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Abstract

Whilst advances in lasers now allow the processing of practically any material, further optimisation in
precision and efficiency is highly desirable, in particular via the development of real-time detection
and feedback systems. Here, we demonstrate the application of neural networks for system
monitoring via visual observation of the work-piece during laser processing. Specifically, we show
quantification of unintended laser beam modifications, namely translation and rotation, along with
real-time closed-loop feedback capable of halting laser processing immediately after machining
through a ~450 nm thick copper layer. We show that this approach can detect translations in beam
position that are smaller than the pixels of the camera used for observation. We also show a method of
data augmentation that can be used to significantly reduce the quantity of experimental data needed
for training a neural network. Unintentional beam translations and rotations are detected
concurrently, hence demonstrating the feasibility for simultaneous identification of many laser
machining parameters. Neural networks are an ideal solution, as they require zero understanding of
the physical properties of laser machining, and instead are trained directly from experimental data.

1. Introduction

Lasers and their applications are a global industry, with sales reaching $11 billion in 2017, of which materials
processing is valued at $4 billion [1]. Laser-based processing is now widely applied to a range of materials
processing challenges, such as the cutting of metals and plastics [2—6], the micro-patterning of ultrahard
materials and medical devices [7-9], additive laser manufacturing [10-14], and laser cleaning and drilling

[15, 16]. Often, in order to ensure that a particular process completes, the optimum exposure time or laser power
is deliberately exceeded, erring on the side of caution in order to achieve a near-100% confidence level. This
approach is inherently inefficient as well as causing possible damage to the work-piece through overheating,
unintended material removal from an underlying layer, or compromising intended minimum feature sizes. By
incorporating detection of process completion with feedback control, for example immediately ceasing laser
machining when the material has been drilled through the entire thickness, both the efficiency and the precision
of the laser processing can therefore be improved.

A further concern in laser machining is that instability in the laser output or in subsequent beam delivery
optics may cause unwanted modifications to the beam position and shape. Ultimately, it is the shape of the laser
beam at the work-piece that determines the quality of machining, and so a detection regime that relies on
observation at this position will be of significant general applicability.

In this proof-of-principle approach, we demonstrate the application of neural networks for detection of
beam translation and rotation, as well as for halting laser machining at precisely the point where a thin film is
laser-machined through its entire depth. Both these demonstrations highlight the potential of feedback control
for enabling improvements in both fabrication precision and reproducibility. These approaches are achieved via
observation of the work-piece, as recorded by a camera during laser machining. Whilst detection of beam
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position or rotation alone may be achievable with analytic methods, for example via phase-correlation
algorithms [17], machine learning offers the potential for simultaneous detection of multiple laser machining
parameters and hence offers a general and integrated solution to monitoring of laser machining processes.
Predicting the point at which the entire depth of a thin film is machined through is challenging because of
unexpected variations in material hardness, density, thickness, reflectivity and so on. An analytical approach
based on the camera data alone would probably require a complex programmatical description of the
appearance of debris and the color contrast during the machining process.

Laser control feedback is achieved in this work using machine learning, specifically neural networks (NN),
as this eliminates the need for an analytical description of the problem. NNs have the significant advantage of not
needing to be programmed with a description of the underlying physical processes, as instead the neural network
can be trained directly from the experimental data. Neural networks have used acoustic signatures for
characterization of depth of weld penetration in laser welding [18, 19] and classification of melt-pool image in
additive manufacturing [20]. Here, convolutional neural networks (CNNs) are used as they are particularly well
suited to image analysis, as their architecture contains a hierarchy of convolutional processes that can identify
the presence, or lack thereof, of specific features in an image [21]. CNNs have been widely used in areas such as
medical diagnostics [22], language translation [23], pollution detection [24] and the development of Al
opponents in computer games [25]. In relation to photonics, neural networks have enabled improvements in
optical microscopy [26] and Ptychography [27], light scattering control through opaque media [28] and object
classification through scattering media [29, 30], as well as for reconstructing ultrashort pulses, phase retrieval
and holography [31, 32].

