Matthew Shlomowicz

Glücklich, Glücklich, Freude, Freude

for keyboardist and orchestra

2019
Duration: 20 minutes
Commissioned by Südwestrundfunk
Glücklich, Glücklich, Freude, Freude

for keyboardist and orchestra

2019

Commissioned by Südwestrundfunk
First performed at Donaueschinger Musiktage on 18 October 2019 by Mark Knoop (soloist), Emilio Pomarico (conductor) and the SWR Symphony Orchestra.

The title is taken from the Ren and Stimpy song *Happy Happy Joy Joy*, here translated to expand associations towards classical music history and in particular Beethoven’s chorale setting of Schiller’s *An die Freude*. The piece alludes to an array of joyful music and positive emotional states, like: enthusiasm, idealised forms of contentment, ecstasy, frenzied excitement and collective euphoria.

Acknowledgements

My thanks to Jennifer Walshe, Øyvind Torvund and Thomas Meadowcroft for looking at drafts of this piece and providing extremely helpful comments. My thanks to Kirsten Shlomowitz for patiently answering my many questions about writing for orchestra, and Matthew Coorey for making a number of excellent suggestions about expression and articulation markings. And most of all, my deepest gratitude to Mark Knoop for his wide-ranging help throughout the process on creative matters, orchestration and guidance on notation and score presentation.

Instrumentation

2 flutes (second doubling piccolo)
2 oboes
2 clarinets
2 bassoons (second doubling contrabassoon)
4 French horns
2 trumpets (harmon and straight mutes required)
2 trombones (straight mutes required)
1 tuba (straight mute required)
3 percussionists

keyboard soloist: piano and synthesizer

suggested string strength

12 first violins
10 second violins
8 violas
6 cellos
4 basses
Stage layout

Keyboardist positioned by the conductor with piano and synthesizer placed as close as possible. The speakers for the keyboard should be localised, whereas the speakers for the recorded sound should be placed on either side of the orchestra about half way back so that the recorded sound is clear, but also blends with the orchestral sound. In principle, the routing is as follows, although for added warmth and depth the synthesizer may also be projected through the outer speakers at a lower level.

Routing

- Synthesizer to speakers 1 and 2
- Recorded sounds to speakers 3 and 4

Spectral tuning

Notes tuned to the harmonic spectrum are written with accidentals that indicate microtonal adjustment and further information is provided above the stave in this form:

\[B^\sharp_7 (-31\text{c}) \]

- \(B^\sharp \) is the fundamental
- This pitch is the 7th partial of that fundamental
- The note is 31 cents below the equal tempered pitch

Horns: the 7th and 11th partials appear in passages featuring horn 1 from m68 and all horns from m87. In these passages, all notes are lipped from a given fundamental. The fundamental is noted in a box above the stave.

Synthesizer: the melody from m123 features the 7th, 11th and 21st partials. The pitch-wheel is used to make the microtonal adjustments (the pitch-wheel is always set at ±1 tone in these passages). First violins double this melody from m135.
Keyboardist

The keyboardist performs on:

- Grand piano
- 88-note touch sensitive synthesizer, with pitch-wheel

The piece features 4 recorded tracks, which might be loaded on to the synthesizer or triggered by an additional sampler keyboard or trigger pad.

Pitch-wheel

The pitch-wheel is notated in different ways throughout the piece:

In some passages (e.g. m146) a contour is provided on the pitch-wheel stave to indicate movement of the wheel. The specifics of the pitch are not determined as the intended effect is more generalised. The timing for the movement of the wheel is sometimes supported with rhythmic information (e.g. m62).

Pitch-wheel is used to make microtonal adjustments, as in the melody from m123, as described above under ‘spectral tuning’.

Throughout (firstly at m56), the synthesizer performs a chord progression with the pitch-wheel. That is, a chord is sustained on the keyboard with one hand, whilst the other hand shifts the pitch-wheel to move between chords. A smaller middle stave is added at these moments to show the root of each sounding chord in the progression. The result is intended to lack a degree of precision, with the brass pristinely sounding the progression and the synthesizer (and strings) sliding roughly between the chords.

Synthesizer sound settings

The table below provides the 5 sound settings for the synthesizer. The ‘sound description’ details the sonority and envelope of each sound. An indicative sound setting from the digital audio workstation Logic Pro X is provided. Note: the pitchbend range for sounds 1, 2 and 3 should be set at ±1-octave, whereas sound 4 is set at ±1-tone.

