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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Aeronautics, Astronautics and Computational Engineering

Doctor of Philosophy

EVOLUTIONARY TOPOLOGY OPTIMIZATION VIA DIRECT AND

GENERATIVE ENCODINGS: APPLICATIONS TO AEROSPACE AND HEAT

TRANSFER ENGINEERING

by Teemu Johannes Ikonen

Evolutionary algorithms are global search methods that are well-suited for ‘black-box’

type objective functions and multi-objective optimization. However, as search methods

in topology optimization, they have gained only limited acceptance, mainly due to their

poor efficiency; they tend to require more objective function evaluations than gradient-

based methods. Motivated by their benefits, the first aim of this work is to improve

the performance, i.e. effectiveness and efficiency, of evolutionary topology optimization.

We parameterize the design domains using both the ground structure approach (direct

encoding) and L-systems-based methods (generative encoding). We investigate the use

of two interpretation formalisms of L-systems, i.e. map L-systems and the turtle inter-

pretation. In terms of improving the performance, the main contribution of this work

is a statistical analysis of the effects of over 400 genetic control parameter combinations

on the performance of the map L-systems-based method, which results we report as a

Pareto front in the space of effectiveness and efficiency. The second aim of this work is

to identify engineering applications to which L-systems-based methods are particularly

suitable. We studied three applications, which are related to aerospace and heat transfer

engineering. We found that the method with the turtle interpretation is well-suited to

topology optimization of a heat conductor due to its natural tendency to produce bifur-

cating tree-structures. We show that the method is more effective in 10 out of 12 tested

optimization problems and is two orders of magnitude more efficient on all 12 problems

than a representative direct encoding method. In addition, our results indicate that the

method is more effective than the well-established SIMP method (Solid Isotropic Mate-

rial with Penalization) in optimization problems where the product of volume fraction

and the ratio of high and low conductive material is less or equal to 1.
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Chapter 1

Introduction

Evolutionary algorithms are population-based search heuristics that mimic two revolu-

tionary discoveries in biology: Darwinian natural selection and the identification of the

deoxyribonucleic acid (DNA) sequence inside the nucleus. The DNA sequence contains

the genetic information, i.e. genotype, of a living organism. Instead of explicitly encod-

ing existence of individual cells in the organism, the DNA sequence is a developmental

recipe that implicitly constructs the phenotype of the organism1. The compact format of

storing genetic information has enabled nature to gradually evolve intriguingly complex

organisms.

In evolutionary algorithms, the genotype is the numerical representation of a solution

candidate, whereas the phenotype is its corresponding ‘physical’ instance. However, in

the majority of studies applying evolutionary algorithms, the genotype consists of de-

sign variables that explicitly define units of the phenotype, referred to as direct encoding.

This approach ignores the developmental aspect of the biological genotype-phenotype

distinction. Alternatively, generative encodings2 are parameterization methods that im-

plicitly define units of the phenotype via a developmental recipe (in the same way as the

DNA sequence does). They have better scalability and are more compact than direct

encodings due to their capability of reusing elements of the genotype, which enables the

formation of self-similar and hierarchical sub-parts in the phenotype (Hornby and Pol-

lack, 2001, Stanley and Miikkulainen, 2003, Kobayashi et al., 2010). Although generative

encodings have been demonstrated to outperform direct encodings on some applications

(Hornby and Pollack, 2001, 2002, Pedro and Kobayashi, 2011), their full potential, or

limitations, have not yet been thoroughly studied.

In fact, designs consisting of repeating patterns of similar structural members are often

desired in engineering. They can be seen for example in the well-known minimum mass

1Biological phenotypes are, in fact, also dependent on epigenetic and environmental factors.
2Also referred to as developmental encodings or artificial embryogeny.
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2 Chapter 1 Introduction

truss layout derived by Michell (1904) (Figure 1.1(a)), the Sydney Opera House (Fig-

ure 1.1(b)) and the Astoria-Megler Bridge, spanning over the Columbia River (Figure

1.1(c)). Each of these examples have a different motivation for similar structural mem-

bers. Michell (1904) proved that the minimum mass of a truss structure, made from

material with equal or unequal allowed stresses in tension and compression, is obtained

using two similar logarithmic spirals3. The architects of the Sydney Opera House de-

signed its roof to consist of similar shell structures for aesthetic reasons. Finally, a key

aspect in the design of Astoria-Megler Bridge is its manufacturability, in which similar

structural members are beneficial. Generative encodings have a natural tendency to

yield designs with these kind of repeating patterns of similar structural members.

(a) Michell truss (Michell, 1904) (b) Sydney opera house (Photo: Pixabay / Anna
Mustermann

(c) Astoria-Megler truss bridge (Photo: Pixabay / Dovid Smith and Niccolea Miouo Nance)

Figure 1.1: Designs consisting of similar structural members.

One of the research fields in structural engineering is topology optimization, which com-

prises search methods of seeking the optimal material distribution in a given design

domain. Commonly used gradient-based methods, such as Solid Isotropic Material with

Penalization (SIMP) (Bendsøe, 1989) and Evolutionary Structural Optimization (ESO)

3Logarithmic spirals (also equiangular spirals) are curves, often appearing in nature, the sections of
which are self-similar.



Chapter 1 Introduction 3

(Xie and Steven, 1992), use the direct encoding, where each of the design variables de-

termines the existence/density of a single material element in the phenotype. Thus, even

in a two-dimensional design domain, the number of required design variables increases

quadratically as a function of the mesh resolution. Another type of direct encoding is the

so-called ground structure approach, where a dense set of candidate structural members

is fitted inside the design domain, and the optimal subset of these members is sought.

Several evolutionary algorithms (which do not use gradient information) have also been

applied to topology optimization, using either direct or generative encodings. Evolu-

tionary algorithms have the following advantages. First, they are considered as global

optimization methods, which are able to operate in design landscapes with multiple lo-

cal optima (Keane and Nair, 2005). Second, they are well-suited to ‘black box’ type

optimization problems (Weise, 2009), where no gradient information is available for the

objective function. These optimization problems include objective functions that are

stochastic, integer-valued and implicitly defined. The aforementioned generative en-

codings result in implicitly defined objective functions. Third, evolutionary algorithms

are particularly suitable for multi-objective optimization because they simultaneously

evolve a population of candidate designs (Coello Coello et al., 2007). Thus, a single

optimization run with a multi-objective evolutionary algorithm yields a set of designs

that represent an approximation of the frontier of the best trade-off solutions to the ob-

jectives, referred to as the Pareto front. As a comparison, discovering the approximated

Pareto front using gradient-based methods typically requires a series of optimization

runs with aggregated objective functions.

Despite these advantages, evolutionary algorithms have only gained limited acceptance

in the topology optimization community. Munk et al. (2015) list two partial reasons for

this, which are the difficulty of ensuring structural connectivity and the excessive use of

computational resources. Sigmund (2011) indicates that non-gradient-based optimiza-

tion methods (which include evolutionary algorithms) require orders of magnitude more

function evaluations in comparison to gradient-based methods.

1.1 Aims of the research

This work has two primary aims, which are defined in the following. The first is to

find improvements in the performance of evolutionary topology optimization algorithms,

which use either direct or generative encodings. We evaluate the performance of an

algorithm based on its effectiveness (its ability to find good solutions) and efficiency

(its ability to find them quickly). Therefore, the aim is not only dedicated to mitigate

the excessive use of computational resources, as indicated by Munk et al. (2015) and

Sigmund (2011), but also to improve the goodness of the solutions.
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The second aim is to identify topology optimization problems in engineering design,

to which generative encodings are particularly suitable – or the contrary, particularly

unsuitable. Thus, the objective is to select a diverse set of engineering design problems,

to which evolutionary topology optimization algorithms with both direct and generative

encodings are applied. In addition, the purpose is to select such engineering design

problems that the algorithms we develop in this work have the potential to be useful for

practitioners working in the corresponding fields. Later, in Section 2.9, we will define

six hypotheses that correspond to these two primary aims.

Both evolutionary algorithms and generative encodings are research fields with numerous

classes. We narrow the scope of our research as follows, in order to keep its size man-

agable. First, we narrow evolutionary algorithms to genetic algorithms (GAs), as they

are described as the most prominent and widely used class of evolutionary algorithms

(Sivanandam and Deepa, 2007). Second, we narrow generative encodings to those based

on L-systems (Lindenmayer, 1968a,b), which have recently gained popularity among the

topology optimization researchers.

1.2 Structure of the thesis

The content of the thesis is the following. Chapter 2 reviews the literature of topology

optimization, with an emphasis on evolutionary algorithms and their encoding methods.

In addition, three areas of application are selected and reviewed. At the end of the

chapter, research hypotheses and objectives are defined in order to achieve the first

aim of the research: finding improvements to the performance of evolutionary topology

optimization.

The purpose of Chapters 3 to 5 is to conduct the work of these research objectives on

direct and generative encodings. The proposed improvements are tested on the first

application, i.e. mass minimization of the wing internal structure of a small Unmanned

Aerial Vehicle (sUAV).

In Chapters 6 and 7, we continue to apply the methods to the second and third appli-

cation. These applications are temperature minimization of a conductive heat transfer

system and natural frequency maximization of an integrally stiffened panel structure,

respectively. In these chapters, we apply methods using both direct and generative en-

codings to evaluate the second aim of the research: identifying topology optimization

problems in engineering design, to which generative encodings are particularly suitable.

Finally, Chapter 8 concludes the work and provides recommendations for the future

work.
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Topology optimization

Topology optimization is the process of determining the optimal distribution of material

inside a predefined design domain, in order to minimize, or maximize, a physical quantity

of the resulting design. The search space in topology optimization has greater design

freedom in comparison to other types of structural optimization, e.g. shape and size

optimization. The reason is that topology optimization may flexibly vary the general

configuration of the structure, whereas shape and size optimization are restricted to

a single predefined configuration. Currently, topology optimization is the most active

research area of structural and multidisciplinary optimization (Deaton and Grandhi,

2014).

In this chapter, we review first commonly used design space parameterizations (Section

2.2) and search algorithms (Sections 2.3-2.6) in topology optimization. Then, we review

L-systems, the type of generative encoding we use in this work, in detail in Section 2.7.

Finally, three areas of application are selected and reviewed in Section 2.8. However,

before all this, let us start by a short introduction to optimization.

2.1 Introduction to optimization

Optimization features extensively in nature and engineering. Migrating geese fly in a

flock to maximize their range. Evolution drives a population towards a better adapta-

tion to the environment. Engineers design and develop their products to have as high

performance, reliability or cost-efficiency as possible. Optimization among human and

other species is either intentional or unintentional. Science and engineering include a

wide range of both optimization problems and methods to seek the optimal solution.

From a mathematical point of view, optimization means either the minimization or

maximization of an objective function subject to given constraints, and with respect

to predefined design variables (Nocedal and Wright, 2006). Before selecting a suitable

5
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optimization method, the optimization problem must be classified according to multiple

criteria. In the following, four, perhaps the most important, criteria are presented. First,

design variables are either continuous or discrete. Second, the optimization problem can

be constrained or unconstrained. Third, a local or the global optimum may be desired,

depending on the purpose. Fourth, the optimization problem might have single or

multiple objectives.

Optimization methods can be categorized based on their approach to the optimization

problem; these categories are gradient-based, rule-based and stochastic methods (Keane

and Nair, 2005). Gradient-based methods sample points in the design space and use

the gradient information of the current point, or the current and past points, to search

for better optimized points. A variety of gradient-based methods have been developed,

such as the steepest-descent direction and conjugate gradient methods (Nocedal and

Wright, 2006). A common feature for all of them is that they require the gradient

information in the whole search space. Gradient-based methods are very effective in

local optimization with continuous design variables. However, they are not suitable for

optimization with discrete design variables, and they might only find a local optimum

for a global optimization problem.

Rule-based methods are structured sampling strategies that aim to bound the optimum

inside a limited space, and then reduce the size of the space until the optimum has been

narrowed down to a specified precision. The simplest examples of these methods are

the golden section and the Fibonacci search. Unlike gradient-based methods, rule-based

methods are well-suited to optimization with discrete variables. However, they may still

fail to find the global optimum.

Stochastic methods sample the objective function by generating and using random vari-

ables. Optimization procedures started from the same exact point follow a different

optimization trajectory if the sequence of random numbers is varied. Considering a

minimization problem, if the objective function value of a certain sampled point is low

in comparison to other sampled points, the region of the point is likely to be further sam-

pled during the next iterations. Typical examples of stochastic optimization methods

are evolutionary and swarm algorithms. They are suitable for continuous and discrete

optimization variables, but may require a large number of function evaluations.

For a more detailed review of optimization methods, the reader may wish to consult

optimization textbooks, such as by Nocedal and Wright (2006), Fletcher (2013) and

Simon (2013), or the textbook by Keane and Nair (2005), which reviews optimization

methods from an aircraft design point of view.
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2.2 Design space parameterization

The first step of any topology optimization process is establishing the design space.

In standard continuous optimization problems, this is simply a matter of defining the

ranges of the design variables, but the space of topologies has no conventional design

variables and thus no ranges either, as defined in the conventional sense. Thus, the first

step is to define the mapping between the design variables and the material distribution

in the design domain, referred to as the parameterization (also design representation).

We here categorize parameterization methods into direct, geometric and generative en-

codings. The categorization is basically the same as the one defined by Aulig and Olhofer

(2016). However, the authors use the terms grid, geometric and indirect representations,

but we choose to follow here the taxonomy often used in the context of generative en-

codings, i.e. direct and generative encodings, to which we add geometric encodings.

2.2.1 Direct encodings

Ideally, the best design would be obtained by picking the best combination of structural

members from the structural universe, which is an infinite collection of all permissible

structural members that a design may contain. In reality, this is not possible because

an infinite number of objective function evaluations would be needed. However, the

structural members may be picked from a ground structure, first introduced by Dorn

et al. (1964), which is a finite, but large, subset of the structural universe. Each of

these ground structure members is explicitly assigned a binary design variable, and the

optimization problem is defined as finding the optimal subset of the ground structure

members. We will return to the ground structure approach in Section 2.4.

Another approach to establishing the design space parameterization is to distribute

homogeneous material inside throughout the design space and discretize the material

into finite elements, a method first presented by Bendsøe and Kikuchi (1988) and referred

to as the continuum material or grid representation. Each element is then assigned a

design variable(s) describing its presence in the design. The design variable may be a

binary value, describing strict 0/1 material distribution, or a scalar value, allowing the

density of the element to vary between 0 and 1. An optimization method for the binary

variables is presented in Section 2.5 (Evolutionary Structural Optimization (ESO)), and

for scalar variables in Section 2.6.1 (Solid Isotropic Material with Penalization (SIMP)).

2.2.2 Geometric encodings

In geometric encodings, the phenotype is defined via movable shape primitives, such as

position, shape and thickness (Aulig and Olhofer, 2016). Depending on the requirements
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of evaluating the objective function, the geometric phenotype may be further mapped

into a grid representation. Unlike in direct encodings, the number of design variables in

geometric encodings is independent of the design resolution.

Various types of geometric encodings have been suggested in the literature, of which we

list a couple of examples in the following. Sethian and Wiegmann (2000) represented

their designs via a scalar level-set function (Osher and Sethian, 1988). We will review

the method, referred to as the Level-Set Method (LSM), in more detail in Section 2.6.2.

Schoenauer (1996), Hamda and Schoenauer (2002) represented their phenotypes via

Voronoi diagrams1, where each of the sites is assigned a binary design variable defining

the existence of material inside its region. Tai and Chee (2000) parameterized the design

space via a set of Bézier curves. The design variables were the location of the control

points defining the Bézier curves and additional thickness variables. For a more detailed

review of geometric encodings, the reader may wish to consult the paper by Aulig and

Olhofer (2016).

2.2.3 Generative encodings

In generative encodings, a genotype comprises rules or biological processes that implic-

itly define the material distribution in the corresponding phenotype. As indicated in

the introduction, this approach enables repeated usage of genotype elements, and there-

fore more compact representation of phenotypes than direct and geometric encodings

(Hornby and Pollack, 2001, Stanley and Miikkulainen, 2003, Kobayashi et al., 2010).

Generative encodings typically mimic the morphogenesis of biological organisms. How-

ever, as the developmental processes in the nature are extremely complex, scientists

have chosen to use various levels of abstraction, i.e. how precisely the natural processes

are mimicked. Stanley and Miikkulainen (2003) categorize two levels of abstraction into

grammatical and cell chemistry approaches.

Grammatical approaches are high-level abstractions that trace back to the mathemati-

cal models by Lindenmayer (1968a,b) (L-systems). In fact, these models were not orig-

inally intended to be used in topology optimization, but to resemble the developmental

processes of living organisms, e.g. bacteria and plants. The idea is that organisms,

which may have complex geometries, are modeled by repeatedly modifying a simple

starting object by a set of predefined rules. When used in topology optimization, the

idea is to evolve the set of rules and the starting object to minimize or maximize a

quantity related to the corresponding phenotype. Examples of grammatical approaches

are cellular encoding (Gruau, 1993, 1994) and edge encoding (Luke and Spector, 1996).

However, the generative encodings we use in this work are directly based on L-systems.

1A Voronoi diagram is a partitioning of a plane into regions using control points, which are referred
to as sites. Each site has a corresponding region, which includes all points in the plane that lay closer
to the site than any other site.
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We will review both L-systems and their applications to topology optimization in detail

in Section 2.7.

Cell chemistry approaches are low-level abstractions that closely mimic the chemical

interactions inside and between cells during embryogenesis (Stanley and Miikkulainen,

2003, Stanley, 2007). These approaches evolve genes that produce proteins, which guide

the cell division process as the phenotype grows. Figure 2.1 shows an example growth

procedure of a design, modeled using such an approach.

Figure 2.1: Construction of a phenotype in stages using a cell chemistry ap-
proach, based on motile polarized cells (Steiner et al., 2009). The last figure
represents discretization into a three-dimensional grid.

Another approach outside these two categories is worth mentioning: the Compositional

Pattern Producing Network (CPPN). In all of the above mentioned generative encoding

approaches, phenotypes are constructed via temporal, intermediate stages of the de-

velopment (see Section 2.1). These stages are useful in understanding the bio-inspired

aspect of generative encodings. However, in generative encodings, the abstraction is

not required to explicitly follow natural processes. Stanley (2007) proposed the CPPN,

which is free of temporal stages. The approach is a variation of artificial neural net-

works, in which each of the nodes in the network may contain a variety of mathematical

functions, e.g. gaussian or trigonometric functions (Figure 2.2). The distribution of

material in the phenotype is then defined via this network of functions. The topology

of the network and the content of its nodes are typically evolved by NeuroEvolution for

Augmenting Topologies (NEAT) (Stanley and Miikkulainen, 2002).

Later in this work, we will use the ground structure approach and the L-systems-based

methods, which both may be evolved via genetic algorithms (GAs). The next section

presents GAs in terms of their encoding, genetic operations, as well as reviews con-

strained and multi-objective GAs.
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Figure 2.2: An illustration of the CPPN method to encode a phenotype, adopted
from the paper by Cheney et al. (2014).

2.3 Genetic algorithms (GAs)

GAs are optimization methods that mimic Darwinian natural evolution. In GAs, a

solution candidate is encoded as a sequence of integer or real numbers, i.e. the genotype.

GAs iteratively evolve a population of these genotypes towards the best adoption to

the simulated environment (which merit is the objective function), using mathematical

operators mimicking natural selection, recombination and mutation. As optimization

methods, GAs are described as gradient-free global search methods that perform well

on non-differentiable functions and functions with many local optima (Whitley, 1994).

GAs are a subset of evolutionary algorithms, which initiated in the 1950s and 1960s

when scientists studied how the evolution theory could be exploited as an optimization

method. Rechenberg (1965, 1973) presented the first evolution strategies (ESs), which

were further improved by Schwefel (1975, 1977). In a simple form of the algorithm, a

parent produces λ mutants, inheriting their elements from the parent with some random

variations (i.e. mutations). The fittest individual among offspring, or among parents

and offspring, is selected to become the new parent. The former is referred to as (1, λ)-

ES, and the latter as (1+λ)-ES. A genotype in ESs typically is a vector of real numbers.

GAs, in which we focus on in the following, were developed by Holland (1975) and his

students, such as De Jong (1975).

Koza (1992, 1994) developed genetic programming as an extension to Holland’s work

on GAs. Instead of encoding the genetic information on a fixed-length sequence of

integer/scalar numbers, genetic programming uses tree structures, encoded into variable

length genotypes, to represent solution candidates. Similar to GAs, these trees are

ranked based on their fitness and genetic operations are applied to the selected trees. All

above mentioned branches, as well as several other branches, of evolutionary algorithms

are still active fields of research.
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2.3.1 Encoding

As mentioned earlier, genotypes in a GA carry the genetic information of the population.

While the DNA sequence in nature is based on a four-character encoding, the genetic

information in a GA is typically encoded using binary values (Mitchell, 1998, Sivanan-

dam and Deepa, 2007) though also multiple character and real number encodings exist.

The reason for the popularity of binary strings is perhaps historical – Holland and his

students used binary values in their early work (Mitchell, 1998). Holland (1975) com-

pared two types of encodings that can store the same amount of genetic information: a

long string encoded using a small number of characters and a short string using a large

number of characters. He argued that the former is able to evaluate a higher number of

possible bit combinations, i.e. schemata2, in comparison to the latter. Thus, the perfor-

mance of the algorithm would be better with a small number of characters. However,

opposite indications have been obtained in some later studies. For example, Janikow and

Michalewicz (1991) observed the real value encoding to be faster and more consistent

than the binary encoding on their test case. Simon (2013) presents an example where the

real number encoding outperforms the binary encoding on the two-dimensional Ackley

function. The optimal encoding method is likely to be dependent on the optimization

problem.

Design variables in a GA, which may be binary, integer or scalar values, are encoded into

genotypes. The encoding of binary and integer variables is relatively simple. However,

an issue might appear on integer variables. Let us consider an integer variable with 300

possible values. The closest binary lengths are eight (28 = 256) and nine bits (29 = 512).

The eight-bit string has obviously too few ‘slots’ to accommodate all 300 values, whereas

the nine-bit string would have 212 excess ‘slots’ that are meaningless and might mislead

the optimization process. Scalar design variables are encoded either as integer or real

numbers. In the case of the former, a scalar variable must be discretized inside relevant

bounds. Each discretized point is represented by a sequence of integer values. The

smoothness of the discretization is to be chosen so that the optimum can be located

with adequate accuracy. However, the smoother the discretization is, the more elements

are required in the genotype to represent the discretized points of scalar design variables,

and thus, the more function evaluations are required to obtain a converged solution.

2.3.1.1 Multi-dimensional genotypes in direct encoding

Another aspect to be considered is the choice between one- and multi-dimensional en-

codings. In a classical one-dimensional encoding, the genotype is a vector containing the

elements with genetic information, whereas in a two-dimensional encoding the elements

are arranged in a matrix form. The vast majority of GA-based optimization applications

2Schemata are patterns of fixed and variable bit combinations that are favored by evolutionary
processes.
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use one-dimensional encoding, while the use of two-dimensional (or higher) encodings is

very rare. However, the physical design domains of many practical problems are two-

or three-dimensional (Gen and Cheng, 2000). Bui and Moon (1995) argue that if such a

problem is encoded into a one-dimensional genotype, a considerable amount of geometric

information is lost. The benefit of multi-dimensional encoding is in the preservation of

the geographical linkage between the elements. The geographical linkage means that two

elements located close to each other in a genotype are more likely to survive together to

the next generation than two randomly selected elements in the same genotype.

The first application of two-dimensional encoding is due to Cohoon and Paris (1987),

who applied it to optimization of a Very-Large-Scale Integration (VLSI) circuit. Later,

two-dimensional encoding has been used for example in job scheduling (Chou et al.,

2008, Ono et al., 1996), and graph partitioning problems (Kim et al., 2011). Giger

and Ermanni (2006) used the so-called ‘graph-based parameterization’ in evolutionary

optimization of the topology, shape and size of a truss structure. The authors encoded

the element connectivity of the nodes on two-dimensional genotypes. Considering the

two-dimensional nature of the internal structure arrangement inside a wing, GA-based

optimization could perhaps be improved by using two-dimensional encoding. However,

two-dimensional encoding has not yet been applied to the topology optimization of an

aircraft wing (as far as were able to ascertain).

2.3.2 Genetic operators

In the Darwinian natural evolution, the fittest individuals survive to reproduction, where

the genes of, usually, two individuals are recombined. During the process, some of the

genes are randomly mutated. In GAs, these processes are referred to as operators,

namely the selector, crossover and mutatator. Multiple algorithms have been developed

for each operator. In the following, we describe commonly-used algorithms.

In the roulette wheel selector, the individuals are assigned a sector of a roulette wheel,

proportional to their fitness. The wheel is spun, and the resulting sector determines the

individual that is selected for reproduction. The process is repeated n times, where n

is the number of individuals in the population. The roulette wheel selector has a risk

of premature convergence in a situation where an early population has a few superior

individuals in comparison to the others (Mitchell, 1998). With significantly better chance

to reproduce, the fittest individuals, and their offspring, may quickly fill the population

and cause premature convergence.

The rank selector could be used to avoid premature convergence. In the rank selector,

individuals in the population are first ranked based on their fitness, and then assigned

a survival probability based on their rank. The rank selector preserves diversity in

the population, but may retard the optimization process, due to the reduced selection
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pressure. Another commonly used selector is the tournament selector, in which a number

of individuals, Npool, are randomly selected from the population into a tournament pool,

and the best individual in the pool is selected to reproduction. The selection pressure

of the tournament selector can be varied by changing the size of the pool (the pool size

Npool = 2 induces the lowest selection pressure). A benefit of the tournament selector

is in its computational efficiency because no ranking of the population, nor preparation

of the roulette wheel, is required. The tournament selector can also be used together

with the roulette wheel to increase the selection pressure of the latter. In this version,

the tournament pool is first filled using the roulette wheel selector, and then the best

individual in the pool is selected for reproduction.

Occasionally, the best individual of a generation may become less fit than the best in-

dividual of the previous generation. In this situation, the best individual has not been

selected for the reproduction or it is destroyed by a crossover or a mutator operator.

A concept called elitism, first proposed by De Jong (1975), prevents the evolutionary

process from losing its best individual(s). Elitism may be implemented in several ways,

from which we describe two commonly used approaches. In the first, a new generation of

Npop individuals is formed by merging Nelite best individuals of the previous generation

with (Npop − Nelite) newly produced individuals. In the second, Npop new individuals

are first produced and evaluated, and then the worst individuals of the new generation

are replaced by the best Nelite individuals of the previous generation. Many researchers

indicate an improved performance of GAs when applying elitism (Mitchell, 1998), and,

further, out of the two described elitist approaches, better performance is usually ex-

pected using the latter (Simon, 2013). However, in the very problem-dependent world

of GAs, the scope of such conclusions is generally limited.

After selecting the individuals for reproduction, a crossover is applied on pairs of selected

individuals. In the following, the crossovers are presented separately for one- and multi-

dimensional encodings (see Section 2.3.1). Since three-(and above)dimensional encodings

are rare, we only review two-dimensional crossovers as multi-dimensional crossovers.

Two individuals, selected to mate, are referred to as the parents, and the resulting two

new individuals as the offspring.

For one-dimensional encodings, the simplest crossover is the single-point crossover, where

the genotypes of the parents are spliced at a random location. The offspring are formed

by merging the first part of the genotype of the first parent with the second part of

the genotype of the second parent, and visa versa. A drawback with the single-point

crossover is that element combinations located close to the two extremes of the genotype

are nearly always destroyed. An alternative crossover is the two-point crossover3, where

the splicing is performed at two random locations of the genotype. In the two-point

crossover, the end points of the genotype have the same probability of remaining together

as any two adjacent elements in the genotype. In addition, the two-point crossover has

3Also referred to as the ring crossover.
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greater splicing diversity than the single-point crossover. The splicing diversity may be

even further increased by using the uniform crossover4, where each element in the first

offspring is inherited from the first parent with the probability p = 0.5 and from the

second parent with the complement probability 1−p. The second offspring is an inverse

of the first. However, the preservation of geographical-linkage is poor in the uniform

crossover.

While the crossover methods for one-dimensional encodings have become established,

the methods for less used two-dimensional encodings vary in the literature. The sim-

plest two-dimensional crossover is a linear splicing, where a two-dimensional genotype

is spliced either horizontally or vertically between rows or columns of the genotype,

respectively. The weakness in the linear splicing of a two-dimensional genotype is the

low diversity of resulting splicing strategies. Let us consider a one-dimensional geno-

type having a length of N = n2 and a two-dimensional genotype having a size of n× n.

The single-point crossover applied on the one-dimensional genotype yields n2−1 possible

splicing strategies, but the linear splicing crossover applied on the two-dimensional geno-

type, having the same number of elements, yields only 2(n−1) splicing strategies (Kahng

and Moon, 1995). The diversity of splicing strategies may be increased by increasing the

complexity of the crossover. Examples of more complex crossovers for two-dimensional

genotypes are found in the studies by Anderson et al. (1991), Jung and Moon (2002) and

Sadrzadeh (2012). The uniform crossover on two-dimensional genotypes is equivalent to

the same crossover on one-dimensional genotypes.

Mutators in GAs are considered as secondary operators for selectors and crossovers (Gol-

berg, 1989). Their purpose is to prevent the optimization from converging prematurely

to a local minimum by introducing random changes in single elements of the genotype.

The flip mutator in binary value encodings simply changes an element from 0 to 1, or

vice versa, whereas in integer value encodings the flip mutation randomly replaces the

character with any possible character. The Gaussian mutator, suitable for real value

encodings, adds a random Gaussian-distributed5 value to the element to be mutated.

Alternatively, the swap mutator changes the locations of two randomly selected elements

with each other. Mutators in one- and two-dimensional encodings work in the same way.

2.3.3 GAs with constraints

Many real-life optimization problems have constraints. Depending on the type of the

constraint(s), different methods exist to handle them in GAs6. A simple bound of a scalar

design variable or a range of integer design variable can be implemented in the encoding.

However, the constraints might also be highly nonlinear and/or depend on many design

4Also referred to as the distributed crossover.
5Typically, the mean of the Gaussian distribution σ = 0 to avoid the drift of the element values.
6In fact, the methods presented in this section are applicable to evolutionary algorithms in general,

but we here refer to GAs because of the scope of the current work.
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variables. The simplest way of handling these constraints in a GA is to penalize the

fitness of constraint violating designs to the extent that they are guaranteed not to

survive. However, if multiple constraints exist, finding a feasible design might be nearly

as difficult as finding the optimum, which may well make this approach impractical.

Discarding the infeasible offspring also reduces the diversity of the population, which

might lead to premature convergence to a local optimum.

Constrained optimization includes both equality and inequality constraints. Equality

constraints can usually be implemented in the encoding, but inequality constraints need

a special treatment.

The most common approach is to translate the constrained optimization problem into

an unconstrained one by applying a penalty function. Courant (1943) used penalty

functions first to solve differential equations, and Fiacco and McCormick (1968) were

the first to apply the method to nonlinear optimization problems (Joines and Houck,

1994). In order to illustrate the idea of a penalty function, let us consider a generic

optimization problem, with nk inequality constraints and nd design variables, defined as

minimize f(x)

w.r.t xi i = 1, . . . , nd

subject to kj(x) ≥ 0 j = 1, . . . , nk,

(2.1)

where f(x) and kj(x) are the objective and constraint functions, respectively. The

corresponding unconstrained optimization problem can be defined as

minimize f(x) + r
nk∑
j=1

Φ[kj(x)]

w.r.t xi i = 1, . . . , nd,

(2.2)

where Φ is the penalty function and r is the penalty coefficient (Golberg, 1989). Penalty

function methods may use death, static, dynamic, annealing, adaptive or co-evolutionary

penalties, or segregated GA (Yeniay, 2005). The practical problem in implementing such

penalty functions is the choice of penalty coefficient r, which should scale the penalty

term to have a similar amplitude as the objective function term.

In addition to penalty functions, the constraints in GAs may also be handled using the

following categories of methods. Special representations and operators aim to eliminate

infeasible regions from the design space. Repair algorithms are used to change infeasible

individuals into feasible via a greedy search or a used-defined heuristic (the latter requires

detailed understanding of the optimization problem). In multi-objective optimization

techniques, the single-objective optimization problem with constraints is translated into

an unconstrained multi-objective optimization problem, with nk + 1 objectives, where

nk is the number of constraints. The resulting optimization problem is then solved using

a multi-objective optimization algorithm (we provide a short review of multi-objective



16 Chapter 2 Topology optimization

GAs in the next section). In hybrid methods, the constraints are handled by combining

the algorithm with another technique, often outside evolutionary algorithms, such as

Lagrangian multipliers or fuzzy logic.

Coello Coello (2002) indicates in his review paper that penalty function methods are

a good starting point for constrained evolutionary optimization. For more specific op-

timization problem types, he gives the following recommendations of the suitable con-

straint handling method:

• repair algorithms for combinatorial optimization problems,

• special representations and operations for optimization problems with linear con-

straints, and

• multi-objective optimization techniques for optimization problems with highly con-

strained search spaces.

2.3.4 Multi-objective GAs

The design of engineering systems is often multi-objective. Examples of design objectives

are maximizing the performance, maximizing the reliability or minimizing the cost of

the system. These objectives are nearly always conflicting, which means that no single

design exists that is optimal in terms of all objectives.

A general optimization problem with nobj objectives is defined as7

minimize {f1(x) . . . fnobj
(x)}

w.r.t xi i = 1, . . . , nd

subject to kj(x) ≥ 0 j = 1, . . . , nk.

(2.3)

A solution to the optimization problem is a set of non-dominated designs. Design x1

dominates design x2 if fi(x1) ≤ fi(x2) for all i ∈ [1 . . . nobj] and fi(x1) < fi(x2) for at

least one of the nobj objectives. A design is non-dominated if it is feasible, i.e. it satisfies

all nk constraints, and no other known feasible design dominates it. The optimized set of

non-dominated designs represents an approximation of the Pareto front, which consists

of all feasible designs in the objective space, which are not dominated by any other

feasible design.

Finding all designs that belong to the Pareto front is practically impossible in most real-

life optimization problems. Nevertheless, an approximation of the Pareto front can be

obtained using multi-objective optimization heuristics, which are desired to yield results

7We here define all objectives to be of the minimization type. A maximization objective can be
included in the definition simply by multiplying the objective function by -1.
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with the following conflicting goals (Zitzler et al., 2000, Konak et al., 2006, Zavala et al.,

2014):

1. The approximated Pareto front should be as close to the true Pareto front as

possible.

2. The optimized set of non-dominated designs should be distributed diversely along

the approximated Pareto front (typically a uniform distribution is desired).

3. The approximated Pareto front should be able to capture the entire Pareto front,

including its extremes.

Multi-objective GAs are well-suited for the purpose, as they are able to simultaneously

search different regions of the objective space, even if it is non-convex, discontinuous or

multi-modal. As a result, the designer obtains a set of optimized non-dominated designs.

Therefore, the designer is not required to weight the objectives prior the optimization

(though the interpretation of the result will require the expression of a particular bias).

The first multi-objective GA is due to Schaffer (1985) and is referred to as the Vector

Evaluated Genetic Algorithm (VEGA). Thereafter, several multi-objective evolutionary

algorithms were developed. In comparison to standard single-objective algorithms (Sec-

tion 2.3.2), these algorithms typically use specialized selectors, which favor individuals

closest to the true Pareto front, and density estimators, which enable the algorithms to

direct the search into sparsely populated regions of the objective space. These features

enhance the probability of the algorithm to achieve the three above listed goals.

One of the most popular multi-objective GAs is the NSGA-II (elitist Non-dominated

Sorting Genetic Algorithm) by Deb et al. (2002). Zavala et al. (2014) indicate in their

review paper that the algorithm has become the de facto multi-objective optimization

heuristic. A characteristic feature of NSGA-II is its fast sorting procedure to assign

individuals into non-domination levels. The first non-domination level consists of non-

dominated individuals in the entire population, the second of non-dominated individuals

in a sub-population, from which the first non-domination level is removed, and so on.

