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Abstract

In this work we develop a combined experimental and inverse continuum modelling approach to
the problem of determining properties of a lithium electrolyte from NMR measurements of ion con-
centration in a test cell. The experimental set-up consists of an enclosed, lithium-electrolyte-filled
tube with lithium electrodes at either end. A constant current is passed between these electrodes
and the resulting evolution of the spatial distribution of the lithium ions is monitored using NMR
imaging techniques. Using the recently developed tools of inverse modelling, in combination with
the concentration measurements acquired with NMR imaging, it is shown that the standard Planck-
Nernst electrolyte model results in predictions of negative transference numbers. The observation
of growing lithium dendrites on the cathode suggests the cause for these unphysical predictions and
motivates the formulation of a generalized Planck-Nernst model that explicitly accounts for the
presence of these growing lithium-metal dendrites. In this approach, lithium depletion in a den-
dritic region adjacent to the cathode is modelled by adding a suitably-chosen spatially distributed
sink term. It is demonstrated that a model in which lithium is lost from the electrolyte uniformly
throughout the dendritic region provides predictions of electrolyte data consistent with the liter-
ature and thereby remedies the shortcoming of the standard Planck-Nernst model. In addition,
a state-of-the-art Bayesian technique is used to quantify the uncertainty of the inferred material
properties.

1 Introduction

Lithium-ion batteries deserve significant credit for the rising popularity of portable electronic devices,
power tools and electric vehicles. Methods of mathematical modeling have played an ever expanding
role in research and development efforts resulting in consistent improvements in the performance and
capacity of such batteries. One such specific area is the design of modern battery management systems
[9, 25] for hybrid and electric vehicles. The key objective of mathematical modelling in this context is
to quantify the transport processes involving charged species taking place in electrochemical systems
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at various time- and length-scales. For example, in Li-ion batteries, electrolytes enable the transport
of Li ions between the electrodes and the knowledge of their different material properties affecting
the transport processes under different operating conditions is essential for the design and calibration
of predictive battery models [51]. The key material properties characterizing an electrolyte are its
conductivity as well as the diffusivity and the transference number of its ions. Even for commonly used
electrolytes obtaining these material properties from first principles is extremely challenging and they
usually have to be measured experimentally using specialized techniques [22], a task further complicated
by the fact that these material properties tend to depend strongly on the concentration of the electrolyte.
This problem was studied in [47] where the concentration gradient of an Li salt was calculated based on
the cell overpolarization with respect to the applied current. On the other hand, the NMR technique
provides direct information about the distribution of the species in the sample. Following the seminal
work of Klett et al. [20], we have developed an approach in which constant or concentration-dependent
material properties are inferred indirectly by combining time- and space-resolved measurements of the
concentration (obtained, for example, using NMR) with a mathematical model of the problem via a
procedure referred to as “inverse modelling” [40]. In addition to providing mathematically optimal
estimates of the material properties, this approach can also serve as a model-validation tool. More
specifically, when the reconstructed material properties for which the model predictions best fit the
experimental data are not physically consistent, this signals the loss of validity of the model [36].

In the present investigation we use the inverse-modelling approach to probe the validity of a family
of mathematical models for the transport of charged species in electrolytes at moderate concentrations
when certain physical effects not accounted for by the standard Planck-Nernst theory are present [31].
Once such a physically-consistent model is identified, it is used to infer optimal estimates of the dif-
fusivity and the transference numbers (these estimates are optimal in a mathematically precise sense,
because they minimize suitably defined prediction errors). Our focus here is on a canonical electrochem-
ical experiment with a constant current applied across the electrodes [14, 35] which is often described
in terms of the Planck-Nernst theory based on the following assumptions

Al: isothermal conditions;
A2: the driving force for mass transport of a species is the gradient of its chemical potential;

A3: lack of thermodynamic ideality, i.e., activity coefficients may not be identically equal to one and the
effect of the solution viscosity has an a priori undetermined dependence on the salt concentration;

A4: ion transport occurs only in the axial direction and transport in the radial direction of the cell is
negligible;

Ab5: the electrolyte solution is homogeneous at the beginning of the experiment;

AG: the system satisfies local electrical neutrality at every location in the bulk, which implies that
¢4 = c_ = ¢, where ¢, ¢y and c_ are the salt, anion and lithium-ion concentrations, outside the
narrow double layers near the electrodes;

AT7: mass transport occurs only by diffusion and migration under the applied electric field (i.e., con-
vective transport by fluid motion is neglected);

A8: the lithium-ion flux at the two electrodes (z = 0 and = L) is proportional to the applied electric
current and results in planar lithium deposition and stripping, respectively [31, 34].

For electrolyte in a cell of length L, cf. figure 1(a), cross sectional area A and with constant current I
applied between x = 0 and x = L, we can then eliminate the variables corresponding to the ionic and
diffusive conductivity and write the Plank-Nernst model for the transport of the charged species in the



following standard form [31]
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where D is the diffusivity, ¢t* is the transference number, T is total duration of the experiment, F is
Faraday’s constant and ¢ is the (uniform) concentration of the electrolyte at the beginning of the
experiment. While constant values of D and ¢ correspond to the dilute limit (small concentrations),
concentration-dependent material properties D(c) and ¢ (c) are used to effectively account for depar-
tures from the ideal behavior. It is important to note that while transport processes in concentrated
solutions are normally described based on the Onsanger-Stefan-Maxwell (OSM) constitutive relations
[29], this description is in fact formally equivalent to the Planck-Nernst model with concentration-
dependent material properties D = D(c) and ¢t* = t*(c). The transference number as defined by the
OSM constitutive relation is a function of the Stefan-Maxwell diffusion coefficients, however, in our
model we do not make such an assumption. In this study we focus on reconstructing the diffusivity
and the transference number, and do not consider the ionic conductivity and the diffusional conduc-
tivity which do not explicitly appear in system (1), but are required to fully characterize the transport
properties of binary electrolytes. In an earlier study [40] we were able to infer consistent material prop-
erties using inverse modelling based on this model and an experiment featuring a rather narrow range
of concentrations between 900 mols/m? to 1100 mols/m?3, demonstrating that system (1) provides an
accurate description of transport phenomena in this regime. On the other hand, application of system
(1) to model an experiment with a larger range of concentrations resulting from a higher applied current
I leads to physically inconsistent negative transference numbers obtained via inverse modelling (these
results are reviewed in more detail further below). The fact that such unphysical material properties
are needed by the Planck-Nernst model to accurately reproduce experimental measurements demon-
strates that system (1) does not adequately describe the experiment. The reason for this is that the
Planck-Nernst model (1) does not account for some physical effects affecting transport in experiments
conducted at higher concentrations. One such phenomenon is the formation of ion pairs and higher-
order ion clusters, however, as was shown systematically in [36], this effect does not in fact influence
the transference numbers inferred from the measured concentration profiles via inverse modelling. As
regards the possible influence of advection effects [24], where there is a motion induced in the liquid
owing to the intrusion (recession) of plating (stripping) electrode, based on the current of 75 uA and
a tube diameter of 5 mm, we estimate that if the electrode interface were to remain planar (consistent
with assumption A4) and metallic, then the velocity of the interface, $, would be about 7.29 ;1/ sec.
By then comparing the sizes of the fluxes driven by diffusion (Dc/L), migration ((1 —¢")I/(FA)) and
advection ($c), we find that advective effects are insignificant (driving fluxes around one hundred times
smaller) compared to diffusion or migration.

