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 Abstract: Background: Drugs are very important for human life because they can provide treatment, 
cure, prevention, or diagnosis of different diseases. However, they also bring side effects, which can 
give great risks for human bodies and pharmaceuticals companies. It is essential to identify drug side 
effects in drug discovery. To date, lots of computational methods have been proposed to predict the 
side effects of drugs and most of them used the fact that similar drugs always have similar side effects. 
However, previous studies did not analyze which substructures are highly related to which side effect.  
Method: In this study, we did a computational investigation in this regard. To do that, we extracted a 
drug set for each side effect, which consisted of drugs having such effect side. Also, for each 
substructure, a set was constructed by picking up drugs owing such substructure. The relationship 
between one side effect and one substructure was evaluated based on linkages between drugs in their 
corresponding drug sets, resulting in an Es value. Then, the statistical significance of Es value was 
measured by a permutation test.  
Results and Conclusion: Lots of highly related pairs of side effects and substructures were obtained 
and some were extensively analyzed to confirm the reliability of the results reported in this study. 
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1. INTRODUCTION 

 Drugs are always chemical substances that are discovered 
or designed for the treatment, cure, prevention, or diagnosis 
of different diseases. Clearly, drugs provide the guarantee for 
human health. However, they also produce unwanted effects, 
called side effects or adverse drug reactions (ADRs). 
According to the US Food and Drug Administration (FDA), 
several experimental drug compounds that have passed the 
clinical trials fail to gain FDA approvals because of their 
potential side effects, which may bring great risks for both 
human bodies and pharmaceuticals companies. Investments 
used in early stage become useless, which give financial 
burden for pharmaceuticals companies. Thus, it is urgent for  

*Address correspondence to this author at Shanghai University of Medicine 
& Health Sciences, Shanghai 201318, China; Tel/Fax: ++86-021-65882815, 
+86-021-65882570; E-mails: zhoub@sumhs.edu.cn 
 

drug developers to design effective methods for detecting all 
potential side effects of drugs and eliminate unacceptable 
drug candidates before costly human clinical trials. 

The wet methods for identifying the side effects of a 
given drug candidate can provide solid results. However, 
these methods always need lots of time and are very 
expensive. In recent years, with the development of 
computer science and information techniques, it is an 
alternative way to determine drug side effects through 
designing computational methods. These methods can adopt 
different information of drugs and infer possible side effects 
that a given drug candidate may have. Although these 
methods cannot provide solid results, they can reduce the 
scope of side effects a drug may have, thereby speeding up 
the drug development and further reducing cost. 

In recent years, several computational methods have 
been proposed to identify drug side effects. Pauwels et al. 



2    Journal Name, 2019, Vol. 0, No. 0 Principle Author et al. 

employed sparse canonical correlation analysis on chemical 
structures and side effects of drugs to develop a novel 
method for predicting potential side-effects of drug 
candidate molecules [1]. Liu et al. proposed a machine-
learning based method for ADR prediction using chemical, 
biological, and phenotypic properties of drugs [2]. Cheng et 
al. produced a phenotypic network inference model to 
identify drug side effects [3]. Yamanishi et al. developed a 
regression model, dealing with heterogeneous data sources, 
to identify potential side effects for drug candidate molecules 
[4]. Zhao et al. proposed a similarity-based method, 
incorporating several properties of drugs and random forest 
[5] as the classifier, to predict whether a given drug had a 
given side effect [6]. Chen et al. integrated the information 
of chemical-chemical interactions and protein-chemical 
interactions to construct a multi-label classifier for inferring 
which side effects a given drug may have [7]. Zhang et al. 
designed a feature selection based multi-label k-nearest 
neighbor (FS-MLKNN) method for ADR prediction [8]. 
Most previous methods adopted the classic property of 
drugs, that is, chemical structure and they believed that drugs 
with similar structures always share similar properties, 
including side effects. However, to our best knowledge, the 
associations between chemical substructures and side effects 
have not been reported. It is believed that some side effect 
may highly related to some substructures. If one can extract 
these relationships, it is helpful to infer the side effects of a 
give drug by checking its substructures. 

