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A(x).

CE
CLR

,Waterline length of yacht

LIST OF SYMBOLS AND ABBREVIATIONS

keel depth
Rudder depth

Depth at keel trailing edge
o ay 1

Beam (maximuﬁ)
Centre of effort of sails
Centre of lateral ?esistance of hull

Coefficient of sideforce, constant %

. PR
PRI Y

Coefficient of sideforce, constant L

Total_sidefqzce coefficient (constant ) ‘

Rudder deflection angle

Slenderness parameter

Lead distance

$4, ady , - | i

Function of Body Shape

- Moment of inertia about vertical axis through C of G (normalised)

Hull sideforce

Sideforce per unit length at position X along the yacht

Added mass / unit length at position x
Added massiat hull body end or effective trailing edge

. Source.étrength in a line source at position x

Asymmetric moment

m(x) -dx
[s] -t

2 1
Xx m(x) dx
L R S

L .
;J x2 mix) dx

o]

outward normal from a 3-D body.
Total hull moment

Fore and aft component of the unit normally drawn outwards from
the hody in 3-D,

Elemental pressure due to ¢°
Elemental pressure due to ¢l

Resultant velocity in Bernoulli's eguation
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r Hull body radius

r+* Hull body radius at keel trailing edge position

rit) Yaw angular velocity as a function of time

Re{ ) Raal part of { ). |

R=R(x) - .Radius of body of revolution at x, for a line source

t .-~ - time

e Craft Velocity, or free stream velocity

a g U Tei »>» @ mi

L1 I
v . Outward Qelocity of fluid from a line source
VT N .?otal lateral velocity of a yacht at a particular x position
x i~ ¢ Lengthwise coordinate along the yacht
X -izr : Normalised variable CLR position
;1- iyrhrarNormalised hull upright CLR position
y ,??;;Measurement of depth in frame of reference
_1rx- 2 Sway force, effectively L.
Lo ayh rMeasurement of beam in frame of reference . _ -
a Leeway anélg ‘
(T/4*) for positions aft of keel trailing edge
Heel angle 7
Beam / Draught ratio
Proportionally constant for variable 6, a
Density of liquid, f.e. water
Sectional area coefficient
lf Nen-dimensional stab#lity roots of yaw / sway equations of moticn
$° Velocity potential for unit crossflow velocity
¢° Streamwise disturbance due to the hull body (ex fins at & = 0°)
¢ Crossflow potential due to angle of leeway, a.
¢ Total Velocity potential .
¢ozz 3%%%- . ¢° differentiated twice with respect to 2.



1, BALANCE

The quest for speed of a sailing yacht necessitates a finely

tuned yacht which has inherently good balance. This balanbe requires
that a yacht when closehauled will maintain a straiqght course with little
helm deviation from the centreline of the vessel Rudder actions are
kept to a minimum, since it is detrimental from a drag point of view

and it leads to decreased speed through the water. The balance of a
-yacht is achieved by a reduction of the turning moments to a minimum
‘(under a no-helm condition), and hence the centres of the aerodynamic

and hydrodynamic forces need to be designed purposefully into a yacht

VL& RATE
There are basically two types of situation to be investigated in a

E -«h

balance consideration, namely steady state forces and transient forces

,that are:encountered by a yacht._ The response of a sailing vessel to

..i.':-’}{.;.‘ .

transient forces suchaS'Wind gusts and 1nstantaneous directional disturhances

is known as directional stability. Both steady stahility and directiocnal

stability requires the minimum helm condition.

© The diagram below illustrates the basic force and moment mechanism
for 4 sailing yacht as it affects halance.

.

e

F

sail

sail force (forward)

sail force (transverse)

moment

¥ holl drag

FIG. 1 BALANCE MECHANISM FOR A YACHT.



The centre of effort (C.E.} of the sail is that point on the
hull centreline that intersects with the projected line of the resultant
sall force, The centre of lateral resistance (CLR) can be definéd as
that peint on the hull through which a single force acting would produce

the same effect on the hull as all the water forces,

.

t‘}Sincé'fﬁeré exists a distance & betﬁéen the centre of lateral
resistance of the hull (CLR) and CE in the above diagram the rudder
needs to be deflected to an angle 6,to bring the CLR aft to coincide
with CE for.equilibrium, and as already stated this angle,'GR, should

be a minimum to reduce drag.

 _The conventional approach to designing balance into a yacht is
via:the Qeometric centres of area of the sails and the vacht underwater
profile centre of area, and involves a consideration of'various area
ratios of the parameters keel, rudder and sail areas., For ﬁhe purposes
of reasonable balance a yacht designer can implement a "lead” which is
a certain distance as a percentage of the hull length, of the sail
C.A, forward of the geometric C,A. of the hull, and this’ lead is determined
by compariéon of balance in successful yachts of comparable type. In
designing balance based on centres of area thé lead is necessary because
the centres of area of‘pnderwgter hull profile and sail Qlaq are far apart
from the actual hydrodynamic and aerodynamic centres of force on
the sail and on the hull. There is thus a need for tuning of’ the yacht
on the water by various adjustments, which is a result of the largely
empirical approach to designing balance into yachts using centres of
-area. This simple basis to balance design does not always produce consistent
results due to the lack of correlation between geometric centres and
the aero-hydrodynamic centres that occur in reality.

This report consider§ the use of slenderkody theory in findinqg the

hydrodynamic CLR position which is, in fact, not constant but varying
with respect to heel and leeway angles, Graphs which define the force

distribution on a yacht and hence the resultant CLR position are utilised.

The qkaphslused for yacht'form]forcédistribution may also bhe used
effectively to define in a quantitative form the handling ahility of a
yacht by-evaluatinq some "stabllity derivatives" which may be explained
later in Section 3 under Directional Stability.

The report is specifically laid out in the following manner. Section
2 contains the method for determining CLR position and this is coupled with
the graphs in the Appendices. Subsequently, Section 3 is a short review on
Directional Stability, and the "Stahility Derivatives" may be determined from
the method found in the Appendices, again using the set of graphs.
-2 -



~ Section 4 concludes the main body of the report, The Appendices
contain, firstly the graphs used in CLR and derivative calculatioﬁs, and
secondly the relevant slendeihody theory used in the report. The third
and final part of the Appendices is concerned with the mathematics of
stability derivatives calculation and stability conditions.

cr ko=

v o
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Lok



2,0 HYDRODYNAMIC CLR

The CLR is, in fact, subject to variation due to heel angles and
leeway angles, It may be shown to conform with good accuracy to a
simple equation describing CLR position as due to a constant upright
. position and én increment for CLR position due to heel and leeway anglés.

Wa e e

T Tet 'us assume the. total yawing moment, N is made up of {i) a moment
due to sideftxrceacting at a fixed centre x; ; and(ii) a moment proportional
r‘to heélténgie( 8)due to.asymetry of the heeled hull form : M -..

¥y = upright CLR position

-,.<§_»““” N = x3 L+M L = Sideforce on hull -
M = pAdditional Asymetric Moment

MOMENT

- fﬁ';-w .- - CLR 2o§itioTt f' ™  SIDEFORCE
: s .- “x oH "
. x 17 L

Now M « 8, heel angle

L« a, leeway angle

Hence k = xl + ug- where p = constant
Normalise by dividing by the waterline length : x = % s etc,
x = x. +3 2 (1)

1

A typical plot of CLR position is shown in Fig.2 (a)and the equation shows
a surprisingly good agreement with experiments on a vacht as carried out

by Ref. (5), Complete agreement would in fact require all the lines on Figg{a) to
meet at 8 = (© :

If the constant parameters in the eguation, namely ;i and u are

known then the CIR 'position can be analysed for variable sailing conditions.,

The aim is to derive a simple quadrature method for computing x and

—

v from the hull geometry based on the use of slender hody theory.
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2.1 THE USE OF SLENDERBODY THEOQRY

clendertody theory is a simplified theary which, in this _

report, allows the resolutibn of forces and moments on a vacht. It 1is a

practical 2-D theory since. 3-D theory 1s too compleX:In order to use

slenderbody theory in a simple manner the free surface (water surface)
}fgwﬂgsumed flat and for the necessary boundary condition that there is
"“no flow ‘of fluid through this free surface a system of images is used.
;This effectively produces cancellation of any fluid velocity components

perpendicular to the free surface, and therefore the theory is more.

accurate for: lower Froude numbers (a velocity parameter) where the water
I S}

. eurface in reality becomes 1ncreasingly flat.