In the present study we focus on another effect, namely, deposition of lithium from the electrolyte in
the form of dendritic structures in a region adjacent to the cathode at x = L [32, 48]. This phenomenon
leads to the formation of a porous matrix influencing lithium transport in the affected region, cf. Figure
1, and has been the subject of numerous investigations surveyed in the recent monograph [50] (similar in-
vestigations have also focused on electrodes made from different metals [5]). Some studies reported that
when a single dendrite grows from the substrate, deposition occurs on its tip due to the concentration of
the electric field [2, 3, 13, 28]. However, because of their plastic deformation, the dendrites detach from
the substrate, or from one another, and then deposition transitions to base-controlled growth [15, 19].
On the other hand, clear experimental evidence of Li deposition occurring in LiPF¢—EC/DMC and
resulting in “mossy” dendrite growth was provided by Steiger et al. [43] where the authors documented
mechanisms for lithium deposition away from the base and dendrite tips. Two different types of Li
deposition, namely, mossy and dendritic, were investigated experimentally in [4] where it was shown



that the form of deposition depends on the current density, time and capacity of the cell. In [49] the
morphology of the dendrite growth was found to be correlated with voltage profiles of the cell, whereas
in [27] it was observed that electrolytes trapped inside the dendritic region cause polarization and result
in complex growth patterns of the dendrites. Finally, possibilities for an accurate experimental charac-
terization of such dendritic structures using MRI were recently discussed in [18]. Given these different
observations, in our investigation we consider different ways of macroscopically accounting for the effect
of lithium deposition in a modified Planck-Nernst model and demonstrate, using inverse modelling,
that one of these proposed approaches does indeed lead to physically consistent reconstructions of the
material properties and to accurate predictions of the evolution of the concentration profiles in time.

In this study we consider a standard electrolyte, lithium hexa-fluro phosphate LiPFg, dissolved in
1:1 mixture (by volume) of Ethylene Carbonate (EC) and Di-Methyl Carbonate (DMC) , which is
often used in batteries with additives. Determination of the material properties, diffusivity and the
transference number, of this electrolyte has been the subject of many investigations [1, 17, 20, 21] and
the results are compiled in Figures 2 in the case of constant material properties and in Figures 3(a)
and 3(b) when the material properties depend on concentrations (numerical values of these material
properties are also tabulated in Appendix A). This data allows us to assert that the results obtained
with inverse modelling and the Planck-Nernst model modified to account for the dendritic growth do
indeed fall in the correct range. Finally, we will use the recently developed tools of Bayesian inference
[38] to blend the results from the literature together with our experimental data and the assumed
mathematical model to quantify the uncertainty of the reconstructed material properties.

The structure of the paper is as follows: in the next section we describe our experimental set-up, in
Section 3 the Planck-Nernst model (1) is modified to account for the dendrite growth; our computational
approach is then described in Section 4 and the main results are presented in Section 5; discussion and
final conclusions are deferred to Section 6. Supplementary data and the technical background are
presented in three appendices.

2 Experimental

The experiment monitors the gradual build-up of the ionic concentration gradient in an electrolyte
solution which results from the application of a constant current, starting from an initially uniform
concentration throughout the solution volume. It is carried out under galvanostatic conditions in
a symmetric Li-Li electrochemical cell constructed from a NMR tube with 4.2 mm inner diameter
and 20 mm inter-electrode distance (see Figure 4), filled with a 1M LiPFg solution in a 1:1 binary
mixture of Ethylene Carbonate (EC) and Di-Methyl Carbonate (DMC). A constant current of 75
pA (corresponding to a current density of 541.38 pA cm~2) was applied to the cell for 14 hours.
Concentration profiles were acquired using magnetic resonance imaging (MRI). For this experiment
we chose to monitor the '“F nuclei, which significantly reduces the data acquisition time, since the
relative NMR sensitivity to a "F nucleus is approximately 3 times higher than to a “Li nucleus. One-
dimensional *F NMR images were obtained using a gradient spin-echo pulse sequence with the magnetic
field gradient applied along the static magnetic field By (i.e., along the axis of the cell), with a 3 ms
echo time and a 20 G/cm reading gradient [12]. Over the course of the experiment 256 frequency-
domain points were collected over the spectral width of 200 kHz. The combination of the magnetic
field gradient and spectral resolution yielded a spatial resolution of 40 ym. A total of 64 scans with
a relaxation delay of 3.5 s were collected for each image, resulting in an acquisition time of 4 minutes
per image. The imaging measurement sequence was repeated at 2-hour intervals uniformly spread over
14 hours duration of the galvanostatic experiment. The experimentally obtained concentration profiles,
hereafter denoted ¢&(z,t), are shown in Figure 4 at different times ¢ € [0, 14 hours] as functions of the
space coordinate x. It is known that at the microstructure level complex dendritic structures have
distinct growth spots [42] and the Li concentration at the solid-liquid interfaces in these growths spots
drops to zero [10] (although other mechanisms have also been reported, e.g., in [6]). The reason why this
effect is not evident in Figure 4 is because the profiles in this plot represent concentrations averaged



over the entire cross-section of the cell. The growth of the dendritic region is modelled based on a
separate experiment designed to probe how this region expands with time, cf. figure 1(b), depending on
the applied current I (we add that at the end of the experiment the dendritic region could be visually
observed in the cell). These results are presented in Figure 5 where we show the position I(t) of the
left boundary of the dendritic region in function of time t. As is evident from this data, there is an
approximately linear dependence of I(¢) on time with the magnitude of the proportionality constant
(corresponding to the slope the linear fits to the data in Figure 5) increasing with the applied current.
This observation together with the data from Figure 4 allows us to quantify the growth of the dendritic
region [I(t), L], which will be used in developing a modified Planck-Nernst model that accounts for the
effects of dendritic growth in the next section.