Machine learning has allowed for predictive control for self-tuning mode-locked lasers [33], and in our
previous work machine learning has shown the application of CNNs to produce realistic and accurate depth
profiles and surface appearance predictions that would result from femtosecond laser ablation of metals, despite
the extremely nonlinear nature of the process [34, 35]. Other work with CNN’s has shown identification of work-
piece material, laser power, and number of pulses used to machine microstructures, directly from camera
images of the work-piece during laser machining [35]. Here we demonstrate training data augmentation
techniques to aid the detection of changes in beam translation and rotation, and real-time closed-loop feedback
for efficient laser machining through thin films.

2. Experimental setup

150 fs, 800 nm wavelength, 1 m] pulses from a Ti:sapphire amplifier were selected and routed to the experiment
individually via a Pockels cell. A neutral density filter was used to attenuate the beam, followed by a spatial
homogeniser (7-shaper model 6_6) that transformed the Gaussian spatial intensity profile into a top-hat spatial
intensity that illuminated a central region of the mirror array on the digital micromirror device (DMD), which
was acting as a binary spatial light modulator. The DMD was used to shape the spatial intensity profile of the laser
pulses, as described previously [14, 36], in this case to an ellipsoid with ellipticity (ratio of major to minor axes) of
afactor of two. In this manner, it was possible to artificially create undesired translation and rotation of the beam
via the DMD, and an ellipsoid was chosen to demonstrate general applicability of the proposed technique to
non-circularly symmetric beam shapes. The ellipsoidal spatially-shaped pulses were imaged onto the sample
using a Nikon ELWD 50 x microscope objective, where the major and minor axes of the ellipse-shaped intensity
distribution at the sample were 14 um and 7 pm respectively, resulting in an ablated structure with these
dimensions. The minimum translation of the pattern on the DMD for this experiment setup, i.e. translating the
image of the ellipse on the DMD by a single row of mirrors, corresponded to a translation of the position of the
laser machined feature of 91 £ 15 nm on the surface of the sample, as measured via scanning electron
microscopy. A dichroic mirror positioned above the objective allowed for real-time observation and recording
of images of the sample during machining, viaa CMOS camera (Thorlabs DC1545M). The sample was
positioned in three dimensions via translation stages (Thorlabs LNR50S), with automated focal position
corrections used to maintain the sample surface at the image plane [37]. Figure 1(a) shows a schematic of the
real-time feedback loop, showing that the machined structures are imaged by the camera and that the camera
images are then processed by the neural network, which subsequently provides monitoring of the
transformation of machined structures and feedback loop that is capable of halting the laser in real time. The
work here is split into two experiments. Firstly, as shown in figure 1(b), the DMD was used to simulate
unintended modifications in the beam shape, namely translation and rotation. A set of neural networks was then
used to determine these modifications for a series of random transformations, directly from the camera images
of the machined sample. Secondly, as shown in figure 1(c), a neural network was used to provide real-time
control of the machining of a thin film, specifically predicting the number of pulses remaining until
breakthrough and stopping the machining at breakthrough, even though the number of pulses required was
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Figure 1. Schematic of (a) experimental setup for real-time closed-loop feedback, and the concepts of (b) detecting a beam
transformation (translation and rotation) and (c) predicting the remaining number of pulses until breakthrough of a thin film.

unknown for each trial. Although, in this work, the DMD was used to artificially introduce transformations in
the beam that, the DMD was not integrated in the feedback loop. This was to demonstrate the capability for a
CNN to monitor beam transformations directly from images of laser-machined structures. However, it is
potentially feasible to build communication between the DMD and a CNN, hence enabling a real time feedback
loop that can both halt the laser and correct for beam transformations caused by effects such as laser instability
and experimental noise.

The target material for the beam translation and rotation experiment wasa 5 pim-thick electroless-nickel
layer deposited on copper, and was laser processed with a fluence of ~1.22 J cm™ 2. The target material for the
thin film machining experiment was a ~450 nm thick sputtered copper layer on silica, which was polished using
abrasive paper to produce an uneven surface profile, and processed using a fluence of ~1.83 J cm 2. For the thin
film processing, a non-translating and non-rotating elliptical beam profile was used for all exposures.