S I m;..jg;t"gik;. prhioattoss o R SRR i, RS

o FIG. 3 IMAGE SYSTEM FOR A YAC_HT

Ly

© e i

bﬁe procedure for using slenderbody theory is based on reducing

three 41mensional equations to a two dimensional form whilst systematically
retaining all terms of similar magnitudes that may not be neglected. The
slender form is compared with a slenderbody of revolution (a "cigar"

shape with circular cross sections) and hence the orders of magnitude of

the vnrious relevant terms are compared.

promme o Iitially the frame of reference must be clarified

y

0

x=0 ; -
origin at fore
pPerpendicular

FIG. 4 FRAME OF REFERENCE,



Typicaily, draught 1is measured by y-values, beam by z-values and length
by x-values, the origin being at the bow. '

. The basic equation fo; velocity potential is given by

- ) = + + . "
S :‘-:-‘-- J: l.- A g Ux Uuz + ¢o ¢1. * ’ r 2

¢ ﬂiéfthe streamwise disturbance due to the body (ex fins and‘
M <2 : .
T 7 at a = 0), and

V{ls the cross flow term due to yaw,

kThe exact three dimensional equations are reduced to a set of two

udimensional equations by neglecting all but the largest terms in the full
. fequations. "It is found that : - " o 0 vt o

. I
[l W . .- . -
", = ok cab e L . - . - " -
wr B

i - T o 2B % . i
| St ay? 82?2

50 Eﬁét.Laplaée's equation becomes :

- LI

¢O}"Y * ¢OZZ =0 . €3

¢lyy + ¢izz = O . (4)

These results are the essence of the two dimensional approach and neglect

the interactions due to the shape upstream of the section under
. consideration.

The slender approximation also leads to the following simplified

forms of Bernoulli's equations after discarding relatively small
terms :-

P°=-‘m{20¢ v 6 2 s Y (5 )
7 ox oy oz

B o= celue o+ boytiy t 8o, (Ue t ¢ 0] ( 6)

Thus an apprajsal of crosswise force distribution and also the yawing

moments due to asymmetry can be made by utilising these pressures at

elemental Positions about the cross-sectional contours and integrating
to produce 11ft force values.

For the case of the crossforce distribution due to an angle of
leew
2y of a yacht, the 1ift force at each section of a yacht can be

deduceaq from the expressionsg :



Li{x) = § P, dy which yields the result (see appendices)

L) = U = § ¢ ay 7))

Thte is a very useful result. It gives the lift force at position x

as being proportional (for uniform velocity) to the rate of change of ¢
'Vinteqrating around the section contour, elong the x axis. Thus, it is
essentinlly a two-dimensional deduced force and a direct result of

slender. gimplification. ‘The equation has been used for a variety of

T R R I e ettt

~ slender forms. Originally used by Munk in the 1920's for airships it
is novfmore important for the study of submarines, ships, yachts, ailrcraft

k%

et

;-and rockets, but has also been adapted to the problem of fish propulsion
(such as anguillar form) s demonstrated by wu (Ref. (1}) and Lighthill
_(nef, (2)) " There is also an application to planar foils and delta

ﬁga« R
..g....q..-y-u—ru,--,.. IR e s

shaped wings; LT : ;
) -;, fs}{- : \b . " X N
*The contour integral § ¢ dy 1s directly related to the added mass

of the 2—D section ‘for sway motion and it ean be shown that the added

kS

mass m is :

Vot

%Atvr"? ., m (QT.:=" p { § ¢1 dy - RREA } AREA = X-Sectional Area

.
[

“In a similar manner to finding equation ( 7 ) an asjmmetric moment

due to longitudinal flow can be given as

. . £
Cae fw o oae Moo= pU L' F (x) éx {8)
PR Sa ¥ \:':_., -
F(x) = § ¢° ay (9 )

It is worth noting various points here before proceeding to actual
evaluation of the constants within the CLR equation. Firstly, the total

.force on that part of a yacht ahead of position x is egual to the value of

L(x) = pu § ¢l dy of the section actually at x.

- Secandly, due to the convection of the keel trailing vorticity,

‘ ¢1 Ay in the wake of the keel trailing edge is less than at the trailing
edge and hence the hul) experiences a negative lift on the "afterbody".

Thirdly, it must be said that strictly speaking J ¢ dy should be

found

for the actual sections of the yacht but it may be sufflciently accurate
to eval

uate the integral for a number of approximate sections chosen to

be re re:
Presentative of yacht forms and having a range of parameters {(such

-9 -



as beam / draught ratios) to cover the practical cases.

Finally, the calculation of lateral forces may be for more than

one fin and hence calculations can be performed for bilge keel forms.

B b

!-"or the s:l.mple casp of a circular section with two keels m{x} is

------ ) where r = hull bocly radius
T a = keel depth -
Taga@ g T I s
© 60" between

keels S
‘no heel angle

e

A short study on these cross-sections demonstrates the ‘relative

ineffectiveness of bilge keels as lift producing surfaces and the drag

is also increased due to induced and friction drag increases.

Now {t remains to use slenderbody theory, effectively equations
7 ).-( 8 ) and ( 9 ), in the determination of the constants ;l and
; in the CLR equation (1 ),

TORSE A ET S

~ 10 -



2.2 EVALUATION OF THE CONSTANT '5("1

In this report the slenderbody theory reduces to evaluation
of ad&ed mass coefficients for sway'motion of the two-dimensional shapes
that comprise the«sections of the yacht._ -dlmensional added mass is

the added mass (1n this case for translational motion) which 13 associated

with unit thickness of a two-dimensional shape, and it is the portion
of liquid around a section which is "entrained”, or moves with the section.

The added mass of each section may be related to the crossforce or lateral
T -am‘.%:\uqq. e _‘j’f R 2o .
e ‘the - section, and thus if the distribution of all these 1ateral
e -1.&11; iR amfer
Iknown then the resultant force centre, or centre or pressure,
Al il B S :

und and this is the upright yacht CLR position (x in the

T

FIG 5 . DISTRIBUTION OF CROSS FORCES.

-tThe diagram ahove illustrates the kind of force distribution which
" may be,found by slenderbody analysis.

<3

-x;-\.e .

Th
e constant xl, or the upright CLR positjon is found from the
expreasion :-

- 11 -



L
I x gé-dx L
~ _ MOMENT ° =z_fm_f_xux_

. %] ™ SIDEFORCE L o T M ( 10)
Y here & = Waterline length
T m(x) = Added mass at position x

M_ - " = BAdded mass value at body end (perhaps
- including the rudder). A

theee valuee may be integrated along the yacht's length by simple means

.41 .

such*ns Simpson 's rules integration. - In order to find the added mass
) n(g)cfcr a section the corresponding value of lift coefficient is read
: off one of the crossforce graphs, and then converted to added mass using

[T A - i.(, Ty e

the equations b 16w 3 -

added mass

-
I

density

\
;-]
]

integral of velocity
potential around the
contour

§o

fl

AREA = ¢ross sectional area

- a = keel depth

CEYER e

These equations give : CL = ‘li‘ =+ ARERA} AREA = ﬂr2
T ma P
L m = xplc _a’ - r’) (11)
- ;,.:1 Clamam e LTI'

This equation (11 ) may be used to define m(x) at any position x, but

the sections of a Yacht can be subdivided into specific types, which

require different treatment. These different sections are bow sections,

keel
eeled sections, afterbody sections (with downwash of vortex sheet effects) .
and
alsc sections ‘with rudders at the body end. Different input parameters

are ne
cessary to read off 1jift coefficient values from graphs for these

four gec
tion types. The graphs mentioned above have been computed utilising

equations ( 7 ) and conformal m

apping techniques an@ an explanation of
them follows,

- 12 -



2.21 ADDED MASS FROM GRAPHS

The magnitudes of the crossforces at particular cross sections’

along the x axis of the yacht may be found from various graphs computed

* from one of the following three models :

?‘;iAlthe‘case of the upriqht yYacht for Lewis sections using conformal

‘mapping techniques. The Lewis sections are upright symmetrical

" 2

nsthematical representations of real yacht~like sections and they are

'?-"

rom he sctual sections of the yacht in questicn. The parameters

ehuired at each section are beam-draught ratios, sectional area
S _...fv ;a»h “ﬂf B

coefficients and huli body depth to keel depth ratios, (See example
- 'raph Fig. 7.) '

