Under consideration for publication in Math. Proc. Camb. Phil. Soc. 1

On the residual and profinite closures
of commensurated subgroups

By PIERRE-EMMANUEL CAPRACE

Université Catholique de Louvain, IRMP,
Chemin du Cyclotron 2, bte L7.01.02, 1348 Louwvain-la-Neuve, Belgique
e-mail: pe.caprace@uclouvain.be

PETER H. KROPHOLLER

Mathematical Sciences, University of Southampton, UK
e-mail: p.h.kropholler@soton.ac.uk

COLIN D. REID

University of Newcastle,
School of Mathematical and Physical Sciences,
Callaghan, NSW 2308, Australia
e-mail: colin.d.reid@newcastle.edu.au §

PHILLIP WESOLEK

Binghamton University,
Department of Mathematical Sciences, PO Boz 6000,
Binghamton, New York 13902-6000, USA
e-mail: pwesolek@binghamton.edu

(Received 10 July 2017; revised 4 June 2019)

Abstract

The residual closure of a subgroup H of a group G is the intersection of all virtually
normal subgroups of G containing H. We show that if G is generated by finitely many
cosets of H and if H is commensurated, then the residual closure of H in G is virtu-
ally normal. This implies that separable commensurated subgroups of finitely generated
groups are virtually normal. A stream of applications to separable subgroups, polycyclic
groups, residually finite groups, groups acting on trees, lattices in products of trees and
just-infinite groups then flows from this main result.
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This paper consists of a Main Theorem concerning commensurated subgroups and
topologies related to profinite topologies. It then has a string of Corollaries. Some of the
Corollaries are original, some known, some are well known. For example the applications
to residually finite groups in Section 4 and some of the Corollaries in Section 8 are to
the best of our knowledge new. But the point is to show that all our results flow in a
natural way from a single source. Some of the Corollaries deserve to be called, or are
called, Theorems in their own right. Before coming to the formal and complete statement
of the Main Theorem we examine a special case belonging to very familiar territory. Let
G be a finitely generated group and let H be a subgroup that satisfies the following two
conditions:

A. H is separable in G, meaning that it is an intersection of subgroups of finite index
or equivalently closed in the profinite topology.

B. H is commensurate with all of its conjugates, meaning that |H : H N gHg '] is
finite for all g € G.
Then we prove that there is a subgroup K of H such that K is normal in G and of finite
index in H.

This very simple general observation is not difficult to prove. Our original proofs used
moderately sophisticated tools from the theory of totally disconnected locally compact
groups, but here we present a proof that could be delivered in any beginning graduate
course in abstract group theory. Startlingly this leads to simplifications and streamlinings
of many results scattered through the literature, as we shall show.

We say that a subgroup H of a group G is commensurated when it is commensurate
with all its conjugates. The commensurator of H is the unique largest subgroup of G in
which H is a commensurated subgroup.

For a first example of an application, if G is a polycyclic group then all its subgroups
satisfy A. So any one that satisfies B is commensurate to a normal subgroup. More gener-
ally, our main theorem shows that every subgroup of a polycyclic group is commensurate
with a subgroup that is normal in its commensurator, see the implication Theorem 10
(i) = (iv) below: a significant streamlining of a fundamental lemma of Kropholler [14].
But the larger picture which involves a theorem of Jeanes and Wilson can also be given
a smooth treatment using our Main Theorem.

Further applications can be made to group actions on graphs, metric spaces, and trees,
to Baumslag—Solitar groups, the Grigorchuk group and at least one member of the family
of Gupta—Sidki groups and more.

Moreover it is rather quickly clear that generalizations are possible: for example if
condition A is not satisfied then one can still apply the result to the profinite closure
of the subgroup. Upon arriving at preliminary forms our Main Theorem it became ap-
parent that profinite closure and separability, while very familar concepts, should be
treated alongside the slightly more subtle and less well known concepts of residual clo-
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sure and weak separability. This generality created no additional mathematical difficulty.
So without further ado, let us proceed to the general form of

1. The Main Theorem.

Let G be a group. A subgroup H is called virtually normal if there is a subgroup
K < H that is normal in G and of finite index in H. A subgroup is called weakly
separable if it is an intersection of virtually normal subgroups. Any intersection of
weakly separable subgroups is weakly separable. Any subgroup H < G is thus contained
in a unique smallest weakly separable subgroup, denoted by H and called the residual
closure of H in G.

Weakly separable subgroups are a generalization of separable subgroups. A separable
subgroup of G is an intersection of subgroups that have finite index in G. The profinite
closure of a subgroup H in G, denoted by H, is the unique smallest separable subgroup
containing H. The inclusion H < H holds in general, but it can be strict. For instance,
if G is infinite and simple and H is any finite subgroup, then H=H ,but H =G.

MAIN THEOREM. Let G be a group and H < G be a commensurated subgroup. Assume
that G is generated by finitely many cosets of H. Then

N = ﬂ gIA{Tgf1
geG

is of finite index in the residual closure H of H. Additionally, N is a normal subgroup
of G such that [H: NN H] < oo, N=NNH and H= NH.

Basically, in words and in the case when the ambient group is finitely generated, it
says that the residual closure of a commensurated subgroup is virtually normal.

For the proof, we need a couple of lemmas to show that the operation of taking the
residual closure is well behaved. Define (G, H) to be the set of normal subgroups of
G that contain a finite index subgroup of H. In particular N (G, G) is the set of normal
subgroups of finite index in G. The following basic fact will be used repeatedly.

LEMMA 1. Let G be a group and H < G be a subgroup. Then
H= () NH, and H= (] NH
NEN(G,H) NEN(G,G)
Proof. For any N € N(G, H), the group NH is a virtually normal subgroup of G
containing H. Thus H < ﬂNGN(G,H) NH. Conversely, let J be any virtually normal
subgroup of G containing H. Let N be a finite index subgroup of J which is normal in

G. We then have NH < J and N € N (G, H). Hence H > ﬂNeN(G,H) NH.
The proof for the profinite closure is similar. [

Two subgroups Hi, Hy < G are called commensurate if their intersection is of finite
index in both H; and Hs.

LEMMA 2. Let G be a group and let K < H < G such that [H : K] < co. Then
N(G,H)=N(G,K), H=KH, and H=KH

In particular, if Hy and Hy are commensurate, then Hy and Hy are commensurate and
H, and Hy are commensurate. If H is commensurated in G, then H is commensurated
and H is commensurated.
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Proof. For any subgroup N < G, [K : K N N|] < oo if and only if [H : H N N] < 0.
We infer that N(G, H) = N (G, K).

For the remaining claims, the cases of the residual closure and the profinite closure are
similar. We therefore only consider the residual closure. Clearly,

K<KNHC<K,

so K = KN H. In order to prove that H= I?H, we may thus assume that K = KnNH.