<table>
<thead>
<tr>
<th>name and description</th>
<th>e.g. Logic Pro X sound</th>
<th>pitchbend range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bright Pipe Organ</td>
<td>Synth Pipe Organ</td>
<td>±1 octave</td>
</tr>
<tr>
<td>Analog Brass</td>
<td>Analog Brass</td>
<td>±1 octave</td>
</tr>
<tr>
<td>Analog synth sound with bright brass sonority. ‘Ch’ attack. Short reverb.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angelica Voices</td>
<td>Dream Voice</td>
<td>±1 octave</td>
</tr>
<tr>
<td>Choir sound. The sound has two components: (1) a neutral vocal sonority that sustains without modulation across the duration; and (2) a clearly vocalised ‘ahh’ onset that lasts approximately one second. Light reverb.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychedelic Lead Synth</td>
<td>Luminous Tines</td>
<td>±1 tone</td>
</tr>
<tr>
<td>Lead synth with strong attack with chorus type slow vibrato. Long reverb, but with only moderate gain. Forte note lasts 5 seconds, with decay of onset disappearing within 2 seconds followed by decay of reverb.</td>
<td>Reverse Engineering</td>
<td>n/a</td>
</tr>
<tr>
<td>Bright Lead Synth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highly artificial lead synth sound with a mechanical quality. Clear attack. Phaser effect from onset for about one second before sound continues to sustain without modulation. Medium reverb, but with low gain.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recordings

The piece features 4 recorded tracks, which can be loaded on to the synthesizer or triggered by an additional sampler keyboard or trigger pad.

<table>
<thead>
<tr>
<th>description</th>
<th>dynamic</th>
<th>duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocean waves</td>
<td>p</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Seagulls</td>
<td>p</td>
<td>4 minutes</td>
</tr>
<tr>
<td>People speaking</td>
<td>p</td>
<td>4 minutes</td>
</tr>
<tr>
<td>Ice-cream van passing whilst playing song</td>
<td>p</td>
<td>15 seconds</td>
</tr>
</tbody>
</table>

Note: a device (e.g. a pedal) is needed to abruptly stop the ‘waves’, ‘seagulls’ and ‘people speaking’ recordings in m434 (the ‘ice-cream van’ recording plays out to completion).

Percussion

Instruments used:

2 × wind chimes
Guiro
Ratchet
Bell Tree
Triangle
Sleigh bells
Maracas
Tambourine
Snare drum
Three toms: high, middle and floor toms (note: exceedingly dry)
Orchestral bass drum
Kick drum (with pedal, extremely dry)
Splash cymbal (e.g. 10 inch)
Crash cymbal (e.g. 14-inch)
Chinese crash cymbal
Pair of hand-held clash cymbals
Tam-tam

Percussionist 1 performs on:

guiro, wind chimes 1, triangle, tambourine, maracas
orchestral bass drum, snare
hand-held clash cymbals, crash cymbal

Percussionist 2 performs on:

bell tree, wind chimes 2, tambourine, sleigh bells, referee whistle
high/middle/floor toms, snare
hand-held clash cymbals, crash cymbal, splash cymbal, China cymbal

Percussionist 3 performs on:

ratchet, triangle,
snare, orchestral bass drum, kick drum
tam-tam, China cymbal
Glücklich, Glücklich, Freude, Freude
for keyboardist and orchestra
Matthew Shomowitz

Flute 1
Flute 2
Oboe 1
Oboe 2
Clarinet 1
Clarinet 2
Bassoon 1
Bassoon 2
Horn 1
Horn 2
Horn 3
Horn 4
Trumpet 1
Trumpet 2
Trombone 1
Trombone 2
Tuba

Percussion 1
Percussion 2
Percussion 3
Synthesizer
Piano
Violin 1
Violin 2
Viola
Violoncello
Double Bass

Molto ritmico (poco separato) \(\frac{\text{b} = 200}{} \)

All notes are staccato aside from those marked with an arrow.

sempre f

Basso Continuo

sempre f

sempre f
\[\text{\textbf{(faster than before)}} \]

\[\text{\textbf{Hn 2}} \]

\[\text{\textbf{Hn 4}} \]

\[\text{\textbf{P1}} \]

\[\text{\textbf{P2}} \]

\[\text{\textbf{Synth}} \]

\[\text{\textbf{Hn 1}} \]

\[\text{\textbf{Hn 2}} \]

\[\text{\textbf{Hn 4}} \]

\[\text{\textbf{P1}} \]

\[\text{\textbf{P2}} \]

\[\text{\textbf{Synth}} \]

\[\text{\textbf{Hn 3}} \]

\[\text{\textbf{Hn 4}} \]

\[\text{\textbf{P1}} \]

\[\text{\textbf{P2}} \]

\[\text{\textbf{P3}} \]

\[\text{\textbf{Synth}} \]

\[\text{\textbf{Back and forth, varying speed and intensity}} \]

\[\text{\textbf{Back and forth, varying speed and intensity}} \]

\[\text{\textbf{Back and forth, varying speed and intensity}} \]

\[\text{\textbf{Back and forth, varying speed and intensity}} \]
Pitches derived from the series of natural harmonics are indicated with the fundamental pitch, the harmonic number, and the deviation from equal temperament in cents.
to bass drum

Back two desks only, all other players stop.

Back drum and cross stick snare (slashed notes)
This passage to bar 485 may be played on piccolo.
419

P1

Picc

Ob 1

Ob 2

Cl 1

Cl 2

Bsn 1

Chm

Hn 1

Hn 2

Hn 3

Hn 4

Tpt 1 (harmon mute)

Tpt 2 (harmon mute)

Tbn 1

Tbn 2

Tba

Piano

Vln 1

Vln 2

Vl

Va

Db