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We study the effects of individual perceptions of payoffs in two-player games. In particular we
consider the setting in which individuals’ perceptions of the game are influenced by their previous
experiences and outcomes. Accordingly, we introduce a framework based on evolutionary games
where individuals have the capacity to perceive their interactions in different ways. Starting from
the narrative of social behaviors in a pub as an illustration, we first study the combination of the
prisoner’s dilemma and harmony game as two alternative perceptions of the same situation. Consid-
ering a selection of game pairs, our results show that the interplay between perception dynamics and
game payoffs gives rise to non-linear phenomena unexpected in each of the games separately, such as
catastrophic phase transitions in the cooperation basin of attraction, Hopf bifurcations and cycles
of cooperation and defection. Combining analytical techniques with multi-agent simulations we also
show how introducing individual perceptions can cause non-trivial dynamical behaviors to emerge,
which cannot be obtained by analyzing the system as a whole. Specifically, initial heterogeneities at
the microscopic level can yield a polarization effect that is unpredictable at the macroscopic level.
This framework opens the door to the exploration of new ways of understanding the link between the
emergence of cooperation and individual preferences and perceptions, with potential applications
beyond social interactions.

I. INTRODUCTION

Game theory provides a useful mathematical formal-
ism to investigate the logical decision-making processes
of intelligent, rational individuals that maximize their ex-
pected payoff in conflicting interest situations [1, 2]. In
simple non-cooperative games, cooperators can be vul-
nerable to exploitation by selfish partners and so the
dominant rational behavior is expected to be uncoop-
erative [3, 4], as originally conjectured by Darwin [5].
However, cooperative behavior is observed at practically
every level of biological and societal organization [6],
playing a key role in the major steps of evolution [7].
Controlled laboratory and field experiments have also
measured non-negligible amounts of cooperative behavior
among humans [8–13]. Accordingly, many mechanisms
have been proposed to explain the emergence of coopera-
tion in both animal and human societies [14, 15]. In this
work we consider the effect of heterogeneous individual
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perceptions in games on the evolution of cooperation.

It has been argued that individuals do not necessar-
ily play rationally, but instead rational behaviors may
emerge through forms of adaptation. Thus far, two dis-
tinct mechanisms for adaptive systems have been pro-
posed: learning and evolution [16–18]. Learning focuses
on the local optimization of individual strategies, whereas
evolution considers the adaptation of whole populations
of individuals. In learning systems, individuals “learn”
their strategies over repeated games by choosing actions
to directly maximize their expected payoff [16]. The
study and development of optimal learning strategies has
become a subject of interest within the field of machine
learning, particularly when the payoffs are stochastic or
unknown [17]. In evolutionary game theory (EGT) play-
ers have fixed strategies, but asexually reproduce off-
spring with strategies proportional to their utility [18].
In social and economic settings, where individuals do not
reproduce, this mechanism can be interpreted as a form
of social learning in which individuals imitate those with
higher utilities. EGT has been proven to be a power-
ful tool to study the emergence of cooperation in a broad
range of problems in which dilemmas are present [19–22].

Common to many of these theoretical adaptive systems
is an inherent assumption of homogeneity that all indi-
viduals value the payoffs of specific outcomes in an iden-
tical manner. In other words, game payoffs only depend
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on the set of actions played, are invariant between indi-
viduals and remain constant over time. However, there
is evidence that suggests individuals perceive equivalent
outcome scenarios differently. For instance, experiments
on populations from different cultures indicate that indi-
viduals appear to assign different values to the prescribed
payoffs through an implicit “mapping” of the game to so-
cial exchanges that are more familiar to them [23, 24].

Within this work we postulate that individuals may
have different perceptions of the same set of outcomes
and that these perceptions are shaped by their previous
experience of the game. For example, there has been a
long-standing view that trust can promote cooperation
between organizations and/or individuals [25, 26] and
trust can be built or broken based on prior interactions.
There may be a number of mechanisms that change per-
ceptions such as diminishing returns for repeated actions,
e.g., the benefit of scoring points in sports can change
depending on whether a team is currently leading or
not [27]. Perceived benefits of competing technologies
can vary between individuals and may change over time
as a function of those investing in the technology [28]. We
present a framework to model these types of systems by
allowing individuals to have different perceptions. Per-
ceptions are modeled as different sets of payoffs and the
set of payoffs perceived by an individual is determined
by their state, which is dynamically influenced by past
experience.

Mixed games, in which individuals in the population
play one of two possible games, have previously been
considered [29–33]. However, in most cases these mixed
games transpire to produce the same average behavior as
the weighted mean of the two games. Mixed games are
different in structured populations [31], where the aver-
age game is returned only if heterogeneity in payoffs is
small. Dynamic payoffs have also been considered within
dynamical games, in which payoffs are coupled with the
evolution of time [34–36], or games in which payoffs are
coupled with population strategies [37, 38]. However,
within all these scenarios, individuals perceive rewards
independent of their own specific experiences.