Write H as a disjoint union of right cosets Kti,..., Kt, of K. Foreach 1 <i < j <mn,
there is some N € N (G, H) such that tﬁ;l ¢ NK via Lemma 1, since K = K N H and
N(G,H) = N(G, K). The set N (G, H) is closed under finite intersections, so there is
some M € N(G, H) such that all of the cosets MKty,..., MKt, are distinct. Fixing
such an M, Lemma 1 ensures that we can write H as

(| NH
NeM

where M is the set of N € N(G, H) such that N < M.
Take x € H. We have x € M H, so x € M Kt; for exactly one i. For each N € M, it is
also the case that x € NH, so x € NKt;. Therefore,

xG(ﬂ NK)ti,

NeM

a~nd th~e latter set Is | exactlz the coset K t; by Lemma 1. We conclude that « € KH. Thus,
H C KH, and as KH C H, the proof is complete. []

LEMMA 3. Let G be a group and let H < G.
(i)For any N € N (G, H), we have NN H = NN H and N(G,H) = N(G, H).
(ii)For any N € N (G,G), we have NN H =NNH.

Proof. We prove (i). Claim (ii) is similar.
Take N € N (G, H). By Lemma 1, we can write H as

H= (| MH
MeM
where M is the set of elements of N (G, H) contained in N. Then
HnN= () (MHNN)= (| MENN)=HNON
MeM Mem

where the last Squality follows Iiemmas 1 and 2. Applying Lemma 2 again, ﬁ?ﬁv has
finite index in H, so N € N(G, H). We conclude that N (G, H) C N(G, H). The reverse
inclusion is clear. []

Proof of the Main Theorem Set N := ﬂgecgﬁg_l. Suppose for the moment that N
has finite index in H. We infer that N € N'(G, H), so H < NH. Since N,H < H, we

indeed have that H = NH. Lemma 3 implies additionally that N = m . To prove
the theorem, it thus suffices to show that N has finite index in H. By Lemma 2, H is a
commensurated subgroup of G, so we may assume that H = H.
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For S a subset of GG, we define

Hg := ﬂ sHs L.
ses
If 1 € S and S is finite, then Hg has finite index in H. The group Hg is weakly separable,
since H is weakly separable. Letting Hgtq, ..., Hgt, list right coset representatives of
Hg in H, there is some V € N(G, Hg) such that V Hg does not contain tﬂ;l for any
i # j, since ﬂNGJ\/(G,Hs) NHg = Hg by Lemma 1. It now follows that H NV Hg = Hg,
hence (H NV)Hgs = Hg. We thus deduce that H NV < Hg with V € N(G, H); that
V € N(G, H) is given by Lemma 2. We now obtain the following.
(A)For all finite S C G with 1 € S, there is V € N(G, H) such that for all T with 1 € T
and T'C S, we have

(HNV)Hy = HNVHy = Hy.
Fix V € N(G, H). Let X(V) denote the collection of all finite subsets S of G containing
1 such that
HNVHg = Hg.

Suppose that S and T are subsets of G and z is an element of G. We shall prove the
following claim.

(B)If S, T and {1,x} all belong to X(V) then S U zT belongs to X(V).
We have

HNVHg = Hg, (1)
HNVHp=Hyp, and (2)
HNV(HNzHz ') =HnzHz". (3)
Conjugating (2) by z yields
cHx ' NV Hyr = Hyr (4)
Intersecting with (1), we obtain
HNzHz 'NVHsNVHyr = Hg N Hyr = Hsuar (5)

Using (3) to substitute for H NzHx~! on the left hand side of (5), we obtain
HNV(HNzHz Y YNVHsNVHyr = Hsuur- (6)
A fortiori, noting that 1 € T and 1 € S, we have
Hsupr CV(HNzHz Y)Y NVHsNVH,r,
and therefore,
HNVHser CHNV(HNzHz Y )N VHs NV Hyp.
Combining this with (6), we obtain claim (B).

Let Y be a finite subset of G such that 1 € Y = Y~! and G = (Y H). Since H
is commensurated, every right H-coset is contained in a finite union of left H-cosets.
There is thus a finite subset X of G such that 1 € X = X! and that HYH = XH.
In particular, we have HXH = XH. It follows that (XH)™ = X™H for all n. Hence,
G=(X)H.
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Using (A) we can choose V in N(G, H) such that X(V') contains X as well as {1, z}
for all z € X. By iterated application of (B), we see that X" := {z1...z, | ; € X}
belongs to X(V) for all n > 0. We deduce that

HNV < (VHNVHxw= (| Hxe= () gHg ' <H.
n>1 n>1 gE(X)

Since G = (X)H, the group ﬂg€<X> gHg™ ' = Nyec gHg™ ! is normal in G, and its index
in H is bounded above by [H : H N V]. The result follows. [

We immediately recover a result of Caprace and Monod, which was in fact the original
inspiration for the Main Theorem. A locally compact group is called residually discrete
if the intersection of all its open normal subgroups is trivial.

COROLLARY 4 (Caprace-Monod, [6, Corollary 4.1]). A compactly generated and to-
tally disconnected locally compact group is residually discrete if and only if it has a basis
of identity neighborhoods consisting of compact open normal subgroups.

Proof. Let G be a compactly generated totally disconnected locally compact group,
O be an identity neighborhood in G, and N be the set of open normal subgroups of G.
By Van Dantzig’s theorem, O contains a compact open subgroup H. That H is compact
ensures that [H : HNN] < oo for all N € N/, and via a standard compactness argument,

N ()

Additionally, since G is compactly generated, G is generated by finitely many cosets of
H.

If G is residually discrete, i.e. (\ycn N = {1}, then H is weakly separable. Being
compact and open, H is commensurated, so by the Main Theorem, H contains a normal
subgroup N of G that is of finite index in H. The closure of N is a compact open
normal subgroup of GG contained in H. Conversely, if G is not residually discrete, then
G certainly cannot have a basis of identity neighborhoods consisting of compact open
normal subgroups. [

REMARK 5. Unlike the profinite closure, the residual closure is not a closure with re-
spect to a fixed group topology on G. However, the residual closure of a commensurated
subgroup H can be recovered as a closure with respect to some group topology on G.
Indeed, for H commensurated, there is a canonical locally compact group Gy and ho-
momorphism a : G — Gy such that o has dense image and every finite index subgroup
of H is the preimage of a compact open subgroup of Gp. The group Gy is called the
Belyaev completion of (G, H); see [3, §7]. Let R be the intersection of all open normal
subgroups of Gy and let B Gu — CIH/R be the quotient map. The subgroup H is then
the closure of H in the topology induced by g o a on G. In other words, we take the
closure in the coarsest group topology on G such that § o « is continuous.

An alternative proof of the Main Theorem can be derived by following this line of rea-
soning and applying the aforementioned result of Caprace and Monod to the compactly
generated totally disconnected group Gu /R.



Residual and profinite closures of commensurated subgroups 7
2. Applications to subgroup separability

We here use the Main Theorem to study separable subgroups. Let us first observe a
restatement of the Main Theorem for the profinite closure.

COROLLARY 6. Let G be a group and H < G be a commensurated subgroup. Assume
that G is generated by finitely many cosets of H. Then

N = ﬂ gHg™?
geG

is of finite index in the profinite closure H of H. Additionally, N is a normal subgroup
of G such that [H: NN H] <oo, N=NNH and H= NH.

Proof. By Lemma 2, L := H is a commensurated subgroup. Since finite index sub-
groups are virtually normal, L= L, so L is weakly separable. Applying the Main Theo-
rem, N := ﬂgeGng_l has finite index in L. In particular, [H : N N H] < co.

