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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES
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Active vibration control using a nonlinear inertial actuator

by Mattia Dal Borgo

This thesis presents a theoretical and experimental study of a stroke limited inertial

actuator used in active vibration control. The active control system under investigation

consists of an inertial actuator attached to a lightweight flexible structure, a collocated

vibration sensor and a velocity feedback controller (VFC). Since the control force is

generated by accelerating the proof mass, controlling low frequency motions or large

amplitude vibrations requires a very long stroke for the proof mass. One of the main

limitations of inertial actuators is that the stroke length is finite, however. This not only

limits the amount of force available from the actuator but also when the proof mass hits

the end-stops it causes impulse-like excitations that are transmitted to the structure and

may result in damage. Additionally, the shocks produced by the impacts between the

proof mass and the end-stops are in phase with the velocity of the structure, leading to

a reduction of the overall damping of the system, which can give rise to instability of

the system and limit cycle oscillations.

This research examines the implementation of a nonlinear feedback controller to avoid

collisions of the proof mass with the actuator’s end-stops, thus preventing this instability.

The nonlinear model of a stroke limited inertial actuator is first identified using base and

direct excitation experiments and a parameter estimation process. A nonlinear feedback

control (NLFC) strategy is then presented, which actively increases the internal damp-

ing of the actuator when the proof mass approaches the end-stops. The experimental

implementation of the NLFC is investigated for the control of a cantilever beam, and

it is shown that the robustness of the VFC system to external perturbations is much

improved with the NLFC. Finally, a virtual sensing approach based on an extended

Kalman filter algorithm is discussed for the real-time estimation of the states of the

proof mass that is used to calculate the feedback signal of the NLFC. It is shown exper-

imentally that larger velocity feedback gains can be used without the system becoming

unstable when the NLFC is adopted and the theoretical reasons for this increase in

stability margin are explored.
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their course on nonlinearity in structural dynamics that has been a turnaround for my

understanding of this topic.

A special thank you to my former colleagues at Deca Design and in particular to Mr.

Deni De Cesero. His professional expertise as well as his unconditional support and

constant strive for improvement will always be imprinted in my mind. It has been a

privilege working under his guidance.

An enormous thank goes to my colleague and friend Mr. Stefano Camperi from whom

I have learnt a lot both on professional and personal level. Our discussions in the coffee

room and his advices have always been extremely helpful.

I would also like to thank my parents, Antonia and Gianni, and my brother Moreno,

who have always supported me regardless of my decisions.

Thank you to my friends from home for their understanding that I cannot meet them

every weekend as it used to be.

Above all, my deepest gratitude goes to Miss Stefania Del Fabbro for her love and

unconditional support. The happiness and joy she spreads around her have always

motivated and inspired me.

xxii



Nomenclature

Abbreviation Full-form

ADC Analogue-to-Digital Conversion

ADD Active Damping Device

Back-emf Back-Electromotive Force
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Chapter 1

Introduction

1.1 Motivation

Active vibration control plays a vital role in the attenuation of unwanted vibrations in

lightweight and flexible structures, as recognised by extensive research [1–8]. Velocity

feedback controllers (VFCs) are a notable example of active solution that can increase

the effective damping of a structure, reducing its level of resonant vibration [6].

A VFC typically consists of an electromagnetic inertial, or proof mass, actuator attached

to a structure, a collocated vibration sensor and a controller, which feeds back the

velocity of the structure to the actuator. The aim of the inertial actuator is to apply

a control force to the structure proportional to its velocity for the purpose of vibration

reduction. The operating principle of an inertial actuator is that an input current to

the actuator generates a control force on the structure by means of an electromagnetic

transducer, reacting against a proof mass, which starts to accelerate [8].

The internal dynamics of the inertial actuator is known to affect the stability and perfor-

mance of the VFC, which then becomes only conditionally stable [9], so that there exists

a maximum velocity feedback gain, above which the control system becomes unstable

[10]. Previous research has established that higher feedback gains can be used if the

inertial actuator has a low natural frequency and a well damped resonance [10].

On the other hand, this solution increases the proof mass static displacement and its

response to low frequency excitations. In practical applications, however, the displace-

ment that the proof mass can reach is limited by the stroke length between the end-stops

of the actuator [11]. For very low frequency motions or high input currents, the proof

mass can saturate in stroke as it hits the end-stops imparting large shocks to the struc-

ture, which may be damaged. Moreover, it has been observed both theoretically and

experimentally that this nonlinear dynamic behaviour is also undesirable in terms of the

stability of the closed-loop control system, because it can reduce the stability margin

1



2 Chapter 1 Introduction

of the velocity feedback loop, and in fact, enhance the level of vibration [12; 13]. The

instability is due to the forces imparted during the collisions between the proof mass and

end-stops being in-phase with the velocity of the structure, hence reducing the overall

damping of the system. Over-designing the actuator may not be possible in practice [11]

and allowing for a very large stroke may negate the weight benefits introduced by these

active devices.

This motivates an investigation into the causes and the effects of stroke saturation, and

the development of a control strategy that can contrast the instability by increasing the

range of stable control gains.

In this thesis, the sources of mechanical and electromechanical nonlinearities in iner-

tial actuators are investigated, where particular focus is given to stroke saturation. A

methodology that allows the experimental characterisation and identification of the non-

linearity is derived. This permits one to build accurate nonlinear models that are useful

to predict the dynamic behaviour of nonlinear inertial actuators and the stability mar-

gins of VFCs.

A novel nonlinear feedback control strategy is then proposed and investigated with

the aim to prevent the collisions of the proof mass with the actuator end-stops. The

nonlinear control strategy acts as a second feedback loop alongside the VFC and actively

increases the internal damping of the actuator only when the proof mass gets closer to

the end-stops.

The implementation of the control law requires real-time knowledge of the velocity and

displacement of the proof mass, which often cannot be measured directly with a physical

sensor, because the installation of an additional sensor would add mass and cost and

take out space from the actuator. Thus, a virtual sensing approach is investigated, in

which the states of the proof mass are estimated from the measurements of the other

sensors and input signals making use of the identified nonlinear model of the inertial

actuator. It is shown that the nonlinear feedback controller is able to increase the safe

operating region of stroke limited inertial actuators. Hence, larger feedback gains can

be used without the system becoming unstable if this nonlinear controller is used.

1.2 Aim and objectives

This thesis sets out a theoretical and experimental study on the active vibration control

of a structure using a stroke limited inertial actuator. The aim of this research is to

examine the implementation of a nonlinear control strategy to prevent stroke saturation

of inertial actuators from occurring, thus enhancing their stability when used with VFCs.

The main objectives of the thesis can be summarised as follows:
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1. Experimental characterisation and identification of nonlinearities of inertial actu-

ators and numerical analysis comparing the identified nonlinear model with the

underlying linear one;

2. Stability analysis of a single degree of freedom (SDoF) structure controlled by a

nonlinear actuator in velocity feedback;

3. Investigation of a novel feedback control strategy to enhance the stability of VFCs

using stroke limited inertial actuators;

4. Experimental implementation of the controller developed at the previous point on

a structure controlled by a stroke limited actuator and comparing its stability with

the direct velocity feedback controller;

5. Development of a state observer for the states of the system that cannot be mea-

sured directly.

1.3 Structure of the thesis

This thesis is organised in eight chapters:

Chapter 1 provides an introduction on the motivations for active vibration control. The

aim and objectives together with the structure of this thesis are summarised and the

original contributions are highlighted.

Chapter 2 briefly reviews the relevant literature on active vibration control, nonlinear

structural dynamics, applied nonlinear control and electromagnetic proof mass actuators.

Some among the many applications of inertial actuators are presented. Moreover, the

nonlinearities that affect these devices are explained, in particular previous work on

stroke saturation is discussed.

Chapter 3 investigates the nonlinear behaviour of inertial actuators and provides a

methodology for identifying the nonlinearity. The experimental set-ups are described

and the actuator’s underlying linear parameters are identified using small excitation

signals. The nonlinear dynamics is then explored using large excitation signals for the

detection, characterisation and identification of the nonlinear parameters.

Chapter 4 presents a theoretical analysis comparing the nonlinear model of the inertial

actuator identified in chapter 3 with its underlying linear model, both in time and

frequency domains.

Chapter 5 derives the mathematical model of the system constituted by a nonlinear

inertial actuator attached to a SDoF structure controlled using a velocity feedback loop.

A theoretical investigation on the stability of the control loop is carried out comparing
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the nonlinear actuator model with the underlying linear one. A nonlinear feedback

control law is presented and analysed under different excitation conditions, whose aim

is to prevent the instability of the system caused by stroke saturation and increase its

operating region.

Chapter 6 describes the experimental study conducted on a cantilever beam controlled

by a stroke limited inertial actuator in direct velocity feedback and excited by an in-

strumented hammer. The nonlinear feedback controller developed in chapter 5 is then

introduced as a second loop in the control strategy and the stability of the system is

assessed comparing the cases when the nonlinear controller is implemented or not under

different excitation conditions.

Chapter 7 introduces the use of a state estimation algorithm for calculating the proof

mass state required by the nonlinear controller implemented in chapter 6. Two different

approaches are investigated. The first one uses the underlying linear model of the

actuator to calculate the coefficients of a digital filter to be applied to the input signals

of the actuator. The second approach considers an extended Kalman filter algorithm

and the nonlinear model of the actuator to predict and update the state estimation.

Conclusions and indications of future work are summarised in chapter 8.

1.4 Contributions

The original contributions of the thesis are:

• An experimental methodology applicable to several inertial actuators for the iden-

tification of their mechanical nonlinearities using the restoring force and the back-

electromotive force (back-emf) signals;

• A theoretical analysis of a novel nonlinear control law that aims to increase the

safe operating range of inertial actuators by preventing their instability caused by

stroke saturation;

• An experimental implementation of the nonlinear feedback controller on a stroke

limited inertial actuator attached to a cantilever beam and the investigation of a

virtual sensing strategy for the proof mass state estimation.

Some of this work has been published in refereed journals and conference proceedings

and the references of these papers can be found in the Declaration of Authorship.



Chapter 2

Technical background

Vibration is commonly perceived as being an undesirable phenomenon. It can have un-

pleasant and even hazardous effects on health if applied to the human body. Hand-arm

vibration and travel sickness are just two among many of them. Vibrating surfaces are

noise sources over the audio-frequency band from 20 Hz to 20 kHz and noise can cause

disturbing or undesirable effects to those who are exposed to it. Vibration can also

be dangerous for the structural integrity of a large variety of mechanical systems. For

example, fatigue damage of aircraft or harsh responses during lift-off of rocket launchers

to on-board components can pose a limit to the operation of these structures. Thus, it

is vital to develop methods for vibration control [1]. This chapter aims to present some

of the literature that formed the technical background that motivated this research. A

brief introduction to the field of active vibration control is given in section 2.1. Ac-

tive vibration control relies on actuators to provide the control forces on the hosting

structure. This thesis focuses on electromagnetic inertial actuators and an overview

of their operating principle, areas of applications and nonlinear dynamic behaviour is

presented in section 2.2. The major concern of this study is about the implications of

harsh nonlinearities affecting inertial actuators, such as stroke saturation. An actuator

that saturates in stroke not only is liable to damage, but also it may destabilise the

active vibration control system. Hence, it is crucial to underpin the nonlinear dynamic

behaviour of a stroke saturating inertial actuator and to develop a control strategy that

prevents it from happening. An introduction to nonlinear structural dynamics is pre-

sented in section 2.3, which has been used for the characterisation and identification of

the actuator nonlinearities. Applied nonlinear control is discussed in section 2.4, where

several control strategies of nonlinear systems are compared. Some of these control

strategies require the knowledge of some states of the system that, however, may not be

possible to measure directly. Hence, an overview of virtual sensing techniques for the

estimation of the states using remote sensors and the identified model of the system is

presented in section 2.5.

5
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2.1 Active vibration control

Nowadays, research and engineering development are moving onto smart mechatronic

structures, which are lightweight, flexible and are required to perform multiple tasks

such as reducing unwanted vibrations and structural health monitoring [7]. The charac-

teristics of these structures, such as low weight and high flexibility, lead them to operate

in an environment where their dynamic behaviour cannot be neglected [7]. As a result,

these structures are susceptible to large amplitude vibrations that need to be controlled.

The use of passive treatments can be thought as a redesign process of changing either the

mass, the damping, or the stiffness on an existing structure. Passive control is undoubt-

edly an efficient way to control the response of a structure, however, the constraints

on the structure parameters are often such that the modification cannot be made. For

example, passive treatments to control low frequency vibrations would typically add

significant amount of mass to the structure, while the constraints might be low weight

and flexibility [14]. Also, damping is a difficult parameter to adjust during the design

process, especially if the structure is large and is made by a number of links and joints.

An alternative is found in active control, which applies dynamic forces to the structure

to minimise its response. Active control gives more versatility than passive control in

terms of shaping the desired response using a rule, namely control law, that can be

different than a mere structural modification [3; 5]. The main differences between active

and passive control are the use of an external energy source and the use of adjustable

devices, namely actuators, to curb the vibration of a structure [5].

Active control of vibration has seen large interest and many industrial applications over

the past decades [4]. Some typical applications include the reduction of low frequency

vibration of space structures by use of lightweight vibration actuators, and the reduction

of sway in tall buildings to contrast the oscillation induced by the wind [14]. Active

control is found to be more effective at low frequencies compared to passive treatments

[6], however, it can operate only over a limited frequency band, called bandwidth of the

control system [8]. This is due to existing delays in the mechanical system or in the

control path that lead to an increasing phase shift of the open-loop frequency response

at higher frequencies [3]. In this case, the disturbance can even be amplified by the

controller.

In general, an active vibration control system consists of a sensor, an electronic controller

and an actuator. The sensor is used to detect the vibration of the structure due to

the primary disturbance, the electronic controller manipulates the sensor signal with a

predefined control law sending the modified signal to the actuator, which applies the

control (also called secondary) force to the structure. There are two main families of

control architecture, they are called feed-forward and feedback control and are shown in

figure 2.1.
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Figure 2.1: (a) General block diagram of active feed-forward control of vibration; (b)
General block diagram of active feedback control of vibration.

The two differ for the direct availability of the primary disturbance signal. In fact,

feedback controllers are not provided with reference sensors to get advance informa-

tion about the disturbance being controlled. Feed-forward controllers instead, rely on

the information about the primary excitation. The knowledge of the excitation can be

obtained if either the disturbance is deterministic (future behaviour fully predicted by

past behaviour) or a detection sensor can be used that measures the primary disturbance

and is not affected by the secondary force. Hence, the success of feed-forward control

depends on a delicate matching between the effects of the primary disturbance and the

control input. On the other hand, feedback controllers use a sensor that measures the

response of the system. Such measured signal is affected by both primary disturbance

and secondary input, and it is fed back to the actuator [2–4; 8]. Feedback control is

popular in the area of structural vibration because of its significant vibration attenua-

tion performance without having to measure in advance a reference signal, for example

when reducing the resonant response of an impulsively excited structure [14]. However,

feed-forward control is usually to be preferred whenever an advance reference signal is

available, because of its inherent stability characteristics and almost always superior

performance [14].

Active vibration controllers can be divided into centralised, decentralised or distributed
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and these have been widely compared by several researchers [15–17]. A centralised con-

troller receives all sensor inputs and generates all controller output signals to drive the

actuators, however, for a large number of sensors and actuators this strategy becomes

computationally inefficient and heavy [14]. A decentralised controller, instead, is charac-

terised by a set of individual controllers each of them operating on an input and output

pair. This control configuration can show limited performance and stability issues if

neighbouring controllers are significantly coupled [14]. The choice between centralised or

decentralised depends on many factors, such as available number of controllers, number

of modes to be controlled and coupling between the states of the system. In fact, if the

optimal gain matrix of the controller is almost diagonal, then the centralised controller

is almost decentralised and similar performance can be obtained. In this case, the latter

should be preferred for its relative simplicity [17]. This thesis focuses on decentralised

feedback control strategies, in which an individual control unit is investigated.

A common decentralised feedback control approach, which sometimes is referred to as

low authority, is velocity feedback control (VFC) [18; 19]. The purpose of a VFC is to

increase the effective damping of a structure, reducing its level of resonant vibration by

using collocated sensors and actuators [4; 17]. A VFC consists of an inertial actuator

attached to a structure, a collocated sensor of vibration and a controller, which feeds

back the velocity of the structure to the actuator. The aim of the inertial actuator is

to apply a control force to the structure proportional to its velocity for the purpose of

vibration reduction. This control strategy would maintain the system stability if the

sensor and actuator are collocated and if the transducer dynamics are neglected, regard-

less the number of structural modes considered and the inaccuracy of the parameters

[19]. However, the inertial actuator internal dynamics play an important role and it has

been shown that they can induce the instability of the VFC system [9; 10]. This thesis

focuses on electromagnetic inertial actuators, however, feedback controllers can also be

realised with other types of actuators. For example, hydraulic actuators are often used

in the reduction of helicopter vibration [20], piezoelectric actuators are used for active

vibration control of panels [21] and shape memory alloy actuators are used for vibration

attenuation in micro-electromechanical devices [22].

2.2 Electromagnetic proof mass actuators

In this thesis, VFC is implemented using electromagnetic inertial, or proof mass, actua-

tors. An inertial, actuator is a device that operates as a coil-magnet electromechanical

transducer and it is attached to a structure, which requires a control force. The control

force is produced by the interaction between the constant magnetic field given by a

permanent magnet and the variable magnetic field given by the current flowing through

a coil. The control force on the structure is generated by reacting off a proof mass,
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which consequently starts to accelerate and a problem that sometimes occurs when con-

trolling low frequency vibrations is that the proof mass experiences large amplitudes of

motion, but in practice its travel is constrained by a limited stroke due to the presence

of end-stops.

2.2.1 Concept

Electromagnetic inertial actuators have been widely used for the purpose of vibration

suppression in lightweight, flexible and lightly damped structures [9; 23–39]. They are

non-intrusive, because they can be attached to an existing structure without any struc-

tural modifications and they do not need an external mechanical connection to the

ground or to another structure, hence the static behaviour of the structure does not

change apart for the actuator mass. They have a wide frequency bandwidth of oper-

ation, resulting in a reduction of the vibration at several modes of the structure [40].

Moreover, they are suitable for lightweight and flexible structures due to their relatively

large force-to-weight ratio [41].

An inertial actuator consists of a magnetic proof mass, an electrical winding and a

suspension, which connects the proof mass to a casing or base mass [8]. An example of

such a device is shown in figure 2.2(a) and its schematic representation is displayed in

figure 2.2(b).

(a) (b)

Figure 2.2: (a) Picture of the Micromega Dynamics IA-01 inertial actuator [40]; (b)
Schematic of an inertial actuator in cross-section.

The operating principle of an electromagnetic proof mass actuator is to convert electrical

power into mechanical power according to Lorentz’s force law. Hence, if an electrical

charge q moves in a constant magnetic field, a force is generated on the charge, which

is given by,

f = qv ×B, (2.1)

where B is the constant magnetic field (constant in the sense of time-invariant), v is

the velocity of the electrical charge with respect to the magnetic field and eq. (2.1) can
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be derived from the Maxwell’s equation ∇×E = −∂B/∂t, where E is the electric field

induced by the magnetic field.

Considering the case of figure 2.2(b), where a continuous flow of charges through the

coil of the inertial actuator are subject to the constant magnetic flux, the force that acts

on the charges in an infinitesimal length of the wire can be rewritten from eq. (2.1) as,

df = dlia ×B, (2.2)

where dl is an infinitesimal length of the wire and ia is the current flowing through

the coil. Integrating eq. (2.2) over the whole length of the coil that is in the constant

magnetic field region, a force is generated on the coil and hence on the actuator base,

with an amplitude of,

f = Bl ia, (2.3)

where B is the constant magnetic field, l is the length of the coil exposed to the magnetic

field, and according to Newton’s third law, a force of the same magnitude but opposite

direction reacts on the magnetic proof mass.

At the same time, according to Faraday’s and Lenz’s laws the relative motion between

the magnetic field and an infinitesimal length of the wire exposed to such magnetic field

generates a potential difference, which is given by,

Edl = dlv ×B, (2.4)

hence, integrating eq. (2.4) over the whole length of the coil, a voltage is generated at

the terminals of the inertial actuator electrical winding, with an amplitude of,

e = Bl v, (2.5)

where the voltage e is commonly called back electromotive force (back-emf) and v is the

relative velocity between the magnet and the electrical winding.

Equations (2.3) and (2.5) describe the behaviour of the electromechanical conversion of

the transducer, however, the dynamic behaviour of the inertial actuator is also affected

by the mechanical and electrical impedances of the device as well as the presence of

nonlinearities. On the mechanical side the actuator is usually modelled as a spring

mass damper system, whereas the coil is usually modelled as a series ideal inductor

and resistor. The mechanical and electrical side are then coupled by the transducer

eqs. (2.3) and (2.5). The inertial actuator linear dynamic behaviour is usually studied

considering its two-port network, because it is relatively easy to obtain the impedances

of the different elements by setting the open-circuit or the short-circuit of each of the

two ports. A complete and detailed treatment on the derivation of the two-port network

of a linear inertial actuator can be found in [25; 42–46].
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The internal dynamics of the actuator is characterised by a phase shift at the proof

mass resonance frequency that can cause instability if the actuator is used in high gain

VFC systems. To mitigate this problem, it is important that the natural frequency of

the actuator is lower than the fundamental frequency of the structure and its resonance

is well-damped [10; 47]. However, a low natural frequency of the actuator results in

a high static deflection of the proof mass. Some solutions were proposed by [47; 48]

to use a displacement feedback and a PID controller and by [26] to use an electronic

compensator, however, all of these solutions increased the level of the feedback signal

at low frequency and potentially the instability of the system if it was excited at this

frequency. Another problem that is encountered in an inertial actuator is the limited

stroke permitted to the proof mass, which together with other nonlinearities may affect

its dynamic response and even change dramatically the stability conditions when it is

used in VFCs. The nonlinear dynamic behaviour of an inertial actuator is discussed in

greater detail in section 2.3 and then in chapters 3 and 4.

2.2.2 Applications

Electromagnetic proof mass actuators have a wide range of applications. For example

they can be used in: active vibration attenuation of space structures or satellites, active

reduction of human induced vibration on floors of open-space buildings or on stadia,

active or hybrid vibration control of skyscrapers swing induced by wind excitation,

internal noise reduction in aircraft and active vibration isolation between the gearbox

and the cabin of helicopters.

For example, figure 2.3 displays an application of inertial actuators on a large space

structure called “mast flight system” studied in [31]. The authors referred to the “mast

flight system” as a lattice structure 60 m long and attached to the shuttle orbiter, which

is provided with a deployment/retraction mechanism. Since the structure is lightweight

and lightly damped, it requires an active vibration control system during on-orbit op-

erations. The authors used a set of inertial actuators guided in decentralised velocity

feedback with fixed gains to provide five percent of structural damping to the first ten

bending and torsional modes of the structure. Other applications of inertial actuators

in space structures are reported in [30; 32; 35; 37–39; 49–52].

In civil engineering there is a lot of ongoing research on human induced vibration [53].

Figure 2.4 shows a hybrid device, which is composed of a passive tuned mass damper

with an active inertial actuator, developed in [36] to reduce floor vibrations generated

by a crowd. The authors have compared experimentally the performance of the hybrid

tuned mass damper with the performance of a passive tuned mass damper. The hybrid

system has been found to be more effective to reduce the vibration in the frequency

range of interest, in the sense that more vibration attenuation has been obtained for
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Figure 2.3: An application of electromagnetic proof mass actuators on a large space
structure: a mast flight system. Reproduced from [31].

Figure 2.4: An application of electromagnetic proof mass actuators in civil structures:
a hybrid tuned mass damper for floor vibration reduction. Reproduced from [36].

the same total mass of the devices. Other civil engineering applications where electro-

magnetic proof mass actuators are used can be found for example in [34; 54–63]. Also,
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many practical applications of inertial actuators in civil engineering can be found for

the suppression of flexural and torsional vibrations in tall buildings subject to small

earthquakes and strong wind excitations [64].

Another application of proof mass actuators can be found in active noise reduction in

aircraft, as reported in [24]. For example, in [33] the authors used a set of inertial

actuators attached to the frame between the aircraft fuselage and the trim panel for the

reduction of the cabin noise due to the blade passing excitation of a propeller aircraft,

as shown in figure 2.5. Application of this active noise control system can be found

nowadays on the Bombardier Dash8 Q400 aircraft [24; 33; 65]. Other applications where

electromagnetic proof mass actuators are used to reduce the cabin noise in aircraft can be

found for example in [66–69]. The isolation of helicopter cabins from the transmission

Figure 2.5: An application of electromagnetic proof mass actuators for internal noise
reduction in aircraft: an active tuned vibration absorber. Reproduced from [33].

of rotor and gearbox vibration is another application problem that can be tackled using

electromagnetic inertial actuators [24]. Figure 2.6 shows a prototype inertial actuator

with a dual-loop controller, one that implements a negative stiffness feedback and one

that provide a direct velocity feedback [70]. The inertial actuator was attached at the

bottom of the main gearbox of an helicopter and its natural frequency was tuned to a

specific resonance of the helicopter in order to damp the vibration of a specific mode

[70; 71].
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Figure 2.6: An application of electromagnetic proof mass actuators for active vibra-
tion control in helicopters: a dual loop hybrid mass damper. Reproduced from [70].

2.2.3 Nonlinear dynamics

The dynamic behaviour of inertial actuators is not always well described by linear math-

ematical models [11; 12; 72–75]. In fact, the assumption of linearity in the model holds

only for small amplitude signals. If the actuator is subject to large amplitude signals

instead, then a nonlinear model is required to reliably predict its dynamic behaviour,

which is crucial when investigating instabilities or large amplitude of motion.

Common sources of loudspeaker’s nonlinearity, whose operation is similar to inertial

actuators include [76]:

• Nonlinear restoring force (force that moves the proof mass back to its equilibrium

position), hence nonlinear stiffness and damping that depends on the proof mass

displacement, as shown for example in figure 2.7(a);

• Nonlinear transduction coefficient that depends on the proof mass position and

temperature of the actuator (or current circulating through the coil), as shown for

example in figure 2.7(b);

• Nonlinear inductance that depends on the proof mass displacement and current

flowing through the coil, as shown for example in figures 2.7(c) and 2.7(d);

• Nonlinear resistance that depends on the current flowing through the coil.

There exists an international standard, namely the IEC 62458:2010(E) [78], which gives

the guidelines on how to perform the measurements to assess the nonlinearities of an elec-

tromechanical transducer, however, it is mainly based on the studies and methodologies

developed by Klippel [76; 77; 79; 80] for loudspeaker systems. Even though loudspeakers

and inertial actuators are very similar devices, there are some practical differences that
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(a) (b)

(c) (d)

Figure 2.7: (a) Suspension stiffness as function of relative coil-magnet displacement
for a loudspeaker; (b) Transduction coefficient as function of relative coil-magnet dis-
placement for a loudspeaker; (c) Coil inductance as function of relative coil-magnet dis-
placement for a loudspeaker; (d) Coil inductance as function of current flowing through

the coil for a loudspeaker. All figures taken from [76; 77]

motivate for the development of a different methodology to assess the nonlinearities of

inertial actuators. Firstly, some inertial actuators are enclosed in a casing that is welded

in place, hence there is not access to measure directly the displacement of the proof

mass. Secondly, the underlying linear parameters of inertial actuators are commonly

measured using base and direct excitations experiments, hence it would be convenient

to use the same for the identification of the nonlinear parameters. Finally, the most

important nonlinearity encountered by the author that affects the dynamic behaviour

of inertial actuators is of the saturation type, which can be better investigated with a

dynamic measurement methodology such as the one presented in chapter 3.

Saturation nonlinearity in inertial actuators comes as a limitation on the force that they

can deliver. This is due to either the saturation of the power electronics or the finite

stroke length between the actuator end-stops. The saturation of the power electronics

gives a limitation on the electromechanical conversion, hence a maximum actuation force

can be obtained for a given transduction coefficient and a maximum input current to the

actuator coil. The saturation of the stroke instead gives a limitation of the inertial force
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Figure 2.8: Nonlinear relationship between force and displacement of a spring. Re-
produced from [7].

of the proof mass at low frequency, below the cut-off frequency where power electronic

saturation and stroke saturation coincides.

Stroke saturation in inertial actuators has been previously investigated in [12; 72; 75;

81; 82], which pointed out that its implication is not only the limitation on the control

force that the actuator can deliver at low frequency. In fact, stroke saturation is a

non-smooth nonlinearity that is due to the proof mass hitting the actuator end-stops,

potentially imparting large shocks to the structure, which may be damaged. Moreover,

it has been shown both theoretically and experimentally that the shocks generated by

stroke saturation can destabilise the closed-loop control system when an inertial actuator

is used in a VFC [12; 83]. Over-designing the actuator may not be possible in practice

[11] and allowing for very large stokes may negate the weight benefits introduced by

these active devices.

It is worth to mention that stroke saturation is not always a problem to be avoided,

instead, it can be beneficial for certain engineering applications. Self-propelled capsule

systems for gastrointestinal endoscopy or for pipeline inspection use a vibro-impact

oscillator (stroke saturating inertial actuator) where the impacting behaviour is used for

the forward or backward motion of the capsule [84–88].

2.3 Nonlinear structural dynamics

Nonlinear systems are systems in which the assumption of linearity does not hold. Com-

mon properties of linear systems, such as the superposition principle, the uniqueness of

solution for harmonic oscillations and the invariance of frequency response functions

(FRFs) and modal parameters, are not observed in nonlinear systems.
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(a) (b)

Figure 2.9: (a) Nonlinear frequency response curve for a hardening Duffing oscillator;
(b) Basins of attraction of the Duffing oscillator in figure (a) for η = 1.12; initial
conditions identified with black points stabilise un the upper branch. Reproduced from

[89].