The non-dominance level is used as the primary selection measure. The secondary

selection measure is the crowding distance, which is the density estimator of the NSGA-

II. The crowding distance of design xi is a non-dimensional distance of its two neighbor

designs, which belong to the same non-dominance level as design xi, in the objective

space. The secondary measure is used as a tie breaker, if primary measures of two (or

more) individuals are equal.

Another popular multi-objective GA worth mentioning is the SPEA2 (Strength Pareto

Evolutionary Algorithm 2) by Zitzler et al. (2001). For an extensive list of multi-objective

GAs, the reader may wish to consult review papers by Konak et al. (2006) and Zavala

et al. (2014).
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2.4 Ground structure approach

In this, and the two following sections, we review popular topology optimization methods

in the literature.

The ground structure approach, first introduced by Dorn et al. (1964), is a popular

topology optimization approach, especially for truss structures. The ground structure is

typically defined by connecting a set of nodes, in two or three-dimensional space, with

line segments, yielding a finite set of structural members. It may be defined to include

all possible node connections or only a subset of them (e.g. by connecting a node only

with its n closest neighbors).

The optimization problem is then to find the subset of the structural members that

minimizes, or maximizes, a physical quantity of the design. Moreover, the flexibility

of the parameterization can be increased by allowing the design to have variable node

locations (i.e. shape optimization) (Imai and Schmit, 1981), or by allowing the structural

members to have variable cross-sections (i.e. structural sizing) (Goldberg and Samtani,

1986).

A major challenge of the method is that significantly large number of structural member

combinations, i.e. 2N where N is the total number of structural members, can be drawn

from the ground structure. However, including only a small number of structural mem-

bers in the ground structure may not capture the optimal, or even near-optimal, design

from the structural universe. Gilbert and Tyas (2003) and Pritchard et al. (2005) miti-

gated the computational issue by using linear programming with the column generation

technique, in order to iteratively add structural members with high ‘virtual strains’ to

the optimization problem. Their method is capable of finding the optimal design from

ground structures consisting of more than 100 million structural members. Linear pro-

gramming is an efficient optimization method for types of optimization problems, such

as mass minimization subject to stress constraints or compliance minimization subject

to a volume constraint.

Considering such a large number of candidate structural members, the optimized design

may also have geometrical complexity not suitable for practical purposes. Several ap-

proaches have been proposed in the literature in order to reduce the complexity of the

optimized design by either addressing the complexity already in the problem formula-

tion or applying a postprocessing step to the optimized design. He and Gilbert (2015)

studied an algorithm, first proposed by Prager (1974) and Parkes (1975), where short

structural members are made less favorable by penalizing all structural members by a

fixed additional length during the volume evaluation. They conclude that the method

is efficient, as it requires only a minor modification in the objective function, but some-

times fails to effectively simplify the structure. Later, Torii et al. (2016) noted that this

occur in their experiments especially when structural members have similar lengths. He
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and Gilbert (2015) studied also a postprocessing technique where the nodal coordinates

of the optimized design are used as new design variables, and nodes moving close to

each other are merged. Torii et al. (2016) and Asadpoure et al. (2015) proposed penalty

function approaches, indirectly penalizing the number of active structural members or

nodes in the design, in order to reduce the complexity of the final design. Gao et al.

(2017) proposed a technique to improve the quality of the ground structure by placing

its nodal points at the intersections of principal stress trajectories8. The technique can

be used to generate well-defined ground structures with fewer structural members.

The truss topology optimization problems can also be tackled using evolutionary, or

other population-based algorithms. The main benefits of evolutionary algorithms are

that 1) they are robust optimization methods even for problems with complex physics-

related objective and/or constraint functions, and 2) they can be used to simultaneously

evolve the cross-sectional areas of the trusses, their topology and node locations.

Grierson and Pak (1993) were the first to apply a GA to simultaneous sizing, topology

and shape optimization. Later, Rajan (1995) improved the efficiency of the approach,

as well as its applicability to design of practical skeletal structures. In these early

papers, the existence of structural members is encoded using binary variables and the

cross-sectional areas and nodal coordinates using separate real-encoded variables, which,

according to Deb and Gulati (2001), makes the representation sensitive to the binary

variables. Deb and Gulati (2001) relate the existence of structural members to their

cross-sectional area, by excluding structural members with small cross-sectional area

from the structure. As a result, the whole representation is encoded using real numbers.

This type of approach is referred to as a single-level optimization technique. The ar-

gument against using multi-level optimization techniques, in which the three types of

optimization are conducted in sequence, is that they may not always yield the global

optimum as the optimization problems are not linearly separable. However, Luh and

Lin (2008, 2011) showed that their two separate two-level optimization techniques based

on ant colony optimization (Dorigo and Gambardella, 1997) and particle swarm opti-

mization (Eberhart and Kennedy, 1995) yield, on several test cases, designs that are

superior to those obtained by Deb and Gulati (2001).

Recently, a variety of different population-based algorithms have been applied to truss

topology optimization problems. Examples of these algorithms are the cuckoo search

algorithm (Yang and Deb, 2009), firefly algorithm (Yang and Deb, 2009) and teaching-

learning based optimization (Rao et al., 2011), the applications of which are reported

in the papers by Gandomi et al. (2013), Miguel et al. (2013) and Savsani et al. (2016),

respectively. Kaveh and Zolghadr (2014) compared the performance of nine population-

based algorithms on truss topology optimization problems, and defined a diversity index

8They determine the principal stress trajectories by solving an equivalent static optimization problem,
the design domain of which is filled with homogeneous isotropic material.
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to describe the trade-off between exploration and exploitation in these algorithms. They

conclude that, according to their experiments, the best performing algorithms have a

large diversity index at the beginning of the optimization process (i.e. exploration is

favored), which then decreases gradually as the optimization proceeds.

2.5 Evolutionary structural optimization (ESO)

ESO is a structural optimization heuristic, which iteratively removes material, or struc-

tural members, with lesser utilization. The method was first presented by Xie and

Steven (1992). Before starting an optimization process, the design space is discretized

into finite elements of material, and each element is assigned a binary design variable,

describing its existence in the structure. An iterative process is initiated from the full

structure, wherein all existence variables are set to one. At each iteration, structural

analysis is performed, and, based on the result, a sensitivity number is determined for all

elements. The sensitivity number αi represents the utilization level of the ith element

in the structure. To improve the performance of the structure, elements with lesser

utilization are rejected if their sensitivity number is less than the rejection sensitivity

number

αrej = RRjα
max, (2.4)

where RRj is the prevailing rejection rate of the iteration j and αmax is the maximum

sensitivity number in the structure at the same iteration j. At the beginning of the

process, the rejection rate RRj is given a low value, which is then increased during

the process. Iterations are repeated until a predefined stopping criterion is met. The

stopping criterion may be, for example, a minimum sensitivity number level for all

elements in the structure or a desired volume fraction of the design space.

ESO has gained widespread popularity among researchers and practitioners, which has

resulted in well over 100 published papers (Huang and Xie, 2010b, Munk et al., 2015).

As an optimization method, ESO is considered as a combination of intuitive-heuristic

and gradient-based methods (Eschenauer and Olhoff, 2001). In contrast to SIMP, no

intermediate material is present in the optimized structure.

However, the final structure is still prone to checkerboarding and staircasing. Checker-

boarding means an occurrence of material and void elements in the design domain in a

pattern of a checkerboard, which complicates the interpretation and manufacturing of

the optimized structure. Checkerboarding can be avoided by filtering the design sensi-

tivities (Dı́az and Sigmund, 1995). In staircasing, the boundary of the structure has a

shape of a staircase caused by the discrete element grid. An approach to obtain smooth

boundaries is to use a nodal ESO (NESO) (Chen et al., 2002), in which material is added

and removed by moving the boundary nodes of an unstructured finite element mesh.
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This section provides a brief overview of the aspects of ESO that are relevant to the

current work. For more information, the reader may wish to consult the ESO textbook

by Huang and Xie (2010a) or the review paper on evolutionary topology optimization

algorithms by Munk et al. (2015).

2.5.1 Sensitivity numbers

Structural optimization problems are often constrained by one or multiple physical quan-

tities, such as stress, stiffness and natural frequency. In the ESO method, these con-

straints are followed by using a relevant sensitivity number. However, the sensitivity

numbers of the elements do not explicitly constrain the design. Instead, when material

with a low sensitivity number is removed, the optimization process is driven towards

the optimal structure, with respect to the prevailing material volume. The process is

terminated when the optimal design with the prevailing material volume is no longer

sufficient to fulfill the constraints.

In early papers the utilization level of a material element was determined based on its von

Mises stress σvM. In an ideal distribution of material, the von Mises stress distribution

is constant throughout the structure. Thus, the sensitivity number of an element was

defined to be the maximum von Mises stress in the element as

αi = σmax
vM . (2.5)

Besides stress, stiffness is an important factor in many engineering applications. The

stiffness constraint is included in the ESO method via the mean compliance, i.e. the

inverse of stiffness, of the structure. The sensitivity number for the mean compliance is

defined as

αi =
1

2
uᵀ
iKiui, (2.6)

where ui and Ki are the displacement vector and the stiffness matrix, respectively, of

the ith element in the structure (c.f. Chu et al. (1996) for a derivation). By removing

the elements with the smallest sensitivity to the mean compliance, the optimization

process is driven towards the stiffest structure, with respect to the prevailing material

volume. Although the sensitivity numbers are fundamentally different in stress and

stiffness constrained optimization, Li et al. (1999b) showed that optimization runs with

both constraints result in similar topologies.

In addition to the aforementioned sensitivity numbers, a wide range of other sensitivity

numbers have been derived for optimization problems including multiple load cases,

multiple materials, a design dependent-gravity load or constraints for displacement,

natural frequency or linear buckling (Huang and Xie, 2010a, Munk et al., 2015). In

this study, one of our applications is topology optimization of the aircraft wing internal

structure. Aircraft wings, being thin-walled structures, are prone to buckling. Therefore,
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in the following, we examine the sensitivity number for critical buckling load in more

detail.

The work on the sensitivity number for linear buckling is mainly due to Manickarajah

et al. (1998, 2000). The governing equation for linear buckling of an elastic structure is

(K + λjKg)uj = 0, (2.7)

where K is the global stiffness matrix, Kg is the global geometric stiffness matrix, or the

stress stiffness matrix, λj is the jth eigenvalue of the system and uj is the corresponding

eigenvector. Starting from the governing equation, Manickarajah et al. (1998, 2000)

derived the sensitivity of the jth eigenvalue, i.e. the buckling load, to be

∆λj =
−uᵀ

j ([∆K] + λj [∆Kg])uj

uᵀ
j [Kg]uj

. (2.8)

By normalizing the eigenvector (uᵀ
j [Kg]uj = 1), the equation simplifies to

∆λj = −uᵀ
j ([∆K] + λj [∆Kg])uj . (2.9)

Two simplifications can be made to Equation 2.9. First, if the modification to the thick-

ness distribution of the structure is sufficiently small, ∆Kg may be neglected (Man-

ickarajah et al., 1998). Second, considering a small change in the cross-sectional area or

thickness in the ith element, the change in global stiffness matrix [∆K] is equal to the

change in the local stiffness matrix [∆ki] of the ith element. Therefore, Equation 2.9 is

further simplified to

∆λij = −uᵀ
ij [∆ki]uij , (2.10)

where uij is the jth eigenvector of the ith element. Typically, optimization is constrained

by the first eigenvalue (j = 1), which corresponds to the critical buckling mode. Thus,

the sensitivity number of the ith element for linear buckling is

αi = ∆λi1 = −uᵀ
i1[∆ki]ui1. (2.11)

The sensitivity number may be used either to constrain the critical buckling load and

minimize the structural mass, or to constrain the material volume of the structure and

maximize the critical buckling load. In both cases, a limited amount of material is

removed or redistributed from/in the structure. Two sensitivity numbers, αinc
i and αdec

i ,

are required for each element in the structure. These sensitivity numbers correspond to

the increase and decrease, respectively, in the size variable A (thickness or cross-sectional

area) of the element i. Considering a discrete step size ∆A in the size variable, local
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stiffness matrices are {
[∆ki]

inc = ki(A+ ∆A)− ki(A)

[∆ki]
dec = ki(A−∆A)− ki(A).

(2.12)

(2.13)

The two sensitivity numbers αinc
i and αdec

i are obtained by substituting Equations 2.12

and 2.13 into Equation 2.11.

A challenge in topology optimization with the buckling constraint is that the structure

nearly always has multiple eigenvalues. A structural modification that increases the first

eigenvalue might at the same time decrease the second eigenvalue, which then becomes

the critical buckling mode. Manickarajah et al. (1998, 2000) presented a solution where

the sensitivity number is the average of the first n eigenvalues. Later, Rong et al. (2001)

improved the method for closely-spaced and repeated eigenvalues.

The derivation of the sensitivity number for buckling assumes that the topology of

the structure remains the same, and only small modifications are made to the size

variables of the structure. Therefore, the method is not applicable in this form to

topology optimization with the ground structure approach, wherein wholesale changes

of structural components are intended.

2.5.2 Bi-directional ESO (BESO)

In the ESO method, the rejection of an element is irreversible, which may cause an

optimization process to convergence prematurely to a local optimum. To overcome this

problem, Querin et al. (1998) introduced bi-directional ESO (BESO), where rejected

elements may be recovered to the structure. In addition, the BESO method enables an

optimization run to be initiated from an intermediate design containing both solid and

void elements. The approach reduces the number of required iterations in comparison

to the ESO method, initiated from a significantly over-designed structure.

The challenge in the BESO method is in the determination of sensitivity numbers for void

elements. Since these elements are not included in the latest iteration, their sensitivity

numbers can only be determined implicitly. After the paper by Querin et al. (1998),

several improvements have been made to the implicit estimation of void sensitivities.

Two studies from the early development are worth mentioning. Yang et al. (1999) used

linear extrapolation of the displacement distribution in the solid elements to estimate

the displacements in the void elements. The authors applied the method to a stiffness

maximization problem. Querin et al. (2000) defined a von Mises stress criterion, where

solid elements with the lowest von Mises stress are rejected and void elements near

the highest stress regions are recovered. The authors demonstrate that even if the

optimization is initiated from the minimum amount of material to transfer the load

(regardless of the stress level) the results are the same as with the ESO method. Later,

Huang and Xie (2007) developed a filtering scheme for node-based sensitivity numbers,
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where an element sensitivity number is defined to be a weighted average of sensitivity

numbers of the nodes laying closer than dlimit from the center of the element. The closer

the node is to the center of the element, the more weight it has on the element sensitivity.

The filtering scheme not only enables the accurate determination of void sensitivities

but also overcomes two limitations of the ESO method: the checkerboarding and mesh

dependency (Huang and Xie, 2010a).

Finally, let us consider an example of applying the BESO method to topology optimiza-

tion. The objective of the optimization is to maximize the stiffness of a cantilever beam,

which design domain has a rectangular shape. A downward point load is applied to the

center point of the right-hand side boundary. The left-hand side boundary is clamped,

whereas all the other boundaries are free. The material volume is constrained to 50%

of the total design domain. Starting from the initial guess (Figure 2.3(a)), material

is iteratively rejected and recovered, yielding the optimized structure in Figure 2.3(b).

The main feature of BESO, recovering elements back to the structure, is clearly visible

in two subfigures.

(a) (b)

Figure 2.3: Volume-constrained stiffness maximization of a cantilever structure
using BESO (Huang and Xie, 2010a). The initial guess (a) and the optimized
structure (b) are presented.

2.6 Other topology optimization methods

Two other widely used topology optimization methods, namely Solid Isotropic Material

with Penalization (SIMP) and the Level-Set Method (LSM), are worth mentioning in

order to paint a clearer picture of the broader context. As the main focus of this work is

on evolutionary optimization methods, these methods are not studied later in this work.

However, the SIMP method will be used as a benchmark in Chapter 6. The methods are

described briefly in the following two sections. A reader not interested in these topics

may wish to move to Section 2.7 without loss of continuity.



Chapter 2 Topology optimization 25

2.6.1 Solid Isotropic Material with Penalization (SIMP)

SIMP is a topology optimization method, first introduced by Bendsøe (1989), which

uses the continuum material definition (see Section 2.2). Since its introduction, the

method has been extensively used and developed. SIMP is a gradient based method

that exploits the adjoint method in its design sensitivity analysis. Its advantage in

comparison to other topology optimization methods, especially non-gradient methods,

is its effectiveness in terms of the computational cost.

In the method, each material element x in a design domain Ω is assigned a scalar design

variable ρ̄(x) ∈ [0, 1], representing its normalized density. The actual density ρ of the

material element x is linearly proportional to the design variable, so that if ρ̄(x) = 0 the

material element is a void, and if ρ̄(x) = 1 the density of the material element is equal

to a reference density ρ0.

The method considers isotropic material only. Assuming Poisson’s ratio ν to be indepen-

dent of the normalized density, Young’s modulus of a material element, E(x), is defined

to be proportional to the normalized density as

E(x) = ρ̄(x)rE0, (2.14)

where E0 is the actual Young’s modulus of the material and r > 1 is a penalty coeffi-

cient (Bendsøe and Sigmund, 2003). The greater the penalty coefficient r is, the more

intermediate densities are penalized. A penalty coefficient of r ≥ 3 is usually needed to

for a clear 0/1 material distribution (Bendsøe and Sigmund, 2003). Typically, the total

volume of the material is constrained as∫
Ω
ρ̄(x)dΩ ≤ φ, (2.15)

where φ is the desired volume fraction.

The simplest, yet the most studied, optimization problem with SIMP is to minimize

the compliance of a structure subject to a volume constraint. Moreover, the method

has been applied to optimization problems with a variety of objective and constraint

functions. For an extensive listing of the types of applications, the reader may wish to

consult the review papers by Rozvany (2009) and Deaton and Grandhi (2014).

Figure 2.4 presents an example topology optimization result obtained by SIMP, where

the objective is to minimize the compliance of a short cantilever beam. The design

domain is defined to be a rectangular area, where the left-hand side boundary is fixed

and other boundaries are free. A point load is applied to the bottom right corner of

the domain. The figure illustrates the occurrence of intermediate densities (see the grey

regions in Figure 2.4). The intermediate densities could be eliminated from the solution

by further increasing the penalty coefficient r.
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Figure 2.4: Topology optimization of a short cantilever beam using the SIMP
method (Sigmund, 2001).

The method has the following disadvantages, which are also typical for the most topology

optimization methods with the continuum material definition. First, an undesirable

checkerboarding phenomenon, already encountered in Section 2.5, might occur in the

final solution. Second, SIMP is considered mesh-dependent, meaning that the same

optimization problem with two different mesh discretizations may yield two significantly

different results. Third, being a gradient-based optimization method, SIMP might not

yield the global minimum. The probability of obtaining the global minimum can be

improved by increasing the penalty coefficient in increments during the optimization

process (Sigmund and Petersson, 1998).

2.6.2 Level-set method (LSM)

The LSM is a topology optimization method, where the optimal material-void bound-

aries, or the boundaries between two materials, are sought implicitly via iso-contours of

a scalar level-set function φls. The introduction of the LSM is due to Osher and Sethian

(1988), who developed the method in order to model moving boundaries. Sethian and

Wiegmann (2000) presented the first application of the method to topology optimization.

Considering a design comprising of only a single material, the design domain Ω includes

the material domain M and the void domain Ω\M . Using the level-set function φls, the

design is commonly defined as


φls(x) > cb ⇔ x ∈M

φls(x) = cb ⇔ x ∈ Γ

φls(x) < cb ⇔ x ∈ (Ω\M),

(2.16)

(2.17)

(2.18)

where x is a point in the design space, Γ is the material boundary of the design and cb is

a scalar constant, usually defined to be 0 (van Dijk et al., 2013). To visualize the use of
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the LSM, an optimization process of a two-dimensional cantilever beam is presented in

Figure 2.5, along with the corresponding level-set functions in Figure 2.6. The objective

of the optimization process is to minimize the mean compliance of the structure subject

to 50% volume constraint.

Figure 2.5: The development of the structural topology in a meshless level-set
optimization process (Luo et al., 2012). The structural topology is plotted at
generations 1 (Subfigure a), 25 (b), 75 (c), 150 (d), 300 (e) and 481 (f).

Figure 2.6: Level-set functions corresponding to the structural tolopogies pre-
sented in Figure 2.5 (Luo et al., 2012).

An iso-contour, extracted from the level-set function, is mapped into a mechanical model

either using a discrete definition of the void-material boundary (referred as conforming

discretization), immersed boundary techniques or a density-based approach (van Dijk

et al., 2013). The conforming discretization requires either remeshing of the FE model

at every iteration or using a meshless structural analysis method. Immersed boundary

techniques retain the majority of the element mesh but apply local enrichments near the

void-material boundaries. In the density-based approach, a predefined element mesh

is used and the elements at the material boundary Γ are assigned a density linearly

proportional to the material fraction of the element, c.f. the SIMP method (Section

2.6.1) with r = 1.

The LSM has several advantages and disadvantages in comparison to methods using the

continuum material definition. The biggest advantage of the LSM is that the optimized
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structures have crisp boundaries, and, therefore, the structure is free from undesired

features seen with other topology optimization methods, such as intermediate material

(SIMP, Section 2.6.1) and staircasing (ESO, Section 2.5). However, this only applies

when either conforming discretization and immersed boundary techniques are applied

to the mapping step. The material boundaries with the density based approach are

blurred. Disadvantages of the LSM are a tendency to converge to a local minimum and

dependency on the initial guess. For more information on the LSM, the reader may wish

to consult the review paper by van Dijk et al. (2013).

2.7 Lindenmayer systems (L-systems)

L-systems were introduced by Lindenmayer (1968a,b), who studied the developmental

process of multicellular organisms, in the late 1960s. The fundamental idea of L-systems

is that complex objects (e.g. plants) can be modeled by repeatedly modifying a simple

object by following a set of predefined rewriting rules. The number of times the rewriting

rules are applied represents the age of the organism. In addition to biology, L-systems

have been applied to a variety of other fields, such as computer graphics, artificial

intelligence and engineering.

The language of rewriting rules is referred to as formal grammars (Chomsky, 1956),

or Chomsky grammars. Several types of grammars, or systems, are derived from the

work of Chomsky, such as L-systems and shape grammars (Stiny, 1975). Techniques

based on the latter have been applied in several architecture and urban area modeling

applications. All these grammars are initiated from a starting string or shape, and

the rewriting rules are applied iteratively until a termination criterion is fulfilled. A

single developmental stage in both L-systems and shape grammars may be performed

in parallel or in sequence, while it may only be performed in sequence in Chomsky

grammars (Prusinkiewicz and Lindenmayer, 2012). The rewriting rules in L-systems

are applied to the string that represent the graph, whereas in shape grammars they are

applied directly on the geometric features of the graph (Prusinkiewicz, 1986).

Using the taxonomy of L-systems, the process is started from a (simple) initial object,

called the axiom ω0. Further, the state of the system after the rewriting rules are applied

n times is referred to as its nth developmental stage ωn. Both the axiom and rewriting

rules are defined using an alphabet Σ of letters and/or symbols, which are referred to

as characters. The left and right-hand sides of a rewriting rule are referred to as the

predecessor and successor, respectively.

Let us consider a simple example9, where the alphabet Σ ≡ [a, b], the axiom ω0 = b and

rewriting rules are P1 : a→ ab and P2 : b→ a. To obtain the first developmental stage,

9This example is, in fact, equivalent to formal grammars, but we describe it here using the taxonomy
of L-systems.



Chapter 2 Topology optimization 29

the axiom letter ‘b’ is converted into ‘a’ due to the rewriting rule P2, and therefore

ω1 = a. When the rules are applied further, the following developmental stages are

obtained: ω2 = ab, ω3 = aba, ω4 = abaab, ω5 = abaababa, . . . .

In L-systems, these sequencies of characters are interpreted into graphs that represent

living organisms. In the following, two interpretation formalisms, the turtle interpreta-

tion and map L-systems, are presented through examples. In addition, they are reviewed

as parameterization methods for topology optimization. For an extensive review of L-

systems, the reader may wish to consult the text book by Prusinkiewicz and Lindenmayer

(2012).

2.7.1 Turtle interpretation

In the turtle interpretation, the sequences of characters are interpreted into geometries

via a moving turtle (cf. the turtle feature in the programming language LOGO). The

orientation of the turtle is defined by its axial coordinates and heading. Each letter or

symbol in the sequence is a command for the turtle, such as ‘move ahead by distance

d’ or ‘turn clockwise by angle ∆θ’. The moving turtle draws the lines of the geometry

while executing the series of commands.

This section demonstrates the development of an example plant using L-systems and

the turtle interpretation. The example is presented by Prusinkiewicz and Lindenmayer

(2012). Let us consider an alphabet Σ containing the letters F and X, and symbols ‘+’,

‘-’, ‘[’ and ‘]’. Our example plant is defined by the following input:

Axiom: ω0 = X

Rules: P1 : F → FF

P2 : X → F [+X][−X]FX

Parameters: ∆θ = 25.7◦

(2.19)

The process is started by generating the character sequence of the desired developmental

stage, in the same way as in the previous example. Following the axiom ω0, the next

two developmental stages of the system are:

ω1 = F [+X][−X]FX (2.20)

and

ω2 = FF [+F [+X][−X]FX][−F [+X][−X]FX]FFF [+X][−X]FX. (2.21)

Next, the sequences are translated into geometries using the turtle interpretation. The

characters have the following meaning for the turtle:
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prevailing line width to a fraction of 2/3 of the previous line width. Next, the sequence

‘[$(π4 )X]’ forms the left branch of the plant by commanding the turtle to 1) stack its

orientation, prevailing line width and prevailing step size, 2) turn left by angle π/4, 3)

take a step forward, and 4) unstack the orientation and prevailing properties. Similarly,

the sequence ‘[$(− π
12)X]’ forms the right branch of the plant. Finally, the remaining

sequence ‘F@(2
3)X’ forms the center branch of the plant by commanding the turtle to

1) take a steps forward, 2) change the prevailing step size to a fraction of 2/3 of the

previous step size, and 3) take another step forward.

2.7.2 Map L-systems

While experimenting with the early formalisms of L-systems, scientists understood that

the method worked well on simple path-like structures, but was not capable of modeling

the development of more complex geometries in botany, such as cellular layers. For that

purpose, Lindenmayer and Rozenberg (1978) developed more general systems, enabling

the formation of cycles that consist of a finite set of edges (e.g. cells in an organism).

The system was later refined by Nakamura et al. (1986).

In these systems, referred to as the map L-systems, the rewriting is done in two phases.

First, the rewriting rules divide edges and introduce markers. Contrary to the turtle

interpretation with brackets, no branches are allowed to form at this point. They act as

start and end points for new edges, which split cells10. In terms of the notation, a start

of a marker is indicated by the symbol ‘[’ and the end of a marker by the symbol ‘]’.

The inside of a marker contains two characters: a symbol ‘+’ or ‘-’ allocating the side of

the marker (left or right) and a letter referred to as the label (see the first rewriting rule

P1 of the example map L-system in Equation 2.24). Second, marker pairs are searched

inside each cycle and matching markers are connected by a new edge. For two markers to

be considered matching, they must be located inside the same cycle and have the same

label. In the case of multiple matching marker pairs, only the first found is connected11

(Prusinkiewicz and Lindenmayer, 2012).

Let us consider an example, where the alphabet consists of letters A, B and z, and the

axiom and the rewriting rules are defined as

Axiom: ω0 = ABAB

Rules: P1 : A→ B[−A]z[+A]B

P2 : B → A

(2.24)

10Markers have a counterpart in biology, preprophase bands of microtubes (Prusinkiewicz and Lin-
denmayer, 2012).

11However, usually when the method is applied to topology optimization, additional criteria are in-
cluded, such as a minimum fraction of the offspring cycle area in comparison to the parent cycle area, or
a minimum angle between a new edge and the surrounding edges. If criteria are not fulfilled, the marker
pair is ignored. See for example the paper by Pedro and Kobayashi (2011).
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The letter z is a terminal letter, for which no rewriting rule is assigned. In this example,

the axiom represents a unit square containing only a single cycle ABAB, where each

letter represents an edge in the unit square (n = 0 in Figure 2.9). The edges are ordered

clockwise starting from the bottom edge. By terms letter and edge, we essentially refer

to the same substructure of a map L-system, but a letter corresponds to a written sub-

structure and an edge to a drawn substructure. When moving to the next developmental

stage, all letters are rewritten, and edges redrawn, based on the rewriting rules.

Let us consider either of the two A edges in the axiom (n = 0). According to the

rewriting rule P1, the letter A is rewritten into B[−A]z[+A]B, which, in terms of the

redrawing, means that the edge A is split into edges B, z and B, all having an equal

length, and markers [−A] and [+A] are added to the edge nodes according to their

location in the rewriting rule. To finalize the developmental stage, markers with the

same label are searched inside the cell, and the first matching marker pair, fulfilling

predefined criteria, is connected with a new edge (n = 1 in Figure 2.9). In this example,

the only criterion is that all offspring cycles must have a non-zero area. In a written

format, the first developmental stage is

ω1 = Bz[A]BABzBA, (2.25)

where the square bracketed A is the new edge that proceeds from the bottom of the

unit square to the top. In this notation, the square brackets indicate a branch in the

same way as in the string L-systems. Finally, the remaining markers are discarded. The

subsequent developmental stages are generated by repeating the same process. Figure

2.9 visualizes the first four developmental stages of the system.

More precisely, this type of interpretation formalism is referred to as Binary Propagat-

ing Map OL-systems with markers (mBPMOL-systems) (Nakamura et al., 1986). The

system is binary because, during a cell division, each cell can only split into two off-

spring cells. The word ‘propagating’ defines that, once created, the edges cannot be

removed, and therefore the cells cannot fuse or die. The letter ’O’ indicates that the

cell divisions are context-free, which means that cells do not interact with each other.

In the remainder of this work, we will refer to the mBPMOL-systems simply as map

L-systems.

Later in this study we use directional markers. Possible directions for the markers are

‘←’, ‘→’ or neutral, denoted over the marker label, e.g. [−
→
B ]. The criteria defined

above for matching markers is amended by the following: the direction of the start

marker must be ‘→’ or neutral, and the direction of the end marker ‘←’ or neutral.

Map L-systems can be extended by a dynamic method in order to obtain even better

biological relevance to the cellular layers (Prusinkiewicz and Lindenmayer, 2012). This

involves applying an osmotic pressure inside each cell, and assuming that the edges will

remain straight and follow Hooke’s law in their axial direction. The osmotic pressure
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n = 0 n = 1 n = 2

n = 3 n = 4

A B z markers

Figure 2.9: Visualization of a cellular division method. The graph shows the
axiom (n = 0) and first four developmental stages (n = 1 . . . 4) of a map L-
system (redrawn from the text book by Prusinkiewicz and Lindenmayer (2012)).

on an edge is linearly proportional to the edge length and inversely proportional to the

area of the cell. The equilibrium of the vertex locations is solved at every developmental

stage.

The developmental stages presented in Figures 2.7-2.9 are only a few example topologies

that may be generated by L-systems. A diverse range of different topologies may be

generated by varying the axiom and the rewriting rules, and further by including more

letters in the alphabet. In the next section, we describe how topologies are evolved using

a GA.

2.7.3 Optimization via a GA

The majority of the L-systems-based topology optimization studies in the literature use

GAs, which we reviewed in Section 2.3, to seek the optimal distribution of material. A

key factor for a well-performing algorithm is how the formalism of L-systems is encoded

into a genetic representation, suitable for a GA. A numerical representation for L-systems

with the turtle interpretation is described for example by Kobayashi (2010). In the

following, we describe a popular numerical representation for map L-systems by Pedro

and Kobayashi (2011).
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The axiom, rewriting rules and additional variables are encoded sequentially into a vector

x of real numbers, with xi ∈ [0, 1]∀i, as

x = [ xa,1 xa,2 . . . xa,Na︸ ︷︷ ︸
Axiom ω0

P1 P2 . . . PNP︸ ︷︷ ︸
Rewriting rules Pj

x1 x2 . . . xNv︸ ︷︷ ︸
Additional variables

]. (2.26)

Each letter of the axiom, having a total of Na letters, is represented as a real number

xa,i. The interval of the real number is divided into equally sized segments representing

the letters in an alphabet Σ. For example, if the alphabet is Σ ≡ {A,B,C}, the real

number xa,i is assigned the following segments: A ≡ [0, 1
3 ], B ≡ [1

3 ,
2
3 ], C ≡ [2

3 , 1].

The total number of rewriting rules, NP, is equal to the length of the alphabet, excluding

the terminal letter z if it exists in the alphabet12. Each rewriting rule Pj is encoded into

Nr sets of real numbers, called tokens, as

Pj =
[
βj,1 βj,2 . . . βj,Nr

]
. (2.27)

A token is a part of the right-hand side of a rewriting rule and may appear as a letter,

a marker or an empty token. Examples of the first two instances are A and [− ∗
←−
B ],

respectively. The number of encoded tokens, Nr, defines the maximum length of the

right-hand side of a rewriting rule. The kth token of the jth rewriting rule is encoded

into a set of six real numbers as

βj,k =
[
x1 x2 x3 x4 x5 x6

]
, (2.28)

where the real numbers encode the token as follows:

1. Existence of the token: an empty token if x1 in [0, pempty], else token exists. If the

token is empty, the real numbers x2, . . . x6 are ignored.

2. Letter: A if x2 in [0, 1
Na

], else B if x2 in [ 1
Na
, 2
Na

], else C if x2 in [ 2
Na
, 3
Na

], . . .

3. Orientation: ‘→’ if x5 in [0, 1
3 ], else ‘neutral’ if x5 in [1

3 ,
2
3 ], else ‘←−’.

4. Marker: the token is a marker if x4 in [0, pmarker], else the token is a neutral letter.

5. Marker side: the side is ‘+’ if x3 in [0, 1
2 ], else the side is ‘-’.

6. Edge property: ‘/’ if x6 in [0, 1
3 ], else ‘neutral’ if x6 in [1

3 ,
2
3 ], else ‘*’.

Pedro and Kobayashi (2011) define the last real number of a token, the edge property,

to decrease, ‘/’, retain, ‘neutral’, or increase, ‘*’, a specific property (e.g. the thickness)

of the offspring edge by a quantum amount in comparison to the parent edge. In their

12A terminal letter appearing in the system will remain the same for all subsequent developmental
stages.
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application, this variable is used to control the variation of the thickness distribution in

a cantilever structure.

Finally, a total of Nv additional variables are encoded into the genotype. The additional

variables always contain the age of the system, i.e. the ordinal of the developmental

stage, which is an integer variable with lower and upper limits. Each integer value in

the range is assigned an equal interval of the real number. The additional variables

can be amended by additional requirements for the new cycles. These requirements

can define, for example, a minimum angle between two edges belonging to a cycle, a

minimum fraction for the area of an offspring cycle in comparison to the parent cycle, or

a minimum fraction for the shortest edge in comparison to the longest edge in a cycle.

These variables are scaled to the encoding interval of [0, 1].

As a summary, the design variable vector x has a total length of

nd = Na + 6NrNP +Nv. (2.29)

2.7.4 Applying L-systems to topology optimization

L-systems-based parameterizations have been applied to several topology optimization

studies. Hornby and Pollack (2001) applied L-systems, with the turtle interpretation, as

a parameterization method to the design search of a table structure. Subsequently, the

authors evolved robots for locomotion (Hornby and Pollack, 2002), by parameterizing

both their body and neural controller using the same methods. In both applications, the

authors observed that algorithms with generative encoding yielded designs with higher

fitness and converged faster than corresponding algorithms with direct encoding. Rieffel

et al. (2009) used map L-systems in design optimization of irregular tensegrity structures.

Kobayashi (2010) evolved venation patterns of artificial cordate leaves in multi-objective

optimization, minimizing both the mass of the leaf and its pressure drop. He also showed

that the designs he obtained were robust and fault resistant, in a similar way to their

biological counterparts.

