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23 Abstract. We consider feedback coolingnin &, cavityless levitated optomechanics
24 setup, and we investigate the possibility to improveshe feedback implementation. We
25 apply optimal control theory to derive the optimal feedback signal both for quadratic
26 (parametric) and linear (electri¢) feedback: We aumerically compare optimal feedback
against the typical feedback implementation used for experiments. In order to do so,
we implement a state estimation scheme that takes into account the modulation of the
laser intensity. We show that.such animplementation allows us to increase the feedback
strength, leading to faster cooling rates and lower center-of-mass temperatures.
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1. Introduction

The ability to precisely control and cool the motion of mechanical resénators inrerder
to generate quantum states is of great interest for testing fundamental physies, such as
investigating the quantum-to-classical transition |[1, 2|. A wide variety of resomator
systems have shown promise for achieving such goals, including membranes |3, 4],
micro- and nano-resonators |5, 6, 7, 8] and cantilevers [9, 10|. Although ground state
cooling has been experimentally realized in optomechanical systems (3, /4, 8], there
is an appetite to reach such states in levitated systems. Levitated'manoparticles are
extremely well isolated from their environment, opening up the possibility for very
long decoherence times and ground state cooling in room temperature conditions.
Indeed, optically levitated silica particles have had their eenter-of-mass motion cooled
to millikelvin [11, 12, 13, 14| and sub-millikelving[15y, 16]utemperatures, whereas
nanodiamonds [17, 18] have been used for spin coupling experiments [19, 20]. Other
levitation mechanisms, such as Paul traps [21], ybrid,electro-optical traps [22], and
magnetic traps [23, 24, 25| have also been [proposed. &s candidates for preparing
macroscopic quantum states [26, 27, 28] and testing/spontaneous collapse models [29, 30].
In order for any of these resonator systems.to approach the quantum regime, their
motion must first be cooled to close to the ground state, which can be achieved with
cryogenically cooling the environmeéntror. with active feedback schemes.

In this paper we consider an optically levitated silica nanoparticle, trapped by
the gradient force generated by tightly focusing a 1550nm laser with a high numerical
aperture (N.A.) paraboloidal mirror, as shown in figure 1. The optical trap is
contained within a vacuum c¢hamber to isolate the particle from its environment as
much as possible. Typically; p@rametric (quadratic) feedback cooling, by modulating
the intensity of the trapping laser-at twice the particle’s oscillation frequency [11, 12],
is implemented to, cool “the parficle’s motion to ~mK temperatures. Currently,
feedback signals are implemented by tracking the phase of the oscillator by locking
to the frequency of motions using either lock-in amplifiers or, more recently, with
a Kalman filter, [31]. The Kalman filter, a filtering technique used in engineering
applications [325-333.34,435|, can be implemented in real-time to accurately estimate
the state of/the particle’s position and velocity. This state information is then used
to apply the modulating feedback signal [13, 36]. Such schemes are very effective for
estimating the particle motion for small laser modulation, but above a certain (low)
threshold, loses track of the particle. This is a limitation as higher modulation results
in faster cooling rates and a lower final temperature.