Figure 2.10: Frequency-energy plot of in-phase and out-of-phase nonlinear normal
modes of a two degree of freedom nonlinear system. Reproduced from [90].

In fact, nonlinear systems exhibit non-proportional input-output relationships, as shown

in figure 2.8. The steady state response of nonlinear systems depends on the initial

conditions and hence harmonic oscillations can have multiple co-existing solutions, as

illustrated in figure 2.9. Additionally, the frequency response of nonlinear systems is

amplitude dependent, which means that the resonance frequencies and modal parameters

can change with the energy input into the system, as shown in figure 2.10. Moreover,

harmonic excitations of nonlinear systems can generate harmonic responses at higher or

lower frequencies, as shown in figure 2.11.

Nonlinearity is significantly different from the more common linear dynamics, as new

dynamic phenomena can be observed. Nonlinear dynamic behaviours include: “jumps”

from higher to lower response levels or vice-versa, “bifurcations” that delineate a change
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Figure 2.11: Time history response of a dissipation device due to a harmonic ex-
citation of the main structure, where the nonlinearity of the device generates higher

harmonics in the response. Reproduced from [91].

Figure 2.12: Frequency response curve of a nonlinear systems showing fold bifurca-
tions, multiple solutions and jump responses. Reproduced from [7].

in the dynamic behaviour (e.g. from one to multiple co-existing solutions), “internal res-

onances” that are activated by the super- or sub-harmonics, “detached resonant curves”

that are isolated solutions in the nonlinear frequency response curves, “quasi-periodic

motion” where frequency components at non-integer multiples of the fundamental fre-

quency are observed, and “chaos” where small changes in the initial conditions lead to

very different responses [7; 90; 92–98].

For example, figure 2.12 shows a typical nonlinear frequency response curve, where

multiple solutions, bifurcations and jumps are present. Increasing the forcing frequency

Ω beyond the resonance peak corresponding to the fold bifurcation A leads the response

to jump down to the lower branch [7]. A similar behaviour is obtained when decreasing

the forcing frequency through the fold bifurcation B, but in this case the response jumps

up to the higher branch. Figure 2.13, instead, shows a nonlinear frequency response curve
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Figure 2.13: Nonlinear frequency response curves where an isolated branch is present.
Normalised relative displacement W as function of the normalised frequency, where
x− xs is the relative displacement and x0 is the relative static displacement. Ω is the
normalised frequency between the excitation frequency ω and the first natural frequency

of the underlying linear system ωs. Reproduced from [97].

where a detached resonance curve lies inside the main resonance curve [97]. In this case,

a sweep-up or -down results in multiple jumps in the response of the nonlinear system.

The mechanical nonlinearities of inertial actuators can be investigated with the nonlinear

structural dynamics tools. As it is shown in figure 2.14 the identification process consists

of three steps, namely detection, characterisation and parameter estimation, as proposed

in [99–101]. The nonlinear behaviour is detected in various manner, one can look at the

coherence between the input and output signals, or at the total harmonic distortion

(THD) of the output signal when the system is harmonically excited [102]. After the

detection step, the nonlinearity has to be located, usually as a non-distributed element

between two degrees of freedom so that a lumped parameter model can be built. Using

different excitations (sine-sweep, stepped sine, random, impulse) and excitation levels,

the type and form of nonlinearity can be determined concluding the characterisation step.

The nonlinear parameters of the model are then estimated using different techniques, for

example the restoring force surface method [99–101; 103–105] and a simple least-square

fitting or a frequency-domain subspace identification approach [106].

The experimental identification process allows obtaining an accurate nonlinear lumped

parameter model of the nonlinear system, which can be further investigated using nu-

merical and analytical simulation tools.

The nonlinear model can be used to simulate the response both in time and frequency

domains. Time domain solutions can be rarely obtained in an analytical closed form,

they are usually calculated by numerical integration of the ordinary differential equations

(ODEs) that constitutes the equations of motion, see appendix C or [107; 108]. Periodic

solutions, instead, are commonly computed using the harmonic balance method (HBM)
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Figure 2.14: The nonlinear identification process. Reproduced from [100].

at each frequency and level of excitation [109–116]. Other approaches to calculate the

periodic solutions are the shooting technique and orthogonal collocation [93; 94; 117].

The HBM permits the construction of nonlinear frequency response curves (NFRC)

that are useful for a deeper understanding of the nonlinear behaviour of the system,

such as determining the location of the bifurcations and the nonlinear resonances and

the frequency range at which several solutions co-exist. A global analysis can also be

performed to investigate which initial conditions of the system stabilise on which stable

branch of the NFRC [101; 104; 105]. A frequency domain method that is commonly

applied in the analysis of nonlinear system is the describing function method [118].

The describing function method approximates the response of a nonlinear system by

neglecting the contribution of the higher or lower harmonics. For example, the nonlinear

function N(a) can be expressed as,

N(a) = Keq(A)a+Nd(a), (2.6)

where Keqa is a quasilinear term, Nd(a) is a distortion term and a = A sinωt. The

first term represents the fundamental component of the nonlinearity and the gain Keq

is named describing function of the nonlinearity. It has been shown that in order to

minimize the distortion term Nd(a) in a mean-square sense, the describing function has

to be the Fourier-series coefficient of the fundamental component of the nonlinearity

[118]. The describing function can then written as,

Keq(A) = g(A) + jb(A), (2.7)
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where,

g(A) =
1

πA

∫ 2π/ω

0
N (A sinωt) sinωtdt

b(A) =
1

πA

∫ 2π/ω

0
N (A sinωt) cosωtdt

,

(2.8a)

(2.8b)

are the Fourier coefficients. The describing functions of most common nonlinearities,

such as saturation, Coulomb friction, backlash and hysteresis are shown in table 2.1.

Table 2.1: Describing functions of most common nonlinearities [119].

Nonlinearity Schematic Describing function

Saturation Keq = 2k
π

[
arcsin( aA) + a

A

√
1− a2

A2

]

Backlash and
hysteresis

Keq =
4kb

π
(
b

A
− 1) + j

Ak

π

+ [
π

2
− arcsin(

2b

A
− 1)+

− (
2b

A
− 1)

√
1− (

2b

A
− 1)2]

Coulomb
friction

Keq = 4M
πA
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2.4 Applied nonlinear control

Nonlinear control investigates control systems in which there is at least one nonlinear

element. Nowadays, control strategies for linear systems are well-established, however,

nonlinear control strategies are still matter of on-going research [119]. Switching from

linear to nonlinear active control may be interesting for improving the existing control

system, such as when the required operation range becomes larger. If the system is

subject to discontinuous nonlinearities that are not linearisable, then nonlinear analyses

have to be used to investigate the system. Additionally, nonlinear control methodologies

can also outperform linear control strategies when dealing with model uncertainties [119].

The stability of nonlinear systems can be analysed with several mathematical tools, such

as the Lyapunov’s direct and indirect methods [119; 120], the analysis of phase-space

trajectories [121], the circle and Popov criteria [120], or the describing function analysis

[108; 119].

Figure 2.15: An example of a limit cycle oscillation. Reproduced from [7].

Lyapunov’s indirect method is used to linearise the nonlinear system around an equi-

librium point and to investigate the local stability by evaluating the eigenvalues of the

linearised state matrix, which can be a closed-loop state matrix if a VFC is implemented

for example. Lyapunov’s direct method instead, is used to assess the global stability of

the nonlinear system by searching a function that satisfies a set of rules [119]. Lyapunov’s

direct method is a powerful tool to investigate the stability of nonlinear systems, how-

ever, it is usually difficult to find a suitable candidate function. The circle and Popov

criteria make use of Lyapunov’s direct method to define a boundary between stable and

unstable regions [120].

An interesting method to assess the stability of nonlinear systems is the describing

function analysis, which is used for the detection of limit cycle oscillations. Limit cycles

are trajectories of the nonlinear system in which the energy of the system does not

change over the cycle. A qualitative representation of limit cycle oscillations is given in

figure 2.15. A nonlinear system that contains a single nonlinearity can be represented by
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Figure 2.16: Block diagram of the describing function analysis for the prediction of
limit cycle oscillations.

a transfer function that groups all the underlying linear dynamics and a feedback loop

that contains the describing function of the nonlinearity [118], as shown in figure 2.16.

The condition for the existence of limit cycles is given for the intersection between the

negative inverse of the describing function with the transfer function of the underlying

linear system [119]. However, due to the approximate nature of this analysis, it is

important to check the results with direct numerical simulations if they are not too

computationally expensive.

Several attempts have been made to overcome the issue of stroke saturation in inertial

actuators with the aid of active nonlinear control methods. The first study on this extent

can be found in [37], where a suboptimal feedback position controller of a beam with a

proof mass actuator was designed using a linear programming algorithm. This approach,

however, severely limits the performance of the inertial actuator. Later studies developed

the idea of adding a nonlinear feedback control loop to the VFC loop [41; 122–125], but

there is no record of experimental work using these controllers. Another approach that

has been used is the on/off controller, which deactivates the VFC if stroke saturation is

detected [83; 126]. A similar, but less dramatic strategy, namely gain scheduling, was

first introduced by [127] and then adopted by [54; 128], where the VFC gain is reduced

by a certain amount the more the proof mass gets close to the end-stops and eventually

going to zero so that the system becomes passive.

2.5 Virtual sensing

Active vibration control applications often require the real-time knowledge of the states

and parameters of the system being controlled. However, in many applications it is

impossible to directly measure such quantities for many reasons. It could be that direct

measurements require the use of costly sensors, or the integration of such sensors in the
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system is not feasible, or even that a particular sensor does not exist [129]. Hence, the

required variables have to be estimated from other measured variables using a model

of the system. Usually in structural dynamics, the estimated variables are the states

of the system, but they can also be the input forces or displacements, or the system

parameters [129].

For example, a virtual sensing approach has been developed in [130] for the estimation

of wheel centre loads on a MacPherson suspension, which is shown in figure 2.17. In

fact, current practice is to instrument the vehicle wheel with a force transducer, but this

solution is extremely expensive, intrusive (in the sense that it affects the measurements)

and time consuming for the installation. Since the vehicle is already instrumented with

many other sensors during the test campaign, researchers are investigating alternative

approaches that make use of virtual sensors to estimate the wheel centre loads [130].

Another interesting application of virtual sensing techniques is the estimation of fric-

tional contact forces in guiding rails of vertical transportation systems [131]. This allows

one to monitor the condition of the system, in order to guarantee safety and efficiency

by detecting any faults or degradation in the vertical transportation system.

The nonlinear control strategy developed in this thesis and some of the control strate-

gies discussed in the previous section to prevent stroke saturation in inertial actuators

require the real-time knowledge of the proof mass states. However, inertial actuators

are commonly supplied without an internal sensor that measures the proof mass dis-

placement. This can be because an additional sensor raises the price of the actuator, it

may be subject to failures and it increases the mass of the device. Fitting an additional

sensor to an inertial actuator is not always easy and without compromises, for example,

the inertial actuator in figure 2.2 has a welded casing that protects the proof mass, which

is therefore not accessible to be instrumented without tearing off the casing. Virtual

sensing, instead, can provide an estimation of the proof mass states by using the already

available measurements and the nonlinear model of the actuator without having to fit

any additional physical sensors.

Virtual sensing usually refers to the use of observers [132] or estimators [133] for the

state estimation of a system when the state measurements with physical sensors are

not available. An observer is usually derived from the state space equations using the

identified system matrices, the known input and the measured output of the system,

such that, {
˙̂x = Ax̂ + Bu+ L(y − ŷ)

ŷ = Cx̂
,

(2.9a)

(2.9b)

where x̂ are the estimated states of the system, A,B,C are the system matrices, u is

the input, y is the measured output and ŷ is the estimated output. The convergence

of the estimated states to those of the physical system, denoted by x, is given by the

L(y − ŷ) term in eq. (2.9a) where the matrix L can be chosen by studying the observer
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Figure 2.17: Test-rig for the virtual sensing of wheel centre loads on a MacPherson
suspension attached to a rigid frame and excited by an hydraulic shaker. Reproduced

from [130].

error dynamics [132],

ė = (A− LC) e, (2.10)

where e = x− x̂ is the observer error. Hence, L can be chosen to tune the eigenvalues of

the matrix (A− LC) in order to achieve faster or slower convergence of the estimated

states [132]. The block diagram of such an observer for a feedback control system is

shown in figure 2.18.

( ) ( ) ( )tutt BAxx +=&

H-

)(tu )(ty
C

Physical
system

Control
law Estimator

( ) ( ) ( ) ( ) ( )[ ]ttytutt xCLBxAx ˆˆˆ -++=
&

)(tx

)(ˆ tx

)(tu

Figure 2.18: Block diagram of a feedback controller with a state estimator.

The observer shown in figure 2.18 is typically used for linear deterministic systems,

however, in reality many systems behave nonlinearly and are subject to noise. In the

1960s optimal state estimators were developed, known as Kalman filters [133–135]. A
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Kalman filter aims to obtain the optimal estimate (in the sense of minimum standard

deviation of variables affected by Gaussian noise) of the states of a system and the

covariances of the states based on the knowledge of the system matrices, the input and

output of the system and the covariances of the measurement noise and process noise

[133]. It cannot be directly applied to nonlinear systems since the propagation of the

system states and covariances would not be Gaussian, however, if the nonlinear system

is differentiable, it can also be linearised at each time step around the estimation point

and the Kalman filter can be applied. This method, also known as extended Kalman

filter (EKF) [133] is implemented in chapter 7 for the estimation of the states of the

proof mass.



Chapter 3

Characterisation and modelling of

nonlinear dynamics of inertial

actuators

A large amount of literature has shown that the internal dynamics of inertial actuators

affects the stability and performance of VFCs [9; 10; 12; 39]. This motivates the need for

accurate models of inertial actuators and in particular characterising the nonlinearities

that may affect the dynamics of such devices for large excitation signals. Although there

exists a few publications based on experiments [81; 82; 136], a systematic methodology

of measuring and identifying the nonlinearity in inertial actuators is still lacking. This

chapter aims to determine the mechanical nonlinearities of inertial actuators through

the detection, characterisation and identification of nonlinear parameters. The electrical

nonlinearities are neglected since they mainly affect the behaviour at high frequencies,

which are beyond the frequency region where the instability occurs. The inertial actuator

used in the initial experiments is a Micromega Dynamics IA-01, which is shown in

figure 2.2(a) and is documented in [40]. The nonlinear identification is explained in

detail for this specific actuator, however, the methodology presented in this chapter

can be applied to other actuators with weaker and different type of nonlinearities [137].

As evidence, a number of different actuators have been tested and their results are

provided in appendices A and B. The experimental set-up is shown in section 3.1 and

the underlying linear dynamics of the actuator is identified in section 3.2. The nonlinear

dynamic behaviour is then investigated in sections 3.3 and 3.4 considering the response

of the actuator to large amplitude signals.

27
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3.1 Experimental set-up

In this section the experimental set-up for the identification of the linear and nonlinear

dynamics of an inertial actuator is presented. In order to characterise the inertial ac-

tuator, two experiments are required. The first experimental set-up is used to measure

the structural response of the actuator to a base excitation, as shown in figures 3.1(a)

and 3.1(b). In this case, the actuator is mounted on a PCB Piezotronics 208C01 ICP

(a)

MatLab/Simulink®

ControlDesk®

dSPACE DS1103

DAC

ADC

LDS PA25E
power amplifier

LDS V406
shaker

Inertial
actuator

Force gauge and
accelerometer

(b)

Figure 3.1: (a) Picture of the base excitation experimental set-up; (b) Block diagram
of the base excitation experiment.

force sensor, which is rigidly connected to an LDS V406 electrodynamic shaker. The

shaker is powered by an LDS PA25E voltage driven voltage amplifier. A B&K Type

4375 accelerometer is attached to the actuator casing in order to measure the acceler-

ation of the base mass. The actuator’s coil terminals are initially left open to measure

the voltage due to the back-emf. The output force, acceleration and voltage signals

are acquired by a dSPACE DS1103 PPC Controller Board. The dSPACE operates the

analogue-to-digital and digital-to-analogue conversions (ADC/DAC) of the input and

output signals at a sampling frequency of 10 kHz. The dSPACE is also connected to

a PC workstation. A model of the experiment is created in Matlab/Simulink in order

to generate the adequate input signal and to acquire the signals from the measurement

channels. The simulink model is then uploaded on the ControlDesk software for commu-

nicating with the dSPACE board. The driving signal generated by the dSPACE board

is low-pass filtered with a 1 kHz cut-off frequency using a Kemo VBF8 filter before en-

tering the power amplifier and then the shaker. A constant voltage signal input to the

amplifier is thus converted to a constant displacement signal input to the shaker moving

mass and to the actuator base mass. The second experimental set-up is used to measure

the response of the actuator to a direct (current) excitation, as shown in figures 3.2(a)

and 3.2(b). Since the aim of this experiment is to measure the blocked force, the actu-

ator is fixed to a rigid clamped mass and the force at the actuator base is measured by

a PCB 208C01 ICP force cell positioned between the actuator and the blocked mass.

In this experiment, the signal generated by the dSPACE is low-pass filtered with a 4
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(a)
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ControlDesk®
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DAC
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Inertial
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Signal
conditioner

(b)

Figure 3.2: (a) Picture of the direct excitation experimental set-up; (b) Block diagram
of the direct excitation experiment.

kHz cut-off frequency and amplified by a Micromega Dynamics PR-052-01-04-03 volt-

age driven current amplifier [138] shown in figure 3.3 before entering the actuator leads.

Considering this set-up, a constant voltage signal input from the dSPACE to the ampli-

fier is converted to a constant current signal input to the actuator’s coil. The amplifier

has also an output monitoring port for measuring the current of the load, as shown in

figure 3.3(a). Again, the current and voltage are acquired by the dSPACE board at a

rate of 10 kHz. The underlying linear parameters of the actuator for both tests have

(a) (b)

Figure 3.3: Pictures of the Micromega Dynamics PR-052-01-04-03 current amplifier.
(a) Front panel connections; (b) Back panel connections.

been measured by applying a broadband white noise excitation with a cut-on frequency

of 2 Hz and a cut-off frequency of 4 kHz and recording the measurements for 60 s and

taking averages. For the direct excitation experimental set-up, the only constraint is

that the base mass of the actuator is fixed to the ground. Several other excitations

under different constraints have been used for the base excitation experiments in order

to better investigate both the linear and the nonlinear regimes of motion. In particular,

for the underlying linear parameter identification, the actuator’s coil terminals are first

left open (zero current circulating) and then shunted (zero voltage across the terminals)

in order to see the additional damping introduced by the electromechanical coupling. In

order to identify the nonlinear behaviour, the actuator’s coil terminals are left open cir-

cuit allowing to measure the back-emf. Initially, the excitation is chosen to be harmonic

for detecting any nonlinearities. The investigation is followed by sine-sweep excitation
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experiments, both up and down in frequency, allowing one to gain information about

the instantaneous frequencies in the response. In this case the experiments are 60 s long

each for linearly sweeping up (down) from 5 Hz (25 Hz) to 25 Hz (5 Hz) at a rate of 40

Hz/min (-40 Hz/min).

3.2 Underlying linear parameter identification

The operating principle of an electromagnetic proof mass actuator is to convert electrical

power into mechanical power, which is described by the Lorentz force law. In such a

system, a current flowing through a coil is exposed to a uniform magnetic flux, which

is generated by the magnetic proof mass [139]. The electromechanical linear lumped

parameter model of the actuator is shown in figure 3.4, where mb is the base mass of the

actuator and mp the proof mass. The base and proof mass displacements are xb and xp,

respectively, and the relative motion of the proof mass with respect to the actuator’s

base is xr = xp−xb. The stiffness and damping parameters of the actuator’s suspension

are kp and cp, respectively. The external force applied to the base for the equilibrium is

denoted with f , which is the opposite of the control force fc that the actuator applies on

the structure. The variable ia represents the current flowing through the coil and ea is

the voltage across the coil terminals. The transduction coefficient is φ = Bl, where B is

the magnetic flux of the permanent magnet and l is the length of the coil exposed to the

magnetic flux B. The voice coil electrical impedance is typically modelled as an ideal

inductance Le and resistance Re in series. Assuming the system in figure 3.4 is linear

pmpx

pc
pk

f

bm
bx

eL eR

ae

ai

f

Figure 3.4: Electromechanical linear lumped parameter model of the inertial actuator.

and time-invariant as well as assuming that the electrical and mechanical variables are

proportional to ejωt, where ω is the angular frequency, the dynamic equilibrium equations

in frequency domain can be written as,

jωmpẊp(jω) = φIa(jω)−
[
cp +

kp
jω

]
Ẋr(jω)

F (jω) = φIa(jω)−
[
cp +

kp
jω

]
Ẋr(jω) + jωmbẊb(jω)

Ea(jω) = φẊr(jω) + [Re + jωLe] Ia(jω)

,

(3.1a)

(3.1b)

(3.1c)
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where φIa(jω) is the force generated by the transducer according to the Lorentz force law

and φẊr(jω) is the back-emf caused by the relative coil-magnet motion according to the

Faraday’s law. The notation in eq. (3.1) as for the whole thesis is that upper-case letters

are used for variables in frequency domain and lower-case letters are used for variables

in time-domain. Also, an abuse of notation has been made for Ẋp(jω) to indicate the

Fourier transform of the velocity of the proof mass1. The dynamic behaviour of the

system in figure 3.4 is well described by six frequency response functions (FRFs). These

are the transmissibility between the mechanical and electrical ports and the driving-

point impedances at either the electrical or mechanical terminals of the device and their

mathematical derivation follows directly from eq. (3.1). The calculations can be found in

the textbooks of Hunt [42] and Crandall [43], and in the research papers [25; 44], here the

resulting formulation is reported. The electrical driving-point impedance Zee(jω) defined

as the ratio between the voltage across the coil terminals and the current flowing through

the winding for the blocked actuator’s base (Ẋb(jω) = 0) is derived from eq. (3.1) as,

Zee(jω) =
Ea(jω)

Ia(jω)

∣∣∣∣
Ẋb(jω)=0

= (Re + jωLe) +
φ2

jωmp + cp +
kp
jω

. (3.2)

Similarly, the mechanical driving-point impedance Zmm(jω) defined as the ratio between

the transmitted force to the hosting structure and the base mass velocity for the open

circuit electrical port (Ia(jω) = 0) is obtained from eq. (3.1) and results in,

Zmm,o(jω) =
F (jω)

Ẋb(jω)

∣∣∣∣
Ia(jω)=0

= jωmb +
jωmp

(
cp +

kp
jω

)
jωmp + cp +

kp
jω

. (3.3)

The mechanical driving-point impedance can also be calculated for the short-circuited

electrical port (Ea(jω) = 0) from eq. (3.1) and it can be written as,

Zmm,s(jω) =
F (jω)

Ẋb(jω)

∣∣∣∣
Ea(jω)=0

= jωmb +
jωmp

(
cp +

kp
jω + φ2

Re+jωLe

)
jωmp + cp +

kp
jω + φ2

Re+jωLe

. (3.4)

The transmissibility between the electrical and mechanical ports for the base driven

actuator TẊb(jω) is defined as the ratio between the voltage across the coil terminals

and the velocity of the base mass for the open-circuit electrical port and from eq. (3.1)

it results in,

TẊb(jω) =
Ea(jω)

Ẋb(jω)

∣∣∣∣
Ia(jω)=0

=
−jωmpφ

jωmp + cp +
kp
jω

. (3.5)

The transmissibility between the mechanical and electrical ports for the direct driven

1If Xp(jω) is the Fourier transform of xp(t), then using Ẋp(jω) for the Fourier transform of ẋp(t)
can be confusing. In fact, one can point out that the time derivation of Xp(jω) does not exist, since jω
is an algebraic value. In this thesis the following notation will be used: X(jω), Ẋ(jω), Ẍ(jω) for the
Fourier transform of x(t), ẋ(t), ẍ(t), respectively.
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actuator TIa(jω) defined as the ratio between the force transmitted to the hosting struc-

ture and the input current for the blocked actuator’s base can be written as,

TIa(jω) =
F (jω)

Ia(jω)

∣∣∣∣
Ẋb(jω)=0

=
−jωmpφ

jωmp + cp +
kp
jω

. (3.6)

Depending on the type of the power amplifier used to operate the device it can be

useful to calculate the expression of the transmissibility for the direct driven actuator

with respect to an input voltage instead of an input current. Hence, from eq. (3.1),

the transmissibility between the mechanical and electrical ports for the direct driven

actuator, TEa(jω), defined as the ratio between the force transmitted to the hosting

structure and the input voltage for the blocked actuator’s base can be written as,

TEa(jω) =
F (jω)

Ea(jω)

∣∣∣∣
Ẋb(jω)=0

=
1

(Re + jωLe)

−jωmpφ(
jωmp + cp +

kp
jω + φ2

Re+jωLe

) , (3.7)

which shows that a voltage driven actuator presents an increased internal damping and a

decreased force output at high frequencies due to the electromechanical coupling, when

compared to the same actuator but current driven. The FRFs described by eqs. (3.2)

(a) (b)

Figure 3.5: Magnitude, phase and coherence of the measured mechanical driving-
point impedance (black solid line) and identified model (blue dash-dotted line). (a)

Open-circuit mechanical impedance; (b) Short-circuit mechanical impedance.

to (3.7) have been measured using a broadband white noise excitation. In particular,

Zmm,o(jω), Zmm,s(jω) and TẊb(jω) have been measured using the base excitation set-

up shown in figure 3.1 and Zee(jω), TIa(jω), TEa(jω) have been measured using the

direct excitation set-up shown in figure 3.2. The experimental results of the Micromega

Dynamics IA-01 actuator are shown in figs. 3.5 to 3.7 with a black solid line, where

the magnitude, phase and coherence are displayed for each measured FRF, taking the

average of 8 measurements, each one being 60 s long. The measured FRFs have been

fitted with the analytical FRFs given by eqs. (3.2) to (3.7) and are shown in figs. 3.5

to 3.7 with blue dashed lines. A least-square-error method between the analytical and
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experimental FRFs has been implemented for the underlying linear model identification

of the best fitting parameters [140], which are summarised in table 3.1. There is a very

(a) (b)

Figure 3.6: Magnitude, phase and coherence of the measured transmissibility (black
solid line) and identified model (blue dash-dotted line). (a) Base excitation experiment;

(b) Direct (current) excitation experiment.

(a) (b)

Figure 3.7: Magnitude, phase and coherence of the measured transmissibility and
electrical impedance (black solid line) and identified model (blue dash-dotted line). (a)
Transmissibility for the direct (voltage) excitation experiment; (b) Electrical impedance
for the direct (current) excitation experiment considering an ideal inductance model.

good agreement between the experimental and the analytical FRFs shown in figures 3.5

and 3.6 and eq. (3.7) above 5 Hz, where the coherence becomes closer to 1. In particular,

figure 3.5(a) shows the mechanical driving-point impedance also given by eq. (3.3) for

an open-circuit electrical port. At low frequency, the mechanical impedance converges

towards the impedance of the total mass of the actuator, whereas at high frequency it

converges towards the impedance of the base mass. The plot in figure 3.5(b) showing

the mechanical driving-point impedance for a short-circuited electrical port looks almost

identical to the plot in figure 3.5(a), but it differs for the additional damping introduced

by the electromechanical coupling, as can be also seen in eq. (3.4), where the amplitude
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of the resonance peak is reduced. This is not evident when comparing figure 3.5(a)

with figure 3.5(b), because the Micromega actuator has a relatively high damping and

low φ/Re, however, it can be easily seen in the other actuators in appendices A and B.

The plots in figures 3.6(a) and 3.6(b) are the mechanical to electrical transmissibility

and the electrical to mechanical transmissibility for a current driven actuator, respec-

tively, and they are given by eqs. (3.5) and (3.6). As expected, they give the same

response that is characterised by in phase input-output FRF at low frequency and out

of phase input-output FRF at frequencies above the resonance where the spectrum is

also flat. Figure 3.7(a), instead, shows the electrical to mechanical transmissibility for

a voltage driven actuator that is also given by eq. (3.7). Comparing this plot with the

one in figure 3.6(b), it can be noticed that the resonance peak is reduced in magni-

tude because of the additional damping. Additionally, the transmissibility above the

resonance decreases as the frequency increases. This is more evident for the actuators

in appendices A and B. The electrical impedance of the blocked actuator is shown in

figure 3.7(b), which is also given by eq. (3.2). At low frequency the electrical impedance

can be approximated as the resistance of the coil and as the frequency increases a peak

rises that is due to the electromechanical coupling. For higher frequencies the electrical

impedance should tend to the ideal inductance impedance as predicted by eq. (3.2),

however, there is a disagreement between the measured and identified FRFs that is even

more evident for the actuators in appendices A and B. The discrepancy can be due to

the inductance losses as a consequence of the eddy currents circulating in the magnetic

proof mass and is investigated in the next section 3.2.1. Considering eqs. (3.2) to (3.7),

the linear response of the base driven inertial actuator can be conveniently defined by

the following two-port network equation [42; 45],

F (jω) = TmeIa(jω) + ZmechẊb(jω)

Ea(jω) = ZelecIa(jω) + TemẊb(jω)
, (3.8)

which is also shown in the block diagram of figure 3.8, where the electrical driving-

point impedance Zelec = Zee is given by eq. (3.2), the electrical to mechanical and the

mechanical to electrical transmissibility Tme = Tem = TẊb = TIa are given by eqs. (3.5)

and (3.6) and the mechanical driving-point impedance can either be Zmech = Zmm,o for

the open-circuit electrical port, which is given by eq. (3.3), or Zmech = Zmm,s for the

short-circuited electrical port, which is given by eq. (3.4).

3.2.1 Inductance losses due to eddy currents

As anticipated at the end of section 3.2, the series ideal inductance and resistance model

of the voice coil does not always represent accurately the dynamic behaviour of the

actuator, especially at high frequency [79; 141]. This can be identified by the mismatch

of the experimental and analytical electrical impedance shown in figure 3.7(b). In fact,

the voice coil is not operating in free air, but close to the magnetic pole structure.
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Figure 3.8: Two-port network parameters of a base driven inertial actuator.