A number of mechanisms have been shown to facili-
tate cooperation in evolutionary settings, but many of
these necessitate an infeasible level of complexity or cog-
nitive load, such as high memory capacity [39] or recogni-
tion of the others [40], to occur in natural scenarios [41–
44]. Frameworks incorporating states of individual play-
ers have been used to reduce the complexity of such mech-
anisms [45]. Player states in these models are typically
used to directly modify the actions individuals choose.
In contrast, our proposed framework uses states to mod-
ify the way each individual perceives the game and uses
simple strategies that do not have direct dependence on
the current state.

Here we introduce drunk game theory (DGT), a frame-
work that couples games to allow individuals to change
their perception (i.e., the game they play) according to
their own prior experience (i.e., the outcomes of their

previous games). We first exemplify DGT with a par-
ticular scenario called the Pub Dilemma that couples a
Prisoner’s Dilemma and a Harmony game.

In the following, we briefly review some key no-
tions from the study of two-player two-strategy sym-
metric games (Sec. II). We then introduce the Pub
Dilemma and provide a generalization for any other pair
of games (Sec. III). We demonstrate analytically the
emergence of new fixed points and critical phase tran-
sitions and show that stable fixed points in the original
games can lose their stability in the resulting coupled
game (Sec. IV). Subsequently, we confirm analytical re-
sults in agent-based simulations and extend them to the
study of individual behavior (Sec. V). Finally, we discuss
the wide range of potential multidisciplinary applications
of DGT (Sec. VI).

II. TWO-PLAYER TWO-STRATEGY
SYMMETRIC GAMES

In the simplest version of two-player two-strategy sym-
metric games [46] individuals have a choice of two ac-
tions: cooperate (C) or defect (D). Depending on their
combined actions they each receive a payoff. Since the
payoffs are symmetric, we can write the full set of possi-
ble payoffs as a single payoff matrix using the convention
that entries indicate the payoff received by the player
whose actions occupy the rows:

G :=

C D

C R S

D T P

(1)

In this standard notation: both players receive the re-
ward R if they both cooperate; both get the punish-
ment P if they both defect; and a defector receives the
temptation T when playing against a cooperator, who
gets the sucker’s payoff S. The relative payoff values
R,S, T, P ∈ R determine the nature of the game. We
can standardize the payoffs by setting R = 1 and P = 0
and parameterize games by the T and S payoffs.

Figure 1 shows how we can classify games into four
characteristic types according to where they lie on in the
standard T -S parameter space [47]. Within such games,
there may exist one or more Nash equilibria (NE) [1] —
steady states in which no player can benefit by chang-
ing strategies while the other player keeps theirs un-
changed [46]. The Prisoner’s Dilemma (PD) game corre-
sponds to the lower right quadrant where T >R>P >S.
In this game defection is the rational choice such that
mutual defection (D,D) is the unique NE. In the up-
per right quadrant we have the Snow Drift (SD) game
in which T > R > S > P . Players have an incentive to
play D but mutual defection is harmful for both parties.
In the Stag Hunt (SH) game (lower left quadrant), the
payoff ordering is R > T > P > S, which makes mutual
cooperation (C,C) a NE in which both players earn the
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Harmony Game
(HG)

Snowdrift
(SD)

Stag Hunt
(SH)

Prisoner's Dilemma
(PD)

FIG. 1. T-S space. The four classes of two-player two-
strategy symmetric games within the standard T–S param-
eter space (R = 1, P = 0). Prisoner’s Dilemma (PD),
Snowdrift (SD), Stag-Hunt (SH), and Harmony Game (HG).
Colors show the level of cooperation obtained by the replica-
tor dynamics at the stable equilibrium starting from an initial
fraction of cooperators x0 = 0.5.

most. The SH game also contains a second NE when
both players defect (D,D), but results in a less favorable
outcome. Finally, in the upper left quadrant is the Har-
mony game (HG), defined for T < R and S > P , which
has a single NE and payoff-dominant outcome of (C,C).
For more details we refer the reader to [46].

Nash equilibria represent the expected behavior of ra-
tional players. However, rather than focus on rational in-
dividuals, we instead consider a population of individuals
that learn socially through processes of imitation [48]. In-
dividuals interact with each other and can stochastically
imitate their partner’s strategy with a probability pro-
portional to the difference of their payoffs. Specifically,

at time t, player i with strategy s
(t)
i will imitate player

j’s strategy with a probability that is a function of the

difference in payoffs π
(t)
j − π

(t)
i , where π

(t)
i represents i’s

payoff at time t. If we assume an infinite and well-mixed
population, the evolution of strategies can be modeled
at the population level according to the proportion of
cooperators x. This yields the replicator equation:

ẋ = x(1− x)(ΠC −ΠD) , (2)

where ΠC and ΠD represent the expected payoff of a
cooperator and a defector, respectively, when a fraction
x of the population are cooperators. The fixed points
of the replicator equation, i.e., the solutions of ẋ = 0,
represent the equilibria of the game dynamics.

III. INDIVIDUAL PERCEPTIONS IN GAMES

All individuals in standard two-player two-strategy
symmetric games play the same game and receive the
same set of payoffs given a particular set of actions
played. Here we introduce the notion of drunk games
where players may individually perceive different payoffs
for the same set of actions. We model the simplest set-
ting of two possible perceptions by coupling two different
games G1 and G2, each representing a state of percep-
tion. In the following, we describe an example of such a
game, which we call the Pub Dilemma.