Recently, cooling the motion of charged nanoparticles by applying an electric field
whichigsat the same frequency of the particle’s motion has been demonstrated |16, 37]
and implemented with optimal control protocols [38] for optical traps, as well as proposed
for electrical traps [26]. A charged needle, placed in the vacuum chamber close to the
laser focus, has been used for force sensing applications [39] and investigations of Fano
resonances [40] in levitated optomechanics. To first approximation, the electric field
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1: Figure 1. The experimental setup that we are simulating. ~Thesposition of the
16 particle is detected. by interfere.nce b.etween the scajutered and .divergent light at ‘Flle
17 photodetector. This detected signal is then passed inte,an oscilloscope for recording
18 and a field programmable gate array (FPGA) to performithe state estimation and
19 generate the feedback signals which can then be §ent to the acousto-optic modulator
20 (AOM) to modulate the light and perform quadraticifeedback or to the needle to
21 perform linear feedback.
22
23
24 generated by the needle couples linearly to the/particle pesition, making it suitable to
;2 implement linear feedback cooling. By applying a/force to oppose the particle motion,
57 the amplitude of motion can be reduced. Tt issworth neting that for this cooling technique
28 the coupling strength cannot be indefinitely highy as too strong an applied force would
gg drive the particle to hotter temperatures, and could even result in the particle being
31 ejected from the trap.
32 In this article we consider whether, it is possible to implement a feedback
;2 protocol which takes into account all the contributions to the particle dynamics,
35 including decoherence and photon recoil, and compare to current feedback schemes
36 discussed previously. We utilize optimal control theory to investigate both quadratic
;73 (parametric) and linear (electrie) feedback (section 3). Optimal control theory has been
39 applied to other experimental systems [41], including for manipulation of Bose-Einstein
40 condensates to prepare complex quantum states [42], designing excitation pulses in
2; NMR [43] and tailoring rébustness in solid-state spin magnetometry [44]. Additionally,
43 it has been proposed for mixed state squeezing in cavity optomechanics [45], feedback
44 cooling and squeezing of levitated nanopshperes in cavities [46]| and recently for feedback
45 cooling in low frequeney. magnetic traps [27]. To compare optimal cooling with typical
j? feedback cooling, we numerically emulate the system, by solving its equations of motion,
48 and we estimateits motion by numerically solving a second set of equations (section 4).
49 This teehnique' takes into account the laser intensity modulation, which allows us
g? to imereasethe modulation depth far beyond what is possible with a time-invariant
52 Kalman filter. This allows us to achieve better cooling of the trapped nanoparticle.
53 Sections 441 and 4.2 are respectively dedicated to quadratic and linear feedback results,
gg while section 4.3 concerns the common features of the two cooling schemes. In the next
56 section we start by introducing the theoretical framework of the setup considered, and
U of its numerical simulation.
gg We remark that, although the analysis presented concerns a gradient force optical
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trap, the method developed is flexible, and could be also implemented in the other
optomechanical setups previously described.

2. Dynamical models

The optically levitated nanoparticle undergoes continuous monitoringref its.motion by
the trapping laser [39, 47|. Specifically, we consider the experimental situation when the
translational and rotational degrees of freedom are decoupled, and asingle translation
degree of freedom can be identified in the detected signal [48]. We will label the position
of this one-dimensional motion with z. We call J the homodyne current that is physically
accessible with the experimental setup, i.e. the quantity recorded, by the measurement
apparatus.

We consider two types of dynamical modelling of the experiment: (i) an emulation
model and (ii) a tracking model [49]. The modelsyof type (i) are used to generate a
trajectory of the system and to output the homodyne eurrent J, i.e. to emulate the
system when the experimentally measured J is not/availaBle. This proves useful if one
wants to investigate numerically the efficagy of a technique before implementing it in the
experimental setup. The models of type (ii) are used to provide the best estimate of the
state of the system, either in real-time or im postsselection, given the input homodyne
current J measured by the experimentalsetup,[50, 51|.

We now discuss in detail the emulation (section 2.1) and tracking (section 2.2)
models, while the feedback meéehanism will'be discussed in section 3.

2.1. System emulation

In order to emulate the systeh and to generate an output homodyne current J we
use the following dynamical model. We will write the update term due to the detected
photons as a stochasti¢ back-aetion term and we will include additional stochastic terms
to account for the undeteeted ,photons as well as gas collisions [47, 49, 52]. This is fully
analogous to a classical'emulation of the system: loosely speaking, each scattering event
due to photons‘(even if undetected) or to gas particles makes the particle recoil, and
this is modelled by noise terms. We will refer to such a model as the emulation model
and denote the corresponding state of the system by pg, i.e. the emulated state.
To emulate the system we consider the following dynamical equation:

?

h[ﬁ[, pw] dt + TD[L]py dt 4+ 2kD[]pr dt + \/20kH[2] pr AW
+/2(1 = n)kH[Z)ps dV + VI H[L] ps dZ, (1)

whete:D[L]p = LpLt — L{LTL, p} and H[Z] = {£ — (%), p}. The Hamiltonian H consists
of two contributions H = Hy + H b, With