Since N has finite index in L it follows that some finite intersection of conjugates of
L already coincides with N. That is, there are g1,..., g, such that N = (', g;Lg; !
and therefore that N = N. In view of Lemma 1, we may find M € N(G,G) such that
MNH = N.Hence, MNH = NN H, and Lemma 3 implies that that N W H = N.

For the final claim, Lemma 2 ensures that (N N H)H = H. By the previous paragraph,
we deduce that NH = H, completing the proof. [J

In view of the Main theorem and Corollary 6, we deduce the following.

COROLLARY 7. Let G be a group and H be a commensurated subgroup such that G is
generated by finitely many cosets of H.
(i)If H is weakly separable, then there is a subgroup N of H that is normal in G and
has finite index in H.
(i5)If H is separable, then there is a subgroup N that is both normal and separable in G
and of finite index in H.

COROLLARY 8. Let G be a group and H be a commensurated subgroup such that G is
generated by finitely many cosets of H. If H is weakly separable and (< gHg ' = {1},
then H is finite.

Given H < G, we denote by Comme(H) the set of those ¢ € G such that H and

gHg™! are commensurate.

COROLLARY 9. Let G be a group. Let H,J < G be subgroups such that J is finitely
generated and that J < Comme (H). If H is weakly separable in G, there exists a subgroup
K < H that is normal in (J U H) and of finite index in H.

Proof. Since H is weakly separable as a subgroup of G, it is also weakly separable
as a subgroup of (J U H). The conclusion follows by applying Corollary 7 to the group
(JUH). O

3. Applications to polycyclic groups
The class of virtually polycyclic groups, often referred to as polycyclic-by-finite groups

coincides with the class all groups that have a series of finite length with cyclic or finite
factor groups. Similarly the class of virtually soluble groups coincides with the class of all
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groups that have a finite series with abelian or finite factor groups. The main goal of this
section is to prove the following characterizations of virtually polycyclic groups within
the class of finitely generated virtually soluble groups. In particular, we will recover
the known fact, due to S. Jeanes and J. Wilson [12], that a finitely generated virtually
soluble group in which every subgroup that is subnormal of defect at most 2 is separable,
is virtually polycyclic. This application grew out of discussions between the second author
and B. Nucinkis.

THEOREM 10 (Jeanes-Wilson, [12]). The following assertions are equivalent for any
finitely generated virtually soluble group G.
(i)G is virtually polycyclic.
(i) Every subgroup of G is separable.
(#ii) Every subgroup of G that is subnormal of defect at most 2 is separable.
(iv)To every H < G there is a subgroup K < H that has finite index in H such that
Ng(K) = Commg(H).
(v)For all subgroups H of G that are subnormal of defect at most 2 and all finitely
generated J < Commeg (H), there exists a subgroup K < H that has finite index in
H and is normal in (JU H).

The fact that (i) implies (iv) is [14, (3.1)]; however, instead of appealing to [14], we
remark that this implication can be obtained immediately from Corollary 7 and a classical
theorem of Mal’cev, thus giving a cleaner proof than the original argument of the second
author (see the proof of Corollary 10 at the end of this section below).

To explain the proof we first require some background on soluble groups of finite rank.
The Priifer rank of a group is the supremum of the minimum number of generators
required for each of its finitely generated subgroups. The abelian section rank is the
supremum of the minimum number of generators of the elementary abelian sections, and
it is a theorem of Robinson that finitely generated soluble groups with finite abelian
section rank are minimax; see [20, Theorem 1.1]. Since the Priifer rank is bounded below
by the abelian section rank, finitely generated virtually soluble groups of finite Priifer
rank are minimax. For these reasons the class of minimax groups inevitably plays a
central role in any study of soluble groups and associated finiteness conditions. Recall
that a group G is virtually soluble and minimax provided it has a series

{1} =Go<G14---<4G,, =G T

in which the factors are cyclic, quasicyclic, or finite. By a quasicyclic group, we mean a
group Cpe, where p is a prime number, isomorphic to the group of p-power roots of unity
in the field C of complex numbers. For a useful alternative point of view, the exponential
map z — €27 identifies the additive group Z[%] /Z with Cpee. The terminology Priifer
p-group is often used to mean the quasicyclic group Cpe.

For brevity, we write 9t for the class of virtually soluble minimax groups. The following
important generalization of Robinson’s work on soluble groups of finite rank is crucial to
our arguments below.

THEOREM 11 (P. H. Kropholler, [13]). Every finitely generated soluble group not be-
longing to MM has a section isomorphic, for some prime p, to a lamplighter group CplZ.

The Hirsch length h(G) of an M-group G is defined to be the number of infinite
cyclic factors in a cyclic—finite—quasicyclic series witnessing the definition above. The
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M-groups of Hirsch length 0 satisfy the minimal condition on subgroups as can be seen
by a straightforward induction on the length of a quasicyclicfinite series. In fact these
Hirsch length 0 9-groups are precisely the Cernikov groups, each being virtually a
direct product of finitely many quasicyclic groups by Cernikov’s theorem [15, 1.4.1].

It should be noted that the Hirsch length can be defined for any soluble group G by the
formula h(G) 1= 3,5, dimq GV /GUHY) @ Q, and more generally for virtually soluble
groups by taking the constant value this formula gives on any subgroup of finite index.
For this reason the Hirsch length is sometimes known as the torsion-free rank.

The Fitting subgroup of an Mi-group is always nilpotent, and all 9M-groups are virtually
nilpotent-by-abelian. Details of these facts are explained in [15, §5.2.2]. We refer the
reader to [15, Chapter 5] for further background information.

By lifting generators of the cyclic sections in a cyclic-finite—quasicyclic series for an
M-group, we see that every IM-group contains a finitely generated subgroup with the
same Hirsch length.

LEMMA 12. Let G be an M-group and let H be a subgroup with h(H) = h(G). Then
H is separable if and only if [G : H] < 0.

Proof. The ‘only if’ direction is all that requires proof.
Note first that if K is any normal subgroup of G then

h(G) = h(K) + h(G/K)
and
h(H)=h(HNK)+h(H/HNK)=h(HNK)+ h(HK/K).

Since h(H N K) < h(K) and h(HK/K) < h(G/K) we see that equality between h(H)
and h(G) also forces both the equalities h(H N K) = h(K) and h(HK/K) = h(G/K).

To prove the Lemma we use induction on the length n of a chain t that is witness to
G € 9. If the length is zero, then G is trivial, and the result is trivially true. Suppose the
length n is greater than zero and let K := G,,—1 be the penultimate term. The equality
h(H) = h(G) forces h(H N K) = h(K) and so by induction H N K has finite index in
K. Therefore H has finite index in HK, and HK is separable. There are three cases. If
G/K is finite, then H has finite index in G, and we are done. If G/K is infinite cyclic,
then HK/K must also be infinite cyclic, because H has the same Hirsch length as G.
Therefore [G : HK] is finite, and again we are done. If G/K is quasicyclic, then HK/K,
being separable in G/K, must be equal to G/K (because quasi-cyclic groups do not have
any proper finite index subgroups), so HK = G. [

LEMMA 13. Let G be a group in which the finitely generated subgroups are separable.
Then every IM-subgroup of G is virtually polycyclic.