Table 3.1: Identified underlying linear model parameters for the Micromega Dynamics
IA-01 [40].

Parameter Symbol Value Units

Base mass mb 0.054 kg

Proof mass mp 0.031 kg

Transduction coefficient φ 1.55 N/A

Natural frequency ωp 9.7 Hz

Damping ratio ζp 30% −
Coil resistance Re 3.2 Ω

Coil inductance Le 211 µH

Hence, the variable magnetic field generated by the current flowing through the coil

induces eddy currents in the solid iron pole structure due to Faraday’s law. The eddy

currents circulating through the resistance of the iron pole dissipate energy by heating

the iron pole itself. In loudspeaker driver investigations, this is commonly taken into

account by modifying the topology of the electrical port adding lossy inductors in the

model, that are, inductors with a shunting parallel resistance [142–144]. Thus, adding

in series to the ideal inductance Le displayed in figure 3.4 a lossy inductor results in an

equivalent impedance,

ZL,LR−2(jω) = jωLe +
jωL2R2

jωL2 +R2
, (3.9)

which has the topology shown in figure 3.9(a) and is usually referred as LR-2 model

[143; 144]. Further investigations on loudspeaker drivers showed the development of

several linear models to describe the inductance losses due to eddy currents in the

iron pole. In fact, Vanderkooy [142] derived a mathematical formulation that models

the behaviour of the voice coil as a series resistor and semi-inductor, which has an

impedance,

ZL,V anderkooy(jω) = K
√
jω, (3.10)

as shown in figure 3.9(b), where K is the semi-inductance parameter. Subsequently,

Wright proposed a model with separated power functions for the real and imaginary
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part of the electrical impedance [145] that can be written as,

ZL,Wright(jω) = Krω
ηr + jKiω

ηi , (3.11)

which however requires the identification of the four parameters Kr, Ki, ηr, ηi. A similar

model was developed by Leach [146], where the electrical impedance takes the form,

ZL,Leach(jω) = K(jω)η, (3.12)

which requires the identification of the parameters K and η. Leach also proposed a

model described by a series effective inductance and resistance in which the inductance

and resistance vary with frequency [147], as shown in figure 3.9(c). Thus, it can be

written as,

ZL,eff (jω) = Leff (ω)jω +Reff (ω), (3.13)

where a large amount of parameters are requires for Leff (ω) and Reff (ω): two for

each frequency point. Considering the inductance losses, the analytical driving-point

eL

2R

2L

(a)

)( wjZL

(b)

)( wjLeff )( wjReff

(c)

Figure 3.9: Topology of the voice coil electrical impedance considering the inductance
losses due to eddy currents in the magnetic iron pole. (a) LR-2 model; (b) Wright and

Leach frequency dependent models; (c) Effective inductance model.

electrical impedance of the inertial actuator given by eq. (3.2) becomes,

Zee,L(jω) = (Re + ZL(jω)) +
φ2

jωmp + cp +
kp
jω

, (3.14)

where ZL(jω) is given by eqs. (3.9) to (3.13). Any of these models can be used for

describing the inductance losses and in fact, it has been observed that the choice of

each model strongly depends on the actuator design. The Micromega Dynamics IA-

01 driving-point electrical impedance has been fitted using the Leach model given by

eq. (3.12) [146] and the result of the fitting is shown in figure 3.10 with the red dashed

line, where the frequency range has been increased up to 4kHz. The semi-inductance

and the exponent used in the Leach model given by eq. (3.12) are K = 4.5 · 10 −4 and

η = 0.85. It is evident that including the inductance losses in the model will give a

better prediction of the device electrical impedance at high frequency with respect to

the ideal inductance model shown in figure 3.10 with the blue dash-dotted line. This

can be useful when estimating the active and reactive electrical power required by the

device for suppressing the vibration of a structure. However, for the sake of simplicity,
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throughout this thesis the ideal inductance model is used, as shown in figure 3.4, and

the effect of the eddy currents is neglected, being the focus of the thesis on a lower

frequency range.

Figure 3.10: Magnitude, phase and coherence of the measured driving-point electrical
impedance (black solid line), identified ideal model (blue dash-dotted line) and identified

model considering the inductance losses due to the eddy currents (red dashed line).

3.3 Limits of linear analysis

The dynamic behaviour of inertial actuators is not always well described by linear math-

ematical models. These devices are subject to strong nonlinearities due to the saturation

of the force they can generate, which is due to either the saturation of the power elec-

tronics or the saturation of the available stroke [11]. Considering the actuator in the

direct excitation configuration, from eq. (3.1) the blocked force can be written as,

Fb(jω) =

{
− [jωcp + kp]Xp(jω) + φIa(jω)

ω2mpXp(jω)
.

(3.15a)

(3.15b)

Also, according to Newton’s second law, the equation of motion of the proof mass can

be written as, [
−ω2mp + jωcp + kp

]
Xp(jω) = φIa(jω), (3.16)

thus,

Xp(jω) =
φIa(jω)

−ω2mp + jωcp + kp
. (3.17)
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Substituting eq. (3.17) into eq. (3.15a) and rearranging the terms, provides the maximum

blocked force that the actuator can deliver without exceeding its limits,

Fb,max(jω) =


Fb,max1(jω) =φIa,max

(
ω2

−ω2 + jω2ζpωp + ω2
p

)
Fb,max2(jω) =ω2mpx0

,
(3.18a)

(3.18b)

where x0 is half of the stroke length, ωp =
√
kp/mp is the natural frequency and ζp =

cp/(2mpωp) is the damping ratio of the device. The force limit due to the power electronic

saturation and the stroke saturation are Fb,max1(jω) and Fb,max2(jω), respectively. The

power electronic saturation is a limitation on the electromechanical conversion, which is

given by the maximum actuation force that the transducer can generate, which is,

Fa,max(jω) = φIa,max, (3.19)

where Ia,max is the maximum input current flowing into the actuator coil. Stroke sat-

uration, instead, gives a limitation on the maximum displacement allowed to the proof

mass that is given by,

Xp,max(jω) = x0. (3.20)

The results of this analysis are shown in figure 3.11(a) for a Micromega Dynamics IA-

01 actuator driven by a current amplifier. The dotted and dash-dotted blue lines in

figure 3.11(a) show the spectrum of the actuation force Fa,max(jω) and the blocked

force Fb,max1(jω) in a logarithmic scale when the actuator is driven by the maximum

current of 1 A [40]. The dashed red line shows, instead, the spectrum of the blocked

force Fb,max2(jω), when the actuator is driven at the maximum stroke allowed to the

proof mass (x0 = 1.25 mm). A combination of these two limitations results in a region

where the actuator follows the linear equation of motions, which is defined by the black

solid line. The upper limit Fa,max, which has a flat dynamic behaviour over the whole

frequency range, is indeed a limitation on the temperature and heating of the actuator.

In fact, an increase in the input power to the actuator’s coil would produce a temperature

rise of its components [73; 74]. The maximum current value is given by the maximum

temperature rise that does not lead to demagnetisation of the proof mass caused by

passing the Curie temperature (80 ◦C for most of the permanent magnets), when the

atoms of the material deviate from the magnetic alignment. An ultimate limit is then

given by the melting temperature of the wire insulation, which is about 150 ◦C for

common materials [74]. The force limit due to stroke saturation shown in figure 3.11(a)

appears to be an effective limit at low frequency, instead. The plot of figure 3.11(a) can

thus be divided into two regions: below the saturation cut-off frequency ωs and, where

the limitation on the blocked force is given by stroke saturation; and above ωs, where



Chapter 3 Characterisation and modelling of nonlinear dynamics 39

(a) (b)

Figure 3.11: Limitation of the linear analysis for a proof mass actuator. Dotted and
dash-dotted blue lines represent the limitation on the maximum force due to the power
electronics saturation; red dashed lines display the limitation due to the maximum
stroke; black solid lines are the combination of the two previous constraints and define
a region where the actuator behaves linearly (cyan area). (a) Current driven actuator;

(b) Voltage driven actuator.

the limitation is given by the saturation of the current. This can be summarised as,

Fb,max(jω) =

{
φIa,max ω > ωs

ω2mpx0 ω ≤ ωs
.

(3.21a)

(3.21b)

The saturation cut-off frequency can be calculated at the intersection point between the

two limits by setting,

ω2
smpx0 = φIa,max, (3.22)

which gives,

ωs =

√
φIa,max
mpx0

. (3.23)

If the saturation cut-off frequency is lower than the natural frequency of the actuator it

means that the device has a large stroke and the only limitation on the blocked force is

given by the power electronic saturation. However, for the Micromega Dynamics IA-01

actuator and for the majority of these devices, the saturation cut-off frequency is larger

than their natural frequency, as shown in figure 3.11(a). Hence, in any practical appli-

cation the control range should be above the saturation cut-off frequency for exploiting

the maximum actuator authority. In order to avoid stroke saturation, the device could

be redesigned allowing for a larger stroke that can be estimated by setting ωs = ωp,

hence from eq. (3.22) results,

x0,new =
φIa,max
kp

. (3.24)

However, this large stroke cannot usually be implemented in practice. For example,

using the values given in table 3.1 for the Micromega Dynamics IA-01 actuator, the
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redesigned actuator would have a stroke that is almost 13 times larger than the original.

One can replicate the same analysis for a voltage driven actuator, setting the limitation

of the power electronic on the voltage instead of the current. Hence, considering eq. (3.7)

instead of eq. (3.18a), the maximum blocked force becomes,

Fb,max(jω) =


Ea,max

 −jωmpφ

(Re + jωLe)
(
jωmp + cp +

kp
jω + φ2

Re+jωLe

)


ω2mpx0

,
(3.25a)

(3.25b)

where Ea,max is the maximum voltage that can be applied to the actuator voice coil.

The limits given by eq. (3.25) are shown in figure 3.11(b), where the maximum voltage

has been set to 3 V. Stroke saturation can happen to every inertial actuator if excited

below its saturation cut-off frequency. In fact, even if the stroke is large and the blocked

force is limited only by the maximum input power, in a real application the inertial

actuator is subject to shocks, rigid body motions or other low frequency base excitation

that can lead to displacement saturation. Designing an actuator that is able to deliver

the requested force even below the saturation cut-off frequency would mean that it is

overdesigned in terms of volume and weight. This would negate its favourable force-to-

weight ratio for controlling vibrations of lightweight structures.

3.4 Nonlinear parameter identification

The linear model used in section 3.3 to derive the actuator force limit over the entire

frequency range gives a wrong physical interpretation of the consequences of stroke sat-

uration. In fact, eq. (3.18b) tells that a saturation on the proof mass displacement

corresponds to a saturation on the force delivered by the actuator, as if the proof mass

was connected to a negative stiffness of the same value of the suspension stiffness, for

displacements exceeding the stroke. What happens, instead, is that as the proof mass

saturates in stroke it collides with the actuator’s end-stops experiencing a much larger

stiffness and generating impact forces that sums up to the total force delivered by the

actuator. Hence, in general, the assumption of linearity in the model, as used in sec-

tions 3.2 and 3.3, holds only for small amplitude signals. For large amplitude signals,

instead, a nonlinear model of the inertial actuator is required to reliably predict its dy-

namic behaviour, and this is crucial in case of instabilities or large amplitude vibrations.

A general nonlinear lumped parameter model of the actuator is shown in figure 3.12,

where the linear parameters associated with the suspension have been replaced by a

nonlinear restoring force fRF (ẋr, xr). Also, the transduction coefficient φ(xr) is in gen-

eral a nonlinear function of the displacement. Only mechanical nonlinearities have been

considered in this study, which are functions of displacements or velocities. The electri-

cal nonlinearities, which depend on current or voltage, have been neglected since they
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affect the behaviour only at high frequency. The governing equations of the system in

figure 3.12 can be written as,


mpẍp(t) = φ(xr(t))ia(t)− fRF (ẋr(t), xr(t))

f(t) = φ(xr(t))ia(t)− fRF (ẋr(t), xr(t)) +mbẍb(t)

ea(t) = φ(xr(t))ẋr(t) +Reia(t) + Le
d

dt
ia(t)

,

(3.26a)

(3.26b)

(3.26c)

where the transformation to the frequency domain is not possible in general, due to the

nonlinear nature of these equations. The nonlinearity of the inertial actuator is identified

following three steps, namely detection, characterisation and parameter identification,

as proposed in [100; 101]. The inertial actuator is tested again using the base excitation

experiment described in section 3.1. The first test is a harmonic excitation at different

frequencies and amplitudes. This is useful to detect the nonlinearities by comparing the

excitation and response waveforms looking for any distortions. If a nonlinear behaviour

is detected, the next step is to apply a sine-sweep excitation in both directions in order

to characterise the nonlinearity. Looking at the time history of the response and at the

istantaneous frequencies, a formulation can be chosen for the nonlinear model of the

actuator. Finally, the nonlinear parameters can be identified using the restoring force

surface method and fitting the nonlinear model to the experimental data [99–101; 103–

105].

pmpx
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Figure 3.12: Electromechanical lumped parameter model of the inertial actuator
considering a general nonlinear connection between the proof and base mass and a

nonlinear transduction.

3.4.1 Detection

In this section the detection of the nonlinearity is investigated. Several experiments have

been done using a harmonic base excitation varying frequency and amplitude. The most

representative is shown in figure 3.13 for a harmonic base excitation at 8 Hz and 2.5 mm.

In particular, figure 3.13(a) shows the waveforms of the base force, the relative proof

mass velocity and displacement with a black solid line and the input base displacement

with a dash-dotted red line. The waveform of the base force present periodic spikes,
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which are due to the impacts between the proof mass and the end-stops. In fact, at the

same timing of the spikes, the velocity plummets changing sign and the displacement

waveform is clipped resulting in a highly distorted signal. This results in a nonlinear

trajectory of the proof mass in the phase-space, as can be observed in figure 3.13(b). If

the system were linear, the trajectory would have been elliptical, in this case, instead, it

follows a distorted loop constrained within a certain displacement range. The back-emf

signal has been measured considering that it is equal to the voltage across the actuator

leads for an open-circuit electrical port. Hence, in this case eq. (3.26c) becomes,

ea(t) = φ(xr(t))ẋr(t), (3.27)

which is shown in figure 3.13(c) and presents a waveform that is similar to the one of

the proof mass velocity in figure 3.13(a). The spectrum of the proof mass displacement

and the back-emf are shown in figure 3.13(d) where many harmonics are observed in

the response signals and their magnitudes are comparable to the fundamental one. The

relevance of the harmonics generated by the nonlinearity, or the magnitude of waveform

distortion is analysed considering the total harmonic distortion (THD) of the signals

[102], which is defined as,

THD =

√∑∞
n=2 I

2
n

I1
, (3.28)

where I1 is the magnitude of the fundamental component in the response, and In are

the magnitude of the harmonics. The THD values of the signals in figure 3.13(d) are

given in table 3.2 considering the response harmonics up to the 5th. The THD is usually

given in dBc (dB relative to the carrier), but it can easily translated in percentage. The

results shown in figure 3.13 and table 3.2 motivate for a deeper understanding of the

causes of the nonlinearity as well as the identification of the nonlinear actuator model.

Table 3.2: Total harmonic distortion (THD) of displacement, force and back-emf

signals at 8 Hz harmonic excitation considering the response harmonics up to the 5th.

Parameter Value Units

THD xr -6 dBc

THD xr 50 %

THD f -2.8 dBc

THD f 72.2 %

THD ea -2.2 dBc

THD ea 77.2 %

3.4.2 Characterisation

This section focuses on choosing an appropriate nonlinear model that is representative

of the dynamic behaviour of the inertial actuator. Several experiments have been carried
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(a) (b)

(c) (d)

Figure 3.13: Detection of the nonlinearity with a harmonic excitation at 8 Hz. (a)
Waveforms of the force at the base, relative proof mass velocity and displacement
(solid black line) and input base displacement (dash-dotted red line); (b) Phase-space
trajectory of the proof mass; (c) Waveform of the back-emf; (d) Spectrum of the relative

displacement and back-emf.

out using a sine-sweep excitation with different amplitudes. The first test was to com-

pare the sweep-up and the sweep-down excitations looking for hardening or softening

behaviour of the suspension. The results for an input base excitation of 0.65 mm are

presented in figure 3.14. The sweep-up and sweep-down time histories are shown with

the black and the grey lines, respectively. The response to the sweep-up excitation from

5 Hz to 25 Hz at 40 Hz/min is characterised at low frequency by a displacement limit

that flattens the response over a range of frequencies. The amplitude of the response

remains bounded within these limits until the excitation frequency reaches 20 Hz, when

a sudden jump down to a lower level can be observed. This nonlinear effect is referred to

as the jump phenomenon and is peculiar of systems with hardening stiffness nonlinear-

ities [99–101]. For frequencies higher than the jump, the response amplitude decreases

proportionally to the inverse of the frequency. The sweep-down response in figure 3.14

presents a similar behaviour, but the amplitude jump occurs at a lower frequency than

the one during the sweep-up. In this case the jump is from a lower to a higher amplitude,

as the plot of the sweep-down response should be read from right to left. This confirms
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Figure 3.14: Time history of the relative proof mass displacement due to a sine sweep
excitation with a base displacement input of 0.65 mm. Solid black (solid grey) line
for the sweep-up (down) response from 5 Hz (25 Hz) to 25 Hz (5 Hz) at 40 Hz/min

(-40 Hz/min).

that the actuator being investigated is characterised by a hardening stiffness behaviour.

Another analysis has been done to compare the responses to a sweep-up excitation at

different amplitude levels. The response to the highest level of excitation (xb =0.65 mm)

has been compared to the response at a lower level of excitation (xb =0.10 mm) and the

result is shown in figure 3.15. It is noted that the two responses are entirely different,

being the response to a high amplitude excitation nonlinear and characterised by the

jump phenomenon described before. The response to the low amplitude excitation, in-

stead, presents an envelope that is a typical linear FRF for a SDoF system. This shows

that the resonance frequency of the inertial actuator shifts to higher frequencies as the

excitation level increases. The sine sweep signals can be further analysed in frequency

domain. Classical Fourier transform cannot be applied for this analysis, as the excita-

tion is non-stationary and the response is nonlinear, hence the Fourier transform would

not be able to capture the time-varying frequencies. The wavelet transform, instead,

highlights the harmonic components generated by the nonlinearity by mapping the time

series into a time-frequency representation [148]. The wavelet transform of a signal is

defined as [149–151],

Xr(a, b) =
1√
a

∫ +∞

−∞
xr(t)ψ

(
t− b
a

)
dt, (3.29)

where Xr(a, b) is the time-frequency representation of the signal, in which the time lies

along the x-axis and the instantaneous frequency along the y-axis. Hence, the variable b

locates the observation window of the wavelet transform in the time domain, whereas a

defines the frequency resolution by expanding or contracting the window. The function

ψ(·), namely the mother wavelet, is the windowing function. The wavelet analysis in

this thesis is performed using the NI2D software toolbox developed by NOLISYS at the
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Figure 3.15: Time history of the relative proof mass displacement due to a sine sweep-
up from 5 Hz to 25 Hz at 40 Hz/min for different levels of base excitation. Solid black
line for the response to the highest level (xb =0.65 mm); solid grey line for the response

to a lower level (xb =0.10 mm).

University of Liège (Belgium) [152], which involves a Morlet mother wavelet of the type,

ψ(t) = e
t2

2 ejωt, (3.30)

which is a Gaussian-windowed complex sinusoid. The amplitude of the wavelet transform

of the time-series shown in figure 3.15 for the response to a sweep-up excitation at both

low and high amplitude level is shown in figure 3.16. These plots are the amplitude of the

instantaneous frequency of the response (y-axis) versus the duration of the sine sweep

excitation (x-axis). Since there is a linear relationship between the time and frequency

of the excitation, the x-axis has been conveniently converted to show the excitation

frequency. Figure 3.16(a) shows the amplitude of the wavelet transform at low excitation

level. The response is characterised by a strong presence of the fundamental frequency,

but also there are contributions from the second and third harmonics. This is particularly

true at frequencies between 8 Hz and 15 Hz, where the system is close to resonance and

experiences larger amplitude of motion. Thus, the model of the suspension could be

chosen to be a polynomial function of the 3rd order. Increasing the level of excitation

drives the actuator into stroke saturation, hence experiencing a stronger nonlinearity.

The amplitude of the wavelet transform at high excitation level is shown in figure 3.16(b).

The response is characterised by a wideband frequency components, which indicates the

presence of impacts, hence a non-smooth nonlinearity. This harsh nonlinearity can be

modelled using a piecewise function. Figure 3.16(b) also shows that the response is

dominated by the fundamental frequency component for frequencies above the jump

phenomenon at 20 Hz, where a linear model would be a good representation of the

dynamic behaviour of the actuator.
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(a)

(b)

Figure 3.16: Amplitude of the wavelet transform of the relative proof mass displace-
ment due to a sine sweep-up from from 5 Hz to 25 Hz at 40 Hz/min for different levels
of base excitation. (a) For an excitation amplitude xb =0.10 mm; (b) for an excitation

amplitude xb =0.65 mm.

3.4.3 Identification

In this section, the identification of the nonlinear parameters of the model is carried out.

For this purpose the sine-sweep experiments are used and the data is processed using

the restoring force method [99–101]. Since the actuator is open-circuit, from eq. (3.26b)
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it follows that the restoring force of the actuator in figure 3.12 can be written as,

fRF (ẋr, xr) = mbẍb(t)− f(t), (3.31)

which can be easily calculated at each time step since mb is already known from the

underlying linear identification analysis and ẍb(t) and f(t) are measured using an ac-

celerometer and a force gauge as discussed in section 3.1. Considering eq. (3.26a) and

remembering that the actuator is open-circuit, the restoring force can also be written

as,

fRF (ẋr, xr) = −mpẍp(t), (3.32)

hence, equating the right-hand sides of eqs. (3.31) and (3.32) results,

ẍr(t) = ẍp(t)− ẍb(t) =
f − (mb +mp) ẍb(t)

mp
. (3.33)

In this way the relative proof mass acceleration can be calculated at each time step and

the velocity and displacement can also be computed by high-pass filtering and integrating

the acceleration signal. Using eqs. (3.31) and (3.33) the experimental data points of the

restoring force can be plotted in the phase-space, as shown in figure 3.17 for the largest

amplitude of excitation. In particular, figure 3.17(a) shows the data for the entire sine-

sweep experiment, figure 3.17(b), instead, shows the restoring force of a few cycles of

the proof mass when the excitation frequency is close to the actuator’s resonance. If

the actuator had a linear dynamic behaviour, all the data points in figure 3.17 would

have lied on a plane tilted of a constant kp slope with respect to one axis and a constant

slope cp with respect to the other axis. Although the restoring force measurements in

figure 3.17(a) show that the actuator behaves in a linear manner when the proof mass is

clear from the end-stops, it can be observed that the restoring force suddenly steepens

as the proof mass collides with the end-stops. Moreover, the velocity quickly changes

sign during stroke saturation and the proof mass can also experience multiple impacts

as shown in figure 3.17(b) (double impact). In order to identify the parameters of the

nonlinear model of the inertial actuator, an assumption needs to be made, that is,

fRF (ẋr, xr) = fRF,v(ẋr) + fRF,d(xr) (3.34)

hence, the contribution of the damping and elastic restoring forces can be separated.

Assuming eq. (3.34) means that the elastic restoring force can be represented as a section

of figure 3.17(a) at velocities that are close to zero. Similarly, the damping restoring

force can be displayed by taking a section of figure 3.17(a) at displacements close to zero.

The scattered data plot of the measured elastic restoring force is shown in figure 3.18

with the black dots and two different models are proposed for it. The fitted model

shown in figure 3.18(a) with the dash-dotted cyan line is polynomial of the third order

for displacements smaller than the maximum stroke and a non-smooth function with a

very large stiffness for displacements exceeding the stroke. A simpler model can also
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(a) (b)

Figure 3.17: 3D restoring force data points in the phase-space for a sine sweep exci-
tation. (a) Entire sweep-up experiment from 5 Hz to 25 Hz at 40 Hz/min; (b) Only a

few cycles close to the actuator resonance.

be fitted to the measurements, which is a piecewise linear function and is shown in

figure 3.18(b) with the solid red line. The piecewise linear model will be considered for

the rest of the study as it is simpler than the polynomial one and can still consider the

stroke saturation nonlinearity, which is a major source of nonlinearity for the elastic

restoring force compared to the weak polynomial nonlinearity of the suspension. The

elastic restoring force of the fitted piecewise linear model shown in figure 3.18(b) with

the solid red line can be written as,

fRF,d(xr) =


ksat(xr − x0) + p1x0 + p2 xr ≥ x0

p1xr + p2 |xr| < x0

ksat(xr + x0)− p1x0 + p2 xr ≤ −x0

,

(3.35a)

(3.35b)

(3.35c)

where the parameters appearing in eq. (3.35) are p1 =230 N/m, p2 =0 N, ksat =2·104 N/m

and x0 =1.25 mm. It should be noticed that the end-stops in figure 3.18 are represented

by tilted lines instead of vertical lines and this is because the experimental data describes

the end-stops with a finite stiffness. The two end-stops have been found to have slightly

different stiffness coefficients. For the sake of simplicity, the mean value of the two has

been considered for both end-stops.

The scattered data plot of the damping restoring force is shown in figure 3.19. It can

be observed that the experimental data points of the damping restoring force are well

fitted by a linear model, which is shown with a solid red line and can be written as,

fRF,v(ẋr) = p1ẋr + p2, (3.36)

where the parameters appearing in eq. (3.36) are p1 =1.4 N/ms−1 and p2 =0 N.
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(a) (b)

Figure 3.18: Model identification of the elastic restoring force experimental data
(black dots). (a) Fitted cubic stiffness model with saturation (dash-dotted cyan line);

(b) Fitted piecewise linear model (solid red line).

Since the actuator is open-circuit, from eq. (3.27) it follows that the transduction factor

can be calculated as,

φ(xr(t)) =
ea(t)

ẋr(t)
, (3.37)

which can be easily calculated at each time step since both ea(t) and ẋr(t) are measured.

However, the values of the transduction coefficient for very small velocities should be

neglected as they tend to infinity due to the division by zero in eq. (3.37). The scattered

data plot of the transduction coefficient versus the proof mass displacement in shown in

figure 3.20. It can be seen that the behaviour of the transduction coupling is polynomial

and symmetric. The peak value is reached for the proof mass in centred position,

whereas moving towards the end-stops leads to a slight decrease of the transduction

coupling factor. From this scattered data plot a nonlinear model can be fitted, which

is polynomial of the second order. The fitted model is shown in figure 3.20 with a solid

red line and can be written as,

φ(xr) = p1x
2
r + p2xr + p3, (3.38)

where the parameters appearing in eq. (3.37) are p1 =-300 kN/Am2, p2 =-6.5 N/Am

and p3 =1.8 N/A.

3.5 Summary

In this chapter an experimental investigation on the nonlinear behaviour of an iner-

tial actuator has been presented. Firstly, the experimental set-up has been described,

which consists of the base excitation and direct excitation experiments. Secondly, the

underlying linear model parameters have been identified by comparing the measured
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Figure 3.19: Model identification of the damping restoring force experimental data
(black dots). The fitted model is shown with the solid red line.

Figure 3.20: Model identification of the transduction coefficient. Experimental data
(black dots) and fitted model (solid red line).

and analytical transmissibilities, mechanical and electrical impedances of the inertial

actuator applying small excitation signals that do not activate the nonlinearity. The

inductance losses due to the eddy currents in the magnetic pole have also been investi-

gated due to the discrepancy of the measured and modelled electrical impedance at high

frequency, resulting in a lossy inductor model that gives a better agreement. The oper-

ating range of the inertial actuator in terms of maximum force delivered in the frequency

range of interest has been discussed. It is shown that the maximum force at relatively

low frequency is limited by the actuator stroke constraints and above the saturation cut-

off frequency is limited by the maximum electrical power that can be fed to the device

or by the maximum temperature. Consequently, the nonlinear behaviour of the inertial

actuator has been investigated, starting from the detection of the nonlinearity, through

its characterisation, and then to the identification of the nonlinear parameters. The

nonlinear characterisation analysis showed a wide band of high frequency content in the
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instantaneous frequency response to a sine-sweep excitation that is caused by the im-

pacts between the proof mass and the end-stops. This led to a non-smooth model of the

nonlinearity, which is a piecewise linear function fitted to the elastic restoring force ex-

perimental data. The damping restoring force and the transduction coefficient, instead,

have been fitted to the experimental data with a linear and a polynomial quadratic mod-

els, respectively. The nonlinear parameters have been identified using the restoring force

method and the back-emf signal. In particular, the clearance between the end-stops and

the saturation stiffness have been determined.





Chapter 4

Simulation analysis of nonlinear

dynamics of inertial actuators

The experimental study presented in chapter 3 was aimed at providing an accurate

nonlinear lumped parameter model of the inertial actuator under investigation. This

chapter compares the dynamic behaviour of the nonlinear inertial actuator model with

its underlying linear one, via numerical simulations in both time and frequency domains.

Although several sources of nonlinearity in the actuator have been identified, only stroke

saturation nonlinearity is considered in this study. A time domain model of the inertial

actuator is derived and solved via numerical integration in section 4.1, where stroke

saturation has been modelled as a piecewise linear function accordingly to the study

in section 3.4. Many researchers have explored SDoF systems with piecewise linear

characteristics in the past and in recent years [84–87; 112–116; 153] focusing mainly

on multi-stability of the coexisting periodic solutions. However, the main objective

of this study is to compare the blocked response of the inertial actuator using linear

and nonlinear models under the same excitation conditions and to derive some general

conclusions on how stroke saturation can affect the dynamic behaviour of the actuator.

The results of the time domain analysis are then compared with the frequency domain

solution using the harmonic balance method (HBM) in section 4.2, where the nonlinear

effects, such as the jump response, are explained. The nonlinear frequency response

curves and the frequency-amplitude diagrams are also investigated.

