
PAPER • OPEN ACCESS

Deep learning for the monitoring and process control of femtosecond
laser machining
To cite this article: Yunhui Xie et al 2019 J. Phys. Photonics 1 035002

 

View the article online for updates and enhancements.

This content was downloaded from IP address 152.78.209.172 on 08/07/2019 at 14:57

https://doi.org/10.1088/2515-7647/ab281a


J. Phys.: Photonics 1 (2019) 035002 https://doi.org/10.1088/2515-7647/ab281a

PAPER

Deep learning for themonitoring and process control of femtosecond
laser machining

YunhuiXie ,Daniel JHeath , JamesAGrant-Jacob , Benita SMackay ,MichaelDTMcDonnell ,
MatthewPraeger , RobertWEason andBenMills
Optoelectronics ResearchCentre, University of Southampton, Southampton, SO17 1BJ, UnitedKingdom

E-mail: bm602@orc.soton.ac.uk

Keywords: lasermachining,machine learning, real-time, depth detection

Abstract
Whilst advances in lasers now allow the processing of practically anymaterial, further optimisation in
precision and efficiency is highly desirable, in particular via the development of real-time detection
and feedback systems.Here, we demonstrate the application of neural networks for system
monitoring via visual observation of thework-piece during laser processing. Specifically, we show
quantification of unintended laser beammodifications, namely translation and rotation, alongwith
real-time closed-loop feedback capable of halting laser processing immediately aftermachining
through a∼450 nm thick copper layer.We show that this approach can detect translations in beam
position that are smaller than the pixels of the camera used for observation.We also show amethod of
data augmentation that can be used to significantly reduce the quantity of experimental data needed
for training a neural network. Unintentional beam translations and rotations are detected
concurrently, hence demonstrating the feasibility for simultaneous identification ofmany laser
machining parameters. Neural networks are an ideal solution, as they require zero understanding of
the physical properties of lasermachining, and instead are trained directly from experimental data.

1. Introduction

Lasers and their applications are a global industry, with sales reaching $11 billion in 2017, of whichmaterials
processing is valued at $4 billion [1]. Laser-based processing is nowwidely applied to a range ofmaterials
processing challenges, such as the cutting ofmetals and plastics [2–6], themicro-patterning of ultrahard
materials andmedical devices [7–9], additive lasermanufacturing [10–14], and laser cleaning and drilling
[15, 16]. Often, in order to ensure that a particular process completes, the optimumexposure time or laser power
is deliberately exceeded, erring on the side of caution in order to achieve a near-100% confidence level. This
approach is inherently inefficient aswell as causing possible damage to thework-piece through overheating,
unintendedmaterial removal from anunderlying layer, or compromising intendedminimum feature sizes. By
incorporating detection of process completionwith feedback control, for example immediately ceasing laser
machiningwhen thematerial has been drilled through the entire thickness, both the efficiency and the precision
of the laser processing can therefore be improved.

A further concern in lasermachining is that instability in the laser output or in subsequent beamdelivery
opticsmay cause unwantedmodifications to the beamposition and shape. Ultimately, it is the shape of the laser
beam at thework-piece that determines the quality ofmachining, and so a detection regime that relies on
observation at this positionwill be of significant general applicability.

In this proof-of-principle approach, we demonstrate the application of neural networks for detection of
beam translation and rotation, as well as for halting lasermachining at precisely the point where a thin film is
laser-machined through its entire depth. Both these demonstrations highlight the potential of feedback control
for enabling improvements in both fabrication precision and reproducibility. These approaches are achieved via
observation of thework-piece, as recorded by a camera during lasermachining.Whilst detection of beam
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position or rotation alonemay be achievable with analyticmethods, for example via phase-correlation
algorithms [17], machine learning offers the potential for simultaneous detection ofmultiple lasermachining
parameters and hence offers a general and integrated solution tomonitoring of lasermachining processes.
Predicting the point at which the entire depth of a thin film ismachined through is challenging because of
unexpected variations inmaterial hardness, density, thickness, reflectivity and so on. An analytical approach
based on the camera data alonewould probably require a complex programmatical description of the
appearance of debris and the color contrast during themachining process.

Laser control feedback is achieved in this work usingmachine learning, specifically neural networks (NNs),
as this eliminates the need for an analytical description of the problem.NNs have the significant advantage of not
needing to be programmedwith a description of the underlying physical processes, as instead the neural network
can be trained directly from the experimental data. Neural networks have used acoustic signatures for
characterization of depth of weld penetration in laser welding [18, 19] and classification ofmelt-pool image in
additivemanufacturing [20]. Here, convolutional neural networks (CNNs) are used as they are particularly well
suited to image analysis, as their architecture contains a hierarchy of convolutional processes that can identify
the presence, or lack thereof, of specific features in an image [21]. CNNs have beenwidely used in areas such as
medical diagnostics [22], language translation [23], pollution detection [24] and the development of AI
opponents in computer games [25]. In relation to photonics, neural networks have enabled improvements in
opticalmicroscopy [26] and Ptychography [27], light scattering control through opaquemedia [28] and object
classification through scatteringmedia [29, 30], as well as for reconstructing ultrashort pulses, phase retrieval
and holography [31, 32].