A. The Pub Dilemma

In the Pub Dilemma, two individuals approach the bar
of a busy pub. To receive their drinks efficiently, they de-
cide to combine their orders, but do not discuss who will
make the order and settle the bill. Both individuals at-
tract the attention of different bar tenders simultaneously
and therefore have two available actions: cooperate C, by
offering to buy a round (buy two beers, one for each), or
defect D, by doing nothing and hoping that the other will
make the order. The payoffs are calculated as a function
of the total beer bT and amount of free beer bF received.
Note that for convenience we set bT to half the number of
beers received to keep within the standard setting where
R = 1 and P = 0:

bT :=

C D

C 1 1
2

D 1
2 0

bF :=

C D

C 0 −1

D 1 0

(3)

At each round, each player perceives the interaction
from either a sober state, with payoffs G1 = bT + bF , or
an intoxicated state, with payoffs G2 = bT ,

G1 :=

C D

C 1 − 1
2

D 3
2 0

G2 :=

C D

C 1 1
2

D 1
2 0

(4)

The sober perception of payoffs includes the cost of the
beer and results in a PD scenario. The intoxicated indi-
vidual, on the other hand, is no longer concerned with
the cost and so perceives a payoff proportional to the
number of beers received bT , resulting in a HG scenario.

The change in perceptions between the two games is
governed by an individual state variable αi, which we in-
terpret as the probability for player i to perceive the G2

(intoxicated) game. After playing a round, each player
updates its internal state α along with its strategy ac-
cording to an imitation-based update rule. Within the
pub dilemma, we define the α-update function such that
it constantly decreases over time, simulating the indi-
vidual recovering to the sober state, but increases as a
function of beer consumed during a round. In this way,
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αi dynamically couples the two games such that it cap-
tures player i’s previous experience. We assume that the
change in αi is a function of both interacting players’
actions,

α̇i = καi(1− αi)(bT − µ) , (5)

where the total beers bT is given in Eq. (3). Parameters
κ and µ control how sensitive players’ perceptions are to
their prior experiences and the relative rate of decay back
to the sober state, respectively.

In the same way as standard evolutionary games, play-
ers update their strategy after each round according to
an imitation-based rule. However, what is different to
standard EGT is that the two players i and j may be in

different states at time t. As such, π
(t)
j is not necessarily

the same as the payoff that player i would obtain in the
same situation. In other words, when player i updates
their strategy they compare the πi and πj that are the
payoffs as perceived by players i and j respectively.

Figure 2 illustrates the game dynamics for a popula-
tion playing the Pub Dilemma for κ = 1 and µ = 0.5
with respect to the proportion of cooperators x (Eq. 2)
and the average value of α (Eq. 5). One can see that
when α = 0 we recover the game dynamics of the PD
game, which has a stable equilibrium at full defection.
For α = 1 we obtain the HG dynamics, which has a
stable equilibrium at full cooperation. The parameters
of the two coupled games are symmetric with respect to
the center of Fig. 1. Consequently, the two basins of at-
tractions have the same size, i.e., half area of the unitary
(x, α) space. In addition to the fixed points of the PD
and HG games, the Pub Dilemma introduces a saddle
point at x = α = 0.5. This interior point is unstable and
it can only be reached following the trajectories of the
orange arrows that delimit the basins of attraction for
full defection and full cooperation.

B. Drunk games

The Pub Dilemma describes a particular coupling of
games, however the same idea can be applied more gen-
erally to couple any pair of games using the state vari-
able α. We describe this general formalism as a drunk
game using the notation G1 ⊕α G2. At the population
level, we can represent the system dynamics as:

α̇ = f(x, α) (6)

ẋ = x(1− x)(ΠC −ΠD) , (7)

in which we denote the population mean state as α and its
evolution as a function of its current value [Eq. (6)] and
the current proportion of cooperators in the population x
[Eq. (7)]. The latter evolves according to the relative
difference in expected payoff for the two strategies ΠC

and ΠD. However, the expected payoffs are dependent
on α and they can be calculated as a convex combination

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x
α

HG

PD
x

FIG. 2. The Pub Dilemma. Coupling of the Prisoner’s
Dilemma (G1: SPD = −0.5, TPD = 1.5) and the Harmony
Game (G2: SHG = 0.5, THG = 0.5) using κ = 1, µ = 0.5. The
field diagram illustrates how the proportion of cooperators
x and the average value of α in the population evolves and
contains a number of fixed points indicated by circle markers,
which are either stable (black), unstable (white), or saddle
points (gray). When α ∈ {0, 1} we recover the game dynamics
and fixed points of the original games (HG, top; PD, bottom).

of the two perceptions:

ΠC = α(xR1 + (1− x)S2) + (1− α)(xR2 + (1− x)S1)

ΠD = α(xT2 + (1− x)P1) + (1− α)(xT1 + (1− x)P2)
(8)

where {Rg, Sg, Tg, Pg} are payoffs related to the gameGg,
g ∈ {1, 2}. Unless otherwise stated, we set Rg = 1 and
Pg = 0. This framework does not place any requirement
on the functional form that f(x, α) takes, as long as it
satisfies the constraint α ∈ [0, 1]. Setting α = 0 or
α = 1 reduces the game to the standard games G1 or
G2, respectively. When f(x, α) = 0 we recover the mixed
games considered in previous studies in which a fixed
proportion α of the population plays one game while the
rest of the population plays another [31].

