

1 ***In vitro and ex vivo evaluation of the biological performance of***
2 ***sclerosing foams.***

3 Elisabetta Bottaro¹, Jemma A. J. Paterson², Luciano Quercia³, Xunli
4 Zhang^{1,4}, Martyn Hill^{1,4}, Venisha A. Patel⁵, Stephen A. Jones⁵, Andrew L.
5 Lewis⁵, Timothy M. Millar^{2*}, Dario Carugo^{1,4*}

6

7 *Corresponding authors

8 ¹ Faculty of Engineering and Physical Sciences, University of
9 Southampton, Southampton, UK

10 ² Faculty of Medicine, University of Southampton, Southampton, UK

11 ³ Computer Science Department, University of Bari, Italy.

12 ⁴ Institute for Life Sciences (IfLS), University of Southampton,
13 Southampton

14 ⁵ Biocompatibles UK Ltd., Lakeview, Riverside Way, Watchmoor Park,
15 Camberley, UK

16

17 * Corresponding authors: Dario Carugo (D.Carugo@soton.ac.uk) and
18 Timothy M. Millar (T.M.Millar@soton.ac.uk)

19

20

21

22

23

24

25

26

27

28

29 **Abstract**

30 Since the first reports on foam sclerotherapy, multiple studies have been
31 conducted to determine the physical properties and behavior of foams,
32 but relatively little is known about their biological effects on the
33 endothelial cells lining the vessel wall. Moreover, a systematic
34 comparison of the biological performance of foams produced with
35 different methods has not been carried out yet. Herein, a 2D *in vitro*
36 method was developed to compare efficacy of commercially available
37 polidocanol injectable foam (PEM, Varithena) and physician-
38 compounded foams (PCFs). Endothelial cell attachment upon treatment
39 with foam was quantified as an indicator of therapeutic efficacy, and
40 was correlated with foam physical characteristics and administration
41 conditions. An *ex vivo* method was also developed to establish the
42 disruption and permeabilisation of the endothelium caused by sclerosing
43 agents. It relied on the quantitation of extravasated bovine serum
44 albumin conjugated to Evans Blue, as an indicator of endothelial
45 permeability. In our series of comparisons, PEM presented a greater
46 overall efficacy compared to PCFs, across the different biological models,
47 which was attributed to its drainage dynamics and gas formulation. This
48 is consistent with earlier studies that indicated superior physical
49 cohesiveness of PEM compared to PCFs.

50 **Keywords**

51 Physician compounded foam, varicose vein, polidocanol endovenous
52 microfoam, sclerotherapy, endothelial cells, polidocanol injectable foam.

53

54

55

56 **Introduction**

57 Chronic venous insufficiency (CVI) is the global term to describe failure
58 of venous drainage. CVI can occur in the superficial venous system, the
59 deep venous system (veins within the muscle compartment of the leg),
60 or both. Superficial venous incompetence of the leg may involve any of
61 the veins of the superficial venous system, which includes the great
62 saphenous vein (GSV), small saphenous vein (SSV), and their tributaries.
63 The outward manifestation of superficial venous incompetence is often
64 referred to as varicose veins^{1,2}. Sclerotherapy has been employed (along
65 with surgery, radiofrequency and laser ablation) to treat all types and
66 sizes of varicosities by damaging the endothelial lining of the vein wall,
67 causing shrinkage of the treated vessel and leading to the development
68 of new veins.

69 Sclerosing agents in the form of liquid surfactant solutions have been
70 largely used in the clinic³. Since the first reports of the ability to create
71 stable foams from detergent-type sclerosants, foam sclerotherapy has
72 however become widely adopted by clinicians, largely replacing the
73 traditional injection of liquid sclerosants^{4,5,6}. This change in clinical
74 practice is due to several advantages of foamed sclerosing agents when
75 compared to their liquid counterparts⁷. When a liquid sclerosant is
76 injected into a vein, it is rapidly diluted by the circulating blood volume.
77 It has been demonstrated that the interaction with blood decreases the
78 efficacy of sclerosants, due to binding with plasma proteins that
79 ultimately reduces the number of active molecules^{8,9,10,11}. A foamed
80 sclerosant on the other hand, is able to displace blood rather than
81 mixing with it, increasing the contact time of a higher concentration of

82 active agent with the vein wall and thus resulting in greater efficacy. For
83 these reasons, in foam sclerotherapy, lower concentrations of sclerosant
84 are required to obtain the same therapeutic effect as in their liquid
85 counterpart, reducing the prevalence of side effects associated with
86 higher concentrations¹².

87 Over the last 60 years, different foam production methods have been
88 proposed. The two most common techniques that clinicians employ to
89 generate physician-compounded foams (PCFs), are the double syringe
90 system (DSS) and the Tessari method (TSS)¹³. DSS involves passing the
91 sclerosant liquid and a gas between two syringes joined by a straight
92 connector, whereas in the Tessari method the connector is replaced
93 with a three-way valve. Recently, automated production methods have
94 been introduced, such as polidocanol injectable foam (PEM) (Varithena,
95 Provensis Ltd, a BTG International group company), which is designed
96 with a foam generating device for producing a 1% polidocanol O₂:CO₂
97 (65:35) based foam (1:7 liquid:gas ratio), which is virtually nitrogen-free
98 (<0.8%).

99 The most clinically employed sclerosants are liquid polidocanol (POL)
100 and sodium tetradecyl sulfate (STS) at concentrations of 0.5% to 3% by
101 volume. PCFs are typically produced with carbon dioxide (CO₂) or room
102 air (RA) at different liquid:gas volume ratios (1:4, 1:3 and 1:7) by
103 phlebologists¹³. CO₂ foam presents a shorter half-life compared to RA
104 foam¹⁴, but the latter is associated with higher incidence of side effects
105 including visual disturbances, chest tightness, cough, and dizziness¹⁵. In
106 addition, RA foam has a high nitrogen content (>70%), which increases
107 the risk of microembolism because of greater bubble persistence due to
108 the low solubility of nitrogen in blood¹⁶.

109 The ideal sclerosing foam should offer desirable physical and biological
110 performance. From a physical perspective, it should be sufficiently
111 cohesive to completely fill the vein lumen upon injection, acting as a
112 piston to displace blood rather than mixing with it¹⁷. Moreover, it should
113 be sufficiently stable to maintain maximal activity from preparation to
114 administration, but short-lived enough to cause limited side effects¹⁸.
115 Previous studies have shown that these properties strongly depend on
116 the foam manufacturing method, the gas formulation, the gas-to-liquid
117 volume ratio, the type and concentration of surfactant¹⁹. From a
118 biological perspective, the ideal foam should damage all endothelial cells
119 in the treated area, with negligible off-target and systemic effects²⁰.
120 Greater endothelial damage is preferable as the smooth muscle layer of
121 the vein wall can theoretically regenerate a partially compromised
122 endothelium, and endothelial cells can migrate long distances to re-
123 establish a functional conduit²⁰.
124 It has been previously postulated that biological effects of sclerosing
125 foams may depend on their physical characteristics^{21,22}. However, whilst
126 numerous studies have been conducted to determine the physical and
127 mechanical properties of foams (i.e., foam dwell time, drainage time,
128 bubble size distribution, etc.)^{17,23,24,21}, relatively little is known about
129 their biological effects on the endothelial cells lining the vessel wall. It is
130 widely accepted that sclerosants disrupt the cell membrane causing (i)
131 endothelial cell (EC) death microscopically, and (ii) macroscopic vein wall
132 damage, such as disruption of the subintima (i.e. the elastic tissue
133 located underneath the endothelium) and mild alterations of the
134 smooth muscle layer^{25,26}.
135 Limited *in vitro* studies have been performed to investigate the

136 microscopic effects of sclerosants^{27,11,28,29}. Most of these studies involve
137 culturing of ECs over a plate, exposing cells to sclerosants, followed by
138 staining with dyes to evaluate cell membrane lysis or cell death (see
139 Table 1).

140

141 Table 1. Summary of *in vitro* studies performed to investigate the
142 microscopic effects of sclerosants.

143

Author	Kobayashi ²⁸	Mol ²⁹	Parsi ¹¹
Cell type	BAECs Bovine aortic endothelial cells	HUVECs Human umbilical vein endothelial cells	HMEC-1 Human microvascular endothelial cell line
Treatment	Liquid 3% POL or 1% STS (and further dilutions)	Liquid POL (1.5%, and further dilutions)	Liquid STS (3%) and POL (3%, and further dilutions)
Treatment Time	0-1 hr	5 s	15 min
Method of Administration	Injection	Injection	Injection
Analysis/Outcome	Fluorescent dye measurement/ cell death	Dye measurement /cell death	Dye measurement /cell lysis
Quantification method	Fluo4/AM and DAF-FM/DAPI	MTT/Trypan blue/Dil/ICAM	Leishman's stain

144

145

146 Kobayashi *et al.* determined an inverse correlation between sclerosant

147 concentration and the minimum contact time required to cause
148 endothelial cell death²⁸. They found that upon exposure to 1.5% POL
149 liquid solution, cell death occurred after 15 seconds, while a 0.3% POL
150 solution required 15 minutes to achieve the same effect. At very low
151 concentrations of POL (0.003%) cell death did not occur, even after 1
152 hour of exposure. In a similar study by Mol *et al.*,²⁹ it was found that
153 almost all cells died after 5 seconds of exposure to 0.025% POL, whereas
154 at lower concentrations (<0.0125%) cell death occurred within 2
155 minutes. Both studies demonstrated that treatment time is dependent
156 on POL concentration, although there were some significant differences
157 in the time required to cause endothelial cell death *in vitro*.

158 Parsi *et al.* investigated the deactivating effect of circulating blood cells
159 on the lytic activity of detergent sclerosants¹¹. ECs were exposed for 15
160 minutes to different mixtures of sclerosants with blood, and
161 subsequently labelled with a Leishman's stain. Results showed that the
162 number of non-lysed cells was concentration-dependent, and that POL
163 had a lower lytic action compared to STS.

164 Notably, these earlier *in vitro* studies only focused on liquid sclerosants;
165 thus, a systematic comparison of the biological effects induced by
166 foamed sclerosants has not been performed yet.

167 With respect to the macroscopic effects of sclerosants, several
168 histological studies have been reported, demonstrating that POL and STS
169 significantly compromise the vein wall's integrity by damaging the
170 endothelium^{26,30,31,32}. In most studies, segments of vein were treated
171 with sclerosant, and stained afterwards with dyes to evaluate damage to
172 the vessel wall (see Table 2).

174 Table 2. Summary of histological studies performed to investigate the
 175 macroscopic effects of sclerosants.

Author	Orsini ³²	Ikponmwosa ³¹	Erkin ³⁰	Whitely ²⁶
Part treated	Vein segment	Vein segment	Vein segment	Vein segment
Treatment	3% STS foam (TSS 1:4)	1% and 3% STS foam	0.1-3% POL foam (TSS)	0.5-3% liquid STS and POL
Treatment Time	2-15-30 min	5 min	5 min	1-10 min
Method of Administration	Filling the vein	Injection with cannula	Soaking	Filling the vein
Analysis/Outcome	Histological/ Staining/ Wall damage	Histological/ Wall damage	Histological /Wall damage	Histological/ Staining/ Wall damage
Quantification method	H&E (Hematoxylin and eosin stain) and with Weigert and Weigert-Van Gieson histochemical methods	H&E (Hematoxylin and eosin stain)	H&E (Hematoxylin and eosin stain)	Up-regulation of p53 and intracellular adhesion molecule-1 (ICAM-1)

178 Orsini and Brotto have analyzed the immediate effects on the saphenous
 179 vein wall *in vivo*, upon sclerotherapy with STS foam produced with TSS at
 180 1:4 liquid:RA ratio³². Vein wall damage was rapid, with complete
 181 disruption of the endothelium occurring within the first 2 minutes. In the
 182 successive 15 and 30 minutes, edema of the subintima was observed,
 183 accompanied by progressive separation from the tunica media and initial

184 formation of a thrombus.

185 Ikponmwosa *et al.* treated vein segments with 1% or 3% STS foam
186 produced using TSS, at a 1:3 liquid:RA volume ratio³¹. Upon exposure to
187 STS foam for 5 min, the percentage of EC loss was 86.3% (1% STS) and
188 92.2% (3% STS), whilst the percentage of tunica media injury was 8.9%
189 (1% STS) and 12% (3% STS).

190 Erkin *et al.* treated varicose vein segments with a selected concentration
191 of POL foam produced with the TSS method, at 1:4 liquid:RA ratio. Vein
192 segments were immersed in foam for 5 minutes, and subsequently
193 examined³⁰. Treatment with POL foam caused endothelial swelling,
194 necrosis, and intimal thickening. However, these effects were not
195 statistically correlated to the concentration of sclerosant, except for the
196 presence and extent of necrosis.

197 Whiteley *et al.* treated *ex vivo* human varicose veins with 1% or 3% STS
198 and POL, for 1 or 10 minutes²⁶. Cell death and medial damage were
199 directly correlated to surfactant concentration and treatment time. POL
200 caused less damage to the endothelium and smooth muscle cells
201 compared to STS.

202 Overall, these histological studies demonstrated the qualitative effects
203 of the interaction between sclerosing agents and the vessel wall.
204 Quantitative analyses mostly relied on microscopic measurements,
205 which were however limited to regions of interest within the treated
206 vessel. As for the *in vitro* studies, therapeutic effects were largely
207 dependent on treatment time and sclerosant concentration, although
208 treatment timescales differed between investigations. This could be due
209 to differences in the physical properties of the sclerosing agent used and
210 the experimental conditions. To the best of the authors' knowledge,

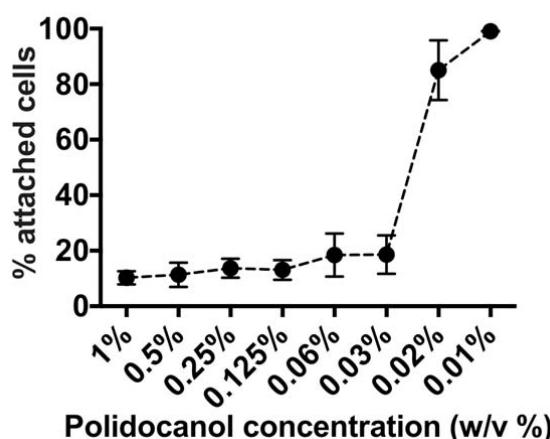
211 there is no comparative quantitative analysis between different foam
212 production or administration methods, or attempt to correlate physical
213 with biological performance of sclerosing foams. This is also reflected in
214 the lack of clinical studies comparing efficacy and safety of different
215 foam production methods.

216 Herein, we propose two methods for quantifying sclerosant-induced
217 disruption of the endothelial layer *in vitro* and *ex vivo*. Using the *in vitro*
218 model, the therapeutic efficacy of different polidocanol-based sclerosing
219 agents was investigated, and correlated with their physical
220 characteristics and administration protocols. Therapeutic efficacy was
221 subsequently evaluated within a more complex *ex vivo* model. For the
222 first time, a comparison between different foam production techniques
223 has been performed, by employing biological models with different
224 levels of complexity. Results from this study can provide clinicians with
225 some fundamental understanding of how different foam formulations
226 may perform in the body.

227

228 **Results**

229 ***In vitro* evaluation of the biological performance of sclerosing agents**


230 In the first step of the study, a method replicating the clinical treatment
231 procedure was designed in order to investigate the biological effects of
232 sclerosants on a two-dimensional (2D) endothelial model (see Methods
233 section for additional details). The mechanism of action of sclerosing
234 agents relies on endothelial damage; therefore, endothelial cell
235 attachment was employed as a metrics for therapeutic efficacy. Since
236 detached endothelial cells are known to undergo apoptosis, cell
237 attachment was considered as an indicator of cell viability²⁰. Therefore, a

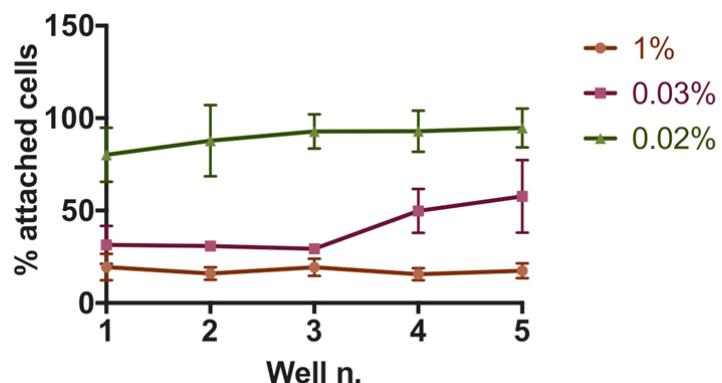
238 lower percentage of attached cells upon treatment indicated a more
239 effective sclerosing agent.

240 Firstly, the repeatability of the method was assessed by fixing the
241 injection and treatment parameters (PEM foam, 15 seconds of
242 treatment time, and 1 mL of foam injected without needle) and
243 repeating the experiment six times. Results showed consistency of foam
244 performance across multiple independent repeats (see Fig. S1 (A)).