Pedro and Kobayashi (2011) benchmarked the map L-systems-based encoding against

a direct encoding (also driven via an evolutionary algorithm), on a cantilever beam

problem (Figure 2.10). Their results showed that the algorithm with generative encod-

ing yielded designs with similar optimized fitness values using fewer objective function

evaluations than the algorithm with the direct encoding. Li et al. (2018) implemented

a global-local topology optimization method, in which the outer loop is the map L-

systems-based method driven by a GA and the inner loop is based on the LSM. The
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authors demonstrate the method on multiple compliance minimization problems of two-

dimensional structures13. Their method yields lower compliances on two problems stud-

ied by Pedro and Kobayashi (2011), using the map L-systems-based method, by margins

of 12.86% and 28.29%.

Allison et al. (2013) and Khetan et al. (2015) studied topology optimization of truss

structures using the map L-systems-based method, to which they included a nested

sizing loop using sequential linear programming. The authors ensured the structures to

be mechanisms-free by accepting only cell divisions that result in two triangular cells.

Sabbatini et al. (2015) applied L-systems, with turtle interpretation, to multi-objective

stiffener layout optimization, minimizing the vibration amplitude and mass of a plate

structure.

Figure 2.10: Stress-constrained mass minimization of a cantilever structure with
the map L-system-based parameterization (Pedro and Kobayashi, 2011). The
design space is a rectangular area (a), where the lower- and uppermost points on
the left-hand side boundary are fixed and a load is applied on the center point
on the right-hand side boundary. The optimized structure (b) has a volume
that is 26% of the total the design space volume.

The first application to the topology optimization of an aircraft wing internal structure is

due to Kobayashi et al. (2009), who demonstrated the suitability of the map L-systems-

based parameterization to structural optimization of a generic fighter aircraft wing box

(the work was later extended by Kolonay and Kobayashi (2010) to include aerodynamic

shape parameters, as well as panel buckling and flutter constraints). Later, Kolonay

and Kobayashi (2015) studied the weight- and L/D-optimal fighter aircraft wing shapes

and topologies using map L-systems as the parameterization method. They adopted a

bilevel optimization algorithm, where the higher level considers design variables related

to topology, shape and control surfaces, and structural sizing is performed on the lower

level. Stanford et al. (2012) used the map L-systems in an optimization study of a

flapping wing venation topology. They present Pareto fronts of optimized venation

patterns between thrust generation, lift generation and input power requirements. In a

13As well as on a multi-objective optimization problem of simultaneously minimizing the compliance
and volume of the structure.
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subsequent paper (Stanford et al., 2013), the authors also included the topology of the

flapping mechanism in the optimization.

As we can see from the previous two paragraphs, the map L-systems-based parameteri-

zation has gained popularity among topology optimization researchers, perhaps because

map L-systems can conveniently be mapped inside a finite two-dimensional design do-

main. In the majority of the resulting publications, map L-systems are evolved via a

genetic algorithm (GA). Further, several studies (Pedro and Kobayashi, 2011, Stanford

et al., 2012, 2013, Allison et al., 2013) use similar numerical representations to encode

map L-systems into a vector format, which originate from that defined by Pedro and

Kobayashi (2011). In spite of the extensive use of evolutionary algorithms to search the

space of L-systems encodings, no systematic efforts have been reported to date to un-

derstanding the impact of evolutionary algorithm parameter choices on the performance

of such optimization processes.

Finally, in the studies that use map L-systems, a common practice is to parameterize

the age of the system, i.e. the number of times the rewriting rules are applied, as one

of the additional variables. However, the number of cells in the geometry description

increases, at most, quadratically as a function of the age variable (cf. doubling time

of cells in biology). Therefore, a minor change in the age variable may cause a major

change in the phenotype, which is not beneficial for the evolvability of the algorithm.

Here, we propose that an approach, avoiding this problem, could be to parameterize the

number of cell divisions (instead the age of the system). Such an approach has not been

reported in the literature. Let us refer to this approach as the linearization of the age

variable.

2.8 Selected areas of application

In this work, we have selected three areas of application, to which the studied evolu-

tionary topology optimization methods are applied. Following the aims of the research

(Section 1.1), the areas are selected based on two main aspects. First, the three areas

as a whole represent a diverse set of physics-based objective and constraint functions,

in which direct and generative encodings may be compared. Second, each of them com-

prise interesting engineering design problems, and thus the developed algorithms, and

obtained results, have the potential to be useful for practitioners working in these areas.

A literature review of these areas is presented in the following. The areas are aircraft

wing structures (Section 2.8.1), conductive heat transfer systems (Section 2.8.2) and

integrally stiffened panels (Section 2.8.3).
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2.8.1 Aircraft wing structures

The Wright brothers constructed their first aircraft wings using wood and fabric, with

a structural arrangement consisting of longitudinal spars and transverse ribs. During

World War I aircraft engineers introduced cantilever wings free of external struts or wires

that cause unnecessary drag. The skin material was changed from fabric to wooden

veneer, which enabled so-called stressed skin designs, leading to a reduction in wing

mass (Jakab, 1999). For the first time, spars, ribs, and stressed skins formed the load

carrying wing box structure. Further, longitudinal stiffeners were attached to the skin

panels of the wing box to prevent buckling.

This structural arrangement is still widely used in aircraft design, regardless of the grow-

ing range of new materials. However, it is questionable if the arrangement of longitudinal

spars and stiffeners, and transverse ribs is optimal in terms of the structural mass of the

wing, especially if the wing has an unconventional outer mold line (OML) shape.

This section reviews topology optimization applications to the aircraft wing internal

structure. First, we examine the applications in terms of their design space pareme-

terization and, second, in terms of their optimization methodology. Aircraft wings are

typically slender structures, which are prone to buckling. Therefore, third, we review

the handling of buckling constraints in topology optimization. Finally, we provide a

short review of available parametric geometry frameworks for aircraft components.

2.8.1.1 Design space parameterization

The design region of the aircraft wing internal structure is limited by two important

functionalities of the wing. First, the internal structure must be located inside the

outer mold line (OML) of the wing14. Any external structural member would obviously

disturb the aerodynamic characteristics of the wing. Second, the wing encapsulates fuel

tanks, high lift devices and other systems that may represent internal boundaries for the

design region.

In the literature, both continuum and discrete material definitions have been applied

to topology optimization of the aircraft wing internal structure. We review relevant

studies in the following. Figures 2.11 and 2.12 show representative examples of optimized

structures obtained in these studies.

Starting from the continuum material definition, Maute and Allen (2004) searched for

the optimal topology of an aeroelastic structure, where minimum required aerodynamic

performance was given as a constraint. Stanford and Ifju (2009) maximized the L/D

ratio of a micro air vehicle wing via aeroelastic analysis. James and Martins (2012) (Fig-

ure 2.11(a)) and Dunning et al. (2014) used continuous, unstructured three-dimensional

14We do not consider externally braced wings here.
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(a) continuum material definition by James and Mar-
tins (2012)

(b) discrete material definition by Balabanov and
Haftka (1996)

(c) discrete material definition by Lencus et al. (2002) (d) a combined material definition by Stanford and
Dunning (2014)

Figure 2.11: Continuum and discrete material definitions in topology optimiza-
tion studies on aircraft wing structures.

grids to minimize the compliance of a wing structure. Oktay et al. (2014) used the

homogenized material definition in a topology optimization process that was coupled

with Computational Fluid Dynamics (CFD)-based aerodynamic load analysis. Eves

et al. (2009) also used initially the continuum material definition and interpreted the

result into shell-type structural members. Several other authors, such as Eschenauer

and Olhoff (2001) and Krog et al. (2004), used the continuum material definition in a

two-dimensional domain to seek the optimal material distribution of wing box ribs.

Recently, Aage et al. (2017) used the continuum material definition (with the SIMP

method) with an outstanding design resolution to minimize the compliance of the NASA

Common Research Model (Vassberg et al., 2008) wing (Figure 2.12). Their parameter-

ization consists of over one billion design variables, and thus the final design has 200

times finer resolution than the previous state-of-the-art techniques (Langelaar, 2017).

The authors estimate that the obtained design would result in 2-5% reduction in the

wing mass in comparison to a conventional internal structure15. However, the large

number of design variables requires an enormous computational resource of 1-5 days

on a high performance computing cluster of 8000 Central Processing Units (CPUs) – a

resource not generally available in routine design practice.

15Subject to the availability of a large-scale additive manufacturing technique in the future.
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Figure 2.12: Optimized design, minimizing the compliance of the NASA Com-
mon Research Model wing, obtained by the SIMP method (Aage et al., 2017).

Several studies have also been conducted using the discrete material definition. Bala-

banov and Haftka (1996) applied the ground structure approach with beam elements to

structural optimization of the high speed transport aircraft wing (Figure 2.11(b)). The

members of the ground structure were oriented in multiple directions. In the ground

structure approach by Wang et al. (2011), the structural members are oriented in span-

wise direction of the wing and may appear as full-depth spars or as partial-depth stiffen-

ers. Similarly, Yang et al. (2016) used a ground structure of spanwise oriented structural

members in the wing box, but also included multi-directional structural members in the

landing gear region. Lencus et al. (2002) used a ground structure consisting of spanwise,

chordwise and diagonal structural members, with an area (clear of structure) reserved

for the landing gear. Snyder and Weisshaar (2014) searched the optimal topology of

the wing internal structure for a multiple flying configurations via the ground structure

approach.

Maute and Allen (2004) and Stanford and Dunning (2014) (Figure 2.11(d)) used a

combination of continuum and discrete material definitions. First, they seeded the

wing box by discrete structural members, and, second, apply the continuum material

definition to each of the structural members. In the optimization procedure, they vary

the material distribution of the structural members while keeping their locations fixed.

Stanford and Dunning (2014) point out that the topology optimization studies on aircraft

wings using the continuum material definition, such as those by James and Martins

(2012) and Dunning et al. (2014), do not yield spar-rib like structures. They name

two obvious alternative reasons for this. The first is that the physics of the model, its
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load cases or boundary conditions, or the constraints of the design variables were not

implemented correctly in the optimization studies. The second is that the obtained

non-traditional internal structures offer better performance than the traditional spar-

rib structure. If the latter reason is true, their observation is very important in the

conservative field of aircraft structural design, where the traditional rib-spar topology

has been used for over a century.

The results with the continuum material definition include highly three-dimensional

shapes that cannot be manufactured using sheet-type materials. In practice, most of

the shapes in the internal structure of the wing are constrained by manufacturability.

While the structures of small unmanned air vehicles (sUAVs) could be manufactured

by additive manufacturing methods, the internal structure of a large passenger aircraft

must be assembled using metallic or composite sheets. The ground structure approach

with shell and beam members is likely to produce internal structures that have better

manufacturability, because only instances of sheet- and stiffener-like structures with a

constant thickness or constant profile dimensions, respectively, are allowed to emerge in

the structure.

Several studies indicate that the addition of diagonally oriented structural members as a

part of the internal structure improves the total performance of the structure. This be-

havior is seen in the studies with curvilinear spars and ribs by Locatelli et al. (2011) and

Jutte et al. (2014). Lencus et al. (2002) present results of the ground structure approach

that also include many diagonal structural members. In addition, Eves et al. (2009) in-

terpret optimization results obtained by continuum material definition to sheet-type

structural members, resulting in an internal structure with several diagonally oriented

structural members.

In the introduction (Chapter 1), we described generative encodings being suitable for

describing geometries with self-similar and hierarchical sub-parts. The design obtained

by Aage et al. (2017) (Figure 2.12) represent an optimized structure with by far the finest

available resolution. Despite being obtained by a direct encoding method, the design

has a noticeable number of repeating patterns of structural members. The trailing edge

spar is a bifurcating load bearing structure, which initiate from the root of the wing and

spreads into six to eight similar flower-like patterns comprising of full-depth and truss

structural members. The entire leading edge is supported by similar patterns of truss

structural members. Aage et al. (2017) conclude that this pattern resembles the cellular

structure seen natural bones, such as in the beak of the hornbill bird. These self-similar

features obtained by the high resolution direct encoding method are encouraging results

to further develop generative encoding methods.
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2.8.1.2 Optimization methods

Design optimization of the aircraft wing is one of the major fields where topology opti-

mization has been applied. This section presents relevant studies where gradient- and/or

non-gradient-based optimization methods have been applied to aircraft wing design. In

addition, some review papers comparing gradient- and/or non-gradient-based topology

optimization methods are discussed.

At least the following gradient-based optimization methods have been implemented in

topology optimization of an aircraft wing: SIMP (Maute and Allen, 2004, Eves et al.,

2009, Stanford and Ifju, 2009, Oktay et al., 2014, Stanford and Dunning, 2014, Aage

et al., 2017), ESO (Lencus et al., 2002, Kelly et al., 2014) and the LSM (James and

Martins, 2012, Brampton et al., 2012, Dunning et al., 2014). Contrary to other papers

with SIMP, Stanford and Dunning (2014) searched the optimal material distribution in

pre-seeded two-dimensional spars and ribs inside the wing, whereas others include the

entire volume inside the wing as the three-dimensional design domain. The objective

function of previously mentioned papers, excluding papers by Maute and Allen (2004)

and Stanford and Ifju (2009), is to minimize the compliance of the structure subject to

a volume constraint. Eves et al. (2009) minimized afterwards the mass of the structure

subject to twist angle, von Mises stress and buckling constraints. However, at this point

only the rib pitch and material thicknesses were used as design variables. Lencus et al.

(2002) checked the feasibility of the structure afterwards in terms of buckling and wing

tip deflection constraints, but these constraints were not considered in the optimization

process.

Non-gradient-based methods have also been used in the topology optimization of the

aircraft wing internal structure. However, to improve efficiency, non-gradient-based

methods are often coupled with gradient-based methods. While gradient-based methods

are typically applied to the continuum material definition, non-gradient-based methods

are mostly applied to a discrete ground structure.

Wang et al. (2011) applied a non-gradient-based method, called ant colony optimization

(Dorigo and Gambardella, 1997), along with the gradient-based structural optimizer

MSC.Nastran Sol200, to seek the best combination of structural members from a given

ground structure. Yang et al. (2016) used a combination of a GA and mixed integer

optimization to find the best combination of ground structure members. The objective

of the optimization was to minimize the structural mass subject to a range of con-

straints, including Tsai-Hill strength criteria and the lowest buckling mode. Snyder and

Weisshaar (2014) propose a two-level optimization algorithm, in which elements with

lesser utilization are removed using the performance-based optimization (Liang, 2005)

on the higher level, and structural sizing is performed on the lower level. The study by

Hansen and Horst (2008) is worth mentioning though it is not on the aircraft wing. In

the study, a combination of an evolution strategy and the gradient-based MSC.Nastran
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Sol200 optimizer are used to minimize the mass of a body section of the blended-wing-

body aircraft. The optimization is constrained by buckling and either von Mises stress

or Tsai-Hill failure criteria constraints, depending on the selected material.

We reviewed the L-systems-based topology optimization studies on aircraft wings (which

also use non-gradient-based methods) already in Section 2.7.4. In these studies (Kobayashi

et al., 2009, Kolonay and Kobayashi, 2010, 2015), the available structural member types

are limited to full-depth structural members, although wings with effective use of mate-

rial are typically constructed of both full-depth and stiffener-like structural members.

2.8.1.3 Buckling constraints

Aircraft wings are constructed of lightweight and slender structural members, which,

under a compressive load, are prone to buckling. Thus, the critical buckling load is to

be considered early in the design process, to ensure the feasibility of the design and avoid

(potentially expensive) design changes later in the process. In terms of optimization, the

critical buckling load is generally treated as a lower limit constraint. However, there are

also examples in the literature where the critical buckling load is the objective function

(of the maximization type), and the design space is constrained by a volume or mass

constraint.

The evaluation of the critical buckling load differs for gradient- and non-gradient-based

topology optimization methods. Gradient-based methods require design sensitivities of

the function, whereas non-gradient-based methods generally penalize designs that in-

validate constraints to keep the design feasible (see Section 2.3.3 for the use of penalty

functions in GAs). The latter is often easier to implement because no gradient infor-

mation is needed. On the other hand, gradient-based methods have the potential to

make the optimization process more effective. The design sensitivities in gradient-based

methods can be determined for example by a range of finite difference methods or by

the adjoint method. The adjoint method is computationally more efficient than finite

difference methods, especially if the optimization problem has many design variables

(Keane and Nair, 2005).

Several topology optimization papers with the continuum material definition have been

published where the lowest critical buckling load is either a constraint or the objective

function. For example, Neves et al. (1995), Pedersen (2000) and Sekimoto and Noguchi

(2001) included buckling evaluation in SIMP (reviewed earlier in Section 2.6.1), whereas

Manickarajah et al. (1998, 2000) and Rong et al. (2001) included buckling evaluation

in ESO (reviewed earlier in Section 2.5). The buckling evaluation with the continuum

material definition, e.g. SIMP, is problematic due to the occurrence of spurious non-

physical local buckling modes in areas of low density (Neves et al., 1995, 2002). The

spurious localized modes can be eliminated by removing elements with a low density
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from the topology using an appropriate threshold value (Tenek and Hagiwara, 1994).

However, this manipulation may cause the optimization process to oscillate and, there-

fore, interrupt its convergence (Bendsøe and Sigmund, 2003). Recently, Browne et al.

(2012) presented a binary programming method that is free of spurious buckling modes.

The method uses the analytic first-order derivatives of the stress stiffness matrix with

respect to the densities of the topology.

These studies are conducted mainly for simple two-dimensional structures. Very few

papers in the literature consider buckling as a constraint in aircraft wing topology opti-

mization and evaluate it using a finite element (FE) model of the whole wing structure.

One rare exception is the work by Yang et al. (2016), wherein the buckling constraint

is included as a penalty function in a GA-based optimization procedure. Some authors,

such as Lencus et al. (2002), mention buckling as a constraint but do not evaluate it

during the optimization process. Instead, they check the buckling constraint after the

optimization process. To our knowledge, the more advanced methods of including buck-

ling constraints, presented in the previous paragraph, have not been implemented into

the topology optimization of the whole aircraft wing.

2.8.1.4 Parametric geometries

Parametric geometries are an essential building block for any geometry optimization

framework. They are a means of mapping a geometry into a finite set of design variables

that are varied in the optimization process. The requirements for a parametric geometry

are conciseness, robustness and flexibility (Sóbester, 2014). The parameterization must

be very carefully chosen. Too rigid a parameterization can lead to a limited design

space that does not include the optimal design. On the other hand, the risk in a flexible

parameterization is the so-called ‘curse of dimensionality’ and its increased demand for

computational resources. Several approaches to implement parametric geometries have

been presented, such as parametrization with discrete points, polynomials or B-splines

(Sóbester and Forrester, 2014).

Kulfan and Bussoletti (2006) presented a method, called class-shape transformation

(CST), for describing an aircraft geometry through a set of class and shape functions.

Class functions define the type of the geometry, e.g. an airfoil- or a body-type cross-

section, whereas shape functions define the description of the shape. The CST can be

performed to build the OML of the main aircraft components: a lifting surface, body

and engine nacelle. The first is built in Cartesian coordinates, whereas the last two are

built in axisymmetric coordinates.

Several parametric geometry frameworks have been developed for conceptual design

of aircraft. AirCONICS (Aircraft Configuration through Integrated Cross-disciplinary
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Scripting) (Sóbester and Forrester, 2014, Sóbester, 2015) is a library of NURBS (Non-

Uniform Rational B-Spline) objects to define aircraft OML shapes. It is build on light-

weight computer-aided design software Rhinoceros 3D via its Python scripting interface.

The library is designed to be a suitable tool for the whole aircraft design process from

preliminary to detailed design (Sóbester, 2015). GeoMACH (Hwang and Martins, 2012)

is a parametric geometry module by the MDO Laboratory at the University of Michigan.

The code, written in Fortran, defines separately the OML and the internal structure of

an aircraft. GeoMACH belongs to a wider conceptual optimization framework, called

OpenMDAO (Gray et al., 2010). GENAIR (Gagnon and Zingg, 2013) is another frame-

work capable of providing parametric geometries for OpenMDAO. According to Gagnon

and Zingg (2013), it provides geometries with better quality near a junction between two

components than GeoMACH, but has a higher computational cost to define the junction

geometries. OpenVSP (Hahn, 2010) is a framework developed in California Polytechnic

State University primarily for aircraft OML shape generation, but it also includes tools

for generating the main internal structure (i.e spars, ribs and bulkheads). It is based on

an earlier framework referred to as Rapid Aircraft Modeler (RAM) (Gloudemans et al.,

1996). OpenVSP includes a library of more than a hundred OML shapes of aircraft.

SUAVE (Lukaczyk et al., 2015) is conceptual design environment to model and analyze

unconventional aircraft configurations. All these frameworks are open source.

The number of design variables representing a design is critical especially in optimization

procedures where the objective function evaluation is computationally expensive. Multi-

level parameterization schemes consist of hierarchical levels, each of which have a specific

number of design variables. These schemes can be used to vary the fidelity of the

parameterization, or to apply multiple (nested) optimization algorithms to the same

optimization process.

One such parameterization is based on subdivision surfaces, often used in computer

graphics, which can represent a smooth surface via a coarse polygon mesh. The smooth

surface is generated by recursively dividing its edges using specific division rules. Mas-

ters et al. (2017a) showed that a multi-level subdivision parameterization, where the

number of design variables is periodically increased, outperforms the equivalent single-

level method on nine tested two-dimensional optimization problems. The authors also

applied the method to aerodynamic optimization of a three-dimensional wing (Masters

et al., 2017b). The parameterization has some similarities to the L-systems-based meth-

ods, which we reviewed in Section 2.7. Both methods are extensively used in computer

graphics because of their ability to represent complex geometries in a compact format.

When used as a parameterization method, they both enable the definition of hierarchical

design variables.
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2.8.2 Conductive heat transfer systems

Engineering systems, such as electronic devices, generators and satellites, generate heat,

which is to be efficiently transferred to the ambient environment to ensure their long

life span, high performance and compact size. Optimal heat transfer capability often

requires the heat exchanger components to have complex shapes and topologies. The

recent development of additive manufacturing technologies, especially 3D printing of

metals, have enabled the production of such components. Concurrently, various topol-

ogy optimization methods have been presented to maximize the thermal efficiency of

engineering systems, considering conduction, convection and conjugate heat transfer

(Dbouk, 2017). Out of these three, conductive heat transfer problems clearly have the

lowest computational cost, as they only require a numerical solution to a second order

differential equation over the design domain. Therefore, in this work, we consider con-

ductive problems as the first step towards more complex and realistic problems. In the

reminder of this section, we provide a short review on topology optimization of con-

ductive thermal systems. For an extensive review of the topic, as well as on topology

optimization of other types of thermal systems, the reader may wish to consult the paper

by Dbouk (2017).

The majority of the published papers tackling this topic consider steady-state conduc-

tion inside a rectangular, two-dimensional design domain. Bejan (1997) defined the

so-called ‘volume-to-point’, or ‘area-to-point’, design problem where a finite design do-

main, with a uniformly distributed heat generation rate, is filled with high and low

conductivity materials. The objective is to minimize the average or maximum temper-

ature over the domain by distributing a limited amount of high conductivity material,

to efficiently transfer the produced heat to the heat sink, which is a short section of the

domain boundary. The remaining boundary conditions are adiabatic. This problem has

been extensively studied and has become a popular benchmark in the field of thermal

engineering.

To solve the problem, Bejan (1997) applied constructal theory, which is based on ob-

servations from the nature. According to this theory, the solutions are constructed

from blocks with different designs and sizes, and, for each scale, their geometric details

are determined theoretically to minimize their conductive resistance, which is a non-

dimensional expression of their maximum temperature. Li et al. (1999a) modified ESO

heuristics, initially developed for structural optimization, to be suitable for a conduc-

tive steady-state heat transfer problem. Gao et al. (2008) presented modified BESO

heuristics for a similar optimization problem, and studied both design-dependent and

independent heat load cases. In these studies, (B)ESO heuristics were applied to a

design problem where the heat sink extends over the entire domain boundary. Later,

Marck (2012) applied ESO to the problem defined by Bejan (1997). Cheng et al. (2003)
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studied the problem using the bionic optimization approach, where the conductive ma-

terial domain is iteratively expanded near regions where their temperature gradients are

the highest and removed from regions where they are the smallest. The cellular au-

tomaton is another approach to the problem and its first application is due to Boichot

et al. (2009). The algorithm aims at minimizing thermal gradients, or heat fluxes, at the

boundary between high and low conductive materials. The authors, as well as Marck

(2012), describe the method as being a simple way of obtaining a reasonable, tree-like

solution, which, however, is likely to be sub-optimal.

According to the dedicated scientific literature, the most promising methods to solve

this design problem are based on the density interpolation approach (Bendsøe, 1989).

These methods were initially developed for structural topology optimization, where the

discretization of the Partial Differential Equation (PDE) is typically conducted using

the Finite Element Method (FEM). Gersborg-Hansen et al. (2006) were the first to ob-

tain the design sensitivities from the Finite Volume Method (FVM), and used them in

conjunction with topology optimization. Marck et al. (2012) used the SIMP method,

with an aggregated objective function approach, in a multi-objective optimization study

in order to minimize both average and variance temperatures over the design domain.

Dirker and Meyer (2013) tested a variety of objective functions and problem related

parameters of the SIMP method, and reported their results using non-dimensional mea-

sures for thermal conductivity and ‘definiteness’, i.e. how well intermediate material is

eliminated from the final design. Their results show that the final design is highly depen-

dent on the penalization coefficient value. Dede (2009) and Burger et al. (2013) applied

the SIMP-based methodology to a three-dimensional volume-to-point design problem.

The Method of Moving Asymptotes (MMA) (Svanberg, 1987) is used as the underlying

gradient-based optimizer in all of the papers cited in this paragraph.

Apart from constructal theory, the aforementioned studies are based on gradient-based

approaches. However, evolutionary algorithms have also been applied to this problem.

Xu et al. (2007) used separately both Genetic Algorithms (GA) and simulated anneal-

ing (Kirkpatrick et al., 1983) to seek the optimal combination of discretized design

domain elements. Later, Boichot and Fan (2016) show that their carefully tuned GA

yields discrete designs having lower non-dimensional thermal resistances than studies

using the cellular automaton (Mathieu-Potvin and Gosselin, 2007, Boichot et al., 2009,

Marck, 2012), constructal theory (Bejan, 1997, Ghodoossi and Eğrican, 2003) and ESO

(Marck, 2012), and similar thermal resistances to a study carrying out the SIMP ap-

proach (Marck et al., 2012). However, their algorithm requires an order of five million

function evaluations to reach full convergence.

Faster convergences with evolutionary algorithms may be obtained by using alterna-

tive strategies to parameterize the design space. Pedro et al. (2008) parameterized the

geometry of a tree-like structure (by parameters defining branch angles and lengths),

and used a GA to minimize the maximum temperature of the design domain. They
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showed that the level of geometric complexity has a considerable effect on the optimized

objective function value. The approach by Lohan et al. (2017) is to use a generative

encoding, based on the space colonization algorithm (Runions et al., 2005), in which the

design space is first seeded with a set of attraction points, and then a branching structure

is iteratively constructed to ‘colonize’ these points. Their objective is to minimize the

thermal compliance of the design domain, which is discretized using both structured and

unstructured meshes. Guo et al. (2018) proposed a generative encoding approach based

on artificial neural networks. The approach uses a variational autoencoder (Kingma and

Welling, 2013), the purpose of which is to reduce the dimensionality of the design via

its latent layers, and deep convolutional neural networks (Krizhevsky et al., 2012), to

prevent the appearance of disconnected high conductive material in the designs.

Nearly all of the above mentioned studies report that their optimized designs feature

branching tree-structures, yet Dede (2009) describe his results to have self-similar fea-

tures. L-systems and its turtle interpretation (Section 2.7.1) naturally produce geome-

tries with branching tree-structure. However, as far as we are able to ascertain, the

parameterization based on L-systems and its turtle interpretation has not directly been

applied to the problem.

2.8.3 Integrally stiffened panels: natural frequency maximization

Integrally stiffened panels, made from metal or composites, are often seen in aircraft

and satellite structures. Those made from metal are manufactured using methods like

welding, casting or subtractive manufacturing techniques, such as face milling or chem-

ical etching, while the corresponding composite panels are typically fabricated using a

single layup and cure process. Thus, integrally stiffened panels compose of significantly

fewer structural components than those manufactured by traditional techniques, such

as riveting.

As the assembly of an aircraft requires more than 50% of its total manufacturing work-

load (Mei and Maropoulos, 2014), the reduced part count of integrally stiffened panels

provides significant savings in the manufacturing cost. In addition, these panels are

free of attachment flanges and holes, which enable lighter designs and longer life span in

comparison to panels constructed via traditional manufacturing techniques (El-Soudani,

2006). The reason for the longer life span is the absence of attachment holes, which in

traditional panels cause stress concentrations and, therefore, reduce the fatigue life of

the component.

The stiffeners on the panel are typically oriented in two to four directions, resulting in re-

peating patterns of geometric shapes (Huybrechts et al., 2002). Two commonly used pat-

terns consist of triangular (Figure 2.13(a)) and square shapes (Figure 2.13(b)), termed

as isogrid and orthogrid, respectively. The prefix ‘iso’ for the triangular-patterned grid



50 Chapter 2 Topology optimization

denotes its isotropic stiffness properties in the plane of the panel. In comparison to

the honeycomb sandwich construction, i.e. another commonly used panel structure, the

grid structures have better damage tolerance and lower manufacturing costs (Huybrechts

et al., 1999).

(a) isogrid (b) orthogrid

Figure 2.13: Integrally stiffened panels

As a part of a bigger assembly, an integrally stiffened panel is typically supported only

at its edges. The wider the span of the panel is, the lower is its fundamental natural

frequency, and thus the more prone it is to vibration at low excitation frequencies.

In the literature, various studies have been conducted on the methods of minimizing the

vibration amplitude of grid structures, as well as other types of satellite structures, via

damping or maximizing their fundamental natural frequencies16 via geometric choices.

Chen and Gibson (2003) studied the use of passive viscoelastic damping layers embedded

in composite isogrid structures in order to reduce their vibration amplitude. Moshrefi-

Torbati et al. (2003) demostrated a passive vibration control method for a satellite

boom structure, consisting of a lattice of beam elements. In addition, several studies are

conducted on active damping methods of reducing the sound penetration (Gardonio and

Elliott, 1999, Yuan et al., 2015) and vibration amplitude (Beck et al., 2011) of aluminum

grid structures. Akl et al. (2008) determined the optimal stiffener angles for an isogrid

panel in order to maximize its fundamental or first six natural frequencies.

When the design space of the panel stiffening is further relaxed, the design task becomes

a topology optimization problem. The first application of topology optimization to max-

imize the fundamental natural frequency of a structure, using a methodology based on

the homogenization method, is due to Dı́az and Kikuchi (1992). Subsequently, the pop-

ular topology optimization methods, presented in this chapter, i.e. ESO (Section 2.5),

SIMP (Section 2.6.1) and LSM (Section 2.6.2), have all been applied to vibration re-

lated design problems; their first applications are due to Xie and Steven (1994), Pedersen

(2000) and Osher and Santosa (2001), respectively.

16A structure is resistant to vibration caused by an external excitation with frequency lower than its
fundamental natural frequency. Therefore, a high fundamental natural frequency enables vibration-free
operation of the structure under a broad range of excitation frequencies.
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The most common objective of vibration related topology optimization studies is to

maximize the fundamental natural frequency subject to a mass constraint. Alternatively,

the objective may also be defined as to maximize the smallest difference between the

natural frequencies and a predefined frequency (representing the excitation frequency),

or to match the natural frequencies with a desired set of frequencies.

In the SIMP method, a key concern is in the treatment of low density regions, which may

cause artificial, localized vibration modes (Neves et al., 1995, Pedersen, 2000). These

modes have very low natural frequencies, and thus mislead the design process. The

behavior is fundamentally the same as low density elements causing spurious buckling

modes (see Section 2.8.1.3). Various approaches have been proposed to prevent the

occurrence of localized vibration modes. Pedersen (2000) proposed a variation of the

SIMP method where, for elements which density factor is less than 10%, the penalization

of the stiffness is only one hundredth of the penalization of the mass. Tcherniak (2002)

prevented the occurrence of localized modes by imposing the mass of low density elements

to zero. Du and Olhoff (2007) used a large penalty coefficient of r = 6 for the mass of

elements with a density factor less than 10% (while otherwise using a penalty coefficient

of r = 3).

Another concern in vibration topology optimization with gradient-based methods is

the changing order of natural frequency modes during the optimization process. It is

important to trace the individual modes when using these methods, as, otherwise, the

changing order of modes can cause design sensitivities to be discontinuous. Kim and

Kim (2000) traced the modes using the modal assurance criterion, which is a statistical

indicator describing the consistency between two mode shapes.

Let us next review some of the presented applications using gradient-based topology

optimization methods; here, we focus on those that are relevant to the optimization

problem of seeking the optimal stiffener layout of an integrally stiffened panel. Tenek

and Hagiwara (1994) applied the homogenization method in order to seek the optimal

the thickness distribution of isotropic and anistropic plates. Among other example cases,

Pedersen (2000) and Huang et al. (2010) applied the SIMP method and BESO heuris-

tics, respectively, to fundamental natural frequency maximization of three-dimensional

plates with both clamped and simply supported boundary conditions. However, they

discretized the design domain into only a single layer of elements in the vertical direction

(see the optimized design for simply supported boundary condition by Pedersen (2000)

in Figure 2.14(a)). Huang et al. (2010), as well as Allaire and Jouve (2005), also defined

a design problem with a three-dimensional design domain, which optimized result is

shown in Figure 2.14(b).

Presumably, we could define a three-dimensional design domain under a fixed continu-

ous panel structure and seek the optimal distribution of material using one of the above

mentioned optimization methods. The approach would enable us to explore stiffener
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(a) Plate structure, adopted from the paper by Peder-
sen (2000)

(b) Three-dimensional structure with a point mass at
the center point of the bottom plane of the structure,
adopted from the paper by Huang et al. (2010)

Figure 2.14: Example of designs with optimized fundamental natural frequencies
obtained using the SIMP method (a) and BESO heuristics (b).

layouts in a significantly more flexible design space than those of iso- and orthogrids.

However, the optimized design, obtained using this approach, would most likely contain

complex geometric features. Although additive manufacturing methods are also estab-

lished for metals, they are feasible only for relatively small-scale components of small

production lots (Frazier, 2014). Other manufacturing methods for integrally stiffened

(metal) panels, such as face milling and friction stir welding, are suitable for large-scale

components with large production lots. However, the complex geometric features would

most likely be beyond the constraints of these manufacturing techniques.

Evolutionary topology optimization methods offer an alternative approach where the

manufacturability of the final designs (that of face milling or friction stir welding) may be

ensured. Inoue et al. (2002) studied a stiffener layout problem of reducing the vibration

and structure-borne noise of a gearbox housing. The authors first defined a ground

structure of stiffeners attached to the outer surface of the housing, and then applied a

GA to seek the optimal combination of the ground structure members.

Another method of seeking the optimal stiffener layout is referred to as the bionic growth

method (Ding and Yamazaki, 2004, Li et al., 2014, Ji et al., 2014). The method mimics

the growth process of branching systems in biology, such as those of trees and roots17.

In the method, the stiffener layout is represented by a branching system. The opti-

mization process involves iterative expansions and modifications in the topology and

cross-sectional area distribution of the system, which are determined based on the con-

tributions of its individual structural members to the design objective. The expansion

process follows a network of possible paths, i.e. the ground structure. Although these

methods, initiated from the ground structure, always yield optimized designs that are

easy to manufacture (i.e. they consist of stiffener-like structural members), their design

space is limited to a predefined set of candidate structural members.

