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"; LIST OF SYMBOLS e

width of pdnel between support hinges

' Cross-sectional area of reinforcement

wire per unit width

Diatanées'ofxtheﬂreinforcement layéfs‘
from the tension surface cof the panel .

Depth of the initial crack in the
'uncracked section’ .

Distance of the neutral axis from the

tension surface of the panel

Young's Moduli.of Elasticiﬁy; concrete,
steel o

Unlaxial compressiée strength of concrete
Cube strength of concrete

Modulus of Rupture of concrete

Shear Modulus of E}asticity

Second Moment of area in Ox, (o]
directions

Second moment of area of the-uncracked
section

Second moment of area of the cracked
section

Deflection ccefficients for isotropic
and orthotropic theory

Strain coefficient for isotropic theory
Coefficient of cerrage

Mass; of concrete, steel

Moments per unit width

Limit-state moment per unit width

Forces in panel per unit width;
steel, concrete :

Radius of curvature of panel element
in bending

Panel thickness

Digplacements .in the principal directions
of the Oxyz axes set ;

Rectangular Cartesian cq—orq;hateé
Strain energy o
Partial Safet& Factpr

Deflection of panel in Oz direction
Direct strain components

Constants 7

Poisson's Ratio

Density; concrete, steel

Direct Stress
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1.0 INTRODUCTION

- Fexrocement 18 a form of reinforced doncrete. It consists
basically of a matrix of concrete with a high proportion of steel

reinforcement in the form of wiremesh.

Although ferrocement appears, from its use in the construction
of vessels since World War II, to be a relatively new ‘material it
was in fact first used in this way in 1847 by Jeanne~Pierré Lambot.
The history of ferrocement as described in Reference 1 reflects the
usual situation encountered by a new material of a misunderstanding
and over expectation of its properties. More recently there was a
'boom period' of activity in the sixties and early seventies which
has now subsided. Many amateur boatbuilders met with constructional
and economic. difficulties associated with rising completion costs.
For thefyachﬁsman, the attraction of a cheap hull has been limited
to cruising vessels since ferrocement is heavy compared with
equivalent'GRP‘and aluminium designs. Nevertheless, it mﬁy
be that vessels have been toc heavy because of overbuilding
since #ery few vessels have been lost due to hull failure. Since
the hull cost represents 30 - 40% of the total cost, any small
savings here are almost insignificant for the yachtsman. However the
continuing rise of crude oil price may see an increase in cost of GRP

thus making ferrocement relatively more attractive.

Ferrocement is attractive for many other marine applications.
In the developing countries of the world working boats, especially
fishing craft, have been built successfully. Low labour costs as

well as minimal material costs are key advantages as well as the

- basic material_properties. Ferrocement is durable, non corroding

in tropical environments, fireproof, rot proof, easily formed, has

good resistance to impact damage and is easily repaired.

1.1 The Behaviour of Ferrocement Panels

The problem of the prediction of the deflection of a ferro-
cement panel under a lateral loading concerns the pfopertiea of
the steel and concrete components, their relative prbpbrtion and
the geometry of the panel. Basically with increasing deforﬁatiqq
a section of the panel will pass through 3 phases. Initially the

 section is called 'uncracked' and the concrete resists both tensile

and compressive stresses. With increasing deformation the concrete
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in tension cracks because of the low tensile strength of concrete
and the section is then called cracked' The stiffness of the

qracked section is significantly lower than that of the uncracked
;ection. Finally the section reaches a yielding condition called

qhe'failuré section.

The problems of a complete analysis of behaviour up to
failure will therefore involve a panel with varying properties

over lts area.

1.2 The Aim of The Report

Investigation has shown that there has only been limited
research into the behavieur of ferrocement. Clearly the basic
mechanical properties of ferrocement have been determined and
it will as yet be a while before service experience highlights
the most important problems of ferrocement as a structure for

example corrosion, fatigue, constructional restraints etc.

The Naval Architect needs to be able to desigﬁ to various
criteria of performance. In the case of ferrocement watertightness
is retained until considerable deformation and cracking is
achieved. Thus the prediction of panel deflection is of importance

under design loads as well as the ultimate load at failure.