4.1 Numerical integration of the equation of motion

A lumped parameter model of the inertial actuator with stroke limits is shown in fig-

ure 4.1, where the device is mounted on a rigid frame. The parameters of the actuator

appearing in the figure have already been introduced in section 3.2. The stroke limits are

modelled as elastic end-stops of stiffness kc and positioned at half of the stroke length

53
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x0 away from the resting position of the proof mass, in accordance with the study of

section 3.4. The equation of motion of the proof mass displayed in figure 4.1 can be

pmpx

f

aif

aif

0x-

0x
pc

pk

ck

ck

bmbx

rx

Figure 4.1: Lumped parameter model of the inertial actuator with elastic end-stops.

written as,

mpẍp(t) + cpẋr(t) + fRF,d(xr(t)) = φia, (4.1)

which is derived from eq. (3.26a) with the assumptions of a linear transduction coeffi-

cient, a linear damping and a nonlinear elastic restoring force fRF,d(xr(t)). The piecewise

linear stiffness model has been identified in section 3.4 and is given by eq. (3.35), which

can be rewritten as,

fRF,d(xr(t)) =


ksat(xr(t)− x0) + kpx0 xr(t) ≥ x0

kpxr(t) |xr(t)| < x0

ksat(xr(t) + x0)− kpx0 xr(t) ≤ −x0

.

(4.2a)

(4.2b)

(4.2c)

where kp is the linear suspension stiffness and ksat is the saturation stiffness experienced

by the proof mass when exceeding the stroke length, which is given by,

ksat = kc + kp, (4.3)

in accordance with the model in figure 4.1. Equation (4.2) is also represented in figure 4.2

with the solid black line and is compared to the underlying linear model in figure 4.2 with

the dashed blue line. It should be noted that if the end-stop stiffness is zero (kc = 0),

the nonlinear stiffness model given by eq. (4.2) becomes equivalent to the underlying

linear model. Dividing eq. (4.2) by the proof mass relative displacement results in,
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Figure 4.2: Elastic restoring force of the stroke limited inertial actuator (solid black
line) and the underlying linear actuator (dashed blue line).

κ(xr(t)) = fRF,d(xr(t))/xr(t) =



ksat +
kpx0 − ksatx0

xr(t)
xr(t) ≥ x0

kp |xr(t)| < x0

ksat +
ksatx0 − kpx0

xr(t)
xr(t) ≤ −x0

,

(4.4a)

(4.4b)

(4.4c)

where κ(xr(t)) is a nonlinear parameter, which is conveniently introduced to further

analyse the nonlinear eq. (4.1). Substituting eq. (4.3) into eq. (4.4) gives,

κ(xr(t)) =


ksat − kc

x0

xr(t)
xr(t) ≥ x0

kp |xr(t)| < x0

ksat + kc
x0

xr(t)
xr(t) ≤ −x0

.

(4.5a)

(4.5b)

(4.5c)

Using again eq. (4.3), eq. (4.5) can be finally written as,

κ(xr(t)) =


kp |xr(t)| < x0

kp + kc(1−
x0

|xr(t)|
) |xr(t)| ≥ x0

,

(4.6a)

(4.6b)

and the equation of motion given by eq. (4.1) becomes,

mpẍp(t) + cpẋr(t) + κ(xr(t))xr(t) = φia. (4.7)

Since the actuator is blocked ẍr = ẍp and eq. (4.7) can be cast in a state space form as

follows, {
ẋ = A(x)x + Bu

y = Cx
,

(4.8a)

(4.8b)
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in which the state vector is defined as,

x = {xr ẋr}T , (4.9)

where the superscript T denotes the transpose of the vector. The system matrix A can

be written as,

A =

[
0 1

−κ(xr)
mp

− cp
mp

]
, (4.10)

where the nonlinear stiffness κ(xr) is given by eq. (4.6). The input is given by,

u = ia, (4.11)

and the input matrix B results in,

B =

[
0
φ
mp

]
. (4.12)

The system output is defined as,

y = xr, (4.13)

hence the output matrix becomes,

C = [1 0] . (4.14)

The state space eq. (4.8) has been solved numerically using the Nonlinear Identification

to Design software (NI2D R©), which is a MatLab toolbox developed by NOLISYS [152]

that uses a Newmark method for the numerical integration of the equations of motion.

A comparison among different methods of numerical integration can be found in [107]

and in appendix C. The parameters used in the numerical simulations are the piecewise

linear model parameters of eq. (3.35) for the nonlinear stiffness and the underlying linear

model parameters given in table 3.1. The numerical analysis is performed considering a

sine-sweep-up (-down) current excitation from 5 Hz (25 Hz) to 25 Hz (5 Hz) with a sweep

rate of 1 Hz/min (-1 Hz/min) and zero initial conditions, using a sampling frequency

fs = 10 kHz and a constant amplitude excitation over the whole frequency range. It

should be noted that the linear relationship between time and frequency of the sine

sweep excitation allows us to display the results of the numerical analysis using either

frequency or time as the x-axis dimension. Figure 4.3 shows the response of the proof

mass to a sine sweep excitation using an input current ia = 62.5 mA for the underlying

linear actuator (solid blue line), the nonlinear actuator during a sweep-up (solid black

line) and the nonlinear actuator during a sweep-down (solid grey line). Figure 4.3 shows

that the envelope of the linear response is comparable to the underlying linear FRF

of the system, with a resonance at around 9 Hz, but it overshoots the stroke length

of the actuator using this level of excitation. The nonlinear response of the system
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presents a different behaviour, in fact, the response at low frequency is bounded by the

displacement saturation, hence it is lower in amplitude when compared with the linear

response for both the sweep-up and sweep-down excitations. There is a small frequency

Figure 4.3: Time histories of the proof mass response to a sine sweep excitation with
a current ia = 62.5 mA. The solid blue line displays the response of the underlying
linear system; the solid black line shows the response of the nonlinear system during
the sweep-up; and the solid grey line shows the response of the nonlinear system during

the sweep-down.

range between 9 Hz and 10 Hz in which the amplitude of the nonlinear response becomes

higher than the linear response. This is more evident in figure 4.4 where the response

of the proof mass to a sine sweep excitation using an higher input current ia = 100 mA

is shown. In this case, the frequency band in which the amplitude of the nonlinear

response is higher than the linear response ranges from 12 Hz to 14.5 Hz for the sweep-

up excitation and from 12 Hz to 12.5 Hz for the sweep-down excitation. What happens

is that at low frequency the nonlinear system during each cycle experiences a mean

stiffness that is higher than the one experienced by the linear system because of the

piecewise linear stroke saturation model, moreover, every next cycle is the response

to an increased excitation frequency in which the initial conditions are not zero, but

the final conditions of the previous cycle. If these initial conditions at each cycle give

to the system a sufficient amount of energy, the sweep-up response keeps the nonlinear

system on saturating in stroke until the nonlinear resonance frequency for that particular

excitation level is reached. A slight increment in frequency above the nonlinear resonance

causes the response to jump down to a lower amplitude level that coincides with the

linear response, because the initial conditions at this frequency of the sine sweep are no

longer sufficient to maintain the system at higher stiffness. This is referred to as the

jump phenomenon [99]. The sweep-down response presents a similar behaviour, but the

jump occurs at a lower frequency and it is indeed a jump up to a higher amplitude as in

this case the plot should be read from right to left and the system experienced a linear

response before the jump. Comparing figure 4.4 with figure 4.3 shows that increasing the

excitation level increases the jump frequency and widens the range between the jump up
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and jump down frequencies. Figure 4.5 shows the waveforms of the response illustrated

Figure 4.4: Time histories of the proof mass response to a sine sweep excitation with
a current ia = 100 mA. The solid blue line displays the response of the underlying
linear system; the solid black line shows the response of the nonlinear system during
the sweep-up; and the solid grey line shows the response of the nonlinear system during

the sweep-down.

in figure 4.4 by zooming in three narrow frequency bands. In particular, figure 4.5(a)

shows the waveforms of the linear response (solid blue line), nonlinear sweep-up (solid

black line) and nonlinear sweep-down (solid grey line) for an excitation around 5 Hz.

The nonlinear response is characterised by high frequency contents when the end-stops

are hit and by the fundamental frequency when moving from one stroke end to the other.

Moreover, a single collision each time the end-stops are reached can be observed. The

sweep-up and sweep-down responses are identical apart for a 180◦ phase shift due to zero

initial conditions given to the sweep-down response. Figure 4.5(b) shows the waveforms

of the three responses when the excitation is around the jump down frequency. In fact,

the figure shows identical sweep-down nonlinear response and linear response, whereas

the sweep-up nonlinear response is characterised by a higher oscillation amplitude such

that the response quickly reduces at around 14.55 Hz to match the linear response. The

waveforms of the response for frequencies higher than the jump down frequency are all

harmonic at the fundamental excitation frequency, as shown in figure 4.5(c).

A better insight of the nonlinear behaviour can be obtained by applying the wavelet

transform to the sweep-up response of figure 4.4 as it has been done in section 3.4 for

the experimental investigation. The amplitude of the wavelet transform is calculated

using the simulated time signal shown in figure 4.4 and eqs. (3.29) and (3.30), where

the calculation has been performed using the NI2D R© software. The result is shown in

figure 4.6, where the plot can be divided into two regions of different behaviour. Below

15 Hz the response is characterised by a high frequency content due to the non-smooth

nonlinearity introduced by the piecewise linear model and the activation of many odd

harmonics due to the symmetry of the nonlinear model. In particular, the 3rd and 5th



Chapter 4 Simulation analysis of nonlinear dynamics 59

(a) (b)

(c)

Figure 4.5: Waveforms of the simulated response during the sine sweep excitation
shown in figure 4.4. The solid blue line displays the response of the underlying linear
system; the solid black line shows the response of the nonlinear system during the
sweep-up; and the solid grey line shows the response of the nonlinear system during
the sweep-down. (a) excitation frequency around 5 Hz; (b) excitation frequency around
14.55 Hz (when the jump phenomenon occurs); (c) excitation frequency around 15 Hz.

Figure 4.6: Amplitude of the wavelet transform of the proof mass response to the
sine sweep-up excitation shown in figure 4.4. The sweep-down response produces the

same graph, but with a lower jump frequency.

harmonics have an amplitude comparable to the fundamental component. The second

region starts above the jump down frequency that is around 15 Hz. For frequencies
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higher than the jump, the response is dominated by the fundamental component, hence

indicating a linear regime of motion.

4.2 Harmonic balance method

A different approach to solve the nonlinear equation of motion given by eq. (4.7) is using

the HBM for analysing the periodic solutions and comparing the nonlinear response with

the underlying linear response in frequency domain. The method is explained in detail

by Detroux et al. in [109], and it consists of calculating the periodic (steady state)

solution of the system at each excitation frequency point. As it has been pointed out

in the previous section, the non-smooth nonlinearity activates several harmonics, which

need to be taken into account in the computation of the periodic solution. Hence, the

frequency domain response of the nonlinear system cannot be a FRF, but instead a

nonlinear frequency response curve (NFRC) that shows the maximum amplitude of the

periodic solution at each frequency point. Simulation analysis involving the computation

of periodic solutions are performed using the NI2D R© software for this study, where the

mathematical derivation of this approach can be found in [99; 109; 154]. Figure 4.7

shows the comparison between the NFRC shown with the solid red line and computed

considering the harmonics up to the 5th, and the time domain simulation of a sine sweep

(solid black line for sweep-up and solid grey line for sweep-down) using an excitation

level of ia = 100 mA.

Figure 4.7: Comparison of the Newmark solution via integration of the equation of
motion and the HBM. Solid black line for the Newmark sweep-up response; solid grey
line for the Newmark sweep-down response; and solid red line for the HBM solution

considering up to 5 harmonics.

Assuming that the time domain simulation is correct, it can be observed that the HBM

is capable to fully predict the amplitude of the nonlinear response. Moreover, the fold

bifurcation points [109] predicted by the HBM correspond to the jump frequencies of
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the time domain analysis. It should be noted that for frequencies between 12.5 HZ and

14.5 Hz the HBM gives three coexisting solutions. The middle branch that lies between

the two bifurcation points is an unstable solution for the proof mass motion and cannot

be experienced in practice. The other two branches are stable periodic solutions, and

the system can stabilise either to the upper or lower branch depending on the initial

conditions for a given level of excitation (level of the input current).

(a) (b)

(c) (d)

Figure 4.8: Basins of attraction for the NFRC of figure 4.7: (a) 12 Hz; (b) 13 Hz;
(c) 14 Hz; (d) 15 Hz; initial conditions that stabilise the response on the upper branch
are displayed with red circles, initial conditions that stabilise the response on the lower

branch are displayed with white circles.

The basins of attraction for the NFRC of figure 4.7 at for different frequencies are

shown in figure 4.8 and are computed using the global analysis method [101] using

an excitation level of ia = 100 mA for all of them. The figure represents the state

space mapping of the initial conditions that lead the system to stabilise on each branch

of the NFRC, when the system is harmonically excited. In particular, the red circles

represent the initial conditions that lead the periodic solution of the equation of motion

to stabilise on the upper branch, whereas the white circles represent the initial conditions

that lead the system to stabilise on the lower branch. Figure 4.8(a) shows the basins

of attraction at 12 Hz, where the solution is unique and lies on the upper branch.

Increasing the frequency to 13 Hz causes both the attractors competing for the solution,



62 Chapter 4 Simulation analysis of nonlinear dynamics

as shown in figure 4.8(b), where the solution is more likely to stabilise on the upper

branch. Moreover, it can be noted that the initial condition on the velocity has a

major influence on selecting which branch the solution will stabilise, regarding the initial

displacement. At 14 Hz the basins of attraction of the upper branch becomes less

dominant, as shown in figure 4.8(c), and ultimately, at 15 Hz all the initial conditions on

the displacement and velocity lead to the unique solution on the lower branch, as shown

in figure 4.8(d). As mentioned previously, the NFRC of figure 4.7 has been constructed

considering 5 harmonics when calculating the periodic solutions. The participation

factor of each harmonic component to the final periodic solution at each frequency point

is shown in figure 4.9, where the fundamental component, the 3rd harmonic and the 5th

harmonic are illustrated with the solid, dash-dotted and dashed red lines, respectively.

The component participation is calculated as the ratio of the square of the component

amplitudes divided by the sum of the square amplitudes, which corresponds to an energy

ratio of each harmonic. Since the nonlinearity is symmetric, only the odd harmonics

are present. Although the fundamental component is the one that contributes the most

to the periodic solution and is the only one for frequencies above 14.5 Hz, the 3rd and

5th harmonics have a significant contribution when the system behaves nonlinearly. In

particular, at 5 Hz the 3rd harmonic contributes to the 6% and the 5th harmonic to the

1% of the final periodic solution.

Figure 4.9: Energy ratio of components participation to the periodic solution for each
frequency of the NFRC shown in figure 4.7. The components participation is calculated
as the ratio of the square of the component amplitudes divided by the sum of the square
amplitudes (from the fundamental up to the 5th). The fundamental, the third and fifth

harmonics are shown with red solid, dash-dotted and dashed lines, respectively.

The numerical analysis enables one to test the actuator from low to very high level

of excitation without destroying the actuator itself. Figure 4.10 shows a comparison

between the NFRCs (black solid line) at increasing level of excitation, from 25 mA to

162.5mA with an increment of 12.5 mA for each simulation. It can be observed that

for the three lowest level of excitation the proof mass displacement does not exceed
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the stroke limits, hence the system is within its linear range and the NFRCs are effec-

tively linear FRFs. The resonant frequency of the inertial actuator is invariant until

the actuator encounters the nonlinearity. An increment in the input current causes the

response to become nonlinear and the nonlinear resonant frequency shifts monotoni-

cally towards higher frequencies, as shown in figure 4.10 by the backbone curve that

connects the resonant frequencies at increasing excitation levels (red circles connected

by the red dash-dotted line). The amplitude of the resonance peaks for the nonlinear

response, however, are proportionally lower than the resonance peak of the underlying

linear response. This results in the NFRCs becoming particularly skewed towards higher

frequency with respect to the linear FRFs. The values of the response are seen to be

larger than the stroke length for certain values of the excitation. This is due to the

finite stiffness of the end-stops as well as the excitation level being larger than the one

used in the experimental investigation. A comparison between the linear and nonlin-

Figure 4.10: Linear FRFs and NFRCs for increasing excitation levels (solid black
line); the actuator resonance frequency and its modification (backbone curve) with the

amplitude level are shown with the red circles and the dash-dotted red line.

ear resonant frequency can be done in terms of either the response amplitude or the

excitation amplitude. An interesting study is to apply the HBM to eq. (4.1) with a

single harmonic approximation [99], hence, considering a harmonic excitation of a given

amplitude, eq. (4.1) is linearised and in particular the elastic restoring force eq. (4.2) is

written as,

fRF,d(xr) ' Keq(ω,Xr)xr, (4.15)

where Keq(ω,Xr) is the equivalent stiffness for a given operating condition. Hence,

eq. (4.1) can be transformed in frequency domain and results in,

[
−mpω

2 + jωcp +Keq(ω,Xr)
]
Xr(jω) = φIa(jω). (4.16)
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With this approximation a first-order FRF between the input phase-shifted excitation

φia(t) = φIa sin(ωt− ϕ) and the trial solution xp(t) = Xp sin(ωt) can be obtained as,

Λ(ω,Xr) =
Xr(jω)

φIa(jω)
=

1

−mpω2 + jωcp +Keq(ω,Xr)
, (4.17)

where Λ(ω,Xr) denotes the amplitude dependent first-order FRF of the nonlinear sys-

tem. HBM is applied by expanding a Fourier series of eq. (4.2) and imposing a harmonic

solution for the proof mass displacement. The equivalent stiffness can be calculated con-

sidering only the fundamental term of the Fourier expansion and neglecting the higher

harmonics generated by the nonlinearity. This can be written as,

Keq(ω,Xr) = g1(ω,Xr) + jb1(ω,Xr), (4.18)

where g1(ω,Xr) and b1(ω,Xr) are the fundamental terms of the Fourier expansion.

Noting that the restoring force is and odd function, thus only one Fourier term is not

zero, results in,

Keq(ω,Xr) = g1(ω,Xr) =
1

πXr

∫ 2π

0
fRF,d (Xr sin(θ)) sin(θ)dθ, (4.19)

where ωt has been replaced by,

θ = ωt, (4.20)

It should be noted that the integrand of eq. (4.19) changes two times during one cycle

of oscillation if |Xp sin(ωt)| exceeds x0, due to the piecewise linear model of eq. (4.2).

This can be considered in the integral of eq. (4.19) by introducing an angle θ0 = ωt0,

where

θ0 = arcsin

(
x0

Xr

)
, (4.21)

Hence, for θ0 < θ < π − θ0 the integrand switches to the larger restoring force because

the proof mass is saturating in stroke. This happens for the first half of the proof mass

periodic cycle and due to the symmetry of the restoring force, the same switching in the

integrand happens to the second half of the cycle. Equation (4.19) can thus be rewritten

as,

Keq(ω,Xr) = kp +
ksat − kp

π

[∫ π−θ0

θ0

(
sin(θ)− x0

Xr

)
sin(θ)dθ +

+

∫ 2π−θ0

π+θ0

(
sin(θ) +

x0

Xr

)
sin(θ)dθ

]
,

(4.22)

which gives the linearised or mean value of the stiffness experienced by the nonlinear

system over one cycle. Equation (4.22) can be divided into two integrals that can be
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calculated separately as,

I1 = α

∫ π−θ0

θ0

(sin(θ)− γ) sin(θ)dθ

I2 = α

∫ 2π−θ0

π+θ0

(sin(θ) + γ) sin(θ)dθ

,

(4.23a)

(4.23b)

where the coefficient α is given by,

α =
ksat − kp

π
, (4.24)

and γ is,

γ =
x0

Xr
. (4.25)

The integral I1 given by eq. (4.23a) can be rewritten as,

I1 = α

∫ π−θ0

θ0

sin2(θ)− α
∫ π−θ0

θ0

γ sin(θ)dθ, (4.26)

and considering that sin2(θ) = [1− cos(2θ)] /2 it becomes,

I1 = α

∫ π−θ0

θ0

(
1− cos(2θ)

2

)
− αγ

∫ π−θ0

θ0

sin(θ)dθ, (4.27)

which results in,

I1 =
α

2
(π − 2θ0)− α

2

(
sin(2π − 2θ0)

2
− sin(2θ0)

2

)
+

+ αγ (cos(π − θ0)− cos(θ0)) .

(4.28)

Equation (4.28) can be simplified using the angle transformation formulas and can be

written as,

I1 =
α

2
[π − 2θ0 + sin(2θ0)− 4γ cos(θ0)] . (4.29)

In the same way the integral of eq. (4.23b) can be calculated and it is shown that I2 = I1.

Hence, using eqs. (4.24), (4.25) and (4.29) the equivalent stiffness given by eq. (4.22)

becomes,

Keq(Xr) = kp +
ksat − kp

π

[
π − 2θ0 + sin(2θ0)− 4

x0

Xr
cos(θ0)

]
, (4.30)

and substituting eq. (4.21) into eq. (4.30) the term sin(2θ0) results in,

sin

(
2 arcsin

(
x0

Xr

))
= 2

x0

Xr
cos

(
arcsin

(
x0

Xr

))
, (4.31)
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which can be further simplified by noting that,

cos

(
arcsin

(
x0

Xr

))
=

√
X2
r − x2

0

Xr
. (4.32)

Substituting eqs. (4.3), (4.21), (4.31) and (4.32) into eq. (4.30) gives the final form of

the equivalent stiffness as,

Keq(Xr) = kp +
kc
π

[
π − 2 arcsin

(
x0

Xr

)
− 2

x0

X2
r

√
X2
r − x2

0

]
, (4.33)

which is also known as the describing function of the nonlinearity [99; 118]. Combining

eq. (4.33) with eq. (4.17), the first-order FRF for the nonlinear system becomes,

Λ(ω,Xr) =
1

−mpω2 + jωcp + kp + kc
π

[
π − 2 arcsin

(
x0
Xr

)
− 2 x0

X2
r

√
X2
r − x2

0

] . (4.34)

The change of the nonlinear resonant frequency with the amplitude of oscillation can be

normalised with respect to the resonant frequency of the underlying linear system [99].

Hence, a non-dimensional parameter can be introduced as,

β2 =
ω2
res,NL

ω2
p

=
Keq(Xr)

kp
, (4.35)

where ωres,NL is the resonant frequency of the nonlinear system.

(a) (b)

Figure 4.11: Variation in the resonance frequency with: (a) amplitude of the oscilla-
tion; (b) amplitude of the excitation. Dashed blue line for the underlying linear model

and solid black line for the nonlinear model.

Equation (4.35) is illustrated in figure 4.11(a) considering eq. (4.33) and the values

in table 3.1. This figure shows a direct comparison between the nonlinear resonant

frequency (solid black line) and the underlying linear resonant frequency (dashed blue

line) with respect to the amplitude of the proof mass displacement. Figure 4.11(b)

instead, shows the comparison between the linear and nonlinear resonant frequencies
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with respect to the amplitude of excitation (level of the input current), which corresponds

to the backbone curve of figure 4.10. In both figures 4.11(a) and 4.11(b), the nonlinear

resonant frequency is invariant until the inertial actuator enters the nonlinear region,

then it increases monotonically. This can pose a threat when the inertial actuator is

used in a velocity feedback loop, since an increase in the actuator’s resonant frequency

can lead to a decrease of the stability margin of the controller.

4.3 Summary

In this chapter a numerical analysis on the nonlinear behaviour of a stroke limited

inertial actuator has been presented. Simulation studies both in time and frequency

domain have been carried out and the results have been compared. Firstly, a time

domain model of the stroke limited inertial actuator has been derived, where the stroke

limits have been modelled as a piecewise linear stiffness, consistently with the study

of section 3.4. Secondly, the numerical integration of the nonlinear equation of motion

allowed the comparison of the time history of the nonlinear response to a sine sweep

excitation with the response of the underlying linear system. The nonlinear system

is characterised by a mean stiffness at low frequency that is larger than the underlying

linear stiffness. Also, if the initial conditions at every cycle provide the proof mass with a

sufficient amount of energy, the proof mass itself continues to saturate until the nonlinear

resonance is reached and a sudden jump in the response is observed. The waveforms of

the nonlinear response have high frequency contents due to the non-smooth nonlinearity

and the activation of many odd harmonics, in particular the third and the fifth are

comparable to the fundamental component. Consequently, the nonlinear equation of

motion has been analysed in frequency domain using the HBM for seeking the periodic

solutions at each frequency. A comparison between the time domain simulation and the

NFRC obtained using the HBM showed that the HBM can fully predict the amplitude

of the nonlinear response and the bifurcation points corresponds to the frequencies of

the amplitude jumps. A global analysis study has been carried out to study the initial

conditions that lead the system to stabilise on the upper or lower branch of the NFRC.

It has been observed that the velocity initial condition gives a major contribution in

determining the solution branch, which is almost independent of the displacement initial

condition. Finally, the frequency-amplitude diagrams have been investigated, concluding

that the nonlinear resonant frequency of the stroke limited actuator increases as the

amplitude of the excitation increases, due to the hardening behaviour of the nonlinearity.





Chapter 5

Nonlinear feedback control of a

SDoF structure: theoretical

analysis

The nonlinear behaviour of inertial actuators described in chapter 4 can be detrimental

to the stability of VFCs, as observed in [12]. This chapter aims to develop a nonlinear

strategy that accounts for the nonlinear dynamics of the actuator, enhancing the sta-

bility of the control system whilst maintaining the vibration attenuation performance

provided by the VFC. Several attempts to address the issue of stroke saturation in iner-

tial actuators have been reported in literature [37; 54; 83; 122; 127; 128], however, they

focus mainly on on/off control strategies or in limiting the velocity feedback gain by

means of gain scheduling techniques. The main objective of this study is to more fully

understand the cause of stroke saturation instability and to develop a control strategy

that can tackle this issue. A theoretical analysis of a stroke limited inertial actuator

attached to a SDoF structure, driven by either a VFC or a combination of two feed-

back loops is presented. Firstly, the mathematical model of the nonlinear actuator, the

structure and the feedback control system is derived in a state space form in section 5.1.

Secondly, the stability of the closed-loop VFC system is addressed in section 5.2, com-

paring the results of the stability analysis of the underlying linear actuator model with

the ones obtained from the nonlinear actuator model. Moreover, a comparison between

the VFC and a relative velocity feedback controller (RFC) is made in section 5.2 in

terms of stability and performance of the closed-loop system. The RFC also serves as

an introduction to the nonlinear feedback control (NLFC), which is a nonlinear function

of the proof mass relative velocity and displacement and is presented in section 5.3.

Finally, the results of numerical simulations showing the effectiveness of the proposed

control law are discussed and compared with those of the VFC in terms of stability of

the closed-loop system for different sets of feedback gains and primary excitation.

69



70 Chapter 5 Nonlinear feedback control of a SDoF structure: theoretical analysis

5.1 Mathematical model

Figure 5.1 shows a lumped parameter model of a SDoF system connected to a stroke

limited inertial actuator, where the SDoF may represent the first mode of a real structure.

Conventionally, all the displacements and forces pointing upwards are considered to be

positive. The parameters of the nonlinear actuator appearing in figure 5.1 have already
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Figure 5.1: Lumped parameter model of the structure, nonlinear inertial actuator,
velocity feedback controller (VFC) and nonlinear feedback controller (NLFC).

been introduced in chapter 4, where the actuator’s base mass mb is now included in

the structural mass ms and the base mass displacement xb(t) has been replaced by the

structure’s displacement xs(t). The structural mass ms is connected to the ground via

the stiffness and damping parameters ks and cs, respectively. The structure is subject

to the external, or primary, force fe(t) and the control, or secondary, force φia(t) that is

generated by the actuator transducer. The VFC loop is assumed to be implemented by

scaling the structure’s velocity ẋs(t) by a gain hs and feeding this back to the actuator

as the input current signal ia(t). A NLFC loop is added alongside the VFC loop in

figure 5.1, and is defined as a nonlinear function of the relative proof mass velocity and

displacement ψ(xr, ẋr). The equations of motion of the system in figure 5.1 can be

expressed in a state space form as follows,

{
ẋ(t) = A(x)x(t) + Befe(t) + Bafa,s(t)

y(t) = Cx(t)
,

(5.1a)

(5.1b)
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where x is the state vector defined as,

x = { xs xp ẋs ẋp }T , (5.2)

and A(x) is the state dependent system matrix defined as,

A(x) =

[
0 I

−m−1k(x) −m−1c

]
, (5.3)

where 0 and I are the 2-by-2 null matrix and identity matrix, respectively. The mass

matrix m can be written as,

m =

[
ms 0

0 mp

]
, (5.4)

whereas the nonlinear stiffness matrix of the system k(x) appearing in eq. (5.3) results

in,

k(x) =

[
ks + κ(x) −κ(x)

−κ(x) κ(x)

]
, (5.5)

where κ(x) = κ(xp − xs) is given by eq. (4.6). Also, the system’s damping matrix c is

defined as,

c =

[
cs + cp −cp
−cp cp

]
. (5.6)

The input vector of the primary excitation can be written as,

Be = { 0 0 1
ms

0 }T , (5.7)

whereas the input vector of the secondary force is given by,

Ba = { 0 0 1
ms

− 1
mp
}T , (5.8)

and the control force acting on the structure is

fa,s = −φia. (5.9)

The output vector is defined as,

y = { ẋs ẋp }T , (5.10)

hence, the output matrix can be written as,

C = { 0 I }, (5.11)

where 0 and I are the 2-by-2 zero matrix and identity matrix. The state space eq. (5.1)

can also be represented with the block diagram illustrated in figure 5.2, which also
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represents the open-loop control system since the input current is not directly related

to the output variables.

+
+

+

e
f

xx& y

e
B

( )xA

Cò td
a

Bf-
a

i

Figure 5.2: Block diagram of the open-loop system.