17However, the method is not to be associated with those based on L-systems (Section 2.7).
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L-systems-based encodings provide an alternative approach that enable of exploration

of the stiffener layouts beyond a predefined ground structure, while still ensuring the

stiffener-like geometry of structural members. Sabbatini et al. (2015) applied the L-

systems and its turtle interpretation (Section 2.7.1) as a parameterization method to

multi-objective stiffener layout optimization, where one of the objectives was to mini-

mize the vibration amplitude of a panel structure. However, the map L-systems-based

encoding, which is the other type of L-systems based encoding reviewed in this chapter

(Section 2.7.3), could perhaps be more suitable for the purpose than the one based on the

turtle interpretation. The argument is that the map L-systems-based encoding naturally

yields genotypes consisting of structural members that are fully connected to each other.

In other words, these genotypes do not contain ‘dead end’ stiffeners (which are typically

produced by the turtle interpretation). In addition, the phenotypes from the map L-

systems-based encoding can be conveniently mapped into the two-dimensional domain

of the panel structure. As far as we are able to ascertain, the map L-systems-based

encoding has not been applied to stiffener layout optimization.

2.9 Conclusions

The main purpose of this chapter was to review commonly-used topology optimization

methods18 – with a special emphasis on their design space parameterization. In the

literature, we identified a clear division of topology optimization methods into gradient-

based and evolutionary (also non-gradient-based) methods, as well as a categorization

of the parameterization methods into direct, geometric and generative encodings. While

both gradient-based and evolutionary optimization methods have been applied to the

first two parameterization methods, only evolutionary optimization methods have been

applied to generative encodings (as far as we are able to ascertain).

Evolutionary topology optimization methods are described to have a significantly higher

computational cost than gradient-based methods (Sigmund, 2011, Deaton and Grandhi,

2014, Munk et al., 2015). However, considering their benefits, listed in the introduction

(Chapter 1), and the fact that they can easily be used in conjugation with generative

encodings, our objective in this chapter was to identify possible ways to improve the

performance of evolutionary topology optimization methods, which use either direct or

generative encodings.

We found indications that multi-dimensional encodings could improve the performance

of the ground structure approach (i.e. direct encoding), due to their better geographical

linkage in comparison to traditional one-dimensional encoding (Section 2.3.1.1). Thus,

we will investigate the use of two-dimensional encodings in Chapter 3.

18The field of topology optimization recognizes a multitude of different methods, from which we have
reviewed those that we consider the most relevant for our applications.
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L-systems-based parameterizations19 – especially those that are based on map L-systems

– have gained popularity among topology optimization researchers. In Section 2.7.4, we

found that the majority of studies with the map L-systems-based method used similar

numerical representations that originate from that defined by Pedro and Kobayashi

(2011). Considering that these evolutionary processes do not operate directly on the

design, the optimal set of the evolutionary control parameters should be less dependent

on the optimization problem than in direct encoding methods. However, no systematic

efforts have been reported in the literature on understanding the effects of the control

parameter choices on the performance of such optimization processes. Thus, we will

perform a statistical experiment evaluating these effects in Chapter 4.

In the studies using the map L-systems-based method, the age of the system is typically

parameterized as one of the additional variables. However, this approach is potentially

disadvantageous to the evolvability of the method, as a small change in this variable may

cause a major change in the corresponding phenotype. In Section 2.7.4, we proposed the

approach of linearizing of the age variable, which we will further investigate in Chapter

5.

These conclusions are related to the first research aim of this work, i.e. to improve the

performance of evolutionary topology optimization. To summarize these conclusions,

we define the following hypotheses:

Hypothesis 1: The use of two-dimensional encoding improves the performance of

the ground structure approach in comparison to one-dimensional encoding, because

of its better geographical linkage between the genotype elements.

Hypothesis 2: The choice of (genetic) control parameters has a significant effect

on the performance of the L-systems-based methods.

Hypothesis 3: The fact that the evolutionary process in L-systems-based method

(contrary to direct encoding) does not directly operate on the design reduces the

problem-dependency of its optimal control parameter combination.

Hypothesis 4: Linearizing the age variable in the map L-systems-based enhances

the evolvability of the method and thus improves its performance.

We reviewed studies relevant to structural optimization of the aircraft wing structure

in Section 2.8.1. We found that studies with the continuum material definition do not

yield the typical spar-rib structures (Stanford and Dunning, 2014). In fact, the opti-

mized designs often have three-dimensional features beyond the limits of conventional

manufacturing techniques. The manufacturing of the optimized structure can be facili-

tated by using the ground structure approach or L-systems-based method and limiting

19In Section 1.1, we narrowed the scope of generative encodings to L-systems-based methods.



Chapter 2 Topology optimization 55

the design space to contain only sheet- and stiffener-type structural members. The map

L-systems-based topology optimization studies on aircraft wings (Kobayashi et al., 2009,

Kolonay and Kobayashi, 2010, 2015) consider only full-depth structural members; how-

ever, wings with the effective use of material typically consist of both full-depth and

stiffener-like structural members.

Aircraft wings are prone to buckling, as they consist of slender structural members.

However, the topology optimization methods, considering buckling as the objective or

constraint function, have only been applied to simple small-scale optimization problems.

In applications to the aircraft wing, very few studies have included the evaluation of

the critical buckling load using an FE analysis of the whole wing structure. Often, if

the critical buckling load is considered as a constraint, it is evaluated using analytical

estimates for individual skin panels. The accurate evaluation of critical buckling loads

already in the conceptual design is vital to prevent expensive design changes later in the

preliminary or detailed design.

Next, we reviewed topology optimization studies on conductive heat transfer systems

in Section 2.8.2. In the literature, the majority of the studies have been conducted on

the two-dimensional benchmark problem defined by Bejan (1997). Nearly all of these

studies yield optimized designs, which can be characterized as branching tree-structures,

yet Dede (2009) report his designs to have self-similar features. L-systems and its turtle

interpretation (Section 2.7.1) naturally yield phenotypes with these features. However,

the method has not been directly applied to the optimization problem.

Finally, we reviewed studies relevant to the natural frequency maximization of integrally

stiffened panels in Section 2.8.3. Traditionally, the stiffeners in these panels are arranged

in the patterns of iso- and orthogrids, in order to ensure their convenient manufacturing

and analysis. Topology optimization methods provide means of increasing the funda-

mental natural frequencies of these panels. However, those based on gradient-based

methods yield designs with complex geometric shapes, impeding the manufacturing of

the panels. On the other hand, the design space of the ground structure approach is

limited to a predefined set of candidate structural members. Thus, we propose that the

map L-systems-based method (Section 2.7.2) could be suitable for the purpose. As far as

we are able to ascertain, the method has not been applied to the optimization problem.

The conclusions in the two previous paragraphs are related to the second research aim

of this work, i.e. to find topology optimization applications, to which L-systems-based

encodings are particularly suitable. We summarize them into the following hypotheses:

Hypothesis 5: The parameterization method based on L-systems and their turtle

interpretation is particularly suitable to topology optimization of heat conductors,

as it naturally yields bifurcating tree-structures with structural continuity.
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Hypothesis 6: The map L-systems-based method is particularly suitable to the

natural frequency maximization of an integrally stiffened panel, as it facilitates

a convenient implementation of manufacturing constraints and naturally yields

layouts with full stiffener continuity.

We will apply the ground structure approach and L-systems-based methods to the se-

lected applications in Chapters 3-7.



Chapter 3

The ground structure approach to

structural topology optimization

As mentioned in the introduction (see Sections 2.2.1 and 2.4), the ground structure is

a finite, but large, subset of the structural universe, which is an infinite collection of all

permissible structural members inside the design space. Ground structure members are

candidates for the final optimized structure.

In this chapter, we use two alternative optimization methods to seek the optimal com-

bination of the ground structure members. The first, following the main scope of the

work, is a genetic algorithm (GA) (Section 3.4) and the second is a (bi-directional)

evolutionary structural optimization ((B)ESO) heuristic (Section 3.5).

We place the ground structure approach into the context of structural design of the

aircraft wing. First, we describe a generic framework of topology optimization of the

aircraft wing internal structure using the ground structure approach, and then, in Section

3.7, apply the methods to a design of a small unmanned aerial vehicle (sUAV) wing

internal structure, built via additive manufacturing.

3.1 Procedure

The objective of the optimization framework is to minimize the structural mass of the

wing, mwing, subject to von Mises stress and buckling constraints. Thus, the optimiza-

tion problem is defined as

minimize mwing(x)

w.r.t xi i = 1, 2, . . . , nd

subject to σmax
vM,i ≤ σlimit

vM i = 1, 2, . . . , n.

λ̄1 ≥ 1,

(3.1)
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3.2 Geometry generation

The geometries, in both the OML and ground structure generators, are generated

automatically using parametric geometries. In our implementation, these geometries

are NURBS (Non-Uniform Rational B-Splines) surfaces, generated in Rhinoceros using

its Python scripting interface. The OML generator uses an open-source collection of

Python objects, called AirCONICS (Aircraft Configuration through Integrated Cross-

disciplinary Scripting)1, developed by Sóbester and Forrester (2014), Sóbester (2015).

The ground structure generator uses a newly developed set of Python objects. The mod-

ules are able to define the OML geometries and ground structures of both conventional

and unconventional wings. Three visualized ground structures and corresponding OML

geometries made with these modules are presented in Section 3.7.3.

3.3 Ground structures and the component hierarchy

The ground structure is a selection of structural members that are candidates for the

final structure. Traditionally, these structural members all have the same type (e.g.

a beam, shell or solid). We extend the ground structure to be a stencil, containing

slots where structural members of different types can be assigned. The stencil is drawn

in the two-dimensional planform shape of the wing. We use three types of stencils:

quadrilateral, quadrilateral with diagonals and hexagonal (Figure 3.2). For the sake of

brevity, we refer to the ground structure stencil simply as the ground structure. Further,

we refer to a line connecting two nodes in the stencil (where ground structure members

can be assigned) as a ground structure slot.

The inside of the aircraft wing, like most thin-walled structures, is often constructed

using two types of structural components, which are a full-depth structural member

extending between the opposite skins of the wing2 and a stiffener attached to either of

the skins. We use these to define a component hierarchy, from which structural members

are drawn to the ground structure slots. In this work, we use the following component

hierarchy, starting from the structural member providing the most support: (1) full-

depth structural member with a lightening hole, (2) a stiffener on the upper skin and

(3) no structural member (Figure 3.3). We have included a stiffener only on the upper

skin in the hierarchy because the upper skin is more prone to buckling than the lower

skin3.

The full-depth members are oriented perpendicular to the planform shape of the wing,

and their lightening holes have an elliptical shape, which dimensions are determined

1Available at www.aircraftgeometry.codes
2Traditionally, this type of structure is referred to as a spar or rib, depending on its orientation.
3The positive limit load factor is always greater (in absolute value) than the negative limit load factor.
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supporting stiffness to the perpendicular structural member. To avoid the formation of

T-junctions, we align the slots in the third ground structure (Figure 3.2(c)) in hexagonal

shapes. These shapes are fitted into the quadrilateral domain of the wing by introducing

quadrilateral and pentagonal shapes at the domain boundaries.

Although here we specify the component hierarchy to contain only three options, a

designer using the same approach could easily include more options in the hierarchy.

Figure 3.4 presents an example of an extended component hierarchy, including also a

(1) full-depth structural member without a lightening hole and (3) stiffeners on both

skins.

5

1 2

4

3

Figure 3.4: An extended component hierarchy.

3.4 GA-based optimization method

The current optimization problem has a multi-modal design landscape, because various

subsets of the ground structure may have a similar objective function value. Genetic

algorithms (GAs), reviewed in Section 2.3, are global search methods that have the

potential of finding the optimal, or a nearly optimal, solution also in multi-modal design

landscapes.

The ground structure approach, evolved using GAs, is criticized because it may produce

designs where some structural members are not connected to the rest of the structure

(Wang and Tai, 2005, Deaton and Grandhi, 2014, Munk et al., 2015). However, this

is not an issue in our case as both full-depth and stiffener members are attached to at

least one of the skins, i.e. the connectivity of a structural member is independent of the

presence of other structural members.

As mentioned in the previous section, each ground structure slot can be assigned three

different options, indexed from 1 to 3. We encode these indices directly to the elements

of a genotype.

One of the objectives of this chapter is to study if using the two-dimensional encoding

improves the performance of the GA-based topology optimization in comparison to the

commonly-used one-dimensional encoding. Based on the positive indications in the

literature (Section 2.3.1.1), the two-dimensional encoding is more likely to maintain the

geographical linkage of elements close to each other in the ground structure. Figure 3.5
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function methods are a suitable starting point when applying GAs to constrained op-

timization problems. In addition, a recommendation was found that repair algorithms

are suitable for combinatorial optimization problems, to which our current optimiza-

tion problem belongs. However, these algorithms require either a greedy search or a

user-defined heuristic. The former would be computationally expensive with our FE

analysis-based constraint evaluation, and we do not know a suitable procedure for the

latter. Finally, recommendations were given for optimization problems with linear con-

straints and highly constrained design spaces. The constraints of the current optimiza-

tion problem are not linear, and, because the number of constraints is relatively low, we

assume the design space not to be highly constrained.

Due to these reasons, and for the sake of simplicity, we handle the constraints via the

static penalty function method. Thus, we modify our objective function (Equation 3.1)

to be

minimize mwing(x) + rs

n∑
i=1

ks,i(x) + rbkb(x)

w.r.t xi i = 1, 2, . . . , nd,
(3.3)

where rs and rb are penalty coefficients of violated von Mises stress and buckling con-

straints, respectively. The coefficients are adjusted so that the penalty terms have a

similar amplitude as the objective term. Variables ks,i and kb accommodate the possi-

ble violations of the stress and buckling constraints, respectively. The von Mises stress

penalty is determined independently in the n sections of the structure. These variables

are defined as

ks,i =

{
σmax
i − σlimit, if σmax

i ≥ σlimit

0, otherwise
(3.4)

kb =

{
1− λ̄1, if λ̄1 ≤ 1

0, otherwise.
(3.5)

We have implemented the GA, described in this chapter, using Pyevolve (Perone, 2009),

an open source library of evolutionary operators, capable of parallel processing and

implementing a set of one- and two-dimensional crossover operators (to which we have

added the random walk crossover).

3.5 (B)ESO-based optimization method

Before going into the details of ESO, let us define what the rejection of a member means

in our current study. As described in Section 3.3, the ground structure slots are assigned

a structural member from the component hierarchy, containing a total of three options.

The order in the hierarchy reflects the extent to which an option strengthens the wing.



Chapter 3 The ground structure approach to structural topology optimization 65

Therefore, we define the rejection of a structural member as moving one step down in

the hierarchy (e.g. from index 1 to 2).

The determination of sensitivity numbers is critical to ensuring the effectiveness of ESO.

In the literature, methods have been developed to determine sensitivity numbers for

stress, displacement, buckling and frequency constraints. As mentioned earlier, the

present study considers only von Mises stress and buckling constraints, so here we con-

sider only these sensitivity numbers. For stress, the sensitivity number αi of an element

i can be simply defined as

αi = σmax
vM,i, (3.6)

where σmax
vM,i is the maximum von Mises stress of the element. The sensitivity number

for buckling is normally defined as

αi = −uᵀ
i1[∆ki]ui1 (3.7)

where ui1 is the eigenvector of the element i in the lowest buckling mode, and [∆ki] is

the change in the stiffness matrix of the same element (the derivation of the equation

was presented in Section 2.5.1). However, if the sensitivity number is used in a topology

optimization of a shell structure, the thickness distribution of the shell structure must be

continuous (Munk et al., 2015). Therefore, individual elements cannot be rejected from

the structure. This conflicts with the aims of the current study, wherein we consider

wholesale changes in topology.

Because of this limitation, we choose an alternative approach for the evaluation of el-

ement sensitivities. At each iteration, the buckling sensitivities of the elements are

determined by individually removing elements from the structure and comparing its

lowest eigenvalue with the reference structure as

αi = λ̄i − λ̄ref , (3.8)

where λ̄i is the lowest normalized eigenvalue of the structure without element i, and λ̄ref

is the lowest normalized eigenvalue of the reference structure having all the remaining

elements. It is to be noted that this approach is computationally more expensive than

the classical way of determining the sensitivity numbers for all elements from a single

FE analysis.

We also adopt an alternative definition of the rejection rate RRj . The reason is that, if

multiple members are rejected from a certain region of the ground structure in the same

iteration, the critical buckling load may suddenly drop under the stopping criterion.

Therefore, to have a better control of the number of rejected members, at each iteration

N rej members with the smallest sensitivities are rejected.

In ESO, the rejection of an element is irreversible, which may lead the optimization to a

local optimum. To overcome this problem, Querin et al. (1998) introduced bi-directional
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ESO (BESO), where rejected elements may be recovered back to the structure. Two

formulations of BESO exist in the literature. The soft-kill formulation does not remove

a rejected element but changes its elastic modulus to a small value, which reduces its

effect on the stiffness matrix of the structure. The other formulation, called hard-kill,

removes the entire element from the FE mesh. In this study, we explored the use of both

ESO and BESO. With BESO, the hard-kill formulation is used in the FE analysis, and

the maximum number of recovered elements per iteration is limited to N rec.

3.6 Constraint evaluation (FE analysis)

The wing structure is required to withstand the applied loads without an occurrence

of two classical failure mechanisms: yield and loss of structural stability. From an

optimization point of view, these requirements are viewed as constraints. The failure

mechanisms are measured as the maximum von Mises stress in a section and the critical

buckling load of the structure. The purpose of the constraint evaluation is to check

whether a design point lies in the feasible region, and, if not, to what extent are the

constraints violated. The challenge with these constraints is that for a three-dimensional

structure they are highly nonlinear and cannot be expressed analytically. Reasonable

accuracy for the constraint evaluation is achieved with finite element (FE) analysis,

which is a well-established method for the numerical analysis of structural mechanics.

The von Mises stress distribution is determined by a static analysis, and the critical

buckling load using eigenvalue analysis.

FE analyses are performed in Abaqus using its Python-based scripting interface. The

pre- and post-processing of the FE analysis are fully automated, because a large num-

ber of constraint evaluations are required during the optimization process. The pre-

processing script generates an FE mesh of the geometries that were produced by OML

and ground structure generators, assigns materials to its sections and sets the loads. The

structural members that are included in the FE model are determined by the structural

optimizer. The post-processing script fetches the von Mises stress distribution and the

lowest critical buckling load, and returns them to the structural optimizer.

The full-depth structural members, as well as the skin sections, are modeled as shell

elements, whereas the stiffeners are modeled as beam elements. The skin sections are

meshed using a quad-dominated algorithm (produces both triangular and quadrilateral

elements). When applicable, the skin sections are meshed with quadrilateral elements

only, which are computationally more efficient. The full-depth structural members are

meshed with triangular elements. The reason is the opening hole in the middle of the

member, which makes quad or quad-dominated meshing infeasible. The beam elements

are located at the root of the stiffener, so that their nodes are aligned with the corre-

sponding nodes of the shell elements. The transnational and rotational displacements of
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3.7 Application I: Topology optimization of a sUAV wing

In this section, we apply the ground structure based topology optimization methods to

the design of a small Unmanned Aerial Vehicle (sUAV) wing, 3D printed in nylon. The

task is to design the internal structure, inside the OML, that minimizes the structural

mass of the wing subject to buckling, stress, and manufacturing constraints. The final

results are benchmarked against corresponding results obtained by traditional design

methods.

3.7.1 Description of the design problems

The choice of 3D printing as the manufacturing technique sets two main geometric con-

straints for the design: maximum bounding box dimensions and minimum wall thickness.

In the following, we will refer to these as manufacturing constraints.

In this study, we choose the material of the wing to be nylon, which is commonly

used in additive manufacturing. Its properties are listed in Table 3.1. Nylon, as well

as other 3D printed materials, have anisotropic material properties depending on the

direction in which they are layered. Majewski and Hopkinson (2011) studied the material

properties of laser sintered Nylon-12 rods using tensile tests, in which the thickness and

layering orientation of the rods were varied. They described the tensile properties of the

material to be robust to changes in material thickness and build orientation. Moreover,

they estimated that Young’s modulus and tensile strength in the weakest direction were

roughly 80% and 94%, respectively, of the corresponding properties in the strongest

direction. Therefore, and for the sake of simplicity, we assume the material to have

homogeneous mechanical properties.

Parameter Value Unit

Young’s modulus E 1700 MPa
Poisson’s ratio ν 0.39 -
yield strength σy 48 MPa
density ρ 930 kg/m3

min wall thickness tmin 0.7 mm
max bounding box 650 x 350 x 550 mm

Table 3.1: Material and manufacturing properties of 3D printed nylon4.

Ensuring that each of the wings can be printed as a whole, the aircraft is chosen to have

a semispan of 650 mm, which is equal to the maximum bounding box edge length. The

geometric definition of the wing is given in Table 3.2. The wing profile is defined using

two 4-digit NACA profiles, transitioning linearly from the root to tip.

4www.shapeways.com (accessed on 10th March 2016)
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Parameter Value Unit

semispan b/2 650 mm
aspect ratio A 7 -
total wing area S 0.241 m2

taper ratio λt 0.5 -
sweep angle at leading edge ΛLE 5.0 deg
dihedral angle Γwing 0.5 deg
root profile NACA2420 -
tip profile NACA2412 -

Table 3.2: Geometric definition of the sUAV wing.

The wing is required to withstand the loads without buckling or yielding under positive

(nL = 4.5) and negative (nL = −1.0) limit load factors (Table 3.3). To evaluate these

constraints, the following loads are applied to the FE model of the wing. First, a pressure

load is applied to the upper and lower surfaces of the wing to describe the aerodynamic

forces. The pressure corresponds to a maximum take off weight mTO of 2.41 kg assuming

that the weight of the wings, which is excluded from the pressure load, is 15% of the

maximum take-off weight. The maximum take-off weight was chosen based on the total

wing area S using a wing loading of 10 kg/m2, which is realistic for a sUAV. The

pressure load has an elliptical load distribution along the wing span. Second, inertial

loads are applied on the wing weight as body forces with an amplitude nLg, where g is

the gravitational acceleration. Under a positive load factor, the inertial loads act in the

opposite direction to the pressure load, and therefore decrease the total loading on the

wing.

Parameter Value Unit

max take-off weight mTO 2.41 kg
load factor range nL -1.0...4.5 -
wing loading mTO/S 10 kg/m2

factor of safety cFoS 1.5 -

Table 3.3: Load properties of the sUAV.

As the first step of the design task, the lightest manufacturable design was analyzed, in

which no internal structure was placed inside the OML and the entire skin was defined to

have a thickness equal to the minimum wall thickness. This design is clearly the lightest

design that still satisfies the manufacturing constraints. With the positive limit load,

the maximum von Mises stress of the design is 7.48 MPa, which is, by a good margin,

less than the yield stress of the material (Table 3.1). However, the structure buckles

when only 44.0% of the design load is applied (Figure 3.8(a)). With the negative limit

load, the maximum von Mises stress is 1.66 MPa, and the structure buckles at 93.0%

of the design load. The shape of the buckling mode has its greatest values in either the

upper or the lower skin near the root depending on the load factor (the positive limit
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3.7.2 Conventional design methods

The buckling resistance of a wing structure can be improved by increasing its skin

thickness or by adding structural members, such as spars, ribs and stiffeners, inside

the wing. This section presents three conventional design methods, starting from the

simplest, to meet the required buckling strength. The results are benchmarks for the

ground structure approach we use in this chapter.

The simplest way to provide the required buckling strength for the sUAV wing is to

increase its skin thickness, which, in our case, has been set to the lower manufacturing

constraint in the lightest manufacturable design. This approach is simple but obviously

will not yield the best structure. Using a skin thickness of 0.956 mm, the normalized

critical buckling load under load factor nL = 4.5 becomes unity and therefore the design

is feasible. Since only the skin thickness was varied, the modal shape of the critical

buckling mode (Figure 3.8(b)) is almost identical to the lightest manufacturable design.

The weight increase with respect to the lightest manufacturable design is 41.4 g.

Increasing the skin thickness is a rather naive way to fulfill the design criteria. A better

solution is to stiffen the structure with spars, ribs and stiffeners. In the next design

approach, which we refer to as the traditional design, two spars are placed at 15% and

65% of the chord, respectively, and four ribs are evenly distributed in the spanwise

direction (Figure 3.9(a)). Finally, several FE iterations were performed to find the

minimum number of spanwise stiffeners that provide a feasible design. In the critical

buckling mode (Figure 3.8(c)), the greatest displacements are near the root of the upper

skin, which buckles between the spars and stiffeners. In comparison to the lightest

manufacturable design, the structural weight is increased by 32.7 g. Let us refer to this

added mass as the internal structure mass mIS.

Due to the manufacturing constraint, the skin thickness in this example is relatively high.

Thus, the traditional design involving spars and ribs may be over-sized for the purpose.

Therefore, in our last manual design approach, which we refer to as the stiffener design,

we attempt to use only spanwise and chordwise stiffeners. After several iterations, a

design was obtained where six spanwise stiffeners and two rims of chordwise stiffeners

are located near the root of the wing (Figure 3.9(b)). Each of the chordwise stiffener

rims extends around the whole wing profile. The lowest critical buckling mode of the

design is plotted in Figure 3.8(d). Since the weight increment compared to the lightest

manufacturable design is only mIS = 7.67 g, the stiffener design is significantly better

than the increased skin thickness design or the traditional design.
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(a) Conventional design with spars, ribs and stiffeners (b) Conventional design with stiffeners only

Figure 3.9: Two examples of conventional internal structures. The internal
structures have been designed manually using conventional spars, ribs and stiff-
eners.

3.7.3 Ground structures for the application

We initiate the optimization processes from the three types of ground structures, de-

scribed in Section 3.3.

The first (GS1) is a simple quadrilateral ground structure with six longitudinal and eight

transverse sets of ground structure slots. Figure 3.10(a) presents an example structure

obtained by assigning a full-depth structural member into all ground structure slots.

The stiffeners, if assigned to a slot, have an L-profile of 4 x 0.8 mm, and a thickness

of 0.7 mm, which is the same as the minimum wall thickness. The lightening hole in a

full-depth structural member has a size fraction of clh = 0.6 (see Section 3.3). The total

number of member slots in GS1 is 110.

GS2 (Figure 3.10(b)) incorporates two improvements over GS1. First, the diagonal

slots are included in the ground structure, while keeping the number of longitudinal

and transverse sets of members the same as in GS1. Second, the transverse slots are

placed in a geometric series, where each transverse slot gap is 1.1 times the previous

one (starting from the root). This modification shifts ground structure slots towards the

root of the wing, where more internal structure is typically needed. The total number

of member slots in GS2 is 173.

GS3 (Figure 3.10(c)) is a hexagonal ground structure, where the formation of potentially

weak T-junctions is prevented (see Section 3.3). With this ground structure type, we

also examine how its density affects the final, optimized objective function value. As

mentioned earlier, a ground structure is a finite subset of the infinite structural universe,

containing all possible structural members inside the design domain. The more member

slots are included in a ground structure, the wider design space is explored and, therefore,
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the better final designs are expected. We test GS3 with four different ground structure

slot densities, which all have the same qualitative topology (Figure 3.11).

(a) Ground structure 1 (b) Ground structure 2 (c) Ground structure 3

Figure 3.10: Three ground structures used in the study. The member density
of Ground structure 3 is varied (see Figure 3.11).

(a) (b) (c) (d)

Figure 3.11: Four member densities for ground structure 3. The ground struc-
tures have a total of 141 (Subfigure a), 186 (b), 238 (c) and 295 members (d).

3.7.4 Results and discussion

The aforementioned topology optimization methods are deployed on the three ground

structures, GS1, GS2 and GS3, defined in Section 3.7.3, from which GS3 has four al-

ternative ground structure densities. The content of this section is as follows. First, in

Section 3.7.4.1, we examine the dependency of the critical buckling load to the mesh
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density of the FE model. Second, we use GS1 to adjust essential parameters of both

GA- and (B)ESO-based optimization methods. Results of these parameter studies are

presented for the GA-based method in Sections 3.7.4.3 and 3.7.4.4 and for the (B)ESO-

based optimization in Section 3.7.4.5. Third, optimization runs with GS2 and GS3

are performed by exploiting the gathered parameter information from GS1. Finally,

the optimization methods, and the ground structures, are compared to each other and

benchmarked against the conventional design methods in Section 3.7.4.9.

3.7.4.1 Mesh density verification

The results of an FE analysis are dependent on the mesh density of the FE model. An

inadequate mesh density stiffens the structure and, thus, the modeled critical buckling

loads are overestimated. On the other hand, unnecessarily dense mesh increases the

computational cost of the analysis. To assure effective evolutionary optimization, which

involves a large number of objective function evaluations, it is essential to find a mesh

density that provides sufficient accuracy with as low a computational cost as possible.

We have studied the critical buckling load with five mesh densities. The mesh densities

are applied to FE models of both the full (all member slots filled with full-depth struc-

tural members) GS1 and an optimized wing structure initiated from the GS1. These

FE models represent the two extremes of the feasible region of the design space. The

obtained critical buckling loads are presented as a function of a representative mesh size

in Figure 3.12. The critical buckling load of the full GS1 converges to a greater value

than the optimized wing structure, due to the significantly greater number of structural

members. In addition, the full GS1 requires a finer mesh than the optimized structure.

The reason is that the mode of the critical buckling load of the full GS1 is more localized

than the corresponding mode of the optimized wing structure. When choosing the rep-

resentative mesh size, it is to be noted that inaccuracy in the constraint function values

at the initial stages are more acceptable than at the final stages.

Here, we choose the representative mesh size of 5 mm for the remaining of the chapter.

With this value, the critical buckling load is estimated to be 7.21% and 2.21% greater

than with the smallest studied mesh size (1.25 mm) for the full GS1 and optimized wing

structure, respectively. The computational cost with the chosen mesh size is significantly

smaller than with the smallest studied mesh size.

Next, we investigate the effect of the penalty function on the evolutionary process of a

single GA-based optimization run and conduct sensitivity studies with respect to two

genetic parameters: the crossover type and the population size.
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a population size of 300 provided the lowest internal structure masses. When the pop-

ulation size is decreased to 75 or less, some optimization runs converge prematurely to

a local minimum. However, more optimization runs would be needed for statistically

significant conclusions on the adequate population size. The two-point crossover is used

in all of these optimization runs.
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Figure 3.15: Convergence histories of experiments with different population
sizes Npop.

population size Npop

38 75 150 300

mass mIS [g] run1 3.985 3.593 3.443 3.430
run2 4.516 3.915 3.314 3.228
run3 3.606 3.642 3.724 3.136

average 4.036 3.717 3.494 3.265

constraint evaluations [103] run1 5.28 5.18 14.25 17.40
run2 4.64 6.60 15.00 19.50
run3 4.18 6.75 14.55 19.50

average 4.70 6.18 14.60 18.80

Table 3.4: Numerical data of the experiment shown in Figure 3.15.
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3.7.4.4 Crossover types in the GA-based method

Next, we present results with three alternative crossover types, which are two-point

crossover in one-dimensional encoding, the random walk crossover in two-dimensional

encoding and the distributed crossover (Section 2.3.2). Based on the result of the pre-

vious section, we choose to use a population size of 150. Other parameters of the GA

are kept constant.

Since GAs are stochastic, multiple optimization runs are required with each crossover

operator to obtain statistical evidence on whether one crossover operator has a bet-

ter performance than another. The computational cost of a single optimization run is

roughly 48 hours on a standard desktop (with a 4-core Intel R© Xeon R© W3520 processor).

Thus, we choose to run 10 experiments with each of the crossover operator. Finally, let

us assume that an optimization is converged when no improvement in the objective

function value is obtained during 15 consecutive generations. We study two quantities

of the obtained convergences: the number of generations required for a convergence,

ncon, and the optimized mass mIS.

From the three data sets with different crossovers, we define a family of six statistical

tests, which are the two aforementioned quantities tested on the three pairwise combi-

nations of the crossovers. The null hypothesis H0 in each test is that the mean values

of a quantity are similar (µ1 = µ2) with the two compared crossovers, whereas the al-

ternative hypothesis H1 is that the mean values are dissimilar (µ1 6= µ2). We use the

significance level of αs = 0.05.

When conducting a family of statistical tests, the probability of Type I error5 is inflated

(Arcuri and Briand, 2014). A classical method of treating the inflated probability of

Type 1 error is to use the Bonferroni correction, in which the significance level for each

individual test in the family is defined as αs/n, where n is the number of tests. However,

the Bonferroni correction is considered overly conservative (Perneger, 1998, Nakagawa,

2004, Arcuri and Briand, 2014), and, therefore, we treat the inflated probability of Type

I error by examining the step-up false discovery rate (FDR) (Benjamini and Hochberg,

1995), which is a less conservative variation of the Bonferroni correction. The step-up

FDR is defined as: the expected proportion of true null hypotheses among all rejected

null hypotheses is equivalent to the significance level αs (Benjamini and Hochberg, 1995).

The procedure of determining the step-up FDR is the following. First, the p-values of

the statistical tests are ranked in decreasing order of significance, j being the resulting

rank. Second, the p-values are examined in the opposite order, i.e. j = n . . . 1, and when

finding the first p-value, ranked as the kth test, that satisfies

pj ≤
jαs

n
, (3.9)

5The type I error refers to the rejection of the null hypothesis when it is actually true.
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The results of the six statistical tests are ranked, in decreasing order of significance, in

Table 3.6. In each test, the crossover pair is ordered so that the crossover having, on

average, the better performance is listed as crossover 1, and the crossover with a worse

performance as crossover 2. Further, U is the U-value of the Mann-Whitney U-test, and

p is the corresponding significance. The last column is the corrected significance level

(Equation 3.9). Proceeding in the order j = 6, 5, . . . , 1, the first test satisfying Equation

3.9 is the test ranked 4th (k = 4). Therefore, we reject the null hypothesis H0 in tests

j = 1, 2, . . . , 4, and accept the alternative hypothesis H1 meaning that the means of the

quantities are dissimilar. In tests j = 5, 6, we fail to reject the null hypothesis.

Therefore, we obtain statistical significance that the distributed crossover both converges

faster (j = 1 in Table 3.6) and yields better final designs (j = 2 in Table 3.6) than the

random walk crossover. In addition, the two-point crossover also converges faster than

the random walk crossover (j = 3 in Table 3.6). The result is against the indication,

found in the literature (Section 2.3.1), that two-dimensional encoding, due to the better

geographical linkage of elements, would provide better results in design problems with

a two-dimensional architecture.

Further, we obtain statistical significance that the distributed crossover convergences

even faster than the two-point crossover (j = 4 in Table 3.6). This indicates that in the

current application the diversity of splicing strategies a crossover operator can produce

is more important than the geographical linkage between the elements of a genotype.

As a conclusion, the distributed crossover has the best performance of the tested crossovers

in the current application (with the other selected optimization parameters).

Rank j Quantity Crossover 1 Crossover 2 U p jαs/n

1 ncon Distributed Random walk 1.0 0.000243 0.00833
2 ncon Two-point Random walk 6.5 0.00113 0.0167
3 mIS Distributed Random walk 15.0 0.00908 0.0250
4 ncon Distributed Two-point 19.5 0.0230 0.0333
5 mIS Distributed Two-point 26.0 0.0756 0.0417
6 mIS Two-point Random walk 35.5 0.290 0.0500

Table 3.6: The family of statistical tests (j = 1, 2, . . . , 6) ranked in decreasing
order of significance. In each test, Crossover 1 has on average of the obtained
results a better performance than Crossover 2. Based on the results, the null
hypothesis H0 is rejected in tests j = 1, 2, . . . , 4 and accepted in tests j = 5, 6.
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3.7.4.5 (B)ESO-based optimization parameters

In this section, we study three optimization parameters related to the (B)ESO-based

optimization method. The first is whether structural member recoveries are allowed

(ESO/BESO). The second is the number of rejected structural members per iteration,

N rej. In addition, when using BESO, the third is the maximum number of recovered

structural members per iteration, N rec. We have conducted five optimization runs to

study the effects of these parameters (Table 3.7). Since (B)ESO is a deterministic

optimization method, the optimization runs were not repeated.

run ID (B)ESO N rej N rec

1 ESO iter. 0-10: 10 N/A
iter. 10-20: 5

iter. 20-: 3

2 BESO iter. 0-10: 10 unlimited
iter. 10-20: 5

iter. 20-: 3

3 BESO iter. 0-10: 10 2
iter. 10-20: 5

iter. 20-: 3

4 ESO iter. 0-15: 6 N/A
iter. 15-30: 3
iter. 30-50: 2

iter. 50-: 1

5 BESO iter. 0-15: 6 1
iter. 15-30: 3
iter. 30-50: 2

iter. 50-: 1

Table 3.7: Parameter combinations of the executed (B)ESO-based optimization
runs.