In this study, we gave a computational investigation in 
this regard. First, we accessed the drug side effects from 
SIDER [9, 10] and constructed a drug set under each side 
effect. At the same time, the substructures of above drugs 
were extracted via RDKit [11] and a drug set was also 
constructed for each substructure. Then, the linkage of one 
side effect and one substructure was evaluated by 
considering all possible drug-drug pairs in two drug sets, 
resulting in a score, named Es value. Thereafter, a 
permutation test was performed to test the statistical 
significance of each Es value. Finally, we obtained lots of 
substructure-side effect pairs with statistical significance and 
selected some of them for detailed analyses.  

2. MATERIALS AND METHOD  

2.1. Side effects of drugs 

The side effects of drugs were retrieved from SIDER 
(http://sideeffects.embl.de/) [9, 10], a public database 
reporting the information of marked medicines and ADRs, 
which is collected from public documents and package 
inserts. From the downloaded file, we obtained 888 drugs 
and 1,385 different side effects. However, several side 
effects were quite rare, that is, few drugs own these side 
effects. The purpose of this study is to investigate which side 
effect and chemical substructure have strong associations 
using drugs have each side effect and substructure. And the 
proposed method is based on statistical theory. The results 
on these side effects would be quite sensitive. To strengthen 
the reliability of our results, we have to discard these side 
effects. On the other hand, the chemical-chemical interaction 
information described in Section 2.3 of some drugs was not 
available, these drugs were also excluded. In summary, we 
refined the obtained data as follows: (1) drugs without 

chemical-chemical interaction information were excluded; 
(2) side effects with less than five drugs were also discarded. 
Finally, we obtained 828 drugs and 820 side effects.  

For 820 side effects, let us denote them as 82021 ,,, sss … . 

For each side effect is , the set consisting of drugs having 
such side effect was represented by iSD . The distribution of 
sizes of all iSD  )820,,2,1( …=i  is illustrated in Figure 
1(A). It can be observed that majority side effects have less 
than 100 drugs and some side effects have more than 500 
drugs. 

 
Figure 1. Bar charts to show the distribution of the numbers 
of drugs side effects or substructures have. (A) A bar chart 
for side effect; (B) A bar chart for substructure. 

2.2. Substructures of drugs 

As mentioned in Section 2.1, we obtained 828 drugs and 
their side effects. For accessing the substructures of these 
828 drugs, the RDKit [11], a widely used source chemistry 
informatics and machine learning toolkit, was adopted to 
generate their Morgan fingerprints [12], resulting in 6,441 
substructures. Similar to the side effect, some sub-structures 
own very few drugs and thus should be excluded. With the 
same manner, we excluded substructures with less than five 
drugs, obtaining 2,966 substructures. For latter formulation, 
we denoted obtained 2,966 substructures as 

296621 ,,, ssssss …  and the sets containing corresponding 
drugs by 296621 ,,, SSDSSDSSD … . Also, Figure 1(B) shows 
the distribution of sizes of iSSD  )2966,,2,1( …=i , from 
which we can see that the distribution of the sizes of 

iSSD )2966,,2,1( …=i  is quite similar to that of iSD  
)820,,2,1( …=i . 

2.3. Chemical-chemical interactions 

For each substructure or side effect, several drugs own 
such substructure or side effect. Thus, the relationship 

http://sideeffects.embl.de/
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between one substructure and one side effect can be 
measured by their corresponding drug sets. Here, we 
designed a scheme to evaluate the association between two 
drug sets via chemical-chemical interaction information. 