IV. DYNAMICS OF DRUNK GAMES

We analyze the dynamics of drunk games in terms of
the fixed points that represent the equilibria of the sys-
tem and their basins of attraction. The set of fixed points
of a drunk game G1 ⊕α G2 includes the fixed points of
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α
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x x x

(a) (b) (c)

FIG. 3. The Drunk Prisoner. Coupling of a Harmony Game (G1) and a Prisoner’s Dilemma (G2) displays a Hopf bifurcation
regulated by the payoffs SHG and THG (SPD = −1, TPD = 2, κ = 1, µ = 0.5 for each panel). Two trajectories (red and blue
curves) for arbitrary initial conditions are shown in each example. (a): SHG = THG < 0.5, the Drunk Prisoner contains no
stable fixed points and displays an unstable spiral originating at x = µ = 0.5. All spirals converge to a trajectory that follows
the boundaries of the (x, α) plane such that 0 < α < 1. (b): the onset of the Hopf Bifurcation occurs at SHG = THG = 0.5
and we observe the same unstable fixed point at x = µ = 0.5 surrounded by an infinite set of closed cyclic trajectories. (c):
SHG = THG > 0.5, the cycles collide over the fixed point at x = µ = 0.5 which becomes stable. In this setting a spirals appear
such that any initialization of the system, except those on the boundaries, converge to the same interior fixed point where half
of the population are cooperators and the other half defectors.

both G1 and G2 (at α = 0 and α = 1 respectively).
However the stability of these fixed points may change.
In addition, new fixed points may also emerge depending
on the pair of games and the choice of the α-update func-
tion [Eq. (6)]. In the following we show numerical and
analytical evidence for phenomena regarding the fixed
points in drunk games. These include: a loss of stability
in the stable fixed points in the original games, formation
of new fixed points or spirals, and changes in the basins
of attraction of fixed points.

Herein, we consider a variety of drunk games in which
pairs of payoff matrices are coupled by an α-update func-
tion that can be factorized as

α̇ = f(x, α) = κα(1− α) q(x) , (9)

where κ is a positive constant and q(x) a general func-
tion that only depends on x. This function satisfies the
boundary conditions of α ∈ [0, 1].

A. Stability of original fixed points

The fixed points {(x̃, α̃)} of drunk games that were
present in the original games G1 and G2 are only stable
if either:

• α̃ = 0, x̃ is stable in G1, and q(x̃) < 0 , or

• α̃ = 1, x̃ is stable in G2, and q(x̃) > 0 .

When q(x) = (x − µ), noting that the expected value
of bT is equal to the proportion of cooperators x, we
recover the system-level α-update function equivalent to
Eq. (5). The Pub Dilemma (PD ⊕α HG) includes both
the stable fixed point of the Prisoner’s Dilemma (0, 0)
and the stable fixed point of the Harmony game (1, 1)
when 0 < µ < 1, as we see Fig. 2.

Reversing the order of the games in the Pub Dilemma
forms another drunk game that we call the Drunk Pris-
oner (HG ⊕α PD). Figure 3 illustrates the dynamics of
the Drunk Prisoner and shows that neither of the fixed
points from HG or PD are stable any more.

B. New fixed points and spirals

The coupling of standard two-player games can pro-
duce additional fixed points inside the boundary of the
(x, α)-plane, i.e., interior fixed points {(x̃•, α̃•)} such
that 0 < x̃• < 1 and 0 < α̃• < 1. To analyze these
interior fixed points, we first rewrite the cooperation dy-
namics in Eq. (7) by substituting ΠC ,ΠD for the expres-
sions in Eq. (8):

ẋ = −x(1− x) [(1− α)h1(x) + αh2(x)] , (10)

where hg(x) = (1 − x)Fg + xGg represents the incentive
to defect in game g given the current proportion of co-
operators x, i.e., the fear of cooperating Fg = Pg − Sg
when your opponent defects and the greed Gg = Tg −Rg
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from the possibility of exploiting your opponent’s coop-
eration [49]. In order for one of these interior points
(x̃•, α̃•) to be a fixed point, q(x̃•) and ẋ must be equal
to zero. Then from Eq. (10) we obtain:

α̃• =
h1(x̃•)

h1(x̃•)− h2(x̃•)
, (11)

which implies that h1(x̃•) and h2(x̃•) must have different
signs to ensure that 0 < α̃• < 1.