The number of rejected structural members is defined to decrease as a function of the it-

eration number. The reason is that the sensitivities of the structural members are tested

individually without actually knowing the combined sensitivities of a set of structural

members. This is not critical at the beginning of the process, where several structural

members can be removed at the same iteration without significantly decreasing the crit-

ical buckling load. However, towards the end of the process, the structure becomes more

sensitive and the risk of rejecting a set of structural members with a significant combined

sensitivity increases.

Figure 3.18 presents the evolution of the internal structure mass (Subfigure a) and

critical buckling load (Subfigure b) as a function of the iteration number. Since the

same ground structure (GS1) is used in all optimization runs, they all start from the

same structural mass and critical buckling load. During the first iterations, the critical

buckling load actually increases, which seems to run contrary to intuition. We believe



84 Chapter 3 The ground structure approach to structural topology optimization

that the reason is in the definition of the member option hierarchy. At the beginning

of the rejection process, structural members are changed from full-depth members to

stiffeners on the upper skin, which in some parts of the structure seem to provide better

resistance against buckling.

Optimization runs 1 and 2 were executed first to compare the performances of ESO

and BESO-based optimization methods with a fairly coarse rejection plan (see Table

3.7). As it can be seen from Figure 3.18(b), the normalized critical buckling load de-

creases rapidly at around iterations 15-18, indicating that too many structural members

have been rejected from the same region during an iteration. Optimization run 2 uses

the BESO definition with an unlimited number of structural member recoveries. As

a consequence, the rapid decrease in the critical buckling load triggers an oscillation

phenomenon, where several members are moved back and forth between two regions of

the wing on consecutive iterations. Eventually, the oscillation causes the termination of

the process when the normalized critical buckling load becomes less than unity.

To avoid the oscillation, we have limited the maximum number of structural member

recoveries per iteration, N rec, to two in run 3. As we can see in the figure, this run

has a more stable behavior than optimization run 2. Meanwhile, the normalized critical

buckling load of optimization run 1, where no recoveries are made, increases steadily

from 1.03 to 1.15. In a similar fashion to that seen at the beginning of the optimization

process, several full-depth structural members are rejected to stiffeners on the upper

skin during these iterations. However, the behavior is not fully understood. With the

coarse rejection plan, optimization runs with ESO- (run 1) and BESO-based (run 3)

methods yield similar results.

Next, ESO- (run 4) and BESO-based (run 5) optimizations were performed with a finer

rejection plan. This time no rapid decrease in the critical buckling load was observed

during the optimization. For most of the optimization process, the BESO-based opti-

mization has slightly greater critical buckling load than the ESO-based optimization. In

contrast to the coarse rejection plan, this time the BESO-based optimization method

yields a design that is 3.55 grams lighter than that produced by the ESO-based opti-

mization method.
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3.7.4.6 Choosing the parameters

So far in this chapter, the focus has been on finding reasonable main parameters for

the two optimization methods. The studied parameters were the crossover type and the

population size in the GA and the rejection plan and the bi-directionality in (B)ESO.

In the following two sections (Section 3.7.4.7 and 3.7.4.8), we apply the methods to

the remaining ground structures, presented in Section 3.7.3. In this section, we choose

appropriate values for the main parameters, using the knowledge obtained from the

parameter studies.

With the GA, we came to a conclusion that, for the current application, the distributed

crossover has the best performance out of the three tested types of crossover operators.

We also briefly studied the effect of the population size Npop; no major difference was

observed in the optimized mass with population sizes 150 and 300. Smaller population

sizes, 38 and 75, were observed, in some cases, to converge prematurely to a local

minimum. However, the sample size was only three (due to the high cost of the runs),

so more experiments should be performed for statistically significant conclusions. In the

remainder of this chapter, we choose the crossover type to be the distributed crossover

and the population size to be 150 (with some exceptions that are indicated in the text).

With (B)ESO heuristic, we discovered that a coarse rejection plan (runs 1, 2 and 3

in Table 3.7) may reject multiple ground structure members from the same region in

the wing in a single iteration, what exposes the optimization process to a premature

termination. This behavior is avoided by a finer rejection plan (runs 4 and 5 in Table

3.7). To be able to apply this result to other ground structures (with different numbers

of ground structure slots), we define a rejection plan that is a function of the number of

rejections n that can be performed from the remaining ground structure. This rejection

plan is defined as

N rej =


6, if n > 0.6ntot

3, if 0.6ntot > n > 0.4ntot

2, if 0.4ntot > n > 0.25ntot

1, if 0.25ntot > n

(3.10)

where ntot is the number of possible recoveries from the full ground structure. This

rejection plan is equivalent to the experimented finer rejection plan on GS1. We use it

in the remaining of this chapter with the (B)ESO heuristics.

Finally, it is worth noting that the parameter studies are performed on GS1, which has

the smallest number of member slots out of the described ground structures in Section

3.7.3. The chosen parameters might not be ideal for other ground structure types or

densities. While the number of member slots in GS1 is 110, the densest version of GS3

has a total of 295 member slots. With that many member slots, performing statistical

tests is not feasible with our current computation resources. The parameters are chosen

using our best knowledge obtained from the results with GS1.
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3.7.4.7 Quadrilateral (GS1) and diagonal (GS2) ground structures

In the literature review, we found indications that including diagonal members in the

internal structure would improve the total performance of the aircraft wing structure

(Section 2.8.1.1). This section examines the obtained results with GS1 and GS2, from

which GS1 has only span- and chordwise ground structure slots and GS2, in addition

to the previous, has the diagonal slots. In addition, we examine the differences between

the results obtained using GAs and (B)ESO heuristics.

Let us start by examining the evolution process in GA-, ESO- and BESO-based meth-

ods. Figure 3.19 presents representative individuals of optimization runs performed on

GS1. The individuals of the GA-based optimization are generation bests of the same

optimization as in Figures 3.13 and 3.14. The individuals of the ESO- and BESO-based

optimizations correspond to runs 4 and 5 in Table 3.7. While the ESO- and BESO-based

methods are initiated from the full ground structure, the GA-based method initiated by

randomly generating a population of 150 individuals.

All optimized designs (Subfigures 3.19(m) to 3.19(o)) have several continuous lines of

longitudinal stiffeners (on the upper skin) starting from the root. Out of these stiffener

lines, the longest lines are located in between the mid-chord and trailing edge. In this

region, the curvature of the upper skin is the smallest, and thus the most prone to

buckling. In addition, the designs all have two to five full-depth members connecting

the two skins. These full-depth structural members also provide buckling resistance for

the lower skin, which is prone to a snap-through buckling.

The numerical values of the optimized masses are listed in Table 3.8. The value for GS1

with the GA is an average of 10 repeated optimizations with the distributed crossover.

Earlier, we observed that the use of the bi-directinal feature of ESO (BESO) improved

the optimized mass by 3.55 grams (Section 3.7.4.5). As we can see in Subfigures 3.19(m)

to 3.19(o), the main line of full-depth structural members lies in the design resulting

from ESO at around the mid-chord, whereas in the design resulting from BESO it is

closer to the trailing edge. The location near the trailing edge not only provides more

support for the section most prone for buckling but also enables the connection of the

two skin with less material, due to the smaller profile thickness.

The optimized designs initiated from the diagonal ground structure (GS2) are presented

in 3.20. While the dominant structural members are still the spanwise lines of stiffen-

ers, the designs also contain three to four diagonally orientated stiffeners or full-depth

members. The design obtained with the ESO-based method has a lower optimized mass

(mIS = 2.73 g) than the corresponding design from GS1 (mIS = 7.24 g). On the other

hand, the design obtained with the GA-based method has an optimized mass (mIS = 3.24

g) similar to the corresponding average of designs form GS1 (mIS = 3.21 g). However,

it should be noted, again, that GAs are stochastic optimization methods, and we have
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(a) Generation 0 (GA) (b) Iteration 0 (ESO) (c) Iteration 0 (BESO)

(d) Generation 15 (GA) (e) Iteration 20 (ESO) (f) Iteration 20 (BESO)

(g) Generation 30 (GA) (h) Iteration 40 (ESO) (i) Iteration 40 (BESO)

(j) Generation 45 (GA) (k) Iteration 60 (ESO) (l) Iteration 60 (BESO)

(m) Generation 57 (GA) (final) (n) Iteration 74 (ESO) (final) (o) Iteration 81 (BESO) (final)

Figure 3.19: Evolution of the internal structure using the GA-, ESO- and BESO-
based optimization methods on GS1.
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Ground structure Optimized mass mIS [g]
GA ESO BESO

GS1 3.21±0.141i 7.24 3.68
GS2 3.24ii 2.73 3.96

i Average and standard deviation of 10 repeated optimizations with the distributed crossover. ii 2.96,
if Npop = 300.

Table 3.8: Optimized masses of quadrilateral (GS1) and diagonal (GS2) ground
structures using GA-, ESO- and BESO-based methods.

(a) GA (b) ESO (c) BESO

Figure 3.20: Optimized structures from optimization runs initiated from the
diagonal ground structure (GS2). Results with GA, ESO and BESO are pre-
sented.

only a sample size of one on GS2. The GA-based optimization was repeated with a

population size of Npop = 300, yielding 9.5% lighter design.

3.7.4.8 Hexagonal ground structures (GS3)

We have earlier discussed that the quadrilateral and diagonal ground structures may

have a structural weakness, since they allow the formation of T-junctions in the in-

ternal structure (Section 3.3). The T-junctions are avoided with the hexagonal ground

structure (GS3), which we discuss here. In addition, we examine the effect of the ground

structure density on the optimized design. To reduce the computational cost, the BESO-

based optimization runs were executed without the bi-directional feature until 20% of

the total number of rejections were remaining.

A total of 12 optimization runs were performed with GS3. The results form a four-by-

three matrix where the rows correspond to the densities of the ground structure and

the columns to the optimization method. The optimized masses are presented in Table

3.9 and optimized designs in Figure 3.21. Figure 3.22 plots the structural masses with

different densities, along earlier obtained results with GS1 and GS2.

Based on the results, optimizations initiated from Density 1 clearly have worse final

designs than the optimization initiated from denser ground structures. As far as we
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(a) Density 1 (GA) (b) Density 1 (ESO) (c) Density 1 (BESO)

(d) Density 2 (GA) (e) Density 2 (ESO) (f) Density 2 (BESO)

(g) Density 3 (GA) (h) Density 3 (ESO) (i) Density 3 (BESO)

(j) Density 4 (GA) (k) Density 4 (ESO) (l) Density 4 (BESO)

Figure 3.21: Optimized structures from optimization runs initiated from the four
different ground structure densities of the hexagonal ground structure (GS3).
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In general, optimization runs on the denser ground structures yield better designs. These

designs (Figures 3.21(d)-3.21(l)) have, in a similar fashion to those obtained from GS1

and GS2, a number of stiffener members near the root of the wing and three to seven

full-depth structural members close to the trailing edge. Some of the designs, such

as Density 2 with BESO heuristics (Figure 3.21(f)) and Density 4 with ESO heuristics

(Figure 3.21(k)), have zigzagging stiffener lines, somewhat similar to those obtained from

GS1. Based on Table 3.9, the GA-based method found designs with lower structural

mass than (B)ESO heuristics with all ground structure densities. The lightest design

(mIS = 2.59 g) from all tested ground structures was obtained with the GA-based

method from GS3 with Density 3.

Despite the fact that the designs, obtained from all ground structures, have similar

features, they are clearly not identical. Thus, the current optimization problem has a

multi-modal landscape. Considering that GS2, as an example, has 173 ground structure

slots and each slot has three different options, the total of different subsets of options

drawn from GS2 is 3173 ≈ 3.48×1082. Finding the global optimum from this large design

space is nearly impossible. However, finding a good local optimum is often sufficient for

practical design tasks. In the next section, we compare these local optima to the earlier

presented manual designs.

3.7.4.9 Comparison to conventional design methods

In Section 3.7.2, we presented conventional solutions to the same design problem. The

best conventional design, i.e. the stiffener design (Figure 3.9(b)), is outperformed by

topology optimization runs initiated from all ground structures, except the ones from

GS3 with Density 1, regardless of the optimization method. The lightest obtained design

from the ESO-based optimization method with GS3 (Density 3) is 64% lighter than the

stiffener design. The design is feasible, i.e. it does not violate any constraints specified

in Section 3.7.1.
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3.8 Conclusions

In this chapter, we presented two ground structure approaches, based on a GA and

(B)ESO heuristics, to topology optimization of the aircraft wing internal structure.

The methods were applied to a design problem of a sUAV wing, built via additive

manufacturing.

Earlier in Section 2.3.1.1, we found indications in the literature that GAs with two-

dimensional encoding perform well on optimization problems with a two-dimensional

architecture. Thus, in this chapter, we performed a statistical experiment of crossover

types, which use one- and two-dimensional encodings. The studied crossover types

were two-point crossover in one-dimensional encoding, random walk in two-dimensional

encoding, and distributed crossover. However, contrary to the indications found in the

literature, we obtain a statistically significant result that, on the presented optimization

problem, the random walk crossover converges slower than two-point and distributed

crossovers, and has worse optimized designs than the distributed crossover. Further, the

distributed crossover provides better optimized designs than the two-point crossover,

which highlights the importance of diverse splicing strategies that a crossover operator

is capable of producing. Since the statistical tests were conducted as a family, the

inflated false discovery rate was adjusted using the step-up FDR. Therefore, on average,

five percent of the discovered statistically significant results are false discoveries.

The (B)ESO-based approach was found to be critical to the number of rejected ground

structure members per iteration. If multiple ground structure members are rejected

from the same area in a single iteration, the critical buckling load might drop under ter-

mination criterion and the process is terminated prematurely. Using a relevant rejection

plan, bi-directional ESO (BESO) was demonstrated to outperform ESO.

The resulting designs obtained from GA- and (B)ESO-based approaches outperform

the presented manual design methods. The obtained designs do not have the familiar

spar-rib arrangements, typically seen in conventional aircraft structures, which raises

interesting questions in terms of wing structural design in general. However, it is worth

mentioning that the prevailing, relatively high, minimum wall thickness constraint re-

duces the role of the internal structure.

A limitation with the ground structure approach is that the discrete ground structure

must be defined a priori, which both requires an additional step in the optimization

process and narrows the design space. In the next two chapters, we study the map

L-systems-based method, where the designs are constructed implicitly via recipes that

mimic the behavior of the DNA sequence. The method is free of the above mentioned

limitations.



Chapter 4

Map L-systems-based method:

statistical experiment

In this work, we have narrowed the scope of generative encodings to those based on L-

systems, which we reviewed in Section 2.7. L-systems mimic the developmental process

of living organisms. When used as a parameterization method1, they are described to

be able to cover a strikingly diverse design space while still using relatively few de-

sign variables (Deaton and Grandhi, 2014). We reviewed two interpretation formalisms

L-systems, i.e. turtle interpretation and map L-systems, in Sections 2.7.1 and 2.7.2,

respectively.

Recently, especially the map L-systems-based parameterization has gained popularity

among topology optimization researchers (see Section 2.7.4). In the majority of pub-

lished papers, the map L-systems-based parameterization is evolved by genetic algo-

rithms (GAs). Moreover, several authors, e.g. Pedro and Kobayashi (2011), Stanford

et al. (2012, 2013) and Allison et al. (2013), used similar numerical representations of

map L-systems, which originate from that defined by Pedro and Kobayashi (2011) (see

Section 2.7.3). Despite of the number of studies with similar algorithms and numerical

representations, no systematic efforts have been reported to date to understanding the

impact of the control parameter choices of GAs on the performance of these optimization

processes.

We acknowledge that, in general, the identification of optimal control parameters is a

notoriously difficult aspect of evolutionary search heuristic design due to the problem-

specific nature of any findings. However, parameterizations where the evolutionary

process operates on the encoding – such as L-systems based methods – and not directly

on the design, should be less affected by this problem dependence. The encoding can

be seen as an intermediary layer of the problem, which ‘shields’ the evolutionary search

1It is worth noting that, originally, L-systems were not designed to be evolved, but to mathematically
represent the topological/geometrical development of living organisms.

95
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from some of the variability resulting from the objective function of the structural design

problem.

In this chapter, we perform a statistical experiment involving 432 control parameter

combinations on the map L-systems-based topology optimization method, using a nu-

merical representation similar to that proposed by Pedro and Kobayashi (2011). Our

experiment involves a significantly large number of objective function evaluations (in an

order of one billion). Performing this many time-consuming FE analysis-based objec-

tive function (e.g. that used in the previous chapter) evaluations would not be feasible.

Thus, in order to keep the computational cost to a minimum and to facilitate the inter-

pretation of the results, we devise five simple optimization problems, which we define

using geometric features of the phenotypes. In addition, we define them to have known

global optima, to facilitate the evaluation of the optimized designs. In order to distin-

guish these optimization problems from the applications of this work, we refer to them

as the test cases.

The goal is to design a search that yields a good objective function value in a small

number of objective function evaluations. As these performance measures are often

competing, we report our results as a Pareto front of the two. In addition, we examine

whether, or to what extent, the rankings of parameter combinations, based on the

optimized objective function value and the required number of function evaluations, are

problem-dependent.

Before going into the details of the statistical experiment, let us start by defining the

map L-systems design space (Section 4.1) and demonstrating the optimization method

on one of the test cases (Section 4.2).

4.1 Defining the design space

Here, we make two minor modifications to the numerical representation by Pedro and

Kobayashi (2011). First, Pedro and Kobayashi (2011) define the sixth real number of a

token to vary a specific property of the edge (e.g. the thickness). The edge property is

redundant in our test cases and, therefore, we omit it. Thus, our design variable vector

x has a total length of

nd = Na + 5NrNP +Nv. (4.1)

Second, in the encoding by Pedro and Kobayashi (2011), the third element of βj,k (Equa-

tion 2.27) defines the edge/marker orientation. For simplicity, we define all edges to have

a neutral orientation.

The parameters defining the design space via map L-systems are listed in Table 4.1. The

axiom of map L-systems is mapped as a unit square, and thus the axiom length Na = 4.

We use two additional variables: fa defines the minimum fraction between offspring and
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parent cell areas, and n is the age of the system. These parameters are kept constant

throughout the statistical experiment. However, after the statistical experiment, we will

test the sensitivity of the obtained results to the number of encoded rewriting rules, NP.

Parameter Values

axiom length Na 4
number of rewriting rules NP 4
number of tokens Nr 6
minimum area fraction fa 0 . . . 0.5
age n 1 . . . 6

Table 4.1: Definition of the L-system design space. Minimum area fraction fa

and age n are additional variables.

The map L-systems could be amended by a dynamic method (Prusinkiewicz and Lin-

denmayer, 2012) (Section 2.7.2), where an osmotic pressure is applied inside the cells

and an equilibrium state is determined for the vertex locations of the edges, which have

a finite axial stiffness coefficient (Pedro and Kobayashi (2011) included the method in

their design space parameterization). However, the method requires solving the equi-

librium stage iteratively at every developmental stage. We omit the dynamic method

from the parameterization, as we need to keep the computational cost low to allow us

to perform a large number of experiments.

4.2 Introductory example

This section presents an introductory example of evolving the L-systems-based geometry

description via a GA2. The purpose of the optimization problem presented here is to,

first, illustrate the use of map L-systems-based parameterization in geometry optimiza-

tion and, second, serve as the first test case for the statistical experiment.

4.2.1 Test Case 1

The first test case is inspired by a map L-system, described by Prusinkiewicz and Lin-

denmayer (2012), in which the axiom and rewriting rules are chosen to be

Axiom: ω0 = ABAB

Rules: P1 : A→ B[−A][+A]B

P2 : B → A

(4.2)

When the rewriting rules are applied four times, the obtained map includes 16 equally

sized cells, which all have a square shape (Figure 4.1). In fact, every odd developmental

2We implement our GAs also in this chapter using Pyevolve (Perone, 2009), an open source Python
library of evolutionary operators.
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The corresponding map L-system of the optimal design, obtained from the first run, is

the following

Axiom: ω0 = ABAD

Rules: P1 : A→ B[−A][+A][+A]B

P2 : B → [−
←−
D ][+

→
C ][+

←−
B ]A[−

←−
B ]

P3 : C → AB[−D]CC

P4 : D → [+C][+
→
C ][−

←−
B ][+A]A

Additional properties: n = 4

fa = 0.3192

(4.4)

As we can see, the age of this system is the same (n = 4) as in the reference system

(Equation 4.2). Further, the rewriting rules P1 and P2, despite having additional (inac-

tive) markers, correspond to the rewriting rule P1 and P2, respectively, in the reference

system. The last letter of the axiom in the obtained system is D, while in the reference

system it is B. However, as the successors of rewriting rules P2 and P4 in the obtained

system are equivalent, the system yields the same phenotype as the reference system.

In the following, we describe the experimental plan (Section 4.3) and the remaining four

test cases (Section 4.4). Finally, we deploy these to gain an empirical understanding

of the performance of the algorithm with a range of control parameter choices (Section

4.5).

4.3 Experimental plan

There is, in general, a strong relationship between the choice of the control parameters

of a GA and its effectiveness (its ability to find good solutions) and efficiency (its ability

to find them quickly).

Table 4.2 reviews the control parameters used in the literature (where specified) in L-

systems-based topology optimization. We list the following parameters:

• selection strategy

• tournament pool size Npool

• crossover and mutation types

• crossover rate cx

• mutation rates cM and cm

• elitism Ebool

• termination criteria.



Chapter 4 Map L-systems-based method: statistical experiment 101

P
u

b
li

ca
ti

on
S

el
ec

ti
on

P
op

u
la

ti
on

si
ze

N
p

o
p

C
ro

ss
ov

er
M

u
ta

ti
o
n

E
li

ti
sm

E
b

o
o
l

T
er

m
in

a
ti

o
n

R
ie

ff
el

et
al

.
(2

00
9)

ro
u

le
tt

e
w

h
ee

l
10

0
on

e-
p

oi
n
t

cr
os

so
ve

r
b

et
w

ee
n

ru
le

s
(c

x
=

0.
2)

p
ri

m
a
ry

a
n

d
se

co
n

d
a
ry

(c
M

=
0
.4

ea
ch

)
i

T
ru

e
te

rm
in

a
te

d
a
ft

er
5
0
0

g
en

er
a
ti

o
n

s

K
ob

ay
as

h
i

(2
01

0)
ii

to
u

rn
am

en
t

(N
p

o
o
l
=

4)
20

0
d

is
tr

ib
u

te
d

(c
x

=
0.

8)

G
au

ss
ia

n
d

is
tr

ib
u

te
d

ii
i

(c
M

=
0
.2

)
T

ru
e

te
rm

in
a
te

d
a
ft

er
1
0
0

g
en

er
a
ti

o
n

s

P
ed

ro
an

d
K

ob
ay

as
h

i
(2

01
1)

st
o
ch

as
ti

c
u

n
iv

er
sa

l
sa

m
p

li
n

g
(B

ak
er

,
19

87
)

50
-1

00
d

is
tr

ib
u

te
d

(c
x

=
0.

8)

G
au

ss
ia

n
d

is
tr

ib
u

te
d

(c
M

=
0
.1

5
)

T
ru

e

te
rm

in
a
te

d
a
ft

er
1
0
0

g
en

er
a
ti

o
n

,
o
r

a
ft

er
5
0

g
en

er
a
ti

o
n

s
w

it
h

o
u

t
im

p
ro

ve
m

en
ts

S
ab

b
at

in
i

et
al

.
(2

01
5)

ii
to

u
rn

am
en

t
(N

p
o
o
l
=

4)
10

0
d

is
tr

ib
u

te
d

(c
x

=
0.

8)

G
au

ss
ia

n
d

is
tr

ib
u

te
d

ii
i

(c
M

=
0
.1

9
)

T
ru

e
te

rm
in

a
te

d
a
ft

er
1
0
0

g
en

er
a
ti

o
n

s

Ik
on

en
an

d
S

ób
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Mutation rate cm is the element-specific probability of mutation, applied to a cM propor-

tion of the population. In the studies by Kobayashi (2010) and Sabbatini et al. (2015)

the generation of phenotype follows the turtle interpretation. However, the turtle inter-

pretation of L-systems is still a generative encoding, specifying the phenotype via the

axiom, rewriting rules and additional variables, and therefore we have included it in the

review.

As Table 4.2 shows, the variation in control parameters across the selection of studies we

were able to gather is significant. The only exception is whether elitism was used, Ebool,

which was ‘True’ in all studies. We were not able to find any studies that provided a

clear reasoning behind their particular choice of parameters.

To study the effects of choosing a particular set of control parameters, and to find suit-

able parameter combinations, we run a statistical experiment on the five test cases.

Table 4.3 shows our design of experiments. Of the two mutation rate types prevalent in

the studies reported so far on L-systems based optimization, cM and cm, our experiments

vary the latter, keeping the former fixed at cM = 1.0. We test all 432 control parameter

combinations 70 times on each of the five test cases. The optimization runs are termi-

nated when no improvements were obtained during 30 consecutive generations. We use

a mutation operator that swaps two randomly selected elements in an individual, and

the number of elite individuals, when applicable, was set to one. Optimization runs are

initiated from a population of random individuals.

Parameter Values

population size Npop {50, 100, 150, 200}
pool size Npool {2, 4, 8}
crossover rate cx {0.6, 0.8, 1.0}
mutation rate cm {0.0, 0.02, 0.04}
crossover type Xtype {two-point, distributed}
elitism Ebool {True, False}

Table 4.3: Control parameter values of the statistical experiment. All parameter
combinations, totalling 432, are tested separately.

Performance of GAs may be improved, in many cases, by seeding the initial population

with a diverse set of decent initial guesses (cf. for example the paper by Simpson and

Dsouza (2004)). However, in the vast majority of studies, using an L-systems-based

parameterization, optimization runs are initiated from a random population4. Finding

a technique to define these initial guesses with sufficient diversity for the L-systems-based

parameterization falls outside of the scope of the current work.

4An exception is the study by Kobayashi (2010), where an optimization process is initiated from the
final population of another optimization process with a slightly different objective function.
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4.4 Remaining test cases

The first test case was defined as a part of the introductory example in Section 4.2.1.

This section defines the remaining four test cases.

4.4.1 Test Case 2

The second test case is a variation of the first test case. Its goal is to find a map

consisting of square-shaped cells of any size. The objective function is defined as

f2 =
1

2
PN + 2

∑Ncells
i=1 se,i

Ncells
+

1

100

∑Ncells
i=1 sα,i
Ncells

, (4.5)

where se,i and sα,i are the standard deviations of the edge lengths and cell areas, respec-

tively, of the ith cell in the map. PN, defined as

PN =


5−Ncells, if Ncells < 5

0, if Ncells ≥ 5 ∧Ncells 6= 16

1, if Ncells = 16,

(4.6)

is a penalty coefficient designed to prevent the optimization from converging to trivial

solutions of maps containing 1 or 4 equally-sized cells, or to the global optimum of Test

Case 1. While Test Case 1 has a single global optimum, Test Case 2 admits multiple

global optima (f2 = 0), (as do Test Cases 3-5). An example global optimum, produced

by an optimization process, is shown in Figure 4.3(a).

(a) Test Case 2 (b) Test Case 3 (c) Test Case 4 (d) Test Case 5

Figure 4.3: Example global optima in Test Cases 2-4, and the design with the
lowest objective function value in Test Case 5. The map L-systems of these
phenotypes are listed in Appendix B.

4.4.2 Test Case 3

The purpose of the third test case is to minimize the fraction of the number of nodes,

Nnodes, with respect to the number of cells, Ncells, in the map. Thus, the objective
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function is defined as

f3 =
Nnodes

Ncells
. (4.7)

Let us derive the values of the global optima. First of all, the global optima are maps

consisting exclusively of triangles. The reason is that the objective function f3 of a map,

containing a polygon with four or more vertices can always be decreased by dividing the

polygon into two or more triangles. Based on Euler’s formula for planar graphs, and

assuming that the map exclusively consists of triangles, the number of cells

Ncells = 2Nnodes −Bnodes − 2, (4.8)

where Bnodes is the number of nodes laying at the convex boundary of the graph5. The

equation can be rewritten as

Nnodes

Ncells
=

1

2
+
Bnodes + 2

2Ncells
. (4.9)

Therefore, the objective function f3 (Equation 4.7) reaches the global minimum, when

Bnodes and Ncells reach their minimum and maximum, respectively. The minimum num-

ber of boundary nodes, Bnodes, is equal to number of nodes in the map corresponding

to the axiom, i.e. Bnodes = 4. On the other hand, the maximum age n is defined to be

6. As the number of cells at most doubles at every developmental stage, the maximum

number of cells Ncells is 26 = 64. Thus, the global optimum is f3 = 35
64 . An example

global optimum is shown in Figure 4.3(b). It is noticeable that the boundary of the map

only includes the four nodes related to the axiom.

4.4.3 Test Case 4

An N -equidissection of a polygon is set of N non-intersecting triangles, having an equal

area and whose union is the polygon. The purpose of the fourth test case is to find a

12-equidissection of the unit square, using an objective function defined as

f4 =
1

2
|12−Ncells|+ 10Sa +

Ncells − N̂cells

Ncells
, (4.10)

where N̂cells and Sa are the number of triangular cells and the standard deviation of cell

areas in the map, respectively. An example global optimum (f4 = 0) shown in Figure

4.3(c).

5All developmental stages of map L-systems, initiated from an axiom mapped onto a unit square,
have a convex boundary, if the dynamic method (Prusinkiewicz and Lindenmayer, 2012) is not used.
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4.4.4 Test Case 5

The fifth test case is a search for a map containing a regular pentagon, filling at least

25% of the unit square. If a pentagon exists in the map, the objective function is defined

as

f5 = PA +
1

100
sα,k + se,k, (4.11)

else f5 = 10. PA is a penalty coefficient defined as

PA =


1

4
−Ak, if Ak <

1

4

0, if Ak ≥
1

4
,

(4.12)

where Ak is the area of the largest pentagonal shaped cell k. Further, sα,k and se,k are

the standard deviations of the edge angles (in degrees) and edge lengths, respectively,

of the cell k. The global optimum has the value of f5 = 0, though this was not found

during the experiments. The design with the lowest objective function value is shown

in Figure 4.3(d).

4.5 Results and discussion

The statistical experiment was performed in parallel, using 128 Central Processing Units

(CPUs). The total wall time of the experiment was around 15 days.

GAs, characterized by the parameter combinations from Table 4.3, are applied to Test

Cases 1-5, each run 70 times. Global optima were found for Test Cases 1-4 (see Figures

4.2 and 4.3(a)-4.3(c)). The lowest obtained objective function value for Test Case 5

(f5 = 2.72 · 10−2) was encountered once among the optimized designs. Although the

corresponding design (Figure 4.3(d)) is not the global optimum, it contains a cell that

is very close to a regular pentagon and fills more than 25% of the unit square area.

The statistical experiment included a considerably large number of optimization runs

on each test case: 30240 (70 repeats with 432 parameter combinations).

Let us first examine the results as a series of scatter plots (Figure 4.4) of the average

number of objective function evaluations, Q̄, and the completion rate in terms of finding

the global optimum, pc. As pc = 0 for all control parameter combinations on Test

Case 5, we exclude its results from the scatter plots. Thus, a point in the scatter plot

represents an average of 280 optimization runs (4 test cases with 70 repetitions). Each

subplot in the scatter plot shows the effect of the variation of control parameters on the

performance of the GA. The Pareto front of the two objectives is marked by the dashed

line.
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The population size Npop has the clearest influence on the performance of the GA (Fig-

ure 4.4(a)). The points are aligned into bands, approximately parallel to the abscissa,

according to their value of Npop. It can clearly be seen that the larger Npop is, the more

objective function evaluations are required, but also more likely the GA is to find the

global optimum. All population sizes are represented on the Pareto front.

The pool size Npool (Figure 4.4(b)) and the element-wise mutation rate cm (Figure

4.4(d)) have a similar influence on the performance of the GA. Both of these parameters

were tested with a range of three values, with the lowest, Npool = 2 and cm = 0.0, clearly

showing the poorest performance. Almost the entire Pareto front is populated by the

highest values, Npool = 8 and cm = 0.04. The relative performance differences between

these two parameters seem independent of the population size Npop.

The two values (True/False) for the elitism Ebool (Figure 4.4(f)) divide the four bands

of population sizes each into two subbands, again approximately parallel to the abscissa

of the plot. The value Ebool = True, represented by the upper subband, extends slightly

further to the positive direction of the abscissa, and its points form most of the Pareto

front.

The two-point crossover provides, on average, slightly better completion rate than the

distributed crossover (Figure 4.4(e)), and its points form most of the Pareto front. How-

ever, the performance difference between the crossovers is small. The crossover rate cx

(Figure 4.4(c)) has very little influence on the performance of the GA (compared to the

other tested parameter values), as its parameters are scattered inside the cloud of points.

The completion rate as a performance measure has a drawback. It cannot rank two

optimized designs if they both are sub-optimal, and therefore some of the information

generated by the experiment is discarded. An alternative may be to directly compare the

minimized objective function values. This metric also allows the inclusion of incomplete

searches (such as our fifth test case) in the analysis. Since the minimized objective

function values are not comparable across test cases, we use rankings as a means of

direct comparison. First, the control parameter combinations are ranked, separately in

each test case, based on the average minimized objective function value attained by the

GA run with each. Second, the obtained ranks are averaged and these values are used

as a performance measure.

Figure 4.5 shows scatter plots using the average rank as a performance measure, along

with the average number of objective function evaluations. The broad trends are similar

to those seen in the completion rate (Figure 4.4), although less pronounced. Let us

now extract the Pareto front (dashed line), in the space of minimum average number

of objective function evaluations versus minimum average rank, into Table 4.4. The

listing of non-dominated control parameter combinations is ordered from the lowest

average rank to the highest. It is noticeable that the population size Npop sweeps

through its tested range Npop = {50, 100, 150, 200}, in the opposite order, along the
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Pareto front. These 20 Pareto-optimal combinations selected from the set of 432 tested

control parameter combinations, can be viewed as prime candidates when selecting the

parameters of a GA to be deployed on a not yet seen problem.

Depending on the budget available for experimentation on the ‘real’ problem, the analyst

may choose to narrow down the list further. First, combination #12 may be considered a

practical limit, as points below it provide very marginal decrease in the average number

of objective function evaluations as a return of the sacrificed average rank. Second, if

we assume that the modality of Test Cases 1-4 is representative of the problem being

tackled, there is another way in which the remaining options can be narrowed. The

probability pglobal of finding the global optimum, by performing multiple optimization

runs, is defined as

pglobal = 1− (1− pc)
nruns , (4.13)

where nruns ∈ N is the number of repeated optimization runs. Let us fix pglobal = 0.95,

and find the parameter combination at the Pareto front that has the smallest estimate

of required objective function evaluations

Qg = Q̄nruns, (4.14)

where nruns = log(1−pc)(0.05), rounded to the next natural number. The smallest Qg(=

29.12·103) is obtained by combination #7 in Table 4.4, and corresponds to four repeated

runs. As a comparison, combination #1, having the smallest average rank, requires

only three repeated runs, but these runs require on average more objective function

evaluations, and therefore Qg = 40.74 · 103.