Tis necessary for mathematical reasons to assume a semicircular shape to the
hull body. The lateral forces are calculated by a computer and displayed
fgraphically (fee Fig. 8. ) for sections of semicircular hull hodies
-(becoming ‘full circies ~using the image system)} and fins, but also for the
combination of circles and a vortex sheet shed from the keel trailing

edge, A vortex sheet is a distribution of vortices shed from the trailing
edge of the solid keel, and this moves aft along the yacht's centreline in
the hydrodynamic model within this report,

’1111} ?The results of cross force coefficients are also given graphically
fnr‘heeled circular sections with either keels or a vortex sheet outhroard.
The circle and fins model is a model where the keel part of the sections
8re made up-of a line distribution of vortices which provide a solid

boundazy that the fluid must flow over. The followina diagram illustrates
this idea, :

- 13 -
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smalllnduced A\
velocities ‘| rullel o TN

i

itovortex Hfine. - ot B\
TWREAL, - . |
* - T |
S ’:E!_G LINE VORTEX DISTRIBUTION TO MODEL FIN SEGMENTS.
. 3

= ? fhe‘cross flow force coefficients displayed graphically are given
-fof any sectlon forward or aft of one keel trailing edge and hence the
distribution of forces acting transversely at all positions along the
yacht 15 determined. The essence of the graphical results is that they
allow a. simple resolution of the upright CLR positicon (x in the
formula defxned earller), and this resolution can be made hy simple
~quadrature. such as Simpscen's Rule, rather than a full-scale hydrodynamic

CLR" computation.

- 14 -



TYPICAL CROSE FORCE GRAPHS

Lewis Sections Graph - Fig, 7.

Different graphs for vary:ing o values

) TR S

N L ) . C., = Coefficient of Side Force
CL o=t 0=0.65 . &
! "i-.UzogT 2; - A ; 0 = Sect. Area Coefficient ARFA 3
- 21*6-*:; A | for Hull Body [BEAM x DRAUGH‘I‘J
by { 30
.20.0 - 2.8 - v
ST | . ‘6 ] CL = 3 3
118.01 - 24 M LpUaa*
- 16.0p Eg ' p = Density of Fluid
A 140} . 16 U = Speed of Craft
. ﬁf’q-_ 12 @ = Angle of Leeway
10,0 Pl%v (1)% . a*= Keel depth
R A e
: _-“_'8"‘?0'.;%\ 8& r'= Bull body depth
ot 6 ey T 102, A = Beam / Draught of Hull o o
e 00,25 0,50 0,75 . 1.00
o T T ;'é,’,‘;'.;,.g I .:,. -

P I

lar - éé’t‘ia?i‘é‘xé;;écraph - Fig. 8. - ..lin
sz ¥he fv' - Different graphs for different 6,

. £=1.0 heel angles.

e = (r / r*) for positions aft of keel

| trailing edge. ‘
1.5
1.0
0.5 c e
A -
1. £=0.0 2.0
0.0 —t s PO 1
+-0.25 0.50 0.75 1.00
. *
e o /ot 2
oie . 1.0
S : varied 8's ™
Trailing Edge Lift ang Total
1.ift for Variocus Heel Angles | 0.3
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2.22 CALCULATING ?l

There are various inaccuracies for the slenderbody theory used in

.thi: ra;;rt'hidlcan induce posaible departure from good theoretical
prediction. R st e e et = i v e ae e e e e e e

5£3£5m£i555m32§31b1° inaccuracy ie the fact that for highly swept L

ti::;lng edges of the kind specifically designed for Concorde, vorticity

lhed 1rto the etream from the leading edges resultsin a contribution to

3
o

1fE proportional to the square of the angle of incidence, and a

P

{ c 1&113r1ty may be expected for planar foils of small aspect
b T . -'.

n.s
»\MW‘;” elE et g0 DL
"rati penetrating ‘the free surface. L o

?
—

wn

f‘ “secondly,qthe assumption that the vortex sheet moves along the centre-

7 p1£§3“bfethe.yacht or _slenderform leads to inaccuracies, In fact,

¢ 'cially ingghe case of a tail fin or skeg rudder system, the downwash

A exgéifeﬁbed byfthe afterbody ‘1s less than predicted by the theory.

oo ey

_Thirdly, the instability of the trailing vortex sheet encourages a

rolling-up of the sheet which also decreases the downwash on the after-hody.

*-——-w‘“ I L B N Tal
,aeThese departures from the theory result in a predicted CLR position

too fareforward.; .

Yonth .

. -r
L ELTE

Therefore an experimental correction factor ls necessary in
defining ‘) ‘to place the value of Xy with an accuracy of 1 - 2% of
the yacht e length It is planned to obtain these factors from model
teets.‘w I Al .‘

S 3 . - )

’fhe“caiguiatian'df ;l in practice takes about fifteen minutes and
hence’ is a useful design tool for a yacht designer, and may well improve
°°“515te“CY in the design of a yacht which has no close comparison with

other similar and successfully balanced yachts.

Various example calculations have heen completed hy reading off
the qraphs as follows :

Fl

- 16 -



2.23 EXAMPLE CALCULATION OF El

Below is a table demonstrating the input parameters needed to lift

off C values from the graphs, for the Yarious gsection types :
PR S :

BE;CTIQi!',.'I;YPE.:ﬁ.-'-?. - x/a € ooa /fan . m
pow - 1.0 Use e = 1,0 - ror?
s yseled 5 <10 . Usei=1.0 - mofc_a? - 1)
) € 2 2
Af.terbody ‘" Use r*fa* £ < 1.0 - ﬂp{cma* - r*}
g g - & . - 2
RG&EZ\:- > ? ‘Use r*/a* € = 0.0 o np{cma*z - )

X rngibody radius for circular section of same area as actual section
hr/a)= body radius/keel draught (assuming semicircular section)
T ‘F*/a* =_ (r/a) at the tralling edge of the keel {T.E,) .

c‘é body radius of section/body radius at T.E. section = {(r/r*)

1t méy be noted that for the how and keeled sections the coefficient
used is £ = 1.0, but in fact the radius of the body at these sections

is npt-necessarily equal to the body rédius of the keel trailing edge
section. The ‘hull sectional area is decreasing aft of the kéel trailing
edge, and therefore £ < 1,0 for these sections, and i1f the rudder is
Placed at the hody end then the € = 0.0 curve is used here,

For the afterbody and rudder sections the geometry of the trailing
edge section is important and the table thus shows that the ratio {r/a)
used is (r*/a*) and the added mass is defined with respect to a*,
CLT{
2.01

1.0

FIG. 9 EXAMPLE CLTI READOFF,
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The graph aboVe shows a typical case for (r*/a*)’. The small letters

(a to e) show the points corresponding to various afterbody sections for

this value of (r*/a*) according to the values of €.

Finally, the rudder section at the hull body end is considered, and
e anermstn s the important parameter to use in the graph (CH25) from Ref, (3) is :

g

,(Rudder depth/T E. 'keel draught) or (a Ja*),

SAE i e

f\;neaults_cre given ‘from this graph for O < y*/a* < 1,0 and foF
a /at =0, o 25 0. 50, 0,75, 1.0. The dotted line on this graph shows
the limit at which the rudder depth is greater than the depth of the
._Lyortex sheet at the rudder section and the added mass then depends

onlv on’t the rudder itself to the neglect of the traling vortex sheet

% —f-.-n :1:' .
b a

Tables for results have been prepared which can be used to calculate

e

A éfi position (x B and they are based on using a Simpson's integration of

!added mass values in accordance with equations ( 10 ) and ( 11 ).
____,é.,-..:_—v.'r-;‘: T Ao _

W T - - ' !
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2.24 COMPARISONS OF X, DETERMINATION

{1} ANTIOPE, a 5.5m yacht -Ref. ({(4)
‘?¢2} cnu:sxnc YACHT Ref, (5)

R PO -

Btlgtfnnrxopz V f

,.»"

pery T +

'} ?'..‘n-_.&l-d" % <4

%The comparisons of CLR determination for "Antiope" are possible
botG:en the.body of revolution model with a keel, with the slender wing

o ’!-i e p;_::gqu,:‘gﬁ‘, o
tofile (no hull—keel effects) and with the keel profile alone using

DAL WL oo & SRS B
&;Yi2:§g§11;é thé&zy. Letcher, Ref. (7), has carried out a comparison and

Hae S LATT
the predicted CLR 1 varies a good deal

s

f: = ' l- i
’ B
: §E1£c£ i 0.43 ‘
P Vel ' fractional sition
;-%B?Eie of‘slender wing 0.38 (; - x. /1) po
. ’ 1 =%/
. slenderbody theory (*) . 0.337

s w -
...-.M-.,-.,\ {,‘ s i Tie

riﬁrf “The experimental results can he found in the table for reduced data
lfrom the® original tests on the full scale "Antiope") in Ref, (6). 1In
particu;ar ‘for near zero heel anqles and angles of leeway between 2,5°

and 3°,_the'CLR position is given as :

B

sy iﬁfi o SPEED ° 0 c, c, CLn(il)
2,67 W g 0 0 4.47 1.72 0.385
2.6 .. 3.0 1 4.32 1.57 0.363
..2.70 . 4.0 1 4.56 1.66 0.364 X = 0,369
2,74 5.0 3 4.71 1.66 0.352
2.7 . 6.0 5 4.80 1.83 0.381

Hence the (IR position is found to be about 3% of the length of the

a
yacht dlf!erent for ‘the methog used in this report (*) which gives the
reuult xl - 0,337

I 3 S

+.

