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Abstract: Classification has applications in a wide range of fields including medicine, engineering,
computer science and social sciences among others. In statistical terms, classification is inference
about the unknown parameters, i.e., the true classes of future objects. Hence, various standard
statistical approaches can be used, such as point estimators, confidence sets and decision theoretic
approaches. For example, a classifier that classifies a future object as belonging to only one of several
known classes is a point estimator. The purpose of this paper is to propose a confidence-set-based
classifier that classifies a future object into a single class only when there is enough evidence to
warrant this, and into several classes otherwise. By allowing classification of an object into possibly
more than one class, this classifier guarantees a pre-specified proportion of correct classification
among all future objects. An example is provided to illustrate the method, and a simulation study is
included to highlight the desirable feature of the method.

Keywords: classification; confidence level; confidence set; coverage frequency; simultaneous
tolerance intervals, statistical inference

1. Introduction

Classification has applications in a wide range of fields including medicine, engineering, computer
science and social sciences, among others. See, e.g., the recent books by [1–4]. Classical examples
include medical diagnosis, automatic character recognition, data mining (such as credit scoring,
consumer sales analysis and credit card transaction analysis) and artificial intelligence (such as the
development of machines with brain-like performance). As many important developments in this
area are not confined to the statistics literature, various other names, such as supervised learning,
pattern recognition and machine learning, have been used. In recent years, there have been many
exciting new developments in both methodology and applications, taking advantage of increased
computational power readily available nowadays. Broadly speaking, classification methods can be
divided into probabilistic methods (including Bayesian classifiers), regression methods (including
logistic regression and regression trees), geometric methods (including support vector machines), and
ensemble methods (combining classifiers for improved robustness).

A classifier is a decision rule built from a training data set T that classifies all future objects as
belonging to one or several of the k known classes, where k is a pre-specified number. The drawback
of a classifier that classifies each future object into only one of k classes is that, when the object is close
to the classification boundaries of several classes, M(≥ 2) say, the chance of misclassification is close
to (M− 1)/M, which may be close to one when M is large. A sensible approach in this situation is
to acknowledge that such an object has similar chances of belonging to M classes and hence to avoid
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classifying it into only one of the M classes. In medical diagnosis, for example, if there is not enough
evidence to classify a patient as having a disease or not, then it is wise not to give a diagnosis that is
quite likely to be wrong.

Various procedures have been proposed in the literature to deal with this difficulty. One type
of procedure allows a rejection option, that is, if a future object falls into a ‘rejection’ region, then no
classification is made for the object. Such a procedure aims to construct a suitable rejection region to
minimize a pre-specified risk; see, e.g., [5–9] and the references therein. Non-deterministic classifiers
are proposed in [10], which allow a future object to be classified possibly into several classes. Again,
such a classifier is constructed to minimize a pre-specified risk.

For the binary classification problem (i.e., k = 2), ref. [11] proposes to find two ‘tolerance’ regions
(corresponding to the two classes) in the feature/predictor space, with a specific coverage level for each
class that minimize the probability that an object falls into the intersection of the two tolerance regions
since an object in this intersection will not be classified. This approach is akin to the decision-theoretic
approaches mentioned in the last paragraph but uses this specific probability as the risk to minimize.
As with other decision-theoretic approaches, it is not constructed to guarantee the proportion of
correction classification and thus is different from the approach proposed in this paper. Further
development of this approach is considered in [12].

The conformal prediction approach of [13,14] also classifies a future object into possibly several
classes that contain the true class with a pre-specified probability. However, this approach is designed
for the ‘online’ setting in which the true classes of all the observed objects are revealed and hence
known before the classification of the next object is made. This online setting is different from the
usual setting of classification considered in this paper, in which a classifier is built from the available
training data set T and then used to classify a large number of future objects without knowing their
true classes.

For the binary classification problem, ref. [15] proposes a classifier that allows no classification of
an object. By controlling the size of the non-classification region (for which classification error does
not occur) via a tuning constant, a ‘generalized error’ of the classifier is controlled at a pre-specified
level with a specified confidence about the randomness in the training data set T . The construction
of this classifier is related to the tolerance sets going back to [16]. Note, however, that the algorithm
in [15] may result in a different classifier if a different observation in the training data set is used as
the ‘base’ instance in the algorithm, which is quite odd from a statistical point of view. In addition,
the ‘generalized error’ is different from the long run frequency of correct classification, which the
procedure proposed in this paper aims to control.

The purpose of this paper is to propose a classifier that classifies a future object into a single class
only when there is enough evidence to warrant this, and into several classes otherwise. By allowing
classification of an object into potentially more than one class, this classifier guarantees a pre-specified
proportion of correct classification among all future objects. Specifically, classification of a future
object is treated as a standard problem of statistical inference about the unknown parameter c, the
true class of the object, and the confidence set approach for c is adopted. In order to consider the
probability of correct classification, it is necessary to assume certain probability distributions for the
feature measurements from the k classes. In this paper the feature measurements of the k classes are
assumed to follow multivariate normal distributions, which is widely used either directly or after
some transformation (see [17,18]).