Machine learning has allowed for predictive control for self-tuningmode-locked lasers [33], and in our
previousworkmachine learning has shown the application of CNNs to produce realistic and accurate depth
profiles and surface appearance predictions thatwould result from femtosecond laser ablation ofmetals, despite
the extremely nonlinear nature of the process [34, 35]. OtherworkwithCNNs has shown identification of work-
piecematerial, laser power, and number of pulses used tomachinemicrostructures, directly from camera
images of thework-piece during lasermachining [35]. Herewe demonstrate training data augmentation
techniques to aid the detection of changes in beam translation and rotation, and real-time closed-loop feedback
for efficient lasermachining through thin films.

2. Experimental setup

150 fs, 800 nmwavelength, 1mJ pulses from aTi:sapphire amplifierwere selected and routed to the experiment
individually via a Pockels cell. A neutral density filter was used to attenuate the beam, followed by a spatial
homogeniser (π-shapermodel 6_6) that transformed theGaussian spatial intensity profile into a top-hat spatial
intensity that illuminated a central region of themirror array on the digitalmicromirror device (DMD), which
was acting as a binary spatial lightmodulator. TheDMDwas used to shape the spatial intensity profile of the laser
pulses, as described previously [14, 36], in this case to an ellipsoidwith ellipticity (ratio ofmajor tominor axes) of
a factor of two. In thismanner, it was possible to artificially create undesired translation and rotation of the beam
via theDMD, and an ellipsoidwas chosen to demonstrate general applicability of the proposed technique to
non-circularly symmetric beam shapes. The ellipsoidal spatially-shaped pulses were imaged onto the sample
using aNikon ELWD50×microscope objective, where themajor andminor axes of the ellipse-shaped intensity
distribution at the sample were 14 μmand 7 μmrespectively, resulting in an ablated structure with these
dimensions. Theminimum translation of the pattern on theDMD for this experiment setup, i.e. translating the
image of the ellipse on theDMDby a single row ofmirrors, corresponded to a translation of the position of the
lasermachined feature of 91±15 nmon the surface of the sample, asmeasured via scanning electron
microscopy. A dichroicmirror positioned above the objective allowed for real-time observation and recording
of images of the sample duringmachining, via a CMOS camera (ThorlabsDC1545M). The sample was
positioned in three dimensions via translation stages (Thorlabs LNR50S), with automated focal position
corrections used tomaintain the sample surface at the image plane [37]. Figure 1(a) shows a schematic of the
real-time feedback loop, showing that themachined structures are imaged by the camera and that the camera
images are then processed by the neural network, which subsequently providesmonitoring of the
transformation ofmachined structures and feedback loop that is capable of halting the laser in real time. The
work here is split into two experiments. Firstly, as shown infigure 1(b), theDMDwas used to simulate
unintendedmodifications in the beam shape, namely translation and rotation. A set of neural networks was then
used to determine thesemodifications for a series of random transformations, directly from the camera images
of themachined sample. Secondly, as shown infigure 1(c), a neural networkwas used to provide real-time
control of themachining of a thinfilm, specifically predicting the number of pulses remaining until
breakthrough and stopping themachining at breakthrough, even though the number of pulses requiredwas
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unknown for each trial. Although, in this work, theDMDwas used to artificially introduce transformations in
the beam that, theDMDwas not integrated in the feedback loop. This was to demonstrate the capability for a
CNN tomonitor beam transformations directly from images of laser-machined structures. However, it is
potentially feasible to build communication between theDMDand aCNN, hence enabling a real time feedback
loop that can both halt the laser and correct for beam transformations caused by effects such as laser instability
and experimental noise.

The targetmaterial for the beam translation and rotation experiment was a 5 μm-thick electroless-nickel
layer deposited on copper, andwas laser processedwith afluence of∼1.22 J cm−2. The targetmaterial for the
thinfilmmachining experiment was a∼450 nm thick sputtered copper layer on silica, whichwas polished using
abrasive paper to produce an uneven surface profile, and processed using afluence of∼1.83 J cm−2. For the thin
film processing, a non-translating and non-rotating elliptical beamprofile was used for all exposures.

3.Neural networks

NNs are a computing paradigm that enable the representation of a complex transfer function, via a set of
interconnected nonlinear functions [38]. Importantly, a neural network does not require a programmatical
description of the physical processes underlying the transfer function, and instead the neural network can be
trained directly from labelled experimental data [39]. In practice, this offers an alternative technique for solving
problems that cannot easily be formulated in terms of analytical expressions ormathematicalmodelling
problems.However, large amounts of labelled experimental data are generally needed, and hence the challenge
often becomes the collection and labelling of suitable data. In this work, we use neural networks as transfer
functions that can convert image data into numerical parameters that describe, for example, the rotation angle of
the beamprofile. In this case, once trained, such aNNhas the capability to detect the rotation angle from camera
imageswhere themachined position differs from that used during training, and hence this enhances the
robustness of theNNwhen applied to real-world laser processing problems.

The framework used for all CNNs in this workwas Tensorflow,where eachCNNcomprised a series of
convolutional layers,max pooling steps, and afinal fully connected layer leading to the regression output. Each
CNN took an input image size of 100×100 pixels, with layer parameters as shown infigure 2. In all cases, the
activation function of each layer was rectified linear unit, the learning rate was 0.0001, and the optimser was
Adam [40]. The input images (100×100 pixels)were cropped from images recorded directly from the camera
(native resolution 1280×1024 pixels). In the beam translation and rotation experiments two convolution
layers were usedwith kernels of size 5×5 and 20filters per layer. In the depth prediction experiments each
convolution layer consisted of 64 filters with a kernel size of 3×3. The convolutional layers were each followed
by amax pooling layer with kernel size 2×2 and stride 2. Finally, a fully connected layer with 1024 units was
used prior to the regression output.