Proof. Let H be an 9M-subgroup of G and let J be a subgroup of H that is finitely
generated with h(J) = h(H). By Lemma 12, J has finite index in H, and hence H is
finitely generated. This shows that all 9-subgroups of G are finitely generated. Since
every subgroup of an 9i-group is also a M-group it follows that in this situation the
M-subgroups satisfy the maximal condition on subgroups. Virtually soluble groups with
the maximal condition are all virtually polycyclic and the result follows. [

The next lemma follows from [8, Theorem 3.1] once one interprets the notion of ‘solv-
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able FAR group’ and is there attributed to D. J. S. Robinson. We include a proof for the
reader’s convenience that is suited to our nomenclature.

LeEmMMA 14 (D. J. S. Robinson). Let G be an 9M-group and let H and K be finitely
generated subgroups of Hirsch length equal to h(G). Then H and K are commensurate.

Proof. The group (H, K) has the same Hirsch length as G, so replacing K and G by
this group, we may assume that H C K = G and that G is finitely generated.

Let h* denote the number of infinite factors in a cyclic-quasicyclic—finite series. We
use induction on 2*(G) to prove that H has finite index in G. If h*(G) = 0, then G is
finite, and there is nothing to prove. Let us then assume that G is infinite. Every infinite
M-group has an infinite abelian normal subgroup. Let A be an infinite abelian normal
subgroup of G. Then

h(HAJA) = h(HA) — h(A) > h(H) — h(A) = h(G) — h(A) = h(G/A),

and h*(G/A) < h*(G). Therefore H A has finite index in G by induction. We may replace
G by HA and so assume that G = HA. The intersection H N A is normal in G, and we
have

h(H/H N A) = h(HA/A) = h(G/A) = h(G) — h(A) = h(H) — h(A)

from which it follows that h(HNA) = h(A). We deduce that A/HNA is torsion. However,
G is finitely generated, A/H N A is abelian and torsion of finite rank, and G/H N A is the
semidirect product of A/H N A by G/A. In a finitely generated semi-direct product, the
normal subgroup is always finitely generated as a normal subgroup. Therefore, it follows
that A/H N A is finite, so H has finite index in HA = G. [

LEMMA 15. Let G be a finitely generated virtually soluble group. Assume that for all
subnormal subgroups H of G and all finitely generated J < Commeg(H), there exists a
subgroup K < H that is normalized by J and has finite index in H. Then G is virtually
polycyclic.

Proof. Suppose first that G is an 9MM-group. Let H be a finitely generated subgroup of
the Fitting subgroup N of G such that h(H) = h(N). The subgroup H is subnormal,
since N is nilpotent, and Comme(H) = G, by Lemma 14. Let J denote the join H[N, N]
of H with the commutator subgroup of N. Then J also satisfies Commg(J) = G but is
now subnormal of defect at most 2.

By hypothesis, there is a normal subgroup K of G which has finite index in J. The
quotient N/K is then an 9M-group of Hirsch length h(N/K) = h(N) — h(K) = 0 and so
is a Cernikov group. Therefore by Cernikov’s theorem [15, 1.4.1] there is a characteristic
abelian subgroup B/K of finite index in N/K. The group G is finitely generated, B
is normal in G, and G/B is finitely presented. We thus deduce that B/K is finitely
generated as a normal subgroup of G/K. It follows that B/K and we deduce that N/J
is finite which implies that N/[N, N] is finitely generated. Hence N is polycyclic, and G
is virtually polycyclic as required.

Let us now suppose toward a contradiction that G is not an 9i-group. By Proposi-
tion 11 (the main theorem of [13]), it follows that G has subgroups K < J such that

e K is a normal subgroup of J, and
¢J/K isomorphic to the lamplighter group C, ! Z for some prime p.
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The section J/K is a wreath product which can be identified with the matrix group

{(tg J;) cneZL fe Fp[tﬂfl]}.

Under this identification, the base B/K of the wreath product — the group of lamps

— corresponds to
VAW -1
(1 9): rempert)

It is clear from the arguments used in [13] that J and K can be chosen such that B/K is
sandwiched between two terms of the derived series of a soluble subgroup of finite index
in G. In other words, we may assume that there is a soluble subgroup Gy that is normal
and of finite index in G and an m > 0 such that GémH) <K<B< Gém). In particular,
both B and K are subnormal in G of defect at most 2.

Let H/K be the subgroup of the base B/K of consisting of half the lamps, namely

the subgroup corresponding to
L f
(1), rera)

Note that H is also subnormal of defect at most 2. Clearly Comme (H) contains J while
the intersection of the conjugates of H is contained in K. Let Jy be a finitely generated
subgroup of J such that JyK = J. Applying the hypothesis to Jy and H, we deduce
that Jy normalizes some subgroup of finite index in Hy, and therefore J normalizes some
subgroup of finite index in H. This is a contradiction and so excludes the possibility of
large wreath product sections in G. [

We can now combine the results of this section to prove the main application.

Proof of Corollary 10 The implication (i) = (ii) is a result of Mal’cev [16]; moreover,
every subgroup of a virtually polycyclic group is finitely generated. Thus we obtain (i)
= (iv) as a special case of Corollary 7, by considering H as a subgroup of Commeg (H).
Clearly (ii) implies (iii) and (iv) implies (v). The implication (iii) = (v) is valid in any
group by Corollary 9. Thus (i) implies all the other assertions, and (v) is implied by each
of the other assertions. Lemma 15 ensures that (v) implies (i), and hence that all five
assertions are equivalent. []

4. Applications to residually finite groups

Given H < G, we say that H is relatively residually finite in G if the subgroups
of N(G, H) have trivial intersection. In other words, every non-trivial element of H is
separated from the identity by a quotient of G in which H has finite image. If G itself is
residually finite, then every subgroup is relatively residually finite, so the results of this
section will apply to commensurated subgroups of residually finite groups.

LEMMA 16. Let G be a group and H < G be a subgroup. Then

Ce(H),HIC (] N and [Ce(H),HIC (] N
NeN(G,H) NeN(G,G)

In particular, if H is a relatively residually finite subgroup, then Cq(H) = Cg(ﬁ), and
if G is residually finite, then Cq(H) = Cg(H).
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Proof. Let € Cg(H) and y € H. Then for all N € N(G,H) we have y € HN,
and hence [z,y] € N. The required conclusion follows, observing in addition that the
inclusion C;(H) > Ce(H) is obvious.

The proof of the corresponding fact about the profinite closure is the same. [J

The FC-centralizer of a subgroup H of a group G, denoted by FCqg(H), is the
collection of those elements g € G which centralize a finite index subgroup of H. The
FC-centralizer FC(H) is a normal subgroup of the commensurator Comme (H ). Notice
moreover that the FC-centralizer FCy (H) coincides with the FC-center of H, i.e. the
set of elements of H whose H-conjugacy class is finite. A group G is called an FC-group
if G = FCg(G) or, equivalently, if all elements of G have a finite conjugacy class. We
underline the difference between an FC-subgroup of G, which is a subgroup H such
that FCy (H) = H, and an FC-central subgroup of G, which is a subgroup of FC(G).