Parameter combination #7 is, broadly, in keeping with common quidelines for formu-

lated in the general GA literature. However, the tournament pool size Npool = 8 and

mutation rate cm = 0.04 may be considered relatively high. Often used values for these

parameters are a tournament pool size of 2 (Blickle and Thiele, 1995) (or 4) and a muta-

tion rate of 0.005 to 0.01 (Mitchell, 1998). In comparison to the general guidelines, the

larger tournament pool increases the selective pressure of the evolutionary process, while

the increased mutation rate enhances its ability to avoid converging to local optima.

Finally, let us examine the correlation of parameter combination ranks in the five test

cases. These ranks are listed in Table 4.4 for the Pareto-optimal parameter combinations

(using the average minimized objective function value as the ranking measure). As a

measure, we use Spearman’s rank correlation coefficient ρs (Corder and Foreman, 2014),

which compares the relationship of ordinal or rank-ordered variables. If ρs = 1, the

correlation is perfect, i.e. the parameter combination ranks are the same among the two

test cases. If ρs = −1, the correlation is also perfect but the ranks are the opposite. On

the other hand, if ρs = 0, the ranks are completely independent.
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(a) Test Case
ρs 1 2 3 4 5

Test Case 1 1.000 0.968 0.965 0.850 0.727
2 0.968 1.000 0.949 0.846 0.645
3 0.965 0.949 1.000 0.897 0.786
4 0.850 0.846 0.897 1.000 0.841
5 0.727 0.645 0.786 0.841 1.000

(b) Test Case
ρs 1 2 3 4 5

Test Case 1 1.000 0.970 0.955 0.953 0.949
2 0.970 1.000 0.975 0.973 0.934
3 0.955 0.975 1.000 0.979 0.950
4 0.953 0.973 0.979 1.000 0.960
5 0.949 0.934 0.950 0.960 1.000

Table 4.5: Pairwise Spearman’s rank correlation coefficients ρs between the test
cases. The ranks are ordered based on the average minimized objective function
value (a) and average number of objective function evaluations (b).

Tables 4.5(a) and 4.5(b) show the matrices of pairwise correlations of ranks between the

five test cases, using the average minimized objective function value and the average

number of objective function evaluations, respectively, as ranking measures. The diag-

onal elements of the matrix are trivial as the comparison is made on the same ranks,

obtained from the same test case (ρs = 1). Excluding the diagonal elements, the corre-

lation coefficients vary from 0.645 to 0.979, indicating strong correlations between the

obtained ranks. This indicates that a parameter combination performing well on one

test case is also likely to perform well on another test case.

There is little consistency in the literature in terms of the number of encoded rewriting

rules, NP. Our goal here is not to determine the optimal value for NP; rather, we are

interested in how sensitive our results, described above, are to variations in NP. To

study this, we run experiments with a range of NP = {2 . . . 6} on Test Case 1. As

the optimization runs were repeated 70 times with NP = 4 earlier, we performed the

same number of repeats with the other values. The obtained pairwise correlations of

ranks between different values of NP are listed in Tables 4.6(a) and 4.6(b), using the

same ranking measures as in Tables 4.5(a) and 4.5(b), respectively. The correlation

coefficients, varying from 0.800 to 0.988, show strong correlation in the ranks obtained

with different numbers of rewriting rules, NP. This indicates that no radical changes

are to be expected in the relative performance of parameter combinations if the number

of rewriting rules is changed.

The goal of this chapter is to offer practitioners of GA-driven L-Systems-based topology

search advice on optimization setup, firmly grounded in empirical observations based
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(a) NP

ρs 2 3 4 5 6

NP 2 1.000 0.956 0.894 0.848 0.800
3 0.956 1.000 0.956 0.921 0.880
4 0.894 0.956 1.000 0.976 0.955
5 0.848 0.921 0.976 1.000 0.977
6 0.800 0.880 0.955 0.977 1.000

(b) NP

ρs 2 3 4 5 6

NP 2 1.000 0.975 0.914 0.864 0.847
3 0.975 1.000 0.960 0.923 0.902
4 0.914 0.960 1.000 0.981 0.967
5 0.864 0.923 0.981 1.000 0.988
6 0.847 0.902 0.967 0.988 1.000

Table 4.6: Pairwise Spearman’s rank correlation coefficients ρs between a range
rewriting rules NP = {2 . . . 6} on Test Case 1. The ranks are ordered in Subfig-
ures a and b using the same measures as in Tables 4.5(a) and 4.5(b), respectively.

on a set of test problems. Later, in Chapters 5 and 7, we tackle structural geometry

optimization problems using an L-systems based heuristic, demonstrating how the results

of the empirical study presented above can be implemented in a ‘real-life’ engineering

context.

4.6 Conclusions

The main objective of this chapter was to examine the effects of genetic control parame-

ters on the performance of the map L-systems-based topology optimization method. A

total of 432 control parameter combinations were tested on five test cases, with known

global optima. The results show that carefully chosen control parameter combination

can significantly increase the performance of the map L-systems-based topology op-

timization. The Pareto front of best performing parameter combinations is reported.

These parameter combinations are recommended starting points for a designer using the

map L-systems-based topology optimization, with a numerical representation similar to

that described by Pedro and Kobayashi (2011).

The pairwise comparisons of parameter combination ranks in between the test cases show

strong correlation (the Spearman’s rank correlation coefficient ρs ranges from 0.645 to

0.979), which indicates that a parameter combination, performing well on one test case,

is also likely perform well on another test case. In addition, we found strong correlation

(ρs ranges from 0.800 to 0.988) between the parameter combination ranks obtained

using different numbers of rewriting rules on Test Case 1. The result is an indication
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that the guidelines we give in this chapter are also applicable to studies with a number

of rewriting rules different to what we use here.

Later in this work, we will deploy the L-systems-based methods, with these control

parameter guidelines, to engineering design problems. In the next section, we propose

two other improvements to the map L-systems-based method.



Chapter 5

Map L-systems-based method:

two proposed improvements

We propose two improvements to the map L-systems-based optimization method, which

we refer to as the linearization of the age variable and the component hierarchy. The

former is applicable to any L-systems-based geometry description, and the latter is

applicable to the topology optimization of aircraft wing internal structure. As far as we

are able to ascertain, neither of these variations is reported in the literature.

The proposed improvements are described in detail in Sections 5.1 and 5.2, respectively.

We evaluate the performance of the linearized age variable by conducting another sta-

tistical experiment (Section 5.1.2), using the test cases defined in the previous chapter.

Finally, in Section 5.3, we apply the proposed improvements to the design task of the

small Unmanned Aerial Vehicle (sUAV) wing, presented in Section 3.7.

5.1 Linearization of the age variable

As we already mentioned in Section 2.7.4, the number of cell divisions in the map

L-systems-based method increases quadratically with every developmental stage, if a

matching marker pair is found inside its cells. The ordinal of the developmental stage,

i.e. the age n, is typically used as a design variable when the method is used as a

geometry description in topology optimization. Consequently, a small change in the age

variable causes a major change in the geometry, which is not beneficial for the evolvability

of the optimization method. In addition, the design variable is often encoded on a single

element in a GA (e.g. the encoding by Pedro and Kobayashi (2011)). Let us refer to

this variable as the baseline age. We propose an alternative age variable, referred to as

the linear age nlin, to replace the baseline design variable. The linear age defines the

114
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5.1.1 Demonstration on Test Case 1

Let us visualize the evolution process of a single optimization process, in which the age

is parameterized using the number of cell divisions (i.e. linear age). We use again Test

Case 1, devised in Section 4.2.1.

The evolution of the objective function, along with representative individuals, is shown

in Figure 5.3. The global optimum is found at the 72nd generation with a map L-system

defined as

Axiom: ω0 = CBCB

Rules: P1 : A→ [+B][−
←−
C ]B

P2 : B → [+
←−
C ][+D]C

P3 : C → [
→
C ]D[−C][+

←−
B ]A

P4 : D → B[−D][+
→
C ][−

←−
C ][+

→
B ][−

←−
B ]

Additional properties: nlin = 15

fa = 0.3555

(5.1)

The obtained map L-system system is fundamentally different to the reference map L-

system, presented in Equation 4.2. The design space was limited to an alphabet of four

letters, and, as an outcome, all four letters are active in the system (the axiom introduced

letters B and C, and the rewriting rule P3 changes letter C into letters A and D, along

with the defined markers). In addition, the linear age of nlin = 15 corresponds in this

case to a conventional age of n = 6. In contrast, the reference map L-system had only

two active letters and the age of the system was n = 4. Therefore, the obtained system

has found an alternative way to produce the same map as the reference system. The

complete developmental process of the obtained system is presented in Figure 5.4.





Chapter 5 Map L-systems-based method: two proposed improvements 119

nlin = 0 nlin = 1 nlin = 2 nlin = 3

nlin = 4 nlin = 5 nlin = 6 nlin = 7

nlin = 8 nlin = 9 nlin = 10 nlin = 11

nlin = 12 nlin = 13 nlin = 14 nlin = 15

A B C D

Figure 5.4: First 15 cell divisions of the map L-system described in equation
5.1. The cell divisions are performed at the following developmental stages: 1st
(developmental stage): nlin = 1, 2nd: nlin = 2, 3rd: nlin = 3, 4th: nlin = 4 . . . 6,
5th: nlin = 7 . . . 10, 6th: nlin = 11 . . . 15



120 Chapter 5 Map L-systems-based method: two proposed improvements

5.1.2 Statistical experiment

Let us next evaluate the performance of GAs, in which map L-systems are parameter-

ized using the proposed linear age variable, against the corresponding GA, which use

the baseline age variable. We evaluate the linear age parameterization with and with-

out the previously presented local search algorithm (Section 5.1). Thus, the statistical

experiment involves a total of three algorithms. We evaluate the performance of these

algorithms on Test Cases 1-5, defined Sections 4.2.1 and 4.4.

Table 5.1 shows the ranges for the baseline and linear age variables, n and nlin. The

ranges are defined so that the maximum number of cells is equal, 64, in both design

spaces. Other parameters defining the design spaces are the same as in Table 4.1.

variable value

baseline age n 1 . . . 6
linear age nlin 0 . . . 63

Table 5.1: The ranges of the alternative baseline and linear age variables.

In the previous chapter, we determined a Pareto set of recommended control parameter

combinations (see Table 4.4). Here, we choose to use parameter combination #4. The

reasoning is that, later in this chapter, we will apply the three algorithms to Application

I, presented Section 3.7, for which we have already obtained results using the GA-based

ground structure approach. The population size in the parameter combination #4 is

equivalent, Npop = 150, to that used in the ground structure approach. This choice will

enable us to make a fair comparison between the two encoding methods at the end of

this chapter.

We repeated each of the three algorithms 500 times on each of the five test cases. We

evaluated the performance of the algorithms based on their completion rate pc on finding

the global optimum and their average number of objective function evaluations, Q̄. The

results of the statistical experiment are presented in Table 5.2. The confidence interval

of 95% for the completion rate pc is determined based on the Adjusted Wald method

(Agresti and Coull, 1998). The corresponding confidence interval for the average number

of objective function evaluations, Q̄, is determined by multiplying its standard error by

1.96. The same results are plotted in Figure 5.5.
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051015
Q̄ [103]

TC1

TC2

TC3

TC4

TC5

0.0 0.2 0.4 0.6 0.8 1.0
pc [-]

age
baseline linear linear (LS)

(a)

0.00 0.05 0.10 0.15 0.20 0.25
f̄min

TC5

(b)

Figure 5.5: The completion rate pc and average number of objective function
evaluations, Q̄, on the five test cases (TC) using algorithms with different age
variables (a). The algorithm with the linear age variable is tested with and
without the local search (LS). No global optimum was found for TC5; thus, we
also report its average optimized objective function value f̄min (b).

The global optimum for Test Case 5 is not found with either the baseline or linear age

parameterizations. Thus, for this test case, we report the average optimized objective

function value f̄min of the algorithms in Figure 5.5(b). The confidence intervals of f̄min

are reported as the standard error multiplied by 1.96.

We tested the statistical significance of these results, separately in each test case, by

three pairwise tests of the two performance measures, i.e. the completion rate pc
2 and

average number of objective function evaluations Q̄ (yielding a total of 30 statistical

2In Test Case 5, we used the average optimized objective function value f̄min, instead of the completion
rate pc.
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tests). We used a significance level of αs = 0.05, and treated the inflated probability of

false discoveries, due to performing multiple statistical tests in the same study, by the

step-up false discovery rate (FDR) (Benjamini and Hochberg, 1995). With the FDR,

the expected proportion of false statistically significant results among all statistically

significant results is equivalent to the significance level αs.

We obtained the following statistically significant results:

• The linear age parameterization (without the local search) yield higher comple-

tion rates, or lower optimized objective function value (in Test Case 5), than the

baseline age parameterization in Test Cases 2, 4 and 5. In Test Cases 1 and 3, we

are unable to make statistically significant conclusions.

• Considering the linear age parameterization, the use of the local search enhances

completion rates, or optimized objective function value (in Test Case 5), even

further in Test Cases 2, 3 and 5.

• However, the algorithm using local search (on the linear age parameterization) also

requires the most objective function evaluations in all five test cases. This result

was, in fact, expected as the local search, performed at every fifth generation,

requires a significant number of additional objective function evaluations.

• Nevertheless, the linear age parameterization (without the local search) requires

fewer objective function evaluations than the baseline age parameterization in Test

Cases 1-4. In Test Case 5, the required numbers of objective function evaluations

are similar.

We here present only the conclusions of the statistical tests; the reader interested in

their details may consult Appendix A. Strictly speaking, all conclusions presented here

are applicable to the tested five optimization problems only, though they may provide

indications of what one may expect on similar problems.

To summarize, the linear age parameterization yields better final designs in three out

of five test cases and requires fewer objective function evaluations in four out of five

test cases that the baseline age parameterization. The local search algorithm further

enhances the final designs with the linear age parameterization in most of the test cases,

but results in a significantly increased number of required objective function evaluations.

Finally, the global optima in Test cases 1, 3 and 4 have fixed numbers of cells, which

are 16, 64 and 12, respectively. One may argue that these fixed numbers are the reason

for the better performance of linear age parameterization, and that ‘real-life’ topology

optimization problems do not have these clear optimum numbers of cells. However,

we observed that linear age parameterization also has a better performance than the

baseline age parameterization on Test Cases 2 and 5, which do not have such fixed
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optimum numbers of cells. We will apply the linear age parameterization, without the

local search, to the design task of the sUAV wing later in Section 5.3.

5.2 Implementation of the component hierarchy

Aircraft wings with the effective use of material are often constructed using both full-

depth structural members and stiffeners. In Section 3.3, we proposed a component

hierarchy to be used as a part of the ground structure approach. Here, we propose the

same component hierarchy to be used in the map L-systems-based optimization method.

The purpose of the last component type of the hierarchy, (3) no structural member, is

to add more design freedom and enable the formation of discontinuous structures. An

edge, in a map L-system, that is assigned no structure serves as a ‘construction edge’

for other edges.

To further increase the design freedom, we introduce a new additional variable, called

maturity. Maturity defines a threshold age, baseline or linear, prior to which constructed

edges are converted into the hierarchy type (3) no structural member. We denote the

baseline and linear maturity with symbols m and mlin, respectively.

We include the variation of component types in the rewriting rules in a similar way as

Pedro and Kobayashi (2011) included thickness transition in the rewriting rules (see

the variable x6 in Equation 2.28). In their definition, each token in the rewriting rules

has an additional command that is either ‘decrease’, ‘retain’ or ‘increase’ the size of

the offspring edge in comparison to the parent edge. With parent and offspring edges,

they refer to the edge before and edges after an edge division, respectively. We make

a small modification to the definition here to avoid excessively frequent changes in the

component type. In our definition, the hierarchical type of an edge is retained in an edge

division, but varied when introducing a new edge to the system, via connecting matching

markers. Therefore, we refer to the parent edge as the edge, from which the new edge

is initiated, and to the offspring edge as the edge that results from a cell division.

Pedro and Kobayashi (2011) did not encode initial edge thicknesses, but scaled the

final thickness distribution to satisfy the mass constraint. As our application is not

mass-constrained, and the sizes of the component types are fixed, we encode the initial

component type into the numerical representation using elements xp,0 . . . xp,Na , such

that

x = [ xa,1 xp,1 xa,2 xp,2 . . . xa,Na xp,Na︸ ︷︷ ︸
Axiom ω0

P1 P2 . . . PNP︸ ︷︷ ︸
Rewriting rules Pj

x1 x2 . . . xNv︸ ︷︷ ︸
Additional variables

].

(5.2)

Each real number xp,i encodes the initial component type of the ith letter of the axiom

ω0. Let us consider a component hierarchy of three types as an example; a real number
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xp,i is assigned the following segments: 1 ≡ [0, 1
3 ], 2 ≡ [1

3 ,
2
3 ], 3 ≡ [2

3 , 1]. The encoding of

other real numbers is the same as before.

Figure 5.6 presents an example of varying component types in a map L-system and

the corresponding wing internal structure. These component types are drawn from the

extended component hierarchy, which we defined in Equation 3.4.

1) Full-depth structural member
2) Full-depth structural member     

3) Stiffener (upper and lower)
4) Stiffener (upper)
5) No structural member

a) b)

(with a lightening hole)

Figure 5.6: An example of mapping a map L-system with component hierarchy
into a wing internal structure.

5.3 Application I continued: Topology optimization of a

sUAV wing

In this section, we apply the map L-systems-based topology optimization, with the

proposed improvements, to the design of the sUAV wing internal structure. Earlier in

Section 3.7, we provided a detailed description of the design task and described results

obtained using manual design methods and the ground structure approach.

The optimization procedure we use here is mainly the same as that defined in Figure 3.1

for the ground structure approach. The difference is that the ground structure approach

operates on a predefined set of candidate structural members, which geometries were

also generated (see ‘ground structure generator’ in Figure 3.1) prior to the iterative

step of the optimization procedure (see ‘structural optimizer’ in Figure 3.1), but the

map L-systems-based method does not recognize such candidate structural members.

In the map L-systems-based method, geometrical definitions of structural members are

only available after decoding the genotype. Thus, we embed the corresponding module,
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which generates3 the internal structure of the wing, into the objective function evaluation

loop before ‘FE analysis’4.

In Section 5.1.2, we discovered that, although providing slightly enhanced completion

rates, the use of the local search significantly increases the number of required objective

function evaluations. In the current application, the computational cost of an objective

function evaluation is significantly higher than in the test cases. Therefore, we here

apply the linear age parameterization only without the local search.

5.3.1 Defining the design space

We define the map L-system design space using the same main parameters as earlier with

the low-cost test cases (Table 4.1) and the same component hierarchy of three options

as in Section 3.7. However, we make the following minor changes to the design space.

First, we introduce two new additional variables: the minimum edge fraction of the

minimum and maximum edge length in an offspring cell, fe, and the minimum angle

between two adjacent edges in an offspring cell, αe (Table 5.3). These additional (fixed)

variables prevent the formation of very small structural members and their alignments in

small angles with respect to each other during the developmental process of phenotypes.

parameter value

minimum edge fraction fe 0.01
minimum edge angle αe 5◦

baseline age n (alternative) 1 . . . 6
linear age nlin (alternative) 1 . . . 32

baseline maturity m (alternative) 1 . . . 3
linear maturity mlin (alternative) 1 . . . 8

Table 5.3: Design space parameters of the sUAV wing topology optimization
problem.

Second, we use both age and maturity (see Section 5.2) variables, the ranges of which

are given in Table 5.3. We have adjusted the range of the linear age variable from 0 . . . 63

to 1 . . . 32, due to the following reasons. 1) Based on earlier results, we know a priori

that the wing structure without any internal structure (nlin = 0) does not withstand the

design load without buckling. 2) The optimized internal structures, obtained using the

ground structure approach, consist of significantly fewer than 63 structural members,

which was the earlier upper bound.

3Using the Python scripting interface of Rhinoceros.
4We perform the FE analyses using the representative element mesh size of 5 mm, which was verified

to be adequate in 3.7.4.1.
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5.3.2 Results and discussion

We repeated the optimization process 10 times with algorithms using the linear and

baseline age parameterizations, n and nlin. Table 5.4 lists the average and standard

deviation of both the optimized objective function values, i.e. internal structure mass

mIS, and the required objective function evaluations, Q̄. The table also includes cor-

responding results of the manually generated stiffener design and those obtained using

the ground structure approach.

method graph age variable mIS [g] Q̄ [103]

manual design Figure 3.8(d) - 7.67 -
GS1 Figure 3.19(m) - 3.21 ± 0.14 13.47 ± 1.17
GS3 (Density 3) Figure 3.21(g) - 2.59 31.06
map L-system Figure 5.8(a) n 6.41 ± 1.17 12.56 ± 5.26
map L-system Figure 5.8(b) nlin 5.92 ± 0.79 13.37 ± 2.91

Table 5.4: Comparison of the optimized internal structure mass, mIS, and re-
quired objective function evaluations, Q̄.

Let us first compare the results of the map L-systems-based method using the linear

and baseline age parameterizations. On average, the linear age parameterization yields

slightly lower optimized mass, but also requires slightly more objective function evalua-

tions than the baseline age parameterization. However, these results are not statistically

significant. Using the two-tailed non-parametric Mann-Whitney U-test, the p-values of

these comparisons are 0.120 and 0.367, respectively. We have plotted the distributions

of these two quantities in Figure 5.7, along with the corresponding results using the

ground structure approach5.

The map L-systems-based method clearly yields worse designs than the ground structure

approach in the current application. The internal structure of the designs obtained by

the linear age parameterization is on average 84.4% heavier than of those obtained using

GS1. In addition, the best design obtained by the map L-systems-based method has

79.1% heavier internal structure than the best design obtained by the ground structure

approach (using GS3: Density 3). However, 19 out of 20 map L-systems-based optimiza-

tion runs (with baseline and linear age parameterizations) still yield optimized designs

with lower mass mIS than that of the manually designed stiffener design.

Figures 5.8(a) and 5.8(b) present the lightest designs obtained by the map L-systems-

based method with the baseline and linear age parameterizations, respectively. More-

over, Figure 5.9 visualizes the evolution process of the latter. These designs have some

similarities to the designs obtained by the ground structure approach; the dominant

5We here plot the results obtained using GS1, since it is the only ground structure which we used
to perform repeated optimization runs. These results are obtained using the best performing crossover
operator, i.e. the distributed crossover (see Section 3.7.4.4).
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structural member type is the stiffener on the upper skin, and the two skins are con-

nected by one or two full-depth structural members. These structural members are

located in the same region of the wing: in the vicinity of the root and trailing edge of

the wing, which we found earlier to be the most prone to buckling. It is also noticeable

that each of the three structural member types, drawn from the component hierarchy,

is present in the designs.

(a) baseline age n (mIS = 4.93 g) (b) linear age nlin (mIS = 4.64 g)

(c) linear age nlin (mIS = 5.31 g)

1) Full-depth structural member      
 
2) Stiffener (upper)
3) No structural member

(with lightening holes)

Figure 5.8: Optimized designs obtained using the map L-systems-based method.

However, these design do not have structural discontinuities, which we encountered

in the designs obtained by the ground structure approach. Nevertheless, structural

discontinuities are present in other (heavier) designs that we obtained using the map

L-systems-based method. Figure 5.8(c) presents one of these designs, in which two

stiffeners on the upper skin terminate at around one third of the semispan. These

stiffeners are similar to those seen in the designs obtained by the ground structure

approach.

Map L-systems naturally yield phenotypes which do not have structural discontinuities.

Our aim here was to enable the formation of discontinuities by including the structural

member type ‘no structural member’ in the member hierarchy and introducing the ma-

turity (m or mlin) as one of the additional variables. We believe that the main reason

why the map L-systems-based method yields worse designs than the ground structure

approach is that, despite these efforts, we were not able to define a parameterization that
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design space. We will return using the map L-systems-based method again in Chapter

7.

5.4 Conclusions

In this chapter, we presented two variations to the map L-systems-based topology op-

timization method. The first is to linearize its age variable. We conducted a statistical

experiment on Test Cases 1-5, defined in the previous chapter, to benchmark the perfor-

mance of the linearized age parameterization against the baseline age parameterization.

The results show statistical evidence to support the hypothesis that, in comparison to

the baseline age parameterization, the use of the linear age parameterization yields bet-

ter designs, in three out of five test cases, and reduces the number of required objective

function evaluations, in four out of five test cases. We ran experiments of these two age

parameterizations also on the sUAV wing application, but, due to the small sample size,

were not able to obtain statistically significant results.

In addition, we evaluated the performance of the local search algorithm on the linearized

age variable. We show statistical evidence that the algorithm enhances the fitness of the

optimized designs even further. However, the use of the algorithm increases the number

of required objective function evaluations by around 60% to 150%, depending on the

test case.

The second variation to the method is to include a component hierarchy, from which

types of structural components (i.e. a full-depth structural member or a stiffener) may

or may not appear in the structure. We embedded the rules to vary these types in the

rewriting rules of the map L-systems, using a similar approach to that of Pedro and

Kobayashi (2011) who varied the thickness distribution of their cantilever structure. We

demonstrate the use of the component hierarchy on the design task of the sUAV wing

internal structure.

Finally, we benchmarked these results against the ground structure approach. Using

representative parameter choices with both methods, the map L-systems-based method

yielded, on average of 10 optimization runs, 84.4% heavier designs than the ground

structure approach.



Chapter 6

Application II: Heat conductor

So far in this work, we have represented designs only by one type of interpretation

formalism of L-systems, map L-systems. In this chapter1, we apply another type of

interpretation formalism, the turtle interpretation (Section 2.7.1), to represent the dis-

tribution of high conductive material inside an electrical device.

Electronic devices are packed in increasingly compact spaces, which increases the heat

density generated by their components. To prevent overheating, their architecture must

be designed with an effective cooling system. The first task of the cooling system is to

conduct the heat from the electronic components to a heat sink, using highly conductive

material, e.g. copper or aluminum. The availability of conductive material is limited

by space constraints and because the manufacturers always wish to reduce the cost of

such components. Consequently, properly distributing the high conductivity material

through a finite volume becomes an important topology optimization problem.

In Section 2.8.2, we found that the majority of studies in the literature on such opti-

mization problems report optimized designs resembling of a branching tree-structure.

Moreover, one of the authors, Dede (2009), described their designs to have self-similar

features. In Section 2.9, we concluded that the turtle interpretation of L-systems natu-

rally yields such structures, but they have not directly been applied to the optimization

problem. Therefore, the objective of this chapter is to implement L-systems and its tur-

tle interpretation as a parameterization method for evolutionary topology optimization,

and apply them to the conductive heat transfer problem defined by Bejan (1997).

As far as we are able to ascertain, the only similar approach in the literature is that

of Kobayashi (2010). However, he defines the optimization problem to represent design

optimization of an artificial cordate leaf, instead of the cooling of an electrical device

as originally defined by Bejan (1997). Therefore, his design domain has the shape of

a leaf and he uses the pressure drop as one of the objectives. The pressure drop is

1The work of this chapter has been conducted in collaboration with Dr. Gilles Marck. The distinction
of his and the author’s contributions to the work is described in Appendix C.
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meaningless in the context of the design problem studied here. Due to these aspects,

his results cannot be benchmarked against other studies on the original design problem.

We benchmark our single-objective optimization results against relevant studies in the

literature, and demonstrate the use of the methodology in multi-objective optimization

with relevant temperature and manufacturing related objectives.

One of the aims in this work is to identify engineering design problems to which genera-

tive encodings are particularly suitable, or unsuitable, in comparison to direct encoding

methods. Therefore, we also apply the ground structure approach to the optimization

problem.

6.1 Optimization problem

The optimization problem defined by Bejan (1997) represents an electrical device that

is to be cooled by distributing limited amount of high conductive material inside its

package. The purpose of this material is to conduct the heat to a heat sink, located at

the boundary of the package.

Let us consider a two-dimensional square-shape design domain Ω, with a side length l.

The domain consists of two subdomains Ωp and Ω0, such that Ωp∪Ω0 = Ω and Ωp∩Ω0 =

∅ (Figure 6.1). Subdomains Ωp and Ω0 denote high and low conductive materials

with thermal conductivities kp and k0, respectively. The latter represents the area of

the device that is filled with electrical components, and thus is defined to have heat-

generation rate2 q. The design domain is bound by Dirichlet and Neumann boundary

conditions, ΓD and ΓN (Figure 6.1). The Dirichlet boundary condition (heat sink) is

located in the middle of the left-hand side boundary and has a width of d, whereas the

remaining boundary conditions are adiabatic (Neumann). Thus, the governing equations

for steady-state conductive heat transfer in the domain are
∇ · (k∇T ) + q = 0 on Ω

(k∇T ) · n = 0 on ΓN

T = 0 on ΓD,

(6.1)

where n is the outward normal vector of the boundary, k is the local thermal conductivity,

that is kp or k0 corresponding to subdomains Ωp and Ω0 and q is the local heat generation

rate, that is q0 in domain Ω0 and 0 elsewhere.

2In fact, Bejan (1997) defined the entire domain to have an evenly distribute heat-generation rate.
We have eliminated the heat generation from subdomain Ωp as the same choice is made by Boichot and
Fan (2016), whose results we use as a benchmark. However, the definition by Bejan (1997) is a closer
representation of a real chip, which high conductive layer is on top/bottom.
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nodes

Figure 6.3: An example of a bifurcating tree-structure, represented using nodes
1-6 (in black) and elements 1-5 (in grey).

a scaling factor csca, which retains the relative differences of the non-dimensional widths

of the elements. The mapper then projects the elements to the design domain grid,

yielding the characteristic function χΩp , which defines the distribution of high conduc-

tive material in the phenotype.

Third, the temperature field of the design is solved using the Finite Volume Method

(FVM) (Section 6.2.4) and, finally, the objective function value(s), i.e. the average

and/or maximum temperature of the domain Ω, is returned to the optimizer.

As the optimizer, we again apply genetic algorithms (GAs). However, this time we

implement GAs using the open-source Python package DEAP (Distributed Evolutionary

Algorithm for Python) (Fortin et al., 2012). The reason is that later in this chapter we

study multi-objective optimization problems where we evolve the L-systems encoding

by the NSGA-II (Section 2.3.4). Contrary to Pyevolve, which we have used earlier in

this work, DEAP contains an implementation of NSGA-II.

As the optimization problem is symmetric, we assume the optimal distribution of high

conductive material also to be symmetric, and therefore analyze only the upper part of

the design domain. The same assumption has been made in most of the studies in the

literature. Xu et al. (2007) conducted their optimization studies on the whole design

domain, but their optimized designs are also nearly symmetric. When analyzing the

half-domain, we define its lower boundary (the dash-dotted line in Figure 6.1) to be

adiabatic, and therefore a part of the Neumann boundary ΓN.

6.2.1 Ground structure approach

The simplest way of applying the direct encoding to the optimization problem is to

explicitly assign a binary design variable to each of the discrete material elements. As

we found in the literature review (Section 2.8.2), this approach was used by Boichot and

Fan (2016). On the other hand, Xu et al. (2007) encoded an individual design as a list

of high conductive material locations. However, while Xu et al. (2007) do not report the
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computational cost of their algorithm, Boichot and Fan (2016) report their algorithm,

containing 5000 design variables4, to require more than five million objective function

evaluations for full convergence. In addition, the method lacks of an elegant way of

preventing the individuals from violating the volume fraction constraint5 φ.

To avoid the high computational cost, we adopt an alternative direct encoding approach.

We define a ground structure consisting of candidate path sections for the optimized

structure (Figure 6.4). These sections are defined using the aforementioned format of

nodes and elements (and element widths). The approach not only significantly reduces

the number of design variables, but also offers a convenient way of scaling widths of the

ground structure members so that the total volume of high conductive material satisfies

the volume fraction constraint φ.

Here we use the same layouts of ground structures as in Application I (Section 3.7): the

quadrilateral with diagonals and hexagonal ground structures. Also here, the structural

members may have different types/widths.

Later in this chapter, we will vary the density of these ground structures. Let us now

define a common measure for the density of the two ground structure types as m × n,

where m and n are numbers of segments the ground structure members divide the west

and north boundaries into, respectively. Thus, the density of both ground structures in

Figure 6.4 is 8× 4.

The existence of structural members, and their non-dimensional widths, are encoded into

a genotype x, having Ngs + 1 elements, where Ngs is the number of ground structure

members. To decode the content of the genotype, its first Ngs elements are interpreted

as follows:

• if xi ∈ [0, 1
Nw+1 ], structural member i exists, and its non-dimensional width is

w0
frac = 1

• else, if xi ∈ [ 1
Nw+1 ,

2
Nw+1 ], structural member i exists, and its non-dimensional

width is w1
frac

• else, if xi ∈ [ 2
Nw+1 ,

3
Nw+1 ], structural member i exists, and its non-dimensional

width is w2
frac

• . . .

• else, if xi ∈ [ Nw
Nw+1 , 1], structural member ei does not exist,

where i is the ordinal of the element in the genotype, and Nw is the number of differ-

ent non-dimensional widths. Figure 6.4(a) illustrates the order in which the structural

4They used the half-domain, and discretized it into 100 × 50 material elements.
5Boichot and Fan (2016) repaired infeasible individuals by randomly removing material elements,

until the constraint was satisfied.
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(a) Rectangular ground structure with diagonal members

(b) Hexagonal ground structure

Figure 6.4: Two types of ground structures providing candidate paths for the
high conductive material in the half-domain (the upper half of Figure 6.1). The
numbering in subfigure (a) indicates the order, in which the structural members
are encoded into the genotype.

members are encoded in the case of 8 × 4 quadrilateral ground structure with diagonals.

The variable wfrac is the fraction between two non-dimensional widths, and is encoded

into the last element of the genotype, as xNgs+1 = wfrac.

Finally, it is worth mentioning that this approach has some features of geometric encod-

ing (Section 2.2.2), as the existence of material elements do not only depend on a single

design variable, but also on the total number of existing ground structure members and

their non-dimensional widths. However, as it is based on the ground structure approach,

we regard it still as a direct encoding method.
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6.2.2 L-systems-based method

We reviewed the turtle interpretation of L-systems in section 2.7.1, and further, of

parametric L-systems in Section 2.7.1.1. The L-systems-based method, we use in this

chapter, is based on the turtle interpretation of parametric L-systems.

When such grammatical models are evolved via a GA, a key implementation detail is

how to encode them into a numerical format suitable for the algorithm. Here we use a

modified version of the numerical representation defined by Kobayashi (2010), which he

developed to represent the venation topology of an artificial cordate leaf.

We encode the axiom and rewriting rules, as well as some additional variables sequen-

tially into a vector x of real numbers, with xi ∈ [0, 1]∀i, as

x = [ xa,1 xa,2 . . . xa,Na︸ ︷︷ ︸
Axiom ω0

y1 y2 . . . yNP︸ ︷︷ ︸
Rewriting rules Pi

xc,1 xc,2 . . . xc,Nv︸ ︷︷ ︸
Additional variables

]. (6.7)

The axiom ω0 consists of Na letters, each of which are represented by a real number

xa,i. The interval [0, 1] of the real number is divide into equally sized segments that

represent the letters in the alphabet Σ. As an example, if the alphabet contains letters

{A,B,C,D}, the encoding is the following:

if xi ∈ [0, 1
4 ] → A

if xi ∈ [1
4 ,

1
2 ] → B

if xi ∈ [1
2 ,

3
4 ] → C

if xi ∈ [3
4 , 1] → D

(6.8)

Each letter σi in the alphabet Σ, containing a total of NP letters, is assigned a rewriting

rule in the format

Pi : σi → βi,1βi,2 . . . βi,14, (6.9)

where the successor of the rule consists of tokens βi,1 . . . βi,14, which are represented by

yi =
[
xi,1 xi,2 . . . xi,14

]
. (6.10)

The successor is decoded from the vector yi as:

• tokens βi,1 and βi,8:

if xi,j ∈ [0, 1
2 ], βi,j = [

else if xi,j ∈ [1
2 , 1], βi,j = λ

• tokens βi,2 and βi,9:

βi,j = $(g(xi,j , θ
min, θmax))
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• tokens βi,3 and βi,10:

βi,j = @(g(xi,j , c
min
s , cmax

s ))

• tokens βi,4 and βi,11:

βi,j = &(g(xi,j , c
min
w , cmax

w ))

• tokens βi,5, βi,6, βi,12 and βi,13:

if xi,j ∈ [0, 1
Na+1 ], βi,j = A

if xi,j ∈ [ 1
Na+1 ,

2
Na+1 ], βi,j = B

if xi,j ∈ [ 2
Na+1 ,

3
Na+1 ], βi,j = C

. . .

if xi,j ∈ [ Na
Na+1 , 1], βi,j = λ

• tokens βj,7 and βj,14:

if βi,j−6 = [, βi,j =]

if βi,j−6 = λ, βi,j = λ,

where λ is an empty token. Further, g is a scaling function, defined as

g(x, cmin, cmax) = cmin + x(cmax − cmin), (6.11)

where cmin and cmax are the minimum and maximum bounds, respectively, of the design

variable associated with a parametric symbol.

