yr,Nr)

vP (y,N )


=

max
yr∈Y(Nr)

vPr(yr,Nr)

min
P∈P(P1,...,PR)

vP (y,N )

=
vwc(Nr)

min
P∈P(P1,...,PR)

vP (y,N )
=

v̄(Nr)
min

P∈P(P1,...,PR)
vP (y,N )

.

This is due to the fact that Pr is known with certainty and vwc(Nr)≥ 0. According to Lemma 3,

for (y,z) to be a core solution, we need to have

∑
i∈Nr

zi ≥ vmax(y,Nr) =
v̄(Nr)

min
P∈P(P1,...,PR)

vP (y,N )
.

Summing this over r= 1, . . . ,R, we obtain

1 =
∑
i∈N

zi =
R∑
r=1

∑
i∈Nr

zi ≥

R∑
r=1

v̄(Nr)

min
P∈P(P1,...,PR)

vP (y,N )
.

Given that y ∈Y(N ), we have min
P∈P(P1,...,PR)

vP (y,N )> 0. Hence,

R∑
r=1

v̄(Nr)≤ min
P∈P(P1,...,PR)

vP (y,N ).

This leads to

R∑
r=1

v̄(Nr) ≤ max
y≥0

min
P∈P(P1,...,PR)

vP (y,N )

≡ vwc(N )

=
R∑
r=1

vwc(Nr) =
R∑
r=1

v̄(Nr),

where the last equality comes from Lemma 2. It must then be the case that the ordering quantity

y is the worst-case optimal ordering quantity, y= y∗wc(N ), for the above inequalities to be tight. �
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C.4. Proof of Theorem 3

Proof. First, without loss of generality, let r1 = 1 and r2 = 2. Let Hr(S) = Hr(S) ∩ Hr(S) =

{d∈ supp(P (Sr)) |d(Sr) = y∗(Sr)}, where Hr(S) = {d∈ supp(P (Sr)) |d(Sr)≤ y∗(Sr)}, and simi-

larly, Hr(S) = {d∈ supp(P (Sr)) |d(Sr)≥ y∗(Sr)}, for all r= 1, . . . ,R and S ⊆N . First, Hr(N ) 6= ∅

given that y∗(Nr) is the (p−c)/p-quantile of the known distribution of d̃(Nr) for r= 1, . . . ,R. Next,

if y∗(N1)>dmin(N1) and y∗(N2)<dmax(N2), we have H1(N )\H1(N ) 6= ∅ and H2(N )\H2(N ) 6= ∅.

Thus, there exist d1 < y∗(N1) and d2 > y∗(N2) such that PPr

(
d̃r ∈ Gr(dr)

)
> 0, where Gr(dr) =

{d∈ supp(Pr) : d(Nr) = dr} for r= 1,2.

The main steps of the proof are as follows.

Step 1: From any worst-case joint demand distribution, we construct a new distribution

P (dr1 , dr2) in the uncertainty set whose support includes demand vector(s) containing both G1(d1)

and G2(d2). This will be formally shown in details in Claim 1 (in Appendix C.4). The main idea

used to prove this claim is to exploit the definition of y∗(Nr) being the (p− c)/p-quantile of d(Sr)

in order to construct three columns of (di)i∈Nr , as shown in Figure 2, each of which has the same

total probabilities for all r = 1, . . . ,R. Here, the middle column H2
r are copies of Hr(N ) and are

formally defined in the proof of Claim 1.

Step 2: The expected profits vP (d1,d2)(y
∗
wc(N ),N ) and vP (d1,d2)(y

∗
wc(N1 ∪ N2),N1 ∪ N2) for the

grand coalition and for coalition (N1 ∪N2) can be computed analytically given that P (d1, d2) is

only slightly different from a worst-case distribution.

Step 3: The newly constructed distribution is used to find a lower bound for vmax(y∗wc(N ),N1 ∪

N2). Finally, this lower bound is used in conjunction with results from Lemma 3 to show that

conditions for the existence of core solutions are violated.

We now show the details of each step in the proof sketch of the theorem.

H2
r

H2
1

H2
2

G1(d1)r= 1

r= 2

r≥ 3

G2(d2)

P(·) = ε0

swap

swap

P(·) = p−c
p
− ε0 P(·) = c

p

Figure 2 Construction of distributions P (d1, d2).