3 The Planck-Nernst Model with Dendrite Growth

Based on the observations made in Section 2 about the growth of the dendritic region, we now propose
a modification of the Planck-Nernst model (1) that accounts for this phenomenon. We emphasize that
this is an idealized model which aims to describe the depletion of lithium from the electrolyte in the
dendritic region without attempting to provide detailed information about the structure of this region.
In formulating this modified model we retain assumptions A1-A7 from Section 1, replace assumption
A8 with a new assumption A8 given below and add the following assumptions A9-A11

Ag8: lithium ions are stripped from the anode (at £ = 0) uniformly in the transverse direction and
their flux corresponds to the applied electric current [31, 34];

A9: lithium ions are deposited on the cathode non uniformly in space forming a spatially distributed
dendritic structure that grows into the electrolyte at a rate proportional to the applied current
[48]; the domain occupied by the dendrites is [I(t), L], cf. Figure 1(b), where I(t) is a known
decreasing function of time such that 1(0) = L, cf. Figure 5;

A10: Throughout the experiment the dendrites occupy a negligible fraction of the volume of the elec-
trolyte such that porosity of this region need not be taken into account;

A11: The loss of cations from the electrolyte due to their deposition on the dendrites is modeled by a
sink term with a prescribed spatial distribution F(z) that is zero outside the dendritic region
[I(t), L]; this sink term, which has units of m~!, should be understood as “effective”, in the sense
that it represents the number of LiT ions that are transferred onto the surface of the dendrite
structure per unit volume of the electrolyte/dendrite region.

With these additional assumptions, our model now takes the form
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where [(t) = L — kIt with a certain constant k& > 0, which is justified by the data presented in Figure
5. We note that the value of the constant k, which describes how rapidly the dendritic region [I(t), L]
spreads into the bulk of the electrolyte, can be deduced from the concentration measurements shown in
Figure 4 by assessing the width L — I(T) of the dendritic region at the end of the experiment. The key
difference between the standard Planck-Nernst model (1) and its modified version (2) is the presence



of the sink term proportional to the function Jj«(x) which describes how lithium from the electrolyte
is lost due to its deposition within the growing dendritic region [I(¢), L]. While this process can be
described in various ways, the proposed model (2a) combines simplicity with the flexibility inherent in
allowing different possible forms for the function 7 (x), which we will refer to as the “sink function”.
However, this model is only effective, in the sense that it makes no attempt to capture the complex
physics of the dendrite-formation process. Given the different lithium deposition scenarios evidenced
in the experimental studies discussed in the Introduction, we will consider the following three distinct
forms of “sink function”:

case A: loss of lithium ions from the electrolyte occurs only at the interface x = I(t) between the bulk
of the electrolyte and the dendritic region, i.e.,

Fip () = 6(U(t) — =), (3)

where §(+) is the Dirac distribution; this corresponds to deposition occurring at the tips of the
growing dendrites only,

case B: the rate of lithium ion loss from the electrolyte decreases linearly from its maximum at the
moving interface (z = I(t)) to zero at the electrode (x = L), i.e.,

2(L—zx)

—=== ) <z<L
Fiy(x) = {(L_l(t)) (®) (4)

0 otherwise

case C: the rate of lithium ion loss from the electrolyte is uniform between the moving interface at
x = I(t) and the electrode at = = L, i.e.,

—L )<z <L
Frp(x) = LU0 -
l(t)( ) {O otherwise

(5)
We note that cases A, B and C correspond to the rate of the loss of lithium being progressively less
localized near the tips of the dendrites at = [(¢), and in all cases the sink function is normalized such
that flé) Fi)(2') dz’ = 1. Moreover, we emphasize that a model in which the dendrite growth occurs
from the base of the structure, at x = L, corresponds to taking Fj)(z) = 6(L — x) and that this is in
fact equivalent to the original, unmodified, model (1), and so we do not consider this case further.

4 Computational Approaches to Inverse Modelling and Uncer-
tainty Quantification

In this section we provide an overview of the computational approaches employed to solve the inverse-
modelling problem for both constant and concentration dependent material properties and assess their
uncertainty. Further details are provided in Appendices B and C.

4.1 Inverse Modelling

The unknown material properties, D and tT, can be reconstructed based on the assumed transport
model, such as system (1) or (2), and using the concentration profiles obtained in the NMR experiment
described in Section 2. We will use the inverse modelling approach developed and validated in [40]
in which the problem is framed as minimization of a cost functional representing the least-squares
deviation between ¢, the concentration profiles predicted by the model (1)-(2), and ¢, the experimentally
determined concentration profiles. The cost functional can thus be represented in the form

1 oL 2
j([D,t+]):§Z/O [e(a,ti: D, %) — &z, 1)) de, (6)



where t;, i = 1,..., Np, are the time levels when the experimental concentration profiles are acquired
(N = 14, cf. Section 2).

We consider two distinct formulations corresponding, respectively, to constant and to concentration-
dependent material properties. The first of these pertains to the standard Nernst-Planck theory, while
the second of these represents the extension discussed in [40]. Henceforth we distinguish between the
two cases by using the notations: D and t* for the standard Nernst-Planck theory and D(c) and t+(c)
for the extension to this theory.

When both D and ¢+ are constant, we obtain a simple optimization problem (which is exact in the
limiting case of an ideal solution, i.e., at very dilute salt concentrations)

P1: [D,tt] = argmin J(D,t")
[t+,D]eR?

(henceforth carets “”’ will denote optimal reconstructions). Problem P1 is rather well understood and

can be solved in a straightforward manner using commercially available software tools such as the
minimization routines in MATLAB. It was in fact already solved in the seminal study by Klett et al. [20]
and is also solved here as a preliminary step in a more complete analysis.

The more complete optimization problem, which is better able to reflect the physics of the problem,
arises when both D(c) and ¢ (c) are allowed to depend on the ion concentration c; it is

tH(c))= argmin J (D(c), t*(c)),
[tt(c), D(c)]eX

P2:  [D(c),

where X denotes a suitable function space to which D(c) and ¢t (c) belong. We emphasize that, apart
from smoothness and the limiting behavior for large and small values of ¢, no other a priori assumptions
are made about the functional forms of D(c) and ¢t*(c). In contrast to the simplified problem P1, the
computational approach required to solve the more realistic problem P2 with concentration-dependent
material properties is more involved and necessitates specialized tools described in detail in Appendix
B.