The layout of the paper is as follows: Section 2 contains some preliminaries, including the idea
of [19,20] from which the new approach proposed in this paper is developed. The simple situation
where the means µi and covariance matrices Σi of the k multivariate normal distributions underlying
the k classes are assumed to be known is considered in Section 3. The more realistic situation where
both µi and Σi are unknown parameters is studied in Section 4. Section 5 provides an illustrative
example. A simulation study is given in Section 6 to highlight the major advantage of the new classifier
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proposed in this paper. Section 7 provides the conclusions. Finally, some mathematical details are
provided in the Appendix A.

2. Preliminaries

Let the p-dimensional data vector xi = (xi1, . . . , xip)
T denote the feature measurement on an

object from the ith class, which has multivariate normal distribution N(µi, Σi), i = 1, . . . , k . The
training data set is given by T = {xi1, . . . , xini ; i = 1, . . . , k}, where xi1, . . . , xini are i.i.d. observations
from the ith class with distribution N(µi, Σi), i = 1, . . . , k. The classification problem is to make
inference about c, the true class of a future object, based on the feature measurement y = (y1, . . . , yp)T

observed on the object, which is only known to belong to one of the k classes and so follows one of
the k multivariate normal distributions. In statistical terminology, c is the unknown parameter of
interest that takes a possible value in the simple parameter space C = {1, . . . , k}. We emphasize that c
is treated as non-random in our frequentist approach.

A classifier that classifies an object with measurement y into one single class in C = {1, . . . , k} can
be regarded as a point estimator of c. The classifier proposed in this paper provides a set CT (y) ⊆ C as
plausible values of c. Depending on y and the training data set T , CT (y) may contain only a single
value, in which case y is classified into one single class given by CT (y). When CT (y) contains more
than one value in C, y is classified as possibly belonging to the several classes given by CT (y). Hence,
in statistical terms, the classifier proposed in this paper uses the confidence set approach. The inherent
advantage of the confidence set approach over the point estimation approach is the guaranteed 1− α

proportion of confidence sets that contain the true classes.
The confidence set for c is constructed below by inverting a family of acceptance sets for testing

H0 : c = l for each l ∈ C. This method of constructing a confidence set was given by [21] and has been
used and generalized to construct numerous intriguing confidence sets; see, e.g., [22–29]

Now, the key idea of [19,20] is presented very briefly, which is crucial for understanding our
proposed approach to classification. Assuming that response y and predictor x are related by a standard
linear regression model y = α0 + α1x + ε and a training data set T on (y, x) is available for estimating
α0, α1 and the error variance σ2, refs. [19,20] consider how to construct confidence sets for the unknown
(non-random) values of the predictor x corresponding to the large number of future observed values
of the response y. As the same training data set T is used in the construction of all these confidence
sets, the randomness in the future y-values and the randomness in T clearly play different roles
and thus should be treated differently. The procedure proposed in [19,20] has a probability of at
least γ, with respect to the randomness in T that at least 1− α proportion of all the confidence sets,
constructed from the same T , include the true x-values, where γ and 1− α are pre-specfied probabilities.
This idea/approach has been studied by many researchers; see, e.g., [30–36] and the references
therein. One fundamental result is that the confidence sets constructed from (γ, 1− α) simultaneous
tolerance intervals do satisfy the ‘γ-probability-(1 − α)’-proportion property specified above. In
particular, ref. [36] points out by constructing a counter example that the confidence sets constructed
from (γ, 1− α) pointwise tolerance intervals do not guarantee the ‘γ-probability-(1− α)-proportion’
property in general. A similar idea is also used in [37] to construct confidence sets for the numbers of
coins in all future bags with known weights.

Since a classifier is built from the training data set T and then used to classify a large number
of future objects in terms of confidence sets for their true classes, the future observed y-values play
similar roles as the future observed y-values whilst the unknown true classes of the future objects play
similar roles as the unknown true x-values of the future observed y-values, in the approach of [19,20]
given in the last paragraph. Hence, it is natural to adopt the approach of [19,20] to construct confidence
sets for the unknown true classes of future objects with the ‘γ-probability-(1− α)-proportion’ property,
that is, the probability, with respect to the randomness in T , is at least γ that at least (1− α) proportion
of all the confidence sets constructed from the same T do include the unknown true classes of all
future objects.
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3. Known µi and Σi

In this section, the values of µi and Σi are assumed to be known, which helps to motivate and
understand the confidence sets constructed in Section 4 for the more realistic situation where the values
of µi and Σi are unknown. Since µi and Σi are known, no training data set T is required to estimate µi
and Σi. Hence, the confidence sets in this section are denoted as C(y), without the subscript T .

If y is from the lth class, then y ∼ N(µl , Σl) and so (y − µl)
TΣ−1

l (y − µl) has the chi-square
distribution χ2

p with p degrees of freedom. We construct a 1− α confidence set for the class c of the
observed y by using [21] method of inverting a family of 1− α acceptance sets for testing H0 : c = l for
each number l in C. Specifically, the acceptance set for H0 : c = l is given by

Al =
{

y ∈ Rp : (y− µl)
TΣ−1

l (y− µl) ≤ λ
}

, (1)

where λ = χ2
p,1−α is the 1− α quantile of the χ2

p distribution. It follows directly from Neyman’s method
that the confidence set is given by

C(y) =
{

l ∈ C : (y− µl)
TΣ−1

l (y− µl) ≤ λ
}

. (2)

It is straightforward to show, by using the Neyman–Pearson lemma, that the acceptance set Al in
Equation (1) is optimal in terms of having the smallest volume among all the 1− α acceptance sets for
testing H0 : c = l.