Hence, in general, the input current can be written as,

ia = gaHr, (5.12)

where ga is the amplifier gain, which is assumed to be unity throughout the thesis,

r = [r1 r2]T is the vector of reference signals and H is the matrix of control gains. The

feedback control system, as shown in the schematic of figure 5.1 is made by closing the

loop around the output vector, and hence imposing,

r = y. (5.13)

Using eqs. (5.12) and (5.13), the input current of the feedback control system becomes,

ia = gaHy, (5.14)

where H is the matrix of feedback control gains. For a single VFC loop on the structure’s

velocity, the matrix of feedback gains H can be rewritten as,

Hvfc = { hs 0 }, (5.15)

hence, substituting eq. (5.15) into eq. (5.14), the driving current of the inertial actuator

becomes,

ia,vfc = gaHvfcy = { hs 0 }

{
ẋs

ẋp

}
= hsẋs. (5.16)
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For a single NLFC loop on the proof mass relative velocity, the matrix of feedback gains

H can be rewritten as,

Hnlfc = { ηr(xr) −ηr(xr) }, (5.17)

where η(xr) is a nonlinear gain that depends on the proof mass relative position. Thus,

substituting eq. (5.17) into eq. (5.14), the driving current of the inertial actuator be-

comes,

ia,nlfc =gaHnlfcy = { ηr(xr) −ηr(xr) }

{
ẋs

ẋp

}
=

=ηr(xr)ẋs − ηr(xr)ẋp = −ηr(xr)ẋr = −ψ(xr, ẋr).

(5.18)

For a double feedback loop, hence, combining the VFC loop on the structure’s veloc-

ity with the NLFC loop on the proof mass relative velocity, the input current to the

actuator’s coil becomes,

ia,vfc+nlfc =ia,vfc + ia,nlfc = gaHvfcy + gaHnlfcy =

=ga (Hvfc + Hnlfc) y = gaHvfc+nlfcy =

=hsẋs − ψ(xr, ẋr),

(5.19)

where

Hvfc+nlfc = { (hs + ηr(xr)) −ηr(xr) }. (5.20)

The closed-loop control system block diagram of the state space eq. (5.1) is illustrated

in figure 5.3, where the driving current is given by the combination of both the VFC

and the NLFC loops defined by eqs. (5.16) and (5.18).

Considering a general matrix of feedback gains H, the control force applied to the struc-

ture by the closed-loop system can be written by substituting eq. (5.14) into eq. (5.9).

That is,

fa,s = −φgaHy = −gaφHCx, (5.21)

hence, the state eq. (5.1a) can be rewritten as,

ẋ(t) = A0(x)x + Befe(t), (5.22)

where the closed-loop state dependent system matrix A0(x) is derived as follows,

A0(x) = [A(x)− gaφBaHC] . (5.23)

The compressed form of the state eq. (5.1a) given by eq. (5.22) is represented by the

block diagram of figure 5.4. The parameters used in the numerical analysis af the system

shown in figure 5.1 are provided in table 5.1.
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Figure 5.3: Block diagram of the closed-loop control system with both the VFC loop
and the NLFC loop.
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Figure 5.4: Block diagram of the closed-loop control system in a compressed form.

5.2 Absolute and relative linear velocity feedback control

In this section a preliminary numerical analysis is performed, which forms the basis for

the development of the NLFC. VFCs, in which the velocity of the structure is fed back

to a collocated inertial actuator are only conditionally stable [10], hence, there exists

a maximum feedback gain, over which the system becomes unstable, due to inclusion

of the actuator dynamics. Moreover, if the external excitation or the feedback gain is
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Table 5.1: Table of model parameters.

Parameter Value Units

ms 0.050 kg

ks 5000 N/m

cs 0.32 N/ms−1

mp 0.031 kg

kp 115 N/m

ksat 2 · 104 N/m

cp 1.4 N/ms−1

x0 1.25 mm

φ 1.55 N/A

ga 1 A/ms−1

ωp (actuator) 2π9.7 rad/s

ωs (structure) 2π50.3 rad/s

such that the inertial actuator saturates in stroke, then the control system may become

unstable for even lower control gains than those predicted by a linear stability analysis

[12; 13]. Firstly, the stability of the VFC is assessed for the underlying linear system.

Secondly, a comparison is made in terms of stability and vibration attenuation perfor-

mance between the VFC and when a second feedback loop on the relative velocity with

constant feedback gain is added, namely the relative velocity feedback controller (RFC).

Finally, the stability of the VFC is assessed considering the nonlinear dynamic behaviour

of the stroke limited actuator.

5.2.1 Stability analysis and control performance using a linear actuator

The underlying linear model of the system in figure 5.1 is obtained by imposing a zero

impact stiffness (kc = 0), thus, the state dependent system matrix A(x) of eq. (5.3)

becomes a constant state matrix

Ā = A(x)

∣∣∣∣
kc=0

[
0 I

−m−1k̄ −m−1c

]
, (5.24)

where the state dependent stiffness matrix k(x) given by eq. (5.5) results in,

k̄ = k(x)

∣∣∣∣
kc=0

[
ks + kp −kp
−kp kp

]
, (5.25)

hence, the closed-loop state dependent system matrix A0 becomes,

Ā0 =
[
Ā− gaφBaH̄C

]
. (5.26)
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where H̄ = [h1 h2] is a matrix of constant gains, which means that only linear feedback

loops are considered. The first scenario is to analyse the stability of the controller for

the underlying linear system when the actuator is driven by the VFC loop only. In such

case, the output equation of the state space form given in eq. (5.1b) becomes,

y = Cvfcx = ẋs, (5.27)

where the output matrix Cvfc is defined as,

Cvfc =
[

0 0 1 0
]
. (5.28)

Setting fe = 0 and assuming zero initial conditions x(0) = 0, the Laplace transform of

the the state eq. (4.8a) for the underlying linear system becomes,

X(s) =
[
sI− Ā

]−1
BaFa,s(s), (5.29)

substituting the Laplace transform of eq. (5.9) into eq. (5.29) results in,

X(s) = −φ
[
sI− Ā

]−1
BaIa(s), (5.30)

and substituting eq. (5.30) into the Laplace transform of the output eq. (5.27) gives,

Y (s) = −φCvfc

[
sI− Ā

]−1
BaIa(s). (5.31)

Dividing eq. (5.31) by −Ia(s) gives the plant transfer function Gsa(s) as,

Gsa(s) = −Y (s)

Ia(s)
= φCvfc

[
sI− Ā

]−1
Ba. (5.32)

In general, the input current can be written as,

Ia(s) = gahsr(s), (5.33)

where r(s) is a reference signal. Substituting eq. (5.33) into eq. (5.32) gives the open-loop

transfer function L(s) as,

L(s) = gaGsa(s)hs, (5.34)

which is also illustrated in the block diagram of figure 5.5.

( )sY
( )sGsa-sahg

( )sIa( )sr

Figure 5.5: Block diagram of the open-loop VFC system.

Considering now the forced response, hence setting fe 6= 0 and zero initial conditions

x(0) = 0, the Laplace transform of the state eq. (5.1a) for the underlying linear system
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becomes,

X(s) =
[
sI− Ā

]−1
BaFa,s(s) +

[
sI− Ā

]−1
BeFe(s). (5.35)

Substituting eq. (5.35) into the Laplace transform of the output eq. (5.27) and consid-

ering eq. (5.9) gives,

Y (s) = −φCvfc

[
sI− Ā

]−1
BaIa(s) + Cvfc

[
sI− Ā

]−1
BeFe(s), (5.36)

which can be rewritten as,

Y (s) = −Gsa(s)Ia(s) +Gse(s)Fe(s), (5.37)

where Gsa(s) is given by eq. (5.32) and Gse(s) is defined as follows,

Gse(s) = Cvfc

[
sI− Ā

]−1
Be. (5.38)
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Figure 5.6: Block diagram of the open-loop VFC system including the disturbance of
the external excitation.

The open-loop output eq. (5.37) that includes the disturbance given by the primary

excitation is also displayed in figure 5.6. The closed-loop system is obtained by using

the output signal as the reference signal, as shown in the block diagram of figure 5.7.

The output equation of the closed-loop system can be written by substituting eqs. (5.33)

and (5.34) into eq. (5.37) and imposing r(s) = Y (s), which results in,

Y (s) = −L(s)Y (s) +Gse(s)Fe(s), (5.39)

so that,

Y (s)(1 + L(s)) = Gse(s)Fe(s), (5.40)

and dividing eq. (5.40) by Fe(s) gives the closed-loop transfer function T (s) between the

output velocity of the structure and the input disturbance to the system as,

T (s) =
Y (s)

Fe(s)
=

Gse(s)

(1 + L(s))
, (5.41)

which is defined for

1 + L(s) 6= 0. (5.42)



78 Chapter 5 Nonlinear feedback control of a SDoF structure: theoretical analysis

+
-

( )sF
e

( )sG
se

( )sY
( )sL

Figure 5.7: Block diagram of the closed-loop VFC system.

The stability of the closed-loop VFC for the underlying linear system can be studied

using the Nyquist criterion. The Nyquist plot of the open-loop FRF L(jω) given by

eq. (5.34) for a velocity feedback gain hs = 21 is shown in figure 5.8. The closed-loop

VFC system is only conditionally stable as the polar plot crosses the real negative axis

and a finite increase in gain would result in L(jω) encircling the (-1,0) point.

Figure 5.8: Nyquist plot of the open-loop FRF L(jω) for a velocity feedback hs = 21.

The gain margin is given by,

gm =
1

L(ωc)
, (5.43)

where L(ωc) is the crossing point with the negative real axis and ωc is the crossing

frequency. For this system, the maximum feedback gain that can be used without

causing instability (gm < 1) is hs,max = 42. The frequency of the crossing point in the

Nyquist plot of figure 5.8, in which the system becomes unstable is ωc = 2π10 rad/s,

which is about the natural frequency of the inertial actuator. The amplitude and phase
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of the closed-loop FRF given by eq. (5.41) are plotted in figure 5.9 for several values of

the velocity feedback gain, starting from hs = 0 for the uncontrolled system and then

at increments of 25% hs,max. It is clear that an increase in the control gain reduces

the amplitude of the resonance associated with the structural mass, but also causes

a spillover at the resonance of the inertial actuator. Increasing the gain to a value

higher than the maximum will make the system unstable. In fact, as the feedback gain

is increased over the maximum allowed, the overall damping of the system is reduced,

which results in the instability. This effect can be clearly observed, for increasing control

Figure 5.9: Bode plot of the closed-loop FRF T (jω) for increasing control gains. The
uncontrolled system hs = 0 is shown with the solid black line, hs = 25%hs,max with
the dotted blue line, hs = 50%hs,max with the dash-dotted red line, hs = 75%hs,max

with the dashed green line, hs = hs,max with the solid magenta line.

gains, in the response of the system to the external impulse excitation of the type,

fe = Pe−( tτ )
2

, (5.44)

where P = 10 N is the initial amplitude of the impulse and τ = 1 ms is the decaying

rate of the impulse excitation. The primary excitation given by eq. (5.44) is also shown

in figure 5.10, where both its time history and spectrum are displayed. Figure 5.11

shows the response time history of the proof mass, structure and relative displacements

due to the impulse excitation given by eq. (5.44). The time histories are simulated

using MatLab’s Simulink ODE4 solver with fixed time steps at a sampling frequency

fs = 10 kHz. The maximum stroke permitted x0, −x0 is also shown in figure 5.11 with

the dashed red lines, however, only the underlying linear dynamics have been taken into

account for this study, thus the proof mass is allowed to overshoot the stroke limit. The

solid black line shows the response of the uncontrolled system, the feedback gain hs is

then increased of 25% hs,max each time until it reaches the maximum allowed by the

linear stability analysis. The dotted blue line shows the response of the system when

hs = 25%hs,max, which results in a significant reduction of the vibration of the structural

mass, whilst a slight increase of the proof mass response can be seen. Increasing further
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Figure 5.10: Time history and spectrum of the primary excitation on the structure.

the feedback gain results in a higher reduction of the structural vibration, but also

the proof mass response overshoots the allowed stroke length. The solid magenta line

shows the response of the system for the maximum stable gain scenario. In this case,

the overall damping of the system goes to zero and the response to the initial impulse

remains bounded and does not decay away. Before introducing the nonlinear controller,

Figure 5.11: Response time histories of the closed-loop VFC system for increasing
control gains using an impulse primary excitation on the structure and assuming a
linear model of the actuator (kc = 0). The uncontrolled system hs = 0 is shown with
the solid black line, hs = 25%hs,max with the dotted blue line, hs = 50%hs,max with
the dash-dotted red line, hs = 75%hs,max with the dashed green line, hs = hs,max with
the solid magenta line. The horizontal dashed red lines indicate the position of the
stroke limits, which are not considered in the underlying linear model of the actuator.

a simpler linear version is considered. The idea, firstly proposed in [9] and then studied

in [29], is to use the second feedback loop to feed back the proof mass relative velocity

amplified by a constant gain, in order to increase the effective damping of the actuator

and to avoid the instability of the system. Hence, the nonlinear feedback gain ηr(xr) of
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the second control loop can be linearised as,

η̄r(xr) = hr, (5.45)

where hr is defined as the feedback gain of the relative velocity feedback controller

(RFC). The matrix of feedback gains H for the relative velocity feedback loop is given

by,

Hrfc = H̄nlfc =
[
hr −hr

]
, (5.46)

hence, the combined VFC loop and RFC loop results in the following matrix of feedback

gains,

Hvfc+rfc = Hvfc + Hrfc =
[
hs + hr −hr

]
. (5.47)

Setting fe = 0 and assuming zero initial conditions x(0) = 0, the Laplace transform of

the the output eq. (4.8b) for the underlying linear system becomes,

Y(s) = −φC
[
sI− Ā

]−1
BaIa(s), (5.48)

which gives the plant matrix of transfer functions as follows,

Gsa(s) = −Y(s)

Ia(s)
= φC

[
sI− Ā

]−1
Ba. (5.49)

The open-loop driving current can be written as,

Ia(s) = gaHvfc+rfcr(s), (5.50)

where Hvfc+rfc is given by eq. (5.47) and r(s) = [r1 r2]T is the matrix of reference

signals. Substituting eq. (5.50) into eq. (5.49) gives the open-loop matrix of transfer

functions

L(s) = gaGsa(s)Hvfc+rfc. (5.51)

Considering now the forced response, hence setting fe 6= 0 and zero initial conditions

x(0) = 0, the Laplace transform of the output eq. (4.8b) for the underlying linear system

becomes,

Y(s) = −Gsa(s)Ia(s) + Gse(s)Fe(s), (5.52)

where Gse(s) is defined as follows,

Gse(s) = C
[
sI− Ā

]−1
Be. (5.53)

The output equation of the closed-loop VFC+RFC system can be written by substituting

eqs. (5.50) and (5.51) into eq. (5.52) and imposing r(s) = Y(s), which results in,

Y(s) = −L(s)Y(s) + Gse(s)Fe(s), (5.54)
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thus,

Y(s)(I + L(s)) = Gse(s)Fe(s), (5.55)

and the closed-loop matrix of transfer functions becomes,

T(s) =
Y(s)

Fe(s)
= [I + L(s)]−1 Gse(s), (5.56)

which is defined for

det [I + L(s)] =

2∏
i=1

(1 + λi) 6= 0, (5.57)

where λi are the eigenvalues of the open-loop matrix L(s). It has to be made clear

that using only the RFC would make the system asymptotically stable for arbitrarily

large gains, as is well described in [9]. In practice, a single loop proportional to the

relative velocity causes the inertial actuator to behave like a highly damped vibration

absorber, hence, poor performance is achieved for the reduction of the structure’s vi-

bration. A more interesting controller is the one of eq. (5.47), where the two feedback

gains can be adjusted to achieve better vibration reduction or to guarantee larger stabil-

ity margins.Since this controller has two loops, the stability can be analysed using the

generalised Nyquist criterion, which says that the closed-loop system is stable if the loci

of the maximum λi(jω) does not encircle the instability point (-1,0) [117]. Figure 5.12

compares the Nyquist plot of the open-loop FRFs of the system for three scenarios. The

first one is for the single VFC loop with hs = 50%hs,max (solid black line); the second

one is the single RFC loop with hr = 15 (dash-dotted red line); and the third one is the

combination of the VFC+RFC loops with feedback gains hs = 50%hs,max and hr = 0.25.

The added RFC loop shifts the crossing point between the polar plot and the negative

real axis towards the origin, hence it increases the gain margin on the VFC with respect

to the gain margin of the single VFC loop.

The effect of the RFC loop on the gain margin of the VFC can be studied using the

sequential loop closing approach, which is shown in the block diagram of figure 5.13.

The closed-loop state matrix of the RFC can be written as,

Ā0,rfc =
[
Ā− gaφBaHrfcC

]
. (5.58)

which then becomes the state matrix for the VFC loop, hence, the plant transfer function

given by eq. (5.32) becomes,

Gsa(s) = φCvfc

[
sI− Ā0,rfc

]−1
Ba, (5.59)

and the transfer function for the primary given by eq. (5.38) results in,

Gse(s) = Cvfc

[
sI− Ā0,rfc

]−1
Be. (5.60)
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Figure 5.12: Comparison between the Nyquist diagram of the open-loop FRF L(jω)
of the VFC system for a velocity feedback gain hs = 21 (solid black line) with the largest
eigenvalue of the open-loop FRF L(jω) of the VFC+RFC system for hs = 21, hr = 0.25
(dashed blue line) and the RFC system for a relative feedback gain hr = 15 (dash-dotted

red line).
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Figure 5.13: Block diagram of the sequential loop closing.

For each value of the relative feedback gain the gain margin of the outer VFC loop has

been calculated, with respect to the nominal gain margin gm,0 of the single VFC loop

and the results are shown in figure 5.14. The y-axis of the plot represents the ratio of

the gain margin with respect to its nominal value, whilst the x-axis represents increasing

relative feedback gains. It can be observed that increasing hr monotonically increases

the gain margin of the VFC. On the other hand, increasing hr may lead to a reduction in

the performance in terms of vibration attenuation. This can be analysed by considering

the kinetic energy of the structural mass as the index of performance [6]. Assuming
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Figure 5.14: Variation of the gain margin with respect to the relative feedback gain.

harmonic vibrations, the time averaged kinetic energy of the SDoF structure is given by

[6],

KE = lim
t→∞

1

2t
ms

∫ t

0
ẋ2
s(t
′)dt′, (5.61)

since

ẋs = <
[
Ẋs(ω)ejωt

]
=
∣∣∣Ẋs(ω)

∣∣∣ cos (ωt) , (5.62)

the time average kinetic energy becomes,

KE =
1

2
ms

∣∣∣Ẋs(ω)
∣∣∣2 [ lim

t→∞

1

t

∫ t

0
cos2

(
ωt′
)

dt′
]
, (5.63)

which results in,

KE =
1

4
ms

∣∣∣Ẋs(ω)
∣∣∣2 , (5.64)

where the structural velocity Ẋs(ω) is can be calculated by,

Ẋs(jω) =
[

1 0
]

T(jω)Fe(jω), (5.65)

with T(jω) the closed-loop matrix of transfer functions given by eq. (5.56). Figure 5.15

shows the PSD of the kinetic energy for several values of hs and four increasing values

of hr when the external disturbance is set to unity at all frequencies. It can be noticed

that an increase in hr results in a reduction of the spillover effect, however, for same

values of hs and increasing values of hr the kinetic energy increases. This effect can be

clearly observed in figure 5.16, where the integral of the kinetic energy PSD is shown

against the feedback gains hs amd hr. For hr = 0 the kinetic energy of the structure

monotonically decreases with respect to hs, until it reaches a minimum and it suddenly

rises, due to the proximity to instability. For small values of hr, an optimal point is

found, which minimises the kinetic energy, as demonstrated in [29]. However, for higher
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values of hr the kinetic energy of the structure significantly increases, hence a poorer

performance is obtained.

(a) (b)

(c) (d)

Figure 5.15: PSD of the kinetic energy for different values of hr and hs. (a) hr = 0;
(b) hr = 1; (c) hr = 2.5; (d) hr = 5.The VFC gains are hs = 0 shown with the solid
black line, hs = 25%hs,max with the dotted blue line, hs = 50%hs,max with the dash-
dotted red line, hs = 75%hs,max with the dashed green line, hs = hs,max with the solid

magenta line.

5.2.2 Stability analysis using a nonlinear actuator

In this section the nonlinear dynamic behaviour of the inertial actuator due to the limited

stroke is taken into account for evaluating the stability of the VFC. By introducing the

actuator nonlinearity, the stability of the closed-loop VFC becomes dependent on both

the relative proof mass displacement and the velocity feedback gains. This dependency

can be analysed through the Lyapunov linearisation stability method [119; 155].

Lyapunov indirect and direct method are often used to assess the local and global sta-

bility of a nonlinear system, respectively [119]. The indirect method analyses the local

stability of a nonlinear system around its equilibrium points by evaluating the eigenval-

ues of the Jacobian matrix of the nonlinear state space equation. If the real part of the
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Figure 5.16: Average kinetic energy across a wide frequency band with respect to the
feedback gains hs and hr: the region of instability is shown in white.

eigenvalues is negative for all eigenvalues, then the system is locally stable. Vice-versa,

if the real part of the eigenvalues is positive for any eigenvalue, then the system is locally

unstable. The main drawback of this method is that it gives information only about

the local stability. Lyapunov direct method, instead, analyses the global stability of a

nonlinear system by searching an energy-like function of the states that satisfies a set

of conditions [119]. However, it is usually difficult to find a suitable Lyapunov function

that satisfies all the conditions. Additionally, it is even more difficult to demonstrate

instability, because the non-existence of suitable Lyapunov functions has to be proved.

An interesting analysis is given by the Lyapunov exponents of the nonlinear system,

which allows one to investigate the behaviour of the system around the initial condition

x̃ [155]. This case is similar to the direct method of Lyapunov, but the Jacobian ma-

trix of the nonlinear state space equation is calculated at the initial condition x̃ instead

of the equilibrium point. If the eigenvalues of the Jacobian matrix have negative real

part, then the nonlinear system is locally stable, if, instead, the largest eigenvalue of

the Jacobian matrix has positive real part, then the nonlinear system is locally unstable

[155].

The Jacobian matrix of the nonlinear state space equation is given by eq. (5.23). The

VFC closed-loop state dependent system matrix can be derived from eq. (5.23) as,

A0,vfc(x) = [A(x)− gaφBaHvfcC] . (5.66)

and the stability of the closed-loop VFC system can be studied using the Lyapunov lin-

earisation method, or Lyapunov exponent method, by calculating eigenvalues of eq. (5.66)

for several proof mass relative displacements. If the real part of the largest eigenvalue is

lower than zero, the system is stable, vice-versa if is greater than zero, then the system

is unstable. The real part of the maximum eigenvalue of A0,vfc for several proof mass

displacements and velocity feedback gains is displayed in figure 5.17(a) and a detailed

image around the stroke limit region is shown in figure 5.17(b), where the stroke limits

are represented with dashed red lines. Figure 5.17 shows that the nonlinear system is
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(a)

(b)

Figure 5.17: Real part of the maximum eigenvalue of the closed-loop matrix A0,vfc(x)
for several values of the relative proof mass displacement xr and velocity feedback gain

hs. (a) full range; (b) zoom into the stroke limit.

stable for displacements within the stroke limits and feedback gains below hs,max, as

expected. Also, the system becomes unstable for hs > hs,max regardless of the relative

displacement. The delimiter of instability <{λmax [A0,vfc(xr, hs)]} = 0 shows that for a

particular feedback gain hs < hs,max there exists a relative displacement |xr| > x0 above

which the system becomes unstable, and the higher is the feedback gain, the lower is

the relative displacement required to make the system unstable.

The stability of the nonlinear system of figure 5.1 subject to a single VFC loop can also

be evaluated using the describing function method [108; 119]. The nonlinear system

can be represented using a feedback connection with the nonlinear element, as shown

in figure 5.18, where Keq(Xr) is the describing function of the nonlinearity and G(jω)

groups the underlying linear dynamic behaviour of the system including also the VFC

loop. The characteristic equation of the system in figure 5.18 is,

G(jω)Keq(Xr) + 1 = 0, (5.67)
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Figure 5.18: Block diagram of the describing function analysis for the existence of
limit cycles.

which can be rewritten as,

G(jω) = − 1

Keq(Xr)
, (5.68)

where the describing function Keq(Xr) is given by eq. (4.33), and the linear FRF G(jω)

is given by,

G(jω) = CDF

[
sI− Ā0,vfc

]−1
Ba, (5.69)

where the output matrix is defined as,

CDF =
[
−1 1 0 0

]
, (5.70)

and the state matrix as,

Ā0,vfc = Ā− gaφBahsCvfc. (5.71)

Figure 5.19 shows the polar plot of G(jω) with the solid black line for a feedback gain

hs = 75%hs,max and the loci of the describing function term with the dash-dotted red

line. Since the nonlinearity considered here is an odd function, its describing function

takes only real values, hence the term −1/Keq(Xr) lies on the negative real axis. It

should be noted that this term starts from −1/kp for |Xr| < x0, then it goes towards

the origin as |Xr| increases. The intersection between the polar plot with the negative

inverse of the describing function, hence the solution of eq. (5.68), gives the condition

for the existence of limit cycles in the nonlinear system [108; 119]. The amplitude of

the limit cycle is given by the value of Xr corresponding to the negative inverse of the

describing function at the point of intersection. Similarly, the frequency of the limit

cycle ωlc corresponds to the value of the frequency of the polar plot at the point of

intersection. This procedure only gives a prediction of the existence of limit cycles,

and due to its approximation nature, the results should be confirmed by time domain

simulations. Higher feedback control gains hs cause the polar plot to intersect with the

negative inverse of the describing function at lower values. Hence a parametric study has

been carried out to understand how the feedback gain hs affects the point of intersection.
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Figure 5.19: Polar plot of the underlying linear system FRF G(jω) including VFC
loop, and the negative inverse describing function −1/Keq(Xr) for the detection of limit

cycles.

(a) (b)

Figure 5.20: Amplitude and frequency of the limit cycle oscillation for several values
of the VFC gain hs. (a) Amplitude; (b) Frequency.

The amplitude of the limit cycle is shown in figure 5.20(a), which represents the max-

imum relative displacement reached by the proof mass. For low values of hs, a higher

relative displacement is needed to ’activate’ the limit cycle when compared to higher

values of hs. For high values of the feedback gain, the curve is almost flat and settled

around 1.31 mm. Figure 5.20(b) shows the frequency of the limit cycle oscillations ver-

sus the feedback gain. The frequency of the limit cycle increases as the feedback gain

increases, but also in this case for high values of hs the curve is almost flat at around

39.3 Hz. These results can be verified by analysing time domain impulse response of the

system for increasing feedback gains.
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Figure 5.21: Response time histories of the closed-loop VFC system for increasing
control gains using an impulse primary excitation on the structure and assuming a
nonlinear model of the actuator. The uncontrolled system hs = 0 is shown with the
dash-dotted red line, hs = 25%hs,max with the dotted blue line, hs = 40%hs,max with
the dashed green line, hs = 50%hs,max with the solid black line. The horizontal dashed
red lines indicate the position of the stroke limits, which are considered in the nonlinear

model of the actuator.

Figure 5.22: Response trajectories in the phase-space of the closed-loop VFC sys-
tem for increasing control gains using an impulse primary excitation on the structure
and assuming a nonlinear model of the actuator. The uncontrolled system hs = 0
is shown with the dash-dotted red line, hs = 25%hs,max with the dotted blue line,
hs = 40%hs,max with the dashed green line, hs = 50%hs,max with the solid black
line. The vertical dashed red lines indicate the position of the stroke limits, which are

considered in the nonlinear model of the actuator.

Figure 5.21 shows the time series of the proof mass, structure and relative displacements,

respectively, due to the same impulse described in figure 5.10 and given by eq. (5.44).

The dash-dotted red line shows the response of the uncontrolled system. As the feedback

gain is increased to 25%hs,max (dotted blue line), the response of the structure to the

same impulse is significantly reduced at the expense of the response of the proof mass. A

further increase of the feedback gain to 40%hs,max (dashed green line) causes the relative
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displacement to overshoot the allowed stroke length, hence an impulse-like excitation is

imparted to the structure, however, after one impact the response decays away. Applying

a slightly higher feedback gain hs = 50%hs,max (solid black line) results in an unstable

system. It should be noted that the feedback gain causing the nonlinear system to

become unstable is much lower than the one predicted by the linear Nyquist analysis

for the underlying linear model of the system. The cause of this instability can be

sought in the trajectories of the relative proof mass displacement in the phase-space

for several feedback gains, which are shown in figure 5.22. It can be observed that an

increase in the feedback gain rises the possibility of collisions with the end-stops, and

for hs = 50%hs,max the proof mass experiences limit cycle oscillations. From the time

simulation shown in figures 5.21 and 5.22 the amplitude and frequency of the limit cycle

oscillation can be derived. In fact, the maximum amplitude of the relative displacement

results to be 1.29 mm, which is slightly lower than the one predicted by the describing

function analysis. The frequency of the limit cycle can be calculated from the time

series of figure 5.21 considering the zero crossing of the signal. It follows that the

frequency of the limit cycle is 27.6 Hz, which is also lower than the one predicted by the

describing function analysis. These discrepancies in the outcomes have to be attributed

to the contribution of the higher harmonics in the response that the describing function

tool does not take into account. However, the frequency of the limit cycle, hence, the

frequency of the instability of the nonlinear system is higher than the frequency of the

instability of the underlying linear system, which is about the resonance frequency of

the actuator.

Figure 5.23: Actuator’s input current of the closed-loop VFC system for increasing
control gains using an impulse primary excitation on the structure and assuming a
nonlinear model of the actuator. The uncontrolled system hs = 0 is shown with the
dash-dotted red line, hs = 25%hs,max with the dotted blue line, hs = 40%hs,max with
the dashed green line, hs = 50%hs,max with the solid black line. The horizontal dashed

red lines indicate the saturation of the power amplifier.