2 mw? . .
Hy = Qp—m + TS5 Hp = Bu(t) 4+ 0u(t)z, 2)
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the first being the harmonic trap provided by the laser, and the second beging the
feedback Hamiltonian, where u(t) and v(t) are feedback signals that depend .on the
particle measured position and momentum. The first line of equation (1) (fromuleft
to right) includes the unitary evolution, the diffusion term due to gas scattering, the
diffusion term due to photon scattering, and the stochastic back-action term due to
the detected photons. Here, I' = % and L = 2 + i2&p [53, 54455], kiis the laser
monitoring strength, n the detection efficiency and dW is a Wiener process with zero
mean and correlation E[dWdW] = dt. The second line accounts forsthe manoparticle
recoil due to undetected photons (o< dV') and gas particles (o< dZ); where dV and dZ
are additional independent Wiener processes with zero mean and correlations set to
E[dVdV] = E[dZdZ] = dt. This latter term o« dZ is responsiblesfor thermalizing the
motion of the nanoparticle with the gas particles. The associated homodyne current is
given by:
Jdt = (Z)pdt + %, (3)
where (-)p = tr[- pgl. y
We assume that the particle is deseribed by an initial Gaussian state. Since
the dynamics of equation (1) is quadratie, the system state remains Gaussian during
its evolution, i.e. it is fully described by meamyvalues of position and momentum
operators ((Z)g, (p)s) and their vatian@esy (V" = (2°). — (2)3, V' = (p°)s — (D)3, CF =
({2, p})s — (£)u(P)s). It is convenient to,introduce the vector y = (y1,ya, y3, ya, y5)" =
((B)e, (D)E, VE,V,, CF). By exploiting equation (1) one finds that these evolve according
to the following equations:
= %?ﬁ —%311\—1- 8k ys AW + +/8(1 — n)k ys dV
+ V(24 - 1) a2, (4)

U = = mw?(THBu(t) y1 — Ve ya + 6v(t) + \/Snkys AW
/80— k ys AV + 2VT ys dZ ,

. 2
YIS Ys +27.y3 — (8k +4T) u3 ,
Ys = —2mw’ (14 Bu(t)) ys — 27cya + 122k +T) — (8k + 4T) vz,

) 1
Yo, V4 mw?(1+ Bu(t))ys — (8k 4 4T)ysys -

5
6

(5)
(6)
(7)
(8)
2.2. System_tracking

The dynamics of the continuously monitored trapped particle is described by the
followingamaster equation [56]:
dpr i
d  h

Similar to the emulation model, the second and third terms describe respectively

[, pr] + (2KD[Z] + dnk(J — (2)H[Z] + TDIL]) pr. (9)

decoherence and monitoring provided by laser photons, with detection efficiency n and
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monitoring strength k. The fourth term accounts for decoherence due to residual gas
particles. We will refer to this model as the tracking model and to the corrésponding
state by pr, i.e. the tracked state.

Again, we limit the discussion to Gaussian states and introduce the vector x =
(1‘1, L2, T3, L4, 1:5) = (<2>T7 <ﬁ>T7 V7, V;)T7 CT) where (V;T = <22>T_<2>’2r’ ‘/;F N <ﬁ2>T_<Z§>’2ﬂ
C" = S({2,p})r — (2)2(P)r). In this case equation (9) can be reducedito the following
coupled set of stochastic differential equations:

1

T = — T2 = Y1 8na(l + Pu(t)) (1 — J)xs, ~ (10)
By = — mw?(1+ Bu(t)) 11 — e w2 — Sna(l + Bu(t)) (z1 £ J)xs
+ ou(t), (11)
2 %

by = =5 — 2y + 22— Sna(1 + Bufgi (12)

iy = — 2mw?(1 + Bu(t)) x5 — 27, 14 ®R’T — Sna(1l + Bu(t)) x2
+ 2h%a(1 + Bu(t)), R
Ty = %m — mw?(1 + Bu(t) 23 — 2¥e 5 = Sna(l + Bult)) w35 (14)

These equations account for the fact that the monitoring strength k is proportional to

the laser power, that is modulated by the feedbacksignal u(t): k = a(1+ Su(t)), where

1272 oP
5A2 mwiwr,

o= is the coupling strength that,depends on the laser power P [13].