As for the usual confidence sets, it is desirable that, among the confidence sets C(y1), C(y2), . . . for
the corresponding unknown true classes c1, c2, . . . ∈ C of the infinitely many future yj with distribution
N(µcj

, Σcj) (j = 1, 2, . . .), at least 1− α proportion will contain the true cj’s. That is, it is desirable that

lim inf
N→∞

1
N

N

∑
j=1

I{cj∈C(yj)} ≥ 1− α, (3)

where IA denotes the indicator function of set A and so 1
N ∑N

j=1 I{cj∈C(yj)} is the proportion among

the N confidence sets C(yj) that contains the true classes cj. It is shown in the Appendix A that the
property in Equation (3) holds with equality.

The interpretation of the property in Equation (3) is similar to that of a standard confidence set.
The noteworthy difference is that the confidence sets C(yj) are for possibly different parameters cj
(j = 1, 2, . . .). In addition, note that, for each j, C(yj) is a standard 1− α level confidence set for cj, with
yj being the only source of randomness.

Figure 1 gives an illustrative example with k = 3, p = 2:

µ1 =

(
5.01
3.43

)
, µ2 =

(
5.94
2.77

)
, µ3 =

(
6.59
2.97

)
,
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Figure 1. The acceptance sets for the three classes with known µi and Σi.

Σ1 =

(
0.124, 0.099
0.099, 0.144

)
, Σ2 =

(
0.266, 0.085
0.085, 0.098

)
, Σ3 =

(
0.404, 0.094
0.094, 0.104

)
,

and α = 5% (and so λ = χ2
2,0.95 = 5.991). Specifically, the acceptance set Al in Equation (1) is

represented in Figure 1 by the ellipsoidal region centred at µl , marked by ‘+’, l = 1, 2, 3. If y ∈ Al then
l is an element of the confidence set C(y) given in Equation (1). Hence, the following four situations
can occur. (a) y falls into only one Al and so C(y) has a single class. For example, if y ∈ A1 ∩Ac

2 ∩Ac
3,

then C(y) = {1}, i.e., y is classified as belonging to class 1. (b) y falls into two Al’s but not the other
one, and so C(y) contains two classes. For example, if y ∈ A1 ∩A2 ∩Ac

3, then C(y) = {1, 2}, i.e., y is
classified as belonging to possibly classes 1 or 2. (c) y falls into all the threeAl ’s, i.e., y ∈ A1 ∩A2 ∩A3,
and so y is classified as belonging to possibly all three classes. (d) y falls outside all the Al’s, i.e.,
y ∈ Ac

1 ∩Ac
2 ∩Ac

3, and so C(y) = ∅ and y is classified as not belonging to any one of the three classes.
There is nothing wrong with this last classification since this y is judged not to be from the class l by
the acceptance set Al for each l, though such a y must be rare in order to guarantee the property in
Equation (3). On the other hand, since it is known that y is from one of the k classes, it is sensible
to classify y according to any reasonable classifier, e.g., a Bayesian classifier illustrated in the next
paragraph. As the resultant confidence set C∗(y) from this augmentation contains C(y), the property
in Equation (3) clearly still holds for C∗(y).

For example, if y = (4.5, 2.0)T , which is marked by ‘*’ in Figure 1, then C(y) = ∅. The Bayesian
classifier and the augmented confidence set C∗(y) can be worked out in the following way. Assume a
non-informative prior π(1) = π(2) = π(3) = 1/3 about the class c of y, then the posterior probability
of y belonging to class l is given by

p(l|y) = π(l) f (y, l)/p(y) = f (y, l)/[3p(y)],

where f (y, l) is the probability density function of N(µl , Σl) and p(y) is the marginal density of y
and so does not depend on l. Hence, the Bayesian classifier classifies y to the class i0 that satisfies
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f (y, i0) = maxl∈C f (y, l). For y = (4.5, 2.0)T , we have f (y, 1) = 0.009, f (y, 2) = 0.612 and f (y, 3) =
0.046. Hence, the Bayesian classifier and the augmented confidence set C∗(y) classify y to class 2.

In this particular example, A1 and A3 do not intersect as seen from Figure 1 and so any future
y will not be classified to be in both classes 1 and 3. This reflects the fact that the distributions of
the classes 1 and 3 are quite different/separated and so easy to distinguish. On the other hand, the
distributions of the classes 2 and 3 are similar and so hard to distinguish. As a result, A2 and A3 have
a large overlap and hence many future y’s will be classified as belonging to both classes 2 and 3.

4. Unknown µi and Σi

4.1. Methodology

Now, we consider the more realistic situation where both the values of µi and Σi are unknown
and so need to be estimated from the training data set T , independent of the future observations yj
(j = 1, 2, . . .) whose classes cj are unknown and need to be inferred.

The training data set T = {xi1, . . . , xini ; i = 1, . . . , k} can be used to estimate µi and Σi in the
usual way: µ̂i =

1
ni

∑ni
m=1 xim, Σ̂i =

1
ni−1 ∑ni

m=1(xim − µ̂i)(xim − µ̂i)
T , i = 1, . . . , k. It is known [38] that

µ̂i ∼ N(µi, Σi/ni), (ni − 1)Σ̂i = ∑ni−1
m=1 zimzT

im with zi1, . . . , zi(ni−1) being i.i.d. N(0, Σi) random vectors
independent of µ̂i.