4.2 Bayesian Uncertainty Quantification

In order to quantify the uncertainty arising in estimation due to, e.g., modelling and measurement
errors, we use a state-of-the-art technique based on Bayesian inference [38]. In this approach a proba-
bilistic setting is adopted as a way to quantify uncertainty resulting from incomplete knowledge about
the problem. When our measurements are incomplete and also inaccurate (e.g., due to noise), then an
inverse problem may admit many approximate solutions. Bayesian inference is an elegant and consis-
tent framework allowing one to use a combination of prior knowledge and experimental data in order
to assign specific confidence to different reconstructions of the material properties. Therefore, here
we will represent the reconstructed material properties [D,t¥], or [D(c),t(c)], in terms of random
variables characterized by certain probability density functions (PDF's). More precisely, in the case of
concentration-dependent properties, D(c) and t*(c) are given by suitable probability distributions for
all concentration values ¢ € [cq, ¢g] and the same also applies to the measurements ¢ for different values
of z € 0,L] and t € [0, T].

For brevity, here we will describe our approach to uncertainty quantification for the case of constant
material properties [D,¢"] and refer the reader to [38] for details of the technically more involved
problem when the material properties depend on the concentrations [D(c),t%(c)]. In the Bayesian
framework the probability distribution of the reconstructed material properties is given in terms of
the posterior probability of the diffusion and transference numbers taking values P([D, ¢"]|¢) given the
entire set of observations ¢. This can be expressed using Bayes’ Theorem, P(A|B)P(B) = P(B|A)P(A),
where A and B are events [41, 45, 46], in the form

PE|[D, ") P([D, t*])

P([D,tt]|¢) = =0 . (7)




Here P([D,t*]) is the prior distribution and reflects our a priori assumptions about the solution; in
practice it is based on previous studies in the literature estimating the diffusivity D and transference
number t*. Computation of the prior P([D,¢"]) is described below. The term P(¢|[D,tt]) is the
likelihood of observing particular experimental data ¢ for a given set of material properties [D,t"],
while P(¢) is the overall probability of observing the experimental data é and can be treated as a
normalizing factor.

In the present study the prior P([D,¢"]) is constructed using the data reported in the literature
for the diffusivity and the transference numbers for the electrolyte considered here, cf. Figures 2 and 3
as well as Appendix A, and is shown in Figure 6. Details concerning the computation of such a prior
are provided in Appendix C. Priors defined in this way can be “weak” or “strong” [23], depending on
their relative deviation from the uniform distribution which is also reflected in the width of the range
[minp 4+ P([D,t1]), maxp 4+ P([D,t"])]. Given the differences in experimental conditions resulting in
various possible interpretations of the data from the literature, the prior adopted in the present study
is “weak”, cf. Figure 6, such that it will not dominate the posterior probability given in (7).

As regards the likelihood function, the following ansatz is typically adopted in Bayesian inference
[41, 45, 46]

P(E[D, #]) oc e 7P, (8)

where J(D,t") is the error functional defined in (6). This expresses the assumption that for a given
set of material properties [D, "], measurements resulting in large values of the error functional are less
likely to be observed. An intuitive motivation for the choice of an exponential function in (8) is that
in the hypothetical simplified case when the predicted concentrations have a linear dependence on the
material properties, resulting in 7 being a quadratic function of the material properties, the relation
(8) would produce a normal distribution which in the light of the central limit theorem is universal.
A more rigorous justification of this choice can be found for example in [45]. The likelihood function
P(¢|[D,t"]) is approximated by sampling the distribution in (8) using the Metropolis-Hastings algorithm
[11] to produce M samples. Details concerning the computational algorithm are provided in Appendix
C. The normalizing factor P(¢) in (7) is determined such that the integral of the posterior probability
P([D,t*]|¢) with respect to D and ¢ is equal to unity, which explains the rather large values attained
by the posterior probability, cf. Figures 7 and 12 below (the characteristic values of the diffusivity D
are O(10711)).

Thus, the Bayesian representation of the uncertainty (7) combines the knowledge about the material
properties already available in the literature as the prior P([D,t1]), cf. Figure 6, with a measure of
uncertainty based on how well model (2) fits the data which is represented by the likelihood function
P(¢|[D,t"]). Since a weak prior is used, the posterior distribution P([D, t"]|¢) is slightly skewed in favor
of the likelihood function. This approach to uncertainty quantification in electrochemical systems was
developed and thoroughly validated in [38].

5 Results

In this section we present and analyze the reconstructions of the material properties obtained using the
inverse-modelling approach of Section 4.1 based on the standard and modified Planck-Nernst models, (1)
and (2). The uncertainty of the obtained estimates is quantified with the Bayesian approach described
in Section 4.2. First, we focus on inferring constant material properties by solving problem P1, and then
consider reconstruction of concentration-dependent material properties by solving problem P2 based on
the modified model accounting for dendrite growth (2). We emphasize that these material properties
are optimal since they minimize the corresponding error functionals. R

We begin the presentation of our results by showing the optimal reconstructions D and t+ of the
constant material properties, via problem P1, based first on the standard Planck-Nernst model (1) and
then based on the modified model accounting for dendritic growth (2) in which the three different forms
of distributed sink function F;(;)(x) postulated in (3)-(5) are employed. These reconstructions are shown