Before going into the encoding of the additional variables, let us introduce two new

design variables. First, the non-dimensional extent variable is defined as

cextent = lbranch/
√
l2 + (l/2)2, (6.12)

where lbranch is the distance between the starting point of the turtle and the point in its

path that is furthest away from the starting point (see Figure 6.8). The phenotypes are

scaled in order to fit the parameter lbranch to satisfy Equation 6.12.

Second, the majority of the optimized results in the literature (e.g. the studies by Boichot

and Fan (2016) and Marck et al. (2012)) consists of tree-like structures, where the width

of the branches decreases when moving away from the heat sink. This supports the

physical behavior involving branches becoming wider when approaching the heat sink,

since they drive larger heat flux quantities collected through the domain. The parametric

symbol &(cw) enables changes in the prevailing width between steps, but not during a

step. Therefore, we introduce a new variable ct,j, specific to the letter σj in the alphabet,

which changes the prevailing width during a step linearly from wi−1 to wi = wi−1ct,j.
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These variables induce the structural components of the phenotype to have a trapezoid

shape, and thus we refer to them as trapezoid variables.

The last Nv elements of the vector x represent additional variables, which are

1. the vertical coordinate y0 of the starting point of the turtle (see Figure 6.8),

2. the initial heading θ0 of the turtle (see Figure 6.8),

3. the age n of the L-system,

4. the extent variable cextent, and

5. trapezoid variables ct,1 . . . ct,NP
.

The age n is an integer variable, encoded in the same way as the axiom letters (see the

example in Equation 6.8), whereas the other additional variables are scalar variables,

encoded via the scaling function g (Equation 6.11).

As a summary, the design variable vector x has a total length of

Ntotal = Na + 14NP +Nv, (6.13)

where Nv = 4 +NP.

In this study, we use an L-system design space, in which the axiom consists of four

letters (Na = 4), and the alphabet contains NP letters, as well as the symbols described

above. The number of encoded rewriting rules is equal to the number of letters in the

alphabet. We define variables associated with the parametric symbols and additional

variables to be bound between the minimum and maximum values listed in Table 6.1.

Later, in Section 6.3.5, we study the influence of the number of letters in the alphabet,

NP, on the fitness of the optimized designs, as well as to the number of required objective

function evaluations.

parameter min max

change in the heading θ (rad) −π/2 π/2
relative change in step size cs [-] 0.5 2.0
relative change in width cw [-] 0.5 1.0
vertical coordinate y0 (mm) 0 l/10
initial heading θ0 (rad) 0 π/2
age n [-] 2 4
extent cextent [-] 0.3 1.0
trapezoid variables ct,i [-] 0.4 1.0

Table 6.1: Minimum and maximum values of additional variables and variables
associated with parametric symbols.
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Since both areas |Eu(csca)| and |Ωp(csca)| increase monotonically as a function of the

scaling factor csca, the steps in Equation 6.15 can be solved using a simple bisection

method. We have chosen to use Brent’s method, as we found it to be capable of finding

the root for csca with acceptable precision in typically less than ten iterations.

Finally, the domain Ωp(csca) is projected onto the domain Ω, such that if the center of

a design grid cell lies inside Ωp(csca) the cell belongs to domain Ωp, and, if not, the cell

belongs to domain Ω0. The projection method is described in detail in Appendix D.

6.2.4 Finite Volume Method (FVM)

The finite volume method (FVM) is a discretization method for the approximation of

partial differential equations (PDEs). It is a well-established technology and applicable

to various PDEs describing physical phenomena, such as fluid dynamics and heat trans-

fer. We use the FVM to solve the temperature field of the domain Ω, governed by the

PDEs in Equation 6.1.

Earlier, we discretized the high conductive material distribution in domain Ω into the

Cartesian grid of nx×ny cells – here, we assign the corresponding thermal conductivity,

kp or k0, to the center point of these cells (Figure 6.7). In the FVM, two alternative

schemes are typically used to discretize the finite volumes, which are referred to as the

centered and staggered grids. In the former, the finite volumes are defined using the

above mentioned Cartesian grid of nx × ny volumes, whereas, in the latter, the domain

Ω is discretized into (nx + 1)× (ny + 1) volumes and the boundary volumes are defined

to have half the size of the other cells (Figure 6.7).

Later in this chapter, we will benchmark our results against the SIMP method, which

typically is used in conjunction with the staggered grid to avoid the checkerboarding

problem (see Sections 2.5 and 2.6.1). Therefore, to enable a fair comparison, we choose

to use the staggered grid also with the ground structure approach and L-systems-based

method.

The FVM requires some average of the conductivity at the interface of two finite volumes

(see ki+ 1
2

in Figure 6.7), to evaluate the heat flux between the finite volumes, as well

as, in the case of the staggered grid, a representative heat generation rate of a finite

volume8. In the literature, two averages are used to describe these quantities, which are

arithmetic (Voight) average : k̄ = 1
n

n∑
i=1

ki

harmonic (Reuss) average : k̄ = n
( n∑
i=1

1
ki

)−1
(6.16)

8In Section 6.1, we eliminated the heat generation of the high conductive material domain Ωp
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parameter value unit

heat generation rate qp 0 kW/m2

heat generation rate q0 10 kW/m2

length l 0.1 m
dimension d 0.2l m
conductivity kp 50 W/(mK)
conductivity k0 1 W/(mK)
volume fraction φ 0.1 -
objective function f(χΩp) T̄ K

Table 6.2: Parameters defining the optimization problem.

6.3.1 Control parameters in the ground structure approach

Let us start by examining which GA control parameters to use with the ground struc-

ture approach. In Chapter 3, we studied the effects of the population size and crossover

type on the performance of the GA. We selected the best performing parameters for

the application of the sUAV wing internal structure. Further, in Chapter 4, we studied

the effects of a more extensive set of 432 control parameter combinations on the per-

formance of the GA on five test cases. However, this experiment was conducted on the

map L-systems-based parameterization, which is fundamentally different to the ground

structure approach.

The question here is whether we can exploit the results of the statistical experiment

(on a different parameterization method) to improve the performance of the GA on

the ground structure approach. To investigate this, we run experiments with both the

control parameters9 from Chapter 3 and the control parameter combination #4 from

Table 4.4. The latter was chosen from Table 4.4 because it has the same population size

Npop = 150 as the former.

One of the conclusions of Chapter 3 was that, on the specific application and parameter-

ization method, GAs with the distributed crossover have better performance than those

with the two-point crossover. The crossover type of the parameter combination #4 is

the two-point crossover. Therefore, we also run experiments with a modified version of

the parameter combination #4, where we set the crossover type to be the distributed

crossover.

The optimization problem is characterized by the parameters listed in Table 6.2. We use

a quadrilateral ground structure with diagonals, with a density of 12×6, and choose the

number of non-dimensional widths to be Nw = 2. We repeat the optimization processes

30 times with each of the three parameter combinations, and we terminate the optimiza-

tion processes when no improvements are found during 50 consecutive generations.

9These control parameters are: Npop = 150, Npool = 4, cx = 0.9, cm = 0.02, Xtype = ’distributed’
and Ebool = True.
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Because of this, we will use it with the ground structure approach in the remaining of

this chapter.

control control
rank j quantity parameters 1 parameters 2 U p jα/n

1 Q Chapter 3 #4 (distributed) 184.5 7.51E-05 8.33E-03
2 Q Chapter 3 #4 211.0 2.11E-04 1.67E-02
3 T̄ #4 (distributed) #4 245.0 2.03E-03 2.50E-02
4 T̄ #4 (distributed) Chapter 3 289.0 1.37E-02 3.33E-02
5 T̄ #4 Chapter 3 375.0 1.35E-01 4.17E-02
6 Q #4 #4 (distributed) 433.5 4.94E-01 5.00E-02

Table 6.3: The family of statistical tests (j = 1 . . . 6), ranked in decreasing order
of significance. In each test, control parameters 1 has on average of the obtained
results a better performance than control parameters 2. Based on the results,
we reject the null hypothesis H0 in tests j = 1 . . . 4.

6.3.2 Ground structure type and density

In this section, we study the effects of the type and density of the ground structure on

the optimized average temperature T̄ and the number of objective function evaluations

Q. We retain the other optimization parameters the same as in the previous section.

The types of the ground structure are the quadrilateral with diagonals (Figure 6.4(a))

and hexagonal (Figure 6.4(b)), and we use densities 4 × 2, 8 × 4 and 12 × 8. These

ground structures are fitted to the domain Ω so that at least one of the ground structure

members touch the center of the heat sink.

We again repeat the optimization runs with each of the six ground structures 30 times.

Figure 6.11 shows the distributions of optimized average temperature T̄ and the required

objective function evaluations Q, and Figure 6.12 visualizes the best obtained designs.

With both ground structure types, the average number of required objective function

evaluations clearly increases when we increase the density of the ground structure. How-

ever, the best designs, on average, are rather surprisingly obtained with the coarsest

quadrilateral ground structure (density 4 × 2). The designs obtained with this ground

structure have, on average, 34.7% lower average temperature T̄ than the designs ob-

tained with the same type of ground structure but with density 8× 4. Considering that

the design space of the latter contains all designs of the former, the result indicates that

the finer quadrilateral ground structures (densities 8× 4 and 12× 6) have design space

complexities beyond the capabilities of the GA.

However, the quadrilateral ground structure with density 12×6 yields, on average better

designs than with density 8×4. We believe that the reason is the fact that in the former,

unlike the latter, contains ground structure members, which touch the heat sink at more

than one locations (see Figures 6.12(b) and 6.12(c)).
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The coarsest hexagonal ground structure (density 4 × 2) has roughly the same design

space size as the coarsest quadrilateral ground structure (the numbers of design variables

are 21 and 23, respective). However, the designs obtained with the former have, on

average, 27.6% higher average temperature T̄ than with the latter. The reason could be

that the coarsest hexagonal ground structure only has a single ground structure member

touching the center point of the heat sink, while in the corresponding quadrilateral

ground structure the corresponding number is three. Considering only the hexagonal

grounds structures, the best designs, on average, are obtained with the density 8× 4.

We conclude that the optimized average temperature T̄ depends significantly on the used

ground structure and, yet, the type and density of the most suitable ground structure

are difficult to determine prior the optimization process.

6.3.3 Ground structure approach versus L-systems-based method

The L-systems-based method, which we described in Section 6.2.2, does not require such

a priori information. In this section, we use it to solve the above defined optimization

problem.

Let us next choose the control parameters for the GA that evolves the L-system designs.

In Chapter 4, we performed a statistical experiment of various control parameters on the

performance of the map L-systems-based method. However, because the interpretation

formalism of L-systems we use here (the turtle interpretation) is not the same as in

the statistical experiment (map L-systems), the obtained results may not be applicable

when choosing the control parameters for the current application. Nevertheless, as both

parameterizations are still based on L-systems and we lack of a better guess of the

most suitable control parameters, we rely on the results obtained from the statistical

experiment. Thus, we pick the control parameter combination #4 (Table 4.4), which

has the same population size Npop = 150 as in the ground structure approach.

However, because the current parameterization contains many scalar variables, we here

change the mutation operator to a Gaussian mutator10, with mean µ = 0 and standard

deviation σ = 0.3. This mutation operator may set a real variable of the vector x

(Equation 6.7) outside its bounds [0, 1], in which case we repair it by adding/subtracting

the appropriate integer number, e.g. −0.1 becomes 0.9.

We define the L-system alphabet Σ to consist of letters {A,B,C,D} (as well as the

symbols described earlier) and, thus, the number of encoded rewriting rules is NP = 4.

We terminate the optimization runs when no improvement is found during 50 consecutive

generations.

10Swap mutator was used in the statistical analysis.
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method in multi-objective optimization with relevant temperature and manufacturing

related constraints.

6.3.4 Boichot’s problem parameters

Let us start by selecting relevant reference studies in the literature. As we mentioned in

the Section 2.8.2, Boichot and Fan (2016) showed that their GA-based algorithm yields

lower non-dimensional thermal resistances than the studies using cellular automata,

constructal theory and ESO (see references in Section 2.8.2). Let us refer to this approach

as the direct encoding method. The non-dimensional thermal resistance, specific to a

reference temperature Tref , is defined as

R{Tref} =
Tref − Tsink

q0A/k0
, (6.17)

where Tsink is the temperature of the heat sink, q0 is the heat generation rate within the

domain Ω0, and A is the area of the domain11 (Bejan, 1997). The reference temperature

Tref is either T̄ or Tmax, depending on the objective function studied. The purpose of

the non-dimensional thermal resistance is to enable the comparison of optimized designs

with different problem parameters q0, A, kp/k0 or φ.

Boichot and Fan (2016) also indicate that their results are similar to those obtained by

Marck et al. (2012) using the SIMP method. Therefore, we choose to benchmark our

results against these two studies.

Looking more closely into the comparison by Boichot and Fan (2016), the comparability

of non-dimensional thermal resistances between these two studies is, in fact, limited,

due to the following reasons. First, Marck et al. (2012) define the heat generation to

occur in both domains Ω0 and Ωp, whereas Boichot and Fan (2016) set it only to the

domain Ω0. Second, the heat sinks have different sizes; Marck et al. (2012) define it to

be 1% of the left boundary, whereas Boichot and Fan (2016) define it to be 20% (of the

same boundary). Third, discretizations of the design domains are different. Marck et al.

(2012) used a staggered grid of 200 × 100 elements, whereas Boichot and Fan (2016)

used a centered grid of 100× 50 elements.

To ensure a fair comparison between the three methods, we test our L-systems-based

method, presented in this work, on the same optimization problems that were studied

by Boichot and Fan (2016) and generate the corresponding results using the SIMP

method12 implemented by Marck et al. (2012). The optimization problems are defined

based on the objective function, the conductivity ratio kp/k0 and the volume fraction φ

11In our case, the design domain has a square shape, and therefore A = l2.
12In the SIMP method, we use a sensitivity filter with a radius of 1.25∆x (or 1.25∆y) to avoid

checkerboarding.
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(see Table 6.4), while the other problem parameters, qp, q0, l, d and k0, are fixed to the

values defined in Table 6.2.

Depending on the method under consideration, the design grid does not have the same

size:

• as mentioned earlier, Boichot and Fan (2016) generated the direct encoding results

using the centered grid of 100× 50 elements,

• in the analysis using the L-systems-based approach, we use a staggered grid of

200×100 elements, which provides a suitable trade-off between the design accuracy

and fast mapping,

• SIMP method uses a grid of 400 × 200 elements. Indeed, this approach required

a filtering step in order to avoid the so-called checkerboard problem, which arti-

ficially aggregates high-conductivity elements together. Consequently, the thinest

branches that the SIMP method is able to produce have the same width as the one

coming from the L-system approach, ensuring a meaningful comparison between

both designs.

Finally, we evaluate all the optimized designs (including the ones obtained by Boichot

and Fan (2016)) using the same staggered grid of 800×400 elements and the same FVM

solver (see Section 6.2.4). This involves an additional projection method, which we use

to map the designs from the coarse grids (that hold 100 × 50, 200 × 100 or 400 × 200

elements) to the fine grid of 800× 400 elements.

f(χΩp) # kp/k0 [-] φ [-] # f(χΩp)

T̄

1 2 0.3 7

Tmax

2 10 0.1 8
3 10 0.3 9
4 10 0.5 10
5 50 0.3 11
6 250 0.3 12

Table 6.4: Optimization problem objectives and parameters kp/k0 and φ: in
optimization problems #1-6 the objective is to minimize the average temper-
ature T̄ , whereas in optimization problems #7-12 the objective is to minimize
the maximum temperature Tmax.

6.3.5 Variation of the L-systems-based method parameters

Before generating the results with the L-systems-based method, let us conduct trade-off

studies on two main parameters of the method. We conduct the trade-off studies on the

optimization problems #2 and #6 (Table 6.4), which have both different conductivity
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ratios kp/k0 and volume fractions φ. We repeat the optimization runs 30 times with

each of the studied parameters.

6.3.5.1 Control parameters

The first parameter is the choice of control parameter combination from Table 4.4, which

represents the Pareto front in the space of average optimized objective function value

and the average number of objective function evaluations. As we approximated the

Pareto front using five low-cost test cases, an interesting question here is whether we

would obtain similar results on the current ‘real-life’ topology optimization problem. If

positive, what is the trade-off between the optimized average temperature T̄ and the

number of objective function evaluations Q on the current optimization problem.

We repeated optimization runs on both optimization problems with control parameter

combinations #1, #4, #7 and #12, which represent points at the Pareto front with

different population sizes, i.e. 200, 150, 100, and 50, respectively. Figure 6.16 presents

the distributions of the optimized average temperature T̄ and the number of objective

function evaluations, Q, of these optimization runs.

In the optimization problem #2, the average number of required objective function

evaluations, Q̄, has the same trend as in the Pareto front obtained from the statistical

experiment: the order of the control parameter combinations is #12, #7, #4, #1,

starting from the one that defines the algorithm with the smallest computational cost.

Based on the results, we can also see that the spread of Q increases significantly with

the computational cost.

However, the average of the optimized average temperature T̄ of the control parameter

combination #4 seems to be lower than that of the combination #1, which is against

the expected trend. To see whether the trend continues, we amended the tested control

parameter combinations with a modified combination #1, in which the population size

is increased13 to Npop = 300. As a result, the unexpected trend continued (see Figure

6.16(a)). On the other hand, the averages of the optimized average temperature T̄

and the number of objective function evaluations Q follow the expected trends in the

optimization problem #6. Although we do not know the reason for the unexpected

trend and acknowledge that our sample size is still fairly small, we select the control

parameter combination #4 for the remainder of this chapter.

13Earlier, we found that, on the test cases, the increase in the population size Npop increases both the
average fitness of the optimized designs and the average number of objective function evaluations (see
Figure 4.4(a) and 4.5(a)).
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The L-systems-based method yields on average better designs than the direct encoding

method (Boichot and Fan, 2016) in problems #1-6. These conclusions are statistically

significant.

The effectiveness of L-systems-based method against the SIMP method seems to be

dependent on the dimensionless coefficient φkp/k0 (Figure 6.18). When φkp/k0 ≤ 1 (op-

timization problems #1-2), the L-systems-based method yields lower objective function

values than the SIMP method, whereas, when φkp/k0 ≥ 3 (optimization problems #3-6),

the optimized objective function values are higher. Looking at the optimized designs in

Figure 6.19, the complexity of the designs seems to be related to the dimensionless coef-

ficient φkp/k0. We name two potential reasons why the L-systems-based method cannot

find as good designs as the SIMP method in optimization problems where φkp/k0 ≥ 3:

1) the parameterization is not flexible enough to define designs with required geometrical

complexity (see Figure 6.19(f) as a reference) and/or 2) the method fails to fine-tune

the details of these designs as it does not use the gradient information of the objective

function.

Figure 6.19 presents a comparison of optimized designs for three representative optimiza-

tion problems (#1, #2 and #6)15. The optimized designs for the other optimization

problems (#3, #4 and #5) are presented in Figure F.1 in Appendix F.

In optimization problem #1 (Subfigures a, d, g), the L-systems-based method yields a

design where the North and South boundaries of the high conductive material are clearly

coarser than in the reference designs.

15The presented designs corresponding to the L-systems-based method are the best of 30 repeated
optimization runs (the same applies later to Figure 6.21).
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5 10 15 20 25 30 35 40 4 8 12 16 20 24 28 0.15 0.30 0.45 0.60 0.75 0.90

(a) Problem #1 (direct encoding) (b) Problem #2 (direct encoding) (c) Problem #6 (direct encoding)

(d) Problem #1 (SIMP) (e) Problem #2 (SIMP) (f) Problem #6 (SIMP)

(g) Problem #1 (L-systems) (h) Problem #2 (L-systems) (i) Problem #6 (L-systems)

Figure 6.19: Comparison of designs obtained for three representative problems
#1, #2 and #6.
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In optimization problem #2 (Subfigures b, e, h), all methods yield designs where the

high-conductive material is distributed in patterns featuring only radial branches start-

ing from the heat sink, with no bifurcations in the outmost regions of the domain.

However, the numbers of radial branches in these designs are different, ranging from 6

to 12 – the design obtained by the L-systems-based method having the most branches.

In optimization problem #6 (Subfigures c, f, i), the design obtained by the L-systems-

based method has a similar radial pattern of high-conductive material, whereas the cor-

responding designs with the direct encoding and SIMP methods have a bifurcating tree

structure with three different scales. Despite having a fundamentally different topology,

the average temperature of the design by the L-systems-based method (Subfigure i) is

only 1.7% higher than the corresponding design reached by the SIMP method (Subfigure

f).

Let us next examine the results for optimization problems #7-12, where the objective is

to minimize the maximum temperature Tmax. Here, we only benchmark the L-systems-

based method against the direct encoding method, as the SIMP method would require

transforming the min-max problem into a new one involving the p−norm operator, which

is continuous and differentiable (cf. the paper by Yan et al. (2018)). Making comparisons

between both formulations would be problematic since they do not involve the same

objective functions and because the solutions of the p−norm problem depend on the p

value (that is usually selected based on different numerical tests). Figure 6.20 shows

the benchmarking of the L-systems-based results against the direct encoding ones for

optimization problems #7-12. The corresponding numerical data is presented in Table

6.6. As the results obtained are normally, or nearly-normally, distributed (see Figure

E.2 in Appendix E), we again report the mean and 95% confidence interval (determined

based on the standard error) of the results obtained using the L-systems-based method.

pb. direct encoding L-systems
Tmax [K] R{Tmax} × 103 Q̄× 10−6 Tmax [K] R{Tmax} × 103 Q̄× 10−3

#7 41.029 820.58 ∼5-7 40.180 ± 0.093 803.59 ± 1.86 34.3
#8 29.380 587.61 ∼5-7 27.665 ± 0.050 553.29 ± 1.00 29.5
#9 12.508 250.17 ∼5-7 12.031 ± 0.105 240.61 ± 2.09 42.5
#10 6.740 134.80 ∼5-7 6.499 ± 0.058 129.99 ± 1.17 38.8
#11 3.089 61.78 ∼5-7 3.329 ± 0.101 66.58 ± 2.01 45.2
#12 0.833 16.66 ∼5-7 0.967 ± 0.059 19.34 ± 1.18 60.3

Table 6.6: Results in numerical format (see the caption of Table 6.5 for expla-
nations of the symbols).

In optimization problems #7-10, the L-systems-based method yields on average better

results than the direct encoding. In optimization problems #11 and #12, the obtained

designs are on average worse than those obtained by the direct encoding. These conclu-

sions are also statistically significant.
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Figure 6.20: Benchmarking of the L-systems-based method against the direct
encoding method (Boichot and Fan, 2016) for problems #7-12. Tmax,DE is the
maximum temperature optimized by the direct encoding method.

It is worth noticing that in optimization problems #9-12 the performance of the L-

systems-based method gradually decreases against the direct encoding method as the

dimensionless coefficients φkp/k0 increases. Thus, a crossover value, of around 5 to 15,

may exist for the dimensionless coefficient φkp/k0, above which the direct encoding is,

on average, more efficient than the L-systems-based method. However, such trend is

here less clear than in the earlier results between the L-systems-based and the SIMP

methods in Figure 6.18.

Nevertheless, also in optimization problems #11 and #12, the best designs obtained

by the L-systems-based method are better than those obtained by the direct encoding

method; the objective function values of these designs are 2.901 and 0.747 K, respectively.

The L-systems-based method requires significantly fewer objective function evaluations

than the direct encoding method (Table 6.6) – the difference being of two orders of mag-

nitude. However, we want to point out that the convergence criteria of the algorithms

are different and the reporting of the number of required objective function evaluations

in the reference study Boichot and Fan (2016) is limited. Nevertheless, even if the opti-

mization problem #12 is the most demanding from a computational point of view, the

entire set of 30 optimization runs requires 30×60.3 ·103 ≈ 1.8 ·106 function evaluations,

which is only around 36% of a single optimization run with the direct encoding. If we

consider the set of optimization runs as a multi-start approach, the L-systems-based
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method also yields a better result than the direct encoding method for problems #11

and #12.

We believe that there are two main reasons why the L-systems-based method outper-

forms the direct encoding method. First, the designs space of the method is channeled

to favorable designs, in which the entire material distribution is fully connected and

touches the heat sink. Second, as we mentioned in the introduction, L-systems (like

other generative encodings) are construction recipes, which can be used to define di-

verse design spaces with relatively few design variables and are capable of producing

designs consisting of self-similar and hierarchical components.

An example of self-similarity can be seen, for example, in the design in Figure 6.19(h).

Considering either side of the symmetry axis, the material distribution of this design

consists of two compositions of three radial spikes. These compositions are similar to

each other, but of different scales.

Designs obtained by the L-systems-based and direct encoding methods are shown in

Figure 6.21 for problems #7, #8 and #12. These problems have the same conductivity

ratio kp/k0 and volume fraction φ as problems #1, #2 and #6, respectively, which results

were presented earlier in Figure 6.19. The optimized designs for the other optimization

problems (#9, #10 and #11) are presented in Figure F.2 in Appendix F.

In problems #8 and #12, the L-systems-based method also produces designs where most

of the high conductive material is distributed in patterns having only radial branches

(Figures 6.21(e) and 6.21(f)). However, these branches penetrate deeper in the finite-size

volume and their tips are thicker than in Figures 6.19(h) and 6.19(i), mitigating high

temperatures in the outmost regions of the domain, where the temperature increase is

the most critical.

On the other hand, in problem #7, the obtained design with the L-systems-based method

(Figure 6.21(d)) is significantly different to the corresponding design minimizing the

average temperature T̄ (Figure 6.19(g)). As the conductivity ratio kp/k0 is low, the

critical regions for the maximum temperature are located at the two corners furthest

away from the heat sink, which the method seeks to fill with high conductivity material.
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(a) Problem #7 (direct encoding) (b) Problem #8 (direct encoding) (c) Problem #12 (direct encoding)

(d) Problem #7 (L-systems) (e) Problem #8 (L-systems) (f) Problem #12 (L-systems)

Figure 6.21: Comparison of designs obtained for three representative problems
#7, #8 and #12.

6.3.7 Multi-objective optimization

The design of realistic engineering systems often quickly becomes multi-objective. There-

fore, in this section, we demonstrate the suitability of the L-systems-based method to

tackle multi-objective design optimization of heat conductors with both scalar and inte-

ger objectives. The purpose is to obtain a set of Pareto optimal designs in the objective

space, which represent the best trade-offs between two competing objectives.

As the optimization algorithm, we here apply the NSGA-II (Section 2.3.4). We use the

same control parameters as in the single-objective optimization with slight modifications.

The tournament pool size is changed into two, as defined Deb et al. Deb et al. (2002).

The implementation of NSGA-II in DEAP requires the population size to be a multiple of

four (Fortin et al., 2012), so we change it to be 152. Finally, we terminate an optimization

after 300 generations.

Let us first examine an optimization run where the objectives are to concurrently min-

imize the average and maximum temperatures, T̄ and Tmax, which were individually

minimized in the previous section. We define the conductivity ratio kp/k0 and volume
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there is any compromise design that provides a good heat transfer with lesser geometrical

complexity. The L-systems-based method provides one possible measure for ‘design

complexity’: the number of steps taken by the turtle. Let us refer to this measure

as the number of elements. Figure 6.22(b) shows a bi-objective version of solving the

optimization problem #2, using the number of elements as the second objective. Clearly,

the resulting designs can be chosen to be much simpler in shape, albeit at the expense

of conductive performance.

6.4 Conclusions

In this chapter, we applied our versions of the ground structure approach and the para-

metric L-system-based method to the conductive topology optimization problem defined

by Bejan (1997). We found that, when using the ground structure approach, the opti-

mized average temperature T̄ is highly dependent on the chosen ground structure type

and density.

The L-systems-based method, the implementation and evaluation of which were the

main objective of this chapter (see the reasoning in Section 2.9), yielded, on average,

24.1% lower optimized average temperatures than the ground structure approach on the

initial optimization problem (which parameters were listed in Table 6.2).

Next, we benchmarked the L-systems-based method against two relevant topology opti-

mization methods in the literature, i.e. the GA-based direct encoding (Boichot and Fan,

2016) and the SIMP method (Marck et al., 2012), on several different optimization prob-

lems (which parameters were listed in Table 6.4). We obtained statistical significance

that the L-systems-based method yields better designs than the direct encoding in 10

out of 12 tested optimization problems. Further, our results indicate that the method

yields lower objective function values than the widely used and well established SIMP

method in optimization problems, the dimensionless coefficient φkp/k0 of which is less

or equal to 1.

One of the motivations to conduct this work has been to find improvements to evolution-

ary topology optimization, which have not gained significant acceptance in the topology

optimization community. Evolutionary topology optimization methods are often criti-

cized because of their difficulty of ensuring structural continuity in the designs (Munk

et al., 2015) and because they require orders of magnitude more function evaluations

than the gradient-based topology optimization methods (Sigmund, 2011) (see Chapter

1). The (evolutionary) L-systems-based method, we use in this chapter, naturally pro-

duces designs with full structural connectivity and requires two orders of magnitude

fewer function evaluations than the direct encoding method.
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In addition, we demonstrated the suitability of the L-system-based method to multi-

objective optimization of an electrical device cooling system, involving both temperature

and manufacturing related objectives. As the method does not rely on the gradient

information, it is (unlike the SIMP method) also applicable to integer, or other non-

differentiable, objective functions.

Despite having the flexibility of generating branching tree-structures, the L-systems-

based method yielded mostly designs, in which the dominant feature is the radial pattern

of high conductive material (see Figures 6.19(h), 6.19(i), 6.21(e) and 6.21(f)). This

observation is in line with the conclusions of the recent study by Yan et al. (2018).

The authors initiated the SIMP method from rank-1 laminates, which resulted in radial

material distributions they refer to as lamellar needle structures. The authors showed

that these structures have lower average and maximum temperatures than branching

tree-structures, typically considered as the optimal structural type in the literature, in

several test cases.

The interpretation of L-systems into three-dimensional geometries is already an estab-

lished method in computer graphics to represent biological organisms (Prusinkiewicz

and Lindenmayer, 2012). Thus, the methodology presented here is extensible to three-

dimensional topology optimization, simply by adding two new symbols to the alphabet

Σ and the corresponding numerical representation. These symbols command the turtle

to pitch up or down or roll with respect to its previous heading.

The method is also applicable to fields outside thermal systems, such as urban plan-

ning or designing escape routes in music festival areas, airports or large sports arenas

(Gersborg-Hansen et al., 2006), in other words, to applications that involve volume-to-

point or area-to-point problems.



Chapter 7

Application III: Integrally

stiffened panel

The main objective of this chapter is to parameterize the stiffener layout of an integrally

stiffened panel using map L-systems, and apply the parameterization method to the

fundamental natural frequency maximization of the structure.

In Section 2.8.3, we listed the following advantages of the map L-systems-based method

for the purpose. First, when using the method, the phenotypes can be ensured to

consist of stiffener-like structural members, facilitating the manufacturing of the final

design. Second, unlike the turtle interpretation of L-systems, the map L-systems yield

phenotypes that do not have ‘dead end’ stiffeners. Presumably, structural discontinuities

would not be beneficial for the current application. Third, as we have already mentioned

in the context of the previous applications, the method does not require a priori definition

of candidate structural members.

Throughout this work, we have investigated whether direct or generative encodings are

more suitable for the studied optimization problems. Therefore, also here, we apply the

ground structure approach (i.e. a direct encoding method) to the optimization problem.

Finally, we benchmark the results against integrally stiffened panels with commonly

used iso- and orthogrid layouts, with optimized stiffener spacings.

7.1 Optimization problem

The objective of the optimization problem is to maximize the fundamental natural fre-

quency ωf of an integrally stiffened aluminum panel, subject to mass and manufacturing

171
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Property Value Unit

panel dimensions l × l 1.0 × 1.0 m
total mass mpanel 8.0 kg
panel thickness tskin 1.0 mm
stiffener aspect ratio hstiffener/tstiffener 7.5 -
Young’s modulus E 73.1i GPa
Poisson’s ratio ν 0.33i -
density ρ 2780i kg/m3

i www.aerospacemetals.com (accessed on 2nd August 2017)

Table 7.1: Properties of the optimization problem.

constraints. The panel is defined to have a square shape and is manufactured from alu-

minum alloy 2024-T3, commonly used in aircraft structures (see Table 7.1 for geometrical

and material properties).

The material is intended to be removed via face milling or chemical etching1. We impose

two manufacturing constraints: the minimum wall thickness is 1 mm, and all stiffeners

(in a design) have the same size. In addition, all stiffeners are assigned to the same side

of the panel (assuming the other side to be wetted by flow). Separately in each design,

the stiffener size is scaled so that the total mass of the structure is 8 kg. Therefore,

the optimization problem is about finding a suitable trade-off between local and global

stiffening. A coarse stiffener layout may not provide adequate support for local plate

sections, which become critical for vibration. On the other hand, if the stiffener layout

is fine, the stiffener size decreases, and therefore the global oscillation mode involving

the entire structure becomes critical.

We evaluate the fundamental natural frequency ωf of individuals by finite element(FE)-

based modal analysis. The analyses are performed using FE software, Abaqus. The

creation of FE models, their execution and post-processing are automated using the

Python scripting interface of Abaqus. The boundary conditions are specified to be

pinned for all the four edges of the panel. Both the skin panel and the stiffeners are

modeled using first order shell elements. The skin sections between the stiffeners are

meshed using a quad-dominated algorithm, producing both triangular and quadrilateral

elements. The geometry of all stiffeners is a rectangle, and therefore they are meshed

using only computationally more efficient quadrilateral elements. The mesh density of

the FE model will be chosen in Section 7.4.

1The manufacturing constraints, we here impose, also enable the manufacturing technique where the
stiffeners are attached to the panel using friction stir welding.
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7.2 Methods

This section describes in detail the implementation of the ground structure approach

and the map L-systems-based method to the current topology optimization problem.

We evolve both parameterizations by genetic algorithms (GAs).

7.2.1 Ground structure approach

The plate structure, as well as its boundary conditions, has two perpendicular symmetry

axes. We make a priori assumption that the optimal topology is also symmetrical at

least with respect to one of these axes. Thus, we define the ground structure inside a

rectangular domain that represents half of the stiffener layout on the plate structure (see

the continuous lines in Figure 7.1(a)). The other half of the stiffener layout is generated

by mirroring the first with respect to the vertical symmetry axis (see the dashed lines

in the same figure). As the edges of the plate are defined to have pinned boundary

conditions, we omit the stiffeners lying on them. Figure 7.1(b) shows the full ground

structure mirrored and mapped to the panel structure.

We again use the same types of ground structure as in Chapters 3 and 6, i.e. the

quadrilateral with diagonals (Figure 7.1) and hexagonal ground structure (Figure 7.2).

Moreover, we vary the density of the ground structure using the density measure m×n,

defined in Section 6.2.12. Both ground structures visualized in Figures 7.1 and 7.2 have

a density of 10× 5.

We encode the existence of ground structure members into the genotype x as binary

variables. Figure 7.1 shows the order of these variables in the case of the quadrilateral

ground structure.