Mimicking the confidence set in Equation (2), we construct the confidence set for the class c of
y as:

CT (y) =
{

l ∈ C : (y− µ̂l)
TΣ̂−1

l (y− µ̂l) ≤ λ
}

, (4)

where λ is a suitably chosen critical constant whose determination is considered next.
As in Section 3, it is desirable that the proportion of the future confidence sets CT (yj) (j = 1, 2, . . .)

that include the true classes cj (j = 1, 2, . . .) should be at least 1− α:

lim inf
N→∞

1
N

N

∑
j=1

I{cj∈CT (yj)} ≥ 1− α. (5)

It is shown in the Appendix A that a sufficient condition for guaranteeing Inequality (5) is

inf
cj∈C

Eyj |T I{cj∈CT (yj)} ≥ 1− α, (6)

where Eyj |T denotes the conditional expectation with respect to the random variable yj conditioning

on the training data set T (or, equivalently, {(µ̂1, Σ̂1), . . . , (µ̂k, Σ̂k)}).
Since the value of the expression on the left-hand side of the inequality in Inequality (6) depends

on T and T is random, Inequality (6) cannot be guaranteed for each observed T ; more detailed
explanation on this is given in the Appendix A. We therefore guarantee Inequality (6) with a large
(close to 1) probability γ with respect to the randomness in T , which is shown in the Appendix A to be
equivalent to

PT

 min
1≤l≤k

Pwl | ul ,{vlm}

(wl − ul)
T

(
1

nl − 1

nl−1

∑
m=1

vlmvT
lm

)−1

(wl − ul) ≤ λ

 ≥ 1− α

 ≥ γ, (7)

where
wl ∼ N(0, Ip), ul ∼ N(0, Ip/nl), vlm ∼ N(0, Ip), m = 1, · · · , nl − 1 (8)
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and all the wl’s, ul’s and vlm’s are independent. This in turn guarantees that

PT

{
lim inf

N→∞

1
N

N

∑
j=1

I{cj∈CT (yj)} ≥ 1− α

}
≥ γ. (9)

The interpretation of this statement is that, based on one observed training data set T , one
constructs confidence sets CT (yj) for the cj’s of all future yj (j = 1, 2, · · · ) and claims that at least 1− α

proportion of these confidence sets do contain the true cj’s. Then, we are γ confident with respect to
the randomness in the training data set T that the claim is correct.

It is noteworthy that for the classification problem considered in this paper a classifier is built from
one training data set T and then used to classify a large number of future yj’s. Hence, the randomness
in both the training data set T and the future yj’s need to be accounted for but in different ways. This is
reflected in our approach by the two numbers 1− α and γ, analogous to the idea of [19,20] as pointed
out in Section 2.

If we treat the two sources of randomness in y and T simultaneously on equal footing (instead of
the approach given above), then it is straightforward to show that ([38], Section 5.2)

(y− µ̂c)
TΣ̂−1

c (y− µ̂c) ∼
(nc + 1)(nc − 1)p

nc(nc − p)
Fp,nc−p,

where c is the true class of y, and Fp,nc−p denotes an F random variable with degrees of freedom p and
nc − p. It follows therefore from Neyman’s method that

C(T , y) =
{

l ∈ C : (y− µ̂l)
TΣ̂−1

l (y− µ̂l) ≤
(nl + 1)(nl − 1)p

nl(nl − p)
fp,nl−p,1−α

}
(10)

is a 1− α confidence set for c, where fp,nl−p,1−α is the 1− α quantile of Fp,nl−p. However, this confidence
set has the following coverage frequency interpretation. Collect one training data set T and the feature
y of one future object, both of which are then used to compute the confidence set C(T , y) for the class c
of y; then, the frequency of the confidence sets that contain the true c’s is 1− α among a large number
of confidence sets constructed in this way. Note that, in this construction, one training data set T is
used only once with one future y to produce one confidence set C(T , y), and so the randomness in
one T and the randomness in one future y are treated on equal footing. This is clearly different from
what is considered in this paper and how statistical classification is used in most applications: only
one training data set T is used to construct a classifier, which is then used repeatedly in classification
of a large number of future objects with observed y values. Hence, our proposed new method treats
the two sources of randomness in T and future y’s differently.

4.2. Algorithm for Computing λ

We now consider how to compute the critical constant λ so that the probability PT in Equation (7)
is equal to γ. This is accomplished by simulation in the following way. From the distributions given in
Equation (8), in the sth repeat of simulation, s = 1, . . . , S, generate independent

us
l ∼ N(0, Ip/nl) , vs

l1, . . . , vs
l(nl−1) ∼ N(0, Ip) ; l = 1, . . . , k

and find the λ = λs so that

min
1≤l≤k

Pwl | us
l ,{vs

lm}

(wl − us
l )

T

(
1

nl − 1

nl−1

∑
m=1

vs
lmvs

lm
T

)−1

(wl − us
l ) ≤ λs

 = 1− α. (11)
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Repeat this S times to get λ1, . . . , λS and order these as λ[1] ≤ . . . ≤ λ[S]. It is well known [39] that
λ[γS] converges to the required critical constant λ with probability one as S→ ∞. Hence, λ[γS] is used
as the required critical constant λ for a large S value, 10,000 say.