The control effort for each of the VFC closed-loop simulations at different gains is shown

in figure 5.23, where the horizontal dashed red lines represent the saturation level of the
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Figure 5.24: Control force delivered by the actuator in closed-loop VFC for increasing
control gains using an impulse primary excitation on the structure and assuming a
nonlinear model of the actuator. The uncontrolled system hs = 0 is shown with the
dash-dotted red line, hs = 25%hs,max with the dotted blue line, hs = 40%hs,max with

the dashed green line, hs = 50%hs,max with the solid black line.

Figure 5.25: Control force delivered by the actuator and structural velocity in closed-
loop VFC for hs = 40%hs,max using an impulse primary excitation on the structure
and assuming a nonlinear model of the actuator. The control force is shown with the
solid black line, the velocity of the structure is shown with the dash-dotted red line.

power amplifier. The dash-dotted red line shows the control effort for the uncontrolled

scenario, which results to be zero, as expected. The dotted blue line and the dashed

green line show the current flowing in the actuator coil for hs = 25%hs,max and hs =

40%hs,max, respectively. The control effort for hs = 50%hs,max, which is associated

with the instability, is shown with the solid black line. It can be observed that the

VFC generates an input current that changes sign quickly at every cycle and has a high

amplitude, which is close to the saturation limit that sustains the limit cycle oscillation

of the proof mass. The control force fc(t) delivered by the nonlinear actuator on the

structure due to both the electro-mechanical transducer and the nonlinear mechanical
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connection between the proof mass and the structure is shown in figure 5.24 for the

same velocity feedback gains of figure 5.23. The control force for hs = 50%hs,max shown

with the solid black line presents periodic spikes of large amplitude that are the impacts

between the proof mass and the end-stops. These impacts cause the structure to respond

with a high amplitude and with an in-phase velocity, as shown in figure 5.25 marked

with the dash-dotted red line and hence, the overall damping of the system is reduced,

eventually becoming negative and causing the instability.

5.3 Nonlinear feedback control

The study of the previous section motivates for the development of a nonlinear controller,

whose aim is to prevent the destabilisation of the VFC loop due to stroke saturation and

to maintain the vibration attenuation performance provided by the VFC. There have

been several studies with different approaches that attempted to solve this problem.

In fact, a first and crude solution is to switch off the VFC when stroke saturation is

detected [83]. The system then becomes passive, as no more power is supplied to the

actuator, and it stabilises. Eventually, after a certain period of time, one can trigger

the VFC on again, until the next stroke saturation is detected. Another idea is to use a

gain scheduling approach, which acts as a penalty function on the velocity feedback gain

[127] and many studies have successfully implemented this [36; 54; 128; 156]. Basically,

the controller decreases the velocity feedback gain of a certain amount if the proof mass

is approaching the end stops. The author of [9] proposed to use a combination of RFC

and VFC, where the tuning of the two feedback gains is a trade off between the stability

and performance of the control system, as analysed in the previous section. Later on,

other researchers dealt with the stroke saturation phenomenon using a NLFC, which is

a function of the relative proof mass displacement [122]. This NLFC acts as a second

loop alongside the VFC as shown in figure 5.1. In this thesis, the latter two strategies

are merged together to form a NLFC loop, whose control law is,

ψ(xr, ẋr) =
nrẋr

(x0 − |xr|)2p + b
, (5.72)

hence a relative velocity feedback controller with a state dependent relative feedback

gain that is given by,

η(xr) =
nr

(x0 − |xr|)2p + b
, (5.73)

where nr is the feedback gain of the nonlinear controller, b is a limitation parameter

and p is an exponent parameter. The control law of eq. (5.72) increases the active

internal damping of the inertial actuator as the proof mass approaches the end-stops

without adding any damping when the proof mass is close to the resting position. In

fact, as the relative displacement of the proof mass gets close to the stroke limit, the

denominator term of equation eq. (5.72) reduces, hence the current proportional to the
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relative velocity increases. The force applied to the structure by the NLFC can be

written as,

fa,s,nlfc = φψ(xr, ẋr), (5.74)

thus, the active internal damping added to the actuator can be derived from eqs. (5.72)

and (5.74) as,

ca,nlfc(xr) =
φψ(xr, ẋr)

ẋr
=

φnr
(x0 − |xr|)2p + b

. (5.75)

The control action can be bounded between a minimum active damping ca,nlfc(0) =

ca,min, that is reached when the proof mass is centred within the casing, and a maximum

active damping ca,nlfc(x0) = ca,max that is reached when the proof mass saturates in

stroke. From this consideration, the parameters b and nr can be calculated. Assuming

xr = 0 and b� x0, the corresponding value of nr can be calculated from eq. (5.75) as,

ca,min =
φnr

x2p
0

⇒ nr =
ca,minx

2p
0

φ
. (5.76)

Similarly, assuming xr = x0, the parameter b results,

ca,max =
φnr
b
⇒ b =

φnr
ca,max

. (5.77)

A graphical representation of the NLFC is shown in figure 5.26, where the dotted, dash-

dotted and solid black lines represent the control action for the exponent parameters

p = 1, 2, 3, respectively. The vertical dashed red lines, instead, represent the position of

the stroke limits. It can be observed that increasing the exponent parameter p increases

the active internal damping of the actuator on a bigger range of displacements. On one

hand this can be beneficial for the stability of the system, but on the other hand it

can be detrimental for the vibration attenuation performance when used in combination

with the VFC.

The stability of the closed-loop system using the combination of VFC and NLFC can

be analysed through the Lyapunov linearisation stability method [119] as shown for the

single VFC loop. In fact, the VFC+NLFC closed-loop state dependent system matrix

can be derived from eq. (5.23) as,

A0,vfc+nlfc(x) = [A(x)− gaφBaHvfc+nlfcC] . (5.78)

and the stability of the closed-loop VFC+NLFC system for several proof mass rela-

tive displacements and velocity feedback gains can be studied by analysing the real

part of the largest eigenvalue of eq. (5.78). The real part of the maximum eigenvalue

of A0,vfc+nlfc for several proof mass displacements and velocity feedback gains is dis-

played in figure 5.27(a) and a detailed image around the stroke limit region is shown

in figure 5.27(b), where the stroke limits are represented with dashed red lines and the

minimum and maximum active internal damping chosen for the calculation of the NLFC
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Figure 5.26: Nonlinear feedback control (NLFC) law for several exponent values.
Dotted black line p = 1, dash-dotted black line p = 2, solid black line p = 3; where
ca,max = 10 N/ms−1 and ca,min = 0.1 N/ms−1. The dashed red lines indicate the

stroke limits of the inertial actuator.

(a)

(b)

Figure 5.27: Real part of the maximum eigenvalue of the closed-loop matrix
A0,vfc+nlfc(x) for several values of the relative proof mass displacement xr and ve-

locity feedback gain hs. (a) full range; (b) zoom into the stroke limit.
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parameters are ca,max = 10 N/ms−1 and ca,min = 0.1 N/ms−1 and p = 1. A comparison

between figure 5.27 and figure 5.17 shows that the NLFC enlarges the stability region

of the system in terms of relative proof mass displacements. In fact, the delimiter of

instability <{λmax [A0,vfc(xr, hs)]} = 0 for the VFC+NLFC loop is shifted to larger

relative displacements with respect to the one of single VFC loop. However, the dual

loop controller becomes unstable if hs > hs,max is chosen, because of the choice to use a

small active internal damping for the proof mass around resting position.

Time simulation studies are carried out to assess the performance of the NLFC. In

particular, a comparison is made between the control system with single VFC loop and

VFC+NLFC loop. Figure 5.28 shows the time history and the phase-space trajectory

of the system for a feedback gain hs = 25%hs,max excited by an impulse of the type

given by eq. (5.44) when controlled by a single VFC loop (dashed green line) and when

it is controlled by a VFC+NLFC loop (solid black line). It can be observe that for

this scenario the proof mass does not collide with the end-stops and the presence of the

NLFC loop is negligible as the system responds in the same way to the two controllers.

Figure 5.29 shows the time history and the phase-space trajectory of the system for a

feedback gain hs = 40%hs,max when controlled by a single VFC loop (dashed green line)

and when it is controlled by a VFC+NLFC loop (solid black line). In this scenario the

proof mass collides with one end-stop if the single VFC loop is used, after the collision

the response decays away and the system does not get unstable. It can be seen from the

phase-space trajectory of figure 5.29(b) that the configuration with both loops is able to

avoid the contact with the end-stop, as the velocity approaches zero before the actuator

saturates in stroke. Figure 5.30 shows the time history and the phase-space trajectory

of the system for a feedback gain hs = 50%hs,max when controlled by a single VFC

loop (dashed green line) and when it is controlled by a VFC+NLFC loop (solid black

line). In this scenario the system goes unstable if the single VFC loop is used, whereas

implementing the NLFC described by eq. (5.44) allows the proof mass to stand clear of

the end-stops avoiding the limit cycle oscillation and hence the system remains stable.

For the latter scenario, the control effort of the system controlled by a single VFC loop

and by the VFC+NLFC loop can be compared. The comparison of the two control

efforts for hs = 50%hs,max is shown in figure 5.31 where the input current of the single

VFC loop is shown with the dashed green line and the input current of the VFC+NLFC

loop is shown with the solid black line. It can be observed that during the first cycle

the VFC current and the VFC+NLFC current overlap, but then the input current of

the VFC+NLFC goes out-of-phase with respect to the one of the single VFC and the

system quickly stabilises. Similarly, figure 5.32 shows that the control force delivered by

the actuator using a VFC+NLFC loop (solid black line) is out-of-phase with respect to

the velocity of the structure (dash-dotted red line) that quickly goes to zero. Of course,

the stability of the nonlinear system does not depend only on the value of the VFC gain

hs, but also on the magnitude of the impulse excitation P . Therefore, a parametric

study has been carried out in order to investigate the potential benefits of the NLFC
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(a)

(b)

Figure 5.28: Response time histories and phase-space trajectories of the closed-loop
VFC system (dashed green line) and the closed-loop VFC+NLFC system (solid black
line) for a feedback gain hs = 25%hs,max, using an impulse primary excitation on the
structure and assuming a nonlinear model of the actuator. The dashed red lines indicate

the position of the stroke limits. (a) Time history; (b) Phase-space trajectory.

over different scenarios. In particular, the stability of the system has been evaluated for

each possible value of P and hs, and for the two testing conditions of single VFC loop

or the combination of VFC and NLFC loops. For each scenario, the operating region

OR(P, hs) of the inertial actuator is defined as,

OR(P, hs) = {(P, hs)|max
t→∞

|xr(t)| < x0}, (5.79)

where the sets of (P, hs) inside the operating region are those in which the system is stable

and the inertial actuator is adding active damping to the structure. The results of the

parametric study are shown in figure 5.33. The dark grey area delimited by the dotted
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(a)

(b)

Figure 5.29: Response time histories and phase-space trajectories of the closed-loop
VFC system (dashed green line) and the closed-loop VFC+NLFC system (solid black
line) for a feedback gain hs = 40%hs,max, using an impulse primary excitation on the
structure and assuming a nonlinear model of the actuator. The dashed red lines indicate

the position of the stroke limits. (a) Time history; (b) Phase-space trajectory.

black line shows the safe operating region when the single VFC loop is implemented. It

can be seen that the nonlinearity in the inertial actuator severely reduces the stability

of the system for large values of the excitation or the feedback gain. It should be noted

that for very low values of excitation, the operating region reaches 100 % of hs,max

because the proof mass does not reach the end-stops and the system behaves linearly.

However, as soon as the excitation value is increased, the maximum gain that can be

fed to the actuator without reaching the instability quickly drops down. Repeating the

same parametric study, but using the combination of VFC+NLFC loops, produces a

completely different result, which is shown in figure figure 5.33 with the light grey area

delimited by the solid black line. In this case, the area covered by the operating region of
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(a)

(b)

Figure 5.30: Response time histories and phase-space trajectories of the closed-loop
VFC system (dashed green line) and the closed-loop VFC+NLFC system (solid black
line) for a feedback gain hs = 50%hs,max, using an impulse primary excitation on the
structure and assuming a nonlinear model of the actuator. The dashed red lines indicate

the position of the stroke limits. (a) Time history; (b) Phase-space trajectory.

the actuator using both VFC and NLFC loops is bigger than the area of the single VFC

loop, hence, it increases the safe operating region of the inertial actuator. Moreover, the

maximum gain that can be fed to the actuator slightly overshoots hs,max, because, even

for low excitations, the NLFC increases the effective internal damping of the actuator.

5.4 Summary

In this chapter a nonlinear feedback control strategy has been presented to avoid stroke

saturation in inertial actuators enhancing their stability when driven in combination
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Figure 5.31: Actuator’s input current for the closed-loop VFC system (dashed green
line) and the closed-loop VFC+NLFC system (solid black line) for a feedback gain
hs = 50%hs,max, using an impulse primary excitation on the structure and assuming
a nonlinear model of the actuator. The dashed red lines indicate the saturation of the

power amplifier.

Figure 5.32: Control force delivered by the actuator and structural velocity in closed-
loop VFC+NLFC system for a feedback gain hs = 50%hs,max, using an impulse primary
excitation on the structure and assuming a nonlinear model of the actuator. The control
force is shown with the solid black line, the velocity of the structure is shown with the

dash-dotted red line.

with VFCs. Firstly, the mathematical model of a nonlinear inertial actuator connected

to a single degree of freedom structure has been derived, where the nonlinearity has

been modelled as a piecewise linear stiffness, consistently with the study of chapters 3

and 4. Also, a general double loop controller on the system velocities has been added to

the mathematical formulation. Secondly, a numerical analysis on the stability and per-

formance of VFCs and RFCs has been carried out for both the underlying linear model

and the nonlinear model of the inertial actuator. For the underlying linear system the

stability has been assessed using the Nyquist criterion, whereas the control performance
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Figure 5.33: Operating regions of the inertial actuator for the closed-loop VFC system
(dark grey area) and the closed-loop VFC+NLFC system (light grey area) for increasing
values of the feedback gain, using an impulse primary excitation on the structure of

amplitude P and assuming a nonlinear model of the actuator.

has been investigated in terms of time averaged kinetic energy of the structure. It has

been shown that for a single VFC loop, the system is only conditionally stable, hence

there exists a maximum feedback gain over which the system becomes unstable. Adding

the RFC loop has shown to increase the stability of the system at the expense of the vi-

bration reduction performance. The stability of the nonlinear system with a single VFC

loop has been studied using the Lyapunov linearisation method for the local stability,

the describing function method for the detection of limit cycle oscillations and the anal-

ysis of the time domain response to an impulse excitation. The numerical simulations

have shown that VFCs are more liable to instability if the inertial actuator has stroke

saturation nonlinearity. In fact, the impacts between the proof mass and the actuator’s

end-stops are in-phase with the velocity of the structure, thus they contribute to reduc-

ing the overall damping of the system, which results in the instability. Moreover, the

feedback gain that causes the instability in the nonlinear system is much lower than the

one predicted by the linear Nyquist analysis for the underlying linear system. Finally,

this motivated the development of a NLFC that operates as a second loop in combi-

nation with the classical VFC. The proposed nonlinear controller actively increases the

internal damping of the actuator as the proof mass approaches the end stops, taking

negligible values when the proof mass is clear from the displacement constraints. The

NLFC has been investigated using the Lyapunov linearisation method and the analysis

of the time domain response to an impulse excitation and the results are compared in

terms of stability of the control system with the single VFC loop scenario for several

values of the feedback gain and amplitude of the impulse excitation. It has been shown

that the NLFC is able to increase the safe operating region of the actuator with respect

to the single VFC loop, hence, larger feedback gains can be used, or larger impulse

excitations can be withstood, without the system becoming unstable.





Chapter 6

Nonlinear feedback control of a

SDoF structure: experimental

analysis

The nonlinear feedback controller (NLFC) presented and studied using numerical simu-

lations in chapter 5 has been shown to increase the stability region of nonlinear inertial

actuators. This chapter aims to investigate the experimental implementation of the

NLFC and how it compares with the VFC in terms of stability of the closed-loop sys-

tem under different scenarios. The author is not aware of experimental work on similar

control strategies. In fact, the most similar nonlinear controller to the NLFC presented

in this thesis can be found in [41; 122–125], which has been analysed only by theoretical

studies. Experimental implementation of controllers that account for stroke saturation

can be found in [54–56; 59; 83; 128; 156], however, these controllers focus mainly on

strategies that limit or reduce the VFC gain. The main objective of this study is to

implement the NLFC law developed in the previous chapter on a stroke limited iner-

tial actuator that is used to control the first mode of a cantilever beam. Firstly, the

modal analysis via impact testing of the cantilever beam is presented and the natural

frequencies and mode shapes of the beam are measured in section 6.1. Secondly, the

actuator is attached to the beam in a position where the structure’s response is mainly

given by its first mode. The open-loop FRF of the VFC system is measured for a unit

feedback gain and the underlying linear gain margin is calculated in section 6.2. The

closed-loop response of the VFC to an impulsive primary excitation for several values of

the feedback gain and levels of excitation has also been measured. Finally, the NLFC

implementation is discussed in section 6.3 and the closed-loop response of the combined

VFC+NLFC loop is compared with that of the single VFC loop in terms of the stability

of the control system.
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6.1 Experimental set-up and modal analysis of a cantilever

beam

The experimental set-up for the impact testing of the cantilever beam is displayed in

figure 6.1. This analysis is conducted using a toolbox of the LMS Test.Lab R© software

employing a SCADAS data acquisition system. The cantilever beam is excited by a

Dytran (Dynapulse 5800B3 S/N 6160) rowing hammer, which can be equipped with

three different tips. A stiff aluminium tip (127-6250), a medium stiff Delrin tip (127-

6250P) and a soft polyurethane tip (127-6250PS). Due to the light damping of the

structure under testing, the Delrin plastic tip is used throughout the experiment. The

response of the beam is measured by a B&K accelerometer (type 4375V) fixed on the

free end. The acceleration signal passes through a B&K charge amplifier (type 2635)

before being acquired by the SCADAS.

LMS Test.Lab

SCADAS

Dytran 5800B3

B&K charge
amplifier 2635

Cantilever
beam

B&K accelerometer
4375V

Figure 6.1: Block diagram of the modal analysis experimental set-up.

The test rig is shown in figure 6.2(a), which comprises of an aluminium bar with rectan-

gular cross section, 25 mm width, 3 mm thick and 175 mm long and a a rigid connection

to the ground at one end of the beam. The accelerometer is placed 7.5 mm away from

the free end, which is shown in figure 6.2(b) as the point H11. The hammering points are

named with a progressive number starting from H1 to H11 and they are spaced 15 mm

apart, except for H10 and H11 that are 17.5 mm apart.

The experimental analysis is conducted hammering 5 times each point on the grid and

taking the averaged FRF. The driving point FRF (H11) between acceleration and input

force is shown in figure 6.3 with the solid blue line and is compared with a theoretical

model of the cantilever beam shown with the solid red line. For reference, the derivation

of the theoretical model of the cantilever beam is reported in appendix D. The subscript

c denotes the control point location, whereas the subscript p denotes the location of the

primary excitation. In this case the two are collocated. The experimental results are in

good agreement with the derived theoretical model, at least for the numeric value of the

natural frequencies. In fact, the first and second experimentally identified resonances are
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(a)

x

y

H1
H2H3H4

H5H6
H7

H8
H9H10

H11

(b)

Figure 6.2: Experimental test rig for the identification of the beam natural frequencies
and mode shapes. (a) Picture of the test rig; (b) Sketch of the hammering point grid.

68.5 Hz and 443.2 Hz, while the theoretical ones are 68.9 Hz and 458.8 Hz, respectively.

Figure 6.3: Comparison between the experimental and simulated FRFs of the beam
at driving point H11. The blue solid line shows the experimental FRF, whereas the red

solid line displays the simulated FRF.

The fact that the first two resonances are well separated permits one to build an analogy

between the response of the cantilever beam and of a SDoF system if the control position

is on the node of the second mode of the beam. In fact, for low frequencies (below

1 kHz), the response of the beam is dominated by the first two modes. Using the

toolbox provided by LMS Test.Lab R© the mode shapes associated with the measured

natural frequencies can be estimated. The first two mode shapes of the beam are shown

in figure 6.4, where the grid is composed by the eleven hammering points displayed in

figure 6.2(b). It can be seen in figure 6.4 that the first mode is characterised by an in

phase motion of all the points along the beam. The second mode has both in phase and

out of phase motion, instead. Hence, there is a point along the beam where the in phase

and out of phase motion coincide and have zero amplitudes. Hence, any force applied
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Figure 6.4: First and second mode shapes of the beam derived with LMS Test.Lab R©
modal analysis software and normalise with respect to their maximum value. Mode one
occurs at 68.5 Hz and is displayed by the blue squares. Mode two occurs at 443.2 Hz

and is indicated by the red circles.

at this point would affect only the first mode of the beam. Consequently, it can be a

good candidate for positioning the actuator.

6.2 Velocity feedback control of a cantilever beam using a

nonlinear actuator

The inertial actuator is attached to the cantilever beam on the node of the second mode

of the beam, as suggested by the analysis of the previous section. The test rig for

the active vibration control of a beam using a stroke limited inertial actuator is shown

in figure 6.5 consisting of the aluminium cantilever beam, the inertial actuator placed

38 mm away from the free end of the beam, a collocated accelerometer attached to

the actuator casing and a force cell positioned between the beam and the proof mass

actuator.

A simulation study has been conducted prior to the experimental investigation in or-

der to understand the passive behaviour of the components attached to the beam. In

particular, the response (velocity) of the beam at control position c due to a primary

excitation at position p is investigated. The ratio between the velocity of the beam at

the control position and the force at the primary position is called mobility Gcp(jω) and

its formulation is derived in appendix D and can be found in [157]. Figure 6.6 shows the

Bode plot of the simulated mobilities Gcc(jω) for the plain cantilever beam (solid red

line) and for the beam with the actuator and the instrumentation attached (solid blue

line), when the primary point p coincides with the control point c. In both cases the

second resonance vanished, as the control point is on the node of the second mode shape,
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Figure 6.5: Experimental set-up for the VFC of a beam using a stroke limited inertial
actuator. The set-up consists of an aluminium cantilever beam, a force gauge, a stroke

limited actuator and a collocated accelerometer.

also, the first and third resonance are very well separated in frequency. Consequently,

an excitation with a spectrum below 1 kHz produces a response that is mainly domi-

nated by the first structural mode of the beam. A comparison between the FRFs of the

driving point mobilities shows that adding the actuator and the instrumentation shifts

the resonance frequencies towards lower values with respect to those of the plain beam,

due to the added mass. In particular, the first natural frequency moves down to 40.3

Hz, which is still well above the natural frequency of the actuator and the amplitude of

the first resonance is also reduced due to the added internal damping of the actuator.

Figure 6.6: Comparison between the simulated FRFs of the beam response at the
control position with and without the control unit attached. The solid blue line rep-
resents the beam response with the control unit, whereas the solid red line represents

the beam response without the control unit.

The experimental set-up for the VFC of the cantilever beam using a stroke limited

inertial actuator is displayed in figure 6.7. The cantilever beam is excited on its free

end by a Dytran (Dynapulse 5800B3 S/N 6160) hammer with a medium stiff Delrin

tip (127-6250P). The signal of the primary force is acquired by a dSPACE 1103 PPC
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Controller Board, where the analogue-to digital conversion (ADC) is also performed with

a sampling frequency fs =10 kHz. The response of the beam at the control position is

measured by a B&K accelerometer (type 4375V) fixed on the actuator casing connected

to a B&K charge amplifier (type 2635), where the signal is integrated and high-pass

filtered with a cut off frequency of 1 Hz. The force signal of the PCB Piezotronics

208C01 ICP force sensor is not used for the VFC scenario. All the measurements are

then recorded by ControlDesk Next Generation software on a PC workstation. The

structure’s velocity signal is thus amplified in real time by a feedback gain hs and then

converted from digital to analogue by the dSPACE. The control signal from the dSPACE

passes through a low pass analogue filter with a cut-off frequency at 4 kHz before entering

the Micromega Dynamics voltage driven current amplifier PR-052-01-04-03 and then the

inertial actuator.

MatLab/Simulink®

ControlDesk®

dSPACE DS1103

DAC

ADC

Dytran 5800B3
Cantilever

beam

B&K charge
amplifier 2635

Power
amplifier

Figure 6.7: Block diagram of the experimental set-up including the active feedback
control.

The same approach of the theoretical study of chapter 5 has been considered for the

experimental study. Firstly, the open-loop FRF has been measured for small excitation

signals in order to obtain the underlying linear gain margin of the VFC. Consequently,

the VFC closed-loop response has been measured for several excitation levels and velocity

feedback gains. The open-loop control diagram is the one represented in figure 5.5,

where Y (s) = Ẋc(s) is the response of the beam at the control position, r(s) is the input

reference signal from the dSPACE and the mobility transfer function Gsa(s) = Gcc(s).

The stability of the system is analysed using the Nyquist criterion for the open loop FRF

L(jω) = gahsGcc(jω). The control gain hs is set to unity and the actuator is driven by

a broadband white noise current. This results in the polar plot shown in figure 6.8. It

can be seen that the locus of the Nyquist intersects the negative real axis at a distance

δ =0.068, which corresponds to a gain margin gm = 1/δ = 14.7. As a result, the

maximum VFC gain calculated with a linear stability analysis that can be applied to

the system without driving it unstable is hs,max = 14.7. The other visible circles on the

right half plane of figure figure 6.8 correspond to the upper natural frequencies of the

system.

The open-loop FRF with hs = 1 is also shown in amplitude and phase in figure 6.9, where

the coherence of the measurement is also reported presenting values close to unity up to

7 Hz. This is an indication that the stiffness nonlinearity is not affecting the behaviour
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Figure 6.8: Nyquist plot of the measured open-loop FRF using a VFC gain hs = 1.

of the system at this level of excitation [158]. The drop of the coherence that can be

seen at 50 Hz is supposed to be caused by the frequency of the electrical network to

which the accelerometer’s charge amplifier is connected.

Figure 6.9: Bode plot of the measured open-loop FRF using a VFC gain hs = 1.

After the stability has been assessed using the Nyquist criterion, the performance of the

active control system is investigated evaluating the closed-loop FRFs. The closed-loop

control diagram is the one represented in figure 5.7, whereFe(s) = Fp(s) is the primary

excitation at the tip of the beam, and Gse(s) = Gcp(s) is the mobility at the control

position due to a primary excitation at a different location. In this case the system is ex-

cited by an impulse at the free end of the beam using the instrumented hammer. A fixed

control gain hs is implemented for each test case, starting from the uncontrolled case

and increasing its value until instability is reached. The data acquisition is performed

using the ControlDesk software, where the trigger and pre-trigger settings are adjusted

in order to record all the information of the signals and limiting the acquisition of the
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noise. Each acquisition is 5 seconds long and 5 acquisitions are preformed for each test

case (same hs), then the mean FRF is plotted. Both the excitation and response signals

are windowed using classical windows for hammer testing. An exponential window has

been applied to both the signals to improve the signal to noise ratio since the noise

can take over the signal towards the end of the acquisition time, where the response

has decayed away. This window has been applied to both the signals to account for

the damping correction. An additional force window is applied to the force signal to

eliminate noise on the force channel after the impact. In fact, this noise is not an input

energy that excites the system being tested. The windowing functions adopted in this

study can be found also in [159; 160]. The FRFs of the closed-loop response are then

estimated using the H1 estimator defined as the ratio between the cross-spectrum of the

input and output signals and the auto-spectrum of the input signal [140], and averaged

between all the measurements.

Figure 6.10: Bode plot of the measured closed-loop FRF with of the mobility at the
control position for several VFC gains as follows. The solid black line shows the response
of the uncontrolled beam, the dotted blue line shows the response for hs = 6%hs,max,
the dash-dotted green line shows the response for hs = 12%hs,max and the dashed red
line shows the response for hs = 18%hs,max. No stroke saturation has been observed

for these cases.

The results are shown in figure 6.10 for feedback gains hs from 0 (passive system) marked

with the solid black line, 6%hs,max marked with the dotted blue line, 12%hs,max marked
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with the dash-dotted green line, to 18%hs,max marked with the dashed red line. By

increasing the control gain, the resonance peak of the first mode of the structure is

effectively reduced, whereas the behaviour of the system at higher frequencies is not

affected by the increase in the control gain. However, the vibration of the beam is

significantly reduced as it is mainly determined by the first mode. A more detailed

observation of figure 6.10 shows the presence of an increase of the response amplitude

at a frequency around 12 Hz, which can be associated with the damping of the inertial

actuator being reduced and consequently the resonance peak being increased.

Figure 6.11: Bode plot of the measured closed-loop FRF with of the mobility at the
control position for several VFC gains as indicated in the previous figure and as follows.
The thin solid cyan line shows the response for hs = 24%hs,max, the thin dotted blue
line shows the response for hs = 30%hs,max, the thin dash-dotted green line shows
the response for hs = 36%hs,max and the thin dashed red line shows the response for

hs = 42%hs,max. Stroke saturation has been observed for hs > 24%hs,max.

As the feedback gain is further increased, collisions between the proof mass and the

actuator casing are observed and the system is susceptible to become unstable. The

instability not only depends on the value of the feedback gain, but also on the amount

of energy that the initial impulse releases into the system. The FRFs of the closed-

loop response for feedback gains also from 24%hs,max to 42%hs,max are presented in

figure 6.11. For hs = 24%hs,max, shown with the thin solid cyan line, a significant

increase of the response for frequencies below the structural resonance are observed. In
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fact, the proof mass is subject to some impact after the initial excitation, but after a

finite time the response decays away. Increasing the feedback gain to hs = 30%hs,max,

several collisions reported after the initial impulse and also in this case the response

decays away after a certain time. The FRF of the response for hs = 30%hs,max is

displayed with the thin dotted blue line and shows a more noticeable spillover effect and

also the presence of another peak at around 21 Hz. A larger increase in the feedback gain

for example hs = 36%hs,max (thin dash-dotted green line) and hs = 42%hs,max (thin

dashed red line), eventually leads the system to instability even for small amplitudes of

initial excitation. The vibration is thus self-sustained due to the fact that the response

does not decay away and the control system continues to insert power into the system.