We can determine the stability of this interior fixed
point using the eigenvalues of the Jacobian of the system
in Eq. (6) and Eq. (7) evaluated at (x̃•, α̃•). The eigen-
values can be written in the form of λ = u ± i

√
v such

that

u =
x̃•(1− x̃•)α̃•

2

F2G1 −F1G2
h1(x̃•)

, (12)

and

v = κ x̃•(1− x̃•) α̃•h2(x̃•)q′(x̃•)− u2 , (13)

where q′(x̃•) is the derivative of q(x) with respect to x
evaluated at x̃•. When v < 0 the eigenvalues are real
(i.e., when h2(x̃•)q′(x̃•) < 0). We know that a pair of
negative real eigenvalues indicate that a fixed point is
stable [50, 51]. Therefore, when the eigenvalues are real,
the interior fixed point is stable if and only if u < 0 and
the first term in the right hand of Eq. (13) is positive,
i.e., h2(x̃•)q′(x̃•) > 0. However, if v > 0 the eigenvalues
are complex conjugates of each other. In this case the
dynamics form spirals around the interior resting point,
which is either an attractor when u < 0 or a repeller
when u > 0. In the special case when u = 0, these orbits
become limit cycles. In summary:

1. An interior fixed point (x̃•, α̃•) exists if 0 < x̃• < 1,
q(x̃•) = 0, and h1(x̃•)h2(x̃•) < 0.

2. Spirals are formed if v > 0. The spirals are attrac-
tive when u < 0 and repellent when u > 0. Limit
cycles are formed for the special case u = 0.

3. No spirals are formed if v < 0. Then the fixed point
is stable if λ < 0 and unstable otherwise.

We can observe these dynamics in play in the Pub
Dilemma in Fig. 2 and in the Drunk Prisoner in Fig. 3. In
the Pub Dilemma (PD⊕αHG) with q(x) = (x−µ) a fixed
point occurs at x = µ. Since hPD(x) > 0 and hHG(x) <
0 for any value of x, λ is strictly non-negative and so
the interior fixed point of the Pub Dilemma is always
unstable. However, in the Drunk Prisoner (HG ⊕α PD)
we observe a more diverse range of game dynamics. Now
v may be positive or negative and so we can observe
the full range of cases given in conditions 2 (spirals are
formed) and 3 (no spirals) above.

Figure 3 shows a set of examples of the Drunk Pris-
oner in which we vary the payoffs (SHG, THG) of the
sober state, while keeping the payoffs of the intoxicated

state fixed (SPD = −1, TPD = 2). For each of these
games v > 0 and so the game dynamics exhibits spirals
around the interior fixed point. When SHG = THG < µ
(Fig. 3a), u is positive and the interior fixed point is un-
stable. When SHG = THG > µ (Fig. 3c), u is negative and
the interior fixed point attracts all trajectories initialized
anywhere other than the four extremal saddle points. In
the case that SHG = THG = µ (Fig. 3b), a Hopf bifurca-
tion occurs creating an unstable fixed point surrounded
by closed cycles. In terms of the pub metaphor, the popu-
lation playing this particular Drunk Prisoner game will,
on average, experience an endless cycle of cooperating,
getting drunk, defecting, and sobering up.

More generally, when SHG 6= THG, the Drunk Pris-
oner’s interior fixed point is stable and attractive when
the following condition is satisfied:

FHG

GHG
>
FPD

GPD
. (14)

In other words, the interior fixed point becomes attrac-
tive when the fear-greed ratio is higher in the HG than in
the PD game. By setting Rg = 1 and Pg = 0 we obtain:

SHG

1− THG
>

SPD

1− TPD
. (15)

C. Attractiveness of cooperation

In standard two-player two-strategy symmetric games
we can examine the attractiveness of fixed points by
studying the relative size of the set of initial conditions
(proportion of cooperators x) that eventually converge
upon a particular fixed point. The attractiveness pro-
vides an estimate of the size of the basin of attraction.
In drunk games, these basins of attraction are defined
over the (x, α) plane rather than just on the x ∈ [0, 1]
line. The size and shape of the basins depend on the
α-update function as well as on G1 and G2 parameters.

We now examine how changes in the basins of attrac-
tion occur in a generalized version of the Pub Dilemma
in which G1 is a Prisoner’s Dilemma (with S1 = −1
and T1 = 2) and G2 is another game (S2 ∈ [−1, 1] and
T2 ∈ [0, 2]). Assuming q(x) = (x− 0.5), we estimate the
basins of attraction for any given set of game parameters
using Monte Carlo simulations. We calculate the attrac-
tiveness of cooperation by counting the proportion of 103

independent simulations that converge upon full cooper-
ation with initial conditions (x0, α0) ∈ [0, 1]2 sampled
uniformly at random.