CHUI
SING YACHT (with skeg, keel T.E. sweepback, and a rudder
o at the hull body end)

- The
ot experimental value is obtained by projecting the results for

arent heel
b angles ang leeway angles using equation (1) until the

L
el anqgle result {g given (see Piq. 2.)

PREDICTED x
1

e o.
e e 363 0.42

- 21 -
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2.3 EVALUATION OF THE CONSTANT 51

The constant 1 may be found from tank tests on a yacht and thus

from the gradient Of the lines in Fig. 2. However, it is probably more

'...‘.?“ﬁ‘*‘é’"&*ﬁé%‘i*n“e‘ ﬁ £rom theory and the geometry of the yacht just as x1
FEF PRyt Y

u;gﬁd;:i;ed from the yacht's shape. Thus, one of the aims of the report

1. ‘to NeQamine the yaw moments due to the cance hull body asymmetry,
" when heeled, ‘by a source element method.
P et T i 22T s
flg'a"number of parent forms are investigated and their yawing

aoments determined then the requisite values of the proportionality
2, e

‘wconstanfzu may be determined in the equation defined earlier for CLR
L

TR L an,

B 1.:‘-

z

_,ﬁbg on;ﬂfThis may be carried out for any vacht whose parent, form
fy;;h yaving moment coefficient is known, and hence provides part of

ST IS %:}a _ ‘z

the simﬁle design computation procedure.
-.._..._L-.-& -

A.smmié”mwmc MOMENTS |

P

The;e are various assumptions in the calculation of the asymmetric
-nanent due to an angle of heel in the computer source modelling program.
These!;ssumptjons neglect the fundamental factors that firstly displacement
'must stay nearly constant 1n the heeled condition (hut may increase due
txtf;!?ueponent_ot vertically down sail force), and secondly the trim will
alter.__ﬁithin the program the displacement increases since the heel

s presumed to act about the intersection of the waterplane and yacht

centrellne in the upright mode, and equally there is no account of the
changa in trim associated with heeling,

The Yﬂwing moment is due essentially to the differences hetween the

radxl '95 Curvature of the waterplane surfaces on either side of the
‘centrel;ne'_

in this example

FIG. 10 ASYMMETRIC YAWING MOMENT DUE TO HEEL.



By utlising the fundamentals of slenderbody theory as it affects a

body ex-fins at 2zero incidence a model of the contours of the

aaymmetric shape is made up by source modelling,

o e — T

one image of the hull

showing sections that T~
mmemc ' _
cm ‘asy

a section image constructed by sources
on the contour surface

W T L + UN ¢12)
e an X e
- o - )

where "x is the fore and aft component of the unit normal drawn

cutwards from the body in three dimensions. Fqually by superposing

all the elements of velocity potential due to the other sources and

_ itself:\t one particular source, then repeating this process for all the
. e _,f_..,_, o2

vmsqyrcgs, a distrihution of velocity potential around the section contour

. 11 ifﬂﬂfeﬂ\”hiCh Yields the asymmetric moment M as defined in

equat.ions (B8) and ( 9 ),

. A8 a check on the program an ellipsoid of revoclution has been source

ﬁOdelled .8nd at an angle of attack a, the resulting moment, M is close

to thﬂt Ptedicted from slenderbody theory in equation ( 13 ) :

]

s (RN -

8 2 .
T M= - 3 U a b’ force (+) (13)

force (-)

SENALE MOMENT ON BODY OF REVOLUTION. (plan view)



2.31 v CALCULATION

; is the coefficient in the CLR position equation (0,2):

Al

- Ma M = Moment from Asymmetry
-taﬂiéxzqutl ¥ T -1 L -= Lift force
ﬂ,{é ¥ "M must be determined:’

— ) ) R 2 -1
Eﬁsﬁ; veloci;y potential, ¢ = [L T ]

Egiﬁ¢e§€?'J“22-7é velocity = [LT_I] .
TSN -] T . )

L7 em

& From equations ( B ) and ( 9 ) :
pETT T i

: }ﬁ; = pU J F(x) dx and F(x) = § ¢° dy, '

- L

¢ « UB; B = beam of vacht

; F(x) « UR2
- R l, "
: M U2y

sl . ',;.'

~‘ff"'fI_..'e'i:'fs"moment: coefficient be

M .
c. =1 } ( 14)
M npU’ BZ 120

_?he purposé of defining a moment coefficient CM is that it may be used

to determine coefficient of y for yachts, This may he done by assuming

& calculated C to be constant for all yacht forms that are derived

by StretChing a given parent form. The source modelling programme can

be used to calculate M for the parent hull, then a C can be defined which
aay be used for other yachts to find the coefficients i. This may be done

vy SUbStituting i“to the § formula various values

.
C = R e ——
M 2.2
e ToU“B 18
5= a2 Sy (15
b1, a*z cL
. _ -
- 24 -
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TR S T

IA typical form for the CLR equation for varied heel and leeway

189 and the one calculated to fit experimental data from the Wolfson

1‘ @g“‘ Craft ‘Unit, (Ref., 5) iS :

uarine Craft )
e et e o ‘ e
I S + x = 0,42 - 0,052 [E']

F‘iﬁ,‘é‘h an equation as this for a particular yacht is clearly a neat and
;,,yi.(,a-u s e

imple way of displaying the variable CLR position, and as such will .

‘rq.

helﬁ ttlf;e desiqner of yachts in the balance design stages.
Bl A

'~r

N e e »
— .
s » .
° ¥
\ : ~ _
i s
v -
) :
= - L
' Y
i
~
o
-
S T
= -
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3. DIRECTIONAL STABILITY

;Jﬁmh Directional stability is a vital design parameter for yachts

Faince, modern yachts have a high sail area to displacement ratio, and
T
%ﬁ%?‘ially off the wind yachts need to be directionally stahle with as
i e i)ﬁ b
-ﬁsc: ‘gail up as is feasible under the circumstances. There are three
~f:§!" .

naj_n—co-nsiderations for .Yacht directional stability :

ibélanced and on course, is given a small deviation from this course,
1t will then return due to an induced moment that is not from helm

éction..

DYNAMIC directional stability is concerned with whether osclllations

about the desired course will increase or decrease, If the yacht's

ioscillatory deviations increase then it is dynamically unstable.

'%Stétic directional stahility is of primary importance and since the
acceleration induced inertia forces are complex and on the wind often
.of smaller magnitude, dynamic stability will not be analysed in detail

-here, It is important to analyse the directional stahility when there

:‘ls a windshift or change in windstrength or otherwise which will change
the apparent wind angle on the yacht. A yacht should inherently have
directional stability and this will obviously aid the installation of
modern self-steering gears in the case of cruising yachts, It will also

_help to reduce radical helm deviations and reduce the distance travelled

" through the water and drag due to exaggerated rudder action.

- 26 -



3.1 STATIC DIRECTIONAL STABILITY

this kind of stability the helmsman should not need to‘altgr the

deviatibn in apparent wind direction is encountered. The

which acts when the apparent wind direction is changed is as

étric ‘hull moment.

" Another effect is that the forward component of

3£orce]on the sail will, when coupled with the drag force, produce a
C‘x‘! 3&"

‘guxn

e "‘
1ng moment which increases as heel increases,
Y

t i

Let the angle of leeway = a

e 'pl ; ) Angle of flow at the rudder = a, = @ + .