in Figure 7. The reconstructions are obtained by solving optimization problem P1 and the corresponding
values of the error functional (6) are given in Table 1. Figure 7 also contains information about the
relative uncertainty of the reconstructions determined as discussed in Section 4.2. More specifically, in
each panel of Figure 7 the intersection of the solid lines represent the optimal reconstructions [D,fﬂ
obtained by solving minimization problem P1, while the color contours represent the corresponding
posterior probability distributions (7). The data shown in Figure 7(a) confirms the observations already
made in [36], namely, that the standard Planck-Nernst model (1) leads to a negative transference number
t+ < 0 obtained via inverse modelling, which is physically inconsistent and hence calls into question
the validity of the direct application of the standard Planck-Nernst system (1) to model the data
described in Section 2. This issue is only partially remedied, in the sense that the obtained values
of 1+ become less negative, when the reconstructions are performed based on the modified model (2)
with the sink function Fj«(x) defined in (3) and (4), cf. Figures 7(b) and 7(c). We note that in all
these cases the maximum of the posterior probability distribution P([D,¢*]|¢) corresponds to positive
transference number ¢t 1, which is the effect of the prior obtained based on positive transference numbers
only, cf. Figure 6. On the other hand, in Figure 7(d) we observe that the reconstructed transference
number ¢t obtained based on the modified Planck-Nernst model (2) with a uniform sink function (5) is
positive. In this case the optimal reconstructions [ﬁ,tA“‘] are also near the values of [D, "] maximizing
the posterior probability distribution P([D, ¢+]|é), indicating that the reconstructions [D,7"] are now
closer to the literature data. Moreover, since the posterior probability distribution in Figure 7(d) is
more isotropic than in the previous cases, this implies a weaker correlation between the uncertainties
of D and t*. By comparing the results shown in Figures 7(a)—(d) we note that the main improvement,
both in terms of the reconstructed values and their uncertainties, results from replacing models with
a localized depletion of lithium (i.e., the standard Planck-Nernst model with the boundary condition
(Ib) and the modified Planck-Nernst model (2) with the sink function given in case A) with models
in which this depletion is distributed in space (the modified Planck-Nernst model (2) with the sink
functions given in cases B and C). In order to shed additional light on how the structure of the sink
function affects the reconstruction of the transference number ¢, we have solved problem P1 using a
family of sink function constructed such that the constant “slope” s = L F 4 (z), z € [I(t), L], was

allowed to vary continuously from —oo to +o0o while satisfying the constraint flﬁt) Fiy(a)dz' = 1.

Thus, the standard Planck-Nernst model (1) and variants A-C of the modified model (2), cf. (3)—(5),
can be viewed as special cases of this more general family, see Figure 8(a). As is evident from the data
shown in Figure 8(b), within this family of sink functions, case C corresponds in fact to the maximum
value of the reconstructed transference number ¢ .

The experimental concentration profiles ¢(z, ;) are compared to the concentration profiles ¢(z,t;)
predicted by the standard Planck-Nernst model (1) and the modified model (2) with a uniform sink
function (5) using their respective optimal material properties [ﬁ,?*] in Figures 9-10 (left and middle
columns). The main difference between these two cases is that in the former the concentration profiles
¢(x,t;) predicted by the model exhibit large deviations from the measured profiles é(z, t;) close to the
right electrode, which is where the dendritic regions appears. We remark that, as discussed in Section
2, these concentration values are averaged over the cross-section of the cell and may therefore involve
growth spots where the concentration locally drops to zero [10, 42]. The quality of fits in this region
is noticeably improved when the modified Planck-Nernst model (2) is used, arguably due to a suitable
choice of the sink function Fy)(x), cf. (5). This improvement is also reflected in the difference of
the values of the error functional (6) obtained in the two cases, cf. Table 1. As deposition of lithium
continues, a porous structure with a certain porosity ¢(x,t) depending on both space and time is
formed in the dendritic region [I(¢), L]. The corresponding volume fractions 1 — ¢(z,t) occupied by
lithium dendrites predicted by the modified Planck-Nernst model (2) with a uniform sink function (5)
are shown in Figure 11 for as functions of x € [I(T), L] for different times spread uniformly between 0 and
T. This data illustrates how the dendritic region progressively spreads into the bulk of the electrolyte.
Another interpretation is that if one assumed that all lithium is deposited on a single dendrite, then the
curves shown in Figure 11 would describe its time-evolving shape. The average porosity of the dendritic



region at the end of the experiment is [fz(LT) ¢(x,T)dz]/[L — I(T)] = 0.9675, retrospectively justifying
our assumption A10 in Section 3.

Since it gives the best results, we now focus on the modified Planck-Nernst model (2) with a uniform
sink function (5) and consider reconstruction of concentration-dependent material properties by solving
problem P2. The optimal reconstructions ﬁ(c) and £+ (¢) are shown as functions of the concentration ¢
in Figures 12(a) and 12(b), respectively, together with the associated posterior probability distributions.
As is evident from these figures, the obtained optimal reconstructions ﬁ(c) and t+ (c) are consistent,
both in terms of values attained and the dependence on ¢, with the literature data summarized in Figures
3(a) and 3(b), although the literature data for the transference numbers exhibits a significant scatter
for all values of c. We note that the uncertainty of lA)(c) and £t (¢), given by the posterior probability
distribution at the given value of c, is rather modest and significantly smaller than the entire range of
variation of D(c) and £t (¢) for ¢ € [200,2000]. This uncertainty is also essentially independent of the
concentration c¢. Finally, in Figures 9-10 (right columns) we compare the corresponding concentration
profiles ¢(x,t;) with the experimental profiles é(x,t;). As is evident from this comparison, there is
further improvement in the quality of the fits, which is also reflected in an additional decrease of the
value of the error function (6), cf. Table 1.

6 Conclusions

In this section we briefly summarize our findings from Section 5. As is evident from Figure 7(d),
the modified Planck-Nernst model (2) with a uniform sink function (5) leads to the most consistent
reconstruction of the material properties, since in all other cases, including the standard Planck-Nernst
model (1), the inferred transference numbers ¢+ are negative, cf. Figures 7(a)—(c). This demonstrates
that the uniform sink function (5), describing a uniform in space depletion of lithium, offers a satisfactory
account of the effect of the formation of the dendritic region on the transport processes in the electrolyte
(we have also considered forms of the sink function Fj(;) () other than given in (3)-(4), but the results
were inferior with respect to those obtained with (5)). This conclusion is reinforced by the improved
quality of the concentration fits near the right electrode obtained with the modified model (2) as
compared to the fits obtained with the standard model (1), cf. Figures 9-10 (left versus middle and
right columns). The fact that the modified model (2) reproduces the experimental measurements most
accurately when it is combined with a uniform sink function (5) allows us to speculate that lithium is
deposited not only on the tips of the dendrites, but also within the entire dendritic region (for example,
in the form of new dendrites growing from the negative electrode or sideways off the existing dendrites).
Modelling this process based on first principles remain a challenging open problem [48].