Figure 1. Schematic of (a) experimental setup for real-time closed-loop feedback, and the concepts of (b) detecting a beam
transformation (translation and rotation) and (c) predicting the remaining number of pulses until breakthrough of a thin film.
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4.Data augmentation

Successful training of aCNNgenerally requires a significant amount of labelled training data. Although the
specific amount depends onmany factors, tens of thousands of images are often regarded as aminimum.
Therfore, collecting suitable training data can be a lengthy and challenging process, which in the case of laser
machiningwould require themanufacturing of tens of thousands ofmachined structures. To alleviate the
challenge of collecting such a large amount of training data, variousmethods for augmenting a smaller set of
training data have been developed, such as stretching, cropping, translating, and even altering lighting and
contrast levels [41, 42] in order to synthesisemultiple variations of each original image. For this work, data
augmentation took the formof cropping the images at different positions, hence offsetting the position of the
laser-machined structure within each image. This was possible as the camera collected images at a resolution of
1280×1024, whilst the input resolution of theCNNwas set at 100×100. An explanation is shown infigure 3,
where the images of three laser-machined structures have been cropped, in order to give the appearance of a
beam that has been translated on thework-piece. It is worth noting that as the size of the training data set
increases, the time taken for aCNN to process the entire data set one time (commonly referred to as one
iteration) is also increased. Therefore, there is a balance to be sought between the size of the data set and the
training time and it is therefore of interest to determine the optimal degree of data augmentation.

5.Detection of single axis beam translation

Anundesired shift in laser beamposition relative to the targetmaterial could occur, for example, because of
instability in the laser source or the beamdelivery optics between the laser and the targetmaterial. As shown
here, such a shifting can be identified via observation of thework-piece during lasermachining. In this section,
we show the effectiveness of a CNN to detect a one-dimensional translation in beampositionwhen using
different quantities of data augmentation.

For this work, the beamwas translated from0 to 100DMDmirrors in steps of 1 (hence giving 101 positions),
via changing the position of the elliptically shapedmask on theDMDby onemirror-width at a time. Due to the
magnificationwithin the experimental setup, a translation of fourDMDmirrors approximately scaled to one
camera pixel, hence providing the opportunity for sub-camera-pixel translation. Specifically, the translation of
the elliptical pattern by the spacing of a singleDMDmirror resulted in a translation of the position of the laser-
machined structure by 91±15 nm. This known translationwas comparedwith the prediction from the neural
network.

Firstly, 101 structures weremachined, using the elliptical beam shape (i.e. using the sameDMDpattern
without any translation). These images were augmented in one dimension, by shifting the croppingwindowby
an integer number of camera pixels, as illustrated infigure 3. The cropped images were shifted between 0 and 25
camera pixels, hence providing a total of 101×26=2626 images. Before training, 10%of these images were
randomly chosen andwere used to form the validation set, inwhich the neural networks would not observe
during training. The remaining 90%of these images, were used to form the training set, andwere repeatedly fed
to the neural network during training. Secondly, a separate set of structures were laser-machined and imaged, in
which the pattern on theDMDwas translated, hence causing a real (i.e. not augmented) translation of the beam.
A total of 202 images (two images for each of the 101 positions)were recorded, where this set of images is

Figure 2. Schematic of the structure used for theCNNs used in the translation and rotation study. TheCNNused in the thinfilm
experiment had an additional filter and pooling layer.
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referred to as the testing dataset. This was vital to prove that a CNN trained frompurely augmented data could be
used to recognise actual beam transformations. TheCNNwas therefore firstly trained on the training data in
order tominimise the error on the validation data, then secondly tested on the testing data. The testing data was
therefore not used during the training process.

To understand the benefit of training data augmentation, a series of CNNswas trained using differing
numbers of the 26 augmented positions. Each training took 6 h tofinish, and the trainedCNNwas then tested by
feeding it images from the testing dataset (actual beam translations produced by theDMD). The results in
figure 4 show the accuracy of eachCNNat determining real-world beam translation distancewhen trained using
(a) 1, (b) 2, (c) 3, (d) 4, (e) 5 and (f) 26 of the total of 26 augmented positions. The augmented positions are shown
as red, and the testing data are shown as blue. The rootmean square error (RMSE), corresponding to the average
error in positional detection precision, is shown for the six cases. As observed infigure 4, data points tend to
cluster around the points of augmentation, breaking the linearity of the scatter plot. The cause of this effect is
likely related to the hypothesis that neural networks can be considered as polynomial regressionmodels [43],
and therefore their predictionswill generally fitmore strongly around clusters of data (i.e. in this case the
augmented data) at the expense ofmore sparse regions of data. The results infigure 4 show that a CNN trained
on purely augmented data, including thosewith small levels of data augmentation, is still capable of identifying
real translations of features within an image, hence demonstrating the potential for a significant reduction in the
amount of experimental data needed for training.Whilst the specific degree of augmentation required for a
satisfactory level of precisionwill of course be dependent on the application, in this particular case we found that
further improvements in precisionwere considerably smaller forfive and higher numbers of augmented
positions.