Step 1: Let G(d1, d2) =
2∏
r=1

Gr(dr) ×
R∏
r=3

Hr(N ). Clearly, G(d1, d2) ∩ supp(Pwc(N )) = ∅ by

Lemma 2(c). We make the following claim.
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Claim 1: There exists a distribution P (d1, d2)∈P(P1, . . . , PR) whose support belongs to(
R∏
r=1

Hr(N )

)
∪

(
R∏
r=1

Hr(N )

)
∪G(d1, d2),

with PP (d1,d2)

(
d̃∈ G(d1, d2)

)
> 0.

The proof of this claim is accomplished through two main steps:

Step 1a: Construction of worst-case distribution whose support can be divided into three

columns, each with a fixed total probability.

We first construct a (worst-case) distribution P ∈ P(P1, . . . , Pr) whose support belongs to(
R∏
r=1

Hr(N )

)
∪

(
R∏
r=1

Hr(N )

)
. For each r = 1, . . . ,R, given the distribution Pr, we construct an

equivalent distribution P ′r as follows. Since y∗(Nr) is the (p−c)/p-quantile of the known distribution

of d̃(Nr), we have

PPr

(
d̃r ∈Hr(N ) \Hr(N )

)
<
p− c
p
≤ PPr

(
d̃r ∈Hr(N ) \Hr(N )

)
+PPr

(
d̃r ∈Hr(N )

)
,

which also implies that PPr

(
d̃r ∈Hr(N ) \Hr(N )

)
≤ c

p
, for all r = 1, . . . ,R. This means we can

‘redistribute’ the probabilities of PPr

(
d̃r ∈Hr(N )

)
to both sides of PPr

(
d̃r ∈Hr(N ) \Hr(N )

)
and

PPr

(
d̃r ∈Hr(N ) \Hr(N )

)
such that the three new parts now have the same total probabilities

for all r = 1, . . . ,R, as shown in Figure 2. The key observation here is that any demand vector

d̃r ∈ supp(Pr) with a probability PPr

(
d̃r)
)

can be viewed as several demand vectors (copies) with

the same value d̃, but with different probabilities as long as their sum is equal to PPr

(
d̃r)
)

, without

changing the newsvendor games.

Formally, we generate three identical copies d1
r = d2

r = d3
r = dr for all dr ∈ Hr(N ) and form

three sets H1
r, H2

r, and H3
r, respectively. We construct H′r by replacing all dr ∈Hr(N ) with their

identical copies d1
r in Hr(N ), i.e., H′r =Hr(N ) \ Hr(N ) ∪H1

r. H′r consists of all second identical

copies d2
r of dr ∈ Hr or equivalently, H′r =H2

r. Finally, we replace all dr ∈ Hr(N ) by their third

identical copies d3
r to construct H′r from Hr(N ), i.e., H′r =Hr(N ) \Hr(N )∪H3

r. The support of

P ′r is defined as supp(P ′r) =H′r ∪H′r ∪H
′
r. For all dr ∈Hr(N ) \Hr(N ) or dr ∈Hr(N ) \Hr(N ), let

PP ′r
(
d̃r = dr

)
= PPr

(
d̃r = dr

)
.

Let

ε0 =
1

2
min

r=1,...,R

{
p− c
p
−PPr

(
d̃r ∈Hr(N ) \Hr(N )

)}
> 0,

and for identical copies of dr ∈Hr(N ), we are able to redistribute their probabilities as follows:

PP ′r
(
d̃r = d1

r

)
= PPr

(
d̃r = dr

)
·

p− c
p
−PPr

(
d̃r ∈Hr(N ) \Hr(N )

)
− ε0

PPr

(
d̃r ∈Hr(N )

) ,
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PP ′r
(
d̃r = d2

r

)
= PPr

(
d̃r = dr

)
· ε0

PPr

(
d̃r ∈Hr(N )

) ,
PP ′r

(
d̃r = d3

r

)
= PPr

(
d̃r = dr

)
·

c

p
−PPr

(
d̃r ∈Hr(N ) \Hr(N )

)
PPr

(
d̃r ∈Hr(N )

) .