If the angle of leeway becomes a + 6o then the fractional

fa
KFEL ; —_
X
RUDDER Sa
a +

Hence there is a redistribution of forces, and a moment is created
which increases weather helm or increases lee helm depending on the
sign of @, If Q is positive then the fractional increases in forée
{proportional to angle of attack) will alter the balance such that the

keel force being greater than the ruddef force will pull the how round

'to weather .,

BROACHING
h"_--—_

The running yacht is suhject to considerable instahility downwind due
to the interplay of forces and turning arms whereas on the wind there is
Some cancellation of factors. As the yacht is heeled over in a hrecach,
the CLR moves forward while the CE of the sails moves aft. s the weather
helm increases, more pressure is applied to the rudder. The yacht slows
down as it round up and the apparent wind causes the sails to he over-

trimmed, This, in turn, further increases the heel which finally stalls the

- 27 -



der and renders it largely ineffective, and as a result the vacht
ds up out of control. Design of the underwater hull and steering

abilitY must be carefully planned to aid as much as is feasibly pbssible

the., yaqht s stability but, in fact, steering off the wind can be achileved
: iarqe}Y by sail steering (of the spinnaker and mainsail) and is thus a

\ _‘f,,,. e -:*"“ -

B con ributory tocl to broach prevention.

o L

Zz%

- 28 =



3.2 STABILITY DERIVATIVES

¥

.~ +The main application of the theory in this report is to steady motion,
;ﬁ;{jtteOfY for unbounded fluid is directly applicable to unsteady motion
ﬁ'“ch as that assoclated with dynamic stability or directional stability,
[ihﬂ graphﬂ for cross flow forces may be used to determine the degree of
Ef“ ectional stability of a yacht in a mathematical form on knowing the -
Ynagnit“des of various "stability derivatives”. They describe quantatively
ggyﬁg&?ﬂdency of a yacht to return to its original direction after being
Eﬁiﬁ§§19? instantaneous disturbance which changes its direction, and are

Eﬁghﬁgﬁﬁheful to compare the handling ability of different yachts.

:ih;.significant hydrodynamic forces affecting a yacht are primarily
thegway force and yaw moment, If the way a yacht handles can be related
tatrleaat in part to a mathematical relationship then this must aid the
[ﬂesign of directional balance into yachts. It is hardly surprising that
fa realistic method is not used due to the amount of tank testing that

Thas to ‘be made and this is clearly not feasible financially in the majority

. But,, by using the graphs for CL“, a comparable mathematical

Wmethod for determining the stability roots can be used.

'CRITERION OF STABILITY

f _
1.

-k It can le shown that the stahility derivatives are related relatively
7'siﬁply to the added mass values, A stahility derivative is bhasically a
l“rate of change of force or moment with respect to a horizontal movement in
'ﬂf‘the free surface plane. The horizontal movement may be in the form of

'iYﬂw or way in this consideration. For example, on letting the sway

force = Y, vaw moment = N:
v?““- - :
a .
Yr = 37 = Rate of change of the sway force with r where r = yaw

angular velocity

- 9Y . - :
5t . (y = angle of yaw),

The roots and stability conditions in the yaw equation are important:

A + Bf + Cr = O _ ( 16 )

If the primes denote a non~dimensional form then the yaw anqular

Velocity can he found from the roots of the yaw equation above to he

* r' {(t) = Re {QleCl 1t + QzeU 2tl} { 17 )

- 29 -



and 02 are the roots of the yaw equation and they provide a

peredy '
Mcompariaon between yachts for a criterion of stahility.

-B + (-1)ih% Y2 - 4nc
o' - 1 =1,2) (18 )
B | 2n -

-

{igwﬁa§fﬁe seen in the Appendices the coefficients A, B and C may be
m&s&ﬁﬁéo be related to the yaw angular velocity r and the sway velocity

CwEY Y
CA_ = (Y.' =~ m') (N,' = I ') = N.'Y.' >0
- v r z v r
Y. S o ‘ - . '
B = (Y.' = m') N' + ¥ ' (N.' - T 'Yy - N.' (Y "' - m'}) + N 'Y,
v r v r z v r v r

N -~ 16 = N L] Y ] _N 4 (Y ' _ml).
A - ] r v v r .

'H€d8Talso shown that for stability ¢ > o.
\Therefore there are two stahility criteria;

{(a)} the magnitude of the roots g g

1’ 2

' .{b} the magnitude of the coefficient ¢ in the yaw equation, as

o ‘defined hy the stability derivatives (in non-dimensional form).
T " The magnitude of C (where C > 0) will indicate the degree of

e stability of a vessel.

-COURSE KEFPING ABILITY

The course keeping ability of a yacht is really dependent upon

Beveral factors hut four of these factors are

1. Re{dl, U2}
2w
'3, INf'I
Lo 4, Value of C.

The real part of the roots 01 and 02 must not he too large otherwise -

‘ turning ability may be hampered, and this characteristic may also be
the result of having the other three main. -parameters, as affecting course

keeping characteristics, too large,

According to Milgram, Ref. (7) Re ﬂi' is not as important as Inr'[

anq 1Nf" since these two derivatives have hecome markedly less with

- 30 -



the modern designs due to the shorter keel and higher saiil area—displace-

M\
nent ratios for the racing Yacht., Bas IN I and ]N | decrease it
'ihecgmes easier to turn a yacht Since for unit (r = 3y/3t) and (r = 32¢/3t )

re ¥ is the yaw angle, there is less yYawing moment created.

Q__hf_ :

?;“The condition C > O is shown in Appendix 2 to be equivalent to

\\ .

; pLAY R b . t + x'

A T m ——

. T ,xTI g { (M' + m} } 19 )
"\A

ifﬁéither m, OY X, are increased then the stability criterion is

EEPIOVEd in the sense that ( 19 ) becames more unequal and increasingly
¥stable.
L 'mT may be increased by trimming the yacht further aft or
perhaps by altering the aft sectional shapes for constant area but for
3 qncrea51ng l1ft producing surfaces, and here the CH graphs for the Lewis

E”éctions may give guidance. Alternatively, the rudder may be moved

‘}further aft or a skeg introduced.

k;eference to the graphs for the vortex trailing sheet and the rudder section

1{9Jthis report. Moving the rudder aft will increase N.' and this has
’ Y ' and N ' from ‘the aeroforces

These could be investiqated with

fiarious effects. If contributions Y '

{pn the sails are large compared to contributlons due to the water surface

- ‘than increasing Nf is a stabilising influence. It also adds to the turning

‘moment and there is less yaw due to a wave,

If a condition for ( 19 ) is made such that

M '+ ox m = O and x = 0
X Cg . Cg

T e L

(1.e., the frame of reference origin is at the centre of gravity), then

( 19 ) reduces to

mM*
. {M' + m} { 156 )
Hence another effect on the stability criterion is that if the centre

of gravity is moved forward then the stability is increased.

It may be noted that the sign of C is not dependent on U, the forward

Velocity and the U is only important here i1f wave effects are significant.

The procedure for determining the stability derivatives may be

found in Appendix 2. It must be noted that the existence of the graphs

Are the reason that the stability derivatives may he found simply, and

Wherever the lateral added mass of a section is necessary the graphs will

Provide this numerically.



-

: Ship ) s 5, 5, .|s, Sg
‘ half ton ygcht Fn=0.243 -2.50 £2.98 1|-1.54 £ 5,55 1 —9.02
| oo " Fn=0.486 -2.27 £1.35 i|-1.72 £ 3,22 1 0.32
Columbia Fn=0.168 -~1.61 +0.36 1i-1.13 * 7.38 1 | -0.02
" Fn=0'251 -1.56 *0.35 i}-1.19 * 4.94 1 | -0.01
" o Fn=0.335 -1.60 *0.48 1 |-1.61 * 3,37 i | ©.04
Valiant Fn=0.163 -0.38 j-3.08 |-1.78 £+ B.19 | 0.04
" Fn=o.244 -0.37 |-3.01 |-1.91 + 5.08 1§ ©0.09
" Fn=0.325 -0.74 :-3.97 -1.76 ? 3.59 1] 0.16

' MAGNITUDES OF STABILITY DERIVATIVES

p—
+ .