245 Subsequently, the sclerosing efficacy of liquid POL was investigated. A
246 1% POL solution was serially diluted in PBS in order to identify the
247 minimum effective and 50% inhibitory concentrations (15 seconds
248 treatment duration, and 1 mL of sclerosant injected without needle). Fig.
249 1 shows that POL 1% is still effective even after five serial dilutions
250 (0.03% final volumetric concentration), removing >50% of cells in a well.
251 Concentrations of foam below 0.02% rendered the treatment ineffective
252 (85 ± 10% of attached cells). A 50% inhibitory concentration of 0.024%
253 was determined from these experiments.

254

255

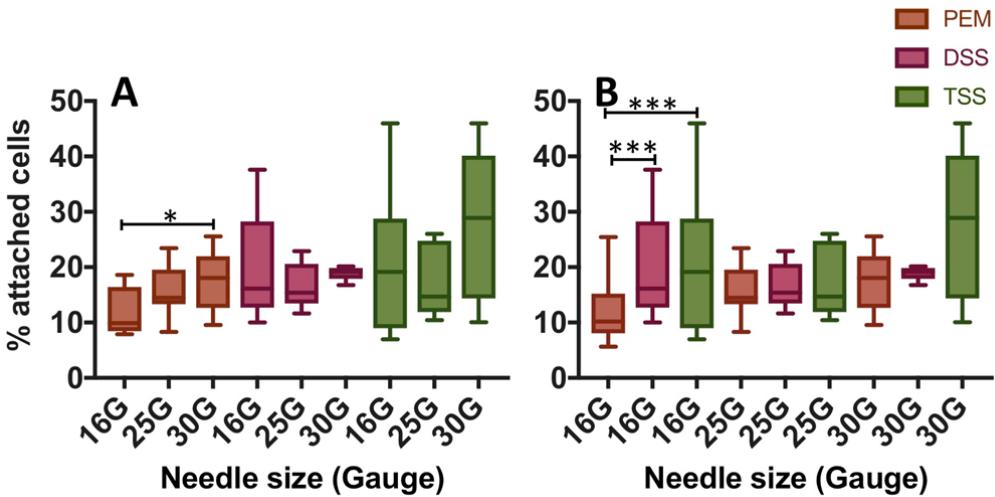

256 *Figure 1. In vitro evaluation of the effect of liquid polidocanol concentration on*
257 *HUVECs. 1% polidocanol (in PBS) was serially diluted seven times using PBS. HUVECs*
258 *were treated with 1 mL polidocanol solutions for 15 seconds. Data are reported as*
259 *percentage of attached cells (compared to untreated cells), determined via*

260 methylene blue method. The experiment was repeated six times, and results are
261 reported as mean value \pm standard deviation.

262

263 An additional experiment was designed to investigate the extent of
264 polidocanol 'depletion', potentially due to the interaction with cell
265 medium constituents or intercalation within cell membrane fragments.
266 In these experiments, 1 mL of liquid POL was injected into one well and
267 left for 15 seconds. The solution was then transferred into a
268 neighbouring well, and the process was repeated in order to treat five
269 wells in series. As shown in Figure 2, the 1% polidocanol solution
270 maintained the same efficacy after five serial injections (only $17.5 \pm 4.0\%$
271 of cells remained attached after the 5th injection). The experiment was
272 repeated using a lower POL concentration of 0.03%. Results
273 demonstrated that depletion of active POL occurred, as the percentage
274 of attached cells after treatment increased from $29.3 \pm 2.0\%$ (3rd
275 injection) to $49.82 \pm 11.8\%$ (4th injection) and $57.7 \pm 19.6\%$ (5th injection).
276 Reducing the POL concentration further (to 0.02%) resulted in a similar
277 trend, although the change in percentage of attached cells was less
278 significant because of the reduced effectiveness of the sclerosing
279 solution (coherently with the results shown in Fig. 1).

280

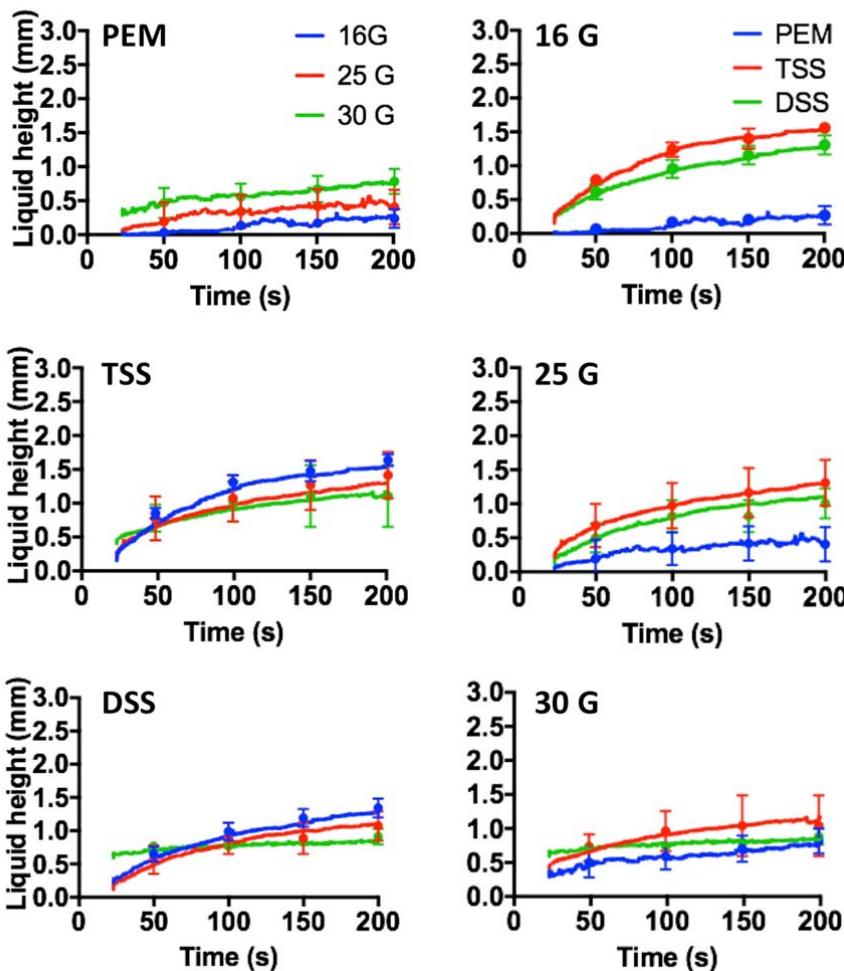

281

282 **Figure 2. Assessment of polidocanol depletion in vitro.** POL solutions at different
283 volumetric concentrations (1%, 0.03% and 0.02%, in PBS) were injected into one well
284 and left for 15s to interact with HUVECs. They were then removed and injected in a
285 neighbouring well. The process was repeated to treat five wells serially, in order to
286 investigate potential depletion of active polidocanol. Data are reported as % of
287 attached cells, determined via methylene blue assay. The experiment was repeated
288 six times, and results are reported as mean value \pm standard deviation.

289

290

291 The usage of injection needles with different bore size was also
292 investigated, because of their potential effect on foam size and stability.
293 Cells were exposed to 1 mL of PEM foam for 15 seconds, either with or
294 without a needle. Firstly, a needle with the greatest bore size in the
295 range investigated was employed (16G). Fig. S2 shows that the presence
296 of a 16G needle had a negative impact on foam treatment efficacy (i.e.,
297 the percentage of attached cells upon treatment increased from $10.12 \pm$
298 2.2% to $16.26 \pm 3.0\%$; $p < 0.001$). Therefore, in order to investigate this
299 effect further, additional needle bore sizes were tested, corresponding
300 to 25G and 30G. These are the types of needle most frequently
301 employed in clinical practice²⁰, allowing us to reproduce more faithfully
302 a clinical injection procedure. Overall, decreasing the needle diameter
303 from 16G to 30G resulted in lower cell death (Fig. 3A). In the case of
304 PEM, there was statistically significant difference in foam efficacy
305 between 16G and 30G needles ($p = 0.03$) (Fig. 3A). Comparing the
306 different foam production methods, statistical difference was found only
307 when using the largest needle (16G), with PEM associated with
308 statistically greater treatment efficacy (% attached cells: $11.8 \pm 4.6\%$)
309 compared to both DSS (% attached cells: $19.5 \pm 8.9\%$) and TSS (%
310 attached cells: $20.0 \pm 11.3\%$) foams.


311

312 *Figure 3. In vitro evaluation of the effect of needle bore size on HUVECs, using*
 313 *different types of foam.* Treatment efficacy was evaluated at varying injection
 314 *needle diameters (30G, 25G and 16G) and foam production methods [PEM (brown),*
 315 *DSS (pink), and TSS (green)]. Experiments were performed with a 15 seconds
 316 *exposure time and 1 mL of injected foam. Data are reported (Tukey's box plot) as %*
 317 *of cells attached after treatment (compared to untreated cells), determined via*
 318 *methylene blue method. The effect of needle bore size (for each foam production*
 319 *method) is illustrated in (A), while a comparison between foam production methods*
 320 *(for each needle bore size) is illustrated in (B). The experiment was repeated six*
 321 *times. One asterisk (*) indicates $p \leq 0.05$, three asterisks (****) indicate $p \leq 0.001$, and*
 322 *four asterisks (****) indicate $p \leq 0.0001$.**

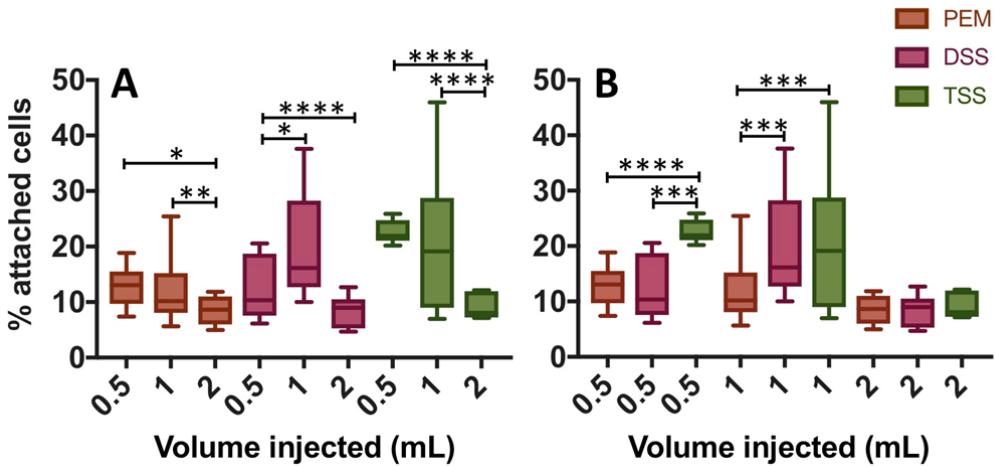
323

324 In order to determine the effect of needles on foam physical properties,
 325 bubble size measurements were carried out using the glass-plate
 326 method. Figure S3 shows the bubble size distribution of PEM and PCF
 327 foams, injected through different needle sizes. Results show that
 328 injection through a needle did not significantly impact on the bubble size
 329 distribution of all types of foam. Comparing the different foam types,
 330 room air PCFs had a narrower bubble size distribution than PEM (in the
 331 bubble size range 0-400 μm) for all needle inner diameters investigated.
 332 However, PCFs had a greater number of bubbles in the size range 400-
 333 510 μm compared to PEM. Despite there was no significant change in
 334 bubble size distribution, foam injection through a needle caused visible

335 phase separation between the liquid and gaseous phases. Therefore, an
 336 experiment was developed to quantify foam drainage dynamics within a
 337 vial, upon foam injection through needles of different bore size. The vial
 338 inner diameter was comparable to the one of well plates used for *in*
 339 *vitro* biological testing. Figure 4 shows the time evolution of the height
 340 of liquid POL solution at the bottom of the vial, which was employed as a
 341 metrics for drainage.

342

343 **Figure 4. Quantification of the effect of needle bore size on foam drainage**
 344 **dynamics.** The height of liquid POL solution at the bottom of the vial was quantified
 345 over time (up to 200 seconds; representative time points are shown at 50, 100, 150
 346 and 200s), using a custom-built Phyton script. On the left column, results are

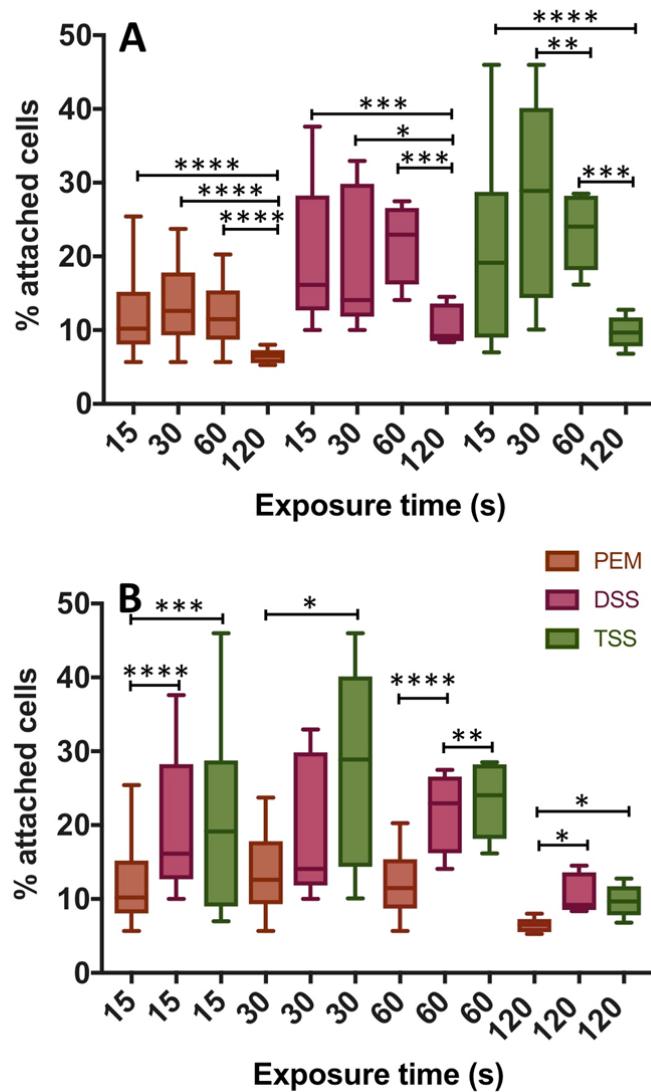

347 reported to illustrate the comparison between needle diameters for a fixed foam
348 production method [30G (green), 25G (red), and 16G (blue)]. On the right column,
349 results are reported to illustrate the comparison between foam production methods,
350 for a fixed needle diameter [PEM (blue), TSS (red), and DSS (green)]. The experiment
351 was repeated five times, for each condition investigated.

352

353 When injected using the narrowest needle diameter (30G), all foams
354 presented a higher liquid fraction at the beginning of the experiment
355 [liquid height was 0.45 mm (PEM), 0.66 mm (TSS), and 0.67 mm (DSS)],
356 followed by a relatively slow drainage dynamics. After 200s, the liquid
357 height was 0.77 mm for PEM, 1.67 mm for TSS, and 0.84 mm for DSS.
358 Differences between foams were more evident at the larger needle
359 diameters; with PEM foam undergoing a significantly slower drainage
360 compared to DSS and TSS foams. The largest difference between foam
361 types was observed when using the 16G needle; after 200s, the liquid
362 height was equal to 0.23 mm (PEM), 1.52 mm (TSS), and 1.26 mm (DSS).

363 The biological effect of changing the foam volume was also investigated,
364 by injecting either 0.5 mL, 1 mL, or 2 mL (which are comparable to
365 clinically injected volumes, if normalised to the surface area)²⁰. In these
366 experiments, the treatment time was fixed to 15 seconds. Results
367 showed a significant reduction in the percentage of attached cells with
368 increasing the volume of foam from 0.5 mL to 2 mL (Fig. 5). Moreover,
369 PEM had significantly greater efficacy compared to PCFs when using 0.5
370 and 1 mL of foam. Increasing the foam volume further (2 mL) resulted in
371 comparable percentage of attached cells between PEM and PCFs (<10%
372 in all cases).

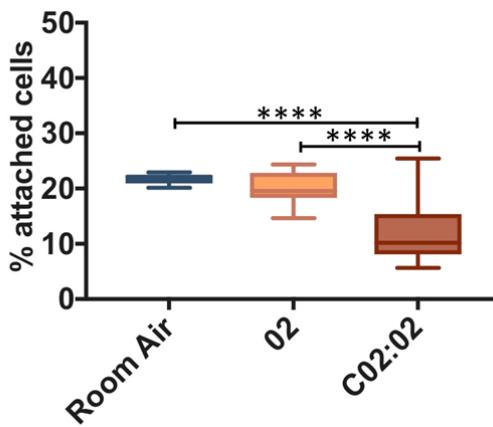
373



374

375 **Figure 5. In vitro evaluation of the effect of foam volume on HUVECs, using**
 376 **different types of foam.** Different foam production methods were investigated,
 377 including PEM (brown), DSS (pink), and TSS (green). The volume injected was 0.5 mL,
 378 1 mL, or 2 mL, for each type of foam. Data are reported (Tukey's box plot) as % of
 379 cells attached after treatment (compared to untreated cells), determined via
 380 methylene blue method. The effect of injected foam volume (for each foam
 381 production method) is illustrated in (A), while a comparison between foam
 382 production methods (for each foam volume) is illustrated in (B). The experiment was
 383 repeated four times. One asterisk (*) indicates $p \leq 0.05$, two asterisks (**) indicate
 384 $p \leq 0.01$, three asterisks (****) indicate $p \leq 0.001$, and four asterisks (****) indicate $p \leq$
 385 0.0001.