The reconstructions obtained based on the modified model (2) with the uniform sink function (5) are
characterized by the smallest uncertainty with the weakest degree of correlation between the uncertain-
ties of D and t*. Finally, we also note that the concentration-dependent diffusivity D(c) reconstructed
by solving problem P2 agrees well with the literature data, both in terms of the values and the depen-
dence on ¢, cf. Figures 3(a) and 12(a). As regards the concentration-dependent transference numbers,
the obtained reconstruction ¢+ (¢) corresponds to the lower end of the range of values reported in the
literature, cf. Figures 3(b) and 12(b). Concerning the dependence on the concentration, the decrease
of the optimally reconstructed material property t+ (c) with ¢ is consistent with the trends evident in
most, albeit not in all, datasets from the literature.

To conclude, we have developed and validated a novel model for the transport of charged species
in electrolytes in the presence of dendritic growth. We also add that the present study represents an
innovative application of the concepts of inverse modelling and uncertainty quantification to validate
or invalidate different models of complex transport phenomena.
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A Values of Material Properties Reported in the Literature

e Y. Ajhara et al., 2004 [1]
¢ [mol/m?] [ 100 250 500 750
Dm?/s] |35 31 25 21
t+ 0.33 0.35 0.34 0.34

K. Hayamizy, 2012 [17]
D [m?/s] || 1.41

e M. Klett et al., 2013 [20]
D [m?/s] || 1.1
t+ 0.33

e K. Kondo et al., 2000 [21]
c [mol/m?] || 1 118 565 1100 1600 2070 2500 2910 3290
D m?/s] | 49 42 27 14 074 037 017 0.090 0.061

S. Krachkovskiy et al., 2013 [22]
¢ [mol/m? ][ 200 800 1200 1800
Dm?/s] | 213 1.11 082 045
tr 0.38 0.39 039 0.45

A. Mehrotra et al., 2013 [26]
c [mol/m3] ][ 200 400 600 800
D [m%/s] | 711 654 321 2.14

t+ || 0.41

e J. Newman et al., 2003 [30]
D [mol/m?] || 0.27
tr 0.5

M. Riley et al., 2002 [37]
¢ [mol/m?] [ 100 250 500 750 1000 1500
tr 0.3 0.22 0.18 0.12 0.10 0.01

e S. Stewart et al., 2008 [44]
D [mol/m?] || 0.77
tt 0.4

L. Valoen et al., 2005 [47]
c[mol/m® [0 1000 1750 2250
t T 04 036 0.39 0.37

D [m?/s] ] 0.87

J. Zhao et al., 2008 [52]
¢ [mol/m?] [ 250 500 750 1000 1500
D m%/s] | 214 1.8 223 170 142
tr 0.557 0477 0.445 0.408 0.370

S. Zugmann et al., 2011 [53]
D [mol/m?] || 3.37
tr 0.24
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B Gradient-Based Approach to Solution of Optimization Prob-
lem P2

An iterative optimization algorithm to reconstruct concentration-dependent material properties D(c)
and ¢*(c) based on a simple gradient descent approach can be written as

DO () = DM (c) — € v p T (D<"> (o), t+(”)(c)> n=1,2,..., (9a)
() = v () — €W v, 7 (D<n+1>(c), t+(”)(c)) n=1,2,..., (9b)
[DO)(e), £V (e)] = [D, 7], (9¢)

where {gl) and ft(f) are the step sizes in the direction of the gradients. A key element of this algorithm
is computation of the gradients VpJ and V+J of the cost functional (6), which are functions of the
concentration c. They can be efficiently evaluated by solving suitably-defined “adjoint problems”, which
are system of partial differential equations encoding information about the sensitivity of the solutions
to the governing system (1) or (2) to infinitesimal perturbations of the material properties D(c) and
t*(c). The governing and the adjoint system are solved using MATLAB’s inbuilt function pdepe which
performs an adaptive discretization both in space and time of a specified partial differential equation.
The relative and absolute tolerance used in the solution process were 10~® and 107!, respectively. The
concentration-dependent material properties are discretized using 300 equispaced points and a suitable
interpolation function is used in pdepe to obtain values of the material properties at different points
in space and in time. The gradients are then made sufficiently smooth, as dictated by the required
regularity of the functions D(c) and t*(c). Once the gradients are thus determined, the step sizes Egl)
and 552) are computed by solving line-minimization problems [33]. The initial guess (9c) is given by
the constant material properties obtained as the solution of problem P1, however, our computational
experiments indicate that the optimal reconstructions D(c) and £+ (c) are not very sensitive to the
initial guess. We add that, as discussed in [39], problem P1 was in fact found to admit global minima,
meaning that in that problem convergence is achieved regardless of the initial guess. We refer the
reader to [40] for all derivation details in the context of the Planck-Nernst system and to [7, 8] for a
discussion of the mathematical foundations of this approach, which is summarized as Algorithm 1. In
actual computation calculation are accelerated with the use of the conjugate gradients method [33].

Algorithm 1 Computational algorithm for the reconstruction of concentration-dependent material properties
m = [D(c),tT(c)] via solution of optimization problem P2
Input:
¢ — experimental data,
eg — tolerance,
mo — initial guess (usually taken as the solution of problem P1)
Output:

Reconstructed material property m = [ﬁ(c), i+ ()]

m(©) = my (initial guess)

n=1

repeat
solve governing system (2)
solve adjoint system, cf. [40]
evaluate gradient V,,J, cf. [40]

perform line minimization: (n—1) _ argmin { J (m("*l) — gvmj(m(”*l)))}
£>0

update: m( = m»—1 —§$_1)ij(m("—1))

n=n+1

until [7(m") — 7 (m("=V)| < e (m")|
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C Determination of the Prior and Sampling the Likelihood
Function

The prior P([D,t"]) in Figure 6 is constructed based on the literature data for the diffusivity and the
transference numbers for the electrolyte considered in our study, which is summarized in Figures 2 and
3, and is also tabulated in Appendix A. This is done using the function kde2d from the MASS package
in R, where the bandwidth and the number of grid points are suitably adjusted to obtain a prior with
the desired “weakness”.