The aim of this repert is to bridge the gap between simple
specimen tests and the behaviour in practice of what could be
over~built structeres. .The basis for this report is Reference 1l
which gives details of the author's work on simply eupporteﬂ
ferrocement panels‘subjected to uniform lateral pressure. In
particular the effect of mesh arrangement on behaviour was
observed Reinforced concrete theory in varicus forms was applied

in order to attempt to predict the behaviour.
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2.0 A REVIEW OF METHODS AVAILABLE FOR APPLICATION TO FERROCEMENT

"PANELS

Simple classical plate theory can deal wiﬁh elastic behaviour
of the panel. Failure must be considered separately. Since both

.the '"uncracked' and cracked sections behave effectively elastically

simple elastic plate theory can be extendeq'up to a limit impésed
by the effect of membrane action at large deflections. Th%s limit
was taken as central deflection equals 0.75 of thickneés. The
failure pressure must be calculated separately. The limitations

of such predictions axe shown by the diagram below.

|
. Prediction
Pressure ==
Membrane
| Limit
(& = 0.75t) Central Deflection

Simple membrane theory is available for a pure membrane,
and various complicated solutions to include both bending and
membrane action are available from Large deflection theory, but

they were not considered in this report.

Classical plate theory includes both isotropic and ortho-
tropic theories as compared in section 4. 1In isotropic' behaviour
the panel is taken to behave with the same properties in all
difections. The various pos;ible arrangements of mesh layers
in the panel means that the properties can be signifi;antly
different in fhé orthogonal directions, The effect of the
direcéipnai properties on the panel as a whole is considered

by simple orthotropic plate theory.

The extension of simple classical theory into the cracked
region can be considered with relation to the initiation of
cracking,’ thereafter congsildering the panel fully cracked as
described in section 5.2. It was also noted that classical

solutions aré available to approximate behaviour of panels with .

different stiffness in different areas and these and their

limitations are described in section 5.3.



The ultimate strength of a ﬁanel is calculated from "Limit

State Theory” as shown in section 6.1.

" With the availability of higher computing power the finite
difference and finite element methods can be used to construct

comprehensive models of the panel under deflection up to fallure.

The finite difference solution is a numerical method of .
apﬁkoximating the differential terms in the equations governing
tﬁe equilibrium of the panel and is based on the deflectioh at
points on a grid on the panel. Variable elastic stiffness can

A be easily considered as can the plastic behaviour of the fa;lure
section, but with more difficulty. A more accurate solution 15
obtained using more grid points., Another attractive feature of
this method is that a variety in edge support combinations as well ,
as overall geometry can be ceonsidered where classical theory 1is
not easily appliea. The major difficulty with the method 1s to
determine the areas of differing stiffness which alter with
deflection. Rgference 2 glves a comprehensive sugvey of the

method.

e ' The finite element method divides the plate up into a
set of elemental sections and considers their equilibrium. 1In
order to define the geometry variables are required at each
node in order to express deflection and twist etc. Reference
3 gives a layered model which is able to consider all of the
basic properties of steel and concrete and as such probably.
represents the ultimate solution to this type of preblem. It
is, however, very expensive in terms of computer time even when

compared to the finite difference methed.

Finite difference and element methads are beyond the
) scope of both this report and Reference 1. Thus the remainder
‘ of this report will be confined to summarising the aimple
;lassipai methods available together with the interpretation
of the use of the methods. .
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© 3.0 TRANSFORMED SECTIONS OF THE UNCRACKED, CRACKED : AND

FAILURE PHASES

~ During the bending of a ferroceﬁent panel ﬁhe gsectional
properties Ean be described by the three phases of the uncracked,
cracked and failure sections. In order to calculate the flexural
rigidity, 'D', whefe

EI
D= 3 . - (3.1)

l-v

of the uncracked'énd cracked éections, they are expressed in

terms of an 'I' value for an equivalent steel sectign. 'I' is
the second moment of area per unit width of the section taken
about the neutral axis of the section. Thus from simple beam

theory the equivalent steel 'I' of the composite section is
I =1 + = I . (3.2)

Finally a moment of resistance per unit length to bending

of the plastic hinge is calculated for the failure section.

3.1 The Final Model for the Uncracked Secticn

Tension

N :
X Compression
t| dy —_\- .— . S
N\

Cross Section T : Strain

It was found from comparison between experimental results
and theory as described in sectlion4.2 the best model for the
uncracked section considers it to be cracked through the covering
layer of concrete in the tension surface. Thus for the purpose of
constructing a satisfactory model this initial crack depth, dc' had

to be included as shown.