It can be seen that for these last two cases the peak at 21 Hz shoots up and also the

response at frequencies higher than the first structural resonance shows a significant

increase.

A comparison between the uncontrolled beam and the VFC of the beam has also been

made in time domain and the results are shown in figure 6.12. This figure compares

the response of the system for hs = 0 (dashed red line) and hs = 42%hs,max (dash-

dotted black line) under equal excitation levels. Figure 6.12(a) shows the spectrum of

the excitation force and the time history of the velocity of the beam at the control

point. Figure 6.12(b) shows, instead, the phase-space trajectory of the proof mass

relative displacement and velocity. In the uncontrolled scenario, the vibration of the

structure dies out after a certain period of time. Also, the trajectory of the proof mass

starts to orbit around the equilibrium point until it eventually decays to zero. If the

VFC with a feedback gain hs = 42%hs,max is implemented, the response of the system

changes dramatically. In fact, the trajectory of the proof mass experiences limit cycle

oscillations that are self-sustained and lead the VFC system to instability for the same

level of excitation of the uncontrolled scenario. In the next section the NLFC loop is

implemented in order to tackle this instability issue.

6.3 Nonlinear feedback control of a cantilever beam using

a nonlinear actuator

The combined VFC+NLFC controller is then implemented as illustrated in the schematic

of figure 6.13. The signal of the accelerometer at the control position is acquired by the

dSPACE, it is then digitally high-pass filtered with a cut-on frequency of 2 Hz and

integrated using the trapezoidal rule in order to obtain the velocity signal at the control

position. The velocity of the structure is then multiplied by a VFC gain hs and the

amplified signal is then fed into the actuator through the amplifier. This forms the

VFC loop. The NLFC loop, instead, has been designed according to eq. (5.72) to add

a minimum internal damping of cmin = 0.5 N/ms−1, a maximum internal damping

of cmax = 100 N/ms−1 and an exponential coefficient p = 1. Using these values, all
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(a)

(b)

Figure 6.12: (a) Spectrum of the excitation force and time history of the velocity
signal at the control point; (b) Phase-space trajectory of the relative proof mass dis-
placement and velocity. Dashed red line for the uncontrolled scenario and dash-dotted

black line for the single VFC scenario using hs = 42%hs,max.

the parameters of the NLFC can be determined. For this control loop, both the force

cell signal fc and the acceleration signal ẍc have been filtered with a second order

Butterworth high-pass filter with a cut-on frequency of 2 Hz.

The proof mass relative acceleration has been calculated as,

ẍr =
fc −mcẍc

mp
, (6.1)

where,

mc = macc +mb +mgauge, (6.2)
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Figure 6.13: Schematic of the experimental implementation of the VFC and NLFC.

is the total mass attached to the beam at the control position, macc = 0.005 kg is the

mass of the accelerometer and mgauge = 0.023 kg is the mass of the force cell. The

relative proof mass velocity and displacement are then estimated by high-pass filtering

and integrating the acceleration signal, in the same way as it has been discussed for the

structure’s velocity signal. The NLFC control signal is then calculated in real time using

equation eq. (5.72) before being fed back to the actuator. The Simulink model of the

experimental implementation of the NLFC on the dSPACE is reported in appendix E.

Figure 6.14 shows a comparison of the response of the beam and proof mass among the

uncontrolled scenario (dashed red line), the single VFC loop with hs = 42%hs,max (dash-

dotted black line) and the combined VFC+NLFC loop with hs = 42%hs,max (blue solid

line) under equal excitation levels. Figure 6.14(a) shows the spectrum of the excitation

force and the time history of the velocity of the beam at the control point. Figure 6.14(b)

shows, instead, the phase-space trajectory of the proof mass relative displacement and

velocity. It can be observed that under the same excitation condition, the systems that

implements the combined VFC+NLFC is able to avoid stroke saturation and hence the

limit cycle oscillations of the proof mass so that the control system remains stable. In

fact, the response of the beam quickly dies out and the trajectory of the proof mass goes

to zero. The theoretical parametric study performed in section 5.3 has been repeated

experimentally in order to test the robustness of the controller to increasing control gains

and to increasing levels of excitation.

The beam has been excited with three different levels of excitation, namely: low (below

20 N peak amplitude, medium (between 20 N and 30 N) and high (above 30 N). For

each level of excitation, the test has been repeated increasing the VFC gain from the

uncontrolled scenario to hs,max. The parametric study has been conducted in the first

place for the single VFC loop and then for the combined VFC+NLFC loop in order

to compare the operating regions of the stroke limited actuator for the two different

control strategies. The results are shown in figure 6.15, where the red circles are the

experimental data points in which the single VFC loop is stable and the black asterisks
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(a)

(b)

Figure 6.14: (a) Spectrum of the excitation force and time history of the velocity
signal at the control point; (b) Phase-space trajectory of the relative proof mass dis-
placement and velocity. Dashed red line for the uncontrolled scenario, dash-dotted
black line for the single VFC scenario using hs = 42%hs,max and solid blue line for the

VFC+NLFC scenario using hs = 42%hs,max.

are the experimental data points in which the combined VFC+NLFC is stable. Each

point in figure 6.15 corresponds to an experiment of the same type of the one presented in

figure 6.14. In order to give more evidence, some of the time histories of the experimental

data points shown in figure 6.15 are reported in appendix F. The data points of the two

control strategies define the operating regions of the inertial actuator that are highlighted

by the light grey area for the single VFC loop and by the dark grey area for the combined

VFC+NLFC loop. It is clear that the added NLFC loop is able to extend the stability

region of the inertial actuator to larger control gains and higher level of excitation

compared to a single VFC loop.
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Figure 6.15: Comparison between the single VFC and VFC+NLFC in terms of sta-
bility range for the experimental investigation. The red circles in the dark grey area
show the experimental data points in which the VFC is stable; the black asterisks in the
light grey area show the experimental data point in which the combined VFC+NLFC

controller is stable.

6.4 Summary

In this chapter an experimental analysis on a NLFC for a stroke limited inertial actuator

used in the active vibration control of a cantilever beam has been presented. Firstly,

impact testing and modal analysis have been performed on the aluminium cantilever

beam with the aid of LMS Test.Lab R© software. The structure under investigation

presents well separated resonances, hence the response at low frequencies is dominated

by the first mode. Secondly, the stroke limited inertial actuator has been attached to the

free end of the cantilever beam and both the open-loop and closed-loop FRFs have been

measured for the VFC using small excitation signals. The open-loop analysis, conducted

for the actuator operating within its linear range, suggests a maximum feedback gain

hs,max = 14.70 guaranteeing closed-loop stability. The VFC performance has been

analysed comparing the closed-loop FRFs for increasing feedback control gains. It has

been shown that the VFC effectively reduces the amplitude of the structure’s resonance

peak up until a certain feedback gain. Further increase of the feedback gain results

in stroke saturation and an enhanced level of vibration. For a feedback gain hs =

42%hs,max, the system has become unstable under the same excitation conditions of

the uncontrolled scenario. The real time implementation of the nonlinear control law

has been discussed, where the control signal is dependent of the excitation level, the

proof mass relative displacement and velocity. The relative displacement and velocity

signals have been measured with the aid of a force gauge placed between the actuator

and the beam, and a collocated accelerometer. The response of the beam and the phase-

space trajectory of the proof mass have been analysed for both the single VFC loop and

the combined VFC+NLFC loop, for several levels of excitation and increasing velocity
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feedback gains. In each test the stability of the control system has been assessed. It has

been shown that the NLFC is able to avoid stroke saturation and the associated limit

cycle oscillations of the proof mass, hence, increasing the stability region of the inertial

actuator with respect to the single VFC loop. This means that larger feedback gains can

be used or, or higher levels of excitation can be withstood, without the system becoming

unstable when this NLFC is in place. The NLFC has increased the operating range of

the nonlinear inertial actuator.





Chapter 7

Proof mass state estimation

The NLFC, which has been developed in chapter 5 and experimentally investigated in

chapter 6, relies on the real-time measurements of the proof mass relative displacement

and velocity. Unfortunately, many actuators, including that under investigation in chap-

ter 6 are not provided with a sensor that can measure either of these, which was why

an additional force gauge was introduced in section 6.3 between the structure and the

actuator base to measure the control force. The proof mass velocity was then estimated

by considering the dynamic eq. (6.1). The proof mass of this device cannot be instru-

mented with an accelerometer or a strain gauge, since the actuator casing has been

welded in place. However, the additional force gauge adds mass to the structure and is

an expensive device. This motivates the development of a self-sensing algorithm that

makes use of the available measurements and the identified mathematical model to give

the best estimate of the proof mass states relatively to the structure. This approach

is often referred as virtual sensing [161; 162] and can be beneficial as it reduces the

cost and weight of fitting inertial actuators with an additional physical sensor. Several

studies can be found on self-sensing electrodynamic actuators [70; 163–165], however,

they consider either the base of the actuator to be blocked, or to modify the actua-

tor with an additional magnet-coil in open-circuit that measures the relative velocity

from the back-emf. Moreover, the dynamic behaviour of the actuator is assumed to

be linear. This chapter investigates the estimation of the relative proof mass velocity

from the available measurements, input signals and from the identified nonlinear model

of the actuator, without having to rely on any additional physical sensors. Firstly, an

open-loop algorithm is derived in section 7.1, which calculates the proof mass relative

velocity by applying a digital filter to the input current and base velocity signals, where

the digital filter coefficients are calculated from the actuator underlying linear identified

model. Secondly, an extended Kalman filter (EKF) algorithm [133] is presented in sec-

tion 7.2, which calculates the optimal estimate of the proof mass relative velocity using

the nonlinear identified model of the actuator, the input current, the base acceleration

119
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signals and the voltage measurement across the coil terminals. Finally, a comparison

and a summary of the two approaches are given in section 7.3.

7.1 Linear digital filter approach

Considering the underlying linear model of the inertial actuator in figure 3.4 and that

the control force applied by the actuator on the structure is fc = −f , the equation of

motion of the proof mass and the control force can be written as,

{
mpẍp(t) = φia(t)− cpẋr(t) + kpẋr(t)

fc(t) = −mpẍp(t)−mbẍb(t)
.

(7.1a)

(7.1b)

Considering zero initial conditions, the Laplace transform of eq. (7.1) results in,smpẊp(s) = φIa(s)−
[
cp +

kp
s

]
Ẋr(s)

Fc(s) = −smpẊp(s)− smbẊb(s)

.
(7.2a)

(7.2b)

From the set of eq. (7.2) the control force can be written as,Fc(s) = −φIa(s) + [cp +
kp
s

]Ẋr(s)− smbẊb(s)

Fc(s) = −smpẊr(s)− s(mp +mb)Ẋb(s)

,
(7.3a)

(7.3b)

where xr = xp − xb has been used. Equalling the right hand side terms of eqs. (7.3a)

and (7.3b) leads to an algebraic equation that can be solved for the relative velocity as,

Ẋr(s) =
φIa(s)

smp + cp +
kp
s

− smpẊb(s)

smp + cp +
kp
s

, (7.4)

hence, the proof mass relative velocity is given by the summation of two components,

where the first one is a transfer function with respect to the input current, which can

be written as,

H1a(s) =
Ẋr(s)

Ia(s)

∣∣∣∣
Ẋb(s)=0

=
φs

s2mp + scp + kp
, (7.5)

and the second one is a transfer function with respect to the base velocity, which can be

written as,

H2a(s) =
Ẋr(s)

Ẋb(s)

∣∣∣∣
Ia(s)=0

=
mps

2

s2mp + scp + kp
. (7.6)

These transfer functions of eqs. (7.5) and (7.6) are then translated in the digital domain

using the bilinear transformation [140; 166], thus substituting,

s→ µ
1− z−1

1 + z−1
, (7.7)
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where z is the complex variable for the discrete system and µ is a pre-warping coefficient

calculated as follows,

µ =
ωp

tan(
ωp
2fs

)
, (7.8)

where fs is the sampling rate and ωp is the natural frequency of the inertial actuator.

Thus, the digital filter applied to the input current becomes,

H1d(z) =
Ẋr(z)

Ia(z)

∣∣∣∣
Ẋb(z)=0

=

=
φµ− φµz−2

(mpµ2 + cpµ+ kp) + (2kp − 2mpµ2)z−1 + (mpµ2 − cpµ+ kp)z−2
,

(7.9)

and the digital filter applied to the base velocity results in,

H2d(z) =
Ẋr(z)

Ẋb(z)

∣∣∣∣
Ia(z)=0

=

=
mpµ

2 + 2mpµ
2z−1 +mpµ

2z−2

(mpµ2 + cpµ+ kp) + (2kp − 2mpµ2)z−1 + (mpµ2 − cpµ+ kp)z−2
.

(7.10)

Finally, combining the filtered measured signals using eqs. (7.9) and (7.10) gives the

real-time estimation of the proof mass relative velocity, as shown by the block diagram

in figure 7.1.
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Figure 7.1: Block diagram of the proof mass relative velocity estimation using linear
digital filters, the measured input current and the base acceleration signal.

The estimation of the proof mass relative velocity using the linear digital filter shown

in figure 7.1 can be compared with the case in which it is calculated from the force

gauge signal as presented in chapter 6 using the experimental data from the previous

chapter. Figure 7.2 shows the time history of the proof mass relative velocity when the

actuator is operating within its linear range of motion. The solid black line represents the

proof mass velocity derived from the force gauge measurement using eq. (6.1), whereas

the dash-dotted red line shows estimation of the velocity signal using the linear digital

filter given by the combination of eqs. (7.9) and (7.10). Since the actuator is operating

within its linear range of motion, the virtual sensing approach can reliably predict the

proof mass relative velocity, however, this no longer applies when the actuator enters

its nonlinear regime of motion. In fact, figure 7.3 shows the response of the proof mass
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when it is subject to a limit cycle oscillation. In this scenario, the linear digital filter

fails to match the reference signal given by the force gauge measurement, being out-of-

phase and most importantly not predicting the sudden changes in the velocity signal

from positive to negative values and vice-versa that are due to the proof mass colliding

with the end-stops.

Figure 7.2: Time histories of the proof mass relative velocity measured by using the
force gauge signal (solid black line) and estimated with a linear digital filter (dash-

dotted red line) when the actuator is operating within its linear range of motion.

Figure 7.3: Time histories of the proof mass relative velocity measured by using the
force gauge signal (solid black line) and estimated with a linear digital filter (dash-
dotted red line) when the actuator is operating in nonlinear motion and the proof mass

is experiencing limit cycle oscillations.

7.2 Extended Kalman filter approach

The results of the previous section motivate the development of a virtual sensor based

on the nonlinear dynamic model of the stroke limited inertial actuator. The equation of
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motion of the nonlinear inertial actuator model in figure 3.12 can be written as,

mpẍr + cpẋr + κ(xr)xr = φia −mpẍb, (7.11)

where the nonlinear stiffness κ(xr) is given by,

κ(xr) =


kp |xr| < x0

kp + kc(1−
x0

|xr|
) |xr| ≥ x0

,

(7.12a)

(7.12b)

according to eq. (4.6), where kc = ksat − kp is the impact stiffness. The equation of

motion given by eq. (7.11) can be rewritten in a continuous time state-space form as,

{
ẋ = A(x)x + Bu

y = Cx + Du
,

(7.13a)

(7.13b)

where the state vector

x = {xr ẋr}T , (7.14)

the input vector

u = {ia ẍb}T , (7.15)

the system matrix is given by,

A(x) =

[
0 1

−κ(xr)
mp

− cp
mp

]
, (7.16)

and the input matrix can be written as,

B =

[
0 0
φ
mp

−1

]
. (7.17)

The system output cannot be y = ẋr as it would not be measurable. Instead, the voltage

across the actuator coil terminals can be measured as,

ea = φẋr +Reia, (7.18)

where the inductive term Le
d
dt ia has been neglected. The output can thus be written

as,

y = ea, (7.19)

and the output matrices are

C = {0 φ}, (7.20)

and

D = {Re 0}. (7.21)
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In order to compare the estimation of the model with the measured data at each time

step n, the discrete-time state-space form of eq. (7.13) can be obtained as,
xn+1 − xn

∆t
= A(xn)xn + Bun

yn+1 = Cxn+1 + Dun+1

,
(7.22a)

(7.22b)

where n and n+1 represent the current and following time step, respectively, ∆t = 1/fs

is the fixed time step and the forward Euler method has been used to write eq. (7.22).

Both eq. (7.22a) and eq. (7.22b) are assumed to have stochastic disturbance contributions

of zero mean uncorrelated Gaussian white noise W and v of known covariances Q and

R, respectively. Thus, eq. (7.22) can be rewritten as,
xn+1 − xn

∆t
= A(xn)xn + Bun + Wn

yn+1 = Cxn+1 + Dun+1 + vn+1

,
(7.23a)

(7.23b)

In practice, the additional signals W and v take into account the process and mea-

surement noise. The covariance matrix Q has been assumed to be diagonal and time-

invariant as well as for the covariance R. Similarly, the states of the system are assumed

to be Gaussian variables with covariance P. The estimation of the system states is then

performed using an extended Kalman filter (EKF) algorithm [133] due to its simple

extension to nonlinear systems from the well-known linear Kalman filter [134; 135]. The

aim of the EKF algorithm is to provide the mean value x̂n and the error covariance

P̂n = E
[
(xn − x̂n) (xn − x̂n)T

]
of the estimate of the state vector given the sequence

of inputs and measurements, where E[· ] represents the matrix expected value operator.

At each time step n the EKF linearises the model around the current estimation point

and propagates a linear approximation of the mean and the covariance of the states.

Firstly, an a-priori estimate of the mean and covariance is obtained using the model of

the system, then an a-posteriori estimate is calculated using the value of the measured

signal. The estimation of the proof mass states can be derived using the EKF as follows,

• Initialise the estimation of the states mean and covariance: x̂+
0 , P̂+

0 ;

• Calculate the a-priori estimate x̂−n+1 = x̂+
n + [A(x̂+

n )x̂+
n + Bun] ∆t+ Wn∆t;

• Calculate the predicted output yn+1 = Cx̂−n+1 + Dun+1 + vn+1;

• Calculate the predicted covariance P̂−n+1 = FnP̂
+
nFT

n + Q, where

Fn = ∂{[A(xn)xn+Bun]∆t}
∂xn

is the state Jacobian matrix and Q is the covariance

matrix of the process noise;

• Calculate the Kalman gain Kn+1 = P̂−n+1C
T
(
CP̂−n+1C

T +R
)−1

, where R is the

covariance of the measurement noise;
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• Calculate the a-posteriori mean estimate as x̂+
n+1 = x̂−n+1 +Kn+1

(
yn+1 −Cx̂−n+1

)
,

where yn+1 is the measurement signal at step n+ 1;

• Calculate the a-posteriori covariance estimate as P̂+
n+1 = (I−Kn+1C) P̂−n+1.

This EKF algorithm is then repeated at each time step n, apart for the initialisation

step, which is computed only for n = 0.

The overall estimation procedure can be summarised by the block diagram shown in

figure 7.4. The nonlinear actuator is excited by the input current and base acceleration

u and is affected by some process noise W due to the uncertainties in the model. The

electrical voltage across the actuator leads is measured and its time signal y, which is

affected by some measurement noise v is given to the EKF algorithm together with the

input signal u. The EKF then computes the estimation of the proof mass states using

the algorithm described above.

W
Nonlinear
actuator

EKF

+

+
v

u

u

y
x̂

Figure 7.4: Block diagram of the proof mass relative velocity estimation using an
extended Kalman Filter (EKF) with the measured input current and base acceleration

signals and the voltage between the actuator coil terminals.

The state-space eq. (7.13) have to be observable for the virtual sensor to work, which

means that the measurements have to contain enough information to be able to estimate

the states of the model [133]. The observability matrix of the linearised state-space

eq. (7.13) at the estimation point is given by,

Ob =

[
C

CA(x)

]
=

[
0 φ

−φκ(xr)
mp

−φcp
mp

]
, (7.24)

which has rank 2, hence the system is observable [133]. Another common method to

asses the observability of the system is the Popov-Belevitch-Hautus (PBH) criterion

[167], which states that the linearised state-space eq. (7.13) is observable if the PBH

matrix given by,

PBH =

[
sI−A(x)

C

]
=

 s −1
κ(xr)
mp

s+
cp
mp

0 φ

 , (7.25)
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is of the same rank as the number of states for each s. In this case the rank of the PBH

matrix given by eq. (7.25) is 2, hence the system is observable.

Figure 7.5: Time histories of the proof mass relative velocity measured by using the
force gauge signal (solid black line) and estimated with an EKF (dash-dotted red line)

when the actuator is operating within its linear range of motion.

Figure 7.6: Time histories of the proof mass relative velocity measured by using the
force gauge signal (solid black line) and estimated with an EKF (dash-dotted red line)
when the actuator is operating in nonlinear motion and the proof mass is experiencing

limit cycle oscillations.

The estimation of the proof mass relative velocity using the EKF algorithm shown in

figure 7.4 can be compared with the case in which it is calculated from the force gauge

signal as presented in chapter 6 using the experimental data from the previous chapter.

Figure 7.5 shows the time history of the proof mass relative velocity when the actuator

is operating within its linear range of motion. The solid black line represents the proof

mass velocity derived from the force gauge measurement using eq. (6.1), whereas the

dash-dotted red line shows estimation of the velocity signal using the EKF algorithm

given above. In this case the actuator is operating within its linear range of motion

and the virtual sensing approach can reliably predict the proof mass relative velocity

and the results are similar to those obtained in section 7.1 using a linear digital filter.

Figure 7.6, instead, shows the response of the proof mass when it is subject to a limit
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cycle oscillation. In this scenario there is a good matching between the EKF estima-

tion and the reference signal given by the force gauge measurement, contrarily to the

estimation given by the linear digital filter shown in figure 7.3. The time history of the

EKF estimation is subject to a small delay during the first few cycles, but then it is able

to predict accurately the response of the proof mass relative velocity and the sudden

changes in the velocity signal from positive to negative values and vice-versa that are

due to the proof mass colliding with the end-stops. The initial delay of the estimate

with respect to the reference signal could be attributed to the choice of the discrete inte-

gration scheme, a forward Euler method in this case, hence even better results might be

obtained using more sophisticated numerical integration methods, which however could

be more computationally expensive and not suitable for a real-time application. Also,

the initial delay of the estimate with respect to the reference signal could be attributed

to the choice of using an EKF, instead of an unscented Kalman filter (UKF) [168], since

the inertial actuator is subject to a non-smooth harsh nonlinearity, which is more suited

to UKF than EKF. However, the UKF is more computationally expensive and much

more difficult to implement than an EKF algorithm.

7.3 Summary

In this chapter a virtual sensing approach for the estimation of the proof mass relative

velocity has been investigated. The general idea is to estimate the proof mass states

from the available measurement, the input signals and from the identified model of

the actuator, without having to rely on additional physical sensors or the model of

the structure on which the actuator is being used. Firstly, an open-loop algorithm

with a linear digital filter has been derived. The transfer functions between the proof

mass velocity and the input current as well as between the proof mass velocity and the

input base velocity have been derived for the underlying linear model of the actuator.

Secondly, the transfer functions have been obtained in digital domain and the digital

filter coefficients have been calculated. Consequently, the real-time estimate of the

proof mass velocity is given by combining the filtered input current and base velocity

signals available from the measurements. It is shown that this virtual sensing approach

performs well when the actuator is operating within its linear range of motion, however,

it fails to predict the response of the proof mass when the latter is subject to stroke

saturation. A second virtual sensing method has been derived using an EKF algorithm,

hence, including the actuator nonlinear dynamic behaviour. The derivation of the virtual

sensor has been explained in detail and also the EKF algorithm has been summarised. At

each time step, the EKF linearises the state-space equation of the system and calculates

the a-priori estimate of the mean of the states and the error covariance using the state

estimation of the previous step and the inputs to the system. Then it calculates the

Kalman gain, which is used to compute the a-posteriori estimate of the mean of the
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states and the error covariance using the output measurement of the system. It is shown

that this virtual sensing approach performs well both for the linear and nonlinear motion

of the actuator. A small initial delay can be observed in the estimation with respect to

the reference signal when the proof mass experiences limit cycle oscillations. Indications

to possible solutions have been pointed out.



Chapter 8

Conclusions and suggestions for

future work

This final chapter summarises the findings presented in the thesis, and also outlines

suggestions for future work on active vibration control using stroke limited inertial ac-

tuators.

8.1 Conclusions

Electromechanical inertial, or proof mass, actuators are commonly used as forcing de-

vices in active vibration controllers. The inertial actuator is attached to the structure to

which one wishes to apply a force and is fed by a signal proportional to the velocity of

the structure, which is measured by a collocated sensor of vibration. The current flow-

ing through the actuator’s coil generates the control force that acts between the proof

mass and the structure. Since the control force is generated by accelerating the proof

mass, controlling low frequency motions requires a very long stroke, however, among

the main limitations of inertial actuators is that the stroke length is finite. Exceeding

the stroke length, hence saturating in stroke, forces the proof mass to stop, resulting in

impulse-like excitations that are transmitted to the structure, which is liable to damage.

Additionally, the shocks produced by the impacts generate a control input opposite to

that demanded, which reduces the overall damping of the system and eventually leads

to limit cycle oscillations and the instability of the system.

The symptoms of stroke saturation on the stability of velocity feedback controllers

(VFCs) have been investigated, after the nonlinearity has been identified experimen-

tally. A novel nonlinear feedback control (NLFC) law has also been presented and both

simulation and experimental studies under different scenarios were performed to test its

129
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characteristics. The NLFC law requires the knowledge of the proof mass position and

velocity, hence a virtual sensor that estimates these states has been researched.

The thesis began with an experimental investigation of the nonlinear dynamic behaviour

of an inertial actuator. Base and direct excitation experiments have been used to identify

both the underlying linear and the nonlinear actuator dynamics. The underlying linear

model parameters have been identified by comparing the measured and analytical trans-

missibility, mechanical and electrical impedances of the inertial actuator applying small

excitation signals that do not activate the nonlinearity. Larger amplitude signals have

been used to identify the nonlinear behaviour of the inertial actuator, going from the

detection of the nonlinearity, through its characterisation to the nonlinear parameters

estimation. The nonlinear characterisation led to a non-smooth and strongly nonlinear

piecewise linear model for the elastic restoring force, a linear model for the damping

restoring force and a weakly nonlinear polynomial quadratic model for the transduction

coefficient. The nonlinear parameters have been estimated by fitting a curve to the

restoring force data points and the back-emf signal.

A numerical study has also been presented where both time and frequency domain anal-

yses have been carried out using the Newmark method for the numerical integration of

the equations of motion and the harmonic balance method (HBM) for seeking the peri-

odic solutions of the equations of motion, respectively. The numerical analysis showed

that the nonlinear system is characterised by a mean stiffness at low frequency that is

larger than the underlying linear stiffness. Also, if the actuator is excited by a sine-

sweep and the initial conditions at every cycle give the proof mass a sufficient amount of

energy, the proof mass itself keeps on saturating in stroke until the nonlinear resonance

is reached and for a further increase in frequency a sudden jump in the response is ob-

served. A comparison between the time domain simulation and the frequency domain

simulations obtained using the HBM showed that the bifurcation points corresponds to

the frequencies and the amplitudes of the jumps. The frequency-amplitude diagrams

have also been investigated, concluding that the nonlinear resonant frequency of the

stroke limited actuator increases as the amplitude of the excitation increases, due to the

hardening behaviour of the nonlinearity.

The mathematical model of the identified nonlinear inertial actuator was coupled with

a single degree of freedom structure and a general double loop controller on the system

velocities was also added to the mathematical formulation. A numerical analysis on

the stability and the performance of VFCs and relative feedback controllers (RFCs) has

been carried out for both the underlying linear model and the nonlinear model of the

inertial actuator. It has been shown that for a single VFC loop, the system is only

conditionally stable, whereas adding the RFC loop has shown to increase the stability

of the system at the expenses of the vibration reduction performance. The numerical

simulations have shown that VFCs are more liable to instability if the inertial actuator

has stroke saturation nonlinearity. In fact, the impacts between the proof mass and the
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actuator’s end-stops are in-phase with the velocity of the structure, thus they contribute

to reducing the overall damping of the system, which results in the instability. Moreover,

the feedback gain that causes the instability in the nonlinear system is much lower than

the one predicted by the linear Nyquist analysis for the underlying linear system. This

motivated the development of a NLFC that operates as a second loop in combination

with the classical VFC. The proposed nonlinear controller actively increases the internal

damping of the actuator as the proof mass approaches the end stops, taking negligible

values when the proof mass is clear from the displacement constraints. The combination

of NLFC+VFC has been investigated and compared, in terms of stability of the control

system, with the single VFC loop scenario for several values of the feedback gain and

amplitude of the impulse excitation. It has been shown that the NLFC is able to

increase the safe operating region of the actuator with respect to the single VFC loop,

hence, larger feedback gains can be used, or larger impulse excitations can be withstood,

without the system becoming unstable.