3. Optimal feedback

Our aim is to determine the optimal eontrols u*(¢) and v*(¢) (here and in the following
the asterisk denotes the optimalrealization of a function) that provide the best cooling
of the trapped particle, ije. that minimize mean energy

2

(Ho) = = (7 + ) + o (2 + ) - (15)

2m 2
Note that, although <}AIO> does not depend explicitly on the control functions wu(t)
and v(t), y dees. Since such a dependence is linear, LQG optimization cannot be
applied [57, 58], and enemeeds to tackle the problem differently. We exploit Pontryagin’s
Minimum_Prin¢iple (PMP), an important tool of optimal control theory, that allows to
find the/optimal.control that minimizes a given cost function [59]. The problem solved by
the PMP\is a minimization problem with constraints (given by the equations of motion
(10)-(14)). Tis convenient to introduce the ‘co-states vector’ X = (A1, A2, Az, \a, A5)
and to define a ‘co-state Hamiltonian’ as follows:

Heo(N y,u,v) = X-9 — (Hp) . (16)
One can check that the evolution equation for the co-states is

: 0
=_—_—_H 1
A ay CO(A7 y’ u? ,U) Y ( 7)

Page 6 of 18
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while equations (10)-(14) can be conveniently rewritten as follows:

0

Y = ﬁHco()\, Y, u,v). (18)

Pontryagin’s principle precisely states that the optimal control u*, v’ are thoseysuch
that
HCO(A*7y*7u*7U*) S HCO(A*7y*’u7 v) * (19)

Since the equations of motion for the components of y are linear bothyins and v, one
can check the optimal signals satisfying the condition (19) are

a}‘I—CO 6HCO:| , (20)

u*(t) = —sgn {)\ rm ] , v*(t) = —sgn [/\ e

where sgn is the sign function that is 1 (—1) when its argument in positive (negative).
We remark that the sign function form of the control'has a simple intuitive explanation:
in the case of quadratic feedback one wants to stiffen (weaken) the trap maximally when
the particle moves away (towards) the trap center; and, similarly in the case of linear
(electric) feedback one would like to stopithe partielé in its motion by applying the
maximum “breaking” force. The only restriction is thus on the the feedback strength,
i.e. on the modulation depth: if the modulation depth is too strong one risks losing
track of the particle,or worse, losing the particle from the trap.

In order to obtain the explicit expressions for the two control functions, one needs
to solve the two coupled sets of,equations (17)-(18). This is in general a hard task
because, while the state equations (18) have initial boundary conditions and propagate
forward in time, the co-state equations (17) have final boundary conditions (at the
measurement time At) and propagaté backward in time [59]. As we will discuss in the
next section, under certain conditions it is numerically convenient to adopt a different
strategy instead of solving the.co-state equations.

4. Numerical analysis of feedback schemes

To emulate the systemwe first discretize equations (3)-(8), i.e. we consider a time step
Atg, and the Wiener increments AW, AV, AZ. We set the initial state to be a Gaussian
thermal state, i.e.

ya(t =0) = coth < i ) , ys(t =0) = hﬂ;wcoth (2Z:T) : (21)
and yy, =4 = ys5 = 0, where T is the temperature of the gas particles and kp is
Boltzmann’s constant. Specifically, we set T = 300K, i.e. we assume that the gas of
particles is at room temperature. We set w = 27 x 70kHz, and m = 9.42 x 10~ %kg,
which are typical values of trapped dielectric silica particles of radius ~ 50nm. We also
set 7 = 0.003 and a = 4.04 x 10% which are typical values for our optical trap [11]. We
then propagate the initial state for a time ¢ = ¢, ~ 5ms, with the control functions set
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Figure 2. Schematic diagram of the numerical simulation. The emulation part
(purple) consists of the system and detector: the systémiis a Gaussian state described
by the vector y and evolves according to equations (4)-(8) with three inputs, i.e. the
control (u and v), the environmental noise (dV ‘and,dZ), and the back-action noise
(dW), while the detector has two inputs, i.e. thesstatény<and the imprecision noise
(dW), and produces the output current J given by equation (3). The estimation and
control part (blue) consists of the tracking and actuator: the estimator of the state
consists of the vector & and evolves according to equations (10)-(14) with two inputs,
i.e. the control (u and v) and the currént J/whilethe actuator controls the functions
u and v in response to the best estimate of the system given by . In an experimental
realization the emulation part and simulated eurrent J are replaced by the experiment
and the experimental current, respectively; the estimation and control part remains
unchanged.

to u = v = 0: this preparation procedure ensures that the state of the system at time
t = tprep 1S more realistic, i.e. thémoise and dynamics of the emulation model will drive
the system to a new state y(#prep)- It.also allows the tracking to converge and begin
tracking the system well. Spegifically, we solve the stochastic differential equations in
equations (3)-(8) using the fourthiorder stochastic Runge-Kutta method.