To find the λs in Equation (11) for each s, we also use simulation in the following way. Generate
independent random vectors {wlq : q = 1, . . . , Q; l = 1, . . . , k} from N(0, Ip), where Q is the number
of simulations for finding λs. For each l, denote

ts
lq = (wlq − us

l )
T

(
1

nl − 1

nl−1

∑
m=1

vs
lmvs

lm
T

)−1

(wlq − us
l ) , q = 1 . . . , Q

and their ordered values as ts
l[1] ≤ . . . ≤ ts

l[Q]
. Then, it is clear that ts

l[(1−α)Q]
is the sample 1 − α

quantile of (wl − us
l )

T
(

1
nl−1 ∑nl−1

m=1 vs
lmvs

lm
T
)−1

(wl − us
l ) in which only wl is random, and so ts

l[(1−α)Q]

converges to the population 1− α quantile λsl with probability one as Q→ ∞, where λsl satisfies

Pwl | us
l ,{vs

lm}

(wl − us
l )

T

(
1

nl − 1

nl−1

∑
m=1

vs
lmvs

lm
T

)−1

(wl − us
l ) ≤ λsl

 = 1− α.

Hence, max1≤l≤k ts
l[(1−α)Q]

converges to max1≤l≤k λsl = λs as Q → ∞ and is used as an
approximation to λs for a large Q value, 10,000 say.

It is noteworthy that λ depends only on γ, α, p, k, n1, . . . , nk (and the numbers of simulations S and
Q which determine the numerical accuracy of λ due to simulation randomness). One can download
from [40] our R computer program ConfidenceSetClassifier.R that implements this simulation
method of computing the critical constant λ. While it is expected that larger values of S and Q will
produce a more accurate λ value, it must be pointed out that there is no easy way to assess how the
accuracy of λ depends on the values of S and Q. One practical way is to compute several λ values
using different random seeds in the simulation for given S and Q, which form a random sample from
the population of possible λ values. These λ values provide information on the variability among
the possible λ values produced by the simulation method, and so accuracy of λ due to simulation
randomness. See more details in Section 5.

As in Section 3, the confidence set CT (y) in Equation (4) may be empty for a y and so y is classified
as not belonging to any of the c classes. As discussed in Section 3, there is nothing wrong with this, but
it is sensible to classify such a y according to any reasonable classifier. The resultant confidence set
C∗T (y) from this augmentation contains CT (y), and so Inequality (9) still holds for C∗T (y).

5. An Illustrative Example

The famous iris data set introduced by [41] is used in this section to illustrate the method
proposed in this paper. The data set is simple but serves the purpose of illustration nevertheless.
It contains k = 3 classes representing the three species/classes of Iris flowers (1 = setosa, 2 =

versicolor, 3 = virginica), and has ni = 50 observations from each class in T . Each observation gives
the measurements (in centimetres) of the four variables: sepal length and width, and petal length
and width. The data set iris can be found in ([42], Chapter 10) for example, and is also in the R
base package.

First, we assume that only the first two measurements, sepal length and width, are used for
classification in order to easily illustrate the method since the acceptance sets Al , l = 1, 2, 3 are
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two-dimensional and so can be easily plotted in this case. Based on the fifty observations on p = 2
measurements from each of the three classes, one can calculate that

µ̂1 =

(
5.01
3.43

)
, µ̂2 =

(
5.94
2.77

)
, µ̂3 =

(
6.59
2.97

)
,

Σ̂1 =

(
0.124, 0.099
0.099, 0.144

)
, Σ̂2 =

(
0.266, 0.085
0.085, 0.098

)
and Σ̂3 =

(
0.404, 0.094
0.094, 0.104

)
.

In the example in Section 3, these are used as the known values of µi and Σi for the three classes.
For α = 5% and γ = 95%, the critical constant λ in Equation (7) is computed by our R program to be
9.175 using S = 10, 000 and Q = 10, 000. The confidence set CT (y) in (4) is based on the acceptance
sets Al =

{
y ∈ Rp : (y− µ̂l)

TΣ̂−1
l (y− µ̂l) ≤ λ

}
, l = 1, 2, 3, which are plotted in Figure 2 by the

ellipsoidal region centred at µ̂l , marked by ‘+’, l = 1, 2, 3. These ellipsoidal regions are larger than,
but have the same centers and shapes as, the corresponding ellipsoidal regions given in Figure 1
of Section 3. This reflects the fact that the underlying multivariate normal distributions have been
estimated from the training data T in this case and so involve uncertainty, while the distributions in
Section 3 are assumed to be known.

Figure 2. The acceptance sets for the three classes with estimated µi and Σi.

The index l is an element of the confidence set CT (y) in Equation (3) if and only if y ∈ Al . Hence,
the following four situations can occur, similar to those in Section 3. (a) y falls into only one Al and so
CT (y) has only one class. (b) y falls into two Al’s but not the other one, and so CT (y) contains two
classes. (c) y falls into all the three Al’s, i.e., y ∈ A1 ∩A2 ∩A3, and so y is classified as belonging to
possibly all three classes. (d) y falls outside all the Al ’s, i.e., y ∈ Ac

1 ∩Ac
2 ∩Ac

3, and so CT (y) = ∅ and
y is classified as not belonging to any one of the three classes.