An experimental investigation on a cantilever beam controlled by a stroke limited iner-

tial actuator using both VFC and NLFC was carried out. A modal analysis have been

performed on the cantilever beam to assess that the response at low frequency is domi-

nated by the first mode and the structure response can be approximated as of a SDoF

system. A control unit composed by the stroke limited inertial actuator driven in VFC

or NLFC+VFC, an accelerometer and a force gauge has been attached close to the free

end of the cantilever beam. The stability of the VFC has been assessed using the open-

loop analysis conducted for the actuator operating within its linear range, and resulted

in a maximum feedback gain hs,max = 14.70. The VFC performance has been analysed

comparing the closed-loop FRFs for increasing feedback control gains and it has been

shown that the VFC effectively reduces the amplitude of the structure’s resonance peak

up until a certain feedback gain. Further increases of the feedback gain lead the proof

mass to hit the end stops and to increase the level of vibration. In particular for a

feedback gain hs = 42%hs,max and above, the system has been seen to become unstable

under the same excitation conditions of the uncontrolled scenario. The real-time imple-

mentation of the NLFC has been discussed, using the signals of the force gauge placed

between the actuator and the beam, and the collocated accelerometer. The response of

the beam and the phase-space trajectory of the proof mass have been analysed for both

the single VFC loop and the combined VFC+NLFC loop, for several levels of excitation

and increasing velocity feedback gains. In each test the stability of the control system

has been assessed. It has been shown that the NLFC is able to avoid stroke satura-

tion and the associated limit cycle oscillations of the proof mass, hence, increasing the

stability region of the inertial actuator with respect to the single VFC loop.

A virtual sensing approach for the estimation of the proof mass states has also been

investigated due to the fact that those are required by the NLFC law and the proof

mass of the inertial actuator might not be available to be directly instrumented. The
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proof mass states are estimated from the available measurement and input signals using

the identified model of the actuator, without having the knowledge of the model of the

structure on which the actuator is being used. An open-loop algorithm with a linear

digital filter has been derived, however, it is shown that this virtual sensing approach

performs well only when the actuator is operating within its linear range of motion.

Hence, A second virtual sensing method has been investigated using an extended Kalman

filter (EKF) algorithm, which includes the actuator nonlinear dynamic behaviour. At

each time step, this virtual sensor linearises the state-space equation of the system and

calculates an ’a-priori’ estimate of the states using the state estimation of the previous

step and the inputs to the system. After that it calculates the Kalman gain, which is

used to update the estimate using the output measurement of the system. It is shown

that the results of this virtual sensing approach are in good agreement with the reference

signals both for the linear and nonlinear motion of the actuator.

8.2 Future work

The results and discussions presented in this thesis suggest that future work could

progress in the directions listed below.

• Identification of the electrical nonlinearities of inertial actuators, for example the

reduction of the transduction coefficient at increasing input currents, or the vari-

ation of resistance and inductance;

• Experimental implementation of the virtual sensor in a NLFC loop and comparison

of the results with those obtained using a physical sensor to measure the proof mass

states;

• Further investigation of the virtual sensing technique to reduce the initial delay

given by the EKF. Since the type of nonlinearity is piecewise linear, it can cause

numerical problems during the linearisation when using the EKF, hence, it might

be interesting to use a smoothed model close to the angular points. Also, different

type of estimators such as the unscented Kalman filter or the particle filter may

be investigate and the results compared with those of the EKF;

• A comparison of the performance of the combined NLFC+VFC loop with the

single VFC loop in terms of structural vibration reduction, when the structure is

subject to a broadband excitation;

• A comparison of the NLFC strategy with other control strategies that tackles

stroke saturation in inertial actuators, such as on/off control and gain scheduling;

• Implementation of the NLFC to a larger structure controlled by multiple decen-

tralised control units.
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[71] S. Chesné, K. Billon, G. Zhao, and C. Collette, “On the passivity concept to

design hybrid tuned mass damper,” in 25th International Congress on Sound and

Vibration (ICSV25), Hiroshima, Japan, 8 - 12 July 2018, pp. 1–8.

[72] J. Scruggs and D. Lindner, “Optimal sizing of a proof-mass actuator,” in 40th

Structures, Structural Dynamics, and Materials Conference, St. Louis, MO, USA.

American Institute of Aeronautics and Astronautics, 12-15 April 1999.



BIBLIOGRAPHY 139

[73] C. Paulitsch, “Vibration control with electrodynamic actuators,” Ph.D. Thesis,

Institute of Sound and Vibration Research, 2005.

[74] C. Paulitsch, P. Gardonio, S. J. Elliott, P. Sas, and R. Boonen, “Design of a

lightweight, electrodynamic, inertial actuator with integrated velocity sensor for

active vibration control of a thin lightly-damped panel,” in Proceedings of ISMA

2004: International Conference on Noise and Vibration Engineering, Leuven, Bel-

gium, 20-22 September 2004, pp. 239–253.

[75] L. I. Wilmshurst, “Analysis and control of nonlinear vibration in inertial actua-

tors,” PhD thesis, Institute of Sound and Vibration Research, 2015.

[76] W. J. Klippel, “Loudspeaker nonlinearities causes, parameters, symptoms,” in

119th Audio Engineering Society Convention, New York, NY, USA, 7 - 10 October

2005.

[77] ——, “Measurement of large-signal parameters of electrodynamic transducer,”

in 107th Audio Engineering Society Convention, New York, NY, USA, 24 - 27

September 1999.

[78] IEC 62458:2010(E), “Sound system equipment – electroacoustical transducers –

measurement of large signal parameters,” International Electrotechnical Commis-

sion, Standard, 2010.

[79] M. Dodd, W. J. Klippel, and J. Oclee-Brown, “Voice coil impedance as a function

of frequency and displacement,” in 117th Audio Engineering Society Convention,

San Francisco, CA, USA, 28 - 31 October 2004.

[80] W. J. Klippel, “Assessment of voice-coil peak displacement xmax,” Journal of the

Audio Engineering Society, vol. 51, no. 5, pp. 307–324, 2003.

[81] L. I. Wilmshurst, M. Ghandchi Tehrani, and S. J. Elliott, “Nonlinear vibrations of

a stroke-saturated intertial actuator,” in 11th International Conference on Recent

Advances in Structural Dynamics (RASD 2013), Pisa, Italy, 01-03 July 2013.

[82] ——, “Nonlinear identification of proof-mass actuators accounting for stroke sat-

uration,” in Proceedings of ISMA 2014: International Conference on Noise and

Vibration Engineering, Leuven, Belgium, 15-17 September 2014, pp. 209–223.

[83] ——, “Active control and stability analysis of flexible structures using nonlinear

proof-mass actuators,” in IX International Conference on Structural Dynamics

(Eurodyn 2014), Porto, Portugal, 30th June - 2nd July 2014, pp. 1571–1578.
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[104] J.-P. Noël, L. Renson, G. Kerschen, B. Peeters, S. Manzato, and J. Debille, “Non-

linear dynamic analysis of an f-16 aircraft using gvt data,” in Proceedings of the

international forum on aeroelasticity and structural dynamics, Bristol, UK, 24-26

June 2013.
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Appendix A

Fraunhofer LBF actuator

The nonlinear identification methodology described in chapter 3 was also applied to a

prototype inertial actuator developed by Fraunhofer LBF (Darmstadt, Germany), which

is shown in figure A.1 and was characterised during a test campaign at their laboratories.

Figure A.1: Picture of the Fraunhofer LBF inertial actuator.

The measured and identified mechanical impedances in open- and closed-circuit are

shown in figures A.2(a) and A.2(b), respectively. Figure A.3(a) shows the measured

and identified transmissibility measured with the base excitation experiment, whereas

figure A.3(b) shows the transmissibility with respect to the input current for the direct

excitation experiment. Figure A.4(a) shows the measured and identified transmissibility

with respect to the input voltage for the direct excitation experiment. The measured

electrical impedance is shown figure A.4(b) with the solid black line. The ideal induc-

tance model (blue dash-dotted line) and the LR-2 model (red dotted line) given by

eq. (3.9) were fitted to the data. It can be noticed that the LR-2 model of the electrical

port gives a much better agreement with the measured data.

The actuator was then tested using the same methodology outlined in section 3.4. The

results of the nonlinear identification are shown in figure A.5. In particular, figure A.5(a)
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(a) (b)

Figure A.2: Magnitude, phase and coherence of the measured mechanical driving-
point impedance (black solid line) and identified model (blue dash-dotted line). (a)

Open-circuit mechanical impedance; (b) Short-circuit mechanical impedance.

(a) (b)

Figure A.3: Magnitude, phase and coherence of the measured transmissibility (black
solid line) and identified model (blue dash-dotted line). (a) Base excitation experiment;

(b) Direct (current) excitation experiment.

displays the experimental data points of the restoring force versus the state-space plane.

Figure A.5(b) shows the experimental data points of the elastic restoring force and the

fitted model. It can be noticed that the stiffness characteristic of the actuator is linear

even for high amplitude oscillations, until the proof mass reaches one end-stop. Hence,

the fitted model is a piecewise linear function with a discontinuity point at the location of

the stroke limit. Figure A.5(c) shows the scattered data points of the damping restoring

force and the identified model. The behaviour is weakly nonlinear and it has been

identified as polynomial of the third order. The scattered data plot of the transduction

coefficient versus the displacement is shown in figure A.5(d). Its behaviour is given by

a third order polynomial function, which is asymmetric with respect to the proof mass

resting position. In fact, the peak in the transduction coefficient is reached for negative

displacements, whereas for positive displacements it is significantly reduced.
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(a) (b)

Figure A.4: Magnitude, phase and coherence of the measured transmissibility and
electrical impedance (black solid line) and identified model (blue dash-dotted line). (a)
Transmissibility for the direct (voltage) excitation experiment; (b) Electrical impedance
for the direct (current) excitation experiment considering an ideal inductance model
(blue dash-dotted line) and considering an LR-2 model for the inductance losses (red

dashed line).

(a) (b)

(c) (d)

Figure A.5: Restoring force data points, the experimental data is shown with the
black dots, whereas the curve fitting is shown with the solid red line. (a) 3D restoring
force in the phase space; (b) elastic restoring force; (c) damping restoring force; (d)

nonlinear transduction coefficient.





Appendix B

TECTONIC elements actuator

Another example of the identification methodology is given in this appendix on a Tec-

tonic Elements TEBM46C20N-4B audio speaker, which can be used as inertial actuator

and is shown in figure B.1.

The measured and identified mechanical impedances in open- and closed-circuit are

shown in figures B.2(a) and B.2(b), respectively. Figure B.3(a) shows the measured

and identified transmissibility measured with the base excitation experiment, whereas

figure B.3(b) shows the transmissibility with respect to the input current for the direct

excitation experiment. Figure B.4(a) shows the measured and identified transmissibility

with respect to the input voltage for the direct excitation experiment. The measured

electrical impedance is shown figure B.4(b) with the solid black line. The ideal induc-

tance model (blue dash-dotted line) and the Leach model (red dotted line) given by

eq. (3.12) were fitted to the data. It can be noticed that the Leach model of the electri-

cal port gives a much better agreement with the measured data.

Figure B.1: Picture of the Tectonic Elements TEBM46C20N-4B audio speaker.
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(a) (b)

Figure B.2: Magnitude, phase and coherence of the measured mechanical driving-
point impedance (black solid line) and identified model (blue dash-dotted line). (a)

Open-circuit mechanical impedance; (b) Short-circuit mechanical impedance.

(a) (b)

Figure B.3: Magnitude, phase and coherence of the measured transmissibility (black
solid line) and identified model (blue dash-dotted line). (a) Base excitation experiment;

(b) Direct (current) excitation experiment.

The actuator was then tested using the same methodology outlined in section 3.4. The

results of the nonlinear identification are shown in figure B.5. In particular, figure B.5(a)

displays the experimental data points of the restoring force versus the state-space plane.

Figure B.5(b) shows the experimental data points of the elastic restoring force and the

fitted model. It can be noticed that the elastic restoring force behaves nonlinearly and

asymmetrically with respect to the resting position of the proof mass. Hence, the fitted

model is a piecewise linear function with a discontinuity point at the equilibrium posi-

tion. Figure B.5(c) shows the scattered data points of the damping restoring force and

the identified model. The behaviour is highly nonlinear and it has been identified as

polynomial of the third order. In particular, for positive velocities the damping restoring

force is almost constant, which can be associated with the friction between the coil sup-

port and the proof mass. The scattered data plot of the transduction coefficient versus
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(a) (b)

Figure B.4: Magnitude, phase and coherence of the measured transmissibility and
electrical impedance (black solid line) and identified model (blue dash-dotted line). (a)
Transmissibility for the direct (voltage) excitation experiment; (b) Electrical impedance
for the direct (current) excitation experiment considering an ideal inductance model
(blue dash-dotted line) and considering an Leach model for the inductance losses (red

dotted line).

the displacement is shown in figure B.5(d). Its behaviour is given by a linearly decreasing

function. In fact, for negative displacements the transduction coefficient keeps increas-

ing without reaching a peak, whereas for positive displacements the coil decouples from

the magnet and the transduction coefficient decreases significantly.
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(a) (b)

(c) (d)

Figure B.5: Restoring force data points, the experimental data is shown with the
black dots, whereas the curve fitting is shown with the solid red line. (a) 3D restoring
force in the phase space; (b) elastic restoring force; (c) damping restoring force; (d)

nonlinear transduction coefficient.
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Numerical integration of ODEs

This appendix gives a brief overview of numerical methods for the solution of first and

second order ordinary differential equations (ODEs) [107]. In general, the state-space

equation of a nonlinear system can be written as,

ẋ = f (x, u) , (C.1)

where x represents the state vector, u denotes the input and f is a nonlinear function of

the input and the states.

• Euler forward difference method:

Equation (C.1) is approximated using the forward difference equation,

ẋi =
xi+1 − xi

∆t
, (C.2)

where i is an index of the current step in the solution and ∆t is the time step size.

Using eqs. (C.1) and (C.2) the solution of the states at the following time step can

be written as,

xi+1 = xi + f (xi, ui) ∆t, (C.3)

• Euler backward difference method:

Equation (C.1) is approximated using the backward difference equation,

ẋi+1 =
xi+1 − xi

∆t
, (C.4)

hence, substituting eq. (C.4) into eq. (C.1), the solution of the states at the fol-

lowing time step can be written as,

xi+1 = xi + f (xi+1, ui+1) ∆t. (C.5)
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If a simple algebraic reordering of eq. (C.5) is not possible, then the Newton-

Raphson method [169] may be adopted to calculate f (xi+1, ui+1).

• 4th order Runge-Kutta method:

The derivatives of the states are calculated as,



h1 = f (xi, ui)

h2 = f

(
xi +

1

2
h1, ui+ 1

2

)
h3 = f

(
xi +

1

2
h2, ui+ 1

2

)
h4 = f (xi + h3, ui+1)

,

(C.6a)

(C.6b)

(C.6c)

(C.6d)

hence, the solution of the state-space eq. (C.1) at the following time step can be

approximated as,

xi+1 = xi +
∆t

6
(h1 + 2h2 + 2h3 + h4) . (C.7)

• Newmark method:

This method is usually applied directly to second order ODEs of the type,

mẍ + cẋ + f(x) = D(t), (C.8)

where m is the mass, cẋ is the damping force, f(x) is the restoring force and

D(t) is the external force. The Newmark method approximates the velocities and

displacements as [170],

{
ẋi+1 = ẋi + [(1− δ) ẍi + δẍi+1] ∆t

xi+1 = xi + ẋi∆t+ [(1/2− α) ẍi + αẍi+1] ∆t2
,

(C.9a)

(C.9b)

where α, δ are parameters which can be chosen to provide numerical stability or

accuracy in the approximation. The Newmark method is unconditionally stable

for [171], {
δ ≥ 0.5

α ≥ 0.25 (0.5 + δ)2
.

(C.10a)

(C.10b)
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Substituting eq. (C.9) in eq. (C.8) gives the solution of the displacement vector at

step i+ 1 as,(
m

α∆t2
+ c

δ

α∆t

)
xi+1 =Di+ 1− f(xi+1)+

+m

[(
1

2α
− 1

)
ẍi +

1

α∆t2
(xi + ẋ∆t)

]
+

+c

[
δ

α∆t
(xi + ẋi∆t)− ẋi − ẍi∆t

(
1− δ

2α

)]. (C.11)

If a simple algebraic reordering of eq. (C.11) is not possible, then the Newton-

Raphson method [169] may be adopted to calculate f (xi+1).





Appendix D

Theoretical model cantilever

beam

A schematic of a free vibrating cantilever beam is shown in figure D.1, where w(x, t) is

the transversal displacement of a point at any distance x at any time t. Assuming that

( )txw ,

x

L

Figure D.1: A schematic representation of a cantilever beam. w(x, t) is the displace-
ment of a point at any distance x at any time t.

the material of the beam is homogeneous and isotropic and that plane sections remain

plain and orthogonal to the neutral axis and the displacement of any point of the beam

is due only to the bending moment, the flexural wave equation can be written as [172],

EIz
∂4w(x, t)

∂x4
+ ρA

∂2w(x, t)

∂t2
= 0, (D.1)

where E is the Young’s modulus of the material, Iz the moment of inertia for the

cross-section with respect to the transverse axis, ρ is the material density and A the

cross-section area. Applying separation of variable, the displacement can be written as,

w(x, t) = φ(x)q(t), (D.2)

and substituting eq. (D.2) into eq. (D.1) gives,

EIz
∂4φ(x)

∂x4
q(t) + ρAφ(x)q̈(t) = 0. (D.3)
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Taking the Laplace transform of eq. (D.3) and assuming zero initial conditions results

in, [
EIz

∂4φ(x)

∂x4
+ ρAs2φ(x)

]
Q(s) = 0, (D.4)

which is solved for,
∂4φ(x)

∂x4
− β4φ(x) = 0, (D.5)

where

β4 = − ρA

EIz
s2. (D.6)

The characteristic equation of eq. (D.5) can be written as,

α4 − β4 = 0, (D.7)

which is true for,

α = ±β, α = ±jβ, (D.8)

hence, the general solution of eq. (D.5) results in,

φ(x) = Ceβx +De−βx + Eejβx + Fe−jβx. (D.9)

Considering that,

eβx =
eβx + e−βx

2
+
eβx − e−βx

2
= cosh(βx) + sinh(βx)

e−βx = cosh(βx)− sinh(βx)

ejβx = cos(βx) + j sin(βx)

e−jβx = cos(βx)− j sin(βx)

,

(D.10a)

(D.10b)

(D.10c)

(D.10d)

the general solution given by eq. (D.9) can be rewritten as,

φ(x) =A1 (cos(βx) + cosh(βx)) +A2 (cos(βx)− cosh(βx)) +

+A3 (sin(βx) + sinh(βx)) +A4 (sin(βx)− sinh(βx)) .
(D.11)

Considering the boundary conditions that are a clamped end and a free end,

w(x = 0) = 0,
∂w

∂x

∣∣∣∣
x=0

= 0

M(x = L) =
∂2w

∂x2

∣∣∣∣
x=L

= 0, V (x = L) =
∂3w

∂x3

∣∣∣∣
x=L

= 0

.

(D.12a)

(D.12b)

Applying eq. (D.12a) to eq. (D.11) results in,

A1 = 0, A3 = 0, (D.13)
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so that the general solution reduces to,

φ(x) = A2 (cos(βx)− cosh(βx)) +A4 (sin(βx)− sinh(βx)) . (D.14)

Applying eq. (D.12b) to eq. (D.14) gives the following system of equations,[
cos(βL) + cosh(βL) sin(βL) + sinh(βL)

− sin(βL) + sinh(βL) cos(βL) + cosh(βL)

]{
A2

A4

}
=

{
0

0

}
, (D.15)

which has non-trivial solutions when the determinant of the matrix is zero, which results

in,

cos(βL) cosh(βL) = −1. (D.16)

Equation (D.16) has infinite solutions, which are named βnL and can be found numeri-

cally using for example Newton-Raphson method. The general solution, or mode shape,

associated with each βnL can be written as,

φn(x) = A2 [(cos(βnx)− cosh(βnx)) + σN (sin(βnx)− sinh(βnx))] , (D.17)

where,

σN =
A2

A4
=

sin(βnL)− sinh(βnL)

cos(βnL) + cosh(βnL)
, (D.18)

which has been taken from eq. (D.15). The mode shapes given by eq. (D.17) can be

normalised with respect to the length of the beam, so that the coefficient A2 results in,

A2 =
√
L. (D.19)

The analytical expression of the natural frequencies of the beam can be deduced from

eq. (D.3) as,
q̈(t)

q(t)
= −EIzφ(x)′′′′

ρAφ(x)
= −ω2, (D.20)

hence, the flexural wave equation can be split into two, one time-dependent,

q̈(t)− ω2q(t) = 0, (D.21)

and one spatial-dependent,

φ(x)′′′′ − ρAω2

EIz
φ(x) = 0. (D.22)

Considering eqs. (D.6) and (D.16) it follows that,

(βnL)4 =
ρAL4ω2

n

EIz
, (D.23)
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so that the expression of the n-th natural frequency is given by,

ωn = (βnL)2

√
EIz
ρAL4

. (D.24)

The forced response of the cantilever beam subject to a primary excitation Fp(xp, t) is

shown in figure D.2 and can be written as,

EIz
∂4w(x, t)

∂x4
+ ρA

∂2w(x, t)

∂t2
= Fp(xp, t). (D.25)

( )txw c ,

cx

L

( )txF pp ,

px

Figure D.2: Schematic of cantilever beam excited by a point force.

The forced response of the beam can be expressed as a linear superposition of the natural

modes, also assuming harmonic excitation,

w(xc, t) =

∞∑
n=1

φn(xc)qn(t)

Fp(t) = <{Fpejωt}

.
(D.26a)

(D.26b)

Considering the motion due to the n-th mode, the force wave eq. (D.25) becomes,

EIzφn(x)′′′′qn(t) + ρAφn(x)q̈n(t) = Fp(xp, t), (D.27)

multiplying eq. (D.27) by the m-th mode and integrating along the length of the beam

gives,

EIz

∫ L

0
φn(x)′′′′φm(x)qn(t)dx+ ρA

∫ L

0
φn(x)φm(x)q̈n(t)dx =

∫ L

0
φm(x)Fp(xp, t)dx,

(D.28)

using orthogonality and normalisation conditions the following equation is obtained for

n = m,

q̈n(t) +
Kn

Mn
qn(t) =

1

Mn

∫ L

0
φn(x)Fp(xp, t)dx, (D.29)

where,

Mn = ρA

∫ L

0
φn(x)2dx = ρAL = mbeam, (D.30)
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is the modal mass (and the total mass of the beam) and,

Kn = EIz

∫ L

0
φn(x)′′′′φn(x)dx = EIzβnL. (D.31)

is the modal stiffness. Since the excitation is a point force it follows that,∫ L

0
φn(x)Fp(xp, t)dx = φn(xp)Fp(t). (D.32)

hence eq. (D.29) can be rewritten as,

q̈n(t) + ω2
nqn(t) =

1

Mn
φn(xp)Fp(t). (D.33)

Assuming zero initial conditions, the Laplace transform of eq. (D.33) results in,

s2Qn(s) + ω2
nQn(s) =

1

Mn
φn(xp)Fp(s), (D.34)

which gives the modal response as,

Qn(jω) =
φn(xp)Fp(jω)

mbeam(ω2
n + 2jωξωn − ω2)

, (D.35)

where eq. (D.30) has been used, s = jω has been set and a modal damping has been con-

sidered with equal damping ratio for all modes. Combining eq. (D.26a) with eq. (D.35),

the velocity at the control position can be expressed as,

ẇc(jω) = jω
∞∑
n=1

φn(xc)φn(xp)

mbeam(ω2
n + 2jωξωn − ω2)

Fp(jω). (D.36)

The ratio between velocity and force both at location c, namely point mobility, is given

by,

Ycc =
ẇc(jω)

Fc(jω)
, (D.37)

whereas the ratio between velocity at location c and force at location p, namely cross

mobility, can be written as,

Ycc =
ẇc(jω)

Fp(jω)
. (D.38)

Equation (D.36) can be expressed as,

ẇc(jω) = ΦT
c ΩΦpFp(jω). (D.39)

where,

Φc =


φ1(xc)

φ2(xc)
...

 , Φp =


φ1(xp)

φ2(xp)
...

 , (D.40)
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and,

Ω =



jω

mbeam(ω2
b1+2jωξωb1−ω2)

0 0 · · ·

0 jω

mbeam(ω2
b2+2jωξωb2−ω2)

0
. . .

...
. . .

 . (D.41)

Calling ap = ΩΦp and ac = ΩΦc, eq. (D.39) can be rewritten as,

ẇc(jω) = ΦT
c apFp(jω). (D.42)

Figure D.3 shows a schematic of a cantilever beam where and inertial actuator is attached

and left open-circuit so that it behaves as a passive device. The mathematical model

cc fw ,&

cx

L

pF

px

pmpw

pc
pk

bm

aa fw ,&

Figure D.3: Schematic of a beam with a passive inertial actuator attached at the
control point. The beam is excited by a point force.

of the cantilever beam with the inertial actuator attached is derived using the notion of

impedance (Z = f/ẇ). The equivalent impedance of the inertial actuator is given by

the sum of the impedances of the proof mass and base mass, which can be written as,

Za = Za,PM + Za,BM . (D.43)

where,

Za,BM = jωmb. (D.44)

and,

Za,PM =
kp
jω

+ cp −

(
kp
jω + cp

)2

jωmp + cp +
kp
jω

. (D.45)

The response of the beam at the control point with the passive actuator can be calculated

as follows,

ẇc = YcpFp + YccFc, (D.46)
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where Fc is the force produced by the actuator on the beam, hence, eq. (D.46) results

in,

ẇc = YcpFp − YccZaẇc. (D.47)

Rearranging the terms of eq. (D.47) gives,

ẇc =
YcpFp

1 + YccZa
. (D.48)

Remembering that ap = ΩΦp and ac = ΩΦc, eq. (D.48) can be rewritten as,

ẇc = ΦT
c aFp, (D.49)

where,

a = ap − ac
ZaYcp

1 + ZaYcc
. (D.50)





Appendix E

Simulink model of VFC+NLFC

implementation

This appendix shows the Simulink models used in the experiments for the VFC and the

NLFC.
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Figure E.1: Schematic of the Simulink model used in the VFC experiments.
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Figure E.2: Schematic of the Simulink model used in the NLFC+ VFC experiments.





Appendix F

Experimental results NLFC

This appendix shows the experimental results of the NLFC implementation under several

scenarios of excitation level and velocity feedback gains.

(a) (b)

Figure F.1: (a) Spectrum of the excitation force and time history of the velocity signal
at the control point; (b) Phase-space trajectory of the relative proof mass displacement
and velocity. Dash-dotted black line for the single VFC scenario using hs = 8%hs,max

and solid blue line for the VFC+NLFC scenario using hs = 8%hs,max.
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(a) (b)

Figure F.2: (a) Spectrum of the excitation force and time history of the velocity signal
at the control point; (b) Phase-space trajectory of the relative proof mass displacement
and velocity. Dash-dotted black line for the single VFC scenario using hs = 16%hs,max

and solid blue line for the VFC+NLFC scenario using hs = 16%hs,max.

(a) (b)

Figure F.3: (a) Spectrum of the excitation force and time history of the velocity signal
at the control point; (b) Phase-space trajectory of the relative proof mass displacement
and velocity. Dash-dotted black line for the single VFC scenario using hs = 24%hs,max

and solid blue line for the VFC+NLFC scenario using hs = 24%hs,max.
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(a) (b)

Figure F.4: (a) Spectrum of the excitation force and time history of the velocity signal
at the control point; (b) Phase-space trajectory of the relative proof mass displacement
and velocity. Dash-dotted black line for the single VFC scenario using hs = 32%hs,max

and solid blue line for the VFC+NLFC scenario using hs = 32%hs,max.

(a) (b)

Figure F.5: (a) Spectrum of the excitation force and time history of the velocity signal
at the control point; (b) Phase-space trajectory of the relative proof mass displacement
and velocity. Dash-dotted black line for the single VFC scenario using hs = 48%hs,max

and solid blue line for the VFC+NLFC scenario using hs = 48%hs,max.
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(a) (b)

Figure F.6: (a) Spectrum of the excitation force and time history of the velocity signal
at the control point; (b) Phase-space trajectory of the relative proof mass displacement
and velocity. Dash-dotted black line for the single VFC scenario using hs = 56%hs,max

and solid blue line for the VFC+NLFC scenario using hs = 56%hs,max.

(a) (b)

Figure F.7: (a) Spectrum of the excitation force and time history of the velocity signal
at the control point; (b) Phase-space trajectory of the relative proof mass displacement
and velocity. Dash-dotted black line for the single VFC scenario using hs = 64%hs,max

and solid blue line for the VFC+NLFC scenario using hs = 64%hs,max.
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(a) (b)

Figure F.8: (a) Spectrum of the excitation force and time history of the velocity signal
at the control point; (b) Phase-space trajectory of the relative proof mass displacement

and velocity. Solid blue line for the VFC+NLFC scenario using hs = 72%hs,max.

(a) (b)

Figure F.9: (a) Spectrum of the excitation force and time history of the velocity signal
at the control point; (b) Phase-space trajectory of the relative proof mass displacement

and velocity.Solid blue line for the VFC+NLFC scenario using hs = 80%hs,max.
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(a) (b)

Figure F.10: (a) Spectrum of the excitation force and time history of the velocity sig-
nal at the control point; (b) Phase-space trajectory of the relative proof mass displace-
ment and velocity. Solid blue line for the VFC+NLFC scenario using hs = 88%hs,max.

(a) (b)

Figure F.11: (a) Spectrum of the excitation force and time history of the velocity sig-
nal at the control point; (b) Phase-space trajectory of the relative proof mass displace-
ment and velocity. Solid blue line for the VFC+NLFC scenario using hs = 96%hs,max.
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(a) (b)

Figure F.12: (a) Spectrum of the excitation force and time history of the velocity sig-
nal at the control point; (b) Phase-space trajectory of the relative proof mass displace-
ment and velocity. Solid blue line for the VFC+NLFC scenario using hs = 104%hs,max.

(a) (b)

Figure F.13: (a) Spectrum of the excitation force and time history of the velocity sig-
nal at the control point; (b) Phase-space trajectory of the relative proof mass displace-
ment and velocity. Solid blue line for the VFC+NLFC scenario using hs = 112%hs,max.
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