To track and control the/system we need to solve in parallel also the equations (10)-
(14), as well as choese the comfrol functions u and v. However the experimentally
available time-step for.the tracking and control is limited by the apparatus, e.g. sampling
rates, reaction times and time lags. It is thus reasonable to consider larger time-steps,
At = M Aty and At = %, for the measurement and tracking/control respectively, with
N,M € N. o simulate the current experimental capabilities presented in [13] we set
N =5, M = 2000 and Aty = 0.5ns. We have verified numerically that such a value of
Aty provides withrenough temporal resolution to simulate sufficiently well the evolution
of the system.

We setntheé initial state of the tracking at time ¢t = 0 to be a Gaussian thermal
state, i.e. @(0) = y(0), where the non-zero values of y(0) are given in equations (21).
We switch/on the feedback control at time ¢ = t,cp. In order to avoid the difficulties of
propagating the co-states equations backward in time, we adopt the following strategy.
At each step At we select the optimal control by selecting the optimal trajectory: we
propagate the estimated state & forward in time for At using the time-step At. = %
for each possible trajectory of the controls u or v. Since according to equation (20) the

Page 8 of 18
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value u can have only values £1 this amounts to 2V trajectories; the same applies also
for v. If both u and v would be controlled simultaneously in such a way we would have
a total of 4V trajectories. We select the trajectory that minimizes the cost function
given in equation (15), i.e. the one that minimizes the estimated energy, It turns out
that, at least for low values N, the parallelization of the optimal comntrol problem is
computationally feasible. In particular, the scenario investigated here is particularly
relevant for experiments involving FPGAs; for example, setting N/ = 5 gives a total of
2° = 32 trajectories for a single control function, which is readily§6lved.in parallel using
even moderately priced FPGAs. N

The schematic diagram in figure 2 gives an overview'of the emulation-tracking
implementation; for a more detailed introduction see e.g. [38149]. The feedback
details for quadratic and linear cases will be respectivelyndiscussed in the following
subsections 4.1 and 4.2. Section 4.3 is devoted to the diseussion of common features of
the two feedback schemes.

4.1. Quadratic feedback y

Parametric (i.e. quadratic) feedback is‘widely useduin levitated optomechanics. The
relevant equations describing this type of feedbaek can be obtained simply setting § = 0
in section 2. This type of feedbackuis. typically performed by modulating the laser at
twice the phase of the particle, settingyu = $ayz, [13], where £ = ;7% + mT“’Qx% For a
fixed value of 5 we can then directly compare the optimal control u* with the simple
double phase u.  Specifically, figures 3 and 4 show that the cooling obtained with
the double phase modulation/is effectively equivalent to the optimal feedback; this is
explained by the fact that thewfeedback time trace for the two cooling approaches is
almost the same (see inset in figure’3). The difference between the sine profile and the
square-wave function doesnot substantially affect the magnitude of the cooling.