Clearly,
3∑
k=1

PP ′r
(
d̃r = dkr

)
= PPr

(
d̃r = dr

)
for all dr ∈Hr(N ), which shows P ′r is equivalent to Pr

(and belongs to P(P1, . . . , PR)). We also have

PP ′r
(
d̃r ∈H′r

)
=
p− c
p
− ε0,

PP ′r
(
d̃r ∈H′r

)
= ε0,

PP ′r
(
d̃r ∈H

′
r

)
=
c

p
,

for all r = 1, . . . ,R. This allows us to construct a probability P ∈ P(P1, . . . , PR) or equivalently,

P ∈P(P ′1, . . . , P
′
R) with

supp(P )⊆

(
R∏
r=1

H′r

)
∪

(
R∏
r=1

H′r

)
∪

(
R∏
r=1

H′r

)
.

For d∈
R∏
r=1

H′r, we let

PP
(
d̃= d

)
=

1(
p− c
p
− ε0

)R−1
·
R∏
r=1

PP ′r
(
d̃r = dr

)
.

Similarly, for d∈
R∏
r=1

H′r, the probability is set to

PP
(
d̃= d

)
=

1

εR−1
0

·
R∏
r=1

PP ′r
(
d̃r = dr

)
,

and for d∈
R∏
r=1

H′r,

PP
(
d̃= d

)
=
(p
c

)R−1

·
R∏
r=1

PP ′r
(
d̃r = dr

)
.

It is straightforward to check that P ∈P(P1, . . . , PR).

Step 1b: We now construct P (d1, d2) by modifying H′1 and H′1 as well as H′2 and H′2 through

‘swapping’ G1(d1) with H2
1 and G2(d2) with H2

2.

Formally, we generate two identical copies d1
r = d2

r = dr for all dr ∈ Gr(dr) and form two sets,

G1
r (dr) and G2

r (dr), respectively, for r= 1,2. We can now define H′′1 =H′1 \G1(d1)∪G1
1(d1). Similarly,
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let H′′2 = H′2 \ G2(d2) ∪ G1
2(d2). Finally, we set H′′r = H′r ∪ G2

r (dr) for r = 1,2. We now construct

another equivalent distribution P ′′r for Pr (and P ′r) whose support is supp(P ′′r ) =H′′r ∪H′′r ∪H
′′
r for

r = 1,2. We have PPr

(
d̃r ∈ Gr(dr)

)
> 0 for r = 1,2. In addition PP ′r

(
d̃r = dr

)
> 0 for all dr ∈H′r,

r= 1,2. Let

εr =
1

2
min

{
PPr

(
d̃r ∈ Gr(dr)

)
, min
dr∈H′r

PP ′r
(
d̃r = dr

)}
> 0, r= 1,2.

The probabilities of P ′′r , r = 1,2, can be defined as follows. For identical copies of dr ∈ Gr(dr),

r= 1,2, we set

PP ′′r
(
d̃r = d1

r

)
= PPr

(
d̃r = dr

)
·
PPr

(
d̃r ∈ Gr(dr)

)
− εr

PPr

(
d̃r ∈ Gr(dr)

) ,

PP ′′r
(
d̃r = d2

r

)
= PPr

(
d̃r = dr

)
· εr

PPr

(
d̃r ∈ Gr(dr)

) .
For d1

1 ∈H1
1 and d2

1 ∈H2
1, the probabilities are

PP ′′1
(
d̃1 = d1

1

)
= PP ′1

(
d̃1 = d1

1

)
+

ε1
|H1|

,

PP ′′1
(
d̃1 = d2

1

)
= PP ′1

(
d̃1 = d2

1

)
− ε1
|H1|

.

Similarly, for d2
2 ∈H2

2 and d3
2 ∈H3

2, we define the probabilities as

PP ′′2
(
d̃2 = d2

2

)
= PP ′2

(
d̃2 = d2

2

)
− ε2
|H2|

,

PP ′′2
(
d̃2 = d3

2

)
= PP ′2

(
d̃2 = d3

2

)
+

ε2
|H2|

.

For the remaining dr ∈ supp(P ′′r ), we let PP ′′r
(
d̃r = dr

)
= PP ′r

(
d̃r = dr

)
for r = 1,2. Clearly,

PP ′′r
(
d̃r = d1

r

)
+PP ′′r

(
d̃r = d2

r

)
= PPr

(
d̃r = dr

)
for all dr ∈ Gr(dr), r= 1,2. In addition,

PP ′′1
(
d̃1 = d1

1

)
+PP ′′1

(
d̃1 = d2

1

)
= PP ′1

(
d̃1 = d1

1

)
+PP ′1

(
d̃1 = d2

1

)
,

for d1 ∈H1. Similarly,

PP ′′2
(
d̃2 = d2

2

)
+PP ′′2

(
d̃2 = d3

2

)
= PP ′2

(
d̃2 = d2

2

)
+PP ′2

(
d̃2 = d3

2

)
,

for d2 ∈H2. It shows P ′′r is equivalent to P ′r (and Pr) for r= 1,2. We also have