The chemical-chemical interaction information was 
retrieved from STITCH (http://stitch.embl.de/, version 4.0) 
[13, 14], a well-known online database exploring known and 
predicted interactions of chemicals and proteins. The 
chemical-chemical interactions are collected in a file, named 
“chemical_chemical.links.v4.0.tsv.gz”, in which each 
interaction contains two chemicals, represented by PubChem 
IDs, and one score, denoted by “combined_score” in the 
obtained file, ranging from 1 to 999. These interactions were 
derived from experiments, databases and the literature, and 
the score integrates the associations between two chemicals 
from several aspects, such as structures, reactions, activities 
and text descriptions. Thus, they can widely measure the 
associations between two chemicals. To date, several studies 
have used this information to investigate different chemical 
or drug-related problems [6, 7, 15-29]. For formulation, let 
us denote the score between two chemicals c1 and c2 by 

),( 21 ccS . Specially, if c1 and c2 were identical, ),( 21 ccS  

was set to 1000; and if chemicals c1 and c2 cannot interact 
with each other, ),( 21 ccS  was set to be zero. 

2.4. Es values of substructure-side effect pairs 

For side effect is , drugs having such side effect were 

collected in set iSD  and jSSD  contained the drugs owning 

substructure jss . The associations between is  and jss  can 

be measured by drugs in iSD  and drugs in jSSD  as follows: 

∑ ∑
∈ ∈

=
ix jySDd SSDd

yxji ddSsssEs ),(),(         (1) 

Clearly, such score of  is and  jss was the sum of all 

possible drug pairs in iSD  and jSSD . We named this score 
as Es value. A high Es value suggests a potential strong 
association between the corresponding side effect and 
substructure. 

 
Figure 2. A flow chart to illustrate the procedures of evaluating the associations between one side effect si and one substructure 
ssi. First, drugs having the side effect si comprised a set SDi and drugs owing the substructure ssi constituted another drug set 
SSDj. Second, calculate Es value by checking the chemical-chemical interactions between any drug in SDi and any drug in SSDj. 
Third, 1000 drug sets 100021 ,,, iii SDSDSD … with the same size of iSD  were randomly constructed and 1000 sets 

100021 ,,, jjj SSDSSDSSD …  with the same size of jSSD  were also built. These sets were adopted to calculate 1000 Es values. 
Finally, calculate the zscore according to the true Es value and 1000 Es values on randomly produced sets, thereby determining 
the relationship between the side effect and substructure. 

2.5. Zscores of substructure-side effect pairs 

In Section 2.4, we evaluated the associations between 
one side effect and one substructure via an Es value. 
However, this score highly relied on the sizes of iSD  and 

jSSD  and it was difficult to determine how high of this 
score was significant. Thus, a permutation test was 

performed to measure the statistical significance of each Es 
value. In detail, we constructed 1,000 drug sets with the 
same size of iSD , denoted by 100021 ,,, iii SDSDSD … , which 
were generated by randomly selecting drugs from 828 drugs. 
For jSSD , we also constructed 1,000 drug sets in a similar 

way, denoted by 100021 ,,, jjj SSDSSDSSD … , each of which 

http://stitch.embl.de/
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had the same size of jSSD . Then, we computed 1,000 Es 

values between a
iSD  and a

jSSD  )1000,,2,1( …=a using Eq. 

1, and further calculate the zscore of ),( ji sssEs by 

STD
MEANsssEs

ssszscore ji
ji

−
=

),(
),( ,         (2) 

where MEAN represented the average of 1,000 Es values 
yielded by randomly produced drug sets and STD 
represented the standard deviation of these Es values. By 
statistical theory, if the zscore is larger than 1.96, the side 
effect and substructure would have a statistically significant 
association. 

Table 1. Top ten substructure-side effect pairs with highest zscores 

Substructure (Morgan fingerprints) Side effects Zscore 

c(c[cH])(c[cH])N(c)[CH2] tardive dyskinesia 40.722 
N(C[CH2])(c(c)[cH])c(c)[cH] tardive dyskinesia 39.033 

N(c)(c)[CH2] tardive dyskinesia 38.845 

c(cc)(c[cH])N(c)[CH2] tardive dyskinesia 38.743 
c(c[cH])(c[cH])N(c)[CH2] testicular swelling 37.083 

N(c)(c)C tardive dyskinesia 36.870 

c(c[cH])(Sc)c([cH])N tardive dyskinesia 36.423 

N(c(c)[cH])c(c)[cH] tardive dyskinesia 35.683 
N(c)(c)C testicular swelling 35.518 

c(cc)(c[cH])N(c)[CH2] testicular swelling 34.526 

Table 2. Ten side effects with most highly related substructures and their most related substructures 