However, there is one important difference between the basic tracking technique
(exploited in doublesphasecooling) and the new tracking (exploited in optimal cooling).
The first is performed viaya Kalman filter that simulates a phase-locked loop (PLL) by
exploiting equations (10)~(14) with § = 0 (unmodulated tracking). The latter instead
makes use of equations,(10)-(14) with the same § as in equations (4)-(8) (modulated
tracking), and requires a fully FPGA-based implementation. One of the limitations of
the typical (unmoedulated) implementation of parametric feedback is that one can reach
only strength of about § = 0.01. This is due to the fact that for higher values of
therackingsloses track of the particle because of the larger frequency variation of the
system and therefore cooling is not as effective, and for higher modulation depths even
heats the System instead of cooling, see Figure 5. One of the merits of our improved
tracking scheme is that it allows us to track the system trajectories for higher modulation
strength. Figures 4 and 5 clearly show that [ can be increased, allowing faster cooling
rates and lower particle temperatures to be obtained.
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26 4.2. Linear feedback
27
28 Linear feedback can be implemented in the experimental setup by inserting into the
;g vacuum chamber a needle to whichan electriewvoltage is applied [40]. The electric force
31 generated by the needle affects the particle motion as described in section 2, i.e. we set
32 £ = 0 and modulate the control function .
2431 Figure 6 compares the optimal linear feedback with cold damping, i.e. a force
35 proportional to the particle vélocity, w. = 92 showing that the latter is comparable to
m
36 the performance of the optimal feedback. The explanation is the same as the quadratic
;73 case: the difference between the square optimal signal and the sinusoidal velocity does
39 not significantly affect the.cooling efficiency. An important issue one needs to account
40 for while using linear feedbackvis that the force kicking the particle might lead to re-
2; heating and particlesloss if the force is too strong. For this reason the simulation of
43 figure 6 makes use of a 4 in the “optimal range” identified in figure 7.
44
45 4.8. Discussion
46
2; From ourssimulation and analysis, it is found that low phonon number states can
49 in pringiple beg@eached with both quadratic (figure 3) and linear (figure 6) feedback
50 protocols., We find that the cooling signal obtained via optimal control theory does
g; not outperform typical feedback cooling. This can be explained by the fact that our
53 knowledge of the system is given only by the (measured) position of the particle, and
54 this contains all the information about its dynamics (including decoherence and recoil
gg effects): Since typical feedback controls are based on the measured position and velocity
57 of the particle (i.e. the difference of two subsequent positions), they already contain
58 our best knowledge on the system, and the control shape does not play a crucial role.
59

We remark here that the equations for the mean values (equations (10)-(11) and (4)-
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Figure 6. Linear feedback: simulated time trace of the phonon number associated with
the translational motion in the emulation and tracking equations. For the first 5ms
the system evolves freely in the harmonic trap before optimal or cold damping linear
feedback cooling is applied. The insets show a small slice of the simulated position
in the emulation and tracking equations along with the corresponding feedback signal
applied to cool the translational motion for optimal and cold damping linear feedback
cooling. For these gwo simulations, different § values were chosen such that both are
at the minimum in temperature.

A S

(5)) are essentially decoupled from the equations for the variances (equations (12)-
(14) and (6)-(8)), the only €omnection being the arguments of the control functions
(see equation (20))«Accordingly, for all practical purposes it is enough to use only
equations (10)-(11) and(4)-(5).

We find that for quadratic feedback, increasing the modulation depths 3 decreases
the minimum phonon number (or temperature) achievable, and for linear feedback there
is an ‘optimal range’ of coupling strength ¢ for when cooling is most effective. Above
this optimal region'the particle will be cooled less effectively, and eventually heated, as
J increases. The achievable phonon number for increased modulation depth (coupling
strength ) can-be seen in figure 7.

Increasing the cooling strengths S and ¢ also increases the initial rate that the
nanopartiele is cooled, as expected. The initial cooling rate as a function of cooling
strength for both cases can be seen in figure 8. As the quadratic modulation depth
increases the initial cooling rate increases linearly, whereas increasing the linear cooling
strength J results in an non-linear increase in the initial cooling rate that approaches
an asymptotic value. It was found numerically that this is because the equations (4)-
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Figure 7. Shows the dependency of the phonon number reached on the strength

of the feedback applied for optimal linear () and eptimal quadratic (3) feedback

where the measurement time-step At is 1us« Forndouble phase quadratic feedback

the relationship is very similar to the optimal quadratie, feedback. For cold damping
feedback the relationship is similar to the optimal linear feedback, although shifted
right by around 102, but temperature divergesito infinity after a critical point, as the

cooling strength term in cold damping|is proportional to the velocity.

B
le42.0%.00 0.02 0.04_ 0.06 0.08 0.10

1.0 led . * linear(cold damping)

— linear fit

*. quadratic (optimal)
~= \quadratic fit

cooling rate
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Figure 8. Cooling rates: Shows the dependency of the initial cooling rate r. (where
thephonon number n = Ae(~"<!)) on the the strength of the feedback applied for linear
and quadratic feedback where the measurement time-step At is 1us. The inset shows
theninitial cooling rate with linear cooling where for the blue data the measurement
time-step At is 1us and for the green data where the measurement time-step At is

10ns.