PP ′′r
(
d̃r ∈H′′r

)
= PP ′r

(
d̃r ∈H′r

)
=
p− c
p
− ε0,

PP ′′r
(
d̃r ∈H′′r

)
= PP ′r

(
d̃r ∈H′r

)
= ε0,

PP ′′r
(
d̃r ∈H

′′
r

)
= PP ′r

(
d̃r ∈H

′
r

)
=
c

p
,
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for all r = 1,2. For r ≥ 3, let P ′′r ≡ Pr with H′′r =H′r, H′′r =H′r, and H′′r =H′r, we can then again

generate a distribution P (d1, d2)∈P(P ′′1 , . . . , P
′′
R) using the same approach as above. We have

supp(P (d1, d2))⊆

(
R∏
r=1

H′′r

)
∪

(
R∏
r=1

H′′r

)
∪

(
R∏
r=1

H′′r

)
.

Note that G(d1, d2) ⊂
R∏
r=1

H′′r . Since PP ′′r
(
d̃r = dr

)
> 0 for all dr ∈ H′′r , r = 1, . . . ,R, clearly

PP (d1,d2)

(
d̃∈ G(d1, d2)

)
> 0 given how P (d1, d2) is constructed.

This completes the proof of Claim 1.

Step 2: Let ε= PP (d1,d2)

(
d̃∈ G(d1, d2)

)
> 0 and ∆r = y∗(Nr)− dr for r = 1,2. Clearly, ∆1 > 0

and ∆2 < 0 by the definition of d1, d2. We will show that

vP (d1,d2)(y
∗
wc(N ),N ) = vwc(N ) + pε

[
∆1− (∆1 + ∆2)

+
]
.

The intuition for this result is that, the only two places where the calculation of vP (d1,d2)(y
∗
wc(N ),N )

differs from that of vPwc(y
∗
wc(N ),N ) are (a) the addition of the vectors in G(d1, d2) with a probability

of ε which introduces the new term −pε (∆1 + ∆2)
+

and (b) the replacement of the component

G(d1) by H2
1 with a probability of ε which introduce the new term pε∆1.

More formally, we have:

vP (d1,d2)(y
∗
wc(N ),N ) = (p− c)y∗wc(N )− pε(d1 + d2− y∗(N1)− y∗(N2))+

−p ·
∑

d∈ supp(Pwc(N ))

PP (d1,d2))

(
d̃= d

)
(y∗wc(N )− d(N ))

+

= (p− c)
R∑
r=1

y∗(Nr)− pε(∆1 + ∆2)+

−p ·
∑

d∈
∏R

r=1Hr(N )

PP (d1,d2)

(
d̃= d

) R∑
r=1

(y∗(Nr)− d(Nr))

= (p− c)
R∑
r=1

y∗(Nr)− pε(∆1 + ∆2)+

−p ·
R∑
r=1

∑
dr∈Hr(N )\Hr(N )

PP (d1,d2)

(
d̃r = dr, d̃∈

R∏
r=1

Hr(N )

)
δr(dr),

where δr(dr) = y∗(Nr) − dr(Nr) and d̃r := (d̃i)i∈Nr is the projection of d̃ on Nr. Given that

P (d1, d2)∈P(P1, . . . , PR),

PP (d1,d2)

(
d̃r = dr, d̃∈

R∏
r=1

Hr(N )

)
= PPr

(
d̃r = dr

)
,
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for all dr ∈ Hr(N ) \ Hr(N ), r = 1, . . . ,R, except for the case of r = 1 and when d1 ∈ G1(d1). For

this special case, we have:

PP (d1,d2)

(
d̃1 ∈ G1(d1), d̃∈

R∏
r=1

Hr(N )

)
= PP1

(
d̃1 ∈ G1(d1)

)
− ε.