As observed in thefigure 4(f), the prediction accuracy reduces for larger distance. A conjecture can bemade
that the causation of this phenomenon is related to the chosen structure of the neural network, which enabled a
higher capability for prediction accuracy for smaller distances. It is important to realise that the images
corresponding to the real translation had features that were not observed in the augmented training data, such as
randomdebris positioning or variations in sample quality and laser power. Deliberately using the same images
multiple times (i.e. augmentation) significantly reduced the difficulty of collecting a sufficient dataset. However,
because the same images were usedmultiple times, the same experimental randomness in those images, such as
debris position, sample quality and laser parameters, were also observed by the neural networkmultiple times,

Figure 3.Method for training data augmentation, showing how each image of a laser-machined structure can be used to generate
multiple training images that appear to correspond to translations of the beamon thework-piece. The cropped images in thefigure
have been increased in size for clarity.
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hence producing a bias. Therefore, there is a trade-off between data collection and dataset bias. However, as
shownhere, despite the biased dataset, the neural networkwas capable of precisely determining the position.
Each camera pixel corresponded to a distance of 360 nmon the surface of the targetmaterial. In the best case, the
CNNwas able to predict the distance to an accuracy of 240 nm, and hence below the camera imaging resolution.
This result can be understood by considering the effect of translating an illuminating pattern on a camera by a
distance corresponding to a fraction of a camera pixel. Although the image of the object would not have been
translated by a single pixel, therewould be some fraction of the image of the object that would have crossed into a
different row of camera pixels [44], and this sub-pixel shift is believed to have enabled the sub-pixel capability of
the CNN. It is worthwhile tomention that the error on the actual positionmeasurement is likely related to the
manufacturing precision of theDMDmirrors; themanufacturing error ofmachined structures caused by
manufacturing precision of theDMDmirrors can bemuch smaller than one camera pixel in our case.

6.Detection of beam translation and beam rotation

To increase the complexity of the demonstration, the detection of beam translation in two dimensions (X andY)
and the rotation of the beam (0°–179°)was investigated. Both theX andY dimensionswere augmented for all 26
camera positions, using themethodology in section 5.However, due to the directional nature of thewhite-light
illumination on the sample, which resulted in shadows in one direction, augmenting the angle was not
appropriate in this case. To enable the production of suitable training data, 180 structures were laser-machined
and imaged, corresponding to one-degree rotations of the elliptical shape on theDMD.As the elliptical shape
had rotational symmetry order 2, a half rotationwas an equivalent test to a full rotation. These 180 images were
augmented via cropping to give 26 different positions in bothX andY directions, hence giving a total of
180×26×26=121 680 images. 90%of these images were used to form the training dataset, and 10%were
used for the validation dataset. As before, a separate set of structures was laser-machined and imaged inwhich
theDMDpattern (and thus the laser beam)was simultaneously actually rotated and translated. This resulted in
227 images with a randomdistribution over all possibleX andY positions, and all possible rotations. This is
referred to as the testing dataset. As before, eachCNNwas trained on the training dataset whilstminimising the
error on the validation dataset. After 12 h of training for translation and 24 h of training for rotation, the trained
CNNswere then applied to the testing dataset.

Figure 4.Demonstration of CNNperformancewhen trained using (a) 1, (b) 2, (c) 3, (d) 4, (e) 5 and (f) 26 of the total of 26 augmented
data positions. The red circles show the augmented data positions used in training. Blue circles showbeamposition as predicted by the
trainedCNN for each image in the testing dataset (real beam translations).
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Figure 5 shows the precision for identification of (a) theX andY position, and (b) the rotation, from the
testing dataset. TheX andY axis prediction accuracywas 280 nmand 220 nm respectively, which is smaller than
the 360 nm size of an imaged camera pixel. At the boundaries of 0° and 179°, angles were wrapped, resulting in
an angular prediction accuracy of 7.13 °. To identify the rotation angle of the beam, aminor addition to theCNN
architecture was required.Here, two regression outputs were used in the final layer, with one trained to predict
the sine of the rotation angle, and the other the cosine of the rotation angle [45]. Thismethod of predictionwas
required in order to assign an appropriately low error when, for instance, an actual rotation angle of 1° resulted
in a prediction by theCNNof 179°. In this case of rotational symmetry of order 2, this predictionwould be close
to the true rotation, but a direct comparison of angle would result in a very high error. Two sinusoids with an
offset in phasewere then required in order to uniquely define the predicted angle (as sine is a two-to-one
mapping over 0°–180°). It was found that training a separate CNN for each of the three parameters, rather than
combining all three into a single CNN,wasmost efficient in terms of the total training time. In practice, a single
imagewas sent simultaneously to each of the three CNNs, and three numbers were produced, namely the
predictedX position, the predictedY position, and the predicted rotation angle.Whilst here the results show the
potential for simultaneous detection of the translation and rotation of a laser beamduringmachining, this
technique could also be applied to the detection of other parameters such as laser pulse energy or lasermode
quality. Bymeasuring the total time for the three CNNs to process all 227 camera images in the testing dataset (
i.e. predictingX,Y and angle), the time for processing a single imagewas calculated, at∼10 ms. This rapid
processing speed is a fundamental advantage of using aCNN-based detection and is critical for enabling real-
timemonitoring of lasermachining parameters.

7. Real-time control for thinfilmmachining

In an industrial settingwhere quality control is paramount, when lasermachining though a layer ofmaterial, a
higher than expected total time of exposure is generally used to ensure an extremely lowprocess failure rate.
Variation in the requiredmachining time can arise from the sample (e.g. uncertainty in thickness, surface
quality, etc) and the uncertainty of themachining process itself (e.g. laser power variations, unexpected debris).
Whilst excessmachining time can ensure a lower wastage ofmaterial, the consequencewill be a higher wastage
of laser light energy. Ideally, a real-time closed-loop systemwould support themanufacturing process and halt
the laser precisely when the layer ofmaterial ismachined through. This experimental section describes the
results of a CNN-based implementation that halts the laserwhen a∼450 nmcopperfilmhas beenmachined all
theway through.