Figure 4 shows the proportion of simulations that con-
verge to a full cooperation fixed point for different set-
tings of the G2 payoffs {S2, T2} and for different values of
κ. We see that by increasing κ the overall attractiveness
of cooperation increases. The maximal attractiveness of
cooperation occurs when half of all initial conditions con-
verge on full cooperation. Also, note that coupled games
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FIG. 4. Generalized Pub Dilemma. Attractiveness of the cooperation basin for the generalized Pub Dilemma: coupling the
PD (G1: S1 = −1, T1 = 2) with another game G2 having parameters T2 and S2. The (S2, T2) space indicates the probability
of converging on the cooperative fixed point (x = 1 and α = 1), i.e. the proportion of cooperation of the coupled games, when
κ = 0.1 (a), κ = 1 (b) and κ = 10 (c). As κ increases we can see an overall increase of the attractiveness of cooperation.
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FIG. 5. The Drunken Battle of Coordination. Coupling of a Snowdrift (G1: TSD = 2, S1 = SSD) and the Stag Hunt
(G2: TSH = 0.5, SSH = −0.5). (a) SSD = 0.25 and κ = 1, all trajectories converge on either the stable fixed point of SD or the
stable fixed point of SH at full cooperation, with the exception of points initialized at a fixed point or on the orange arrow.
(b) SSD = 0.5 and κ = 1, a first-order phase transition occurs and a line of fixed points emerge at x = 0.5. (c) SSD = 0.75 and
κ = 1, all trajectories converge on the full cooperation fixed point at the top right. (d) Attractiveness of the cooperation basin
for all possible S1 ∈ [0, 1]; (a)–(c) cases are marked with κ = 1. Increasing κ increases the overall attractiveness of cooperation.
A first-order phase transition occurs at S1 = 0.5 such that when S1 > 0.5 all initial conditions lead to full cooperation.

in the bottom right quadrant cannot converge on full co-
operation as they correspond to the set of drunk games
in which both games are versions of the PD, for which
the evolutionary stable strategy is full defection.

D. Phase transition in cooperation attractiveness

We formulate and extend our previous analysis to the
Drunken Battle of Coordination, a combination of Snow-
Drift and Stag Hunt games (SD ⊕α SH). Recall that
Nash equilibria in both games require the coordination
of both players, i.e., in SD games the NE occurs when
players choose different strategies, while in SH games a
NE requires players to play the same strategy.

Figure 5 shows all dynamics in the Drunken Battle of

Coordination in which we fix three of the payoff param-
eters (TSD = 2, SSH = −0.5, TSH = 0.5) as we vary the
sucker’s payoff in the SD game (S1 = SSD ∈ [0, 1]).
We continue using the same α-update function as be-
fore with q(x) = (x − 0.5). Similar to the generalized
Pub Dilemma, we see in Fig. 5d that increasing κ has
the effect of increasing the attractiveness of cooperation.
However, in contrast to the generalized Pub Dilemma,
the Drunken Battle of Coordination displays a discontin-
uous transition in the attractiveness of cooperation as we
vary S1. Specifically, we see that a first-order transition
occurs at the critical value of S1 = 0.5 and for any S1

above this value all initializations lead to full coopera-
tion. The other panels in Figure 5 provide more detail,
showing the dynamics in the (x, α) plane for three set-
tings: (a) SSD = 0.25, (b) SSD = 0.5, and (c) SSD = 0.75;
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also labeled in panel (d). We see in all three cases that
the stable fixed point of the SH that corresponds to com-
plete defection becomes unstable, while the full cooper-
ation fixed point remains stable. The stable fixed point
of the SD only remains stable when SSD ≤ 0.5 (Fig. 5a).
At the critical point, when SSD = 0.5 (Fig. 5b), a line of
unstable interior fixed points appears. These fixed points
are stable with respect to x for values of α < 0.5. When
SSD > 0.5 (Fig. 5c), the stable fixed point of the SH game
moves to the right of x = 0.5 and becomes unstable. As
a consequence, all initializations, except those on a fixed
point, converge to the full cooperation fixed point in the
top right corner.

V. THE EFFECT OF HETEROGENEOUS
PERCEPTIONS

So far we have made a mean-field approximation by
assuming that the system of individuals can be repre-
sented by the population averages. We now consider the
dynamics of the system when we introduce populations of
individuals with different perceptions, i.e., there is some
variance in the individual αi values. Modeling the evo-
lution of individual perceptions becomes analytically in-
tractable and so we use an agent-based model (ABM) to
simulate the interactions of a large population. We re-
strict our current investigation to the simple setting in
which individuals start with one of two possible percep-

tions, α
(0)
i = {α1, α2} and α1 < α2, such that individ-

uals initialized with α1 have a greater initial propensity
to perceive G1. We define the heterogeneity of α as:

∆α =
α1 − α2

α1 + α2
, (16)

such that ∆α = 0 indicates that α is homogeneous and
∆α = 1 means that α1 = 0 and α2 = 1. In this binary
setting the mean behavior is no longer representative of
any of the individuals in the population.

At each round of the ABM simulation each of the
N agents play the drunk game with every other agent
(N(N − 1)/2 games are played each round), accumulate
payoffs according to their actions and the game they per-

ceive (G1 with probability 1−α(t)
i and G2 otherwise). Af-

ter each round the strategies {xi} and perceptions {αi}
are updated synchronously such that every agent’s strat-
egy and perception is updated at time t+ 1 according to
the agent strategies and perceptions at time t.

To minimize confounding effects, we set up the ABM to
match the analytical setting as closely as possible. For in-
stance, to minimize finite-size effects, we use a relatively
large population of N = 104 agents. Agents have pure
strategies, either cooperate (C) or defect (D) that are

initialized randomly according to Pr[x
(0)
i = C] = x(0).