Thus, we have:

vP (d1,d2)(y
∗
wc(N ),N ) = (p− c)

R∑
r=1

y∗(Nr)− p ·
R∑
r=1

∑
dr∈Hr(N )\Hr(N )

PPr

(
d̃r = dr

)
δr(dr)

+pε∆1− pε(∆1 + ∆2)+

=
R∑
r=1

(p− c)y∗(Nr)− p ·
∑

dr∈supp(Pr)

PPr

(
d̃r = dr

)
(δr(dr))

+


+pε

[
∆1− (∆1 + ∆2)+

]
=

R∑
r=1

(
(p− c)y∗(Nr)− pEPr

[
(y∗(Nr)− dr(Nr))+

])
+ pε

[
∆1− (∆1 + ∆2)+

]
=

R∑
r=1

v̄(Nr) + pε
[
∆1− (∆1 + ∆2)+

]
= vwc(N ) + pε

[
∆1− (∆1 + ∆2)

+
]

Similarly, with y∗wc(N1 ∪N2) = y∗(N1) + y∗(N2), we can derive vP (d1,d2)(y
∗
wc(N1 ∪N2),N1 ∪N2) as

vP (d1,d2)(y
∗
wc(N1 ∪N2),N1 ∪N2) = v̄(N1) + v̄(N2) + pε

[
∆1− (∆1 + ∆2)+

]
.

Step 3: Now suppose that there exists a core solution (y,z). Clearly, according to Lemma 4,

y = y∗wc(N ). In addition, given that no sub-coalition S (N has the incentive to break away from

the core solution, using Lemma 3, we obtain the following condition:

1 =
∑

i∈N1∪N2

zi +
R∑
r=3

∑
i∈Nr

zi ≥ vmax(y∗wc(N ),N1 ∪N2) +
R∑
r=3

vmax(y∗wc(N ),Nr). (9)

Using the definition of vmax and the fact that Pr is known, we have vmax(y∗wc(N ),Nr) =
v̄(Nr)
vwc(N )

for

all r= 1, . . . ,R. Now, we have

vmax(y∗wc(N ),N1 ∪N2) = max
P∈P(P1,...,PR)


max

y∈Y(N1∪N2)
vP (y,N1 ∪N2)

vP (y∗wc(N ),N )


≥

max
y∈Y(N1∪N2)

vP (d1,d2)(y,N1 ∪N2)

vP (d1,d2)(y∗wc(N ),N )

≥
vP (d1,d2)(y

∗
wc(N1 ∪N2),N1 ∪N2)

vP (d1,d2)(y∗wc(N ),N )
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=
v̄(N1) + v̄(N2) + pε [∆1− (∆1 + ∆2)+]

vwc(N ) + pε
[
∆1− (∆1 + ∆2)

+
]

>
v̄(N1) + v̄(N2)

vwc(N )
.

The last inequality is due to the fact that vwc(N ) =
R∑
r=1

v̄(Nr)> v̄(N1) + v̄(N2)> 0 for R≥ 3 given

that v̄(Nr) = EPr

[
p min{d̃(Nr), y∗(Nr)}− cy∗(Nr)

]
> 0 with y∗(Nr) > 0 for all r = 1, . . . ,R, and

that pε [∆1− (∆1 + ∆2)+]> 0 since ∆1 > 0>∆2. Combining this with (9) leads to

1≥ vmax(y∗wc(N ),N1 ∪N2) +
R∑
r=3

vmax(y∗wc(N ),Nr)>
v̄(N1) + v̄(N2)

vwc(N )
+

R∑
r=3

v̄(Nr)
vwc(N )

= 1.

This is a contradiction. Thus, there is no core solution for the given robust newsvendor game.

�

C.5. Proof of Proposition 1

Proof. For an arbitrary S (N , let Sr = S ∩Nr, r = 1, . . . ,R and R(S) = {r | Sr 6= ∅}. We start

with the first case when P
(
d̃(Sr) = dmin(Sr)

)
≥ 1− c

Rp
for all Sr ⊆Nr, r= 1, . . . ,R.

Using the fact that P(A∩B) = P(A) +P(B)−P(A∪B)≥ P(A) +P(B)− 1, where A and B are

arbitrary random events, we have

P
(
d̃(Sr) = dmin(Sr) | r ∈R(S)

)
≥

∑
r∈R(S) 6=∅

P
(
d̃(Sr) = dmin(Sr)

)
− (|R(S)| − 1)

≥ |R(S)|
(

1− c

Rp

)
− (|R(S)| − 1)

≥ c− p
p

> 0,

where the third inequality is due to the fact that |R(S)| ≤ R. In addition, since d̃(S) ≥∑
r∈R(S)

dmin(Sr) for all d̃(S)∈ supp(P ), P ∈P(P1, . . . , PR), we have
R∑
r=1

dmin(Sr) is the optimal order-

ing quantity for coalition S.