As discussed earlier, the copperfilm sample used in this experiment was deposited onto a silica substrate.
Here,machining through thefilm refers to lasermachining through the deposited copper and exposing the silica
substrate underneath the copperfilm. This result therefore demonstrates not only the ability ofmachining
through a layer ofmaterial but also the ability tomachine through only a single layer ofmaterial in amultilayer

Figure 5.Demonstration of the accuracy of a CNN for predicting (a) a beam translation in two-dimensions, and (b) a beam rotation.
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structure. This could see applications in laser cleaning of surfaces, e.g. rust removal, where the thickness of the
material is unknownbut where laser damage to the second layermust beminimised.

In this experiment, a CNN-based feedback loopwas implemented in the lasermachining systemwhich
allowed the lasermachining process to be stopped, in real-time, when the copper layer wasmachined through.
After each incident laser pulse, a camera image of the sample was recorded and automatically sent to theCNN
for processing. TheCNNwould then output a number corresponding to the predicted number of pulses
remaining until the copper layer wasmachined all theway through. This numberwas then transmitted back to
the automated lasermachining system,which controlled the laser, therefore producing a feedback loop. If the
numberwas positive, the lasermachiningwould continue. If the numberwas zero or negative, the laser
machiningwould halt, and a fresh, non-machined, region of the sample would be automatically found, in order
to repeat the test. Here, a negative number of remaining pulses refers to usingmore pulses thanwas needed, for
example, a prediction of ‘−1’ refers to theCNNpredicting that 1 toomany pulses had been used.

To introduce additional uncertainty in the thickness of the copperfilm, and hence uncertainty in the
number of laser pulses required formachining, the surface of the copperfilmwas coarsely polished. Themean in
the number of pulses required tomachine through the copper film could then be determined. TheCNNwould
therefore have improved the efficiency of the process (bywasting fewer pulses) if its error in predicting the
number of remaining pulses was smaller than the error if the value of prediction always startedwith themean.

The training dataset was produced by exposing 50 sequential pulses at 156well-separated positions on the
copperfilm, and a camera image of the samplewas taken after each pulse. Therefore, 50×156=7800 images
were collected (10%of themwere randomly chosen to be used for validation). The point of breakthrough for
each positionwas determined throughmanual inspection and verified by checking the sample reflectivity and
transmission using an opticalmicroscope, as well as via an interferometric surface profilermeasurement. Using
this information, each of the images in the training dataset was labelledwith the number of subsequent pulses
required until breakthrough (i.e.+1 pulse,+2 pulses,+3 pulses, etc). TheCNN training time for this dataset
was 2 h.Once theCNNwas trained, a new lasermachining experiment, on a different region of the same sample,
was conducted, where theCNNwas used in real-time to control the experiment. In this real-time experiment,
when predicting the number of remaining pulses corresponding to each camera image of the sample, theCNN
only had access to a single image of the sample and hence each predictionwas not influenced by any previous
predictions.

Figure 6(a) shows the results for real-time prediction by theCNNof remaining pulses, for 21 positions on
the copper sample. Each data point compares the predicted pulses based on a single image of the samplewith the
actual number of pulses remaining (determinedmanually after the experiment finished). Themean number of
required pulses was 15.33, and the RMSE achieved by theCNNwas 2.91. As a comparison, if the roundedmean
value of pulses that was needed tomachine through all 21 positionswas used as the prediction at the start of the
machining, as shown infigure 6 (b), the RMSEof this naïve guess was 3.78. Therefore, the CNNwas able to
predict the correct number of pulses∼23%more accurately in terms of RMSE thanwould be achieved by using
themean value of pulses appropriate for the average thickness across thefilm. Also of interest was the ability of

Figure 6.Comparison of actual number of pulses required to reach breakthrough compared to number of pulses as (a) predicted by
the CNN in real-time, and (b)naïvely predicted startingwith the roundedmean (15 pulses) regardless of the input image. The colour
bar shows the number of data points at each coordinate on thefigure.
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the CNN tomake predictions of negative values, i.e. predicting the number of pulses that occurred after the
point of breakthrough.We posit that the CNNhad learned to recognise features in the edge-quality of the hole,
or the distribution of surrounding debris, whichmay continue to change even after the exposed region had been
machined away. For completeness, a separate region of the sample (16 positions)was used to successfully
demonstrate halting of lasermachining precisely at the breakthrough point, as controlled by theCNN-based
feedback loop in real-time.

8. Conclusions

A set of CNNs that enable detection of various beammisalignments, as well as halting of lasermachining
immediately upon process completion, has been demonstrated. Firstly, theCNNs formonitoring of beam
translation and rotationwas demonstrated. Secondly, a CNNwas applied in a real-time feedback loop, in order
to halt lasermachining at exactly the point when a thin film of copper was laser-machined through its entire
depth. The results here demonstrate the potential for using neural networks tomonitor and control laser-based
material processing.

Acknowledgments

Thisworkwas supported by the Engineering and Physical Sciences ResearchCouncil (EPSRC) under grant
numbers EP/N03368X/1 and EP/N509747/1.We gratefully acknowledge the support ofNVIDIACorporation
with the donation of the TitanXGPUused for this research, donated throughNVIDIAGPUGrant Program.
Data supporting thismanuscript is available at https://doi.org/10.5258/SOTON/D0754.