3. Neural networks

NN are a computing paradigm that enable the representation of a complex transfer function, via a set of
interconnected nonlinear functions [38]. Importantly, a neural network does not require a programmatical
description of the physical processes underlying the transfer function, and instead the neural network can be
trained directly from labelled experimental data [39]. In practice, this offers an alternative technique for solving
problems that cannot easily be formulated in terms of analytical expressions or mathematical modelling
problems. However, large amounts of labelled experimental data are generally needed, and hence the challenge
often becomes the collection and labelling of suitable data. In this work, we use neural networks as transfer
functions that can convert image data into numerical parameters that describe, for example, the rotation angle of
the beam profile. In this case, once trained, such a NN has the capability to detect the rotation angle from camera
images where the machined position differs from that used during training, and hence this enhances the
robustness of the NN when applied to real-world laser processing problems.

The framework used for all CNNs in this work was Tensorflow, where each CNN comprised a series of
convolutional layers, max pooling steps, and a final fully connected layer leading to the regression output. Each
CNN took an input image size of 100 x 100 pixels, with layer parameters as shown in figure 2. In all cases, the
activation function of each layer was rectified linear unit, the learning rate was 0.0001, and the optimser was
Adam [40]. The input images (100 x 100 pixels) were cropped from images recorded directly from the camera
(native resolution 1280 x 1024 pixels). In the beam translation and rotation experiments two convolution
layers were used with kernels of size 5 x 5and 20 filters per layer. In the depth prediction experiments each
convolution layer consisted of 64 filters with a kernel size of 3 x 3. The convolutional layers were each followed
by a max pooling layer with kernel size2 x 2 and stride 2. Finally, a fully connected layer with 1024 units was
used prior to the regression output.
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Figure 2. Schematic of the structure used for the CNNs used in the translation and rotation study. The CNN used in the thin film
experiment had an additional filter and pooling layer.

4. Data augmentation

Successful training of a CNN generally requires a significant amount of labelled training data. Although the
specificamount depends on many factors, tens of thousands of images are often regarded as a minimum.
Therfore, collecting suitable training data can be a lengthy and challenging process, which in the case of laser
machining would require the manufacturing of tens of thousands of machined structures. To alleviate the
challenge of collecting such a large amount of training data, various methods for augmenting a smaller set of
training data have been developed, such as stretching, cropping, translating, and even altering lighting and
contrastlevels [41, 42] in order to synthesise multiple variations of each original image. For this work, data
augmentation took the form of cropping the images at different positions, hence offsetting the position of the
laser-machined structure within each image. This was possible as the camera collected images at a resolution of
1280 x 1024, whilst the input resolution of the CNN was setat 100 x 100. An explanation is shown in figure 3,
where the images of three laser-machined structures have been cropped, in order to give the appearance of a
beam that has been translated on the work-piece. It is worth noting that as the size of the training data set
increases, the time taken for a CNN to process the entire data set one time (commonly referred to as one
iteration) is also increased. Therefore, there is a balance to be sought between the size of the data set and the
training time and it is therefore of interest to determine the optimal degree of data augmentation.

5. Detection of single axis beam translation

An undesired shift in laser beam position relative to the target material could occur, for example, because of
instability in the laser source or the beam delivery optics between the laser and the target material. As shown
here, such a shifting can be identified via observation of the work-piece during laser machining. In this section,
we show the effectiveness of a CNN to detect a one-dimensional translation in beam position when using
different quantities of data augmentation.

For this work, the beam was translated from 0 to 100 DMD mirrors in steps of 1 (hence giving 101 positions),
via changing the position of the elliptically shaped mask on the DMD by one mirror-width at a time. Due to the
magnification within the experimental setup, a translation of four DMD mirrors approximately scaled to one
camera pixel, hence providing the opportunity for sub-camera-pixel translation. Specifically, the translation of
the elliptical pattern by the spacing of a single DMD mirror resulted in a translation of the position of the laser-
machined structure by 91 £ 15 nm. This known translation was compared with the prediction from the neural
network.