386

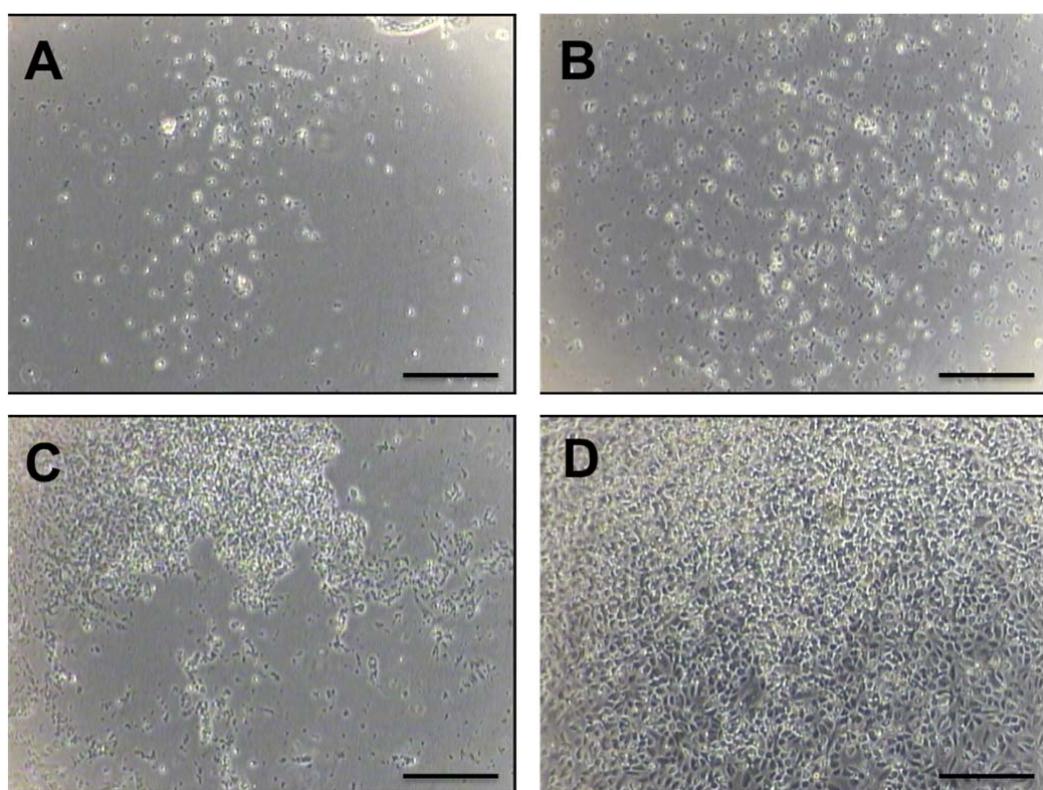

387 The effect of varying the exposure time of HUVECs monolayers to
 388 sclerosing agents was investigated. Earlier *in vitro* and *ex vivo* studies
 389 have reported on treatment times in the range 5 s – 1 hr, whilst it is
 390 usually recognised to be in the order of a few seconds *in vivo*³³. In this
 391 study, the treatment time was varied in the range 15 – 120 s, which is
 392 consistent with our previous determinations of foam plug persistence
 393 within an artificial vein model¹⁷. As shown in Fig. 6, the efficacy of a 120
 394 s long treatment (PEM = $6.5 \pm 0.9\%$, DSS = $10.5 \pm 2.6\%$, DSS = $9.7 \pm 2.3\%$)
 395 was significantly higher compared to shorter treatments. Overall, PEM
 396 was statistically more effective than both DSS and TSS, at all treatment
 397 times investigated.

401 **Figure 6. In vitro evaluation of the effect of foam exposure time on HUVECs, using**
 402 **different types of foam.** Methods of foam production investigated included PEM
 403 (brown), DSS (pink), and TSS (green). 1 mL of foam was injected in these experiments,
 404 using a 16G needle. Cell monolayers were exposed to each foam for 15, 30, 60 and
 405 120 seconds. Data are reported (Tukey's box plot) as percentage of attached cells
 406 after treatment (compared to untreated cells), determined via methylene blue
 407 method. The effect of treatment time (for each foam production method) is
 408 illustrated in (A), while a comparison between foam production methods (for each
 409 treatment time) is illustrated in (B). The experiment was repeated ten times. One
 410 asterisk (*) indicates $p \leq 0.05$, two asterisks (**) indicate $p \leq 0.01$, three asterisks
 411 (***) indicate $p \leq 0.001$, and four asterisks (****) indicate $p \leq 0.0001$.

414 In a final series of experiments, the effect of the gas formulation was
415 investigated by comparing the efficacy of PEM foams containing either
416 35:65 CO₂:O₂ (conventional PEM formulation), RA, and 100% O₂. The
417 35:65 CO₂:O₂ PEM had significantly greater efficacy (11.8 ± 4.6% of cells
418 attached) compared to RA (21.8 ± 0.9%) and 100% O₂ (20.5 ± 2.9%) PEM
419 formulations (Fig. 7).

420

421


422 **Figure 7. In vitro evaluation of the effect of PEM gas formulation on HUVECs.** 1 mL
423 of PEM foam was injected in these experiments, using a 16G needle. Cell monolayers
424 were exposed to each foam type for 15 seconds. Foams tested were PEM containing
425 either room air, 100% O₂, and 35:65 CO₂:O₂. Data are reported (Tukey's box plot) as
426 percentage of attached cells after treatment (compared to untreated cells),
427 determined via methylene blue method. The experiment was repeated twenty times.
428 Four asterisks (****) indicate $p \leq 0.0001$.

429

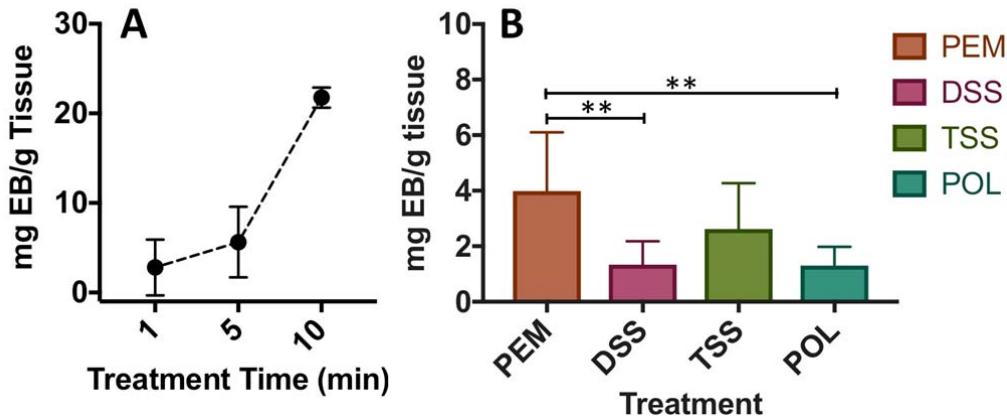
430 In addition to the above quantitative assays, histopathologic
431 observations of treated HUVECs were performed. Images of cell
432 monolayers exposed to various sclerosing agents were captured, using
433 an optical microscope with phase contrast. The untreated (control) cells
434 displayed a normal EC morphology for confluent monolayers, and were
435 adherent to the substrate (Fig. 8 (D)). Following treatment, cell
436 morphology changed to a more rounded appearance; the monolayer
437 became disrupted, where a large number of cells detached from the

438 substrate and, in some cases, only fragments of cells were present. Figs.
439 8 (A)-(C) show images of cells after exposure to foam generated using
440 different production methods (15 seconds treatment duration, and 1 mL
441 of foam injected without needle). It is evident that PEM (Fig. 8 (A)) and
442 DSS RA (Fig. 8 (B)) foams caused greater cell detachment compared to
443 TSS foam (Fig. 8 (C)), which is coherent with the quantitative
444 determinations (Fig. S1 B).

445

446
447 **Figure 8. Histopathologic observation of HUVECs upon treatment with sclerosing**
448 **foams.** Microscope images (4x magnification) illustrate HUVECs monolayers treated
449 for 15 seconds using PEM (A), DSS (B), Tessari (C) foams, and untreated (D). Scale
450 bars are 200 μ m.

451


452 ***Ex vivo* evaluation of the biological performance of sclerosing agents**

453 In order to investigate the sclerosing performance of foams in a more
454 realistic biological model, *ex vivo* experiments were established. The

455 reliability of the method was initially evaluated by quantifying
456 endothelial damage induced by Type I collagenase, an enzyme that
457 removes EC from the vessel wall by proteolysis of underlying collagen.
458 The vein was exposed to the enzyme for 10 minutes. The same
459 procedure was repeated using liquid POL (1% v/v), and a physiological
460 saline as a control (Fig. S4). Following exposure to Evans Blue-conjugated
461 BSA, control cords showed no leakage into the tissue surrounding the
462 vein (the quantity of EB extravasated was 0.5 ± 0.2 mg EB/g tissue). The
463 collagenase solution (positive control) showed a level of disruption
464 equivalent to 42 ± 4.5 mg EB/g tissue, whereas liquid POL caused $21 \pm$
465 1.2 mg EB/g tissue of extravasation. Upon verification of the method,
466 the effect of treatment time was investigated. The vein was treated with
467 liquid POL 1% for 1, 5, and 10 minutes. Fig. 9 (A) shows that endothelial
468 disruption is directly proportional to exposure time (extravasation
469 ranged from 1.55 ± 2 to 21 ± 1.2 mg EB/g tissue).

470 The same experiment was subsequently performed using PCFs and PEM,
471 using a constant exposure time of 1 minute. Fig. 9(B) shows that PEM
472 was more effective in disrupting the endothelium compared to DSS PCF
473 and liquid POL; whilst no significant difference was observed between
474 PCFs and liquid POL. The DSS method in this test produced less
475 disruption than PEM (corresponding to 1.3 ± 0.8 and 3.9 ± 2.1 mg EB/g
476 tissue, respectively) but the variation in the measurement was such that
477 this was not statistically significant.

478

479

480 **Figure 9. Ex vivo evaluation of the effect of liquid and foamed polidocanol on**
 481 **umbilical cord veins. (A) Evaluation of the effect of treatment time on umbilical cord**
 482 **vein, using liquid polidocanol (2 mL, for 2 cm vein segment). The vein wall was**
 483 **exposed to polidocanol for 1, 5 and 10 minutes. Data are reported as mg of EB per**
 484 **grams of tissue, determined via Evans Blue method. The experiment was repeated**
 485 **four times. (B) Evaluation of the effect of foam on umbilical cord vein, using different**
 486 **types of sclerosing agent: PEM, DSS, TSS, and liquid POL (2 mL, for 2 cm vein**
 487 **segment). The vein wall was exposed to the sclerosing agents for 1 minute. Data are**
 488 **reported as mg of EB per grams of tissue, determined via Evans Blue method. Two**
 489 **asterisks (**) indicate $p \leq 0.01$.**

490

491

492

493 **Discussion**

494 **Effect of foam production methods and administration-related**
 495 **parameters on foam efficacy *in vitro***

496 Since the introduction of foam sclerotherapy as a treatment method
 497 against varicose veins, numerous studies have been conducted in order
 498 to further the understanding of the physical properties and behavior of
 499 foams^{24,21,34,35}. However, a relatively limited body of work has focused on
 500 the biological effects of sclerosants on endothelial cells and the vessel
 501 wall^{11, 26, 27, 36}. Earlier studies have revealed that sclerosing efficacy is
 502 directly correlated to treatment time and sclerosant concentration^{37,38}.
 503 However, the lack of quantitative analyses and the difference between
 504 the physical properties of sclerosing agents investigated, have both

505 hindered the ability to draw generalized conclusions about the efficacy
506 of different foam production and administration methods.

507 In this study, we have employed two simple quantitative methods to
508 compare the microscopic and macroscopic effects of different foam
509 production techniques on the endothelium. With respect to the
510 microscopic effects, we proposed an *in vitro* model that allows the
511 quantification of sclerosant-induced endothelial disruption, by
512 determining the number of cells attached to a substrate after treatment.

513 In this method, monolayers of endothelial cells provide a simplified
514 replica of a small segment of vascular endothelium. The experimental
515 protocol has been designed to mimic the different treatment phases
516 occurring *in vivo*, i.e. (i) injection of the foam and its contact with the
517 endothelium, and (ii) washing out of the foam due to blood flow. Being a
518 biological model within a static fluidic environment, foam-induced blood
519 displacement occurring *in vivo* is reproduced by an active washing
520 phase. With this model, clinically relevant procedural parameters have
521 been investigated, such as volume of foam injected, treatment time, and
522 usage of different types of needle.

523

524 The repeatability of the method was initially evaluated, showing
525 significant consistency across multiple independent repeats (Fig. S1A). In
526 a first step of the study, the model was utilised to investigate the
527 sclerosing efficacy of liquid POL. Only at volumetric concentrations
528 <0.02% the surfactant was rendered ineffective, confirming the potency
529 of this detergent at disrupting the endothelial cell membrane and
530 inducing cell death²⁸ (Fig. 1). Serial treatments using the same POL
531 solution were performed to assess whether polidocanol deactivation

532 occurred. Reducing the number of active molecules (i.e., by lowering the
533 POL concentration) caused reduced efficacy after a certain number of
534 treatments, which was dependent upon the POL concentration (see Fig.
535 2). Depletion of active polidocanol over consecutive treatments was
536 likely due to its intercalation within lysed membrane fragments.
537 However, the 1% POL solution (employed to manufacture both PCF and
538 PEM foams) maintained its potency across multiple treatments, and its
539 *in vitro* biological performance was not affected by polidocanol
540 depletion.

541

542 Upon verification of polidocanol efficacy *in vitro*, the effect of
543 administering sclerosing foams with needles of different bore diameter
544 was investigated. The needle bore size is typically selected based on the
545 vein to be treated, with smaller veins often requiring the smaller 25-30G
546 needles²⁰. The performance of different sclerosing foams was
547 statistically different only when using the larger needle (16G) (Fig. 3).
548 Employing narrower needles (i.e., 25G and 30G), foam efficacy reduced
549 and differences between foam types were not statistically significant.
550 This observation may be due to changes in the physical properties of
551 foams when they were conveyed through a needle. Bubble size
552 measurements however revealed that the bubble size distribution of all
553 types of foam was virtually unaffected by the needle inner diameter (Fig.
554 S3). Previous studies have shown that as foam flows through a pipe, the
555 change in bubble diameter is dependent on the pressure drop across the
556 pipe³⁹. It can therefore be inferred that the pressure drop required to
557 administer foams manually through clinical needles – and the resultant
558 shear rate – were not sufficient to cause a significant change in the

559 bubble size of PEM and PCF foams. Thus, the observed changes in foam
560 therapeutic efficacy could not be directly related to the foam bubble size
561 distribution. For this reason, additional experiments were performed to
562 quantify the effect of needle injection on foam drainage dynamics,
563 where drainage describes the flow of liquid through a foam⁴⁰. During
564 free drainage, the liquid volume fraction increases monotonically from
565 the top to the bottom of a foam column. This bottom liquid layer is
566 depleted of surfactant molecules, as the surfactant preferentially
567 stabilises the gas-liquid interface of bubbles located in the upper foam
568 layer. The liquid then continues to drain downward over time, until the
569 liquid height reaches a steady state⁴¹ (as shown in Fig. 4). Given that
570 drainage is strongly affected by the size and shape of the foam
571 container, a vial with inner diameter comparable to the well plate used
572 in biological tests was employed. By injecting foams through the
573 narrowest needle (30G) caused visible separation of the liquid and
574 gaseous phases upon injection; thus, the ejected foam experienced only
575 limited drainage (Fig. 4). Phase separation may occur because of the
576 liquid POL travelling at a different velocity compared to the gas bubbles,
577 as observed for other multi-phase systems delivered through needles,
578 such as pastes and cements⁴². The extent of phase separation reduced
579 with increasing the needle inner diameter (corresponding to lower
580 injection velocity), and was almost absent when foams were
581 administered using the largest 16G needle (Fig. 4). When foam
582 separation occurred (i.e., using the 25G and 30G needles), the biological
583 efficacy of foams was dominated by their 'static' liquid fraction, and
584 differences between foam types were not statistically significant (Fig. 3).
585 Conversely, when phase separation was significantly reduced (as in the

586 16G needle experiments), the ejected foams displayed distinct drainage
587 dynamics (see Fig. 4) that in turn led to differences in their biological
588 efficacy. Notably, the slower drainage of PEM foam resulted in
589 statistically greater therapeutic efficacy compared to PCF foams (Fig. 3),
590 which instead presented a faster initial drainage dynamics. The more
591 rapid drainage of room air PCF foams could be attributed to: (i) the
592 greater liquid:gas volume ratio compared to PEM foam²³, with previous
593 studies reporting on a direct correlation between foam drainage velocity
594 and liquid fraction⁴³. (ii) The lower average bubble diameter combined
595 with the presence of a greater proportion of bubbles with diameter
596 >400 μm (see Fig. S3). Notably, higher pressure within the smaller
597 bubbles drives diffusive gas exchange towards the larger bubbles, and
598 the resulting coarsening of the foam accelerates its initial drainage
599 dynamics⁴⁴.