COROLLARY 17. Let G be a group, let N be a normal subgroup and H be a commen-
surated subgroup of G such that NN H = {1}. Assume that every normal FC-subgroup of
G is finite. If G is generated by finitely many cosets of H and if H 1is relatively residually
finite in G, then H has a finite index subgroup that commutes with N.

Proof. For x € N, there is a finite index subgroup H; < H such that zHz~ ! < H.
The commutator [z, H1] is contained in the intersection HNN = {1}, s0o x € Cg(H;). We
deduce from Lemma 16 that x € C(;(E) since H is relatively residually finite. Moreover,
by Lemma 2, the index of Hy in H is finite. This shows that N < FCq(H). Let M be
the normal subgroup of G obtained by applying the Main Theorem to H, so that M
is a finite index subgroup of H. Thus we have N < FCq(M). In particular N N M is
contained in FCys (M), which is a normal FC-subgroup of G. By hypothesis, it is finite,
so that NN M is finite. By Lemma 3, we have N(G, H) = N(G, H). Since H is relatively
residually finite, it follows that H , and hence also M, are relatively residually finite.
Therefore, since N N M is finite, there exists Q € N (G, M) such that N N Q = {1}.
Since N and @ are both normal, they commute. Thus H N @ has finite index in H and
commutes with N. []

COROLLARY 18. Let G be a finitely generated residually finite group all of whose
amenable normal subgroups are finite. For any normal subgroup N and any commen-
surated subgroup H, if NN H = {1}, then some subgroup of finite index in H commutes
with N.

Proof. Every FC-group is {locally finite}-by-abelian, see [18, Theorem 5.1 and Corol-
lary 5.13]. In particular FC-groups are amenable. Thus the required conclusion follows
directly from Corollary 17. [J

In [2], U. Bader, A. Furman and R. Sauer have undertaken a systematic study of
lattice envelopes of an abstract group I', that is, a description of the structure of all
locally compact groups G that contain an isomorphic copy of I' as a lattice. Their theory
requires the abstract group I' to satisfy three conditions. One of those conditions is that
for any normal subgroup N and any commensurated subgroup Hin T', if NN H = {1},
then H has a finite index subgroup that commutes with N. Thus Corollary 18 shows
that this one of the Bader-Furman—Sauer conditions is automatically satisfied by every
finitely generated residually finite group whose amenable radical is finite.
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COROLLARY 19. Let G be a finitely generated group in which every infinite normal
subgroup has trivial centralizer. Then every infinite commensurated relatively residually
finite subgroup has trivial FC-centralizer.

Proof. Let H < G be an infinite commensurated subgroup and let € FCq(H).
There is a finite index subgroup Hy < H such that z € Cg(Hp). Let then N be the
normal subgroup of G obtained by applying the Main Theorem to Hy and note that N is

relatively residually finite as a consequence of Lemma 3. Since N = N N Hy, we deduce
from Lemma 16 that Cg(N) = Cq(N N Hp). The group N is infinite, so Ce(N) is trivial
by hypothesis. Hence, x € Cq(Hp) < Ca(N N Hyp) is trivial. [

The hypothesis that H be relatively residually finite cannot be removed in Corollary 19.
As we shall see in the next section, this is illustrated by the Baumslag—Solitar groups.

LEMMA 20. Let G be an infinite group in which every infinite normal subgroup has
trivial centralizer. Then every non-trivial normal subgroup is infinite.

Proof. Let N be a finite normal subgroup of G. Its centralizer Cg(N) is a normal
subgroup of finite index, hence it is infinite. On the other hand, Cs(Cg(N)), which
contains N, is trivial by hypothesis. [

COROLLARY 21. Let G be a finitely generated group in which every infinite normal
subgroup has trivial centralizer. Then every infinite commensurated relatively residually
finite subgroup has an infinite intersection with every non-trivial normal subgroup.

Proof. We assume that G is infinite. Let H < G be an infinite commensurated sub-
group and N < G be a non-trivial normal subgroup. By Lemma 20, N is infinite.

Assume toward a contradiction that H N N is finite. Since H is infinite and relatively
residually finite, there is an infinite M € N(G, H) such that H " N N M = {1}. For
x € NN M, there is a finite index subgroup H; < H such that zHiz~! < H. The
commutator [z, H1] is contained in the intersection HNNNM = {1}, s0 x € Ce(H;). We
conclude that NN M <FCg(H), so NNM = {1} since FCq(H) = {1} by Corollary 19.
In particular, N < Cq(M) = {1}, which is absurd. [

The conclusion of Corollary 21 cannot be extended to a conclusion that any two infi-
nite commensurated relatively residually finite subgroups have infinite intersection. For
instance, let I' < G; X G2 be an irreducible residually finite lattice in a product of two
totally disconnected locally compact groups and choose Uy, Us to be compact open sub-
groups of Gy, G respectively such that I' MUy x Uy = {1}. We then obtain two infinite
commensurated subgroups of I' with trivial intersection, namely Wy := T'N (U; x G2)
and W2 =I'Nn (G1 X UQ)

To conclude this section, we note a property of residually finite dense subgroups of
totally disconnected locally compact groups.

COROLLARY 22. Let G be a non-discrete totally disconnected locally compact group
such that every infinite normal subgroup of G has trivial centralizer. If T' is a dense
subgroup of G that is finitely generated and residually finite, then the only discrete normal
subgroup of G contained in T is the trivial subgroup.

Proof. Given an infinite normal subgroup M of I', we see that the closure of M is
an infinite normal subgroup of G and thus has trivial centralizer. Since the centralizer
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is unaffected by taking the closure, it follows that Cq(M) = {1}. W conclude that T
satisfies the hypotheses of Corollary 21.

Let N be a non-trivial normal subgroup of I'; let U be a compact open subgroup of
G and set H =T'NU. The subgroup H is commensurated in I', so by Corollary 21, the
intersection N N H is infinite. It now follows that IV is not discrete. []

5. Applications to generalized Baumslag—Solitar groups

In the setting of Hausdorff topological groups, the collection of elements which satisfy
a fixed law is often closed. Alternatively, if a set satisfies a law, then so does its closure.
The simplest example of this phenomenon is that centralizers are always closed in a
Hausdorff topological group.

While the residual closure does not necessarily come from a group topology, it does
appear to behave well with respect to laws; cf. Corollary 16. We here explore the extent
to which laws pass to the the residual closure of a subgroup.

LEMMA 23. LetV be a variety of groups. If G is a group and H 1is a relatively residually
finite V-subgroup of G, then the residual closure H of H also belongs to V. If G is
residually finite, then H € V.

Proof. We see from the hypotheses that there is an injective map from H toa profinite
group K, where K is the inverse limit of the finite groups HN/N for N € N (G, H), such
that the image of H in K is dense. Since H is a V-group, it follows that K is a V-
group and hence Hisa V-group. If G is residually finite, the argument that H € V is
similar. [

COROLLARY 24. Let V be a variety of groups and let G be a finitely generated group.
Suppose that H is a commensurated relatively residually finite V-subgroup of G. Then
there is a normal V-subgroup K of G such that [H : HN K] < co.