From Figure 2, it is clear that A1 ∩ A2 ∩ A3 6= ∅ and so for any future y ∈ A1 ∩ A2 ∩ A3 the
confidence set CT (y) = {1, 2, 3} that is, y is judged to be possibly from any of the three classes.

As in Section 3, if y does not belong to any Al , l = 1, 2, 3, we compute the augmented confidence
set C∗T (y) by using, for example, the naive Bayesian classifier with a non-informative prior that
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classifies y to the class i0 that satisfies f̂ (y, i0) = maxl∈C f̂ (y, l), where f̂ (·, l) is the multivariate normal
density function of the lth class with µl and Σl replaced by the estimates µ̂l and Σ̂l , respectively.

To get some idea of how sensitive the critical constant λ is to the simulation numbers S and Q,
we have computed λ for various (S, Q) with γ = 0.95, α = 0.05, p = 2, k = 3 and n1 = n2 = n3 = 50
on an ordinary Windows PC (Core (TM2) Due CPU P8400@2.26 GHz ). As it is expected that larger
values of S and Q will produce more accurate λ value, the results given in Table 1 indicate that the
λ value based on (S, Q) = (10, 000, 10, 000), in comparison with the λ value based on (S, Q) =

(20, 000, 20, 000), is accurate to at least the first decimal place and so probably sufficiently accurate for
most real problems.

Table 1. Constant λ and computation time CT for various (S, Q).

(S, Q) (1000, 1000) (10,000, 10,000) (10,000, 20,000) (10,000, 50,000) (20,000, 10,000) (20,000, 20,000)

λ 9.289 9.175 9.199 9.204 9.187 9.198
CT 15 min 25 h 51 h 139 h 58 h 102 h

Alternatively, one can compute several λ values for the given S and Q values using different
random seeds to assess the accuracy of a λ value computed. For example, fourteen λ values based
on (S, Q) = (10, 000, 10, 000) based on fourteen different random seeds are computed to be: 9.231,
9.188, 9.172, 9.223, 9.192, 9.178, 9.203, 9.191, 9.198, 9.225, 9.182, 9.189, 9.224, 9.181, which form a sample
of observations from the population distribution of all possible values of λ. This sample can then be
used to infer the population and, in particular, the standard deviation of the population which gives
the variability (or accuracy) of one λ value from the population. The mean and standard deviation of
this sample of fourteen observations are given by 9.198 and 0.0196, respectively, and so the λ value
based on (S, Q) = (10, 000, 10, 000) is expected to be within the range 9.198± 3× 0.0196 using the
“three-sigma” rule.

It is also worth emphasizing that only one λ needs to be computed based on the observed
training dataset T which is then used for classifications of all future objects. Hence, one can always
increase S and Q to achieve better accuracy of λ as required and computation time should not be of a
great concern.

If all the four measurements are used in classification, then p = 4 and the acceptance sets
Al =

{
y ∈ Rp : (y− µ̂l)

TΣ̂−1
l (y− µ̂l) ≤ λ

}
, l = 1, 2, 3 are four dimensional ellipsoidal balls and

so cannot be drawn. Nevertheless, the confidence set CT (y) in Equation (4) is still valid and can be
computed easily for a given y. For α = 5%, γ = 95%, p = 4, k = 3 and n1 = n2 = n3 = 50, the
critical constant λ in Equation (8) is computed by our R program to be λ = 14.367 using S = 10, 000
and Q = 10, 000. Now, suppose a future Iris flower has measurements y = (4.5, 3.5, 1.4, 0.27). Then,
it is easy to check that y ∈ A1 since (y− µ̂1)

TΣ̂−1
1 (y− µ̂1) = 5.915 ≤ λ, while y /∈ A2 ∪ A3 since

(y− µ̂l)
TΣ̂−1

l (y− µ̂l) > λ for both l = 2 and 3. Hence, the confidence set CT (y) in (4) is {1}, that is,
this Iris flower is classified as from class 1, i.e., Setosa.

6. A Simulation Study

In this section, a simulation study is carried out to illustrate the desirable feature of the
confidence-set based classifier (CS) proposed in this paper, and to highlight its differences from the
following popular classifiers: classification tree (CT, implemented using R package tree), multinomial
logistic regression (MLR, implemented using R package nnet), support vector machine (SVM,
implemented using R package e1071) and naive Bayes (NB, implemented using R package e1071). The
setting k = 3, p = 2, n1 = n2 = n3 = 50, γ = 0.95 and α = 0.05 is considered following the illustrative
example in the last section.

Three configurations of the k = 3 classes are considered in the simulation study. For the µi
and Σi given in the example in Section 3, the first configuration (CONF1) has the k = 3 normal
distributions given by N(µ1 + (0,−0.5)T , Σ1), N(µ2, Σ2) and N(µ3, Σ3). The second configuration
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(CONF2) has the distributions N(µ1, Σ1), N(µ2, Σ2) and N(µ3, Σ3). The third configuration (CONF3)
has the distributions N(µ1, Σ1), N(µ2, Σ2) and N(µ3 + (1.0, 0.5)T , Σ3). CONF1 represents the situation
that all the k = 3 classes are quite similar and thus hard to distinguish. CONF2 represents the situation
that two of the k = 3 classes (i.e., classes 2 and 3) are quite similar but quite different from the other
class (i.e., class 1). In CONF3, all the k = 3 classes are quite different and thus relatively easy to
distinguish in comparison to CONF1 and CONF2.