600 The mechanism for which the slower foam drainage of PEM leads to
601 greater therapeutic efficacy *in vitro*, is not fully understood yet.
602 However, it could be attributed to the persistence of gas bubbles in the
603 vicinity of the cell membrane, with higher concentration of active
604 polidocanol located at the gas-liquid interface. Conversely, when a fast-
605 draining foam is employed, cells are exposed to the liquid phase that has
606 been depleted of polidocanol, particularly in the shorter term. Depletion
607 is greater in N_2 -containing foams, given to the lower ‘mobility’ of
608 surfactant molecules in these foams⁴⁵.

609 The effect of the injected foam volume was also investigated, as it
610 represents a parameter that is varied in the clinical practice. Generally,
611 the volume injected is dependent on the diameter and length of the vein

612 to be treated⁴⁶. There was a significant difference between foam
613 production methods when injecting 0.5 and 1 mL of foam, whereas all
614 treatments had very similar biological performance and became more
615 effective when injecting a greater volume of foam (2 mL) (see Fig. 5).
616 Earlier studies have reported that the dependence of drainage time on
617 the foam liquid fraction reduces with increasing the height of a foam
618 column⁴⁷, which may explain the comparable efficacy of PEM (liquid
619 fraction: 12.5%) and PCFs (liquid fraction: 20%) at 2 mL. The positive
620 correlation between the injected volume and treatment efficacy may be
621 attributed to increased gravitational effects at the higher foam heights⁴³,
622 which favors downward motion of active polidocanol towards the cell
623 monolayer. It should be noted that a foam volume \leq 1 mL is more
624 representative of a clinical injection procedure, considering the volume
625 of foam normalised to the area of the treated endothelial layer²⁰. At
626 these lower volumes, drainage dynamics is governed by both capillarity
627 and gravitational effects.

628 The effect of varying the treatment time was also investigated. The
629 exposure time was defined based on the predicted persistence of a foam
630 plug *in vivo*¹⁷, and values investigated were 15, 30, 60 and 120 seconds
631 (Fig. 6). Overall, there was significant difference in biological efficacy
632 between 15, 30, and 60 seconds of exposure. However, for all types of
633 foam, efficacy significantly increased at 120 seconds of exposure.
634 Notably, bubble collapse in the longer term causes a release of active
635 polidocanol, and biological effects thus become dependent on the liquid
636 POL solution. Further investigations are required to fully elucidate the
637 interplay between foam drainage and the temporal dynamics of
638 membrane disruption upon exposure to the surfactant agent. Overall,

639 PEM maintained superior performance across the all range of exposure
640 times investigated and was more effective over longer term exposures,
641 likely due to its sustained drainage dynamics compared to PCFs¹⁷.

642

643 Considering the potency of the 1% POL solution over multiple
644 treatments *in vitro* (as illustrated in Fig. 2), the greater therapeutic
645 efficacy of PEM compared to PCFs may not be solely attributed to
646 differences in foam stability and drainage dynamics. Previous studies
647 have demonstrated that the diffusion velocity (or mobility) of water-
648 soluble surfactants in foams is affected by the gas formulation, and that
649 it is greatest in CO₂ foams, followed by O₂ foams and N₂ foams⁴⁵.
650 Experiments were thus conducted using PEM manufactured using
651 different gas formulations (Fig. 7), to assess whether changes in
652 surfactant mobility may influence its therapeutic efficacy. Coherently
653 with these previous findings, the commercial PEM formulation (35:65
654 CO₂:O₂) had greater efficacy than both 100% O₂ PEM and N₂-containing
655 (RA) PEM. These results suggest that polidocanol is more readily
656 available for interaction with cell membranes, when N₂-free foams are
657 employed.

658

659 **Comparing the *ex vivo* performance of different foam production
660 methods**

661 In order to evaluate the performance of different sclerosing agents in a
662 more realistic biological model, experiments were performed *ex vivo*
663 using umbilical cord veins. Sclerosant-induced disruption of the
664 endothelium was determined from extravasation of a BSA-conjugated
665 dye. Initially, the ability of the method to provide a quantification of

666 endothelial disruption was assessed, using collagenase to actively cause
667 endothelial damage. Collagenase, an endopeptidase that digests native
668 collagen⁴⁸, was left in the vein for 10 minutes (Fig. S4). The same
669 procedure was performed using liquid POL (1% v/v) or physiological
670 saline as a control. As expected, saline did not cause tissue damage,
671 whereas the collagenase solution caused greater endothelial disruption
672 compared to liquid POL. It is well known that the enzyme cleaves
673 collagen bonds causing a removal of the endothelium and potential
674 damage to the underlying tissues, compared to a surfactant agent that
675 interferes with the cell membrane only, causing cell death²⁸. After
676 method's validation, more clinically relevant exposure times were
677 applied. Veins were treated with liquid POL 1% for 1, 5 and 10 minutes.
678 A direct correlation between contact time and endothelial disruption
679 was observed (Fig. 9A), consistently with *in vitro* experiments using
680 sclerosing foams.

681 The same procedure was performed using PCFs and PEM, with an
682 exposure time of 1 minute. PEM was more effective at disrupting the
683 endothelium compared to DSS PCF, as expected from the results
684 obtained *in vitro*. There was also a significant difference between the
685 efficacy of foamed and liquid POL, suggesting that the dynamics of foam
686 drainage and the 'local' surfactant concentration levels may become
687 even more influential over foam therapeutic efficacy within a 3D
688 environment. Interestingly, despite TSS foam being less effective in
689 generating endothelial wall damage compared to PEM, differences
690 between mean values were not statistically significant. This finding is in
691 contrast with the *in vitro* results, where DSS foam was consistently
692 superior to TSS, although differences between PCFs significantly reduced

693 with increasing the treatment time both *ex vivo* (Fig. 9B) and *in vitro* (Fig.
694 6).

695

696 **Conclusive remarks**

697 To the best of the authors' knowledge, the present study represents the
698 first systematic comparison of the biological performance of different
699 sclerosing foam formulations, and a first attempt to correlate biological
700 performance with foam physical properties.

701 Overall, analyzing the results obtained using both the *in vitro* and *ex vivo*
702 models, PEM was the most effective foam for disrupting the endothelial
703 layer in a variety of tests and over different timescales of treatment. This
704 was attributed to the slower drainage dynamics of PEM compared to
705 PCFs, and – potentially – to the enhanced polidocanol mobility conferred
706 by its gas formulation. It was also shown that reducing the injection
707 needle diameter, increasing the volume of injected foam, and increasing
708 the treatment time, all contributed towards increasing treatment
709 efficacy (for all types of foam).

710 It should also be highlighted that PCFs made from room air have
711 associated risks, with persistent nitrogen bubbles in the circulation,
712 whereas PEM, made with a low-nitrogen CO₂:O₂ gas mixture, is not
713 associated with the risks of high-nitrogen content⁴⁹.

714 In conclusion, in this study we have developed a simple 2D *in vitro*
715 method to quantify the efficacy of foam sclerotherapy. The method
716 allows for the investigation of different clinical parameters such as
717 exposure time, injected volume, concentration of sclerosant, and needle
718 bore size amongst others. In addition, we utilized a more realistic
719 biological model, i.e. a three-dimensional *ex vivo* vein model, as a

720 further method of evaluation. However, we are aware that the both *in*
721 *vitro* and *ex vivo* models do not fully reflect the clinical setting for foam
722 sclerotherapy, because they are employed in static conditions and thus
723 do not replicate foam-induced blood displacement, and also do not
724 provide a faithful replication of the varicose vein architecture. Our group
725 is therefore working to overcome this limitation by developing a 3D *in*
726 *vitro* platform applied in dynamic conditions, moving closer to models
727 that mimic the physiological and clinical environments, ultimately, as an
728 alternative to animal testing. Despite the current limitations, the two
729 models generated reliable and reproducible results, and they can be
730 employed in parallel in order to compare the performance of sclerosing
731 treatments. In our series of comparisons using both models, we
732 confirmed findings from our previous physical studies^{17,23,50} that PEM
733 presents a better overall performance compared to PCFs across a variety
734 of biological efficacy tests.

735

736 **Methods**

737 ***Foam production methods***

738 In this study, the commercially available Varithena 1% varicose vein
739 treatment (referred to as polidocanol injectable foam or PEM) was
740 employed, and its performance compared with physician compounded
741 foams (PCFs) made using different foam generation methods.

742 With respect to PCFs, POL (Croda, Goole, UK) at a concentration of 1%
743 (v/v in buffered saline) was employed as a surfactant agent. Foams were
744 produced by mixing liquid and room air (at a volume ratio of 1:4,
745 respectively) as this is the most widely used formulation adopted in
746 clinical practice⁵¹. Two methods of PCF production were investigated: (i)

747 DSS and (ii) Tessari. In the DSS method, foam was produced by passing
748 the POL solution from a 5 mL syringe, ten times into and out of a 10 mL
749 syringe. Silicon-free syringes (BD Biosciences, USA) were connected *via* a
750 Combidyn adapter (B. Braun Melsungen, Germany). In the Tessari
751 method, the straight connector was replaced with a three-way valve
752 that was set at a 30° off-set. Polidocanol endovenous microfoam (PEM)
753 Varithena is a commercially available microfoam combination produced
754 by Provensis Ltd (a BTG International group company, London, UK)
755 consisting of a proprietary 35:65 CO₂:O₂ gas mixture with ultralow
756 nitrogen content (<0.8%) and 1% POL solution. The foam is contained
757 within a pressurized canister combined with a transfer unit, which can
758 be connected to a 10 mL silicone-free syringe. Once connected, the
759 syringe is filled with 5 mL of foam. Experiments were conducted at room
760 temperature (23 °C), after foam production, and foams were produced
761 by the same operator.

762

763 ***In vitro* test method to evaluate performance of sclerosants**

764 A method was designed to test the efficacy of sclerosants, in both their
765 liquid and foamed form. A monolayer of human umbilical vein
766 endothelial cells (HUVECs) was cultured until confluence into 24 well-
767 plates (Sigma-Aldrich Co. LLC., USA). The following steps were designed
768 to mimic different phases of sclerosant's injection: (i) the HUVECs media
769 (HM) (Thermo Fisher Scientific Inc., USA) was removed from the wells, in
770 order to achieve direct contact between cells and sclerosants; (ii) the cell
771 monolayer was exposed to various sclerosing agents during a fixed time
772 of approximately 15 seconds, reproducing the injection process; (iii)
773 sclerosants were removed using a pipette, and cells were washed once

774 using a HBSS buffer (Hanks Buffered Saline Solution, Sigma-Aldrich Co.
775 LLC., USA) mimicking the sclerosant's displacement and dilution caused
776 by blood flow; and (iv) fresh medium was added. Sclerosants' injection
777 was performed manually using a 5 mL syringe (BD Biosciences, USA),
778 with and without a needle. The syringe was kept perpendicular to the
779 bottom plane of the well, and the sclerosing agent was injected from the
780 centre of the well. The standard procedure was carried out under these
781 conditions: 1 mL of liquid/foamed sclerosant, 15 seconds of exposure
782 time, and a 16G needle employed for injection. Following treatment, the
783 medium was removed and cells were washed gently in warm HBSS,
784 which was subsequently removed by aspiration.

785 Cells were subsequently fixed with the addition of 0.7 mL of a 10%
786 formyl saline solution (Sigma-Aldrich Co. LLC., USA). Fixative was then
787 removed by aspiration, and a methylene blue solution (MB) 1 % (w/v
788 methylene blue in 0.01 M-borate buffer pH8.5) (Sigma-Aldrich Co. LLC.,
789 USA) was added to each well.

790 The MB solution was then transferred to a 96 well flat-bottomed plate
791 (Sigma-Aldrich Co. LLC., USA), with 0.1 mL being added in duplicate
792 wells. A control set of untreated cells was used to generate a standard
793 curve of MB equivalent to serial dilutions of 100% cells. MB absorbance
794 was then measured using a plate reading spectrophotometer, at a
795 wavelength of 650 nm. Absorbance values of treated cells were then
796 converted into a percentage of attached cells, using a calibration
797 function. The number of cells attached is a measure of the number of
798 live cells upon treatment. The latter was derived from linear regression
799 of experimental data points, using Prism software (GraphPad Software,
800 Inc., USA).

801 During the study different parameters were varied, such as (i) volume
802 injected, (ii) exposure time, (iii) needle bore size, and (iv) gas
803 formulation. The volumes of injected sclerosant investigated were 0.5, 1,
804 and 2 mL, whilst the exposure times investigated were 15, 30, 60 and
805 120 seconds. The needles employed were selected based on the
806 common clinical practice, and had an inner diameter of 30G, 25G and
807 21G, corresponding to 0.16, 0.26 and 0.51 mm, respectively (BD
808 Biosciences, USA). In order to investigate the effect of the gas
809 formulation, PEM foam was produced using different gas constituents
810 (in addition to the commercial formulation), including 100% O₂ and
811 room air.

812

813 **Measurement of foam drainage dynamics**

814 A transparent glass vial (outer diameter: 10.9 mm) was placed within a
815 custom-built photographic chamber with a black background. A charge-
816 coupled device (CCD) camera (Canon EOS06) was positioned in front of
817 the vial. The foam was produced and injected (2 mL) inside the vial,
818 using different types of needle (16G, 25G, and 30G) and different foam
819 production techniques (PCFs and PEM). The experiment was repeated
820 five times, for each condition investigated.

821 The time between foam injection and the beginning of the video
822 recording was approximately 23 seconds. Videos were recorded for 5
823 minutes (25 frames per second), and subsequently analysed using a
824 Phyton script developed in-house. The script loads the video and
825 extracts its individual frames. It then performs the following steps in a
826 semi-automated fashion:

827 (i) User selection of a region of interest for analysis.

828 (ii) Calibrating the image dimensions, by converting pixels into
829 physical units. This is carried out by user selection of a feature
830 of known length (for instance, the diameter of the vial).

831 (iii) Converting the image into a black and white binary format,
832 where black corresponds to the liquid phase and white
833 corresponds to foam.

834 (iv) The centerline of the selected region of interest is determined,
835 and a rectangular window for analysis is defined. The width of
836 this window extends 5 pixels away from the centerline, at both
837 sides. It was decided to analyse foam drainage within an
838 interrogation window (as opposed to a line), as data would be
839 less sensitive to experimental noise.

840 (v) Automated counting of the number of black pixels along the
841 height of the interrogation window. An average height was
842 determined, which corresponded to the height of liquid POL in
843 the vial (upon dimensional calibration).

844 (vi) Steps (iii)-(v) were performed automatically on each image
845 frame, and a plot of the liquid height (in mm) vs. time was
846 generated. This provided a quantitative measure of foam
847 drainage dynamics.

848

849 **Measurement of bubble size distribution**

850 The bubble size distribution was measured using an in-house glass-plate
851 method, as described in our earlier study²³. Briefly, an aliquot of freshly
852 generated foam (volume: 49 μ L) was placed on a glass plate and
853 immediately covered by another. The plates were thick enough not to
854 bend, and were separated by a 32 μ m thick gap.

855 A flattened foam monolayer was thus created, which comprised 32 μ m
856 high, flat cylindrical bubbles. A light microscope and camera (AxioCam
857 ICc 1, Carl Zeiss Microscopy, Cambridge, UK), with lighting adjusted to
858 create sharp images of circular boundaries, were employed to capture
859 sequential image fields. A built-in software was used to “stitch” fields
860 together. Each individual bubble was identified and the bubble diameter
861 measured using the image analysis (AxioVision, Zeiss) programme, with
862 bespoke BubbleSizerMeasure macro. Approximately 2000-3000 bubbles
863 per sample were measured using this procedure. The experiment was
864 repeated five times, for each condition investigated.

865

866 **Microscope imaging of treated cells**

867 Bright field images of HUVECs were acquired with an optical microscope
868 (Olympus, CKX41, Japan). Images were taken of live samples
869 immediately after treatment, with phase contrast microscopy (objective
870 magnification 4x).

871

872 ***Ex vivo* test method to evaluate performance of sclerosants**

873 This part of the study was carried out in accordance with the Human
874 Tissue Act (2004) and the recommendations of Southampton & South
875 West Hampshire Research Ethics Committee B with Governance
876 provided by the University of Southampton Research Governance Office.
877 Umbilical cords were collected from the Princess Anne Hospital
878 (Southampton, UK) from non-complicated natural vaginal births
879 following agreed ethical collection protocols (Local Research Ethical
880 Committee (LREC); Ref: 07/H0502/83). The umbilical cord was cut from

881 the placenta and sectioned into 10 cm long segments. A steel feeding
882 cannula (16G) was inserted into the vein. The cannula was clamped in
883 place and attached to a 30 mL syringe filled with a physiological saline
884 "cord buffer". The vein was washed until the fluid exiting the other end
885 of the cord was clear. The treated umbilical sample was then cut into 5
886 vein segments. The vein was filled with a collagenase solution at 0.1% in
887 phosphate buffered saline (PBS, Worthington Biochemical Corp., USA) or
888 with different types of sclerosing agent. The cord segment was then
889 incubated at 37°C for 10 min. After incubation, the vein was washed
890 again with cord buffer, and filled with 2 mL of Evans blue (EB) (0.33% EB
891 and bovine serum albumin, BSA). The cord was then incubated at 37°C
892 for 20 min. After incubation, Evans blue was washed out using the cord
893 buffer.