Firstly, 101 structures were machined, using the elliptical beam shape (i.e. using the same DMD pattern
without any translation). These images were augmented in one dimension, by shifting the cropping window by
an integer number of camera pixels, as illustrated in figure 3. The cropped images were shifted between 0 and 25
camera pixels, hence providing a total of 101 x 26 = 2626 images. Before training, 10% of these images were
randomly chosen and were used to form the validation set, in which the neural networks would not observe
during training. The remaining 90% of these images, were used to form the training set, and were repeatedly fed
to the neural network during training. Secondly, a separate set of structures were laser-machined and imaged, in
which the pattern on the DMD was translated, hence causing a real (i.e. not augmented) translation of the beam.
A total of 202 images (two images for each of the 101 positions) were recorded, where this set of images is
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Figure 3. Method for training data augmentation, showing how each image of a laser-machined structure can be used to generate
multiple training images that appear to correspond to translations of the beam on the work-piece. The cropped images in the figure
have been increased in size for clarity.

referred to as the testing dataset. This was vital to prove that a CNN trained from purely augmented data could be
used to recognise actual beam transformations. The CNN was therefore firstly trained on the training data in
order to minimise the error on the validation data, then secondly tested on the testing data. The testing data was
therefore not used during the training process.

To understand the benefit of training data augmentation, a series of CNNs was trained using differing
numbers of the 26 augmented positions. Each training took 6 h to finish, and the trained CNN was then tested by
feeding it images from the testing dataset (actual beam translations produced by the DMD). The results in
figure 4 show the accuracy of each CNN at determining real-world beam translation distance when trained using
(@) 1,(b)2,(c)3,(d) 4, (e) 5and (f) 26 of the total of 26 augmented positions. The augmented positions are shown
asred, and the testing data are shown as blue. The root mean square error (RMSE), corresponding to the average
error in positional detection precision, is shown for the six cases. As observed in figure 4, data points tend to
cluster around the points of augmentation, breaking the linearity of the scatter plot. The cause of this effect is
likely related to the hypothesis that neural networks can be considered as polynomial regression models [43],
and therefore their predictions will generally fit more strongly around clusters of data (i.e. in this case the
augmented data) at the expense of more sparse regions of data. The results in figure 4 show that a CNN trained
on purely augmented data, including those with small levels of data augmentation, is still capable of identifying
real translations of features within an image, hence demonstrating the potential for a significant reduction in the
amount of experimental data needed for training. Whilst the specific degree of augmentation required for a
satisfactory level of precision will of course be dependent on the application, in this particular case we found that
further improvements in precision were considerably smaller for five and higher numbers of augmented
positions.

As observed in the figure 4(f), the prediction accuracy reduces for larger distance. A conjecture can be made
that the causation of this phenomenon is related to the chosen structure of the neural network, which enabled a
higher capability for prediction accuracy for smaller distances. It is important to realise that the images
corresponding to the real translation had features that were not observed in the augmented training data, such as
random debris positioning or variations in sample quality and laser power. Deliberately using the same images
multiple times (i.e. augmentation) significantly reduced the difficulty of collecting a sufficient dataset. However,
because the same images were used multiple times, the same experimental randomness in those images, such as
debris position, sample quality and laser parameters, were also observed by the neural network multiple times,
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Figure 4. Demonstration of CNN performance when trained using (a) 1, (b) 2, (c) 3, (d) 4, () 5 and (f) 26 of the total of 26 augmented
data positions. The red circles show the augmented data positions used in training. Blue circles show beam position as predicted by the
trained CNN for each image in the testing dataset (real beam translations).

hence producing a bias. Therefore, there is a trade-off between data collection and dataset bias. However, as
shown here, despite the biased dataset, the neural network was capable of precisely determining the position.
Each camera pixel corresponded to a distance of 360 nm on the surface of the target material. In the best case, the
CNN was able to predict the distance to an accuracy of 240 nm, and hence below the camera imaging resolution.
This result can be understood by considering the effect of translating an illuminating pattern on a camera by a
distance corresponding to a fraction of a camera pixel. Although the image of the object would not have been
translated by a single pixel, there would be some fraction of the image of the object that would have crossed into a
different row of camera pixels [44], and this sub-pixel shift is believed to have enabled the sub-pixel capability of
the CNN. It is worthwhile to mention that the error on the actual position measurement is likely related to the
manufacturing precision of the DMD mirrors; the manufacturing error of machined structures caused by
manufacturing precision of the DMD mirrors can be much smaller than one camera pixel in our case.