For each configuration of the three population distributions, a random sample of size ni = 50
is generated from each class/distribution to form the training data set T which is then used to train
the classifiers CS, CT, MLR, SVM and NB. Each classifier is then used to classify N = 3000 future
objects, with 1000 generated from each of the three classes/distributions; the proportion of correct
classification, ζ, of the N = 3000 objects is recorded. For CS, the average size M of the confidence
sets for the N = 3000 objects is also recorded; note that all the other classifiers classify each future
object to only one class. This process is repeated for 100 times to produce ζ1, · · · , ζ100 for each
classifier, and M1, · · · , M100 for CS only. Denote γ̂ = 1

100 ∑100
i=1 I{ζi≥1−α} and ζ̄ = 1

100 ∑100
i=1 ζi for each

classifier, and M̄ = 1
100 ∑100

i=1 Mi for CS. The results on γ̂, ζ̄ and M̄ are given in Table 2, with the
corresponding standard deviations given in brackets. One can download from [40] our R computer
program SimulationStudyF.R that implements this simulation study.

Table 2. Simulation results. Abbreviations are defined in the text.

CS CT MLR SVM NB
γ̂ ζ̄ M̄ γ̂ ζ̄ γ̂ ζ̄ γ̂ ζ̄ γ̂ ζ̄

CONF1 1.00 0.98 2.06 0.00 0.71 0.00 0.77 0.00 0.76 0.00 0.74
(0.0066) (0.1075) (0.0258) (0.0099) (0.0121) (0.0110)

CONF2 1.00 0.98 1.67 0.00 0.74 0.00 0.80 0.00 0.80 0.00 0.79
(0.0062) (0.0552) (0.0254) (0.0085) (0.0090) (0.0095)

CONF3 1.00 0.98 1.31 0.00 0.90 0.10 0.94 0.07 0.94 0.01 0.94
(0.0060) (0.0716) (0.0159) (0.0052) (0.0058) (0.0068)

Due to the property in Inequality (9) of CS, one expects that γ̂ ≥ γ = 0.95 for CS. This is indeed
the case for each of the three configurations from the results in Table 2. Note, however, that γ̂ is either
equal or close to zero for all the other classifiers. This is the advantage of CS, by construction, over
the other classifiers. To guarantee the property in Inequality (9), the size of the confidence set may be
larger than one as indicated by the M̄ values in Table 2, while all the other classifiers select only one
class for each future object. The average size of the confidence set depends on the configuration of
the k = 3 classes. As expected, M̄ tends to be smaller when the k = 3 classes are easier to distinguish,
but larger when the k = 3 classes are harder to distinguish. For example, CONF3 has a considerably
smaller M̄ than CONF1.

As CS has the property in Inequality (9), it is not surprising that ζ̄ is likely to be larger than
1− α = 0.95, which is born out by the results in Table 2. However, for the other classifiers, the value of
ζ̄ depends on how different the k = 3 classes are; ζ̄ tends to be larger when the k = 3 classes are more
different and thus easier to distinguish. For example, CONF3 has a larger ζ̄ than CONF1.

7. Conclusions

This paper considers how to deal with the classification problem using the novel confidence set
approach by adapting the idea of [19,20] for inference about the predictor values of the observed
response values in a standard linear regression model. Specifically, confidence sets CT (yj) for the true
classes cj of infinitely many future objects yj (j = 1, 2, . . .), based on one training data set T , have been
constructed so that, with confidence level γ about the randomness in T , the proportion of the CT (yj)’s
that contain the true cj’s is at least 1− α.

The intuitive motivation underlying this method is that, when an object is judged to be possibly
from several classes, we should accept this objectively rather than forcing ourselves to pick just one
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class, which entails a large chance of misclassification. By allowing an object to be classified as possibly
from more than one class, the proportion of correct classification can be guaranteed to be at least 1− α

with a large probability γ about the randomness in the training data set T . This ‘guaranteed probability
γ about the randomness in T ’ should be intuitive too since a T that is very misleading about the k
classes will likely produce a classifier that makes many wrong classifications, and so only γ proportion
of well behaved T will produce a classifier that give at least 1− α future correct classifications.

The two sources of randomness, those in the training data T and in future objects yj, have
been treated differently to reflect the fact that a classifier is built from one training data set T and
then used to classify many future objects yj. If the two sources of randomness are treated on equal
footing, then the confidence set in Equation (10) should be used, which has a very different coverage
frequency interpretation.

In this paper, the objects y from each class are assumed to follow a multivariate normal distribution.
How the proposed method can be generalized to, or may be affected by, non-normal distributions,
such as the elliptically contoured distribution [38] (p. 47) is interesting and warrants further research.