894 Each cord segment was cut in smaller pieces (0.5 cm long), which were
895 weighed and inserted in 1.5 mL tubes. A formamide solution was added
896 into each tube, and all tubes were transferred into a 62°C water bath
897 and incubated overnight in order to extract EB from the tissue. Tubes
898 were centrifuged at 13000 rpm for 20 minutes at 20°C. The supernatant
899 was then transferred into a 96 well flat-bottomed plate. The EB stock
900 solution was serially diluted to generate a standard curve. EB
901 absorbance was then measured on a plate reading spectrophotometer,
902 at a wavelength of 610 nm. The absorbance from a calibration standard
903 curve was used to calculate unknowns, using the Prism software
904 (GraphPad Software, Inc., USA) and applying a hyperbolic interpolation
905 and regression.

906 Afterwards, the amount of extravasated Evans blue (in mg) per gram of
907 tissue was calculated.

908

909 **Statistical analysis**

910 The comparisons between treatments were performed using unpaired
911 Student's t-test with Welch's correction, with appropriate post-hoc
912 tests. Statistical significance was assumed for $p < 0.05$. All statistical tests
913 were performed with Prism software. Data were reported either as the
914 mean \pm standard deviation, or in the form of a Tukey's box plot
915 (comprising 25th percentile, median, and 75th percentile).

916

917

918

919 **Competing Interests**

920 EB is in receipt of a Doctoral Training Partnership funded from EPSRC
921 and Biocompatibles UK Ltd, a BTG International group company. JP, LQ,
922 XZ, MH, TMM and DC declare no potential conflict of interest. ALL, SAJ
923 and VAP are paid employees of Biocompatibles UK Ltd. The
924 commercially-available sclerosant used in this study (Varithena) is
925 manufactured by Biocompatibles UK Ltd on behalf of Provensis Ltd.

926

927 **Author Contribution**

928 DC, TM, ALL, SAJ designed and supervised the study; XZ and MH
929 contributed to the supervision of the study; EB and JP performed the
930 experiments; EB, DC, TM, ALL wrote and revised the main manuscript
931 text; EB generated the manuscript's figures; EB and LQ developed the
932 script for determining foam drainage dynamics; SAJ, VAP, MH, XZ revised
933 and edited the manuscript.

934

935

936

937 **References**

- 938 1. Spiridon, M. & Corduneanu, D. Chronic venous insufficiency: a frequently
939 underdiagnosed and undertreated pathology. *Ma Edica* **12**, 59 (2017).
- 940 2. Gloviczki, P. *et al.* The care of patients with varicose veins and associated chronic
941 venous diseases: Clinical practice guidelines of the Society for Vascular Surgery
942 and the American Venous Forum. *J. Vasc. Surg.* **53**, 2S–48S (2011).
- 943 3. Rasmussen, L. H. *et al.* Randomized clinical trial comparing endovenous laser
944 ablation, radiofrequency ablation, foam sclerotherapy and surgical stripping for
945 great saphenous varicose veins. *Br. J. Surg.* **98**, 1079–1087 (2011).
- 946 4. Bountouoglou, D. G. *et al.* Ultrasound-guided Foam Sclerotherapy Combined
947 with Sapheno-femoral Ligation Compared to Surgical Treatment of Varicose
948 Veins: Early Results of a Randomised Controlled Trial. *Eur. J. Vasc. Endovasc.*
949 *Surg.* **31**, 93–100 (2006).
- 950 5. Eckmann, D. M. Polidocanol for endovenous microfoam sclerosant therapy.
951 *Expert Opin. Investig. Drugs* **18**, 1919–1927 (2009).
- 952 6. Smith, P. C. Foam and liquid sclerotherapy for varicose veins. *Phlebology* **24**, 62–
953 72 (2009).
- 954 7. Hamel-Desnos, C. *et al.* Evaluation of the efficacy of polidocanol in the form of
955 foam compared with liquid form in sclerotherapy of the greater saphenous vein:
956 initial results. *Dermatol. Surg.* **29**, 1170–1175 (2003).
- 957 8. Parsi, K., Exner, T., Connor, D. E., Ma, D. D. F. & Joseph, J. E. In Vitro Effects of
958 Detergent Sclerosants on Coagulation, Platelets and Microparticles. *Eur. J. Vasc.*
959 *Endovasc. Surg.* **34**, 731–740 (2007).

960 9. Parsi, K., Exner, T., Low, J., Fung Ma, D. D. & Joseph, J. E. In Vitro Effects of
961 Detergent Sclerosants on Clot Formation and Fibrinolysis. *Eur. J. Vasc. Endovasc.*
962 *Surg.* **41**, 267–277 (2011).

963 10. Parsi, K., Exner, T., Ma, D. D. F. & Joseph, J. E. In vitro effects of detergent
964 sclerosants on fibrinolytic enzymes and inhibitors. *Thromb. Res.* **126**, 328–336
965 (2010).

966 11. Parsi, K. *et al.* The Lytic Effects of Detergent Sclerosants on Erythrocytes,
967 Platelets, Endothelial Cells and Microparticles are Attenuated by Albumin and
968 other Plasma Components in Vitro. *Eur. J. Vasc. Endovasc. Surg.* **36**, 216–223
969 (2008).

970 12. Jia, X. *et al.* Systematic review of foam sclerotherapy for varicose veins. *Br. J.*
971 *Surg.* **94**, 925–936 (2007).

972 13. Cavezzi, A. & Tessari, L. Foam sclerotherapy techniques: different gases and
973 methods of preparation, catheter versus direct injection. *Phlebology* **24**, 247–
974 251 (2009).

975 14. Peterson, J. D. & Goldman, M. P. An Investigation into the Influence of Various
976 Gases and Concentrations of Sclerosants on Foam Stability: *Dermatol. Surg.* **37**,
977 12–17 (2011).

978 15. Peterson, J. D. & Goldman, M. P. An investigation of side-effects and efficacy of
979 foam-based sclerotherapy with carbon dioxide or room air in the treatment of
980 reticular leg veins: a pilot study. *Phlebol. J. Venous Dis.* **27**, 73–76 (2012).

981 16. Ceulen, R. P., Sommer, A. & Vernooy, K. Microembolism during foam
982 sclerotherapy of varicose veins. *N. Engl. J. Med.* **358**, 1525–1526 (2008).

983 17. Carugo, D. *et al.* The role of clinically-relevant parameters on the cohesiveness of
984 sclerosing foams in a biomimetic vein model. *J. Mater. Sci. Mater. Med.* **26**,
985 (2015).

986 18. Nastasa, V. *et al.* Properties of polidocanol foam in view of its use in
987 sclerotherapy. *Int. J. Pharm.* **478**, 588–596 (2015).

988 19. Peterson, J. D. & Goldman, M. P. An Investigation into the Influence of Various
989 Gases and Concentrations of Sclerosants on Foam Stability: *Dermatol. Surg.* **37**,
990 12–17 (2011).

991 20. Goldman, M. P., Weiss, R. A. & Guex, J.-J. *Sclerotherapy: treatment of varicose*
992 *and telangiectatic leg veins.* (2017).

993 21. Valenzuela, G. C., Wong, K., Connor, D. E., Behnia, M. & Parsi, K. Foam
994 Sclerosants are More Stable at Lower Temperatures. *Eur. J. Vasc. Endovasc. Surg.*
995 **46**, 593–599 (2013).

996 22. Wong, K., Chen, T., Connor, D. E., Behnia, M. & Parsi, K. Basic physicochemical and
997 rheological properties of detergent sclerosants. *Phlebol. J. Venous Dis.* **30**, 339–
998 349 (2015).

999 23. Carugo, D. *et al.* Benefits of polidocanol endovenous microfoam (Varithena®)
1000 compared with physician-compounded foams. *Phlebology* **31**, 283–295 (2016).

1001 24. McAree, B. *et al.* Comparative Stability of Sodium Tetradecyl Sulphate (STD) and
1002 Polidocanol Foam: Impact on Vein Damage in an In-vitro Model. *Eur. J. Vasc.*
1003 *Endovasc. Surg.* **43**, 721–725 (2012).

1004 25. Hamel-Desnos, C. M., Desnos, P. R., Ferre, B. & Le Querrec, A. In Vivo Biological
1005 Effects of Foam Sclerotherapy. *Eur. J. Vasc. Endovasc. Surg.* **42**, 238–245 (2011).

1006 26. Whiteley, M. S., Dos Santos, S. J., Fernandez-Hart, T. J., Lee, C. T. D. & Li, J. M.

1007 Media Damage Following Detergent Sclerotherapy Appears to be Secondary to

1008 the Induction of Inflammation and Apoptosis: An Immunohistochemical Study

1009 Elucidating Previous Histological Observations. *Eur. J. Vasc. Endovasc. Surg.* **51**,

1010 421–428 (2016).

1011 27. Connor, D. E., Cooley-Andrade, O., Goh, W. X., Ma, D. D. F. & Parsi, K. Detergent

1012 Sclerosants are Deactivated and Consumed by Circulating Blood Cells. *Eur. J.*

1013 *Vasc. Endovasc. Surg.* **49**, 426–431 (2015).

1014 28. Kobayashi, S., Crooks, S. & Eckmann, D. M. Dose- and Time-Dependent Liquid

1015 Sclerosant Effects on Endothelial Cell Death. *Dermatol. Surg.* **32**, 1444–1452

1016 (2006).

1017 29. Mol, W. *et al.* Evaluation of the Sclerotherapeutic Efficacy of Ethanol,

1018 Polidocanol, and OK-432 Using an In Vitro Model. *Dermatol. Surg.* **0**,

1019 071009211231009–??? (2007).

1020 30. Erkin, A., Kosemehmetoglu, K., Diler, M. S. & Koksal, C. Evaluation of the

1021 Minimum Effective Concentration of Foam Sclerosant in an Ex-vivo Study. *Eur. J.*

1022 *Vasc. Endovasc. Surg.* **44**, 593–597 (2012).

1023 31. Ikponmwosa, A., Abbott, C., Graham, A., Homer-Vanniasinkam, S. & Gough, M. J.

1024 The Impact of Different Concentrations of Sodium Tetradecyl Sulphate and Initial

1025 Balloon Denudation on Endothelial Cell Loss and Tunica Media Injury in a Model

1026 of Foam Sclerotherapy. *Eur. J. Vasc. Endovasc. Surg.* **39**, 366–371 (2010).

1027 32. Orsini, C. & Brotto, M. Immediate Pathologic Effects on the Vein Wall of Foam

1028 Sclerotherapy. *Dermatol. Surg.* **33**, 1250–1254 (2007).

1029 33. Yamaki, T. *et al.* Prospective Randomised Comparative Study of Visual Foam

1030 Sclerotherapy Alone or in Combination with Ultrasound-guided Foam

1031 Sclerotherapy for Treatment of Superficial Venous Insufficiency: Preliminary

1032 Report. *Eur. J. Vasc. Endovasc. Surg.* **43**, 343–347 (2012).

1033 34. Cameron, E., Chen, T., Connor, D. E., Behnia, M. & Parsi, K. Sclerosant Foam

1034 Structure and Stability is Strongly Influenced by Liquid Air Fraction. *Eur. J. Vasc.*

1035 *Endovasc. Surg.* **46**, 488–494 (2013).

1036 35. Wong, K. C., Chen, T., Connor, D. E., Behnia, M. & Parsi, K. Computational Fluid

1037 Dynamics of Liquid and Foam Sclerosant Injection in a Vein Model. *Appl. Mech.*

1038 *Mater.* **553**, 293–298 (2014).

1039 36. Hamel-Desnos, C. *et al.* Evaluation of the efficacy of polidocanol in the form of

1040 foam compared with liquid form in sclerotherapy of the greater saphenous vein:

1041 initial results. *Dermatol. Surg.* **29**, 1170–1175 (2003).

1042 37. Erkin, A., Kosemehmetoglu, K., Diler, M. S. & Koksal, C. Evaluation of the

1043 Minimum Effective Concentration of Foam Sclerosant in an Ex-vivo Study. *Eur. J.*

1044 *Vasc. Endovasc. Surg.* **44**, 593–597 (2012).

1045 38. Van Deurzen, B., Ceulen, R. P., Tellings, S. S., Van Der Geld, C. & Nijsten, T.

1046 Polidocanol Concentration and Time Affect the Properties of Foam Used for

1047 Sclerotherapy: *Dermatol. Surg.* **37**, 1448–1455 (2011).

1048 39. Kroezen, A. B. J., Wassink, J. G. & Schipper, C. A. C. The flow properties of foam.

1049 *J. Soc. Dye. Colour.* **104**, 393–400 (1988).

1050 40. Bikerman, J. J. *Foams*. (Springer Berlin Heidelberg, 1973). doi:10.1007/978-3-

1051 642-86734-7

1052 41. Koehler, S. A., Hilgenfeldt, S. & Stone, H. A. A Generalized View of Foam

1053 Drainage: Experiment and Theory. *Langmuir* **16**, 6327–6341 (2000).

1054 42. O'Neill, R. *et al.* Critical review: Injectability of calcium phosphate pastes and

1055 cements. *Acta Biomater.* **50**, 1–19 (2017).

1056 43. Saint-Jalmes, A. Physical chemistry in foam drainage and coarsening. *Soft Matter*

1057 **2**, 836 (2006).

1058 44. Cohen-Addad, S., Höhler, R. & Pitois, O. Flow in Foams and Flowing Foams. *Annu.*

1059 *Rev. Fluid Mech.* **45**, 241–267 (2013).

1060 45. Sun, Y., Qi, X., Sun, H., Zhao, H. & Li, Y. Understanding about How Different

1061 Foaming Gases Effect the Interfacial Array Behaviors of Surfactants and the Foam

1062 Properties. *Langmuir* **32**, 7503–7511 (2016).

1063 46. Dietzek, C. L. Sclerotherapy: Introduction to Solutions and Techniques. *Perspect.*

1064 *Vasc. Surg. Endovasc. Ther.* **19**, 317–324 (2007).

1065 47. Saint-Jalmes, A., Vera, M. U. & Durian, D. J. Uniform foam production by

1066 turbulent mixing: new results on free drainage vs. liquid content. *Eur. Phys. J. B-*

1067 *Condens. Matter Complex Syst.* **12**, 67–73 (1999).

1068 48. Nimptsch, A. *et al.* Quantitative analysis of denatured collagen by collagenase

1069 digestion and subsequent MALDI-TOF mass spectrometry. *Cell Tissue Res.* **343**,

1070 605–617 (2011).

1071 49. Todd, K. L., Wright, D. & for the VANISH-2 Investigator Group. The VANISH-2

1072 study: a randomized, blinded, multicenter study to evaluate the efficacy and

1073 safety of polidocanol endovenous microfoam 0.5% and 1.0% compared with

1074 placebo for the treatment of saphenofemoral junction incompetence. *Phlebol. J.*

1075 *Venous Dis.* **29**, 608–618 (2014).

1076 50. Carugo, D. *et al.* A novel biomimetic analysis system for quantitative
1077 characterisation of sclerosing foams used for the treatment of varicose veins. *J.*
1078 *Mater. Sci. Mater. Med.* **24**, 1417–1423 (2013).

1079 51. Rabe, E. & Pannier, F. Sclerotherapy of Varicose Veins with Polidocanol Based on
1080 the Guidelines of the German Society of Phlebology: *Dermatol. Surg.* **36**, 968–
1081 975 (2010).

1082

1083

1084

1085 **Figure legends**

1086

1087 *Figure 1. In vitro evaluation of the effect of liquid polidocanol concentration on*
1088 *HUVECs.* 1% polidocanol (in PBS) was serially diluted seven times using PBS. HUVECs
1089 were treated with 1 mL polidocanol solutions for 15 seconds. Data are reported as
1090 percentage of attached cells (compared to untreated cells), determined via
1091 methylene blue method. The experiment was repeated six times, and results are
1092 reported as mean value \pm standard deviation.

1093

1094 *Figure 2. Assessment of polidocanol depletion in vitro.* POL solutions at different
1095 volumetric concentrations (1%, 0.03% and 0.02%, in PBS) were injected into one well
1096 and left for 15s to interact with HUVECs. They were then removed and injected in a
1097 neighbouring well. The process was repeated to treat five wells serially, in order to
1098 investigate potential depletion of active polidocanol. Data are reported as % of
1099 attached cells, determined via methylene blue assay. The experiment was repeated
1100 six times, and results are reported as mean value \pm standard deviation.