ORCID iDs

Yunhui Xie https://orcid.org/0000-0002-8841-7235
Daniel JHeath https://orcid.org/0000-0003-3566-1813
James AGrant-Jacob https://orcid.org/0000-0002-4270-4247
Benita SMackay https://orcid.org/0000-0003-2050-8912
Michael DTMcDonnell https://orcid.org/0000-0003-4308-1165
MatthewPraeger https://orcid.org/0000-0002-5814-6155
RobertWEason https://orcid.org/0000-0001-9704-2204
BenMills https://orcid.org/0000-0002-1784-1012

References

[1] OvertonG,Nogee A, Belforte D andHoltonC 2017Annual lasermarket review& forecast: where have all the lasers gone? Laser Focus
World 53 1–24

[2] Shin J S,Oh SY, ParkH,ChungCM, Seon S, KimTS, Lee L, Choi B S andMoon JK 2017High-speed fiber laser cutting of thick
stainless steel for dismantling tasksOpt. Laser Technol. 94 244–7

[3] DuttaMajumdar J andManna I 2011 Lasermaterial processing Int.Mater. Rev. 56 341–88
[4] DuttaMajumdar J andManna I 2003 Laser processing ofmaterials Sadhana—Acad. Proc. Eng. Sci. 28 495–562
[5] DubeyAK andYadavaV 2008 Laser beammachining—a review Int. J.Mach. ToolsManuf. 48 609–28
[6] KumarDubeyA andYadavaV 2008Multi-objective optimisation of laser beam cutting processOpt. Laser Technol. 40 562–70
[7] Mills B, HeathD J, FeinaeugleM,Grant-Jacob J A and EasonRW2014 Laser ablation via programmable image projection for

submicron dimensionmachining in diamond J. Laser Appl. 26 041501
[8] Zhang J, Tao S,Wang B andZhao J 2017 Studies on nanosecond 532nm and 355nmand ultrafast 515nm and 532nm laser cutting

super-hardmaterials Proc. SPIE 10091 1009110
[9] Gittard SD andNarayan R J 2010 Laser direct writing ofmicro-and nano-scalemedical devices Expert Rev.Med. Devices 7 343–56
[10] ArnoldCB, Serra P and PiquéA 2011 Laser direct-write techniques for printing of complexmaterialsMRSBull. 32 23–31
[11] FeinaeugleM,HeathD J,Mills B, Grant-Jacob J A,MashanovichGZ andEasonRW2016 Laser-induced backward transfer of

nanoimprinted polymer elementsAppl. Phys.A 122 398
[12] GuDD,MeinersW,WissenbachK and PopraweR 2012 Laser additivemanufacturing ofmetallic components:materials, processes

andmechanisms Int.Mater. Rev. 57 133–64
[13] Khairallah S A, AndersonAT, RubenchikA andKingWE2016 Laser powder-bed fusion additivemanufacturing: Physics of complex

meltflow and formationmechanisms of pores, spatter, and denudation zonesActaMater. 108 36–45
[14] HeathD J, FeinaeugleM,Grant-Jacob JA,Mills B and EasonRW2015Dynamic spatial pulse shaping via a digitalmicromirror device

for patterned laser-induced forward transfer of solid polymerfilmsOpt.Mater. Express 5 1129
[15] TamAC, LeungWP, ZapkaWandZiemlichW1992 Laser-cleaning techniques for removal of surface particulates J. Appl. Phys. 71

3515–23
[16] VonAllmenM1976 Laser drilling velocity inmetals J. Appl. Phys. 47 5460–3
[17] Zitová B and Flusser J 2003 Image registrationmethods: a survey ImageVis. Comput. 21 977–1000