Sampling the likelihood function (8) is performed using the Metropolis-Hastings algorithm [11].
For brevity of notation, we will denote m = [D,t*]. This algorithm is based on the Markov-Chain
Monte-Carlo (MCMC) approach [16] employed to randomize m and at each step involves solution of
the governing system (1) or (2) for modified (trial) material properties m*) followed by the evaluation
of the error functional (6). At each step the algorithm explores the probability space by collecting
samples from the probability distribution (7). In problem P1 this is done simply by adding a random
vector sampled from the normal distribution with zero mean and standard deviations given by [Cp, Cy+]
for the two material properties. On the other hand, in problem P2 a move in the probability space is
performed in terms of the Fourier-space representation of the concentration-dependent material prop-
erties computed using the cosine transform (the choice of the cosine-series representation is dictated by
the assumed behavior of the reconstructed material properties D(c) and £ (c)] at the endpoints of their
domain of definition, i.e., for small and large concentrations values [38]). The individual cosine-series
coeflicients are then multiplied by random numbers drawn from the normal distribution with unit mean
and standard deviation C. Formulation of this step in Fourier space ensures that randomized material
properties retain the required smoothness as functions of the concentration c, i.e., they remain in the
space X, cf. problem P2. In either case, a move in the probability space is accepted or rejected based on
a sample acceptance ratio v defined based on the posterior distribution (7). This approach is summa-
rized as Algorithms 2 and 3, respectively, for problems involving constant and concentration-dependent
material properties, and further technical details are provided in [38].

To approximate the posterior distribution, we generate 5000 sample points in case of problem P1
and 5000 sample functions in case of problem P2 (i.e., we set M = 5000 in Algorithms 2 and 3). The
values of Cp, Cy+ and C are selected based on the target values of the acceptance rate which is the
ratio of the number of sample points used to construct the posterior distribution to the total number of
points probed by the MCMC algorithm. In this study we set the acceptance rate as 30% for problem
P1 and 10% for problem P2.

14



Algorithm 2 : Metropolis-Hastings algorithm to estimate the posterior probability distribution of constant material
properties. The algorithm uses the function normrnd(M,S) which samples a normally distributed random variable with
mean M and standard deviation S (a function with this name is available in MATLAB).
Input:

literature data for D and t*, cf. Figure 2 and Appendix A

¢ — experimental data,

M — numbers of samples generated

m(9 — initial guess sample
C — parameter controlling randomization
Output:

an approximation of the posterior probability distribution P(m/|é)

assimilate literature data to construct prior P(m).
construct initial sample m(%)

k=1
repeat
create a new trial position m*) = m® + normrnd([0, 0], [Cp, Cy+])
calculate acceptance ratio v = %
if v > rand(1): m*FD=m®); k=Fk+1,
else: discard m*)

k=k+1
until M + M/10 samples are obtained for posterior distribution
discard the first M /10 samples
assimilate the remaining samples to obtain posterior probability distribution P(m|¢)

Algorithm 3 : Metropolis-Hastings algorithm to estimate the posterior probability distribution of concentration-
dependent material properties. The algorithm uses the function normrnd(M,S) which samples a normally distributed
random variable with mean M and standard deviation S (a function with this name is available in MATLAB).
Input:

literature data for D(c) and t1(c), cf. Figure 3 and Appendix A

¢ — experimental data,

M — numbers of samples generated

m* — initial sample in (chosen such that m® € X, cf. statement of problem P2)

C — parameter controlling randomization
Output:

an approximation of the posterior probability distribution P(m/|é)

assimilate literature data to construct prior P(m).
m©® = mi
compute f* from m(?) using the cosine transform
k=1
repeat B B -
create a new trial position f* = f* x normrnd(1, C)
using inverse cosine transform obtain 7m(*)
P(m ™) &)
P(m*)]¢)
if v > rand(1): m*ED=n®); k=Fk+1,
else: discard m(*) ) ) o
until 20M + M/10 samples are obtained for posterior distribution
discard the first M /10 samples
randomly select M samples from the remaining set and assimilate them to obtain posterior probability
distribution P(m|é)

calculate acceptance ratio v =
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Planck-Nernst Model | Sink Function Fy(2) | Inverse Problem | J ([D,t*])
standard, Eq. (1) — P1 2.61
modified, Eq. (2) case A, Eq. (3) P1 2.26
modified, Eq. (2) case B, Eq. (4) P1 2.12
modified, Eq. (2) case C, Eq. (5) P1 2.21
modified, Eq. (2) case C, Eq. (5) P2 1.14

Table 1: Final values of the error functional J ([ﬁ,f*]) obtained in the different cases considered.
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Schematic illustration of the electrochemical cell (a) at the beginning of the experiment
(at time ¢ = 0) when there is no dendritic growth and (b) in the course of the experiment
(i.e., for t > 0) when the dendritic region grows from the negative (right) electrode.
The standard Planck-Nernst model (1) is defined on the domain illustrated in panel (a),
whereas the modification of this model given in (2) accounts for the presence of the
dendritic region shown in panel (b). . . . . . ... L Lo
Values of the constant diffusion coefficient D and the transference number ¢+ reported in
the literature for LiPFg—EC/DMC [17, 20, 26, 30, 44, 47, 53]. When the values of both
D and tT are reported, they are represented with a symbol, whereas if the value of D or
t* is reported only, it is represented with a vertical or a horizontal line. . . . .. .. ..
(a) Dependence of the diffusion coefficient D(c¢) on the concentration ¢ reported in the
literature for LiPFg-EC/DMC [1, 21, 22, 26, 52]. (b) Dependence of the transference
number t*(c) on the concentration ¢ reported in the literature for LiPFs—EC/DMC
(1,22, 37,47, 52]. . .« © o
Concentration profiles obtained via in-situ magnetic resonance imaging during a gal-
vanostatic polarization experiment. The shrinking of the region where the concentration
profiles are acquired with time is evident near the negative (right) electrode. . . . . . . .
Dependence of the location [(t) of the left boundary of the dendritic region, cf. figure
1(b), on time ¢ for different applied currents I. . . . . . ... ... oL
The “weak” prior P([D,t"]) constructed as described in Appendix C based on the lit-
erature data for diffusivity and the transference numbers, cf. Figures 2 and 3. Since in
the calculation of the posterior suitable normalization is ensured by the expression in the
denominator in (7), for simplicity, the prior shown here has an arbitrary scaling.