6. Detection of beam translation and beam rotation

To increase the complexity of the demonstration, the detection of beam translation in two dimensions (X and Y)
and the rotation of the beam (0°~179°) was investigated. Both the X and Y dimensions were augmented for all 26
camera positions, using the methodology in section 5. However, due to the directional nature of the white-light
illumination on the sample, which resulted in shadows in one direction, augmenting the angle was not
appropriate in this case. To enable the production of suitable training data, 180 structures were laser-machined
and imaged, corresponding to one-degree rotations of the elliptical shape on the DMD. As the elliptical shape
had rotational symmetry order 2, a half rotation was an equivalent test to a full rotation. These 180 images were
augmented via cropping to give 26 different positions in both X and Y directions, hence giving a total of

180 x 26 x 26 = 121 680 images. 90% of these images were used to form the training dataset, and 10% were
used for the validation dataset. As before, a separate set of structures was laser-machined and imaged in which
the DMD pattern (and thus the laser beam) was simultaneously actually rotated and translated. This resulted in
227 images with a random distribution over all possible X and Y positions, and all possible rotations. This is
referred to as the testing dataset. As before, each CNN was trained on the training dataset whilst minimising the
error on the validation dataset. After 12 h of training for translation and 24 h of training for rotation, the trained
CNNss were then applied to the testing dataset.
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Figure 5. Demonstration of the accuracy of a CNN for predicting (a) abeam translation in two-dimensions, and (b) a beam rotation.

Figure 5 shows the precision for identification of (a) the X and Y position, and (b) the rotation, from the
testing dataset. The X and Y axis prediction accuracy was 280 nm and 220 nm respectively, which is smaller than
the 360 nm size of an imaged camera pixel. At the boundaries of 0° and 179°, angles were wrapped, resulting in
an angular prediction accuracy of 7.13 °. To identify the rotation angle of the beam, a minor addition to the CNN
architecture was required. Here, two regression outputs were used in the final layer, with one trained to predict
the sine of the rotation angle, and the other the cosine of the rotation angle [45]. This method of prediction was
required in order to assign an appropriately low error when, for instance, an actual rotation angle of 1° resulted
in a prediction by the CNN of 179°. In this case of rotational symmetry of order 2, this prediction would be close
to the true rotation, but a direct comparison of angle would result in a very high error. Two sinusoids with an
offset in phase were then required in order to uniquely define the predicted angle (as sine is a two-to-one
mapping over 0°-180°). It was found that training a separate CNN for each of the three parameters, rather than
combining all three into a single CNN, was most efficient in terms of the total training time. In practice, a single
image was sent simultaneously to each of the three CNNs, and three numbers were produced, namely the
predicted X position, the predicted Y position, and the predicted rotation angle. Whilst here the results show the
potential for simultaneous detection of the translation and rotation of a laser beam during machining, this
technique could also be applied to the detection of other parameters such as laser pulse energy or laser mode
quality. By measuring the total time for the three CNNs to process all 227 camera images in the testing dataset
i.e. predicting X, Yand angle), the time for processing a single image was calculated, at ~10 ms. This rapid
processing speed is a fundamental advantage of using a CNN-based detection and is critical for enabling real-
time monitoring of laser machining parameters.

7. Real-time control for thin film machining

In an industrial setting where quality control is paramount, when laser machining though a layer of material, a
higher than expected total time of exposure is generally used to ensure an extremely low process failure rate.
Variation in the required machining time can arise from the sample (e.g. uncertainty in thickness, surface
quality, etc) and the uncertainty of the machining process itself (e.g. laser power variations, unexpected debris).
Whilst excess machining time can ensure a lower wastage of material, the consequence will be a higher wastage
of laser light energy. Ideally, a real-time closed-loop system would support the manufacturing process and halt
the laser precisely when the layer of material is machined through. This experimental section describes the
results of a CNN-based implementation that halts the laser when a ~450 nm copper film has been machined all
the way through.