Thus, we have

max
y∈Y(S)

vP (y,S) = vP (dmin(S),S) = (p− c)
R∑
r=1

dmin(Sr)

for all P ∈P(P1, . . . , PR).

According to Lemma 4, in order to construct a core solution (y,z), we need to consider y =

y∗wc(N ) =
R∑
r=1

y∗(Nr). Since P (d(Nr) = dmin(Nr))≥
p− c
p

, we have y∗(Nr) = dmin(Nr). Thus,

vP (y∗wc(N ),N ) =EP

[
p min

{
d̃(N ),

R∑
r=1

dmin(Nr)

}
− c

R∑
r=1

dmin(Nr)

]
= (p− c)

R∑
r=1

dmin(Nr)
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for all P ∈P(P1, . . . , PR) since d̃(N )≥ dmin(N )≥
R∑
r=1

dmin(Nr).

Thus, we have

vmax(y∗wc(N ),S) = max
P∈P(P1,...,PR)

max
y∈Y(S)

vP (y,S)

vP (y∗wc(N ),N )
=

(
R∑
r=1

dmin(Nr)

)−1

·
R∑
r=1

dmin(Sr).

Now, let xr be a core solution of the deterministic newsvendor games defined on Nr. Such a core

solution exists since the joint demand distribution Pr is known for r = 1, . . . ,R. We can define

zi =

(
(p− c)

R∑
r=1

dmin(Nr)

)−1

·xr(i)i for all i∈N , where Nr(i) 3 i. It is straightforward to show that∑
i∈N

zi = 1 and since
∑
i∈Sr

xri ≥ v̄(Sr) = (p− c)dmin(Sr) for all r= 1, . . . ,R, we have

∑
i∈S

zi =
R∑
r=1

∑
i∈Sr

zi ≥
R∑
r=1

dmin(Sr) ·

(
R∑
r=1

dmin(Nr)

)−1

= vmax(y∗wc(N ),S)

for all S (N . This shows that (y∗wc(N ),z) is a core solution of the robust newsvendor game. For

the second case where P
(
d̃(Sr) = dmax(Sr)

)
≥ 1 − p− c

Rp
for all Sr ⊆ Nr, r = 1, . . . ,R, the same

arguments can be applied.

�

C.6. Proof of Proposition 2

Proof. For N = 2, we have shown that the robust newsvendor game always has core solutions

(i.e., imputations). We consider the following cases for N ≥ 3 as follows.

Case 1: PP0

(
d̃= dmin

)
≥ 1 − c

(N − 1)p
or PP0

(
d̃= dmax

)
≥ 1 − p− c

(N − 1)p
. Using the same

approach as in the proof of Proposition 1 with the fact that for all S (N , |R(S)| ≤N − 1, we can

show that core solutions exist.

Case 2: PP0

(
d̃= dmin

)
< 1− c

(N − 1)p
and PP0

(
d̃= dmax

)
< 1− p− c

(N − 1)p
. We will show that

core solutions do not exist in this case by considering two smaller cases.

Case 2.1: PP0

(
d̃= dmin

)
< 1 − c

p
and PP0

(
d̃= dmax

)
< 1 − p− c

p
. In this case, we have

P
(
d̃i = 0

)
< 1− c

p
since dmin({i})≥ 0 for all i= 1, . . . ,N . Thus, according to Theorem 3, the robust

newsvendor game has no core solution.

Case 2.2: 1− c
p
≤ PP0

(
d̃= dmin

)
< 1− c

(N − 1)p
or 1− p− c

p
≤ PP0

(
d̃= dmax

)
< 1− p− c

(N − 1)p
.

We are going to show that in this case, the robust newsvendor game also has no core solution. Let

consider the case 1− c

p
≤ PP0

(
d̃= dmin

)
< 1− c

(N − 1)p
. Given the results of Lemma 4, we only

need to consider y = y∗wc(N ). Since PP0

(
d̃= dmin

)
≥ 1− c

p
, we have: y∗(Ni) = dmin for all i ∈ N .