All agents update their αi according to (cf. Eq. (5)):

α
(t+1)
i = α

(t)
i + κα

(t)
i (1− α(t)

i )(x̄(t) − µ) , (17)

where x̄(t) is the proportion of cooperators in the popu-
lation at time t. Agents update their strategy according
to the local replicator rule [52]. In the local replicator
rule, each agent i randomly chooses another agent j and
imitates j’s strategy for the next round (t+1) with prob-

ability p
(t+1)
ij given by:

p
(t+1)
ij = max

(
0, β

πj − πi
Φ

)
, (18)

where π
(t)
i is the average payoff agent i receives in round t

and Φ is the maximum possible difference in payoffs, i.e.,
(N − 1)[max(1, T ) − min(0, S)]. The parameter β < 1
controls the intensity of selection and thus the update
strategy change rate in the system. We set β = κ = 0.1 to
enact a gradual change and to achieve greater numerical
stability in finite size populations.

For all the games presented so far, when ∆α = 0 we
find that the system behavior matches the results of the
analytical ones, all agents follow the same trajectory un-
til they meet one of the stable fixed points. In many
of the games, introducing heterogeneity (∆α > 0) often
has little effect on the final outcome, but can increase
the time scale for agents to converge upon a stable fixed
point. A more substantial effect of heterogeneity occurs
in games that contain a stable interior fixed point. To
better show this phenomenon, we consider the Drunk
Prisoner game (HG ⊕α PD) for which we previously es-
tablished that an interior stable fixed point exists when
SHG = THG > 0.5. Figure 6a shows the distance of
(x̄(t), ᾱ(t)) from the interior equilibrium averaged over
the whole population at t = 104. We see that when the

initial α heterogeneity ∆
(0)
α = 0, the Hopf bifurcation oc-

curs at SHG = THG = 0.5, which is in agreement with

our analytical results. However, increasing ∆
(0)
α , we find

that the bifurcation occurs at lower values of SHG and
THG. Put differently, the stability of the interior fixed
point increases as the heterogeneity of perceptions in-
creases, at least when we consider the average over the
whole population.

The mean of the population, however, is not represen-
tative of any of the individual agents in the population

(when ∆
(0)
α > 0) due to the bimodal distribution over α.

Figure 6b displays a heat map of the change in α hetero-
geneity from the start to the end of the simulation, i.e.,

∆
(t)
α − ∆

(0)
α . Comparing against Figure 6a, we see that

when the interior fixed point is unstable, the strategies
and perceptions coalesce to become homogeneous and
converge upon a trajectory that follows the boundaries
of the (x, α) plane. Figure 7a shows, for the parameter
setting indicated by a circle marker in Fig. 6, an example
of this type of trajectory. In this case there is little dif-
ference between the individual and population dynamics.
When SHG = THG > 0.5 we observe that the distribu-
tion of α coalesces to a single mode, but the strategies
polarize such that the agents initialized at α1 become
cooperators, while the rest become defectors. Figure 7b
shows an example for the settings indicated by a star
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(a) (b)

FIG. 6. α-heterogeneity in the Drunk Prisoner game. The effect of initializing the Drunk Prisoner game with different

payoffs, SHG = THG, (x-axis) and levels of α-heterogeneity, ∆
(0)
α , (y-axis). (a) heatmap of the distance of the population

average from the interior fixed point. Increasing the initial α-heterogeneity increases the stability of the interior fixed point

and the Hopf bifurcation occurs at lower payoffs SHG and THG. (b) heatmap of the change in α-heterogeneity, ∆
(t)
α − ∆

(0)
α ,

at time t = 104. Three distinct behaviors are observed according to whether the strategies, x, and perceptions, α coalesce or
polarize. The cyan markers indicate the individual trajectories shown in Figure 7: circle (a), star (b) and pentagon (c).

marker in Fig. 6. In this example we see that only a rela-

tively small amount of initial heterogeneity (∆
(0)
α = 0.04)

is required to cause this polarization of strategies. When
SHG = THG < 0.5 and the interior fixed point is, for the
global system behavior, stable, we find that the strategies
also diverge. However, in this regime the perceptions also
polarize such that αi of agents diverge according to their

initial values and resulting in α
(t)
1 → 0 and α

(t)
2 → 1. Fi-

nally, Fig. 7c shows an example of this setting (pentagon
marker in Fig. 6). In this case the observations appear
somewhat paradoxical between the two different scales:
the global behavior results in attractive spirals while the
behavior at the individual level is repulsive with respect
to the interior fixed point.

VI. POTENTIAL APPLICATIONS OF DRUNK
GAME THEORY

We have presented our framework in the context of
social consumption of alcohol as it provides an easy-to-
relate-to scenario in which perceptions may change over
time, vary between individuals and change as a conse-
quence of the outcomes of previous interactions. The
analogy, however, extends to much more diverse range
of systems and settings in which interacting agents may
have their own individual states and these states change
over time as a function of their experience.

For instance, experiments have found that in public-
goods games people vary in their personal preferences

for fairness, with some of them being conditional cooper-
ators [53], i.e., cooperating more as they experience more
cooperation. Conditional cooperation has recently been
demonstrated to emerge through different levels of indi-
vidual understanding of how to maximize income [54],
which we might consider as different perception states
in a drunk game. In pairwise coordination games it has
also been shown that repeated coordination tasks can
elicit a sense of commitment in agents, reminiscent of
an evolving individual state. Because of such commit-
ment, agents change their perception of the game over
time and end up cooperating more than expected, even
through fluctuations of interest and trust [55].