We next consider the Baumslag—Solitar groups BS(m,n). The group BS(m,n) is
the one-relator group given by the presentation

a,t|ta™t™t = a™),
(a,t]

where m and n are integers with mn # 0. A Baumslag—Solitar group is an HNN-extension
of Z and so acts on the associated Bass—Serre tree.

We can now provide a swift strategy for recovering the known result on residual finite-
ness of Baumslag—Solitar groups, predicted in the original work of Baumslag and Solitar
and subsequently established by Meskin.

THEOREM 25 (Meskin, [17]). The Baumslag-Solitar group BS(m,n) is residually fi-
nite if and only if the set {1,|m/|, |n|} has at most 2 elements.

Proof. We focus on one direction; namely, if BS(m,n) is residually finite, then
KL, |ml, [nl}] < 2.

This is the implication where our Main Theorem provides a significant insight. The
converse is rather more routine and we are not here adding anything to the argument
that can be found in [17].

We prove the contrapositive. Suppose that |{1,|m/|,|n|}| > 2 and set G := BS(m,n).
The cyclic subgroup (a) fixes a vertex of the Bass—Serre tree T and the action is vertex
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transitive. Since [m| # |n|, the subgroup (,cq gla)g~" is trivial, and thereby, the repre-
sentation G — Aut(T) is faithful. The vertex stabilizers of G also do not fix any of the
incident edges, so in particular, the action of G on T does not fix an end.

In any group acting minimally without a fixed end on a tree with more than two ends,
every normal subgroup either acts trivially or acts minimally without a fixed end, by
[22, Lemme 4.4]. Since a subgroup of Aut(T") acting minimally has trivial centralizer in
Aut(T') (because the displacement function of any element in the centralizer is constant),
it follows that every non-trivial normal subgroup of G has trivial centralizer. On the other
hand, (a) is an infinite commensurated abelian subgroup of G, which is thus contained
in its own FC-centralizer.

We conclude from Corollary 19 that G is not residually finite in this case, and indeed
that (a) is not even relatively residually finite in G = BS(m,n). O

As a further illustration of these ideas we offer an application to certain fundamental
groups of graphs of virtually soluble groups that generalizes some of the aspects of Me-
skin’s result (Corollary 25). In particular, the class we consider includes all generalized
Baumslag—Solitar groups, that is, fundamental groups of graphs of cyclic groups. We
shall need two lemmas in preparation.

LEMMA 26. Let B be a group, let ¢ € End(B) and let Boo = lim_, (B 2B S
(i)If B is virtually soluble then By is virtually soluble.

(i) The Priifer rank of B, is alt most the Prifer rank of B.

(i) If B belongs to M, then B belongs to M, with h(Bs) < h(B).

Proof. We have a sequence (7;);>¢ of homomorphisms 7; : B — By, arising from the
direct system, such that 7; = 7,41 0¢ and Bo = J;> 7 (B). More generally, given C C B
such that ¢(C) C C, write Cw, for the ascending union (J;~, 7:(C).

(i)Let C be a soluble normal subgroup of finite index in B and let k£ be the maximal

derived length of a soluble subgroup of B. We now show by induction that for each
m > 0,

Dy i= CH(C)6X(C) ... 6™ (C)

is a soluble subgroup of B of derived length at most k. This is true when m = 0 by
the choice of C. Suppose now that m > 0 and, inductively, that D,,_; is a soluble
subgroup of B. Then ¢(Dy,—1) < ¢(B) < B, so Dy, = Cp(Dp,—1) < B. Moreover,
C' is normal and soluble, D,, 1 is soluble by induction, and so D,, is a soluble
subgroup of length at most k. We thus have an ascending chain of soluble subgroups
C =Dy < Dy <Dy <... each of length at most k£ and having finite index in B.
Let D denote the union | J ;i Dj; of course, D = D,, for all sufficiently large m.

By construction, ¢(D) < D, so we may form the ascending union D,. The group
D, belongs to the variety of D and hence is soluble of length at most k. Let n denote
the (finite) index of D in B. For each j, we see that

[7j(B)Dos : Doo] = [75(B) : 7(B) N Deo] < [75(B) : 7j(D)] < [B: D] =n,

and so we deduce that [Beo : Do) < n. Thus, By, is virtually soluble.

(ii)It is clear that 7;(B) has at most the Priifer rank of B for each 4, and the Priifer
rank of By, is the supremum of the Priifer ranks of 7;(B).

(iii)Consider first the case when B is torsion-free abelian. In this case, ¢ induces a
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Q-linear map 6 : B® Q — B ® Q. Since B has finite Hirsch length, B ® Q is
finite-dimensional over Q. By replacing B with ¢'(B) for sufficiently large i, we may
assume h(¢(B)) = h(B) and hence ensure that 6 has full rank, in other words 6 is
an automorphism. Upon choosing a basis v1,...,vs of B® Q, we obtain a matrix ©
corresponding to § whose entries, being finite in number, belong to a subring Z[1/n]
for a choice of common denominator n. Let m be the product of the finitely many
primes g for which B has Priifer g-group Cy~ as a section. It is now clear that 6
induces an automorphism of B ® Z[1/nm] and that B ® Z[1/nm] = By, ® Z[1/nm]
is a free Z[1/nm]-module of rank d and belongs to 9. This shows that B, € 9t and
also that h(Bs) < h(B).

Suppose that B is an abelian 9t-group with torsion subgroup T'. Then ¢(T) is torsion,
so ¢(T) < T. Torsion M-groups satisfy the minimal condition on subgroups, so ¢
restricts to a surjective map on ¢/ (T') for some j. Then

Yk >0 79(T) = 7j4k(¢"(T)) = 7j50(¢ (1) = (1),

so we see that Bo, is 79(T") by the direct limit of iterating an endomorphism of B/T.
From the torsion-free case, we conclude that B,, € 9.

For the case when B is a soluble 9M-group, we proceed by induction on the derived
length. Since the commutator subgroup is verbal, we see that [Boo, Bso] = [B, Bloo-
Our inductive hypothesis implies that [Boo, Bso| is an 9M-group, and on the other
hand, Bso/[Bso, Boo] is the direct limit of iterating the endomorphism of B/[B, B]
induced by ¢. We deduce that Bu/[Bso, Boo| is an 9M-group by the abelian case,
and hence B,, € 9. A similar induction argument on the derived length shows that
h(Bs) < h(B).

Finally, consider the general virtually soluble case. The argument used to prove (1)
shows that there is a soluble subgroup D of finite index in B such that ¢(D) < D.
We know that Dy, € 9 and h(Ds) < h(D) by the soluble case, and the result
follows since D, has finite index in Boo.

O

LEMMA 27. Let G be a finitely generated group acting on a tree T in such a way that
there is no global fixed point and there is a unique fixed end. Then there is a vertex u and
a hyperbolic element t € G such that G, C tG,t~ and G is the ascending HNN-extension
Gu*Gu,t'

Proof. We can define a partial ordering — on the set of vertices of T" by declaring
that v — w when the geodesic ray starting from v and traveling towards the fixed end
passes through w. This makes the vertex set into a directed set because the rays from
any two vertices that head towards the fixed end eventually coalesce and so reach a
vertex to which they both point. Note also that if v — w then G,, C G,,. The set H of
elliptic elements of G is thus the directed union of the vertex stabilizers. If H = G, then
H is finitely generated and so is contained in a vertex stabilizer, and this contradicts
the assumption that G has no global fixed point. Therefore H # G and G contains a
hyperbolic element ¢. Let L be the axis of ¢ and fix a vertex u on L. Replacing ¢ by ¢!
if necessary we may assume that u — tu. If h is any element of H, then H fixes a vertex
w, and there is a j > 0 such that w — t/u. This shows that H = |J;#/G,t~7, and the
result is clear. []
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PROPOSITION 28. Let G be a finitely generated residually finite group that is the fun-
damental group of a graph of virtually soluble groups of finite Priifer rank and of Hirsch
length n. Then G has a soluble normal subgroup N such that one of the following holds.