1100

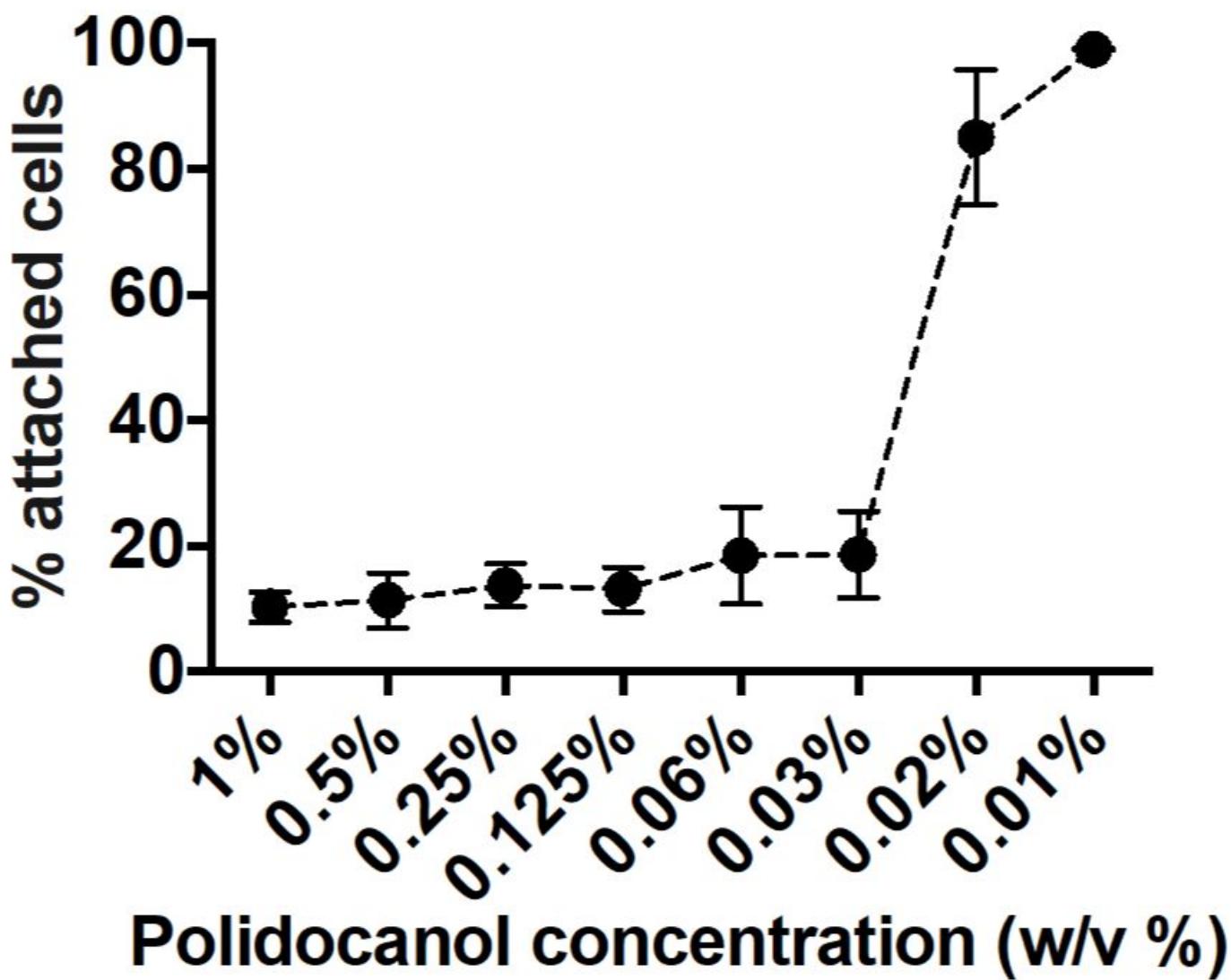
1101 *Figure 3. In vitro evaluation of the effect of needle bore size on HUVECs, using*
1102 *different types of foam.* Treatment efficacy was evaluated at varying injection
1103 needle diameters (30G, 25G and 16G) and foam production methods [PEM (brown),
1104 DSS (pink), and TSS (green)]. Experiments were performed with a 15 seconds
1105 exposure time and 1 mL of injected foam. Data are reported (Tukey's box plot) as %
1106 of cells attached after treatment (compared to untreated cells), determined via
1107 methylene blue method. The effect of needle bore size (for each foam production
1108 method) is illustrated in (A), while a comparison between foam production methods
1109 (for each needle bore size) is illustrated in (B). The experiment was repeated six
1110 times. One asterisk (*) indicates $p \leq 0.05$, three asterisks (****) indicate $p \leq 0.001$, and
1111 four asterisks (****) indicate $p \leq 0.0001$.

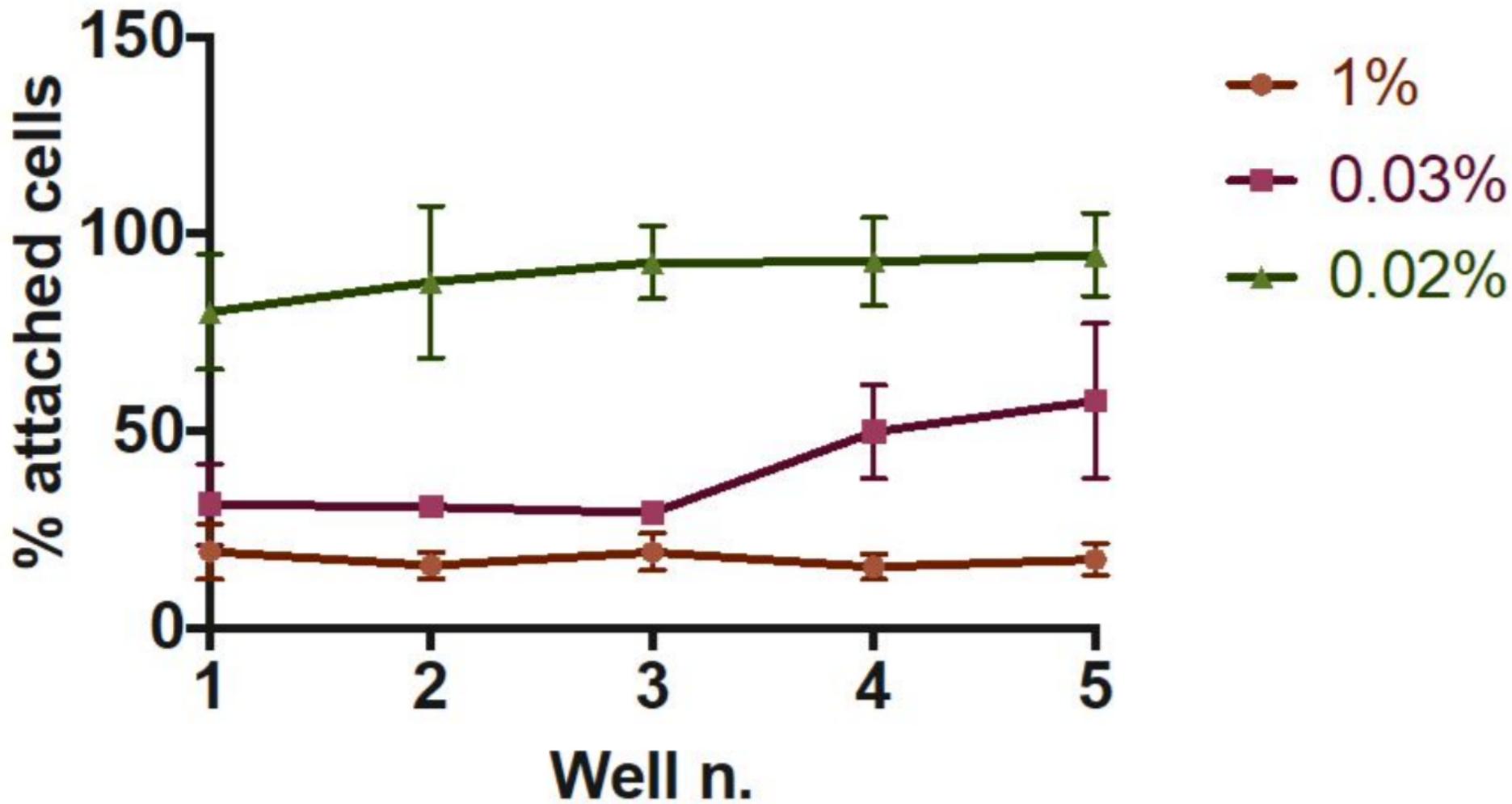
1112

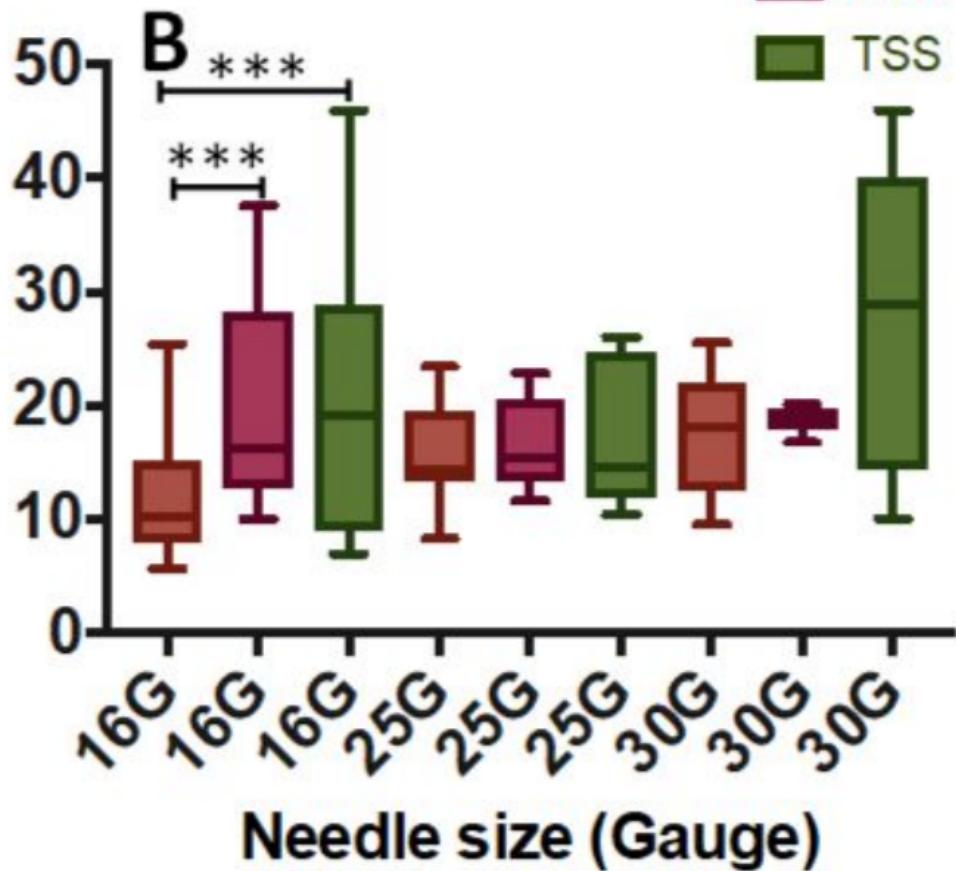
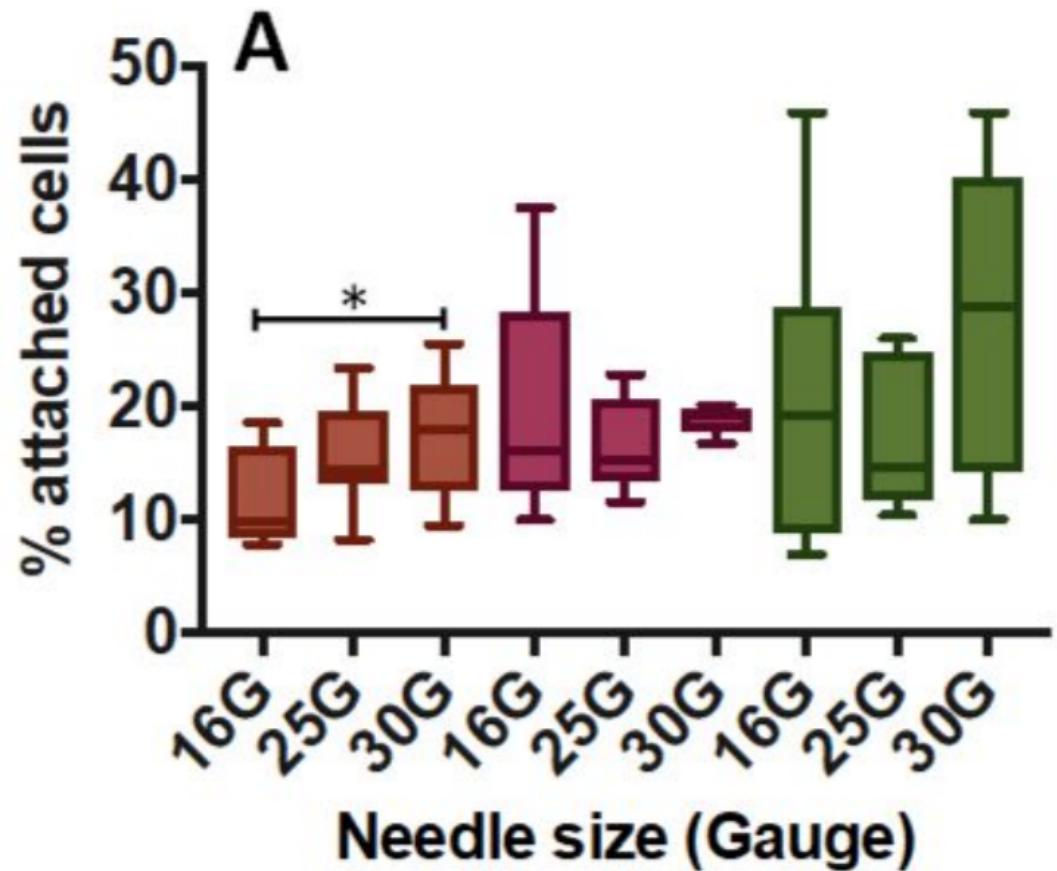
1113 *Figure 4. Quantification of the effect of needle bore size on foam drainage*
dynamics. The height of liquid POL solution at the bottom of the vial was quantified

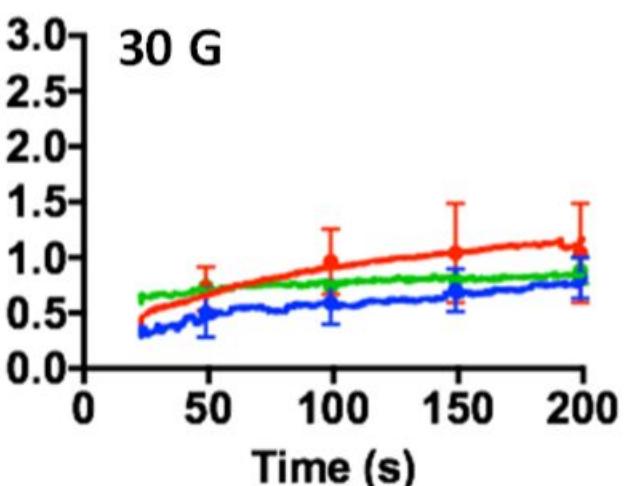
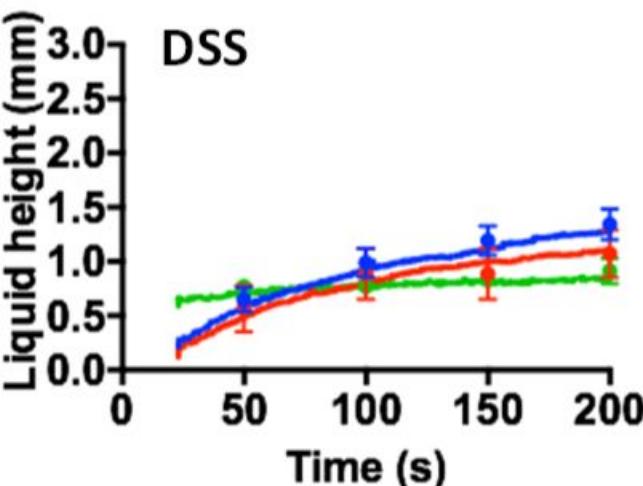
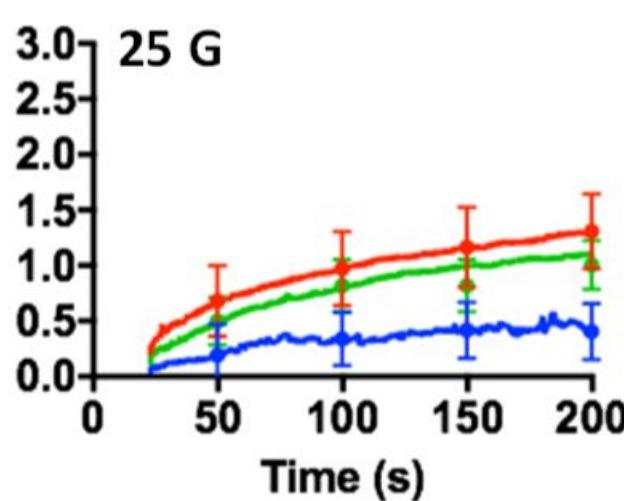
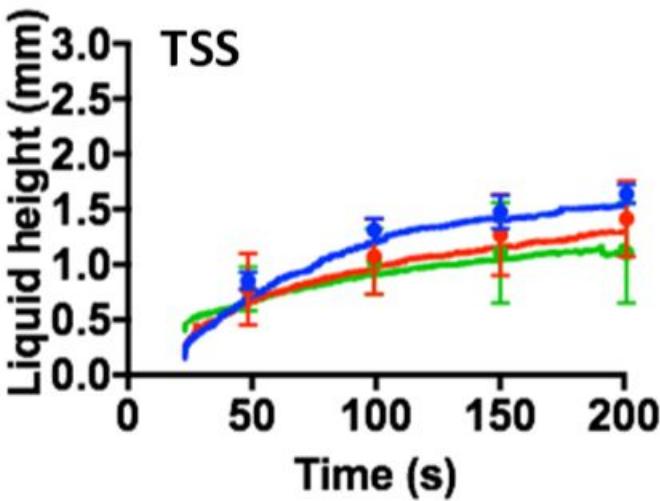
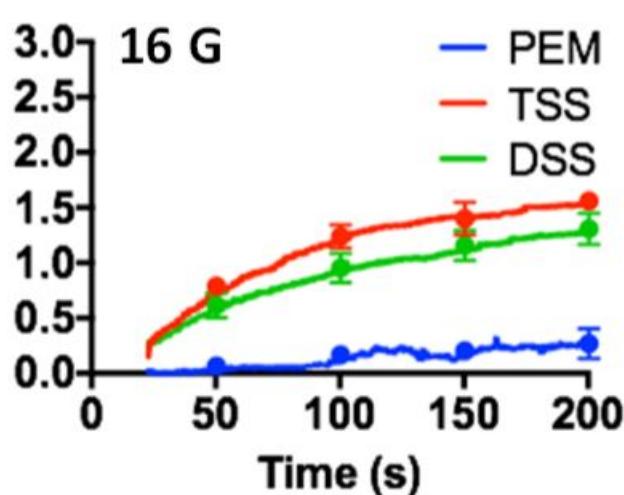
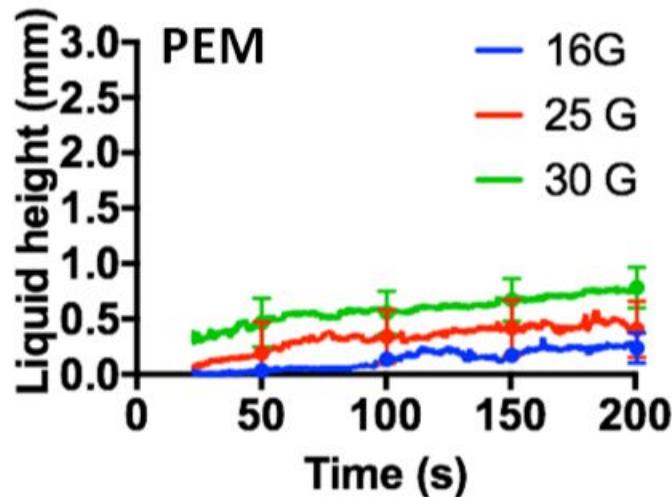
1114 over time (up to 200 seconds; representative time points are shown at 50, 100, 150
1115 and 200s), using a custom-built Phyton script. On the left column, results are
1116 reported to illustrate the comparison between needle diameters for a fixed foam
1117 production method [30G (green), 25G (red), and 16G (blue)]. On the right column,
1118 results are reported to illustrate the comparison between foam production methods,
1119 for a fixed needle diameter [PEM (blue), TSS (red), and DSS (green)]. The experiment
1120 was repeated five times, for each condition investigated.