9

J. Phys.: Photonics 1 (2019) 035002 YXie et al

https://doi.org/10.5258/SOTON/D0754
https://orcid.org/0000-0002-8841-7235
https://orcid.org/0000-0002-8841-7235
https://orcid.org/0000-0002-8841-7235
https://orcid.org/0000-0002-8841-7235
https://orcid.org/0000-0003-3566-1813
https://orcid.org/0000-0003-3566-1813
https://orcid.org/0000-0003-3566-1813
https://orcid.org/0000-0003-3566-1813
https://orcid.org/0000-0002-4270-4247
https://orcid.org/0000-0002-4270-4247
https://orcid.org/0000-0002-4270-4247
https://orcid.org/0000-0002-4270-4247
https://orcid.org/0000-0003-2050-8912
https://orcid.org/0000-0003-2050-8912
https://orcid.org/0000-0003-2050-8912
https://orcid.org/0000-0003-2050-8912
https://orcid.org/0000-0003-4308-1165
https://orcid.org/0000-0003-4308-1165
https://orcid.org/0000-0003-4308-1165
https://orcid.org/0000-0003-4308-1165
https://orcid.org/0000-0002-5814-6155
https://orcid.org/0000-0002-5814-6155
https://orcid.org/0000-0002-5814-6155
https://orcid.org/0000-0002-5814-6155
https://orcid.org/0000-0001-9704-2204
https://orcid.org/0000-0001-9704-2204
https://orcid.org/0000-0001-9704-2204
https://orcid.org/0000-0001-9704-2204
https://orcid.org/0000-0002-1784-1012
https://orcid.org/0000-0002-1784-1012
https://orcid.org/0000-0002-1784-1012
https://orcid.org/0000-0002-1784-1012
https://doi.org/10.1016/j.optlastec.2017.03.040
https://doi.org/10.1016/j.optlastec.2017.03.040
https://doi.org/10.1016/j.optlastec.2017.03.040
https://doi.org/10.1179/1743280411Y.0000000003
https://doi.org/10.1179/1743280411Y.0000000003
https://doi.org/10.1179/1743280411Y.0000000003
https://doi.org/10.1007/BF02706446
https://doi.org/10.1007/BF02706446
https://doi.org/10.1007/BF02706446
https://doi.org/10.1016/j.ijmachtools.2007.10.017
https://doi.org/10.1016/j.ijmachtools.2007.10.017
https://doi.org/10.1016/j.ijmachtools.2007.10.017
https://doi.org/10.1016/j.optlastec.2007.09.002
https://doi.org/10.1016/j.optlastec.2007.09.002
https://doi.org/10.1016/j.optlastec.2007.09.002
https://doi.org/10.2351/1.4893749
https://doi.org/10.1117/12.2253753
https://doi.org/10.1586/erd.10.14
https://doi.org/10.1586/erd.10.14
https://doi.org/10.1586/erd.10.14
https://doi.org/10.1557/mrs2007.11
https://doi.org/10.1557/mrs2007.11
https://doi.org/10.1557/mrs2007.11
https://doi.org/10.1007/s00339-016-9953-6
https://doi.org/10.1179/1743280411Y.0000000014
https://doi.org/10.1179/1743280411Y.0000000014
https://doi.org/10.1179/1743280411Y.0000000014
https://doi.org/10.1016/j.actamat.2016.02.014
https://doi.org/10.1016/j.actamat.2016.02.014
https://doi.org/10.1016/j.actamat.2016.02.014
https://doi.org/10.1364/OME.5.001129
https://doi.org/10.1063/1.350906
https://doi.org/10.1063/1.350906
https://doi.org/10.1063/1.350906
https://doi.org/10.1063/1.350906
https://doi.org/10.1063/1.322578
https://doi.org/10.1063/1.322578
https://doi.org/10.1063/1.322578
https://doi.org/10.1016/S0262-8856(03)00137-9
https://doi.org/10.1016/S0262-8856(03)00137-9
https://doi.org/10.1016/S0262-8856(03)00137-9


[18] HuangWandKovacevic R 2011Aneural network andmultiple regressionmethod for the characterization of the depth of weld
penetration in laser welding based on acoustic signatures J. Intell.Manuf. 22 131–43

[19] Günther J, Pilarski PM,HelfrichG, ShenH andDiepoldK 2014 First steps towards an intelligent laser welding architecture using deep
neural networks and reinforcement learningProc. Technol. 15 474–83

[20] KwonO,KimHG,HamMJ,KimW,KimGH,Cho JH,KimN I andKimK2018Adeep neural network for classification ofmelt-pool
images inmetal additivemanufacturing J. Intell.Manuf. 2018 1–12

[21] Krizhevsky A, Sutskever I andHintonGE 2012 ImageNet classificationwith deep convolutional neural networksProc. 25th Int. Conf.
onNeural Information Processing Systems-NIPS’12 vol 1 (RedHook,NY: CurranAssociates) pp 1097–105

[22] Milletari F,NavabN andAhmadi S-A 2016V-net: fully convolutional neural networks for volumetricmedical image segmentation
2016 Fourth International Conference on 3DVision (3DV) (Piscataway,NJ: IEEE) pp 565–71

[23] KalchbrennerN,Grefenstette E andBlunsomP2014AConvolutional Neural Network forModelling Sentences Proc. 52ndAnnual
Meeting of the Association for Computational Linguistics vol 1 pp 655–65

[24] Grant-Jacob J A,Mackay B S, Baker J AG,HeathD J, Xie Y, LoxhamM, EasonRWandMills B 2018Real-time particle pollution
sensing usingmachine learningOpt. Express 26 27237–46

[25] SilverD et al 2016Mastering the game of Gowith deep neural networks and tree searchNature 529 484–9
[26] Rivenson Y,Göröcs Z, GünaydinH, Zhang Y,WangHandOzcanA 2017Deep learningmicroscopyOptica 4 1437–43
[27] NguyenT, Xue Y, Li Y, Tian L andNehmetallahG2018Deep learning approach for Fourier ptychographymicroscopyOpt. Express 26

26470–84
[28] TurpinA, Vishniakou I and Seelig J D 2018 Light scattering control in transmission and reflectionwith neural networksOpt. Express 26

30911–29
[29] Satat G, TancikM,GuptaO,Heshmat B andRaskar R 2017Object classification through scatteringmedia with deep learning on time

resolvedmeasurementOpt. Express 25 17466–79
[30] Li Y, XueY andTian L 2018Deep speckle correlation: a deep learning approach toward scalable imaging through scatteringmedia

Optica 5 1181–90
[31] WuY,Rivenson Y, Zhang Y,Wei Z,GünaydinH, LinX andOzcanA2018 Extended depth-of-field in holographic imaging using deep-

learning-based autofocusing and phase recoveryOptica 5 704–10
[32] Rivenson Y, Zhang Y, Günayd/inH, TengD andOzcanA 2018 Phase recovery and holographic image reconstruction using deep

learning in neural networks Light Sci. Appl. 7 17141
[33] Baumeister T, Brunton S L andKutz JN 2018Deep learning andmodel predictive control for self-tuningmode-locked lasers J. Opt.