(i)N fizes points on the corresponding Bass—Serre tree of G and has Hirsch length n,
and G/N is the fundamental group of a graph of locally finite groups. If in addition
all the vertex and edge groups of the graph of groups belong to M, then G/N is
virtually free.

()N has no fixed points on the corresponding Bass—Serre tree of G, G fizes a unique
end and is a virtually soluble M-group of Hirsch length n+1, and G/N is infinite and
virtually cyclic. Note that in this case all vertex and edge stabilizers automatically
belong to M and that G/N is virtually free of rank 1.

Proof. Let T denote the Bass—Serre tree T afforded by the hypothesized graph of
groups. For each vertex or edge y € VI'U ET, let H, be a finitely generated subgroup
of the stabilizer G, of Hirsch length n. Note first that if e and f are edges that are
incident with the same vertex v, then (H. U Hy) is a finitely generated subgroup of G,
and therefore by Lemma 14, (H. U Hy) is commensurate with H,. Lemma 14 also shows
that H. and H; have finite index in (H.UH) and so we deduce that H., H, and H; are
all commensurate. Suppose v and w are any two vertices in 7. By considering the edges
and vertices on the geodesic from v to w, we deduce that H, and H,, are commensurate.

Fix any vertex v and let H be a soluble subgroup of finite index in H,. The profinite
closure H of H in G is soluble, with the same derived length as H, by Lemma 23.
Additionally, H has a finite index subgroup N which is a separable normal subgroup of
G by Corollary 7. The group N is a soluble normal subgroup of G, and for every vertex
or edge y of the tree, the intersection N N G, has Hirsch length n = h(G,) and the
quotient G, /N N G, is locally finite, residually finite, and of finite Prifer rank.

A soluble group acting without inversion on a tree fixes a point or a unique end or
stabilizes a unique pair of ends; see for example [21, Corollary 2|. Suppose toward a
contradiction that there is a unique pair of ends fixed by N but that N does not fix any
vertex or edge. In this case, N stabilizes the line joining the two ends and so does G.
There is then a homomorphism ¢ from G to an infinite cyclic or dihedral group induced
by the action of G on the line. On the other hand, H acts on the line as a group of
order at most 2, since H fixes a vertex. By replacing H with a subgroup of finite index
as necessary, we can ensure that H < ker{. The quotient G/ ker¢ is residually finite, so
the profinite closure of H and hence also N act trivially on the line. This contradicts the
assumption that N has no fixed points.

Suppose that N has a fixed point in 7. In this case G/N acts on the subtree TV of N-
fixed points and is the fundamental group of a graph of locally finite groups as claimed.
For any vertex u of TV, we additionally have N C G,,. Thus, NN G, = N, so N has
Hirsch length n. Moreover, the quotient G, /N is a residually finite and locally finite
IM-group, so Cernikov’s theorem [15, 1.4.1] ensures that G, /N is finite. The quotient
G/N is then a graph of finite groups and thus is a virtually free group since G is finitely
generated. We thus obtain case (1).

Suppose that N fixes a unique end of T" but does not fix any vertices. In this case G
has the same property, and Lemma 27 shows that G is an ascending HNN-extension over
one of its vertex stabilizers G,. The group G is thus of the form B, x Z where B, is
a virtually soluble group of finite Priifer rank and Hirsch length n by Lemma 26. Thus,
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G has Hirsch length n + 1 and is virtually soluble. Since G is also assumed to be finitely
generated, it belongs to 9, by Proposition 11. Finally, the quotient G,/N N G, is an
M-group as well as residually finite and locally finite. Any residually finite and torsion
IM-group is finite by Cernikov’s theorem [15, 1.4.1], so Gy /Ny is finite. Since N is normal,
Ussq t"Nyt™™ is a subgroup of N where t is the generator of Z that translates toward
the fixed end. Just as in the proof of Lemma 26, we deduce that Be/|J, ~, t"N,t™" is
finite, and thus, G/N is finite-by-cyclic. It follows that G/N is virtually cyclic, so we
obtain case (2). [

6. Applications to groups acting on graphs and metric spaces

Commensurated subgroups arise naturally from actions on locally finite graphs. We
thus obtain several consequences for such group actions.

COROLLARY 29. Let X be a connected locally finite graph (without multiple edges) and
G < Aut(X) be a finitely generated vertex-transitive group. If the stabilizer G, of a vertex
v € VX is weakly separable, then it is finite.

Proof. Since G acts vertex-transitively, we have {1} = (\,cyx Gw = [yeq gG,g~t.
On the other hand, the stabilizer G, is a commensurated subgroup of G since X is
connected and locally finite. The conclusion now follows from Corollary 8. [

COROLLARY 30. Let X be a proper uniquely geodesic metric space (e.g. a locally finite
tree) and let G < Isom(X) be a finitely generated group. Suppose that there is no proper
G-invariant convex subspace. If the orbit of a point v € X 1is discrete and its stabilizer
G, is weakly separable, then G, is finite.

Proof. The hypothesis of absence of proper G-invariant convex subspace implies that

L is trivial, because it fixes pointwise

for any vertex v € X, the intersection ﬂgeG 9gG,g~
a G-invariant subspace, namely the convex hull of the G-orbit of v. The hypothesis that
X is proper and that Gv is discrete ensures that G, has finite orbits on Gv, so G, is

commensurated. The conclusion now follows from Corollary 8. [
The terminology in the following application is borrowed from [4].

COROLLARY 31. Let T be a locally finite tree all of whose vertices have degree > 3 and
let G < Aut(T) be a non-discrete finitely generated subgroup whose action on T is locally
quasi-primitive. For v € VT a vertex, the residual closure of the vertex stabilizer G, in
G is of finite index in G.

Proof. Since T is locally finite, the vertex stabilizer H := G, is commensurated. The
group H is also infinite since G is non-discrete. Let N ;=) e gﬁ g~ < G be the normal
subgroup afforded by the Main Theorem. Since N contains a finite index subgroup of H,
its action on VT is not free. Therefore, [4, Lemma 1.4.2] implies that the N-action on T'
has finitely many orbits of vertices. In particular, NH = H is of finite index in G. [

7. Applications to lattices in products of groups

Lattices in products of totally disconnected locally compact groups often have interest-
ing commensurated subgroups. We here apply our work to shed light on these subgroups.
The equivalence between (i) and (iv) in the following result is due to M. Burger and
S. Mozes [5, Proposition 1.2]. Our inspiration for the equivalence between (ii) and (iv)
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came from contemplating D. Wise’s iconic example constructed in [26, Example 4.1]; see
also [24]. The equivalence between (iii) and (iv) is closely related to, but not a formal
consequence of, another result of Wise [25, Lemmas 5.7 and 16.2].