In addition, time-evolving, individual perception levels
are relevant in the dynamics of social groups or organi-
zations, like for instance how trust can be built or bro-
ken between interacting organizations and/or individu-
als [25, 26], or how innovation and financial investments
can alter the perceived benefits of competing technolo-
gies among individual firms [28]. There may be also other
mechanisms for changing perceptions such as diminish-
ing returns for repeated actions; for instance, the benefit
of scoring points in team sports may change depending
on whether a team is currently leading or not [27]. Also,
those systems that involve some level of consensus form-
ing are related, e.g., naming conventions in social sys-
tems [56] or quorum sensing in biological systems and
insect populations [57]. In these types of systems indi-
vidual states are related to the population density ob-
served by the individual, which will modify the benefit
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(a)

(b)

(c)

FIG. 7. ABM simulations of the Drunk Prisoner game.
Each of the panels (a)–(c) displays four plots describing the
dynamics of the proportion of cooperators x and average per-
ception α over t = 5×103 rounds. The left plots show the tra-
jectory through the (x, α)-plane starting from the star. The
top plot shows two trajectories for each of the α initial values,
while the bottom plot show the mean over the whole popula-
tion. The plots on the right show the evolution of α (top) and

x (bottom) over time. (a) SHG = THG = 0.4 and ∆
(0)
α = 0.04

(circle marker in Fig. 6), (b) SHG = THG = 0.8 and ∆
(0)
α =

0.04 (star marker in Fig. 6), and (c) SHG = THG = 0.4 and

∆
(0)
α = 0.4 (pentagon marker in Fig. 6). We see that small

amounts of initial heterogeneity in the population can result
in very different outcomes relative to the mean-field results.

associated with different actions. Previous studies in-
dicate that the emergence of synchronization may be a
consequence of an evolutionary non-cooperative game in
which individuals decide their behavior according to the
state resulting from their previous interactions [58]. Fi-
nally, in prebiotic biology we see analogies to memory
and perception in prebiotic chemistry, where replicating
RNA molecules change their conformation in response to
previous interactions with other RNA molecules [59].

VII. DISCUSSION

In many complex systems macroscopic, critical behav-
ior can arise from the combination of simple, local in-
teractions among individual agents. A crucial example

is the emergence of cooperation in game-theoretic set-
tings [3]. Previous approaches assumed homogeneous in-
teractions both across agents and over time. Our drunk
games provide a new dynamical, individualistic view on
past approaches, endowing each agent with a distinct,
time-evolving perception of the consequences of every in-
teraction. In this way, two agents can engage in the same
choice but experience different individual payoffs. Using
a mean-field approximation we can analyze the behavior
of the population at a macroscopic level. This approach
provides us with a indication of how the population, on
average, evolves over time with respect to the strate-
gies they play and the payoffs they perceive. This co-
evolution of perspectives and strategies provides an inter-
esting departure from the standard mixed games [29, 30],
in which a given proportion of the population plays one
game while the rest play another. For unstructured pop-
ulations mixed games produce a trivial result in which
the level of cooperation that emerges is equal to that
of a standard two-player game in which the payoffs are
the average, weighted by proportion of players, of the
two games. In drunk games the proportion of players
that play each game changes in response to the previous
outcomes. Therefore, their analysis is not so trivial any-
more and it is not possible to compare against a simple
weighted average of games.

The mean-field approximation provides analytical
tractability at the cost of treating each individual as an
average player, which potentially may not be represen-
tative of any of the individuals in the population. In
principle, by modeling all individuals with an identical,
but evolving perception state is similar to the accounting
for a background or environment changing state — the
mean-field results of our Drunk Prisoner game closely re-
semble the recently presented oscillating tragedy of the
commons [38]. Our agent-based model simulations thus
play a crucial role in probing the relationship between
micro- and macroscopic behaviors by allowing us to cap-
ture the dynamics of the individuals in the population.
When considering heterogeneous populations, we observe
that qualitatively similar behaviors at the macroscopic
scale can confound very different behaviors at the mi-
croscopic scale. We found that often highly divided ini-
tial states of perception coalesce. This coalescence might
seem unsurprising given that the population is well mixed
and all players interact with every other player. How-
ever, our results are in stark contrast to other settings
where small levels of heterogeneity in initial individual
perception states cause the population to polarize. Fur-
thermore, even when perceptions coalesce, we find that
sometimes the heterogeneous initialization can cause a
complete polarization of strategies.

The framework of drunk games opens up a number of
potential avenues of investigation. We considered drunk
games with only two distinct perceptions (payoff matri-
ces). However, the framework could easily be extended
to allow for a multitude of perceptions by replacing the
Bernoulli states αi with a categorical probability dis-
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tribution indicating the probability of playing one of k
games. Or to a continuously varying set of payoffs [60].
Recent evidence indicates that biological diversity cre-
ates differences in the way that individuals transition be-
tween cognitive states [61]. Such a finding might moti-
vate the exploration of a type of drunk game in which
the α-function varies between individuals.
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FIG. 8. Please drink responsibly.
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