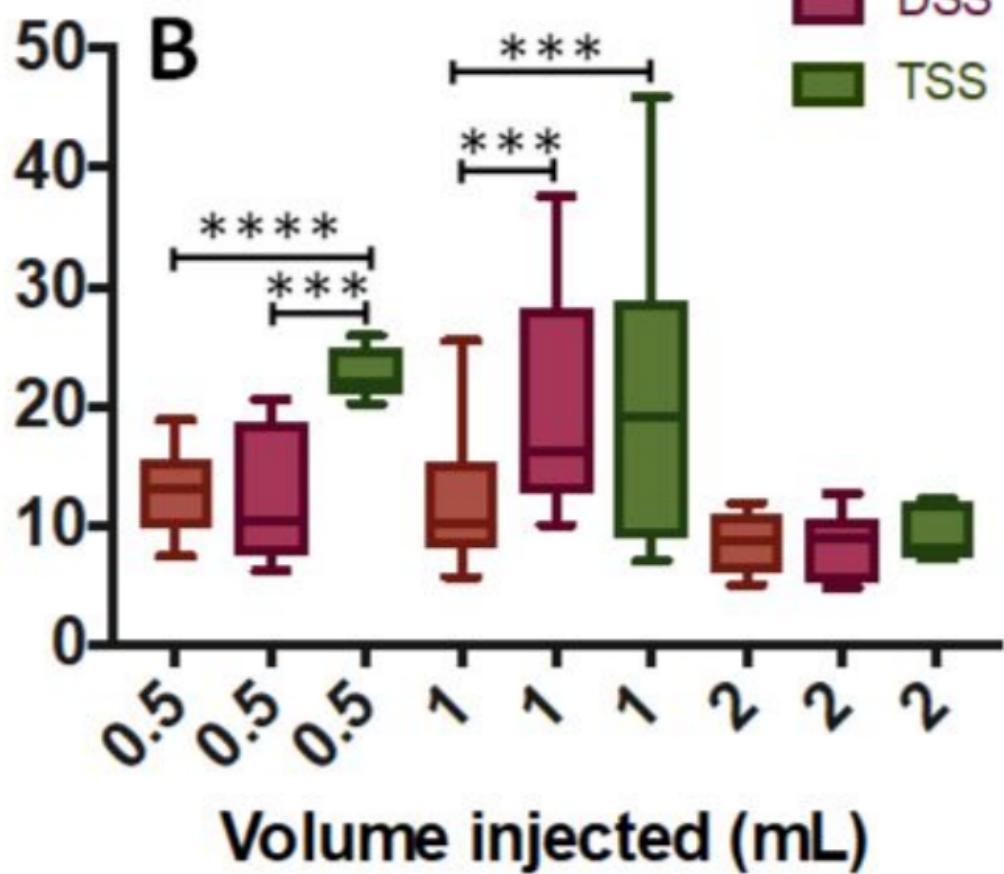
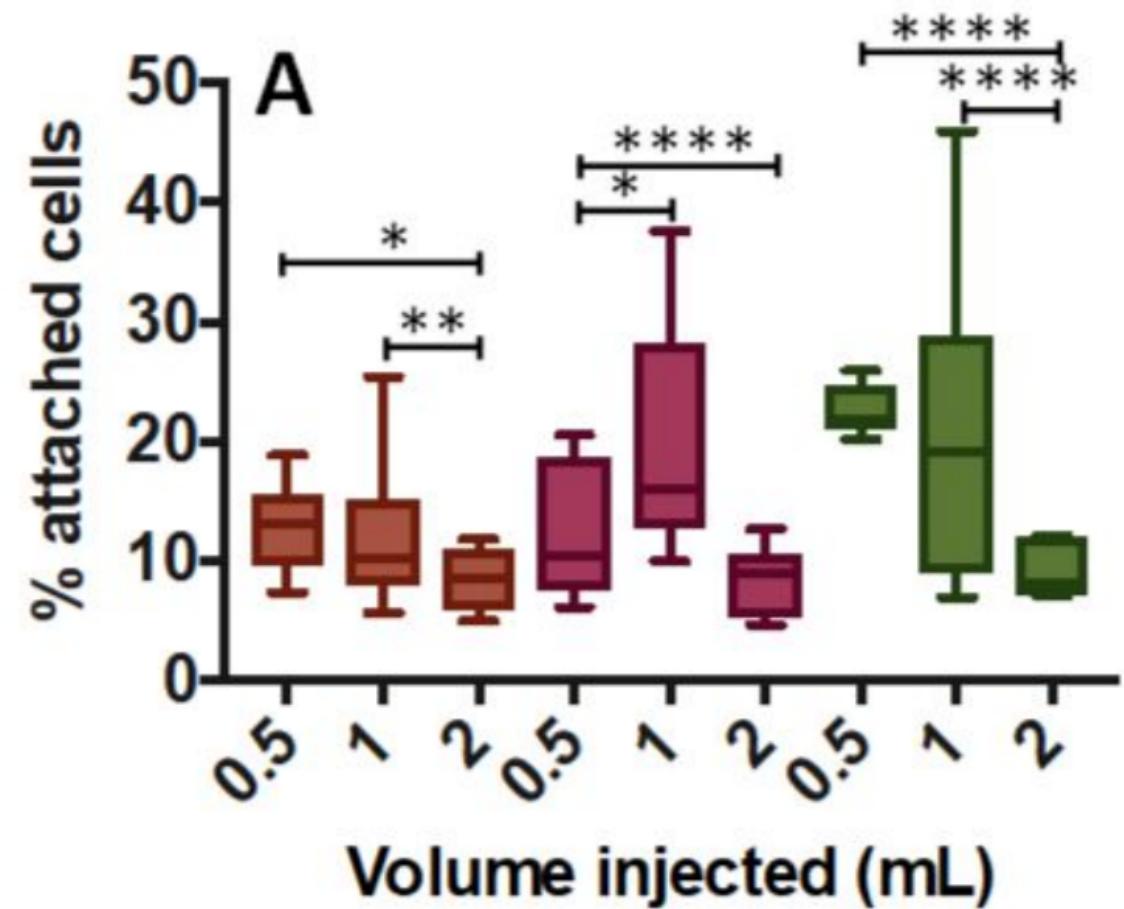
1121 **Figure 5. In vitro evaluation of the effect of foam volume on HUVECs, using**
1122 **different types of foam.** Different foam production methods were investigated,
1123 including PEM (brown), DSS (pink), and TSS (green). The volume injected was 0.5 mL,
1124 1 mL, or 2 mL, for each type of foam. Data are reported (Tukey's box plot) as % of
1125 cells attached after treatment (compared to untreated cells), determined via
1126 methylene blue method. The effect of injected foam volume (for each foam
1127 production method) is illustrated in (A), while a comparison between foam
1128 production methods (for each foam volume) is illustrated in (B). The experiment was
1129 repeated four times. One asterisk (*) indicates $p \leq 0.05$, two asterisks (**) indicate $p \leq$
1130 0.01 , three asterisks (***) indicate $p \leq 0.001$, and four asterisks (****) indicate $p \leq$
1131 0.0001 .

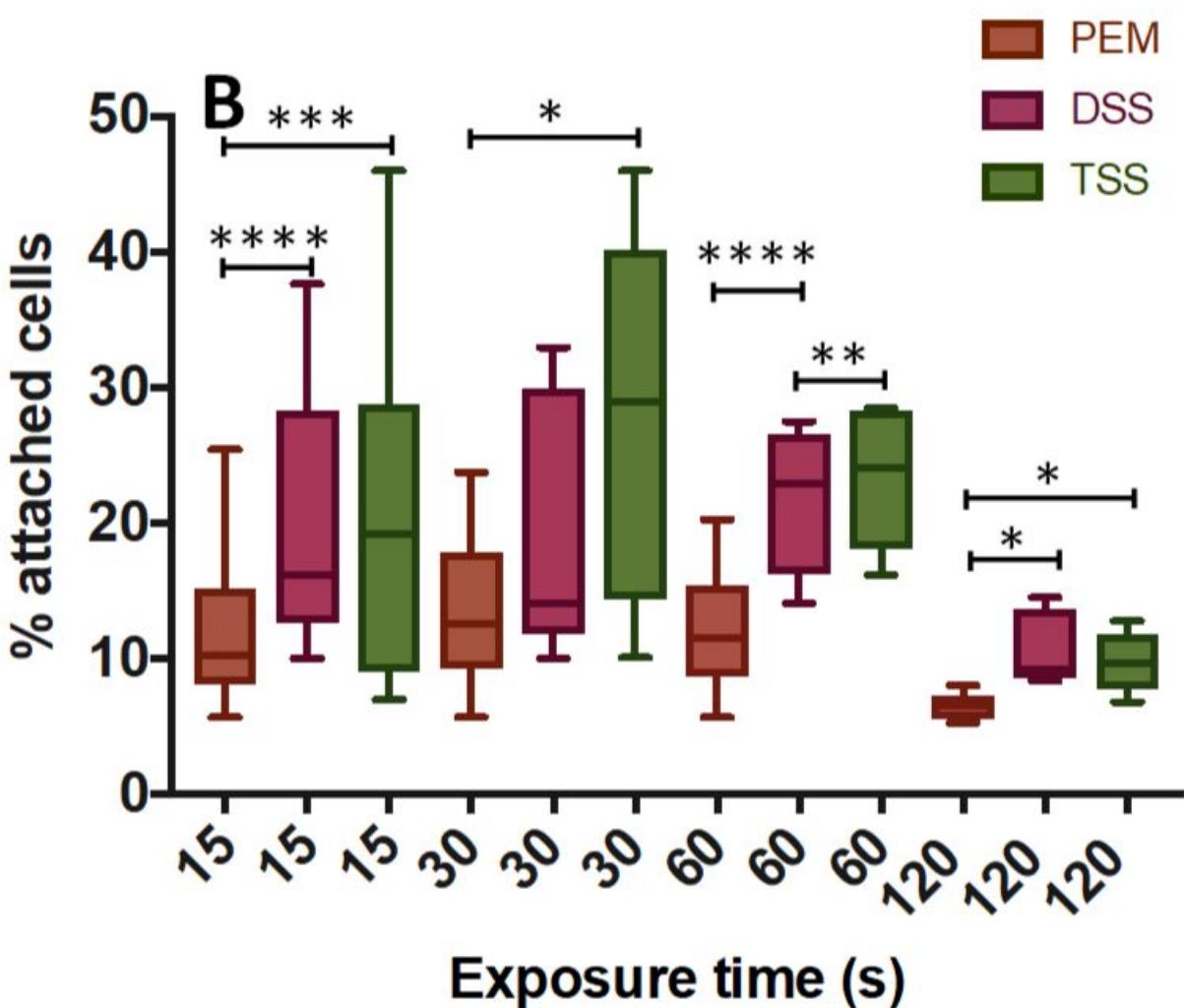
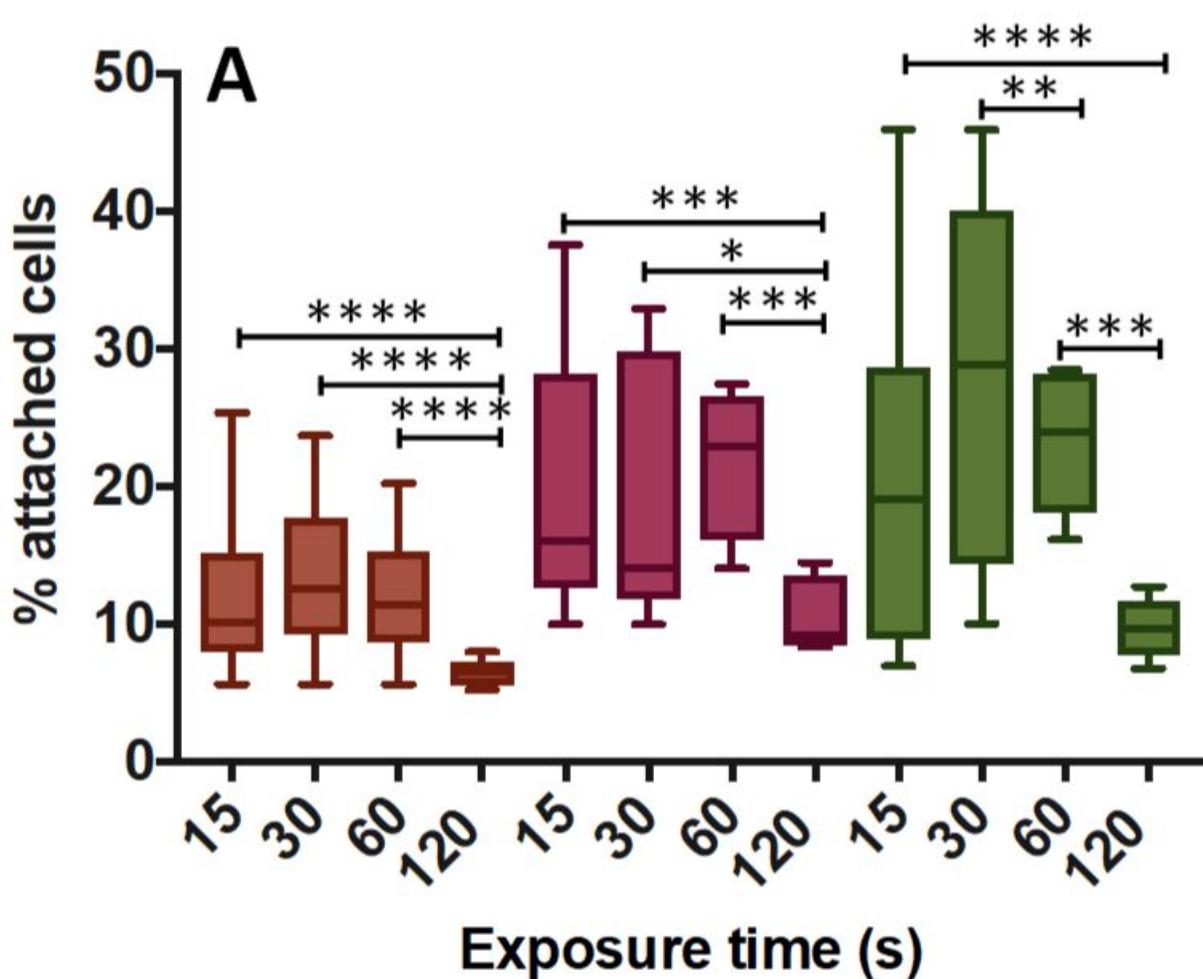

1132 **Figure 6. In vitro evaluation of the effect of foam exposure time on HUVECs, using**
1133 **different types of foam.** Methods of foam production investigated included PEM
1134 (brown), DSS (pink), and TSS (green). 1 mL of foam was injected in these experiments,
1135 using a 16G needle. Cell monolayers were exposed to each foam for 15, 30, 60 and
1136 120 seconds. Data are reported (Tukey's box plot) as percentage of attached cells
1137 after treatment (compared to untreated cells), determined via methylene blue
1138 method. The effect of treatment time (for each foam production method) is
1139 illustrated in (A), while a comparison between foam production methods (for each
1140 treatment time) is illustrated in (B). The experiment was repeated ten times. One
1141 asterisk (*) indicates $p \leq 0.05$, two asterisks (**) indicate $p \leq 0.01$, three asterisks
1142 (***) indicate $p \leq 0.001$, and four asterisks (****) indicate $p \leq 0.0001$.