(red solid lines) Reconstructions of constant material properties [D,7+] using (a) the
standard Planck-Nernst model (1), (b) modified model (2) with sink function (3) (case
A), (c¢) modified model (2) with sink function (4) (case B), and (d) modified model (2)
with sink function (5) (case C). The associated posterior probability distributions are
indicted with filled contours. The black contour lines indicate the boundaries of the
credibility regions with the indicated credibility values. Information about the values
of the material properties reported in the literature, cf. Figure 2, is contained in the
posterior probability distribution through the choice of the prior, cf. relation (7) and

(a) Sink functions with different slopes s = %fl(t)(x), x € [I(¢), L], varying continuously
from —oo to +oo (the vertical arrows indicate the trends with the increase of s whereas
the thick red lines represent the standard Planck-Nernst model (1) and the different
variants of the modified model (2) arising as special cases for particular values of s);
(b) transference numbers t+ inferred by solving problem P1 as function of the slope s
characterizing the sink function (), cf. panel (a). . . ... ... ........ ...
Experimental concentration profiles ¢(x,t;) (symbols) and the concentration profiles pre-
dicted by (left column, solid lines) the standard Planck-Nernst model (1) using the opti-
mal constant material properties [D,#+] = [3.60 x 1071°, —0.211], (middle column, solid
lines) the modified Planck-Nernst model (2) with a uniform sink function (5) and us-
ing the optimal constant material properties [ﬁ,?*] = [1.84 x 10719,0.203], and (right
column, solid lines) the modified Planck-Nernst model (2) with a uniform sink function
(5) and using the optimal concentration-dependent material properties [D(c), £+ (c)] from
Figure 12 at different time levels t; =4,6,8 hours. . . . . . . . ... ... ... .....
The datasets are the same as in Figure 9, here shown at the time levels ¢; = 10,12, 14
hours. . . . . . L

21

28



11

12

The volume fractions 1 — ¢(z, t) occupied by lithium dendrites predicted by the modified
Planck-Nernst model (2) with a uniform sink function (5) as functions of = € [I(T), L]
for different times spread uniformly between 0 and 7' (the arrow indicates the trend with
the increase of time €). . . . . . . . . L. e
Reconstruction of concentration-dependent (a) diffusivity E(C) and (b) transference num-
ber £ (c) (black solid lines) together with the associated posterior probability distribu-
tions (filled contours) as functions of the concentration ¢ for the modified Planck-Nernst
model (2) with the uniform sink function (5), case C. The black contour lines indicate
the boundaries of the credibility regions with the indicated credibility values. Informa-
tion about the values of the material properties reported in the literature, cf. Figure
3, is contained in the posterior probability distribution through the choice of the prior,
cf. relation (7) and Figure 6.. . . . . . . . . . L e
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Figure 1: Schematic illustration of the electrochemical cell (a) at the beginning of the experiment (at
time ¢ = 0) when there is no dendritic growth and (b) in the course of the experiment (i.e., for ¢ > 0)
when the dendritic region grows from the negative (right) electrode. The standard Planck-Nernst model
(1) is defined on the domain illustrated in panel (a), whereas the modification of this model given in
(2) accounts for the presence of the dendritic region shown in panel (b).
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Figure 2: Values of the constant diffusion coefficient D and the transference number ¢+ reported in
the literature for LiPFg-EC/DMC [17, 20, 26, 30, 44, 47, 53]. When the values of both D and t* are
reported, they are represented with a symbol, whereas if the value of D or t is reported only, it is
represented with a vertical or a horizontal line.
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Figure 3: (a) Dependence of the diffusion coefficient D(c) on the concentration ¢ reported in the
literature for LiPFg-EC/DMC [1, 21, 22, 26, 52]. (b) Dependence of the transference number ¢*(c) on
the concentration ¢ reported in the literature for LiPF—EC/DMC [1, 22, 37, 47, 52].
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Figure 4: Concentration profiles obtained via in-situ magnetic resonance imaging during a galvanostatic
polarization experiment. The shrinking of the region where the concentration profiles are acquired with
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time is evident near the negative (right) electrode.
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Figure 5: Dependence of the location I(t) of the left boundary of the dendritic region, cf. figure 1(b),
on time ¢ for different applied currents I.
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Figure 6: The “weak” prior P([D,t"]) constructed as described in Appendix C based on the literature
data for diffusivity and the transference numbers, cf. Figures 2 and 3. Since in the calculation of the
posterior suitable normalization is ensured by the expression in the denominator in (7), for simplicity,
the prior shown here has an arbitrary scaling.
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Figure 7: (red solid lines) Reconstructions of constant material properties [D, 7] using (a) the standard
Planck-Nernst model (1), (b) modified model (2) with sink function (3) (case A), (c) modified model
(2) with sink function (4) (case B), and (d) modified model (2) with sink function (5) (case C). The
associated posterior probability distributions are indicted with filled contours. The black contour lines
indicate the boundaries of the credibility regions with the indicated credibility values. Information
about the values of the material properties reported in the literature, cf. Figure 2, is contained in the
posterior probability distribution through the choice of the prior, cf. relation (7) and Figure 6.
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Figure 8: (a) Sink functions with different slopes s = %]—'l(t)(x), x € [I(t), L], varying continuously
from —oo to +oo (the vertical arrows indicate the trends with the increase of s whereas the thick red
lines represent the standard Planck-Nernst model (1) and the different variants of the modified model
(2) arising as special cases for particular values of s); (b) transference numbers ¢ inferred by solving
problem P1 as function of the slope s characterizing the sink function F)(z), cf. panel (a).
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Figure 9: Experimental concentration profiles é(x, t;) (symbols) and the concentration profiles predicted
by (left column, solid lines) the standard Planck-Nernst model (1) using the optimal constant material
properties [D,#+] = [3.60 x 10710, —0.211], (middle column, solid lines) the modified Planck-Nernst
model (2) with a uniform sink function (5) and using the optimal constant material properties [D, 7] =
[1.84x1071°,0.203], and (right column, solid lines) the modified Planck-Nernst model (2) with a uniform
sink function (5) and using the optimal concentration-dependent material properties [D(c), £ (c)] from
Figure 12 at different time levels ¢; = 4,6, 8 hours.
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Figure 10: The datasets are the same as in Figure 9, here shown at the time levels ¢; = 10,12, 14 hours.
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Figure 11: The volume fractions 1 — ¢(x,t) occupied by lithium dendrites predicted by the modified
Planck-Nernst model (2) with a uniform sink function (5) as functions of = € [I(T"), L] for different times
spread uniformly between 0 and T' (the arrow indicates the trend with the increase of time t).
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Figure 12: Reconstruction of concentration-dependent (a) diffusivity D(c) and (b) transference number
t+(c) (black solid lines) together with the associated posterior probability distributions (filled contours)
as functions of the concentration ¢ for the modified Planck-Nernst model (2) with the uniform sink
function (5), case C. The black contour lines indicate the boundaries of the credibility regions with the
indicated credibility values. Information about the values of the material properties reported in the
literature, cf. Figure 3, is contained in the posterior probability distribution through the choice of the
prior, cf. relation (7) and Figure 6.

34