2However, as the orientation of the ground structure here is different, m and n are the numbers of
boundary segments in the west and south boundaries, respectively.
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(a) mirroring and indexing of the ground structure members

(b) full ground structure

Figure 7.1: Rectangular ground structure with diagonals having a density of
10× 5.
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(a) mirroring (b) full ground structure

Figure 7.2: Hexagonal ground structure having a density of 10× 5.

7.2.2 Map L-systems-based method

Earlier in this work, we have described how the phenotypes of map L-systems are con-

structed based on the axiom, rewriting rules and additional variables (Section 2.7.2) and

how we encode the axiom, rewriting rules and additional variables into the numerical

format suitable for GAs (Sections 2.7.3 and 4.1). We here use the map L-systems to

represent the stiffener layout on the panel structure.

We assume, in the same way as with the ground structure approach, that the optimal

stiffener topology is symmetric at least with respect to one of the symmetry axes. Thus,

we define the axiom to be a rectangle, covering half of the plate domain (see nodes 1-4

and the continuous lines in Figure 7.3(a)), and define the second half to be the mirror

image of the first half.

We represent the existence of the edge {4, 1}, laying on the symmetry axis, by an ad-

ditional, boolean design variable. The boundary edges {1, 2}, {2, 3}, {3, 4} and their

mirrored counterparts are excluded from the stiffener topology.

Figure 7.3 demonstrates the mirroring and mapping of a map L-system phenotype into

the panel structure. The phenotype is the third developmental stage of the map L-system

described in Equation 2.24.
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12 2’

3 3’4

(a) the map L-system and its mirroring (b) the mapped stiffener layout

Figure 7.3: The third developmental stage of the map L-system in Equation
2.24 mapped as a stiffener layout.

7.2.3 Scaling

Once the stiffener layout is generated, we scale the cross-sectional area Acs of the stiff-

eners3 to satisfy the mass constrained, using equation

Acs =
mstiffener

ρltot
, (7.1)

where mstiffener is the mass budget of the stiffeners and ltot is the total length of the

stiffeners in the panel structure. The mass budget of the stiffeners, mstiffener, is equal to

the total mass constraint mpanel subtracted by the panel mass ρl2tskin.

Using the defined stiffener aspect ratio, the stiffener thickness tstiffener and height hstiffener

are  tstiffener =

√
Acs

7.5

hstiffener =
√

7.5Acs.

(7.2)

The stiffener height hstiffener is modeled as the actual height of the stiffener in the FE

model, and the stiffener thickness tstiffener as a parameter of the corresponding shell

elements.

7.3 Reference designs

First, we need to determine the optimal stiffener densities for reference designs with

iso- and orthogrids, which maximize the objective function ωf . We use the number of

3In the definition of the optimization problem, the stiffeners were constraint to have the same size
(see Section 7.1).
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Figure 7.5: Mesh density verification of the baseline design, i.e. the orthogrid
with five seeds a side.

7.4 Mesh density verification

As described already in Application I (Section 3.7.4.1), FE analysis results are dependent

on the mesh density. Selecting the mesh density is a trade-off between accurate results

and high computational cost. In this section, we examine an adequate mesh density for

the current application. We use the baseline design as a representative structure for the

mesh density study.

We tested the model using six mesh densities; Figure 7.5 shows the fundamental natural

frequency as a function of representative element size. Typically, coarse mesh stiffens

the structure, and leads to the overestimation of natural frequencies. However, in our

application, the coarser the mesh density is, the more the fundamental natural frequency

is underestimated. As the behavior is rather unexpected, we also studied the effect of

mesh density on a structure containing only the skin panel (orthogonal design with

no stiffeners in the x-direction in Figure 7.4). With this structure, we observed the

typical behavior: the coarser the mesh is, the more the fundamental natural frequency is

overestimated. The reason for the opposite behavior with the baseline design is unknown,

but could be related to a coarse mesh not being able to represent the fundamental mode

shape, which would also affect the mass matrix of the FE model. A similar opposite

dependency can be seen, for example, in the mesh density study by Liu and Glass (2013).
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For the remaining of this chapter, we choose to use the representative element size

of 8 mm for the skin plate and stiffeners in their longitudinal direction. We found the

fundamental natural frequency with this element size to be 0.35% smaller than that with

the smallest tested element size. During an optimization process, some designs may have

significantly smaller stiffener height. To ensure an adequate number of elements also in

the shortest direction of these stiffeners, we halve the representative element size to 4

mm in their transverse direction4.

7.5 Results

In this section, we, first, examine the results obtained by the ground structure approach

and map L-systems-based method separately and, finally, benchmark them against the

baseline design, presented in Section 7.3.

7.5.1 Ground structure type and density

Here we evolve the ground structure approach parameterization, defined in Section 7.2.1,

using a single-objective GA5. We choose to use the modified control parameter combi-

nation #4, because we found it to yield the best final designs (out of the three studied

parameter combinations) in the previous application (see Section 6.3.1). We acknowl-

edge that most likely a better control parameter combination exists for the current

application – nevertheless, this combination is our most educated guess based on the

earlier experiments of this work.

Earlier in this work, we observed that the results obtained by the ground structure

approach are highly dependent on a priori choices of the ground structure type and

density. The main purpose of this section is to study the effects of these two on the

results of the current optimization problem. We conducted a set of experiments with

both the quadrilateral and hexagonal ground structures of densities 6× 3, 8× 4, 10× 5

and 12× 6. Optimization runs with each ground structure were repeated five times.

Figure 7.6 presents the obtained distributions of the optimized fundamental natural

frequency ωf and the number of objective function evaluations Q. The average number

of required objective function evaluations, Q̄, seems to increase with the density of

the ground structure. However, the deviation of the results is large, especially with

quadrilateral ground structures of densities 8× 4, 10× 5 and 12× 6.

The densities that yield, on average, the highest optimized fundamental natural fre-

quencies with the quadrilateral and hexagonal ground structures are 8 × 4 and 6 × 3,

4The presented results for the reference designs (Figure 7.4) were generated using the representative
element sizes specified herein.

5See Section 2.3 for a review of GAs.
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(a) Quadrilateral (6 × 3) (ωf = 150.98 Hz) (b) Hexagonal (6 × 3) (ωf = 130.37 Hz)

(c) Quadrilateral (8 × 4) (ωf = 158.10 Hz) (d) Hexagonal (8 × 4) (ωf = 114.02 Hz)

(e) Quadrilateral (10 × 5) (ωf = 145.05 Hz) (f) Hexagonal (10 × 5) (ωf = 102.66 Hz)

(g) Quadrilateral (12 × 6) (ωf = 138.22 Hz) (h) Hexagonal (12 × 6) (ωf = 94.02 Hz)

Figure 7.7: The best obtained designs using the ground structure approach.
The contours indicate the fundamental mode shape.
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sample size is relatively small, we cannot draw any statistically significant conclusions

from the data8.

The best design (Figure 7.10(a)), which convergence history is shown in Figure 7.11,

was obtained using the parameter combination #7. It consists of two radial lines of

stiffeners, laying at the two perpendicular symmetry axes, and three circumferential

stages of stiffeners. While mirroring is applied with respect to the vertical symmetry

axis, the design is also nearly-symmetric with respect to the horizontal symmetry axis.

The corresponding map L-system and its additional variables are

Axiom: ω0 = CCAC

Rules: P1 : A→ [+
→
D ][+B]C[+

←−
D ]A

P2 : B → [−B][+D][−D]C[−
→
D ][+

→
B ]

P3 : C → [+D]B[−D]B[−
←−
C ]

P4 : D → [−
→
B ]DB[+C]CD

Additional variables: fa = 0.43263

n = 3

(7.3)

Figure 7.10(b) shows a particular design that occurs frequently among the optimized

designs (13 out of 30 optimization runs yield this design). The design consists of one

stiffener lying at the vertical symmetry axis and seven evenly spaced stiffeners lying

perpendicular to the first. The design is symmetric with respect to both vertical and

horizontal symmetry axes.

(a) The best design (ωf = 159.45 Hz) (b) A frequently occurring design (ωf = 146.73 Hz)

Figure 7.10: Representative designs obtained using the map L-systems-based
method.

8Using the two-tailed Mann-Whitney U-test, the smallest p-value of the pairwise tests was p = 0.440
(between parameter combinations #7 and #12).
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relative
Method ωf [Hz] difference [%] Q̄ [103]

isogrid layout 136.93 -4.51 -
orthogrid layout (baseline) 143.39 0.0 -
hexagonal layout 137.61 -4.03 -

ground structure approachi

averageii 154.03 7.42 22.80
highest 158.10 10.26 -

map L-systemsiii

averageiv 149.32 4.14 7.18
highest 159.45 11.20 -

i Quadrilateral ground structure with diagonal members (density 8× 4) ii repeated 5 times iii Control
parameter combination #7 iv repeated 10 times

Table 7.2: Benchmarking of topology optimization results against the baseline
design, i.e. the orthogrid with four stiffeners in x-direction. ωf and Q are the
optimized, fundamental natural frequency and the number of required objective
function evaluations, respectively.

the map L-systems-based method. However, the map L-systems-based method yields

the best known design, which fundamental natural frequency is higher than the baseline

design by a margin of 11.2%.

The map L-systems-based method requires, on average, around one third of the objective

function evaluations of the ground structure approach. However, it should be noted that

the data set corresponding to the map L-systems-based method is generated with the

population size of Npop = 100, while the corresponding value for the ground structure

approach is Npop = 150. Nevertheless, the average number of objective function evalua-

tions of the data set generated with the control parameter combination #4 (Npop = 150)

is also less than half (Q̄ = 10.41 · 103) of that of the ground structure approach.

7.6 Conclusions

In this chapter, we applied the ground structure approach and the map L-systems-

based method to the design optimization of an integrally stiffened aluminum panel,

manufactured via face milling. The ground structure approach yielded, on average,

slightly better designs than the map L-systems-based method. However, we observed

that the optimized designs by the ground structure approach are highly dependent on

the predefined ground structure, and the method requires, on average, more than twice

the amount of objective function evaluations in comparison to the map L-systems-based

method.

Interestingly, the optimization runs with the hexagonal ground structures yielded opti-

mized designs in which all, or nearly-all, of its members were existing. Any non-existing
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ground structure member in the regions of the panel other than its corners seems to

introduce a structural weakness. This indicates that, in this optimization problem,

the hexagonal ground structure is not suitable for the ground structure approach, but

should be considered as a complete layout. We sought the optimal density for the com-

plete hexagonal layout – the resulting structure has a fundamental natural frequency

lower than the baseline design by a margin of 4.03%.

The best designs obtained by the ground structure approach and the map L-systems-

based method have similar features (see Figures 7.7(c) and 7.10(a)); the common char-

acteristics are the circumferential stages and radial lines9 of stiffeners. These designs

have fundamental natural frequencies higher than the baseline design (i.e. the orthogrid

with four stiffeners in x-direction) by the margins of 10.26% and 11.20%, respectively.

This raises an interesting question whether such layouts, e.g. the one shown in Figure

7.10(a), could be used more extensively in vibration critical engineering applications,

instead of the traditional iso- and orthogrid layouts. However, here we emphasize that,

due to the high computational cost of the study, our conclusion is only based on one

optimization problem setup. Future research should include variable dimensions and

mass constraints in the optimization problem to verify the hypothesis.

9In the designs obtained by the ground structure approach, the radial lines of stiffeners lie on the
diagonals of the panel, whereas, in the designs obtained by the map L-systems-based method, they lie
on the vertical and horizontal symmetry axes.
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Conclusions

In this work, we studied evolutionary topology optimization methods with direct and

generative encodings. We narrowed these encodings to the ground structure approach

and to those based on L-systems, respectively. In the next two sections, we present the

contributions of this work, which correspond to the hypotheses defined in Section 2.9.

The contributions are categorized in terms of the two research aims of this work.

8.1 Improving the performance

Motivated by the benefits of evolutionary algorithms, listed in the introduction (Chap-

ter 1), the first research aim of the work was to improve the performance, i.e. the

effectiveness and efficiency1, of the evolutionary topology optimization methods. In the

literature, the poor efficiency of the methods has been indicated as one of the major

drawbacks, limiting their wider acceptance in the topology optimization community

(Munk et al., 2015, Sigmund, 2011).

Contribution 1: In the literature, two-dimensional encoding is indicated to be particu-

larly suitable for optimization problems with two-dimensional architectures, due to their

better geographical-linkage between genotype elements in comparison to one-dimensional

encoding. However, we obtained statistical significance that one-dimensional encod-

ing, with the two-point crossover, is both more effective and more efficient than two-

dimensional encoding on the application of sUAV wing internal structure. This result is

against the hypothesis. Further, we obtained statistical significance that the distributed

crossover is more effective than the two-point crossover (on the application in ques-

tion). Later, in Chapter 6, we obtained the same result on the application of the heat

conductor.

1In Section 1.1, we defined the performance of an algorithm to be evaluated based on two quantities:
its effectiveness (the ability of finding good solutions) and efficiency (the ability of finding them quickly).

188
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Contribution 2: We conducted a statistical experiment of the effects of the genetic con-

trol parameter choices on the performance of the map L-systems-based method (Chapter

4). The experiment involved 432 control parameter combinations, which we evaluated

on five low-cost test cases. Depending on the parameter combination, the average com-

pletion rate of the resulting algorithm on finding the global optimum ranged from 0.0

to around 0.7.2 This result supports the hypothesis that the control parameter choices

have a significant effect on the performance of the algorithm. We reported the best

performing combinations as a Pareto front in the space of effectiveness and efficiency

of the corresponding algorithm (see Table 4.4). We recommend these control parame-

ter combinations as starting points for practitioners applying the map L-systems-based

method to topology optimization problems.

Later, we picked four representative control parameter combinations from the Pareto

front and studied whether we can see similar trends of effectiveness and efficiency on two

‘real-life’ engineering applications. These applications were two different problem setups

of the conductive heat transfer problem3 (Section 6.3.5.1) and the topology optimization

problem of the integrally stiffened panel (Section 7.5.2). In all optimization problems,

the relative efficiency of the control parameters was similar to the statistical experiment.

The relative effectiveness was also similar to the statistical experiment on one of the

optimization problems, but noisy or dissimilar on the other two.

Contribution 3: The statistical experiment (Contribution 2) was motivated by our

third hypothesis that the L-systems encoding acts as a ‘shield’, mitigating the problem-

dependency of the best performing control parameter combinations. Based on the results

of the statistical experiment, we also showed that the rankings of the combinations

have a strong correlation between the test cases (Spearman’s rank correlation coefficient

ranges from 0.645 to 0.979), which indicates that the results have only a weak problem-

dependency and, thus, supports the above described hypothesis. Finally, we acknowledge

that it remains unknown whether the observed correlation is stronger than what would

be obtained from a similar experiment with direct encoding.

Contribution 4: In the literature, one of the design variables of the map L-systems-

based method is typically the ordinal of the developmental stage. A minor change in

this variable may cause a major change in the phenotype, which is potentially disadvan-

tageous to the evolvability of the method. We proposed to linearize the age variable,

and benchmarked the linearized age against the baseline age on the test cases (Chapter

5). The linearization of the age variable both expands the design space and eliminates

the evolvability disadvantage of the method. We obtained statistical significance that

the algorithm with linearized age is more effective in three out of five and more efficient

in four out of five test cases than the corresponding algorithm with the baseline age. We

2These values are averages of Test cases 1-4, as no global optimum was found for Test case 5.
3It should be noted that, here, the interpretation formalism of L-systems was different (the turtle

interpretation) to that in the statistical experiment (map L-systems), which may limit the strength of
this result.
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also ran experiments of the linear and baseline age on the application of the sUAV wing

internal structure, but the results were not statistically significant.

8.2 Suitability of generative encodings

The second research aim of this work was to identify engineering design problems to

which generative encodings, or more precisely L-systems-based methods, are particularly

suitable or unsuitable.

Contribution 5: L-systems and their turtle interpretation are designed to produce

bifurcating tree-structures, which have full structural continuity. We tested them as

a parameterization method in evolutionary topology optimization of a heat conductor.

We obtained statistical significance that the method is more effective than the direct

encoding method by Boichot and Fan (2016) in 10 out of 12 tested optimization problems.

Moreover, we observed that the method is significantly more efficient – requiring two

orders of magnitude fewer objective function evaluations – than the direct encoding

method. Further, our results indicate that the method is more effective than the SIMP

method by Marck et al. (2012) in optimization problems, the dimensionless coefficient

φkp/k0 of which is less or equal to 1 and the objective of which is to minimize the

average temperature of the design domain. These results support the hypothesis that

the method is suitable for topology optimization of heat conductors.

Contribution 6: We tested the map L-systems-based method in the optimization

problem of maximizing the fundamental natural frequency of an integrally stiffened panel

(Chapter 7). The method outperformed the traditional iso- and orthogrids designs on

the tested optimization problem setup. However, it was slightly less effective than the

ground structure approach. Nevertheless, we observed the effectiveness of the ground

structure approach to be highly dependent on the a priori defined set of candidate

structural members. The map L-systems-based method does not require such a priori

definition. In addition, the best known design was obtained by the map L-systems-

based method. Both methods facilitate convenient implementation of manufacturing

constraints.

Let us now compare the results from the three engineering design problems, which

we studied using both L-systems-based methods and the ground structure approach.

In the first, i.e. the design of the sUAV wing internal structure (Sections 3.7 and

5.3), the ground structure approach yielded, on average, 56.3% lighter designs than

the map L-systems-based method. In the second, i.e. the conductive heat transfer

problem, the method based on L-systems and its turtle interpretation yielded designs

the average temperatures of which were, on average, 24.1% lower than those obtained

by the ground structure approach. In the third, i.e. the stiffener layout problem of

the integrally stiffened aluminum panel, the ground structure approach yielded designs
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the fundamental natural frequencies of which were, on average, 3.2% higher than those

obtained by the map L-systems-based method. In the second and third application, we

observed that the results of the ground structure approach were highly dependent on

the type and density of the ground structure.

A fundamental difference between the phenotypes generated by the ground structure ap-

proach and L-systems-based methods is in the continuity of their material distribution.

The ground structure approach flexibly generates discontinuous material distributions,

which is favorable in the first application. On the other hand, the L-systems-based

methods naturally generate continuous material distributions, which is favorable in the

second and third application. We believe that this is the primary reason for the differ-

ences between the obtained results.

We studied two interpretation formalisms of L-systems, which were map L-systems (the

first and third application) and the turtle interpretation (the second application). One

of the benefits of the turtle interpretation is that it enables using more design variables

which continuously change the geometry of the phenotype (see parametric symbols in

Section 2.7.1.1) than the map L-systems. In the map L-systems-based method, we

used in this work4, the variation of the design variables causes discrete changes in the

geometry of the phenotype. Continuous design variables increase the flexibility of the

parameterization.

8.3 On patterns of similar structural members

Finally, let us revert back to the introduction (Chapter 1), where we presented three

engineering designs, containing repeating patterns of similar structural members. These

repeating patterns are motivated by their optimality, aesthetics and manufacturability.

In the literature, a prime example of these repeating patterns is the aircraft wing design

obtained by Aage et al. (2017) (see Figure 2.12). Despite the fact that their design

space has enormous flexibility (due to over one billion design variables), their optimiza-

tion process converged to a design, in which the material distribution near the trailing

edge has clear repeating patterns. Presumably, generative encodings could define ap-

proximately the same distribution of material using significantly fewer design variables.

We obtained designs with repeating patterns of similar structural members, when us-

ing the L-systems-based methods. These patterns are the clearest in designs shown in

Figures 4.3(a), 4.3(b), 6.19(h) and 7.10(a).

4Additional continuous design variables could be included in the map L-systems-based method by
using the dynamic method (see Section 2.7.2).
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8.4 Publications

This research has resulted in one accepted journal article, one submitted journal article

and two conference papers. These publications are listed in Appendix G.

8.5 Future work

In this section, we present three suggestions of the future work to further improve the

performance of the L-systems-based topology optimization and expand its applicability.

8.5.1 Exploring the search algorithms

In this work, we used genetic algorithms (GAs) to evolve L-systems parameterizations,

because of their popularity in the dedicated scientific literature. However, there is no

proof that GAs are more suitable for the purpose than other evolutionary algorithms.

We suggest the exploration of other evolutionary algorithms as future work. Interesting

algorithms are for example teaching-learning based optimization (TLBO) (Rao et al.,

2011) and genetic programming. TLBO is free of control parameters and shown to out-

perform a selection of evolutionary algorithms on non-linear benchmark problems (Rao

et al., 2012). Genetic programming would enable L-systems to be encoded explicitly,

without such numerical representations that are required with GAs.

8.5.2 More complex heat transfer problems

The method based on L-systems (and its turtle interpretation) is promising for heat

transfer problems. We suggest the future work to involve the implementation of more

realistic design domains and physics. As we indicated in Section 6.4, the method is

extensible to three-dimensional design domains by introducing two new symbols, which

command the turtle to pitch or roll in the three-dimensional space.

An interesting heat transfer problem, to which the method could be applied, is the design

of sensible or latent heat storage tanks. The design of such tanks is multi-objective; the

main objectives are to maximize the energy density of the tank and to minimize its

charge/discharge time. The L-systems-based method is well-suited for multi-objective

problems (see Section 6.3.7).
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8.5.3 Varying the optimization problem setups of integrally stiffened

panels

In Chapter 7, we obtained a regular stiffener layout5 (Figure 7.10(a)) that has higher

fundamental natural frequency than the traditional iso- and orthogrids on the tested

optimization problem. We suggest the future work to investigate whether such layout

is also obtained on other optimization problem setups (when using the map L-systems-

based method), and whether these layouts are better than the corresponding iso- and

orthogrids. The optimization problem setups should consider variable panel dimensions

and mass constraints. The future work should also investigate whether the layout has

compromised yield or buckling strength in comparison to the iso- and orthogrids. Po-

tentially, the layout could be used more extensively in integrally stiffened panels that

are attached to vibration critical engineering applications.

5The design consists of circumferential stages and radial lines of stiffeners.



Appendix A

Details of the statistical

experiment in Section 5.1.2

This appendix provides details of the statistical experiment in Section 5.1.2, where we

tested the three algorithms with baseline and linear age variables, of which the latter

was tested with and without the local search. Each of these algorithms was tested on

the five test cases, defined in Chapter 4.

The experiment contains a family of 30 statistical tests, in which the three pairwise

combinations of the algorithms were tested in terms of two quantities: the completion

rate on finding the global optimum, pc, and the average objective function evaluations,

Q̄, on the five test cases. However, for Test Case 5, use the average optimized objective

function value f̄min, instead of the completion rate pc, as its global optimum was not

found.

The null hypothesis H0 in each test is that the mean values of a quantity are similar

(µ1 = µ2) with the two compared algorithms, while the alternative hypothesis H1 is

that the mean values are dissimilar (µ1 6= µ2). We use a significance level of αs = 0.05.

When conducting a family of statistical tests, the probability of Type I error is inflated.

We threat the inflated probability of Type I error by examining the step-up false dis-

covery rate (FDR) (Benjamini and Hochberg, 1995). We explained both the inflated

probability of Type I error and the use of FDR earlier in Section 3.7.4.4.

Considering completion rates pc,1 and pc,2 of two algorithms, and their corresponding

sample sizes n1 and n2, we determine the p-value for the alternative hypothesis H1 from

the Z-value defined as

Z =
µ− µ0

SE
, (A.1)

194
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where µ is the point estimate of the difference in the completion rates (pc,1 − pc,2) and

µ0 is the null value (0). Further, SE is the standard error of the estimate, defined as

SE =

√
p̂(1− p̂)
n1

+
p̂(1− p̂)
n2

, (A.2)

where

p̂ =
pc,1n1 + pc,2n2

n1 + n2
(A.3)

is the pooled completion rate of the two algorithms (Diez et al., 2012).

Probability distributions of average objective function evaluations, Q̄, and optimized

objective function values, f̄min (Test Case 5), are skewed. Thus, in the corresponding

statistical tests, we determine the p-values using the nonparametric Mann-Whitney U-

test.

The results of the statistical tests are ranked in Table A.1, in decreasing order of signif-

icance. In each test, the algorithm having, on average, a better performance is listed as

algorithm 1, and the algorithm with a worse performance as algorithm 2. The last two

columns show the p-value of the test and the corresponding corrected significance level

(Equation 3.9), respectively.

Proceeding in the order j = 30, 29, . . . , 1, the first test satisfying Equation 3.9 is the

test ranked 24th. Therefore, in tests j = 1, . . . , 24, we reject the null hypothesis H0

and accept the alternative hypothesis H1, meaning that the means of the quantities are

dissimilar. In tests j = 25, . . . , 30, we fail to reject the null hypothesis.
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rank (j) test case quantity algorithm 1 algorithm 2 p jα/n

1 3 Q̄ linear age linear age (LS) 3.25E-162 1.667E-03
2 2 Q̄ linear age linear age (LS) 6.48E-119 3.333E-03
3 4 Q̄ linear age linear age (LS) 5.06E-116 5.000E-03
4 1 Q̄ linear age linear age (LS) 9.59E-113 6.667E-03
5 2 Q̄ baseline age linear age (LS) 9.31E-105 8.333E-03
6 3 Q̄ baseline age linear age (LS) 2.11E-104 1.000E-02
7 4 Q̄ baseline age linear age (LS) 3.10E-88 1.167E-02
8 3 Q̄ linear age baseline age 3.70E-82 1.333E-02
9 1 Q̄ baseline age linear age (LS) 2.47E-60 1.500E-02
10 5 Q̄ baseline age linear age (LS) 3.13E-57 1.667E-02
11 5 Q̄ linear age linear age (LS) 7.33E-54 1.833E-02
12 4 pc linear age (LS) baseline age 5.361E-47 2.000E-02
13 4 pc linear age baseline age 8.874E-44 2.167E-02
14 1 Q̄ linear age baseline age 4.33E-32 2.333E-02
15 3 pc linear age (LS) baseline age 1.131E-19 2.500E-02
16 5 f̄min linear age (LS) baseline age 2.301E-19 2.667E-02
17 3 pc linear age (LS) linear age 2.560E-15 2.833E-02
18 2 pc linear age (LS) baseline age 8.033E-12 3.000E-02
19 5 f̄min linear age baseline age 1.434E-09 3.167E-02
20 2 pc linear age (LS) linear age 4.491E-05 3.333E-02
21 4 Q̄ linear age baseline age 1.52E-04 3.500E-02
22 5 f̄min linear age (LS) linear age 5.956E-04 3.667E-02
23 2 Q̄ linear age baseline age 1.24E-03 3.833E-02
24 2 pc linear age baseline age 4.548E-03 4.000E-02
25 1 pc linear age baseline age 5.684E-02 4.167E-02
26 1 pc linear age (LS) baseline age 1.352E-01 4.333E-02
27 3 pc linear age baseline age 2.182E-01 4.500E-02
28 5 Q̄ baseline age linear age 4.35E-01 4.667E-02
29 4 pc linear age (LS) linear age 5.296E-01 4.833E-02
30 1 pc linear age linear age (LS) 6.800E-01 5.000E-02

Table A.1: The family of statistical tests (j = 1, 2, . . . , 30) ranked in decreasing
order of significance, based on their p-values. In each test, algorithm 1 has, on
average of the obtained results, a better performance than algorithm 2.



Appendix B

Optimal map L-systems for Test

Cases 2-5

This appendix lists the map L-systems which phenotypes were shown in Figure 4.3.

These phenotypes are examples of global optima of Test Cases 2-5.

Test Case 2:

Axiom: ω0 = DBBB

Rules: P0 : A→ [−
←−
B ]D

P1 : B → D[+
→
B ][−B][−

→
A ]A

P2 : C → [+
→
C ][−A]CB[−

←−
A ]C

P3 : D → D[+
→
A ][+A]A

Additional variables: n = 4

fa = 0.253516222577

(B.1)

Test Case 3:

Axiom: ω0 = BBBB

Rules: P0 : A→ C[+
→
A ][−

←−
A ]B

P1 : B → C[+C][+
←−
A ][+B][−A][−B]

P2 : C → [−B][+A]B[−C][−A]

P3 : D → D[−
→
B ][−

←−
D ][−

→
C ][−C]

Additional variables: n = 6

fa = 0.199228645547

(B.2)
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Test Case 4:

Axiom: ω0 = DADA

Rules: P0 : A→ [+D][−
←−
C ]DDA

P1 : B → ABC[−
←−
C ][−

→
B ][+

←−
A ]

P2 : C → [+C][+
→
B ][−

→
C ]CC

P3 : D → [−C]D[−B][+
→
A ][+

←−
D ][−

←−
C ]

Additional variables: n = 4

fa = 0.456650213568

(B.3)

Test Case 5:

Axiom: ω0 = BDDA

Rules: P0 : A→ D[+
→
B ]BBBC

P1 : B → AB[−
→
C ][+

←−
C ]C

P2 : C → [−
←−
C ][+

→
A ][+

→
A ]AA

P3 : D → D[−A]DAD

Additional variables: n = 5

fa = 0.0617572222021

(B.4)



Appendix C

Collaboration with Dr. Gilles

Marck

Table C.1 provides the distinction of Dr. Gilles Marck and the author’s contributions

to the work reported in Chapter 6 and in the paper by Ikonen et al. (2018).

contribution the author Dr. Gilles
Marck

1. Literature review X -
2. Ground structure parameterization X -
3. L-systems-based parameterization X -
4. Development of the element width scaling - X
5. Development of the projection - X
6. Implementation of the finite volume method - X
7. Implementation of single and multi-objective genetic
algorithms

X -

8. Development of the plotting function of material and
temperature distributionsi - X

9. Development of other postprocessing tools X -
10. Generation of results using the ground structure
approach

X -

11. Generation of results using the L-systems-based
method

X -

12. Generation of benchmark results using the SIMP
method

- X

13. Statistical analyses X -
14. Preparation of the manuscript: Sections 1 to 3.1
and 4 to 6

X -

15. Preparation of the manuscript: Sections 3.2 to 3.3 - X

i See for example Figures 6.19 and 6.21

Table C.1: Contributions to the work reported in Chapter 6.
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Appendix D

Detailed description of the

projection method used in

Section 6.2.3

Once the appropriate correction factor csca has been determined, the last operation of

mapping is to project the scaled L-system elements included within the domain Ω to

the design grid, which is a Cartesian grid made of Nx×Ny square cells. In other words,

we identify the design cells with centers lying inside the scaled L-system structure Ωp.

This could be done by invoking a Shapely routine (which checks if a point is inside a

polygon). However, we observed this approach to be inefficient from a computational

point of view, mainly due to the complexity of the domain Ωp. Consequently, we have

implemented another approach where we project each trapezoidal element, intersecting

with Ω, separately using following steps:

1. we identify the design cells belonging to the bounding box of the trapezoidal ele-

ment i (see Figure D.1),

2. for each center point of these cells, generically denoted as P ,

(a) we compute the non-dimensional abscissa s of its projection along the trape-

zoidal middle line

s =

−−−→
Pi,0P · →u
||
−−−→
Pi,0P ||

, (D.1)

where→u is the unit vector between the points Pi,0 and Pi,1. If 0 ≤ s ≤ 1, the

projection of P is between the points Pi,0 and Pi,1 and,

(b) we compute the width di(s) of the trapezoidal element i at the abscissa s

using equation

di(s) =
csca

2
(wi,0 + s(wi,1 − wi,0)) . (D.2)
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Distributions of optimized

objective function values in

Section 6.3.6
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(f) Optimization problem #6

Figure E.1: Distributions of the optimized average temperature T̄ in optimiza-
tion problems #1-6
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Figure E.2: Distributions of the optimized maximum temperature Tmax in op-
timization problems #7-12
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9-11 in Section 6.3.6
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2 4 6 8 10 12 1 2 3 4 5 6 7 0.5 1.0 1.5 2.0 2.5 3.0 3.5

(a) Problem #3 (direct encoding) (b) Problem #4 (direct encoding) (c) Problem #5 (direct encoding)

(d) Problem #3 (SIMP) (e) Problem #4 (SIMP) (f) Problem #5 (SIMP)

(g) Problem #3 (L-systems) (h) Problem #4 (L-systems) (i) Problem #5 (L-systems)

Figure F.1: Comparison of obtained designs for optimization problems #3, #4
and #5. The unit of the contour map is K.
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(d) Problem #9 (L-systems) (e) Problem #10 (L-systems) (f) Problem #11 (L-systems)

Figure F.2: Comparison of obtained designs for optimization problems #9, #10
and #11. The unit of the contour map is K.
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List of publications

This research project has resulted in the following publications:

1. T. J. Ikonen, G. Marck, A. Sóbester, and A. J. Keane. Topology optimization

of conductive heat transfer problems using parametric L-systems. Structural and

Multidisciplinary Optimization, https://doi.org/10.1007/s00158-018-2055-7, 2018.

2. T. J. Ikonen and A. Sóbester. Statistical analysis of control parameters in evolu-

tionary map L-systems-based topology optimization. Structural and Multidiscipli-

nary Optimization, 58(3):997-1013, 2018.

3. T. J. Ikonen and A. Sóbester. Two variations to the map L-systems-based topol-

ogy optimization method. In Proceedings of the 17th AIAA Aviation Technology,

Integration, and Operations Conference, Denver, United States, 2017.

4. T. J. Ikonen and A. Sóbester. Ground structure approaches for the evolutionary

optimization of aircraft wing structures. In Proceedings of the 16th AIAA Avia-

tion Technology, Integration, and Operations Conference, Washington DC, United

States, 2016.
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T. J. Ikonen and A. Sóbester. Two variations to the map L-systems-based topology opti-

mization method. In Proceedings of the 17th AIAA Aviation Technology, Integration,

and Operations Conference, Denver, United States, 2017.
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A. Sóbester and A. I. J. Forrester. Aircraft Aerodynamic Design: Geometry and Opti-

mization. John Wiley & Sons, 2014.

B. Stanford, P. Beran, and M. H. Kobayashi. Aeroelastic optimization of flapping wing

venation: a cellular division approach. AIAA journal, 50(4):938–951, 2012.

B. Stanford, P. Beran, and M. H. Kobayashi. Simultaneous topology optimization of

membrane wings and their compliant flapping mechanisms. AIAA journal, 51(6):

1431–1441, 2013.

B. Stanford and P. Ifju. Aeroelastic topology optimization of membrane structures for

micro air vehicles. Structural and Multidisciplinary Optimization, 38(3):301–316, 2009.



BIBLIOGRAPHY 225

B. K. Stanford and P. D. Dunning. Optimal topology of aircraft rib and spar structures

under aeroelastic loads. Journal of Aircraft, 52(4):1298–1311, 2014.

K. O. Stanley. Compositional pattern producing networks: A novel abstraction of de-

velopment. Genetic programming and evolvable machines, 8(2):131–162, 2007.

K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting

topologies. Evolutionary computation, 10(2):99–127, 2002.

K. O. Stanley and R. Miikkulainen. A taxonomy for artificial embryogeny. Artificial

Life, 9(2):93–130, 2003.

T. Steiner, J. Trommler, M. Brenn, Y. Jin, and B. Sendhoff. Global shape with mor-

phogen gradients and motile polarized cells. In Evolutionary Computation, 2009.

CEC’09. IEEE Congress on, pages 2225–2232. IEEE, 2009.

G. N. Stiny. Pictorial and formal aspects of shape and shape grammars and aesthetic

systems. 1975.

K. Svanberg. The method of moving asymptotesa new method for structural optimiza-

tion. International journal for numerical methods in engineering, 24(2):359–373, 1987.

K. Tai and T. H. Chee. Design of structures and compliant mechanisms by evolutionary

optimization of morphological representations of topology. Journal of Mechanical

Design, 122(4):560–566, 2000.

D. Tcherniak. Topology optimization of resonating structures using simp method. In-

ternational Journal for Numerical Methods in Engineering, 54(11):1605–1622, 2002.

L. H. Tenek and I. Hagiwara. Eigenfrequency maximization of plates by optimization of

topology using homogenization and mathematical programming. JSME international

journal. Ser. C, Dynamics, control, robotics, design and manufacturing, 37(4):667–

677, 1994.
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