Soc. Am.B 35 617–26
[34] HeathD J, Grant-Jacob J A, Xie Y,Mackay B S, Baker J AG, EasonRWandMills B 2018Machine learning for 3D simulated

visualization of lasermachiningOpt. Express 26 4984–8
[35] Mills B, HeathD J, Grant-Jacob J A and EasonRW2018 Predictive capabilities for lasermachining via a neural networkOpt. Express 26

17245–53
[36] HeathD J, Grant-Jacob J A, FeinaeugleM,Mills B and EasonRW2017 Sub-diffraction limit laser ablation viamultiple exposures using

a digitalmicromirror deviceAppl. Opt. 56 6398–404
[37] HeathD J,Mackay B S, Grant-jacob JA, Xie Y,Oreffo ROC, EasonRWandMills B 2018Closed-loop corrective beam shaping for

laser processing of curved surfaces J.Micromech.Microeng. 28 127001
[38] HornikK, StinchcombeMandWhiteH1989Multilayer feedforward networks are universal approximatorsNeural Netw. 2 359–66
[39] Hecht-Nielsen R 1992Theory of the backpropagation neural networkNeural Networks for Perception (Amsterdam: Elsevier) pp 65–93
[40] KingmaDP andBa J 2014Adam: amethod for stochastic optimization arXiv:1412.6980
[41] Ding J, ChenB, LiuH andHuangM2016Convolutional neural networkwith data augmentation for SAR target recognition IEEE

Geosci. Remote Sens. Lett. 13 364–8
[42] Hernández-García A andKönig P 2018Dodeep nets really needweight decay and dropout? arXiv: 1802.07042
[43] ChengX, Khomtchouk B,MatloffN andMohanty P 2018 Polynomial Regression As anAlternative toNeuralNets arXiv:1806.06850
[44] Khademi S, Darudi A andAbbasi Z 2010A sub pixel resolutionmethod arXiv:1211.2221 643–6
[45] HaraK, Vemulapalli R andChellappa R 2017DesigningDeepConvolutional NeuralNetworks for ContinuousObjectOrientation

Estimation arXiv:1702.01499

10

J. Phys.: Photonics 1 (2019) 035002 YXie et al

https://doi.org/10.1007/s10845-009-0267-9
https://doi.org/10.1007/s10845-009-0267-9
https://doi.org/10.1007/s10845-009-0267-9
https://doi.org/10.1016/j.protcy.2014.09.007
https://doi.org/10.1016/j.protcy.2014.09.007
https://doi.org/10.1016/j.protcy.2014.09.007
https://doi.org/10.1007/s10845-018-1451-6
https://doi.org/10.1007/s10845-018-1451-6
https://doi.org/10.1007/s10845-018-1451-6
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.3115/v1/P14-1062
https://doi.org/10.3115/v1/P14-1062
https://doi.org/10.3115/v1/P14-1062
https://doi.org/10.1364/OE.26.027237
https://doi.org/10.1364/OE.26.027237
https://doi.org/10.1364/OE.26.027237
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1364/OPTICA.4.001437
https://doi.org/10.1364/OPTICA.4.001437
https://doi.org/10.1364/OPTICA.4.001437
https://doi.org/10.1364/OE.26.026470
https://doi.org/10.1364/OE.26.026470
https://doi.org/10.1364/OE.26.026470
https://doi.org/10.1364/OE.26.026470
https://doi.org/10.1364/OE.26.030911
https://doi.org/10.1364/OE.26.030911
https://doi.org/10.1364/OE.26.030911
https://doi.org/10.1364/OE.26.030911
https://doi.org/10.1364/OE.25.017466
https://doi.org/10.1364/OE.25.017466
https://doi.org/10.1364/OE.25.017466
https://doi.org/10.1364/OPTICA.5.001181
https://doi.org/10.1364/OPTICA.5.001181
https://doi.org/10.1364/OPTICA.5.001181
https://doi.org/10.1364/OPTICA.5.000704
https://doi.org/10.1364/OPTICA.5.000704
https://doi.org/10.1364/OPTICA.5.000704
https://doi.org/10.1038/lsa.2017.141
https://doi.org/10.1364/JOSAB.35.000617
https://doi.org/10.1364/JOSAB.35.000617
https://doi.org/10.1364/JOSAB.35.000617
https://doi.org/10.1364/OE.26.021574
https://doi.org/10.1364/OE.26.021574
https://doi.org/10.1364/OE.26.021574
https://doi.org/10.1364/OE.26.017245
https://doi.org/10.1364/OE.26.017245
https://doi.org/10.1364/OE.26.017245
https://doi.org/10.1364/OE.26.017245
https://doi.org/10.1364/AO.56.006398
https://doi.org/10.1364/AO.56.006398
https://doi.org/10.1364/AO.56.006398
https://doi.org/10.1088/1361-6439/aae1d5
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
http://arXiv.org/abs/1412.6980
https://doi.org/10.1109/LGRS.2015.2513754
https://doi.org/10.1109/LGRS.2015.2513754
https://doi.org/10.1109/LGRS.2015.2513754
http://arXiv.org/abs/1802.07042
http://arXiv.org/abs/1806.06850
http://arXiv.org/abs/1211.2221
http://arXiv.org/abs/1702.01499

	1. Introduction
	2. Experimental setup
	3. Neural networks
	4. Data augmentation
	5. Detection of single axis beam translation
	6. Detection of beam translation and beam rotation
	7. Real-time control for thin film machining
	8. Conclusions
	Acknowledgments
	References