Side effect Number of highly related 
substructures (Morgan fingerprints) 

Most related substructures 
(Morgan fingerprints) Zscore 

arterial insufficiency 1138 c(c[cH])(O[CH2])c(C)[cH] 12.145 
heart block 997 c(cc)(c[cH])N(c)[CH2] 18.155 

hyperprolactinemia 980 c(c(c)N)c([cH])Cl 20.418 

galactorrhea 940 c(cc)(c[cH])N(c)[CH2] 33.505 
tardive dyskinesia 919 c(c[cH])(c[cH])N(c)[CH2] 40.722 

Parkinson 919 N(c)(c)C 32.450 

Diabetic ketoacidosis 915 c(c(c)N)c([cH])Cl 28.085 

testicular swelling 910 c(c[cH])(c[cH])N(c)[CH2] 37.083 
dysarthria 882 c(c[cH])(c[cH])C(c)=N 18.867 

nightmares 877 N(c)(c)[CH2] 18.455 

Table 3. Ten substructures with most highly related side effects and their most related side effects 

Substructure (Morgan 
fingerprints) 

Number of highly related 
side effects Most related side effect zscore 

c(cc)(Nc)c([cH])C 664 testicular swelling 25.908 
c(c[cH])(Nc)c(c)C 641 testicular swelling 26.987 

c(c[cH])(Nc)c(C)[cH] 640 testicular swelling 25.392 

c(c[cH])(c(C)[cH])N(c)C 634 testicular swelling 34.489 
c(c[cH])(Nc)c([cH])[CH2] 630 testicular swelling 30.905 

N(c)c 627 tardive dyskinesia 29.509 

c(cc)(c[cH])Nc 627 tardive dyskinesia 29.965 

c(c(c)N)c([cH])Cl 620 tardive dyskinesia 34.306 
N(c)(c)C 597 tardive dyskinesia 36.870 

c(c[cH])(c[cH])C(c)=N 596 somnambulism 20.178 



Title of the Article Journal Name, 2019, Vol. 0, No. 0    5 

 

3. RESULTS 

In this study, we gave a computational investigation on 
associations between side effects and substructures. The 
purpose of this study was to extract highly related 
substructure-side effect pair. The whole procedures are 
shown in Figure 2. This section gave a detailed description 
on the results.  

As mentioned in Sections 2.1 and 2.2, 820 side effects 
and 2,966 different substructures were investigated in this 
study, meaning there were 2,432,120 (820 ☓ 2966) 
substructure-side effect pairs. For each pair, we calculated its 
Es value according to Eq. (1). However, Es value was highly 
related to the sizes of drug sets of the substructure and side 
effect. Then, a permutation test was performed to evaluate 
whether each Es value was statistical significance, resulting 
in a zscore for each substructure-side effect pair. The 
distribution of obtained 2,432,120 zscores is illustrated in a 
bar chart, as shown in Figure 3. It can be observed that most 
zscores gathered between -5 and 5. By setting the confidence 
level as 95%, we selected the substructure-side effect pairs 
with zscores larger than 1.96, obtaining 193,298 
(193,298/2,432,120=7.948%) pairs. In statistics, the Es 
values of these pairs were statistically significant high, 
meaning corresponding substructure and side effect were 
highly related. These 193,298 substructure-side effect pairs 
together with their zscores are provided in Supplementary 
Material I. Table 1 lists the top ten substructure-side effect 
pairs with highest zscores. It can be observed that side 
effects “tardive dyskinesia” and “testicular swelling” are 
highly related to some substructures with high zscores. 

 

 
Figure 3. A bar chart to illustrate the distribution of zscores 
for all substructure-side effect pairs. 