The graphs within this report have not, as yet, been used fo
‘;determine the stability derivatives but below there are two main

FeT o~ LT

‘\feferences from which the expected orders of magnitude of the various

%;;ﬁiiity derivatives apnd roots may be obtained, Ref, (7) and Ref. (B)

T

.-, Gerritsma has a particularly good-set of experimental results

:and shows the stability roots in 3 categories :

(1) Coupled Sway -.Yaw equations of motion
(i1) Sway_-'Roll - Yaw equations _
©, (iii) Sway - Roll -~ Yaw.plus aerodynamic forces

sIncluding first roll, then aerodynamic forces increasingly destabilises

<the yachts investigated, i.e. the Reel part of the roots o +* 0, become

1 2
less negative :

N '

;Q}Qensionless stability roots of the coupled sway-roll-yaw

-‘équations of motion including aerodynamic forces
L TT .
Ve

Milgram has calculated whole range of stability derivatives which
will be shown here for four 12m yachts :
CALCULATED STABILITY DERIVATIVES AND ROOTS FOR 12m YACHTS

COLUMBTA INTREPID (1967) INTREPID (1970) VALIANT

Y, -0.116 -0.116 ~0.116 . -0.116
Y, -0.0554 -0.049 -0,0389 -0.0366
Y 0.0391 0.0340 0.0276 0.0204
Y, 0.0047 , 0.0034 0.0021 -0.0001
N, -0.0163 ~0.0150 -0.0113 -0.0162
N, 0.0047 0.0034 0.0021 -0.0001
N -0.0090 . -0.0073 0.0057 -0.0049
Gl' o, -2.604 -2,533 ~-2.531 -2.,370
' +0.8574 +0.8411 +0.724 +0.6021

- - 17 -



CONCLUSIONS ON STABILITY DERIVATIVES

pum——

In hydrodynamics, the stability derivatives, the roots of the sway
and yaw equations and the margin of stability given by the coefficient

.c > 0 are very useful for both a description and for a comparison between

iyachts. In reality, there are very few ways of describing the motion of

,yachts and their comparisons in as simple mathematical layout as for the
(25 _ : ,
istability derivative method.

Milgram (Ref (7)) has determined the stability derivatives for
various yachts using a 1ift1ng surface method but not taking into account

Cthe body thickness or the way a streamline convects aft to the body -end
?dpe to the body thickness inducement,

This report offers a straightforward
{mg}hod of determining the derivatives taking into account bedy thickness
&gnd the geometry of the trailing vortex sheet.

‘m-.

. " There are three factors neglected in the appraisal of stability
derivatives using the graphs here, namely flow separation in the

fafterbody, the'effects of aerodynamic forces on the sails and the cross

coupling of -sway and yaw with roll, the latter being large effects

.8ince the CE of the sajils moves transversely ﬁith rolling. Experimental

results and the coupled equations of motion may be found in Ref (B},

Experience and utilisation of derivatives will allow the correct

magnitudes for various required characteristics to be known and hence the

method becomes an effective tool for design.

- 33 -



4, CONCLUSIONS

This report has demonstrated how hydrodynamic theory may be
;appl%ed to yacht design where rules of Fhumb are mostly in use at
;present. The .need for consistency and a need for wider knowledge
‘;f balance and'stability'will lead the design of yachts in a more
igéienpif;c direction; thus a hydrodynamic basis for design will,

Eh the future, become more apparent.
i v

; In this report slenderbody theory has been used to prepare a
{;umerical method to find the centre of pressure positions and the
;;tability derivatives for yacht forms. 1In order to bring the CLR
tp&éitigh within 1-2% of actual expérimentally measured CLR positions,

'}he programme of research Iin the Ship Science Department of Southampton
1bniversity for 1978 / 79 will definitely involve a series of tests and cor-
T?péponding CLR calculations on varying yacht forms. Firstly, this will
jallqw an accurate correction method for the final part of the CIR:
Tsleﬁderbody.calculations, to achieve the accuracy potential which is
‘inherent in a hydrodynamic appraisal. 'Secondly, these tests will define

“more asymmetric moment coefficients U in the CLR eguation:

= x + 32
] LY

and thus, with a suitable range of yachts tested In the tank, a
designer can simply transfer the ﬁ value of a parent yacht to his own

.design.

Calculations are quick and simple, and perhaps take only slightly
longer than the method of balancing the yacht's shape to f£ind the
centroid of area. In the hydrodynamic method we have a sound basis for

which a "lead" distance is not necessary.
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APPEYDIX 1: SLENDERBODY THEORY

The slenderbody theory contained in this report is based on Newman

and Wu's theory for fish-like forms (see Ref (13)) with some details

" filled in by Wellicome, J.F., of Southampton University.

This slenderbody theory is derived for a calm free surface, for
steady yaw angle an#f is divided into two sections after the general results

for boundary conditions and Bernoulli's slenderised equations are deduced:

1. CROSSFLOW LIFT FORCES
2. ASYHMMETRIC YAWLNG MOMENTS.

3

Let therz he a coordinate system.

&
T e ——
z _IJ
FIC. 30 - SLENDERBODY COORDINATE FRAME
The body is  symmetric about the x, z plane.

2= Ux+Uxz + ¢+ ¢ ' E - A

g = yaw angle

¢, = stream disturbance due to body (ex fins) at a = 0°

¢, = cross flow term due to yaw .

Order of magnitude of ¢ _, ¢, and derivatives are based oa velocities

around a slender body of revolution:
r = SR(x) ES' is a small parameter) .
Represent body of revolution by a line source distribution along ¢ :

If v is a small transverse flow at a strip, the body of revolution can

be considered &5 a two-~dimensional line sourcel



-‘ \-—“\_—_—:‘/ T
' —_——

, v = ;ﬁ:) = U%%- (1.2) for flow tangential to bedy.
N -
¢, = 22 ta r. _ | a.3)
. 800 | % Rt ) = 2R (1.4)

: 2r

Comblnlng these and u51ng derlvatlves wLLh rgsnect to x and r, and

tog-tuer Wlth an equation for -'1:7

2.2
¢y = Ualr'+ X

|cos ® (L45)
a table of the orders of magnitu&es of each derivative mey be assembled:

{ DERIVATIVES MAGNTTUDE ORDER OF MAGNITUDR

¢q Us “RR'20 (5 R) 0(us2en §)
¢y UsZm s @RY + 0(s2)  0(Usen &)
i t
bor Us® 0(ws)
® o 18 2ns (RRU) o52ans)
- t 1}
borr UR'/R o)
¢ 2USaR cos 8 ' 0(Uba)
¢lx 2U8gR" cos 8 < 0(USa)
son|r = &R} ¢, Ua(l - (s28%/x2)cos © 0(Ua)
2.2
b1 2Usa (R + ‘EE) cos 8 0Usa)
2.2 '
§ R ' 0(Ua/8)
¢1rr ZUG—;E—-COS 9 :

The assumption will be that for an arbitrary slenderbody ¢ _» ¢; Wwill be
of the same ordar in 6, o on a body: 2z = 8Y(x, ¥) as indicated by the

body of revolution case.



o

T,

EQUATIONS OF CCNTINUITY

_‘!.ng =

¢oxx + q?voyy +.¢ozz =0
ous? gn §) + O(U) + OQ) =0
.‘Poyy * ¢ozz =0 Q.8

q’lxx * ¢lyy * ¢lzz

0(Usa) + o_(—"%) + 0(‘3’9-)' =0

- ¢1yy + ¢iZZ . (1-7)
If o =0() then terms ;:e_tained in both equations are O0(U)} since -
0(l) terms neglected in both equations are 0(U6‘2). —

Do

GENERAL BODY BOUNDARY CONDITIONS

Body shape: z = F(x, v}.

TFor a small vector {8x, 8y, &z} 1lying in the body surface -

§z = F_8x + F_J4y

For a small vector {8x, 8y, 6z} lying _aldng a streanline:

Sx = (U + dox ¥ ¢1x).6t

¢y = (¢,

y + ¢1y).f5t : | (1.8)

§z = (Uo + $oz * ¢1z)'6t_
Hence for stream flow following the body shape:

u +2¢ * ¢lz B F::(U * ¢o# * ¢lx) * Fy(¢oy * q>].y)

0Z

For a slenderbody: F = 0(s)

Fy = 0(1).



+ = 'F'
Ua ¢oz * ¢lz 'xU * Fx¢ox * Fx¢1x * FY¢OY ¥ Fy¢1y

0(Ua) + O(USY + O(Ua) = O(US) + O(US> 2n &) +.0(Us%a) + O(US) + O(Ua).
Retaining only terms: 0(US) or O(Ua) of comparable maénitude:
Ua + ¢oz + ¢lz = EXU + Fy¢oy + Fy¢1y on body.

This equation implies two equations:

0Z

¢ = FXU'+ Fy¢oy | (a = 0) " (1.9a) :

Ua + ¢lz = _F ¢1 (Crogs flow) - @.9)

Tyl

Both equations are to be satisfied on the body and fin surface.