A frequentist approach is proposed in this paper. One wonders whether a corresponding Bayesian
approach is easier to construct. In a Bayesian approach, one uses the posterior distribution π(cj | yj, T )
to make an inference about the true class cj of the future object yj. In particular, one can easily construct
a Bayesian credible set CB(yj) for cj such that P{cj ∈ CB(yj) | yj, T } ≥ 1− α. However, it is not at all
clear whether this construction guarantees that

lim inf
N→∞

1
N

N

∑
j=1

I{cj∈CB(yj)} ≥ 1− α

since it can be shown that π(ci, cj | yi, yj, T ) 6= π(ci | yi, T )π(cj | yj, T ), i.e., the posterior distributions
of ci and cj for the two future objects yi and yj are not independent. Nevertheless, Bayesian approach
warrants further research.
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Appendix A. Mathematical Details

In this appendix, we first show that the property in Equation (3) holds with equality. Note that
we have

lim
N→∞

1
N

N

∑
j=1

I{cj∈C(yj)}

= lim
N→∞

1
N

N

∑
j=1

P
{

cj ∈ C(yj)
}

= lim
N→∞

1
N

N

∑
j=1

P
{
(yj − µcj

)TΣ−1
cj

(yj − µcj
) ≤ λ

}
= lim

N→∞

1
N

N

∑
j=1

(1− α) = 1− α,

where the first equality above follows from the classical strong law of large numbers ([43], p. 333), the
second from the definition of C(yj) in Equation (2), and the third from λ = χ2

p,1−α. This completes
the proof.
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Next, we show that

inf
cj∈C

Eyj |T I{cj∈CT (yj)} ≥ 1− α implies lim inf
N→∞

1
N

N

∑
j=1

I{cj∈CT (yj)} ≥ 1− α, (A1)

where Eyj |T denotes the conditional expectation with respect to the random variable yj conditioning

on the training data set T (or, equivalently, all the µ̂i and Σ̂i). We have from the classical strong law of
large numbers [43] that

lim
N→∞

1
N

N

∑
j=1

[
I{cj∈CT (yj)} − Eyj |T I{cj∈CT (yj)}

]
= 0,

in which the conditional expectation Eyj |T is used since all the confidence sets CT (yj) (j = 1, 2, . . .) use
the same training data set T . Hence,

lim inf
N→∞

1
N

N

∑
j=1

I{cj∈CT (yj)}

= lim
N→∞

1
N

N

∑
j=1

[
I{cj∈CT (yj)} − Eyj |T I{cj∈CT (yj)}

]
+ lim inf

N→∞

1
N

N

∑
j=1

Eyj |T I{cj∈CT (yj)}

= lim inf
N→∞

1
N

N

∑
j=1

Eyj |T I{cj∈CT (yj)}.

The required result in Expression (12) now follows immediately from

1
N

N

∑
j=1

Eyj |T I{cj∈CT (yj)} ≥ inf
cj∈C

Eyj |T I{cj∈CT (yj)}

for any N ≥ 1 since it is known that all the cj’s are in C. This completes the proof.
Next, we provide a more tractable expression for infcj∈C Eyj |T I{cj∈CT (yj)} in order to understand

why Inequality (6) cannot be guaranteed for each observed T . From the definition of CT (y) in
Equation (4), we have

inf
cj∈C

Eyj |T I{cj∈CT (yj)}

= inf
cj∈C

Pyj |T
{

cj ∈ CT (yj)
}

= inf
cj∈C

Pyj |T

{
(yj − µ̂cj

)TΣ̂−1
cj

(yj − µ̂cj
) ≤ λ

}

= min
1≤l≤k

Pwl | ul ,{vlm}

(wl − ul)
T

(
1

nl − 1

nl−1

∑
m=1

vlmvT
lm

)−1

(wl − ul) ≤ λ

 , (A2)

where

wl = Σ−1/2
l (yl − µcl

) ∼ N(0, Ip), (A3)

ul = Σ−1/2
l (µ̂l − µcl

) ∼ N(0, Ip/nl), (A4)

vlm = Σ−1/2
l zlm ∼ N(0, Ip), m = 1, · · · , nl − 1, (A5)
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with all the wl’s, ul’s and vlm’s being independent. Note that wl depends on the future observation
yl but not the training data set T , while ul and {vlm} depend on the training data set T but not the
future observations.

Since the conditional probability in Equation (13) depends on the training data set T (via the
random vectors ul and {vlm}), Inequality (6), for any given value of λ, cannot be guaranteed for each
observed training data set T , i.e., ul and {vlm}. For example, if the values of T are such that

(wl − ul)
T

(
1

nl − 1

nl−1

∑
m=1

vlmvT
lm

)−1

(wl − ul)

is substantially larger than λ (for a given constant λ) for most possible values of wl ∼ N(0, Ip), then the
conditional probability in Equation (13) is smaller than 1/2 and hence 1− α ∈ (1/2, 1).

We therefore guarantee Inequality (6) with a large (close to 1) probability γ with respect to the
randomness in T , which is, from Equation (13), clearly equivalent to

PT

 min
1≤l≤k

Pwl | ul ,{vlm}

(wl − ul)
T

(
1

nl − 1

nl−1

∑
m=1

vlmvT
lm

)−1

(wl − ul) ≤ λ

 ≥ 1− α

 ≥ γ, (A6)

where wl , ul and vlm are given in Equations (14)–(16).
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