For 193,298 highly related substructure-side effect pairs, 
792 side effects were identified to have at least one highly 
related substructures and 1,875 substructures were predicted 
to be highly related to at least one side effects. The number 
of highly related substructures/side effects for each side 
effect/substructure is provided in Supplementary Material 
II/III. Figure 4 shows the number of highly related 
substructures/side effects for each of these side 

effects/substructures, from which we can see that most side 
effects had less than 600 highly related substructures and 
most substructures own less than 400 highly related side 
effects. We list the top ten side effects with most highly 
related substructures in Table 2, indicating that the side 
effect “arterial insufficiency” had most related substructures, 
followed by “heart block”, “hyperprolactinemia” and so 
forth. While in Table 3, top ten substructures with most 
highly related side effects are listed. Substructure 
“c(cc)(Nc)c([cH])C” has most related side effects, followed 
by “c(c[cH])(Nc)c(c)C”, “c(c[cH])(Nc)c(C)[cH]” and so 
forth. 

 

 
Figure 4. Scatter diagrams to show the number of highly 
related substructures/side effects for each side 
effect/substructure. (A) The scatter diagram for side effect; 
(B) The scatter diagram for substructure. 

4. DISCUSSION 

In this study, we extracted lots of highly related 
substructure-side effect pairs (Supplementary Material I) via 
a computational analysis. Very frequent side effects that 
often occur in many drugs, such as “headache” or “nausea”, 
hardly appear in Tables 1-3, which is consistent with the fact 
that they are common reactions. However, we found more 
specific side effects which are related to special types of 
substructures. Here, we analyzed some of them to confirm 
that our results were reliable. For rest pairs, we only listed 
them in Supplementary Material I. readers can give further 
investigations based on these materials. 

 

Table 4. Distribution of the top ten related substructures for “tardive dyskinesia” in six drugs 
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Rank Substructure (Morgan 
fingerprints) Zscore 

Typical APDs Atypical 
APDs Antidepressants Antiemetics 

Chlorpromazine Haloperidol Clozapine Clomipramine Metoclopramide Prochlorperazine 

1 c(c[cH])(c[cH])N(c)[CH2] 40.722 + - - + - + 

2 N(C[CH2])(c(c)[cH])c(c)[cH] 39.033 + - - + - + 

3 N(c)(c)[CH2] 38.845 + - - + - + 

4 c(cc)(c[cH])N(c)[CH2] 38.743 + - - + - + 

5 N(c)(c)C 36.870 + - - + - + 

6 c(c[cH])(Sc)c([cH])N 36.423 + - - - - + 

7 N(c(c)[cH])c(c)[cH] 35.683 + - - + - + 

8 c(c(c)N)c([cH])Cl 34.306 + - + + - + 

9 c(c[cH])(c([cH])S)N(c)[CH2] 33.948 + - - - - + 

10 S(c(c)[cH])c(c)[cH] 33.878 + - - - - + 

+/-: these symbols indicate whether the substructure is contained in the corresponding drug.  
 

As listed in Table 1, “tardive dyskinesia” (TD) was 
highly related to some substructures with quite high zscores. 
It is a disorder that results in involuntary, repetitive body 
movements, and most generally occur in patients treated 
with long-term neuroleptic drugs. Neuroleptic drugs, also 
known as antipsychotic drugs (APDs), are used to treat and 
manage symptoms of many psychiatric disorders. Sometimes 
they are prescribed for gastrointestinal (GI) disorders. APDs 
can be divided into two classes: “typical” antipsychotics or 
first-generation and “atypical” antipsychotics or second-
generation. In our results, 919 substructures were identified 
to be highly related to this side effects (see Table 2). 
According to our results, ten substructures, listed in Table 4, 
were related to this side effect with highest zscores. Six 
drugs (chlorpromazine, haloperidol, clozapine, 
clomipramine, metoclopramide and prochlorperazine) were 
selected to detect the distribution of these substructures. 