As discussed earlier, the copper film sample used in this experiment was deposited onto a silica substrate.
Here, machining through the film refers to laser machining through the deposited copper and exposing the silica
substrate underneath the copper film. This result therefore demonstrates not only the ability of machining
through a layer of material but also the ability to machine through only a single layer of material in a multilayer
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Figure 6. Comparison of actual number of pulses required to reach breakthrough compared to number of pulses as (a) predicted by
the CNN in real-time, and (b) naively predicted starting with the rounded mean (15 pulses) regardless of the input image. The colour
bar shows the number of data points at each coordinate on the figure.

structure. This could see applications in laser cleaning of surfaces, e.g. rust removal, where the thickness of the
material is unknown but where laser damage to the second layer must be minimised.

In this experiment, a CNN-based feedback loop was implemented in the laser machining system which
allowed the laser machining process to be stopped, in real-time, when the copper layer was machined through.
After each incident laser pulse, a camera image of the sample was recorded and automatically sent to the CNN
for processing. The CNN would then output a number corresponding to the predicted number of pulses
remaining until the copper layer was machined all the way through. This number was then transmitted back to
the automated laser machining system, which controlled the laser, therefore producing a feedback loop. If the
number was positive, the laser machining would continue. If the number was zero or negative, the laser
machining would halt, and a fresh, non-machined, region of the sample would be automatically found, in order
to repeat the test. Here, a negative number of remaining pulses refers to using more pulses than was needed, for
example, a prediction of ‘—1’ refers to the CNN predicting that 1 too many pulses had been used.

To introduce additional uncertainty in the thickness of the copper film, and hence uncertainty in the
number oflaser pulses required for machining, the surface of the copper film was coarsely polished. The mean in
the number of pulses required to machine through the copper film could then be determined. The CNN would
therefore have improved the efficiency of the process (by wasting fewer pulses) if its error in predicting the
number of remaining pulses was smaller than the error if the value of prediction always started with the mean.

The training dataset was produced by exposing 50 sequential pulses at 156 well-separated positions on the
copper film, and a camera image of the sample was taken after each pulse. Therefore, 50 x 156 = 7800 images
were collected (10% of them were randomly chosen to be used for validation). The point of breakthrough for
each position was determined through manual inspection and verified by checking the sample reflectivity and
transmission using an optical microscope, as well as via an interferometric surface profiler measurement. Using
this information, each of the images in the training dataset was labelled with the number of subsequent pulses
required until breakthrough (i.e. 4-1 pulse, +2 pulses, +3 pulses, etc). The CNN training time for this dataset
was 2 h. Once the CNN was trained, a new laser machining experiment, on a different region of the same sample,
was conducted, where the CNN was used in real-time to control the experiment. In this real-time experiment,
when predicting the number of remaining pulses corresponding to each camera image of the sample, the CNN
only had access to a single image of the sample and hence each prediction was not influenced by any previous
predictions.

Figure 6(a) shows the results for real-time prediction by the CNN of remaining pulses, for 21 positions on
the copper sample. Each data point compares the predicted pulses based on a single image of the sample with the
actual number of pulses remaining (determined manually after the experiment finished). The mean number of
required pulses was 15.33, and the RMSE achieved by the CNN was 2.91. As a comparison, if the rounded mean
value of pulses that was needed to machine through all 21 positions was used as the prediction at the start of the
machining, as shown in figure 6 (b), the RMSE of this naive guess was 3.78. Therefore, the CNN was able to
predict the correct number of pulses ~23% more accurately in terms of RMSE than would be achieved by using
the mean value of pulses appropriate for the average thickness across the film. Also of interest was the ability of
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the CNN to make predictions of negative values, i.e. predicting the number of pulses that occurred after the
point of breakthrough. We posit that the CNN had learned to recognise features in the edge-quality of the hole,
or the distribution of surrounding debris, which may continue to change even after the exposed region had been
machined away. For completeness, a separate region of the sample (16 positions) was used to successfully
demonstrate halting of laser machining precisely at the breakthrough point, as controlled by the CNN-based
feedback loop in real-time.

8. Conclusions

A set of CNNs that enable detection of various beam misalignments, as well as halting of laser machining
immediately upon process completion, has been demonstrated. Firstly, the CNNs for monitoring of beam
translation and rotation was demonstrated. Secondly, a CNN was applied in a real-time feedback loop, in order
to haltlaser machining at exactly the point when a thin film of copper was laser-machined through its entire
depth. The results here demonstrate the potential for using neural networks to monitor and control laser-based
material processing.
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