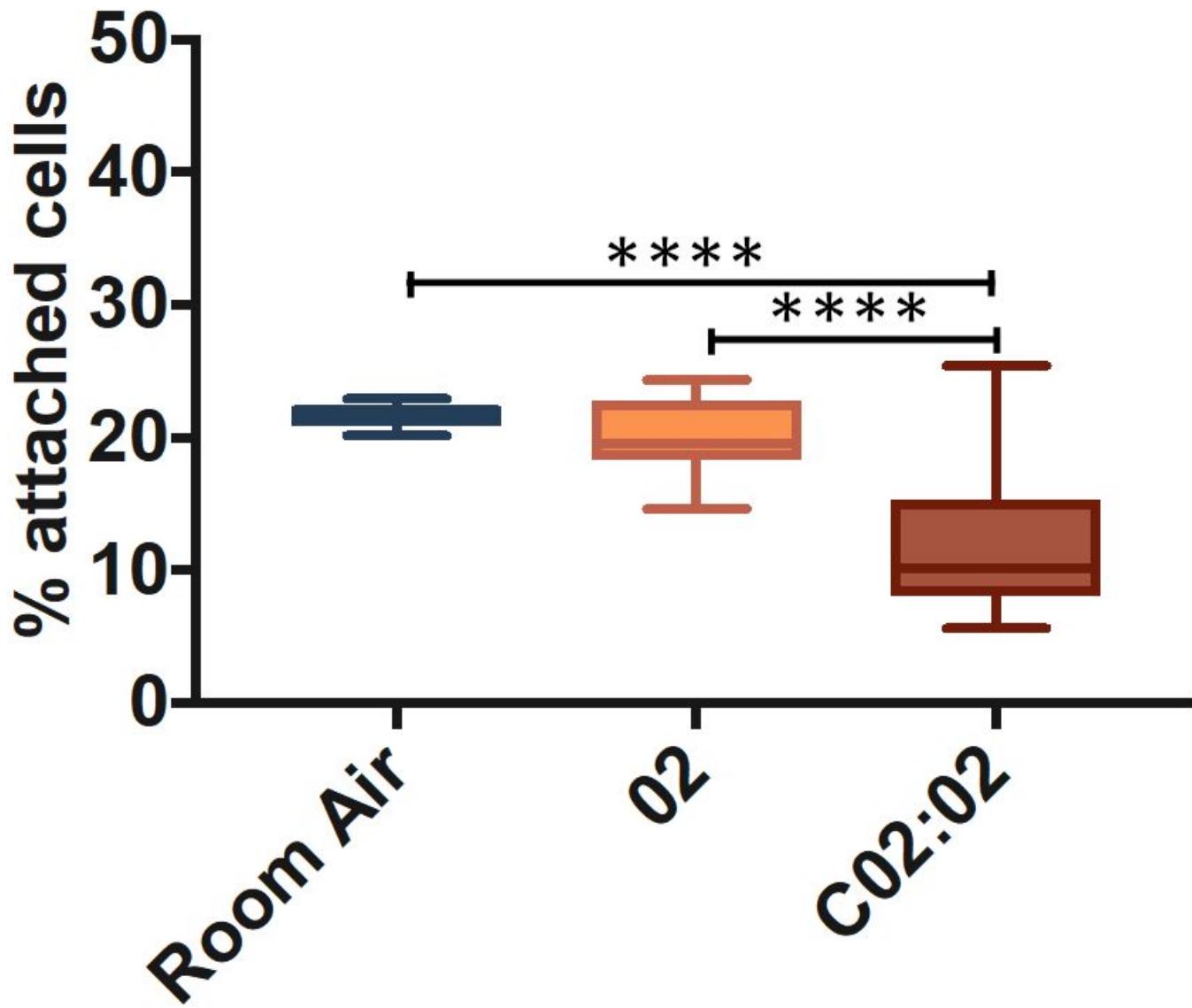

1143
1144 **Figure 7. In vitro evaluation of the effect of PEM gas formulation on HUVECs.** 1 mL
1145 of PEM foam was injected in these experiments, using a 16G needle. Cell monolayers
1146 were exposed to each foam type for 15 seconds. Foams tested were PEM containing
1147 either room air, 100% O₂, and 35:65 CO₂:O₂. Data are reported (Tukey's box plot) as
1148 percentage of attached cells after treatment (compared to untreated cells),
1149 determined via methylene blue method. The experiment was repeated twenty times.
1150 Four asterisks (****) indicate $p \leq 0.0001$.

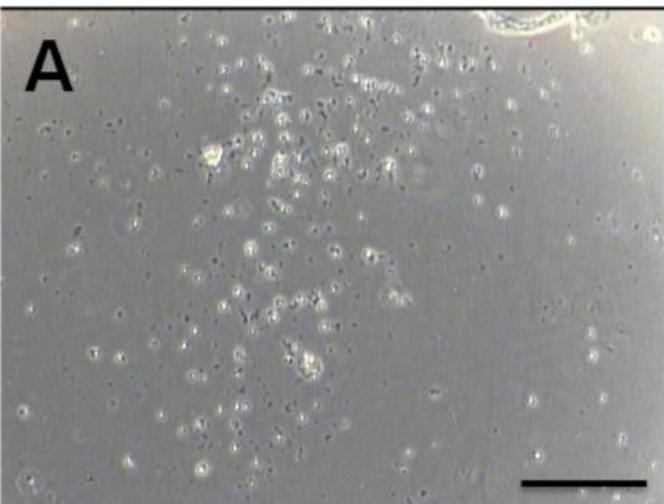
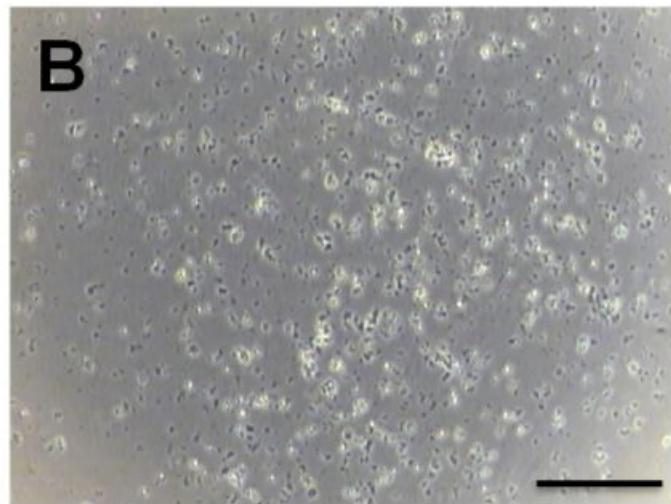
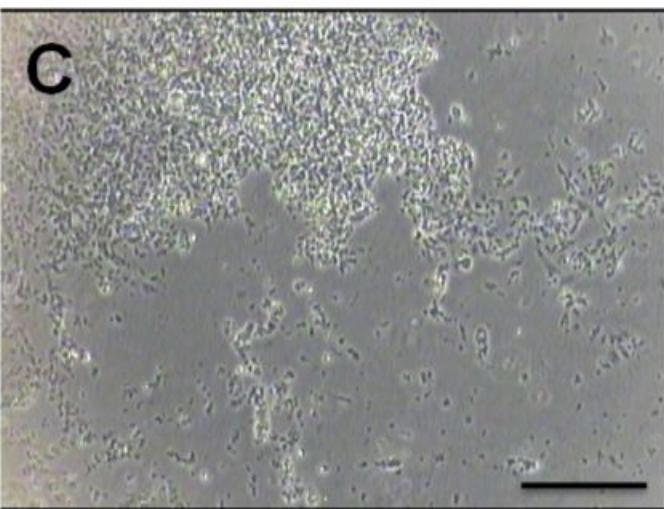
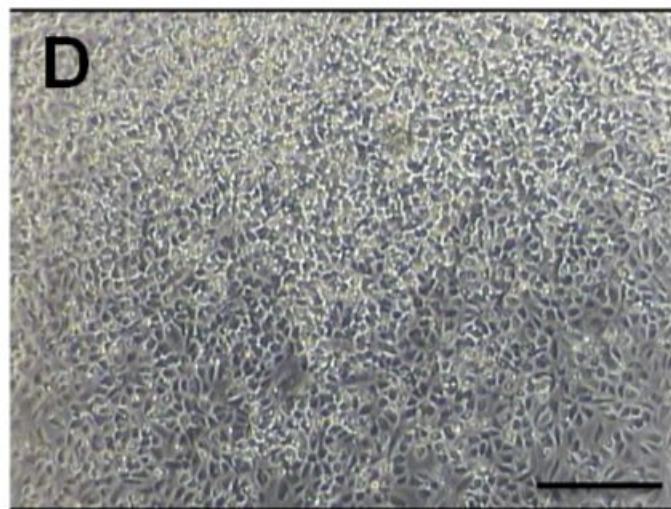


1151
1152 **Figure 8. Histopathologic observation of HUVECs upon treatment with sclerosing**
1153 **foams.** Microscope images (4x magnification) illustrate HUVECs monolayers treated
1154 for 15 seconds using PEM (A), DSS (B), Tessari (C) foams, and untreated (D). Scale
1155 bars are 200 μ m.

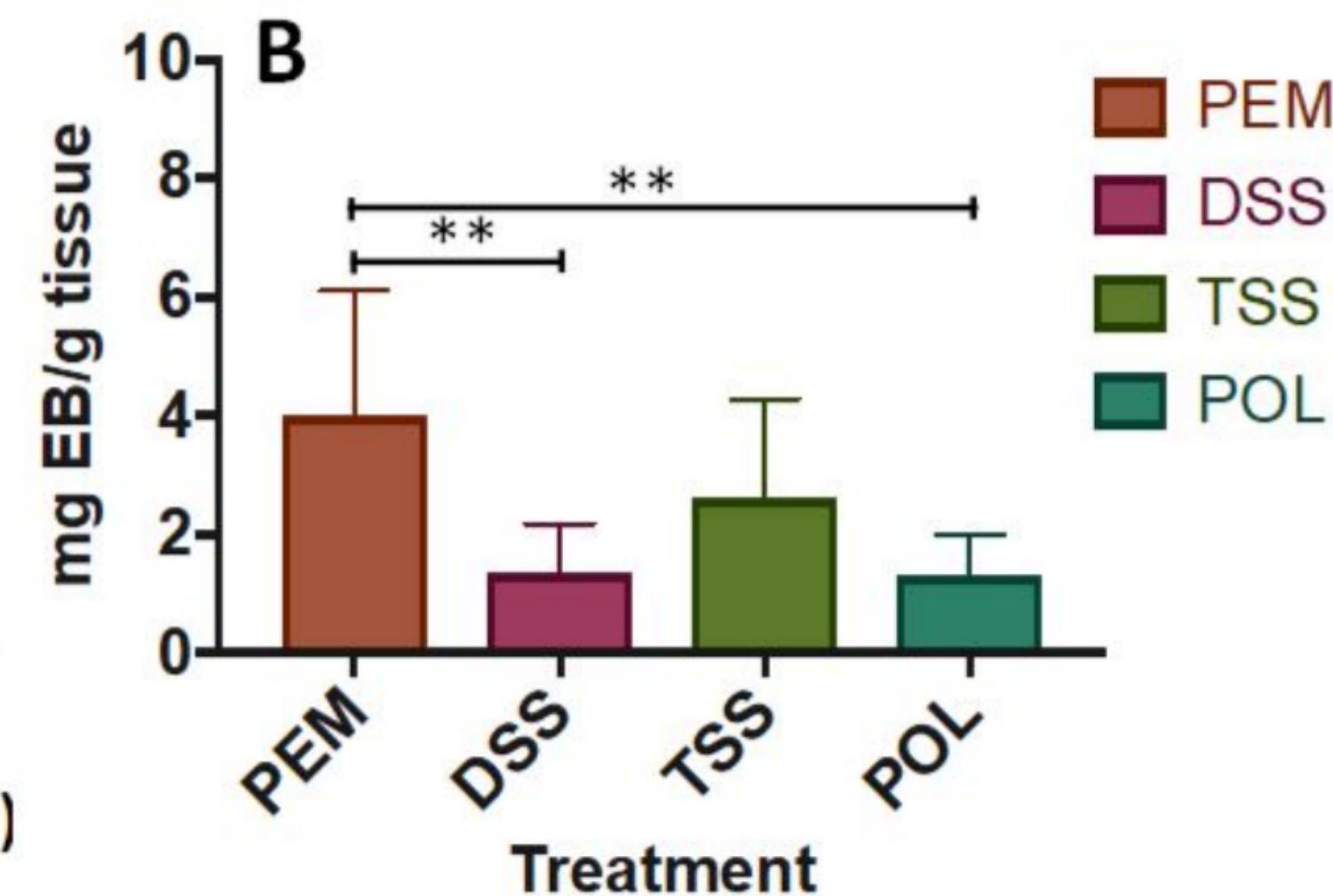
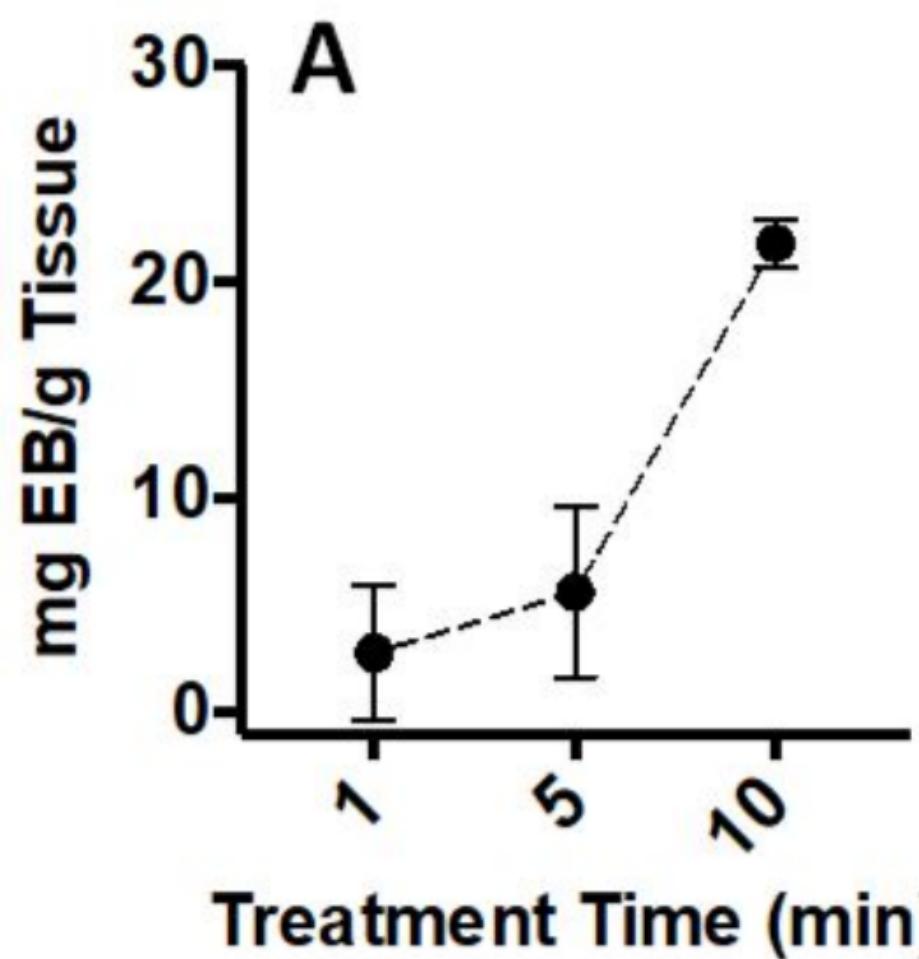






1156 **Figure 9. Ex vivo evaluation of the effect of liquid and foamed polidocanol on**
1157 **umbilical cord veins.** (A) Evaluation of the effect of treatment time on umbilical cord
1158 vein, using liquid polidocanol (2 mL, for 2 cm vein segment). The vein wall was



1159 exposed to polidocanol for 1, 5 and 10 minutes. Data are reported as mg of EB per
1160 grams of tissue, determined via Evans Blue method. The experiment was repeated
1161 four times. (B) Evaluation of the effect of foam on umbilical cord vein, using different
1162 types of sclerosing agent: PEM, DSS, TSS, and liquid POL (2 mL, for 2 cm vein
1163 segment). The vein wall was exposed to the sclerosing agents for 1 minute. Data are
1164 reported as mg of EB per grams of tissue, determined via Evans Blue method. Two
1165 asterisks (**) indicate $p \leq 0.01$.



A**B****C****D**