Chlorpromazine and haloperidol are the best known 
typical APDs. Typical APDs do have a high risk of TD. The 
exact mechanism by which typical APDs result in the 
development of TD remains largely uncertain. However, the 
most compelling line of evidence suggests that chronic 
dopamine blockade caused by dopamine D2 receptor 
antagonists or APDs could result in an upregulation of 
dopamine receptor responsiveness, resulting in a 
compensatory supersensitivity of the receptors in the 
nigrostriatal pathway [30, 31]. As shown in Table 4, 
chlorpromazine contains all of top ten substructures. It is 
also reflected in other phenothiazines (thioridazine, 
fluphenazine, mesoridazine, trifluoperazine, perphenazine, 
pipotiazine), and they contain almost all of top ten 
substructures. These substructures in phenothiazines may 
contribute to greater affinity for the D2 binding site, which is 
associated with high risk for TD. As the first synthetic 

butyrylbenzene drug, haloperidol, its pharmacological action 
and TD incidence are similar to those of phenothiazine 
drugs. However, its chemical structure is completely 
different from that of phenothiazine, and therefore does not 
contain any substructures listed in Table 4. Evidence 
suggests that haloperidol has been shown to induce TD 
through the influx of proinflammatory cytokines and 
neurotransmitters [32], unlike phenothiazines that cause TD 
by blocking D2 receptors. From the viewpoint of all 
substructures of haloperidol, 92% (174/189) of the 
substructures were significantly associated with TD. Its 174 
substructures associated with TD may be related to the TD 
induction mechanism. 

Atypical APDs bind weakly to dopamine D2 receptors 
and seem to be associated with a decreased prevalence of 
TD. As the first atypical APD, clozapine is considered to 
have significantly less TD compared to typical APDs [33], 
even to other atypical APDs [34]. For the top ten 
substructures in Table 4, clozapine contains only one 
substructure significantly associated with TD. The results 
indicate that clozapine contains less substructures closely 
related to TD than phenothiazine. On the other hand, this 
also provides a possible explanation for the lower risk of TD 
in clozapine from substructure analysis. Unfortunately, the 
advantage of clozapine in reducing TD is only a special case 
in atypical APDs. Later well-designed trials failed to show 
the anticipated decrease in TD with other atypical APDs [35-
37]. Comparing the distributions of 919 TD-related 
substructures in typical APDs and atypical APDs, the results 
show typical APDs have more substructures with higher 
zscores than atypical APDs (see Figure 5). Whether true or 
not, it is clear that TD continues to be a major problem 
associated with the long term use of almost all APDs. 
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Figure 5. The distribution of zscores on the 919 TD-related substructures of typical/atypical APDs and TD. TD represents the 
side effect “tardive dyskinesia”. 

Clomipramine is a tricyclic antidepressant that acts by 
reducing the re-uptake of norepinephrine and serotonin in the 
central nervous system. TD induced by antidepressants is 
less prevalent than TD induced by APDs. Similarly, there are 
only a few reports showing cases of TD caused by 
clomipramine [38]. However, as shown in Table 4, 
clomipramine contains some substructures that are closely 
related to TD, suggesting that monitoring of TD should be 
strengthened in clinical long-term use. 

Metoclopramide, a dopamine receptor antagonist, is, 
unsurprisingly, a well-documented cause of TD [39-41]. 
However, due to its being used for shorter periods of time 
than psychiatric medications, risk of TD seems to be lower 
than previously thought [42]. From the results of the 
substructure analysis in Table 4, compared with 
metoclopramide, prochlorperazine, another antiemetic drug, 
contains more substructures significantly associated with 
TD. Prochlorperazine may yield a higher frequency of TD 
than metoclopramide, as evidenced by some clinical trials 
[43]. 

Drug-induced TD is a complex and unique neurologic 
disorder. By substructure analysis, some substructures 
closely related to TD can be identified, which is helpful for 

the detection of TD occurrence of existing APDs, and also 
has predictive significance for new drugs. 

CONCLUSION 

 This contribution gave a computational investigation on the 
relationships between side effects and chemical substructures. 
The association between one side effect and one substructure 
was evaluated by the linkage between drugs in their 
corresponding drug sets. The statistical significance of each 
substructure-side effect pair was further measured by a 
permutation test. Lots of highly related substructure-side effect 
pairs were accessed. And we in detail analyzed the relationship 
between one side effect “tardive dyskinesia” and its top ten 
related substructures, partly proving the reliability of our results. 
It is hopeful that results reported in this study can give new 
insights for identification of drug side effects. 
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