(8)"with 3 = 0,6 = 0 (quadratic feedback) require a smaller sampling rate than the
equations (4)-(8) with 8 = 0,6 # 0 (linear feedback) in order to track the system
well. By increasing the sampling rate sufficiently, it was found that the cooling rate also

increases linearly for linear feedback, as is shown in the inset of figure 8. Experimentally,

where sampling rates cannot be set arbitrarily high, this has practical implications in
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cooling rates that can be achieved via linear feedback. We also remark that for large
feedback strengths on the z motion we anticipate coupling between other degrees of
freedom, x and y. However, providing any feedback applied to the other degrees-of
freedom is small, as is typical, the coupling will not influence the ability te, cool 2z,
only x and y, meaning our one-dimensional approach is suitable providing we are only
concerned with the z motion.

In previous experimental works, where parametric feedback has béen utilized,
the tracking of the particle’s motion does not take into account the laser intensity
modulation due to the feedback, which results in a maximum middulation depth of
~ 1.5% [11], after which the effectiveness of cooling deéreases, eveéntually causing
heating. This is due to the fact that this tracking does not take into account the
varying laser intensity, which effectively changes the oscillatien frequency of the particle
for a fraction of an oscillation period. For small modulation.depths this isn’t an issue as
the effective frequency is still within the tracking bandwidth of the tracking mechanism,
but for larger modulations results in the feedback being out of phase. The tracking
scheme presented here overcomes this limitation by; factori?lg in the laser modulation in
the tracking equations, allowing access tofextremely high modulation depths and cooling
rates with quadratic feedback.

After cooling, it was found that the contribution to the mean energy of the
particle is dominated by the expeétatiomwalues of the position and velocity, (x1,zs in
equation (15)) whereas the variances’ (#3pa4) contribution is found to be negligible. The
energy contained in the variances quite rapidly achieve the Heisenberg limit z3z4 = h/2,
and the energy fluctuations are.due to random collisions with gas particles and photons.
It is interesting to investigate which of these has more of an effect of the particle
dynamics. Note that since thévariances are constant , equations (12)-(14) are essentially
a “time-dependent Kalman filter” {60, 61|.

Figure 9 showsghat for'high pressures the phonon number is mostly affected by the
gas particles collisions. This effect can be made negligible by reducing the gas pressure
in the vacuum chamber. However, when the pressure is sufficiently low one reaches
the photon recoil limit, the regime where fluctuations are mostly given by the photon
scattering. This'kind.of effect is always present in the experiment, and it ultimately
limits the achievable’phonon value. One might try to decrease photon scattering by
lowering the laser power, but this leads to a less stable trapping and to a weaker detected
signal.

We eventually remark that linear and quadratic feedback can be combined and used
at the same time although in our investigations with modulation depth around 1.5%
this has not significantly altered the final temperature.

5. Conclusions

We have considered a cavityless levitation experimental setup, and we numerically
investigated both parametric (quadratic) and electric (linear) optimal feedback cooling.
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22 Figure 9. Shows the dependency of the average phonon number reached once the
;i energy has converged with the pressure at'which thessimulation is performed for optimal
25 and double phase quadratic feedback at three diffefent feedback modulation depths.
26 At about ~ 10~®mbar we reach,the photon-recoil regime [15].
27
28 . . . . . . .
29 The comparison of optimal feedbacks againstithe typical implementations (respectively
30 double phase and cold damping) shewmthat, although the feedback profiles are
g; different, this does not substantially affect the magnitude of the cooling. However,
33 the implementation of optimal,.feedback forced us to develop a more sophisticated
34 tracking scheme. This allowedrus te go beyond one of the limitations of the typical
22 implementations of parametric feedback, namely the low modulation strength limit.
37 One of the merits of the moressophisticated tracking scheme is that it allows us to
38 increase the modulation [strengths obtaining a faster cooling rate and reaching lower
23 temperatures. Furtheérmore, it<was found that for linear feedback there exists an
41 ‘optimal range’ for the eoupling strength, that provides most effective cooling. Moreover,
42 although combined (quadratic+linear) feedback does not seem to significantly alter the
22 achieved temperature, it might still be experimentally helpful to make the cooling more
45 stable. Further improvement might be obtained by applying functional non-Markovian
46 techniques [62] t0 optimalcontrol theory, in order to account for experimental time lags
2; in the derivation of the optimal feedback.
49
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