BERNOULLI'S EQUATIONS

In steady motion ignoring the buoyancy we have:

P +hoq? = joul.

Substitution gives:

-

2 = Ua + ¢oz + ¢1z) }

+9,0°

La-]
i

= (Ul - g+, 0% - @

oy y

2 2 2
* 2¢oxq’lx Tox Y ¢0Y * 2¢°Y¢1Y

La-]
n

-%p{2U(¢ox * ¢lx) + ¢ox

2 .22 ; 2 2
* ¢1y +.U e * 2U0‘(Spoz * ¢lz) * ¢oz * 2¢oz¢lz * ¢1z }

The largest terms are 0(62,'6u, uz) as seen below:

= -ip{2U(O(U6 n 8) + OCU Su) + O(p 8 (Rn 8) ) + O(U u63Cn6)

+ 0?62y + ow?s?) + oq? sa) + 0r?a?) + o%a?) + 0(UZsa)

+ o(U o ) + 0(U a + o(u Sa) + O(U2 2)}



P g =

> B=cdploug e, S

Neglecting other terms gives:

_ 2 22
ip{zuq)lx + 2¢0y¢1y+ ¢1 + Ua

2 2}
y

0z

2

oz¢lz * ti>1z 3.

+ 2Uap_ + 2Uady, + 26

3

Let P = PO + P Dynamic pressure at a = 0

1 Po

o
=
1]

Dynamic pressure due to yaw o.

P = -lp{2Up__ + ¢°y2 + ¢022} (1.10)

2 2

P, = fip{2U¢1x + 2¢0y¢1Y * 2 4,7 ¢1y + (Vo + ¢, )" + 20a9 )

' o . 2 2
or By = mplUby, by gyt b, (Wt 4y ) dey e AU+ g )T

Note that the last terms are O(Uzaz) compared to O(Uzﬁa) for the earlier
terms in Pl' If o << § so that the lateral displacement of each station
from track is small compared to body beam then the equation above may be

further reduced to the form:
B, = -p{U¢lx + ¢oy¢1y + ¢02(Ua + ¢lz)}. (1.11)

Clearly P0 does not contribiute to cross frces and moments on the body
in the 'wpright condition since there is then symmetry o f the sections port

and starboard. Po is only important when the section becomes asymmetric.

The assunption that a is small compared to ¢ does not affect the

deri wation of equations (1.6, 1.7, 1.9).



P

CONVECTION OF TRAILING VORTICITY

s

The assumption (a.<< §) implies that the trailing vortex sheet lies
close to the centreplane z =0 on which ¢oz = 0. Thus on the sheet we
have:

P, =-p{Ug, +9¢ }

0y¢1y

The values of $ at different but adjacent points on opposite sides of
the sheet will be different but pressure must be continuous since any

pressure difference will result in an infinite transverse acceleration

on the sheet (which has zero mass):

Writing the difference in ¢, across the sheet as ¢1‘:

P' =0 = —b{u¢xl + ¢oy¢yl}

or . U¢x'—+ ¢0y¢y' = Q on the sheet,
. . : LI ' ' '_,
Now: 5¢ ¢x §x + ¢y gy =-0
$_ ' )
X N U .

But this implies that ¢' = constant along strezmlines in the flow

produced at zero yaw, and that the trailing vortex lines lie along these
lines.

1. CROSSFLOW FORCES

The crossflow per unit length of body, L(x) 1is given by:

LG = %Pldy ) —p%{u¢lx * ¢oy¢1y * ¢02(Ua ¥ ¢lz)}dy

Using (1.9b):

L(x) = —p§{u¢lx O by b, 1 Fy 0 (1.13)

- -



pefine A(x) = x{q&ldy.
Consider 2 contours C; and C, spaced &x apart.
EE" Let ¢1 = ¢.1 at A '*
4 = ¢1' at B for same y value as A.

In moving from A to B there is thus a lateral movement ou the surface

,ooz = F(x, y) of distance:

. 5z = F_ 6% (y = constant)
3 - LI ¥
| e fr e R
f @
d Y { INTEGRATION ARouND Cs

INCLUGES VORTICITY

FIG. 32 NEIGHBOURING SECTIONS

At C2: Alx) + A'(¥)6x = {(pl'dy
giving:

AN(x) = f{m + 4, F }y.

Using (1.9a) ‘UF_ = ¢ on body.

x oz ¢oyFy

VA' (%) = {{U‘blx * 05,01, " ¢lz¢0yFy}dy_ *(1.14)

Adding (1.13) to (1.14):

AT (x) +

L{x) ‘
p = §{¢oz¢lz - %yd’ly - (¢oz¢1y * ¢lz¢oY)FY}dy
(1.15)




By applying Gauss' theorem it is possible to show that the RHS of

{1.15) is zero.

By deriving the Gauss theorem in two dimensions:

f (Bdy + Gdz) = - f f (%%-— %g)dydz

- ¢ )

where curve ¢y encloses ¢y and 8, is plane inside c)» 8

and nocing that at fixed x: &8z = Fyéy on z = F(x, y),

is plane

N

" exterior of s
this gives:

o . {(H + GFy)dy = J ( (az ay)dydz (1.16)
52
The velocity components in (1,15) will, in fact, vanish sufficiently

rapidly to apply (1.16) so that (1.15) becomes

TA'(x) +

L{x) _ _ -, 8 EA _ ? (
p f f { Jz ¢oz¢lz oy¢1y) +'ay ¢oz¢ly * q’lz‘boy)}dydz
< ;

2 .

This is expanded as:

Lix) _ : - -
UA!(X) -+ = f f{q)oz(plzz + ¢OZZ¢].Z ¢0Y¢1yz ¢oyz¢ly
59
+ ¢oz¢lyy * rbozy¢1Y * ¢IYZ%Y * ¢1Z¢0yy}dydz

1

N jf'{¢oz(¢lzz * ¢lyy) + ¢lz(¢oyy * ¢ozz)}dydz

S

2
=0 since slenderised Laplace V2¢ = 0,
UA'(x) + ELfl. = 0

' pd f
UA'(x) = U o § ¢1dy

d
L(x) =-pU 3o §¢1 dy. (1.17)



Hence the equation giving the cross force at a particular section is

derived. Now the asymmetric sections problem will be considered.

2. ASYMMETRIC YAWING MOMENTS

CLOSED CONTQUR CROSS FORCE INTEGRATION
? 4
- dL
— > dx

\J - Z

o

P

FIG. 33  CONTOUR

Local cross force on the body is given by:

dL
T + ‘§ Pody

Substituting for P: % = _pé{ U%)‘{ + i%yZ + Mozz}dy

De fine F(x) = {d’o dy | (1.18)
§¢ = ¢ ox + ¢ 3z at fixed y.
¢ &
H4 ¢X + ¢zzx'

Four two contours extending over the similar range of y:

F'(x) = §{¢x + ¢zzx}dy.

.-..—.—-——._--__-—-.—-._.....-.._-..._..._._

% ; Assume subscript o.

e



But on the body -’sz =¢ Z -4

vy z’
pUF'(x) = pf{UdJ-x + ¢z¢y2y - ¢22_}dz
%—i‘; + pUF'(x) = p§{¢y¢zzy - i(d:zz - rbyz)}dy
_ _ 2 _ 2
= p§{¢y¢zdy 1(¢,” —¢ y )d}-'}.

Again Gauss' theorem can show RHS = O:

dL _ _ e
ax pUF'(x).

YAWING MOMENT

- daL - '
M= f X .dx pU{ xF'{x)dx
L L

M = —pULxFG0) | - f F(x) dx}.
L

At ends of the body there is no contour about which to integrate,

i.e., F(x) = 0.

This yields the result:

M= pUJ F(x)dx - (1.19)
L _

F(x) = §¢ody. : (1.18)

EVALUATION OF THE BOUNDARY CONDITION

The physical conﬁitions on the boundary of the contour must be related
by appropriate mathematical statements., A kinematic boundary coqdicion is
appropriate on any boundary surface with a specified geometry and position.
In the case of a body moving with a prescribed velocity U through the
fluid the velocity of the surface is non zero and the physically relevant
boundary condition is that the normal component (V.n) of the fluid

velocity must be equal to the normal velocity (U.n) of the boundary surface

- 10 -



[

{1, _Zy} is thus normal to the contour.

itself. In other words, no fluid can flow through the boundary surface:

3¢ _
a—n = U.n.

In particular one can derive a slender boundary condition in two dimensions

as follows:

By relating orders of magnitude taking into account slenderness the

following equations result .:
6+ ¢ =0 =+ Solution as ¢ = ¢(y, z) + G(x)

2 x ¢yZy on z = Z(x, V).

- At constant x: bz - Zyay =0

{8z, é6y}. {1, —zy} =0

Sn
§z = __§...Il._-_-— Jl:)
VI + 2 2
Y -— 33
3
sy = —GnZ: \h%a {
1 + 2 2
y i&
8¢ = ¢y6y + ¢ZGZ
-8n
= - ¢ Z
(¢z ¢y y) ;
1+ Z
§¢ _ - 1
an (¢z ¢yzy) )
1 +2
Uz
- o7 b _ _ X
b, = “UZ 6+ 42 - )
vl + 2

- 11 -



AC

2

an

n

Thus the

z 6x

V1l + z
y

+UN
X

AC = N 6x
x

(1.20)

derivation of relevant equatioms for upright sections

that are symmetric, and for the heeled asymmetric sections, have been

deduced. Now the actual computer modelling system to determine the

asymmetric yaw moments on a heeled hull will be r

eviewed in Appendix 2.



-

APPEMNDTX 2:

-

The coordinate system is fixed with respect to the yacht and

the

. three motions of surge, sway and yaw are considered such that the system

is restricted to the free surface plane. The body is assumed rigid and

the image system is used, Ref. (14).

e

| ca B U;‘>. N = YAW momENT

v

Y: Swinay FoRcE
T AxS

A= SwWAY VELDAUTY
FIG. 16 DERIVATIVES COORDINATE SYSTEM

Let M' = [m(x) dx
£
M'x = - Jm(x)x dx
7 £
2
M 2 = J m{x)x"dx
x 2

The total lateral velocity is given as:

VT(x, t) = v(t) - xr(t).

Loecal force acting on the hull is:
S B I '
Y{x) (at 3] ax) [VTm(x)]

- _.(g_g - U g_x.) [(v - xr)m(ﬁti)] .

3_

X m(x) - Ur -%; [xm(x)] .

Y(x) = ~(¥ - xP)m(x) + Uv

The total side force is thus given as:

Y = ~vM' - rM}'( - Uvm(xT) + Urm(XT) Ko

where X; = distance from origin to the effective trailing edge.

- 13 -

¥ %i_:" = A GU AR VELDLTY

(9.1)

(9.2)

(9.3)

(9.4)



Multiplying by -x gives:
' 2
T 1 ' v
N -va erz + Uv [M + meTJ + Ur [Mx Xy mT] (9.5)
On differentiating Y and N with respect to ¥, t, v and.v the follow-

ing table is prodiiced.

TABLE OF STABILITY DERIVATIVES (9.6)

 DERIVATIVES .. ... . NORMALISED . . . ‘GﬂAPHICAL USE .
Y, ~Um,, Y Yv/%pULz ~2n(ax /0 %C
Y ~Ux my S SV PYA -2 x(ax? /ey .c g
Yﬁ ~M! Yﬁ' Yﬁ/%pla -M'/gpn3
Y, 4 A Yf/gpg’* M;(/gpn"
X, -ufie + xpm] N NV/§p23U : -2M*/gz3 £y
N U[ﬁ; —_xszi] Nf'_ NrfépRAU : 2M;/024 + (xT/z)er
Ni M; ) Nﬁ' N‘}/%pz4 M.;{/%pz4
Nf -M'2 Nf' Nf/%pﬂs —M'zlipgs
X , X

m' 29/43
v'! v/U
e ae/u?
r' ri/U
g 222 0%
I Iz/p£5

Cor = L -

Some of the above expressiong are deduced from the relation between the

added mass and C__,
L

- 14 -



From Appendix.é (3):
L = pU% Ei+ AREAJ

0 o
, CLW=—-1-—2’:E+AREA]
- mak~L P

: 2
= #° = ARE
. m D{CLﬂna A}l.

Since CLn aft of the trailing edge is defined with respect to a*
m, =m = mp{C a%? - rz} 9.7)
) A AFT Lx : '
m, = nb{CLﬂaz‘— rz} (9.8)
\ where a ‘becomes the keel depth at sections forward of T.E.~
. ' 2
= = *
Thus m, m(xT) mp{Cp 2 }. (9.9)
. For example, x , X
t * TE T
M' = wp{ J (C a2 - rz)dx'+ ! (C a"‘2 - rz)dx}
Lr Lrm

Xy XrE

M', M' and M .' can be found simply by numerical integration perhaps
X : 2

using a trapezfum integration or Simpson's integration.

‘ Thus almost all the stability derivatives considered in the water
surface plane are found on using the graphs. It remains only to determine
the centre of gravity, m' and IZ'. The origin of movement and the origin

of the frame of reference defined earlier is the centre of gravity.

PROCEDURE

1. Three_charactéristics MY, M;; and M'2 are calculated:

X
)

M' = f m(x)dx = Total Lateral Added Mass
o
2
M; = J m(x) .x.dx = Cross Coupled Added Mass between

o Sway and Yaw (for symmetry about x = 0,

it is zero)



2
M! = J m(x).xz.dx-= Added Moment of Inertia for yaw
o acceleration.

These may be found by Simpson's Integration.

2. Yv" Yr" ¥é, Y.', Nv' NG" Nr" Ni‘ can all now be found simply

T
from table 9.6.
(Here CLT - CLﬂ aF X = Xp» where Xp = distance from the
coordinate system origin to the effective trailing edge).
3. m' is 2V/£3 : V = volume of displacement
p = yvacht's length
4. Iz' = Iz/épls : This is the moment of inertia about a vertical

axis through the centre of gravity.

5. Solve the equations (9.14).

6. The resulting values of C, 9y and g, are important in the stability

consideration.
Now follows the derivation of stability conditions and roots. This

derivation is included in the main body of the report to keep the

stability section compact and in one location only.

DERIVATION OF STABILITY CONDITION AND ROOTS

The three equations for surge, sway and yaw may be defined (Ref, ( ))

as:

§(X, - V) + uX, =0 (SURCE) (9.12a)

a
WY, - pV) + (Y, ~ o%u) * vY, +-f¥. = 0 (SWAY) (9.12b)

§ N+ N+ N+ BN 1) T 0. (YA 1(9.12¢)

u is forward or surge velocity

X = forward force

. . . ceume primed v '
Write in normalised form: (but presuit P alues ')

v[n(sf\.I -m) + Yv] T =)] =g
oo - (9.13)
v[ow, + N ]+ x[N M 1) 0

- 16 -



{D(Y. - m) +Y 1} {DN. + N } .
v v - v v =0
{py, + (. - m} N, DN, - 1))

This becomes a quadratic equation:

2 _ _ _ o _ _ _
D [(Yé m (N, = 1) NﬁYé] + D[(Y& DI SCAERBES M m) + NrYé]

+ [Y N - N (Y - m] = 0
AD?> + BD + C = 0
A= (YG - m)(Nf - Iz) - N¢Y¢ (9.14a)
B= (Y, - mN, # Y (N, - 1) - N - m) + NY, (9.14b)
C=YN -NG -m (9.14c)

By considering the relative magnitude of all these terms it may be

sbown that

%'> 0; % >0 for STABILITY (Roots MUST be BOTH

NEGATIVE)
and this implies
c>0
or
Y Y -'m)
v r
TR (9.15)
v r
A, B and C are the coefficients of the equation:
Ar + BE + Cx =0 : (9.16)

and the roots of the equation give a solution of the form:

ltl . g Itl

) : _ oy 2
r'(t') = Re {Pl'e + Pz'e 1 (9.17)
) i-1 2 ¢ .
where g.' = B+ (-1 Y/ B - 4AC (9.18)
1 24
i=1, 2
) Gil
l = et—
Where Ui ( U )'
- 17 -



STABTLITY CONDITIONS

1. Real part of di1, O

p MUSE be positive.

. 2. C»>0.

EVALUATION OF C IN TERMS OF ADDED MASS

C = (-Um ) (UM ' - xszT)) + fuen + xem) (Uxpm, = nﬁ]
R L T s R S R

= —Uz{Mx'mT + M'xom, + mEM' + xmn)}

2, ! :
= fU {mM" + mox, (M' + m) + M 'm.} >0 for stability

. -
mM' + MTxT(M' + m) + Mx'mT <0

| LMt !
melxg| > gy , | (9.19) -

This is the stability condition in terms of added mass calculations.