COROLLARY 32. Let Ty, Ty be leafless trees and let T' < Aut(T1) x Aut(T3) be a discrete
subgroup acting cocompactly on Ty x Ty. Then the following assertions are equivalent.
(i) There exists i € {1,2} such that the projection pr;(T") < Aut(T;) is discrete.
(ii) There exists i € {1,2} and a vertex v € VT; such that the stabilizer T, is a weakly
separable subgroup of T.
(iii)For all i € {1,2} and all v € V'T}, the stabilizer T, is a separable subgroup of T'.
(iv)The groups T1 = {g € Aut(Th) | (9,1) €T} and T2 = {g € Aut(T») | (1,9) € T'} act
cocompactly on Ty and Ty respectively, and the product I'y X Ty is of finite index in
Ir.

Proof. For the equivalence of (i) and (iv), see [5, Proposition 1.2]. If (iv) holds, then
T" is virtually the product of two groups I'y and I's acting properly and cocompactly on
T; and T5 respectively. Such groups are virtually free, hence residually finite, so T, T'/T"y
and I'/T'y are all residually finite. In particular, I'; and I's are separable in I'. For every
v € VT;, the group T, is separable, since I',/I's_; is finite. Assertion (iv) thus implies
(iii).

That (iii) implies (ii) is clear. That (ii) implies (i) follows from Corollary 30, using the
fact that a cocompact action on a leafless tree does not preserve any proper subtree. []

We obtain the following abstract generalization of a statement originally proved by
Burger and Mozes for lattices in products of trees with locally quasi-primitive actions
(see [5, Proposition 2.1]), and later extended to lattices in products of CAT(0) spaces
(see [7, Proposition 2.4]).

COROLLARY 33. Let T be a lattice in the product Gy x Ga of two locally compact
groups. Assume that Gy is totally disconnected and non-discrete and that every infinite
closed normal subgroup of G1 has trivial centralizer in G1. Suppose further that T is
finitely generated and that the canonical projection I' — Gy has a dense image. If T is
residually finite, then the projection I' — G5 is injective.

Proof. Let pr;: I' = G and pry: I' = G4 be the projection maps, let Ny := ker pr, <
G1 and let Ny := kerpr; < G3. We must show that N; is trivial. We shall proceed by
contradiction and assume that Nj is non-trivial. The group Nj is a non-trivial discrete
subgroup of G; and is normalized by the dense subgroup I'y := pry(I') of G;. As Ny is
also closed, it is normal in G1, and hence N; is infinite by Lemma 20.

The groups N1 and Ny are two normal subgroups of I' with trivial intersection, hence

they commute. Since I' is residually finite, the profinite closures (N1)p and (N2)p also
commute, in light of Corollary 16. We have in particular that

pry((N2)p) < Cg, (pri(N1)) = {1},
s0 (Ng)p < kerpr; = Ny. Thus, Ny is profinitely closed in I'. Hence, I'y = T'/N, is
residually finite. We thus contradict Corollary 22, since IV is an infinite discrete normal
subgroup of I';. [
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8. Applications to just-infinite groups
We finally consider just-infinite groups. An infinite group is just-infinite if every
proper quotient is finite. These groups have restricted normal subgroups. We here explore
restrictions on their commensurated subgroups.

COROLLARY 34. Let G be a finitely generated just-infinite group and H < G be an
infinite commensurated subgroup. Then the residual closure of H in G is of finite index.

Proof. Let N := ﬂgEG gf[g_l < G be the normal subgroup afforded by the Main
Theorem. Since H is infinite and N contains a finite index subgroup of H, we see that
N is infinite. The group NN is thus of finite index in the just-infinite group G. Hence, H
is also of finite index. [J

In [23], P. Wesolek shows that every commensurated subgroup of a finitely generated
just-infinite branch group is either finite or of finite index. As an application of the Main
Theorem, we obtain the following related result. A maximal subgroup of a group is a
subgroup that is maximal among all proper subgroups.

COROLLARY 35. Let G be a finitely generated just-infinite group. Assume that when-
ever M < H < G are subgroups of G such that M is maximal in H and H has finite
index in G, then M has finite index in G. Then every commensurated subgroup of G is
either finite or has finite index in G.

Proof. Let H < G be an infinite commensurated subgroup. By Corollary 34, the
residual closure H is of finite index in G. Suppose toward a contradiction that H < H.
Let M < H be a maximal subgroup containing H, which exists since H is finitely
generated. By hypothesis, the group M is of finite index in H.In particular, M is of
finite index in G and thus weakly separable. On the other hand, H is the smallest weakly
separable subgroup of G containing H. We infer that M = H , which is absurd. Hence,
H = H and so has finite index in G. [J

Examples of groups satisfying the hypotheses of Corollary 35 include the Grigorchuk
group (see [11, Lemma 4]) and many related finitely generated torsion branch groups
(see [1] and [19]), so we recover the corresponding special cases of Wesolek’s result [23].

Another striking family of just-finite groups is that consisting of the ‘residually finite
Tarski monsters’ constructed by M. Ershov and A. Jaikin in [9]. In addition to their
residual finiteness, these groups enjoy the property that each of their finitely generated
subgroups is finite or of finite index. In particular, these groups are LERF': every finitely
generated subgroup is separable.

The monster groups from [9] indeed enjoy a stronger property. For p a prime, we say
that a subgroup is p-separable if it is the intersection of subgroups of p power index.
We say that a group is p-LERF if every finitely generated subgroup is p-separable. The
examples from [9] are virtually p-LERF.

The following application, which applies to the just-infinite groups constructed in [9],
was pointed out to us by A. Jaikin.

COROLLARY 36. Let G be a finitely generated just-infinite group which is virtually p-
LERF for some prime p. Then every commensurated subgroup of G is either finite or of
finite index.
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Since the Grigorchuk group (which is a 2-group) is LERF by Theorem 2 of [11] and
the Gupta—Sidki 3-group is LERF by Theorem 2 of [10], and upon noting that a p-group
that is LERF is automatically p-LERF, we thus also recover two more special cases of
Wesolek’s result in [23].

To prove Corollary 36 we use the following subsidiary fact.

LEMMA 37. Let G be a finitely generated group which is p-LERF for some prime p. If
a subgroup H < G is of infinite index in G, then its profinite closure H is also of infinite
indez.

Proof. If H is of finite index in G, then the closure of the image of H in the pro-p
completion G is of finite index. The closure in G is then topologically finitely generated,
hence H contains a finitely generated subgroup Hy whose image in G5 has the same
closure as the image of H. Since H is of infinite index, so is Hy, but the closure of the
image of Hy in Gp is of finite index. This contradicts that G is p-LERF. [J

Proof of Corollary 36 Let H < G be an infinite commensurated subgroup and let G
be a subgroup of finite index in G which is p-LERF. By Corollary 34, the residual closure
H is of finite index, so the profinite closure is also of finite index. The profinite closure
of Hy := HN Gy in Gy is thus of finite index in Go. By Lemma 37, this implies that the
index of Hy in Gy is finite. The index of H in G is thus finite. [
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