Thus,

vP (y∗wc(N ,N )) = (p− c)Ndmin
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for all P ∈P(P1, . . . , PN). Let α= min

{
q

N − 2
,1− q

}
> 0 where q= PP0

(
d̃= dmin

)
and let S (N

be a coalition with |S|=N − 1. We make the following claim:

Claim 2: There exists a probability distribution P (α,S)∈P(P1, . . . , PN) such that

PP (α,S)

(
d̃(S) = (N − 1)dmin

)
< 1− c

p
.

The proof of this claim is as follows. Without loss of generality, let S = {1, . . . ,N − 1}. We will

first construct a feasible probability distribution P for the first N − 1 demands (d̃1, . . . , d̃N−1),

which can then be used to construct P (α,S) such that d̃N is independent of (d̃1, . . . , d̃N−1). Given

the distribution P0, we construct an equivalent distribution P ′0 by making two identical copies of

the set H= {d |d > dmin} as H1
and H2

. We also denote H= {dmin}. We set the probabilities for

d1 ∈H1
and d2 ∈H2

with d1 = d2 = d as follows:

PP ′0
(
d̃′ = d1

)
=

α

1− q
·PP0

(
d̃= d

)
,

and

PP ′0
(
d̃′ = d2

)
=

1− q−α
1− q

·PP0

(
d̃= d

)
≥ 0

since α≤ 1− q. The distributions Pi are replaced by P ′i ≡ P ′0 for all i= 1, . . . ,N and the support

of P consists of three sets,
N−1∏
i=1

Hi,
N−1⋃
i=1

(
H1

i ×
∏

j 6=i,j≤N−1

Hj

)
, and finally,

N−1∏
i=1

H2

i . For each i =

1, . . . ,N − 1, we set the probabilities for elements in H1

i ×
∏

j 6=i,j≤N−1

Hj using the probabilities for

the corresponding elements of H1

i . According to our setting, the total probability for each element

in H1

i , i= 1, . . . ,N − 1, are set to equal to α. Since each element in H1

i take (N − 2) elements from

Hj, j 6= i, j ≤N−1, the remaining probability for the first element (dmin, . . . , dmin) is q−(N−2)α≥ 0

given that α≤ q

N − 2
. Finally, if α< 1− q, for d2 ∈

N−1∏
i=1

H2

i , we set its probability as follows:

P
(
d̃
′
= d2

)
=

1

(1− q−α)N−2

N−1∏
i=1

PP ′i
(
d̃′i = d2

i

)
.

If α= 1− q, we can simply remove
N−1∏
i=1

H2

i from the support of P . It is straightforward to check

that PP
(
d̃i = dmin

)
= q and PP

(
d̃i = d

)
= PP0

(
d̃= d

)
for all d ∈ H, i = 1, . . . ,N − 1. Using this

distribution P , we can construct P (α,S) as discussed above. Finally, we have

PP (α,S)

(
d̃(S) = (N − 1)dmin

)
= PP (α,S)

(
d̃i = dmin | i= 1, . . . ,N − 1

)
= q− (N − 2)α= q− (N − 2)min(

q

N − 2
,1− q)
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= max(0, (N − 1)q− (N − 2))

< max(0, (N − 1)

(
1− c

(N − 1)p

)
− (N − 2))

= max(0,
p− c
p

) =
p− c
p

.

This completes the proof of Claim 2.

Now, with the existence of P (α,S), this shows that (N − 1)dmin is not the optimal ordering

quantity for the coalition S with respect to the demand distribution P (α,S), i.e.,

max
y∈Y(S)

vP (α,S)(y,S)> vP (α,S)(dmin(S),S) = (p− c) |S|dmin = (p− c)(N − 1)dmin.

Thus, we have

vmax(y∗wc(N ),S) = max
P∈P(P1,...,PN )

max
y∈Y(S)

vP (y,S)

vP (y∗wc(N ,N )
>
N − 1

N
.

Assuming there is core solution (y∗wc(N ),z), we then have
∑
i∈N

zi = 1 and

∑
i∈S

zi ≥ vmax(y∗wc(N ),S)>
N − 1

N

for all S (N with |S|=N − 1. Thus, we have

N − 1 = (N − 1)
∑
i∈N

zi =
∑

S(N :|S|=N−1

∑
i∈S

zi >N ·
N − 1

N
=N − 1,

which is a contradiction. Thus, there is no core solution. The same arguments can be applied for

the case when 1− p− c
p
≤ PP0

(
d̃= dmax

)
< 1− p− c

(N − 1)p
.

�


