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Abstract

Repeated stimuli that are spaced apart in time promote the transition from

short- to long-term memory, while massing repetitions together does not. Pre-

viously, we showed that a model of integrative synaptic plasticity, in which

plasticity induction signals are integrated by a low-pass filter before plasticity

is expressed, gives rise to a natural timescale at which to repeat stimuli, hint-

ing at a partial account of this spacing effect. The account was only partial

because the important role of neuromodulation was not considered. We now

show that by extending the model to allow dynamic integrative synaptic plas-

ticity, the model permits synapses to robustly discriminate between spaced and

massed repetition protocols, suppressing the response to massed stimuli while

maintaining that to spaced stimuli. This is achieved by dynamically coupling

the filter decay rate to neuromodulatory signalling in a very simple model of

the signalling cascades downstream from cAMP production. In particular, the

model’s parameters may be interpreted as corresponding to the duration and

amplitude of the waves of activity in the MAPK pathway. We identify choices

of parameters and repetition times for stimuli in this model that optimise the

ability of synapses to discriminate between spaced and massed repetition pro-

tocols. The model is very robust to reasonable changes around these optimal

parameters and times, but for large changes in parameters, the model predicts

that massed and spaced stimuli cannot be distinguished, or that the responses

to both patterns are suppressed. A model of dynamic integrative synaptic

plasticity therefore explains the spacing effect under normal conditions, and

also predicts its breakdown under abnormal conditions.
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1 Introduction

Memory is a complex, multi-faceted phenomenon (Eichenbaum & Cohen, 2001)

that has been studied in animals as diverse as Aplysia (Hawkins et al., 2006),

Drosophila melanogaster (Heisenberg, 2003; Davis, 2005) and mice, rats and

humans (Andersen et al., 2007). Synaptic plasticity is believed to underlie

memory formation. The standard mammalian model of synaptic plasticity is

long-term potentiation (LTP) (Bliss & Lømo, 1973) and long-term depression

(LTD) (Lynch et al., 1977) in hippocampus, while in invertebrates a clas-

sic model is presynaptic facilitation (Hawkins et al., 1983; Heisenberg, 2003).

Early-phase LTP and LTD are transient changes in synaptic strength that re-

quire the activation of protein kinases (Malenka et al., 1989) and phosphatases

(Mulkey et al., 1993), while late-phase LTP and LTD are enduring changes

that also require protein synthesis for their maintenance (Krug et al., 1984;

Manahan-Vaughan et al., 2000; Roberson et al., 1996). Equivalent early- and

late-phase plasticity is also observed during presynaptic facilitation (Bailey

et al., 1992; Tully et al., 1994; Hawkins et al., 2006). A characteristic feature

of memory is the so-called spacing effect, in which repeated stimuli must be

spaced apart rather than massed together in time in order to promote the

transition from short- to long-term memory (Ebbinghaus, 1885). Early- and

late-phase synaptic plasticity are the physiological correlates of short- and long-

term memory (Carew et al., 1972; Tully et al., 1994; Beck et al., 2000; Sutton

et al., 2002), so a central challenge is to understand the molecular mechanisms

by which spaced rather than massed stimulation protocols lead to late- rather

than just early-phase plasticity. The unconditioned stimulus in a classical con-

ditioning protocol activates neuromodulatory pathways in Aplysia (Hawkins

et al., 2006) and Drosophila (Heisenberg, 2003; Davis, 2005) and dopaminer-
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gic activity induces protein synthesis-dependent potentiation in hippocampus,

with strong, tetanising stimuli thought likely to co-activate dopaminergic path-

ways (Frey et al., 1993; Huang & Kandel, 1995; Sajikumar & Frey, 2004). In

all these cases, the enzyme adenylyl cyclase is a target for coincident neu-

rotransmitter and neuromodulatory activity, producing the second messenger

cAMP, and activating multiple signalling cascades including the CREB and

MAPK pathways (Bartsch et al., 1995; Yin et al., 1995; Barco et al., 2002).

Spaced repetition generates repeated waves of MAPK activity, with modifica-

tion of these waves via the phosphatase SHP2 modulating the interval required

between repetitions (Pagani et al., 2009).

In a mathematical model of integrative synaptic plasticity, we found evi-

dence for the emergence of a natural timescale that hinted at a partial explana-

tion of the spacing effect (Elliott & Lagogiannis, 2012). Such models propose

that single synapses act as low-pass filters (Elliott, 2008), integrating plasticity

induction signals and expressing synaptic plasticity only when the filter reaches

an upper or lower threshold. These “integrate-and-express” models strongly

control potentially destabilising fluctuations in synaptic strength in a develop-

mental context (Elliott, 2008; Elliott & Lagogiannis, 2009). When applied to

an associative memory task with discrete-state synapses with two or only a few

discrete states of synaptic strength, for which experimental evidence is accumu-

lating (Petersen et al., 1998; O’Connor et al., 2005; Montgomery & Madison,

2004; Bartol et al., 2015), we found that they outperform non-integrative mod-

els in almost all biologically relevant regions of parameter space (Elliott & La-

gogiannis, 2012; Elliott, 2016a; Elliott, 2016b). In all existing non-integrative

models, the trace associated with a memory falls monotonically in time, dy-

ing way. Remarkably, in integrative models, the trace initially rises, reaches a

peak determined by the filter size, and then finally dies away. The peak of this
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trace is a natural time at which to repeat the presentation of the memory for

re-storage, although neither neuromodulation nor the transition from early- to

late-phase transition were considered (Elliott & Lagogiannis, 2012). However,

we have proposed that an integrative synaptic filter could be instantiated on

the relatively small number of macromolecules that are involved in plasticity

at single synapse (Harris & Stevens, 1989; Nusser et al., 1998; Bagal et al.,

2005; Miller et al., 2005; Asrican et al., 27), and specifically by collective pro-

tein kinase–phosphatase switches, such as the CaMKII-PP1 switch (Lisman

& Zhabotinsky, 2001; Pi & Lisman, 2008), which permit decisive, all-or-none,

switch-like responses to graded inputs (Ferrell, 1996; Bhalla & Iyengar, 1999;

Alon, 2006). Such a kinase–phosphatase switch may therefore be one down-

stream target of the MAPK pathway that is activated by neuromodulatory

signalling and is known to be involved in regulating the spacing effect (Pa-

gani et al., 2009). If our proposed integrative synaptic filter is under dynamic

control via the neuromodulated balance between constitutive kinase and phos-

phatase activity, then dynamic integrative synaptic plasticity would provide an

explanation for the spacing effect. In this context, we understand the spacing

effect to reflect the capacity of single synapses to discriminate between massed

and spaced repetitions of strong stimuli, a view supported by experimental

evidence (Martin et al., 2017).

Here, therefore, we modify our mathematical model of filter-based synaptic

integration to include a regulated, dynamic decay process that is modulated

by coincident neurotransmitter and neuromodulatory input during strong sim-

ulation protocols. With a very simple, abstract model that seeks to capture

the possible role of the change in balance between kinase and phosphatase ac-

tivity in controlling filter dynamics, we show that a synapse that dynamically

integrates plasticity induction events can robustly distinguish between massed
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and spaced repetition protocols, suppressing the response to massed protocols

without significantly affecting the response to spaced protocols. We examine

the parameter space of the model in detail, establishing the values of param-

eters and spaced repetition times that optimise the ability of a single synapse

to discriminate between spaced and massed repetition protocols. Given our

assumption that the spacing effect reflects the capacity of single synapses to

robustly discriminate between spaced and massed repetition protocols, these

optimally spaced repetition times in our model represent concrete experimental

predictions for stimulus repetition times that maximally promote the transi-

tion from early- to late-phase plasticity and thus the formation of long-term

memory. We show that the model’s response to spaced repetitions is robust

to changes around these optimal parameters and repetition times. However,

under large changes in its parameters, the model can enhance the response to

massed protocols or suppress the response to any protocol. The model there-

fore predicts either that massed protocols may also promote long-term memory

formation or that spaced protocols promote only short-term memory forma-

tion under pharmacological manipulations that emulate these model parameter

changes, consistent with experimental results (Pagani et al., 2009).

2 Background and Setup

2.1 Perceptron Formulation

We consider a single perceptron with N synapses of strengths Si(t), i =

1, . . . , N , at time t ≥ 0 s taking discrete values from the set {Ω1, . . . ,Ων},

where Ωa = −1 + 2(a − 1)/(ν − 1). We initially consider ν ≥ 2 but will re-

strict to binary-strength synapses with ν = 2. This arrangement of strengths

is conventional and does not imply that negative (positive) values correspond
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to inhibitory (excitatory) synapses because we may scale them at will pro-

vided we modify the perceptron’s firing threshold ϑ appropriately. We may

assume that the perceptron experiences binary-valued inputs xi ∈ {−1,+1}

through these N synapses, with the input vector x generating the activation

or unthresholded output

hx(t) =
1

N

N∑

i=1

xi Si(t) (1)

as standard (Hertz et al., 1991). Again, we may scale these input values

provided we adjust ϑ accordingly. As we are only concerned with whether or

not hx(t) exceeds ϑ, we need not consider any non-linearity that converts hx(t)

into an explicit firing rate.

The perceptron is required to store sequentially the “memories” ξα, α =

0, 1, 2, . . . , at times governed by a Poisson process of rate r Hz. A continuous-

time process is more realistic than a discrete-time process, and the Poisson

process is the easiest to examine. Input ξαi is the plasticity induction signal to

synapse i upon storage of memory α. These induction signals may induce either

plastic (expressed) or metaplastic (unexpressed) changes at a synapse, with

ξαi = +1 (ξαi = −1) corresponding to a potentiating (depressing) induction

signal for firing threshold ϑ > 0. The signals ξαi are as usual taken to be

independent across synapses i = 1, . . . , N and between memories α = 0, 1, 2, . . .

(Hertz et al., 1991), with Prob[ξαi = ±1] = g±. So that potentiation and

depression processes are equiprobable and treated completely symmetrically,

we take g± = 1
2
. Memory ξ0 is always stored at time t = 0 s with all later

memories stored at times t > 0 s. The storage of a memory may cause changes

in synaptic strengths, so the storage of later memories may degrade the recall of

earlier memories. We are thus concerned specifically with the fidelity of recall
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of the initial memory ξ0 in the face of this ongoing storage of later memories,

and we refer to ξ0 as the tracked memory. We write h(t) = hξ0(t) for simplicity,

where this tracked memory signal is the perceptron’s activation in response to

the re-presentation and not the re-storage of ξ0 at some later time t > 0 s.

2.2 Integrate-and-Express Synapses

In an integrate-and-express model of synaptic plasticity, the induction signals

at each synapse do not necessarily lead to the immediate expression of plas-

ticity. Rather, each synapse instantiates a filter that integrates its induction

signals, with the expression of synaptic plasticity occurring only when the filter

reaches an upper or lower threshold. As we consider g± = 1
2
, we also consider

symmetric filters in which the upper and lower thresholds are ±Θ, respec-

tively. Labelling the state of a synapse’s filter with letters such as I and J ,

with I, J ∈ {−(Θ− 1), . . . ,+(Θ− 1)}, we have the transitions

ξαi = +1⇒







I 7→ I + 1 for I < +(Θ− 1)

I 7→ 0 & ⇑ for I = +(Θ− 1)

ξαi = −1⇒







I 7→ I − 1 for I > −(Θ− 1)

I 7→ 0 & ⇓ for I = −(Θ− 1)

, (2)

where potentiating (depressing) induction signals increment (decrement) the

filter state, but if the filter thereby reaches its upper (lower) threshold, then

its state is reset to zero and potentiation (depression) is expressed if possible,

indicated by the “⇑” (“⇓”) symbol. We could consider alternative resetting

dynamics (Elliott, 2016b), but resetting to zero is the most natural for synapses

with general ν ≥ 2. We may represent the state of a synapse’s filter by a (2Θ−

1)-dimensional vector whose components are (unconventionally) indexed by I.
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Changes in filter state may then be implemented by the (2Θ− 1)× (2Θ− 1)

matrices F
± (for non-threshold processes) and T

± (for threshold processes)

for induction signals ξαi = ±1, respectively. The matrix F
+ (F−) contains

elements of unity on its lower (upper) diagonal and zeros elsewhere, and just

steps the filter state up (down) without resetting to zero. The two matrices

T
± have elements T

±

0,±(Θ−1) = 1 (correlated signs) with all others being zero,

and reset the filter state to zero from upper or lower threshold. Elements of

filter matrices are again (also unconventionally) indexed by I and J .

Potentiation (depression) is expressed by synapse i’s strength increasing

(decreasing) by 2/(ν−1) when its filter reaches upper (lower) threshold. How-

ever, if Si = +1 (−1) with ξαi = +1 (−1), then the synapse is already saturated

at its upper (lower) strength, and no further change is possible. As there are

ν possible strength states, we may represent the joint strength and filter state

of a synapse by a (2Θ−1)ν-dimensional vector, say P (t), with changes in this

joint synaptic state implemented by (2Θ−1)ν×(2Θ−1)ν transition matrices,

say M
± for ξαi = ±1, respectively. Letting the ath block of 2Θ − 1 entries of

P (t) represent the filter state when the synapse has strength Ωa, a = 1, . . . , ν,

the matrices M± may be written schematically in block forms as

M
+ =













F
+

T
+
F
+

. . .
. . .

T
+
F
+

T
+
F
++T

+













andM
− =













T
−+F

−
T

−

F
−
T

−

. . .
. . .

F
−
T

−

F
−













,

(3)

where the elements are zero unless explicitly indicated. These two matrices

implement all possible, allowed, simultaneous transitions in joint strength and

filter state at a synapse experiencing induction signal ξαi = ±1.
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If one element of P (t) is unity and all others are zero, corresponding to a

definite strength and filter state at time t, then either M+P (t) or M−P (t) also

corresponds to a definite synaptic state for a synapse i experiencing a definite

induction signal of either ξαi = +1 or ξαi = −1, respectively, at time t. However,

memories are presented at Poisson times. Further, we are not interested in any

particular tracked memory ξ0 nor in any particular set of non-tracked memories

ξα, α ≥ 1. Rather, we are interested only in the typical behaviour of h(t) for a

typical tracked memory and typical non-tracked memories. Just as the memory

presentation times are random or stochastic variables, the components ξαi are

therefore also stochastic variables. Hence, even if P (0) is definite, P (t) for

t > 0 s corresponds to a joint probability distribution for a synapse’s later

joint strength and filter state. The tracked memory signal h(t) is therefore

also a stochastic variable, and rather than its behaviour for any particular

realisation of the memories ξα and their Poisson times, we are interested in its

statistical properties averaged over all possible memories. We are especially

concerned with its mean, µ(t) = E[h(t)], and to a lesser extent its variance,

σ2(t) = Var[h(t)].

To average over all later memories with α ≥ 1, we do not consider a definite

induction signal ξαi but instead the probability distribution of these signals.

Hence, for memory α ≥ 1, synapse i experiences the superposed transition

matrix

M = g+M
+ + g−M

−, (4)

so that the effects of both ξαi = +1 and ξαi = −1 are considered, weighted

by their probabilities, here g± = 1
2
. For the initial memory ξ0, synapse i

may experience at t = 0 s either ξ0i = +1 or ξ0i = −1. If the state of the

synapse immediately prior to the presentation of ξ0 is A, then its state P (0)
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immediately after is a mixture (not a superposition) of the two statesM+A and

M
−A. The state A is assumed to be governed by the equilibrium distribution

of a synapse’s joint strength and filter state. It is therefore the eigenvector of

the matrix M with unit eigenvalue, normalised to a probability distribution.

From the block structure of M, this eigenvector is determined by the unit

eigenvector of the combined submatrix 1
2
(T− + F

− + F
+ + T

+). Denoting this

latter eigenvector by A, it has normalised components AI = (Θ−|I|)/Θ2, and

so A is given in schematic block form by

A =
1

ν

(
A

T| . . . |AT

︸ ︷︷ ︸
ν

)T
, (5)

where the superscript T denotes the transpose. Thus, the distribution of filter

states is independent of strength state in equilibrium. Defining the matrix

G = M− I, where I is the identity matrix, the distribution of a synapse’s joint

strength and filter state evolves according to the Master equation

dP (t)

dt
= rGP (t), (6)

with solution P (t) = ertGP (0), where P (0) is either M+A or M−A, depending

on ξ0i = ±1.

To determine the statistics of h(t) we require the two conditional probabil-

ities Prob[Si(t) = Ωa | ξ
0
i = ±1], a = 1, . . . , ν, which can be obtained at once

from P (t) by summing over the ath block of its components for the appro-

priate choice of P (0) = M
±A for ξ0i = ±1. When potentiation and depres-

sion processes are treated completely symmetrically and the possible strengths

Ω1, . . . ,Ων are symmetrically arranged around zero, we can show that while the

two distributions Prob[Si(t) = Ωa | ξ
0
i = ±1] depend on ξ0i , the two distributions
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Prob[ξ0i Si(t) = Ωa | ξ
0
i = ±1] are identical and independent of the sign of ξ0i (El-

liott, 2016a). Since the tracked memory signal h(t) = hξ0(t) =
1
N

∑N
i=0 ξ

0
i Si(t),

it is therefore the average of N identically distributed random variables, re-

gardless of the tracked memory ξ0. Thus, in terms of their contributions to

h(t), the two parts in the equiprobable mixture of ertGM±A contribute iden-

tically. This means that for determining the statistics of h(t), we need only

consider a definite choice of either M+A or M−A and not, in fact, a mixture

of them. These observations significantly simplify calculations. We always

choose M+A. Because h(t) is the average of N identically distributed random

variables, its mean is just µ(t) = E[ξ0i Si(t)] for any single synapse i, with µ(t)

being independent of N . Further, with the choice of M+A from the initial

mixture, we may just set ξ0i = +1, so that µ(t) = E[Si(t)] for any i.

With the problem so defined, we may explicitly compute the average per-

ceptron activation µ(t) in response to re-presentation of the tracked memory at

some future time t > 0 s. Extensive calculations performed elsewhere (Elliott,

2016a) produce the result,

µ(t) =
4

Θ3 ν(ν − 1)





1

ν

⌊
Θ ν−1

2

⌋

∑

l=0

cot2 (2 l+1)π
2Θ ν

exp
{

−rt
[

1− cos (2 l+1)π
Θ ν

]}

− ν

⌊
Θ−1

2

⌋

∑

l=0

cot2 (2 l+1)π
2Θ

exp
{

−rt
[

1− cos (2 l+1)π
Θ

]}



,

(7)

where
⌊
·
⌋
denotes the floor function. In radical contrast to all existing non-

integrative memories of synaptic plasticity applied to memory storage, rather

than monotonically decreasing with time, µ(t) initially increases, reaches a
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maximum at a time given approximately by

rtpeak ≈
4Θ2

π2

ν2

ν2 − 1
loge ν, (8)

and then decays to zero (its equilibrium value) in a strongly ν-dependent man-

ner, exhibiting near plateau-like behaviour for larger values of ν before decaying

(Elliott, 2016a). The initial increase in µ(t) is actually facilitated or driven by

the ongoing storage of later memories, while yet later memory storage even-

tually erodes the recall of ξ0. In all other, non-integrative models, ongoing

memory storage always erodes the recall of ξ0.

2.3 Dynamic Synaptic Integration

The model of synaptic integration discussed above is non-dynamical in the

sense that in the absence of further input, a synapse’s filter state would re-

main fixed and unchanged. However, we might naturally expect it to decay

back to the zero state in the absence of activity. For example, as discussed, we

can imagine that the filter state is instantiated by the phosphorylation state of

a small collection of macromolecules at single synapses. If the natural, basal

state of one of these molecules is to be singly phosphorylated, then a potenti-

ating induction signal may lead to its becoming doubly phosphorylated while

a depressing induction signal may lead to its becoming dephosphorylated. In

addition to this activity-dependent phosphatase and kinase activity, constitu-

tively active phosphatases and kinases may restore such a molecule on average

to the singly phosphorylated, basal state. Thus, for one such molecule, sayM,
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we can imagine the following abstract reaction scheme,

M

rg
−

←−−
η
−−→
rg+
−−→

M∗

rg
−

←−−
η
←−−
rg+
−−→

M∗∗ (9)

in whichM,M∗ andM∗∗ represent the dephosphorylated, singly phosphory-

lated and doubly phosphorylated states, respectively; η denotes the constitu-

tive decay rate back to the basal state; and rg± denote the rates of potentiating

and depressing induction signals. A filter state I > 0 would correspond to |I|

of these molecules being doubly phosphorylated while I < 0 would correspond

|I| of them being dephosphorylated. We would then expect filter state ±I

(I > 0) to decay to state ±(I − 1) at a rate governed by Iη, since any one

of the I dephosphorylated or doubly phosphorylated molecules reverts to its

singly phosphorylated state at rate η.

Let X denote the (2Θ−1)×(2Θ−1) generating matrix that implements this

decay process for filter states, without the overall rate factor η. For example,

for Θ = 3, X is given by

X =












−2 0 0 0 0

+2 −1 0 0 0

0 +1 0 +1 0

0 0 0 −1 +2

0 0 0 0 −2












. (10)

We then write down the (2Θ−1)ν×(2Θ−1)ν decay matrix D in the schematic

block form

D =












X

X

. . .

X

X












, (11)
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where this matrix implements decay of a synapse’s filter state regardless of its

strength state. Then, with both ongoing memory storage at a fixed rate r and

filter state decay occurring at a possibly time-dependent rate η(t), a synapse’s

joint strength and filter state now evolves according to the Master equation

dP (t)

dt
=

[
rG+ η(t)D

]
P (t). (12)

The transitions encoded by the matrix rG + η(t)D in this equation are rep-

resented graphically in Fig. 1. If η(t) is in fact a constant, independent

of time, then we still have the standard exponential solution of the form

P (t) = et(rG+ηD)P (0). But for time-dependent η(t), because the two matrices

G and D do not commute, we require the time-ordered exponential solution.

For our purposes here such a formal solution is essentially useless and we must

resort to numerical methods to solve Eq. (12).

Physiologically, potentiating and depressing stimuli appear to be divided

into two classes: strong stimuli that simultaneously activate both neurotrans-

mitter and neuromodulatory systems, and weak stimuli that activate neuro-

transmitter systems without also activating neuromodulatory systems (Frey

et al., 1993; Huang & Kandel, 1995; Roberson et al., 1996; Heisenberg, 2003;

Davis, 2005; Hawkins et al., 2006). Strong, repetitive stimuli that are spaced

apart are required for late-phase plasticity and the conversion of short- into

long-term memory, while either strong, repetitive stimuli that are massed to-

gether or weak stimuli lead only to early-phase plasticity and short-term mem-

ory that does not endure (Carew et al., 1972; Tully et al., 1994; Beck et al.,

2000; Sutton et al., 2002). Accordingly, we model the tracked memory ξ0 as

a strong stimulus, perhaps one of particular salience or importance that also

activates neuromodulatory systems. Memory ξ0 is taken as a strong stimu-
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lus whether stored initially at time t = 0 s or repeated and re-presented for

re-storage at later times. Conversely, the later memories ξα for α ≥ 1 are mod-

elled as weak stimuli that do not co-activate neuromodulatory systems. We

may now also think of these later memories as reflecting the (perhaps random)

background or spontaneous synaptic activity arising at the Poisson rate r on

which is superimposed the strong stimuli corresponding to the storage of ξ0.

We model the dynamic decay rate η(t) as satisfying the simple equation

dη(t)

dt
= −

1

τ
[η(t)− η] , (13)

where τ−1 is an inverse timescale that determines the rate at which η(t) returns

to its equilibrium or baseline value, η. We could take η > 0 Hz, but this would

only complicate yet not fundamentally modify our analysis. Instead, we set

η = 0 Hz for simplicity and convenience. We further suppose that in the

presence of a strong stimulus, η(t) undergoes an increase that is rapid on a

timescale compared to τ . Thus, a strong stimulus dynamically adjusts the

constitutive filter decay rate, making the filter state decay more quickly for a

period of time determined by both the timescale τ and the size of the rapid

increase in η(t). For the strong stimulus ξ0 presented or re-presented at time

t, we write

η(t) 7→ η(t) + ∆η, (14a)

P (t) 7→M
+P (t), (14b)

so that η(t) experiences an instantaneous jump by an amount ∆η, and of course

the joint distribution of a strongly stimulated synapse’s strength and filter state

also undergoes a change in response to the induction stimulus, described by
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the second of these two equations. These two equations also hold at t = 0 s,

with the second being equivalent to P (0) = M
+A, which represents the initial

storage of ξ0. If memory ξ0 is stored at times t = t0, . . . , tρ where ρ ≥ 0 is the

number of times that the memory is repeated for re-storage, and we always

take t0 = 0 s, then η(t) is given by

η(t) =

[
ρ

∑

i=0

H(t− ti)e
−(t−ti)/τ

]

∆η, (15)

where H(t) is the Heaviside step function, and to avoid ambiguity we define

H(0) ≡ 1. The advantage of the simple form in Eq. (13) and the impulse-like

character of Eq. (14a) is that they admit of the simple solution in Eq. (15). We

would not expect any significant modifications to our results if we modelled

the rapid rise in η(t) with each strong stimulus as for example an α-function

rather than an impulse, so we use impulses for convenience.

For a single strong stimulus applied only at t = 0 s, we note that
∫

∞

0
dt η(t) =

τ∆η, which depends on τ . If η(t) represents some measure of the total pro-

duction or availability of a protein kinase or phosphatase as a result of the

strong stimulus, then it may be argued that we should instead have, say,
∫

∞

0
dt η(t) = η0, where η0 is both independent of τ and a dimensionless quan-

tity. For this, we would need to take η(t) = η0
τ
e−t/τ (for a strong stimulus at

t0 = 0 s), where the function 1
τ
e−t/τ has unit integral over t ≥ 0. Such a form

would facilitate direct comparison to alternative profiles such as an α-function

since in this case the integral would be a constant η0, independent of profile.

Each normalisation convention has its merits, but for an impulse it suffices to

define ∆η = η0/τ . We use both ∆η and η0 to illustrate different properties.

Because η = 0 Hz, in the absence of further strong stimulation η(t) decays

to zero, so that for large times, the filter decay process drops out and we are
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left with dynamics governed only by the ongoing storage of the weak memories

ξα, α ≥ 1. The equilibrium distribution A of a synapse’s strength and filter

states is therefore not affected by the filter decay process, so we continue to

use A in Eq. (5) as the background against which the tracked, strong memory

ξ0 is stored initially at time t0 = 0 s. Of course, for all later repetitions of ξ0

at times ti, i > 0, the distribution P (ti) changes in accordance with Eq. (14b).

To reduce the free parameters, we write t′ = rt, absorbing the rate r into

a re-definition of time. We must also write t′i = rti for the times of the

strong stimuli ξ0 and also define τ ′ = rτ , as all timescales must be so re-

defined. Because η itself is a rate, we further use r to define η′ = η/r, so

that η′ is dimensionless. Then η′ 7→ η′ + ∆η′, where ∆η′ = (∆η) /r is now

the size of the impulse applied to η′ during strong stimulation. Alternatively,

because ∆η = η0/τ , we also have ∆η′ = η0/τ
′, so that the re-definition of

temporal quantities leaves the dimensionless η0 invariant, as it should. With

these conventions, our system of equations becomes

dP (t′)

dt′
= [G+ η′(t′)D]P (t′), (16a)

dη′(t′)

dt′
= −

1

τ ′
η′(t′), (16b)

P (t′i) 7→M
+P (t′i), (16c)

η′(t′i) 7→ η′(t′i) + ∆η′ or η′(t′i) + η0/τ
′, (16d)

where the first two equations describe the generic evolution of P (t′) and η′(t′)

at all times t ≥ 0, and the last two describe the instantaneous changes in them

at the times t′0, . . . , t
′

ρ of the storage of the strong memory ξ0. We also work

with the tracked memory signal h(t′) and its mean µ(t′), etc. The result of these

considerations is that we may show results for µ(rt) and η(rt)/r plotted against
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rt, with decay model parameters specified by rτ and impulses for η(rt)/r of

either ∆η/r or η0/(rτ). In this way, we essentially eliminate the rate r since

all other quantities scale with it in the manner indicated. We may then just

set r = 1 Hz without loss of generality in solving the system in Eq. (16), and

then reinstate r as described.

Although η(t) has been introduced in a somewhat abstract way, we may

think of it in concrete terms by supposing that its level in excess of baseline

represents the level of activity in the downstream signalling cascades activated

by the second messenger cAMP upon coincident neurotransmitter and neuro-

modulatory signalling. Thinking specifically of the MAPK pathway, spaced

repetition generates waves of activity in this pathway (Pagani et al., 2009).

Therefore, we may think of the two parameters ∆η and τ as controlling the

amplitude and time-course of these waves, respectively, at least in abstract

terms. The filter decay rate η(t) may then be thought of as some level of

kinase and phosphatase activity in excess of baseline, perhaps identified in

particular with the phosphatase SHP2, which is known to regulate the spacing

effect (Pagani et al., 2009). We stress that we need not be committed to this

particular view, but it provides a way of thinking about our abstract model in

concrete, mechanistic, underlying terms.

3 Results

We have formulated the model with arbitrary ν ≥ 2 for generality, but we now

restrict to the specific case of binary-strength synapses with ν = 2. Synapses

with strength Si = −1 may be thought of as “weak” synapses and those with

Si = +1 as “strong” synapses; as discussed, negative values do not imply inhibi-

tion but merely reflect a mathematically convenient convention after rescaling.
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We restrict to the ν = 2 case because the fundamental filter dynamics are

amply exhibited by binary-strength synapses. As can be seen from Eq. (8), for

example, the principal behaviour is captured by the strong (there quadratic)

dependence on filter size Θ, while the dependence on the number of states of

strength ν is very mild (there logarithmic). For the purposes of discussing our

results, considering ν > 2 adds nothing fundamentally new compared to the

particular case of ν = 2.

3.1 Massed Versus Spaced Repetition Without Decay

We first consider memory dynamics in which the filter decay mechanism is

suppressed, setting η′(t′) ≡ 0 or equivalently ∆η′ = 0 so that the filter decay

rate does not receive an impulse with each strong stimulus. For massed rep-

etition, we store memory ξ0 regularly and uniformly at the early times t′i = i

for i = 0, . . . , ρ, so a total of 1 + ρ times including at t′ = 0 and repeated a

further ρ times. For spaced repetition, we use the successive mean memory

signal peaks to define t′i. Presenting just once at t′0 = 0, we induce a first peak

at t′peak given by Eq. (8). This defines t′1 as the time at which ξ0 is stored for a

second time. A given set of times {t′0, . . . , t
′

i} therefore automatically induces

a later repetition time t′i+1. Eq. (8) applies only to t′1, so all repetition times

are determined numerically. We also consider for reference a random repeti-

tion scenario in which the times t′1, . . . , t
′

ρ are generated randomly, with each

inter-repetition interval drawn from a uniform distribution between unity and

twice the average at-peak repetition interval.

Typical results are shown in Fig. 2. In panels A, C and E we show the

dynamics of µ(t′) for the representative choice of Θ = 8, using ρ = 12 repeti-

tions of ξ0. The overall envelope in each case shows the dynamics of µ(t′) in

response to all repetitions, while the various curves below this overall envelope
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show what the dynamics would have been had there been fewer repetitions. For

massed repetitions (panel A), there is a very large and very rapid rise in µ(t′).

For at-peak repetitions (panel B), µ(t′) progressively rises with each repetition.

The maximum of the overall envelope of course occurs much later than that for

massed repetitions, but the at-peak maximum is lower than that for massed

repetitions. For random repetitions (panel C), µ(t′) can go down as well as

up between repetitions, depending on whether or not a repetition catches µ(t′)

before or after a peak, but its overall behaviour is somewhat similar to that for

at-peak repetitions, with the overall locations and amplitudes of the maxima

being similar, at least for this particular set of random repetition times. Panels

B, D and F compare massed and at-peak repetitions for different filter sizes

and different numbers of repetitions by showing the maximum value of µ(t′)

attained during a particular stimulation protocol. This maximum necessar-

ily saturates as the number of repetitions increases, but for larger filters, the

dependence of this maximum on the number of repetitions is linear or nearly

so. For smaller filters, the saturation dynamics are very marked, especially for

massed repetitions. Comparing massed and at-peak protocols directly in panel

F, massed repetition always induces a larger maximum of µ(t′) than at-peak

repetition, for any choice of Θ and any choice of ρ ≥ 1. Without a dynamic de-

cay mechanism, we conclude that massed repetition is always more efficacious

than spaced repetition in generating a very large perceptron activation, which

translates into a higher firing rate in, say, a recognition task. The maximum

for massed protocols always occurs much earlier than for spaced protocols,

and so in principle massed protocols can always be distinguished from spaced

protocols by a suitable temporal filtering window on the activation dynamics.

However, a more simple threshold on the perception’s firing rate could not dis-

tinguish between massed and spaced protocols and indeed may favour massed
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over spaced protocols.

To understand these differences between massed and at-peak protocols in

the absence of a filter decay mechanism, we examine in Fig. 3 the probability

distribution of the filter states, conditioned on synaptic strength, during these

protocols. We select Θ = 8 again and ρ = 6 as representative. Panel A shows

the probability distribution for a synapse to be in filter state I, given that

the synapse is either weak (Si = −1) or strong (Si = +1), for both massed

and at-peak protocols. These distributions are shown for different time points,

corresponding to the seven times at which the memory ξ0 is stored and then

times corresponding to overall signal peak and twice that time. Immediately

prior to t′ = 0, the distributions for weak and strong synapses are completely

symmetric, and they are identical. The transition matrix M
+, used for storing

ξ0, then shifts these distributions upwards by one filter state. Weak synapses

that reach the upper filter threshold are potentiated, becoming strong synapses,

and their filter states are returned to zero; strong synapses reaching threshold

cannot be potentiated further, but their filter states are also reset. This overall

process occurs for each repetition of ξ0. (Note that had we instead chosen

ξ0i = −1 and M
−, the argument would be precisely reversed, with downwards

filter steps and strong synapses becoming weak.) For massed repetition, this

repetitive upwards shifting of filter states occurs so quickly that relatively few

other memories (with α ≥ 1) are also stored with ongoing memory storage.

These other memories may have either ξαi = +1 or ξαi = −1, so on average

their storage tends to pull the filter distribution in both directions, upwards

and downwards, partially re-symmetrising the distribution, for both weak and

strong synapses. With few such re-symmetrisation processes occurring during

massed repetitions of ξ0, the repetitive influence of M+ rapidly leads to the

potentiation of weak synapses and to the development of a large bias in filters
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states, in both weak and strong synapses, towards the upper filter threshold.

Hence, for massed repetition, we see a rapid, relentless, almost deterministic

process of successively greater biasing with more repetitions (until the system

essentially becomes saturated at near-maximal bias). In contrast, for at-peak

repetition protocols and indeed spaced repetition protocols in general, although

each repetition of ξ0 steps filter states upwards as described, the time between

each repetition of ξ0 permits more than just a few of the other memories to be

stored between the ξ0 stimuli. Hence, between each ξ0 stimulus, a significant

degree of re-symmetrisation of filter states can occur, for both weak and strong

synapses. Although repetition of ξ0 still leads to an overall increase in µ(t)

and the development of upwards biasing in the filter states for both weak and

strong synapses, this biasing is not as extensive as for massed protocols. We

see these differences clearly in panel A of Fig. 3, up to the sixth repetition.

Synapses experiencing a massed protocol have a very low probability of being

in filter states with I < 0, while this is not true for a spaced protocol.

In panels B and C of Fig. 3, we quantify these observations by plotting

Prob[I = ±(Θ − 1) |Si = ∓1] (in B) and the average “splitting” probability

〈π+
J 〉J for weak and strong synapses. Prob[I = −(Θ − 1) |Si = +1] measures

how likely a strong synapse is to be in the lowest filter state, while Prob[I =

+(Θ− 1) |Si = −1] measures how likely a weak synapse is to be in the highest

filter state. The splitting probabilities 〈π+
J 〉J for Si = ±1 measure how likely a

weak or strong synapse is to escape through the upper filter threshold at some

future time, averaged over all filter states, assuming only ongoing non-tracked

memory storage. For massed protocols, there is a large difference between the

two probabilities Prob[I = ±(Θ − 1) |Si = ∓1], with strong synapses having

a very low probability of being in the lowest filter state compared to weak

synapses being in the highest filter state. For spaced protocols, Prob[I =
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−(Θ − 1) |Si = +1] is nearly always non-negligible, except for immediately

after the storage of ξ0. In panel C, the two splitting probabilities for the

massed protocol are very clearly different, while for the spaced protocol they

are extremely similar, again indicating large differences in biasing induced by

these two protocols. We note that in panel B, for either protocol, when the

two probabilities Prob[I = ±(Θ − 1) |Si = ∓1] are equal following the final

repetition of ξ0, the mean memory signal has reached its peak and will therefore

fall. Only after this point do the strength and filter distributions begin to re-

symmetrise between weak and strong synapses.

3.2 Massed Versus Spaced Repetition With Decay

Although massed and spaced protocols in the absence of a filter decay mecha-

nism could in principle be distinguished by synapses by postulating for example

some form of temporal filtering of the perceptron’s firing rate, the underlying

cause of the perceptron’s strong response to a massed protocol compared to a

spaced protocol is quite clear. A massed protocol shifts filter states upwards

or downwards in a regimented, regular, nearly deterministic manner, allowing

little possibility for some degree of re-symmetrisation of filter states between

repeated stimuli. A much simpler alternative to a perhaps complicated tempo-

ral filter on the perceptron’s firing rate is to hypothesise instead that a synapse

in some sense becomes dynamically refractory to further filter threshold pro-

cesses following a strong stimulus. This can be implemented by dynamically

modifying the decay rate of filter states when strong stimuli, which activate

both neurotransmitter and neuromodulatory systems, occur. In particular, if

the filter decay rate increases rapidly following a strong stimulus, then this

makes the probability that the filter will reach threshold over some subsequent

period of time much lower. This provides the intuition for our proposal that
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the filter decay rate η(t) is under dynamic control: after a strong stimulus, η(t)

increases rapidly and remains elevated above basal levels for a period of time,

greatly reducing the chance of filter threshold processes during this period.

While a massed protocol will be disrupted by this transient increase in η(t),

a sufficiently spaced protocol will not be, because the stimuli will miss these

periods of transiently elevated η(t).

With this intuition in mind, we now turn on dynamic decay. For our

standard parameters of Θ = 8 and ρ = 6, we establish a reference point

by searching in parameter space for the values of τ ′ and ∆η′ that maximise

the difference between the maximum value of µ(t′) under an at-peak protocol

and the corresponding value under a massed protocol. Massed stimulus times

are again t′i = i, while for each candidate choice of τ ′ and ∆η′, the at-peak

times are again determined numerically and iteratively, with a set {t′0, . . . , t
′

i}

inducing the next peak and hence repetition time t′i+1. Having found this

reference pair (τ ′,∆η′), we also vary them independently three-fold, so that

we consider a set of nine pairs (3iτ ′, 3j∆η′), with i, j ∈ {−1, 0,+1}, allowing

a comparison between this best at-peak reference point and nearby points in

parameter space.

We find this reference point to be given by parameters τ ′ ≈ 3.31 and

∆η′ ≈ 0.19, where we search to two decimal places. Results for the evolution

of µ(t′) and η′(t′) under massed and at-peak protocols for the nine points

in parameter space are shown in Fig. 4. Each panel shows the evolution of

these two quantities, split into two graphs, for each pair of parameters, as

indicated, with the central panel, E, showing the reference pair and the others

the three-fold variations around them. For the reference pair, µ(t′) for the

massed protocol is considerably suppressed compared to that for the at-peak

protocol. The decay rate η′(t′) accumulates over each massed repetition, with
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each successive impulse overcoming any intervening reduction in η′(t′). In

contrast, the spacing between at-peak repetitions is such that η′(t′) returns

close to zero before the next strong stimulus arrives. A non-zero value of η′(t′)

will inevitably affect a spaced protocol, but not as much as a massed protocol.

In panels A, D and G, ∆η′ is three times smaller than its reference value, but τ ′

varies, increasing from A to D to G. Although there is some reduction in µ(t′)

for the at-peak protocol as τ ′ increases, the most significant impact is on the

massed protocol, with µ(t′) being reduced around three-fold between panels A

and G. The same trend is seen for any fixed choice of ∆η′ with τ ′ increasing, as

in panels B, E and H or panels C, F and I. When τ ′ is increased, the window over

which η′(t′) remains transiently elevated increases in length, so that massed

repetitions will at some point start to fall within these windows. Of course, if

τ ′ is increased enough, spaced repetitions will also be caught in this manner,

so there is an optimal choice of τ ′ that significantly affects massed protocols

without affecting spaced protocols too much. Increasing ∆η′ while keeping τ ′

constant, so moving horizontally between the panels in Fig. 4, again reduces

µ(t′) for either protocol. The impact is significant in both cases, but even more

so for massed protocols, in which again massed repetition is more likely to fall

within the transiently elevated decay window. By the time both ∆η′ and τ ′

have increased three-fold compared to their reference values, µ(t′) for both

protocols is essentially completely suppressed, with hardly any response. The

pair of values corresponding to the reference (∆η′, τ ′) is therefore a balance

between suppressing the response to a massed protocol while not suppressing

the response to a spaced protocol too much. If both ∆η′ and τ ′ are too small,

then neither protocol is affected; while if they are too large, then both are

affected. Away from these two extremes in panels A and I, massed protocols

are affected more than spaced protocols, in relative terms, with the reference
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pair of values used in panel E giving the greatest suppression of the massed

compared to the spaced protocol, in absolute terms. For this reference pair of

values, a spaced protocol is easily distinguished from a mass protocol simply

by placing a threshold on the perceptron’s firing rate, because there are very

clear margins between these two protocols.

For the choice of the reference parameters used in Fig. 4, we examine the

distribution of filter states and the various threshold and splitting probabilities

for massed and at-peak protocols in Fig. 5. Fig. 5 should be compared to Fig. 3,

for which dynamic filter decay was absent; the formats of these two figures are

identical. In the presence of dynamic decay for the massed protocol, we see

that while the distribution of filter states for both weak and strong synapses

is inevitably skewed in favour of higher rather than lower filter states, the

probability of being in the very highest filter states is very much reduced, and

indeed becomes increasingly reduced with more repetitions. This of course

is a direct consequence of the dynamic decay. While the massed repetition

of stimuli shifts the filter distributions upwards, the dynamic decay, whose

influence is stronger further away from the zero state, pulls the distributions

back to the zero state. For a massed protocol with dynamic decay, the filter

distributions for weak and strong synapses are rather similar in overall shape,

while without a decay process, in Fig. 3, their shapes are very different. For the

at-peak protocol, in contrast, the filter distributions are very similar in overall

shape in Figs. 3 and 5, for both weak and strong synapses, indicating that the

decay dynamics have much less impact on the at-peak protocol compared to

the massed protocol. Further, in Fig. 5B, we explicitly see that for the massed

protocol, Prob[I = +(Θ−1) |Si = −1] falls with each repetition in the presence

of filter decay, while without decay, in Fig. 3B, it increases. Moreover, while

the splitting probabilities 〈π+
J 〉J for weak and strong synapses in Fig. 3C are
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clearly quite different, in Fig. 5C with decay, they are very similar. Overall,

then, a comparison of Figs. 3 and 5 confirms that dynamic filter decay operates

precisely as our intuition suggested, by making synapses transiently refractory

to filter threshold processes, and that this refractoriness impacts on massed

protocols more than on spaced protocols, at least in (large) regions of parameter

space.

3.3 Optimally Spaced Repetition Protocols

We have used the at-peak protocol as an example of spaced repetition be-

cause the mean memory signal peaks are easy and quick to find, numerically-

speaking, and furthermore, the signal peaks present themselves as natural loca-

tions at which to seek to reinforce the storage of a memory by repeating strong

stimuli. However, the at-peak protocol is not necessarily the optimally spaced

protocol, in terms of maximising the difference between the maxima of µ(t′)

for spaced and massed stimuli. For a fixed choice of filter size Θ and repeti-

tions ρ, we must search through parameter space to find this optimally spaced

protocol. To perform this search, for a fixed pair of parameters (τ ′,∆η′), we

must search for that set of spaced repetition times {t′1, . . . , t
′

ρ} that maximises

this difference. The search space in repetition times is of course ρ-dimensional,

but fortunately the search is essentially a convex optimisation problem, so we

can use gradient ascent methods to find the optimal times. Each potential

step involves numerically re-solving the system in Eq. (16) multiple times, so

we restrict to steps of unit size in each time direction for increased speed and

tractability. Each such search returns for any given pair (τ ′,∆η′) the spaced

repetition times that maximise the difference between spaced and massed pro-

tocols. For fixed Θ and ρ we must then find the optimal choice of the pair

(τ ′,∆η′) that maximises this maximum difference. This search is computa-
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tionally very intensive and is performed on a cluster supercomputer.

Fig. 6 shows the locations of these optimal points in both the η0–τ
′ plane

and the ∆η′–τ ′ plane for various values of Θ and ρ. We show the values

corresponding to optimally spaced protocols and, for comparison, the values

corresponding to at-peak protocols (for which we still search for the best choices

of τ ′ and ∆η′, but the at-peak stimulus times are taken as earlier to correspond

to each successive peak in µ(t′)). We first observe that although there are

differences in parameter values between optimal and at-peak stimuli, their

values are nevertheless extremely similar. Indeed, the similarity between their

values allows us to use the at-peak values as the initial seeds in the search

for the optimal values. Their similarity suggests that spaced protocols are not

excessively sensitive to the precise choice of the parameters ∆η′ and τ ′, nor to

the repetition times {t′1, . . . , t
′

ρ}, as we explore later.

As Θ increases, the best choice of τ ′ increases. This dependence is to be

expected, since as Θ increases, the time-to-peak increases, quadratically in

Θ from Eq. (8). Thus, the duration of the decay window may be extended

as Θ increases, so as to capture more effectively massed protocols without

interfering too much with spaced protocols. Conversely, as Θ increases, the

best choice of ∆η′ or η0 decreases. Again, this follows from the behaviour

of τ ′. By reducing ∆η′, the impact on spaced stimuli is reduced, while the

increasing duration of the decay window ensures that smaller impulses ∆η′

accumulate without significant decay during mass repetitions, so that their

accumulated impact serves to suppress the response to massed stimuli. As the

number of repetitions increases, we see a form of convergence of best parameter

values. In general, except at very small ρ for higher Θ, the best choice of ∆η′

reduces as ρ increases, again because with more repetitions, the impulses can

accumulate. The trend in η0 does not exhibit the initial non-monotonicity for
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smaller ρ and larger Θ. As a compound parameter, η0 also contains a factor

of τ ′, so it is affected by the change in τ ′. As ρ increases, the best choice of τ ′

decreases, because again the effect of the decay process will accumulate with

higher repetitions, even if η(t) falls somewhat more between repetitions. In this

case, the impact of decay on a spaced protocol will be reduced while continuing

to affect a massed protocol. The best choices of parameters are clearer in the

η0–τ
′ plane, but when shown in the ∆η′–τ ′ log-log plane, we observe that for

fixed numbers of repetitions, the best values fall on a very nearly straight line

for different choices of Θ, thereby demonstrating power-law behaviour.

Corresponding to the optimal parameters τ ′ and ∆η′ in Fig. 6, we show

in graphical form the repetition times {t′1, . . . , t
′

ρ} in Fig. 7 that maximise

the difference between spaced and massed protocols. Again we show results

for optimal and at-peak protocols. In addition to the basic, unnormalised

times t′i we also show a normalised form, t′i/Θ
2, where the expected quadratic

dependence of the at-peak repetition times on Θ has been removed. For at-

peak protocols with fixed Θ, if τ ′ and ∆η′ were held fixed as ρ changes, then

the repetition times would not depend on ρ (e.g., t′1 would not depend on

ρ ≥ 1, etc.) as they are defined as the successive peak times of µ(t′), which

would be determined by the fixed choice of τ ′ and ∆η′. However, when we

search for the maximising parameters τ ′ and ∆η′ for each choice of ρ, the

induced at-peak repetition times depend on ρ because the peak times depend

on τ ′ and ∆η′. Therefore, unnormalised and normalised times for optimal

and at-peak protocols show a systematic dependence on both Θ and ρ. For

fixed Θ, more repetitions lower the required repetition times compared to fewer

repetitions. This trend is clearer for optimal stimuli than for at-peak stimuli.

For at-peak repetition, the normalised repetition times are relatively but not

completely insensitive to both Θ and ρ. For example, regardless of Θ, for
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at-peak repetition, t′3/Θ
2 ≈ 1 for any choice of ρ ≥ 3 in this figure, while

for optimal repetition, t′3/Θ
2 shows greater variation with ρ. For Θ > 4,

compared to at-peak repetition times the optimal repetition times are earlier,

so that for optimal protocols, repetitions occur before the mean memory signal

has reached its next peak. The reverse is true for Θ ≤ 4 (data not shown),

with optimal repetitions occurring later than at-peak repetitions, but small

threshold filters are not typical.

We further illustrate these trends in Fig. 8, in which we plot µ(t′) for

massed, optimal and at-peak protocols for different choices of Θ and ρ, as in-

dicated. Each panel uses the optimal parameters (τ ′,∆η′) for the given choice

of Θ and ρ, and the at-peak and massed repetition times are generated in the

usual manner. In each panel, we normalise µ(t′) relative to the maximum value

of the optimal signal to facilitate easy comparison within and between panels.

By definition of the optimal protocol, its µ(t′) always attains the normalised

maximum of unity. We clearly see that the optimal maximum always occurs

before the at-peak maximum, with the optimal repetitions always occurring

before the corresponding at-peak repetitions (at least here, for Θ > 4). For the

smaller choices of Θ or ρ shown, the optimal and at-peak repetition and maxi-

mum times are similar. Only for larger choices of Θ and ρ do we begin to see a

clear separation of repetition times for these two protocols. What is striking,

however, is that despite the optimisation of the difference between spaced and

massed maxima, optimal and at-peak protocols induce rather similar, some-

times very similar, maximum values of µ(t′). Even for Θ = 16 and ρ = 12 in

panel I, the at-peak maximum is around 92% of the optimal maximum. These

results confirm that although optimal and at-peak repetition times can be quite

different, the particular choice of a spaced stimulus does not require exquisite

tuning, since both optimal and at-peak repetition are clearly and robustly dis-
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tinguishable from massed repetition, in terms of attaining similar maximum

values of µ(t′). We will see next that not only do the spaced repetition times

{t′1, . . . , t
′

ρ} not need exquisite tuning, but neither do the parameter τ ′ and ∆η′

need tuning to their optimal values.

Optimal choices of parameters have been determined here on the basis of

comparing massed and spaced protocols with identical numbers of repetitions.

This leaves open the question of whether massed protocols with more repe-

titions could increase the massed maximum value of µ(t′) so that it becomes

comparable to or even exceeds that for spaced protocols with fewer repetitions.

That is, can we simply repeat a massed stimulus more and more times until

its peak exceeds a spaced stimulus with a fixed number of repetitions? From

our earlier considerations, it is clear that more massed repetitions suppress the

probability that a filter may subsequently reach threshold (e.g. Fig. 5B). We

therefore cannot simply repeat a massed stimuli more times and drive its peak

higher. The filter decay process ensures that this is not a viable option. The

only way to increase the maximum of µ(t′) is to space the stimuli apart, so

that they miss the decay windows. The use of equal numbers of repetitions

to compare spaced and massed protocols and obtain optimal parameters is

therefore valid.

3.4 Suboptimal but Good Enough Spaced Repetition

The results in Fig. 6 give the optimal values of τ ′ and ∆η′ (or η0) that maximise

the difference between spaced and massed protocols. While a single synapse

may be expected to be able to set τ ′ and ∆η′ in a manner that depends on its

filter threshold size, it of course cannot and does not have access to the number

of times that a future strong stimulus will be presented. Setting τ ′ and ∆η′

as a function of the number of repetitions, ρ, to achieve optimal behaviour is
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therefore not an available option. But can suboptimal behaviour that is good

enough, in the sense of nevertheless robustly distinguishing between spaced

and massed protocols, be achieved? That is, can the parameters τ ′ and ∆η′

be set in a Θ-dependent but ρ-independent manner and still achieve robust

discrimination?

To answer this question, first in Fig. 9 we plot in the η0–τ
′ plane 90%

contours around the optimal points shown in Fig. 6. These contours correspond

to values of τ ′ and η0 for which the difference between spaced and massed

protocols is 90% of the maximum possible difference for optimal choices of τ ′

and η0. (We note that for each point in the η0–τ
′ plane, we always search for

the repetition times {t′1, . . . , t
′

ρ} that maximise this difference, so these times

depend explicitly on τ ′ and η0; they have not been fixed at the repetition times

corresponding the optimal choices of τ ′ and η0.) For comparison we again show

results for both optimal and at-peak protocols, in panels A and B, respectively.

We plot contours for various choices of Θ as shown, excluding some values only

to avoid excessive clutter, and for all values of ρ that we have examined, from

ρ = 2 to ρ = 12. For each of the smaller values of Θ shown, the set of contours

for all values of ρ always enclose a common, core region. Inside this region,

the difference between spaced and massed protocols is always in excess of 90%

of optimal, so that regardless of the actual choice of ρ, we are assured of at

least 90% optimal difference in this region. For larger values of Θ, the contours

initially shift rapidly for small ρ, but if we exclude the ρ = 2 case, there is still

always a sizeable, common core with at least 90% optimal difference; including

ρ = 2 restricts us to a relatively small region. In these upper panels, we also

indicate the average values of the optimal choices of η0 and τ ′ for a given value

of Θ, with the average taken over ρ. We consider either all examined values

of ρ or all values excluding ρ = 2 and ρ = 3, which values tend to distort the
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general trends. These average values, plotted explicitly as a function of Θ in

panels C and D, mostly sit at the centres of the corresponding core regions

in panels A and B. They are therefore candidate choices of τ ′ and η0 for a

synapse to achieve at least 90% optimal discrimination between spaced and

massed repetition, regardless of the number of repetitions. For τ ′, we see the

power-law dependence on Θ in panels C and D. For η0, the power-law behaviour

is less clear particularly for smaller Θ, as discussed above, but had we instead

plotted ∆η′, its power-law behaviour would have been clearer. Indeed, we have

used η0 rather than ∆η′ in this figure only for greater clarity (cf. Fig. 6). Had

we plotted only ∆η′, the inclusion or exclusion of small ρ in the averaging

would have been entirely moot, as the two corresponding average values of

∆η′ would have been much more similar for larger Θ than those for η0 with

its extra factor of τ ′. Fitting the average values (over all ρ) of τ ′ and ∆η′ to

power laws in Θ for Θ = 5, . . . , 16 (so excluding the noisy, unrepresentative

Θ = 4 case: see Fig. 6), for optimal spacing we obtain τ ′(Θ) ≈ 0.063 × Θ1.87

(so slightly sub-quadratic in Θ) and ∆η′(Θ) ≈ 52.1/Θ2.65, and for at-peak

spacing we obtain τ ′(Θ) ≈ 0.052×Θ1.99 (almost perfectly quadratic in Θ) and

∆η′(Θ) ≈ 53.9/Θ2.67. Finally, we remark that the various results for optimal

and at-peak repetition in this figure are very similar, as the fits also confirm,

again reflecting that the discrimination between spaced and massed protocols

is relatively insensitive to the precise details of the spaced repetition times,

whether optimal or at-peak.

In order that this ability to select regions of parameter space with at least

90% performance compared to optimal, regardless of ρ and without excessive

sensitivity to the repetition times, is actually useful, we must also exhibit the

dynamics of µ(t′) with parameters taken from these 90% contours and show

that the reduction is not significant. We do this in Fig. 10, in which we take
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Θ = 8 and ρ = 6 as our standard values, take the corresponding optimal val-

ues of τ ′ and η0, and then consider eight points on the 90% contour around

this optimal point. The dynamics of µ(t′) and η′(t′) for these nine points in

τ ′–η0 parameter space, including the optimal point, are shown in the nine pan-

els of Fig. 10, with the central panel E corresponding to the optimal point.

Inevitably, as the parameters vary around the 90% contour, µ(t′) varies for

both massed and spaced protocols. However, for the optimal point, we have

maximised the maximum difference between the spaced and massed signals.

The absolute changes in µ(t′) are therefore not important. Rather, what is

important is that the differences between the spaced and massed maxima of

µ(t′) do not vary much around the 90% contour relative to the optimal point.

We have therefore also plotted a rectified, relative form of the spaced mean

memory signal µ(t′) in which we subtract from it the maximum value of the

massed mean memory signal, truncating negative values where necessary. We

see that the maximum of this rectified, relative signal is in all panels around

0.2, in fact varying between 0.194 and 0.215 while the maximum of the spaced

signal varies between 0.24 and 0.35 while that for the massed signal varies be-

tween 0.04 and 0.15. Thus, the suboptimal parameter choices around this 90%

contour discriminate between massed and spaced protocols almost as well as

the optimal parameter choice. Hence, we suffer very little deterioration in per-

formance by relaxing a strict optimality requirement. A synapse may therefore

very effectively discriminate between spaced and massed protocols, regardless

of the number of repetitions, to which it cannot have prior access, and also

without extreme sensitivity to the precise timing of the spaced repetitions, also

to which it cannot have prior access.
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3.5 Typical Versus Particular Behaviour

We have so far examined the typical or average dynamics of h(t), via µ(t),

where we average over all possible realisations of the tracked and repeated

memory ξ0 and the non-tracked and unrepeated memories ξα, α ≥ 1. This

allows us to examine the difference between massed and spaced protocols with-

out having to consider noise or fluctuations. However, real memory systems

store real memories, which of course are always particular realisations. We

must therefore show that the mean behaviour is completely representative, in

the sense that particular realisations do not vary from it so much as to make

the above analysis of the mean behaviour redundant. To this end, we run

simulations of our model according to methods described at length elsewhere

(Elliott & Lagogiannis, 2012; Elliott, 2016a). We may average over multiple

simulations to obtain average statistics to validate our results for µ(t), but

we may also use single simulations to obtain results for particular realisations

of h(t). We do this for Θ = 8 and ρ = 6, as standard, taking the optimal

parameters τ ′ = 3.16 and η0 = 0.59 (see Fig. 10E), and using the optimal rep-

etition times of t′i ∈ {21, 37, 51, 64, 77, 90}, i = 1, . . . , 6, with of course t′0 = 0

as the initial storage time for ξ0. For each simulation, all the memories have

components ξαi drawn randomly from {−1,+1} and the times for the storage

of ξα for α ≥ 1 are also drawn according to their Poisson distribution. For

examining µ(t) we have not so far had to specify N , the number of synapses, as

µ(t) is an average over N identically distributed random variables. However,

for running simulations, we must specify N , which also sets the scale for the

fluctuations in h(t), measured here by its variance, σ2(t). Results for N = 103,

N = 104 and N = 105, spanning a biologically plausible range of values, are

shown in Fig. 11. We plot the mean µ(t′), here determined from simulations
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but up to simulation noise identical to the numerical results discussed above;

the one and two standard deviation regions around it (1σ and 2σ); and for

each choice of N , four completely representative examples of particular reali-

sations of h(t′). We see that the particular realisations of h(t′) closely follow

the overall trend in µ(t′), so that the realisations robustly increase with each

repetition of the tracked memory and reach a maximum similar to that for

the mean. The fluctuations in the realisations are mostly confined to the 1σ

and 2σ regions around the mean, with these regions being quite narrow. Up

to issues of correlations between the strengths of pairs of synapses (Elliott &

Lagogiannis, 2012), which we can largely ignore here, the variance in synaptic

strength is around 1/N , and even for N = 103, the mean at its maximum

swamps the standard deviation. Hence, the memory signal for any particular

memory behaves similarly to the mean signal and is subject to fluctuations

that are sufficiently small that if we can robustly discriminate between massed

and spaced stimuli at the level of the mean, then we can also discriminate be-

tween them in real scenarios with real, particular rather than typical memories.

A simple threshold on the perceptron’s firing rate will work for both average

dynamics and for particular realisations.

4 Discussion

Integrate-and-express models of synaptic plasticity propose that synapses act

as low-pass filters, integrating plasticity induction signals before expressing

synaptic plasticity. Such models powerfully suppress fluctuations in synaptic

strength and possess very rich dynamics, including an initially rising mem-

ory signal driven by the ongoing storage of other memories, which in non-

integrative models reduces rather than enhances the memory signal. This rise
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in the memory signal to a maximum suggests a natural time at which to repeat

the memory for re-storage, hinting at the spacing effect. To fully explain the

spacing effect with synaptic integration, we have postulated that filter decay

dynamics are regulated by coincident neurotransmitter and neuromodulatory

activity. With such dynamic regulation, a synaptic filter provides a natural and

robust mechanism for a synapse to discriminate between massed and spaced

repetition of strong stimuli, suppressing the response to the former while main-

taining the response to the latter. The two key parameters that characterise

the regulated filter decay process can be interpreted as the duration and am-

plitude of activity in signalling cascades downstream from cAMP production

resulting from neuromodulation, perhaps specifically the MAPK pathway and

the phosphatase SHP2 that is known to modulate the spacing effect (Pagani

et al., 2009).

We have focused exclusively on the spacing effect in the transition from

early- to late-phase plasticity, where we have understood the spacing effect to

be the capacity of a single synapse to discriminate between massed and spaced

repetition protocols. Evidence does indeed support the view that the spacing

effect is a property of single synapses, giving specificity and precision to struc-

tural changes (Martin et al., 2017). In particular, we have implicitly assumed

that the capacity to discriminate between massed and spaced repetition must

be both logically and biologically prior to the capacity to convert early- into

late-phase plasticity: the former is a necessary (but not sufficient) condition

for the latter. Thus, we have taken the latter as dissociable from the former,

so that we can set to one side, for future study, the mechanistic underpinnings

of the latter. Therefore, it has not been necessary for us to consider issues

of synaptic tagging, synaptic capture and cross-capture, and late associativity

(Frey & Morris, 1997; Frey & Morris, 1998; Sajikumar & Frey, 2004; Rey-
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mann & Frey, 2007; Frey & Frey, 2008; Wang & Morris, 2009). Many of these

processes are heterosynaptic, extending into dendritic compartments, and ulti-

mately involving the nucleus via, for example, the CREB pathway. To consider

the process by which single synapses convert early- into late-phase plasticity,

after determining that a stimulus is suitably spaced rather than massed, would

necessarily entail moving beyond the purely single synapse level. A few models

have considered synaptic tagging (Clopath et al., 2008; Barrett et al., 2009;

Päpper et al., 2011; Ziegler et al., 2015), but they are largely phenomenologi-

cal in character, fitting model parameters to experimental data in state-based

models without providing much explanatory or mechanistic insight.

Many models have considered memory formation with discrete-strength

synapses in a feedforward or recurrent network setting (Tsodyks, 1990; Amit

& Fusi, 1994; Fusi et al., 2005; Leibold & Kempter, 2006; Barrett & van

Rossum, 2008; Huang & Amit, 2010; Elliott & Lagogiannis, 2012; Lahiri &

Ganguli, 2013). These models overcome the catastrophic forgetting of the

classic Hopfield network (Hopfield, 1982) by allowing the forgetting of older

memories as newer ones are stored, turning them into so-called “palimpsest”

memories (Nadal et al., 1986; Parisi, 1986). Common to all these palimpsest

models, including that studied here, is that memories are essentially stored

as transients on an equilibrium distribution, and the transients inevitably die

away as the system returns to equilibrium. In all non-integrative models (all

those but our own), this process of returning to equilibrium occurs immediately

after the storage of a memory, but in integrative models, it starts only after

the memory signal has reached its peak, with the system moving further away

from equilibrium prior to peak signal. Memory lifetimes are determined by

the longevity of these transients, and may be defined in a variety of ways,

including via a signal-to-noise ratio (Tsodyks, 1990), the completely equivalent
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“ideal observer” approach (Fusi et al., 2005; Lahiri & Ganguli, 2013; Elliott,

2016b), and a mean first passage time method (Elliott, 2014). Recently, using

this last method, we showed that in fact the storage capacity of a palimpsest

memory system is fatally compromised when a perceptron’s firing threshold

is not precisely tuned to match its equilibrium mean memory signal (Elliott,

2014; Elliott, 2017). Further, even when this unrealistic tuning is assumed,

many models require that a neuron can discriminate changes in its membrane

potential far below the roughly 0.5mV level of noise level inherent in membrane

potentials (Sigworth, 1980). Such noise completely destroys these models’

performance.

It is for these reasons that we have not examined memory lifetimes, via

any definition, in the current study. Regardless of spaced repetition of strong

stimuli, memories will inevitably die away, sooner or later, in palimpsest mod-

els, whether integrative or non-integrative. The difference between short- and

long-term memory is not one of degree, but one of kind. Some new, fun-

damental idea must therefore be introduced into these models so that they

become viable rather than merely toy models of biological memory systems.

That idea, of course, must be precisely the transition from early- to late-phase

plasticity, essentially locking synapses into non-labile states, preventing rather

than merely delaying a return to equilibrium. The signal to lock may simply be

when a neuron’s firing rate exceeds some threshold, so that a back-propagating

action potential robustly invades the dendritic tree, perhaps initiating the pro-

cess of setting synaptic tags at those synapses that participated in firing the

neuron strongly. We have begun this reformulation here, by showing that a

single synapse can robustly discriminate between massed and spaced stimuli.

In future work we must consider the consequences of locking synapses into

non-labile states. For example, such a memory system will immediately break
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the intimate connection between memory capacity and memory longevity in

palimpsest memory. The memory system will slowly reach maximum capacity,

although presumably in a non-catastrophic manner, of simply being unable

to store further memories as it reaches saturation. Short-term and long-term

memory systems are different, with hippocampal-neocortical interactions being

vital in transferring memories to long-term systems (Wang & Morris, 2009),

so saturation is not necessarily a fundamental problem. But it is necessary to

understand how such a memory system could continue to function, perhaps by

unlocking synapses involved in the storage of memories that have since been

transferred to other networks, or perhaps by ongoing synaptogenesis, making

new synapses available, or even, in some structures, by ongoing neurogenesis,

making entirely new sub-assemblies available. It will be fascinating to explore

these rich themes in extensions of the present work.

5 Conclusion

We have shown that when synaptic filtering is dynamically coupled to neuro-

modulatory signalling, a natural and powerful explanation of the spacing effect

in the transition from short- to long-term memory emerges. By thoroughly ex-

ploring the model’s parameter space, we have found large regions where single

synapses can robustly distinguish between massed and spaced protocols, and

other regions where such discrimination breaks down. Although synaptic fil-

tering was originally postulated as a mechanism for the control of potentially

destabilising fluctuations in synaptic strength, its unbidden and automatic ca-

pacity also to provide a novel and deep explanation of the spacing effect lends

support to our proposal that single synapses should be regarded as plasticity

induction signal processors.
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Figure Captions

Figure 1: Graphical representation of all allowed transitions between strength

and filter states encoded in the transition matrix rG + η(t)D. Each shaded

rectangle represents a definite strength state, Ω1, . . . ,Ων , and each circle en-

closing a number represents a definite filter state, −(Θ − 1), . . . ,+(Θ − 1).

Transitions between states are indicated by directed arrows labelled by their

rates, g+r and g−r for processes driven by potentiating and depressing induc-

tion signals, and rates proportional to η(t) for decay processes (the dependence

of η on t has been suppressed for convenience). We stress that although the

impression may be gained from this figure that a synapse possesses ν filters,

this is not the case. A synapse possesses a single filter, and the indicated tran-

sitions are between joint strength and filter states.

Figure 2: Comparison of different stimulus protocols in the absence a filter

decay process. The mean memory signal µ(t′) as a function of t′ is plotted for

massed (A), at-peak (C) and randomly-timed (E) stimuli, for Θ = 8. The en-

veloping solid line in each case shows the cumulative response to 12 successive

repetitions (a total of 13 presentations of ξ0) at the times indicated by the

arrows along the t′-axis. Also shown, in alternating line styles for clarity, are

what the responses would have been had the number of repetitions been only

1, . . . , 11, from bottom to top in these three panels. The maximum responses

maxt µ(t
′) plotted against the number of repetitions for different choices of Θ

are shown for massed (B) and at-peak (D) stimuli, with a direct comparison be-

tween massed and at-peak stimuli for particular choices of Θ shown in panel F.

Figure 3: Distributions of filter states and associated threshold and splitting
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probabilities in the absence of a filter decay process, for Θ = 8 and ρ = 6. (A)

For massed and at-peak protocols, we show histograms of the probability that

a synapse of lowest strength (Si = −1, “weak”) and highest strength (Si = +1,

“strong”) is in any given filter state. A total of nine time points are taken, cor-

responding to the seven presentation times for ξ0 (“Rep0”, . . . , “Rep6”), the

time at which µ(t′) reaches peak (“1×Peak”), and twice that time (“2×Peak”).

(B) The threshold probabilities Prob[J = ±7 |S = ∓1] plotted against time t′

for the same massed and at-peak protocols in panel A; we use 1 + t′ on the

abscissa so as not to over-emphasise small times on a logarithmic scale. These

probabilities indicate the probability that a weak synapse will become strong

and vice versa. (C) The corresponding splitting probabilities 〈π+
J 〉J for weak

and strong synapses indicate the probability that the synapse will reach the

upper filter threshold from any filter state, assuming no further repetitions of

ξ0 occur from that time.

Figure 4: Evolution of µ(t′) and η′(t′), shown separately in upper and lower

graphs, for massed (dashed lines) and at-peak (solid lines) protocols for Θ = 8

and ρ = 6, in the presence of filter decay for various choices of the parameters

τ ′ and ∆η′ as indicated in each panel. In panel E, the reference set of values

(τ ′,∆η′) = (3.31, 0.19) is taken. This choice maximises the difference between

the maximum values of µ(t′) for the spaced and massed protocols. The other

panels show results for three-fold variations around these reference parameters.

Figure 5: Distributions of filter states and associated threshold and splitting

probabilities, for Θ = 8, ρ = 6, τ ′ = 3.31 and ∆η′ = 0.19, corresponding to

the reference point in Fig. 4E. The format of this figure is otherwise identical

to Fig. 3.
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Figure 6: Parameters τ ′ and either η0 or ∆η′ (η0 = τ ′∆η′) that maximise

the difference between the maxima of µ(t′) for spaced and massed protocols.

Results are shown for optimally spaced protocols in which we search numeri-

cally for the repetition times {t′1, . . . , t
′

ρ} and the filter decay parameters that

maximise this difference (panels A and C), and for at-peak spaced protocols in

which repetitions are always at successive signal peaks but we search for the

maximising filter decay parameters (panels B and D). Results are shown in the

η0–τ
′ plane (panels A and B) or ∆η′–τ ′ plane (panels C and D), for different

choices of Θ and ρ, with each point on the “mesh” of points corresponding to

the maximising set of decay parameters; Θ varies from 4 to 16 and ρ from 2

to 12, each increasing in the direction of its corresponding arrow.

Figure 7: Graphical representation of the repetition times {t′1, . . . , t
′

ρ} at

which the tracked memory should be re-presented for different choices of Θ

and ρ, for optimally (top row) and at-peak (bottom row) spaced protocols.

For each choice of Θ and ρ, the best choice of parameters τ ′ and ∆η′ is used,

so that the optimal times are numerically determined, and the at-peak times

are as usual defined by successive peaks. Times are shown in their unnor-

malised forms t′i (left-hand column) and normalised with respect to Θ, t′i/Θ
2

(right-hand column). For each shown choice of Θ, each line denotes a particu-

lar value of ρ (increasing from 2 to 12 vertically for each Θ), with the successive

repetition times shown as circles along the line.

Figure 8: Comparison of optimal, at-peak and massed repetition protocols for

different choices of Θ and ρ, as indicated. In each panel, the parameters τ ′ and

∆η′ are the optimal choices corresponding to the optimal repetition times. The

53



at-peak repetition times are obtained, using these parameters, in the standard

manner, from each successive peak. The open (optimal) and closed (at-peak)

circles indicate the times {t′0, . . . , t
′

ρ} for the two spaced protocols. In each

panel, we have normalised all forms of µ(t′) by the maximum value of the op-

timal signal, so that the optimal signal reaches a maximum of unity.

Figure 9: The 90% contours around the maximising parameter points. In

panels A (optimal) and B (at-peak) each closed loop is a contour in the η0–

τ ′ plane corresponding to a maximum difference between spaced and massed

protocols of exactly 90% of that for the maximising values of η0 and τ ′ (for

the given choices of Θ and ρ). Different values of Θ are shown, with each clus-

ter of contours corresponding to the same value of Θ. Alternating line styles

are used as Θ increases for clarity; only a few values of Θ are shown to avoid

clutter. In each cluster for a fixed value of Θ, each loop shows the contour

for a different choice of ρ, with the contours shifting in the η0–τ
′ plane in the

direction indicated by the arrow as ρ increases from 2 to 12. The circles denote,

for fixed Θ, the average values of the optimising values of η0 and τ ′, averaged

over all choices of ρ; the squares denote these same averages, but excluding

the ρ = 2 and ρ = 3 cases. These average values are explicitly plotted against

Θ in panels C (optimal) and D (at-peak).

Figure 10: Suboptimal performance on 90% contours in relation to optimal

performance. For Θ = 8 and ρ = 6, we consider the optimal parameters

τ ′ = 3.16 and η0 = 0.59 for optimally spaced stimuli and then examine eight

locations around the 90% contour corresponding to this optimal point. Results

for µ(t′) and η′(t′) are shown in the upper and lower graphs of each panel. Each

panel also schematically denotes the contour, with the solid circle indicating
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the location on the contour used in that panel (or the central, optimal point).

Panel E gives the optimal point and the others the eight points around the 90%

contour. We show µ(t′) for both the spaced (solid lines) and massed (dashed

lines) stimuli, and we also show the rectified, relative difference between µ(t′)

for the spaced stimulus and the maximum value of µ(t′) for the massed stim-

ulus (dotted lines).

Figure 11: Realisations of h(t′) compared to the mean signal µ(t′). For

Θ = 8 and ρ = 6 we select the optimal parameter τ ′ = 3.16 and η0 = 0.59 and

corresponding optimally spaced times t′i ∈ {0, 21, 37, 51, 64, 77, 90}. We plot

µ(t′) (solid line) and four completely representative examples (dotted lines) of

particular realisations of h(t′), as functions of t′. Also shown in grey are the 1σ

and 2σ regions around the mean. The mean does not depend on the number

of synapses, N , but σ2(t′) does, so for the particular realisations we set N as

indicated in each panel.

55



g+r g+r g+r g+r g+r g+r g+r g+r

g−r g−r g−r g−r g−r g−r g−r g−r

(Θ−1)η 3η 2η η η 2η 3η (Θ−1)η
1−Θ · · · −2 −1 0 +1 +2 · · · Θ−1

g+r g+r g+r g+r g+r g+r g+r g+r

g−r g−r g−r g−r g−r g−r g−r g−r

(Θ−1)η 3η 2η η η 2η 3η (Θ−1)η
1−Θ · · · −2 −1 0 +1 +2 · · · Θ−1

g+r g+r g+r g+r g+r g+r g+r g+r

g−r g−r g−r g−r g−r g−r g−r g−r

(Θ−1)η 3η 2η η η 2η 3η (Θ−1)η
1−Θ · · · −2 −1 0 +1 +2 · · · Θ−1

g+r g+r g+r g+r g+r g+r g+r g+r

g−r g−r g−r g−r g−r g−r g−r g−r

(Θ−1)η 3η 2η η η 2η 3η (Θ−1)η
1−Θ · · · −2 −1 0 +1 +2 · · · Θ−1

g−r

g−r

g+r

g−r

g+r

g−r

g+r

g+r

Ω1

·
·
·

·
·
·

·
·
·

Ωi

Ωi+1

·
·
·

·
·
·

·
·
·

Ων

Figure 1

56



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

A

MASSED
Θ=8

µ(
rt

)

rt

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

C

AT PEAK
Θ=8

µ(
rt

)

rt

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

E

RANDOM
Θ=8

µ(
rt

)

rt

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12

B

MASSED

M
ax

t µ
(r

t)
Repetitions

Θ=  4
Θ=  6
Θ=  8
Θ=10
Θ=12
Θ=14
Θ=16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12

D

AT PEAK

M
ax

t µ
(r

t)

Repetitions

Θ=  4
Θ=  6
Θ=  8
Θ=10
Θ=12
Θ=14
Θ=16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12

F

M
ax

t µ
(r

t)

Repetitions

MASSED
AT PEAK

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12

M
ax

t µ
(r

t)

Repetitions

Θ=  4
Θ=10
Θ=16

Figure 2

57



0
3
6
9

12

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

A

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

0
3
6
9

12

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

0
3
6
9

12

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak
P

ro
ba

bi
lit

y 
x 

10
0

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

0
3
6
9

12

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

0
3
6
9

12

−7 −6 −5 −4 −3 −2 −1   0 +1 +2 +3 +4 +5 +6 +7

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

Filter State

−7 −6 −5 −4 −3 −2 −1   0 +1 +2 +3 +4 +5 +6 +7

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

Filter State

−7 −6 −5 −4 −3 −2 −1   0 +1 +2 +3 +4 +5 +6 +7

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

Filter State

−7 −6 −5 −4 −3 −2 −1   0 +1 +2 +3 +4 +5 +6 +7

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

Filter State

 0

 1

 2

 3

 4

 5

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

B

P
ro

ba
bi

lit
y 

x 
10

0 P[J=+7|S=−1]
P[J=−7|S=+1]

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

P[J=+7|S=−1]
P[J=−7|S=+1]

 5

 6

 7

 8

100 101 102

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

C

P
ro

ba
bi

lit
y 

x 
10

1+rt

〈π+
J〉J(S=−1)

〈π+
J〉J(S=+1)

100 101 102

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

1+rt

〈π+
J〉J (S=−1)

〈π+
J〉J (S=+1)

Figure 3

58



0

0.1

0.2

0.3

0.4

0.5

0.6G

rτ    = 3.31
∆η/r = 0.19

*3
/3

µ(
rt

)

0

1.0

2.0

3.  

100 101 102

η
(r

t)
/r

1+rt

H

rτ    = 3.31
∆η/r = 0.19

*3

100 101 102

1+rt

I

rτ    = 3.31
∆η/r = 0.19

*3
*3

100 101 102

1+rt

0

0.1

0.2

0.3

0.4

0.5

0.6D

rτ    = 3.31
∆η/r = 0.19/3

µ(
rt

)

0

1.0

2.0

3.  

η
(r

t)
/r

E

rτ    = 3.31
∆η/r = 0.19

Massed
At Peak

F

rτ    = 3.31
∆η/r = 0.19*3

0

0.1

0.2

0.3

0.4

0.5

0.6A

rτ    = 3.31
∆η/r = 0.19

/3
/3

µ(
rt

)

0

1.0

2.0

3.  

η
(r

t)
/r

B

rτ    = 3.31
∆η/r = 0.19

/3
C

rτ    = 3.31
∆η/r = 0.19

/3
*3

Figure 4

59



0
4
8

12
16

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

A

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

0
4
8

12
16

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

0
4
8

12
16

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak
P

ro
ba

bi
lit

y 
x 

10
0

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

0
4
8

12
16

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

0
4
8

12
16

−7 −6 −5 −4 −3 −2 −1   0 +1 +2 +3 +4 +5 +6 +7

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

Filter State

−7 −6 −5 −4 −3 −2 −1   0 +1 +2 +3 +4 +5 +6 +7

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

Filter State

−7 −6 −5 −4 −3 −2 −1   0 +1 +2 +3 +4 +5 +6 +7

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

Filter State

−7 −6 −5 −4 −3 −2 −1   0 +1 +2 +3 +4 +5 +6 +7

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

Filter State

 0

 1

 2

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

B

P
ro

ba
bi

lit
y 

x 
10

0 P[J=+7|S=−1]
P[J=−7|S=+1]

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

P[J=+7|S=−1]
P[J=−7|S=+1]

 5

 6

100 101 102

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

C

P
ro

ba
bi

lit
y 

x 
10

1+rt

〈π+
J〉J(S=−1)

〈π+
J〉J(S=+1)

100 101 102

MASSED AT PEAK

S=−1 S=+1 S=−1 S=+1

R
ep 0

R
ep 1

R
ep 2

R
ep 3

R
ep 4

R
ep 5

R
ep 6

1xP
eak

2xP
eak

1+rt

〈π+
J〉J (S=−1)

〈π+
J〉J (S=+1)

Figure 5

60



100

101

2-2 2-1 20 21

Θ

ρ
A

OPTIMAL

rτ

η0

100

101

2-2 2-1 20 21

Θ

ρ
B

AT PEAK

rτ

η0

100

101

10-1 100

Θ

ρ

C

rτ

∆η/r

100

101

10-1 100

Θ

ρ

D

rτ

∆η/r

Figure 6

61



 0  100  200  300  400  500  600  700

Θ
=

6
Θ

=
8

Θ
=

10
Θ

=
12

Θ
=

14
Θ

=
16

rt

 0  0.5  1  1.5  2  2.5  3

A
T

 P
E

A
K

rt/Θ2

Θ
=

6
Θ

=
8

Θ
=

10
Θ

=
12

Θ
=

14
Θ

=
16

ρ1 2 3 4
2

12

UNNORMALISED

O
P

T
IM

A
L

NORMALISED

Figure 7

62



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140

G

rτ =1.77
η0=0.79

µ(
rt

) 
[N

o
rm

a
lis

e
d
]

rt

 0  100  200  300  400  500

H

rτ =5.13
η0=0.37

rt

 0  200  400  600  800  1000

I

rτ =9.12
η0=0.28

re
p
s=

1
2

rt

 0

 0.2

 0.4

 0.6

 0.8

 1
D

rτ =1.82
η0=0.79

µ(
rt

) 
[N

o
rm

a
lis

e
d
]

E

rτ =5.25
η0=0.42

Optimal
At Peak
Massed

F

rτ =9.77
η0=0.35

re
p
s=

8

 0

 0.2

 0.4

 0.6

 0.8

 1
A

rτ =1.86
η0=0.85

Θ=6

µ(
rt

) 
[N

o
rm

a
lis

e
d
]

B

rτ =5.89
η0=0.56

Θ=11
C

rτ =12.0
η0=0.49

Θ=16

re
p
s=

4

Figure 8

63



10-1

100

101

102

2-3 2-2 2-1 20 21 22

Θ=4
Θ=5

Θ=6
Θ=9

Θ=16

ρ

OPTIMAL
A

rτ

η0

10-1

100

101

102

2-3 2-2 2-1 20 21 22

Θ=4Θ=5

Θ=6

Θ=9

Θ=16

ρ

AT PEAK
B

rτ

η0

100

101

22 23 24
2-2

2-1

20

21
C

rτ

η
0

Θ

η0
rτ 

100

101

22 23 24
2-2

2-1

20

21
D

rτ

η
0

Θ

η0
rτ 

Figure 9

64



0

0.1

0.2

0.3

0.4G

rτ =1.69
η0=0.54

µ(
rt

)

0

0.5

1.  

100 101 102

η
(r

t)
/r

1+rt

H

rτ =1.84
η0=0.68

100 101 102

1+rt

I

rτ =2.55
η0=0.85

100 101 102

1+rt

0

0.1

0.2

0.3

0.4D

rτ =2.29
η0=0.41

µ(
rt

)

0

0.5

1.  

η
(r

t)
/r

E

rτ =3.16
η0=0.59

Massed
Spaced
[S-maxM]+

F

rτ =4.34
η0=0.87

0

0.1

0.2

0.3

0.4A

rτ =4.26
η0=0.45

µ(
rt

)

0

0.5

1.  

η
(r

t)
/r

B

rτ =5.51
η0=0.57

C

rτ =5.73
η0=0.72

Figure 10

65



 0

 0.1

 0.2

 0.3

 0  50  100  150  200  250

A
N=103

µ(
rt

) 
or

 h
(r

t)

rt

 0

 0.1

 0.2

 0.3

 0  50  100  150  200  250

B
N=104

µ(
rt

) 
or

 h
(r

t)

rt

 0

 0.1

 0.2

 0.3

 0  50  100  150  200  250

C
N=105

µ(
rt

) 
or

 h
(r

t)

rt

Figure 11

66