Expressions for the depth of the neutral axis.and the
equivalent steel 'I' were obtained in Reference 1 using simple
beam theory for a perfectly elastic section. Using the notation

of the diagram these expressions were



dn - _8 Eair 1 iE 2 Eg : ¢ | (3.3)
- —c ze -
A, (1 ES)N+E (t -4)
Eg, S 2  1E 3 3
= - =8 - = =< - -
and I, =A (- R El (- ap” + 35S e, )7 (t-ay) ] G.a
where As = .area of steel reinforcement per unit width per layer

and N

H

number of layers of reinforcement.

Calculation is stralghtforward using equation 3.3 to evaluate

d  and substituting this value into 3.4 to find Iu'

3.2 The Craéked Section

_T*&\

anl

t | dv

Tension Surface

Cross Section Strain

In this phase the concrete is assumed cracked up to the
neutral axis in the tension surface. Using a similar analysis
to that used for the uncracked section Reference 1 developed

equatioﬁs for the neutral axis depth and equivalent steel I as

follaws

2 E Es © v 2 '

—k+1- ES Ny~ Es - =0, :
a “ + [2a k41 B ) 2t] a_ + [2AS(EC P ag - 1 ap#tf) =0 : (3.5
. i=1 i=k
and )
N ‘ N

_ .2 1E¢ 3 2 _

I_= A izl @-a)” + 355 [(t-a)” - 3 1£k @ -a,)°] 2.8

.
r

where ‘the 'kt layer of reinforcement is immediately above the
neutral axis. The introduction of 'k' is to allow for the area

of concrete lost to the steel in the compression side of the section.

A computer solution. can easily be written to find a value of
2‘* ™ R '

A



dn satisfying equation 3.5 by an iterative procedure. A computer program for

analytic solution of the quadratic equation was written for Reference

1, but it was found to be more complex.

,For manual calculation a trial and error method may need to

be adopted by solving equation 3.5 for a range of values of 'k’'.

However, when there 1is a little reinforcement in the cbmpression
surface or when a less accurate solution is required it is sufficient
to ignore the consequences of introducing 'k'. The equatien for dn
will then become, from the original equations in the énalysia in
Reference 1.
2 et g 2 o] ) ‘
d—Z(A Mt d +tf-2a 2 ] o4 =0 (3.7)
n Ec SEC .
L5 08 =1
b ]
LT R
The' resultant value of dn is then substituted into equation 3.6
to find I .
c

"

s

3,3;1 General Behaviour at Fallure

Tﬁere are two characteristic modes of failure exhibited by
reinforced concfete in bending, namely those of the 'under-' and
‘over-reinforced' sections. In the former yield of the steel in
tension occurs first and in the latter the conrete fails
compressively whilst the steel is still behaving elastically.

In general the characteristics for the bending of a simple beam

would be as shown below..

&.
Moment E
: Deflection Deflection
a) Under-reinforced {(b) Over-reinforced

dhdér—ret;forcement allows relatively large agflections
because of the steel's abllity to experience strain u§ to a value
of 0.10. For over-reinforcement the section faills by collapsing
explosively with small deflections due to the limiting strain

experilenced by the concrete of 0.0035, Obviously the former

‘ quality 1is desirable for energy abaorption. A 'balanced' section

i"‘??’@‘”‘ bd '-i«-‘lg'gﬂ" é; W
¥

Y
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can be idealised in which the steel reache% yield and the
concrete in compression reaches its limiting strain at the
same time. The balanced section is, in practice, variable

because of any effects of membrane induced tensile forces, shear

forces and the variability in the ultimate coﬂcrete strain.

Thus, although it represents an economic combination of concrete
and reinforcement, the balanced section is of little use in

practice.

3.3.2 Conventional Limit State Analysis

Lk

A reinforced concrete section in ultimate bending deoes not
behave plasticaliy as can be seen from the diagrams above. The
momeh£ of resistance to bending is calculated on the stress
profiles obtained when the concrete in the fibrgs éf the surface

of the compression face reach their limiting strain..

References 4 and 5, for example, consider this analysis

in detail.

3.3.3 Concrete Stress Blocks

A variety of stress-strain 'blocks' are used for concrete
in compression which have been developed for differing situations
to find a satisfactory model for the compressive behaviour - as

defined by the. tests available.

The stress blocks in use are quite varied according to
simplicity for use in design, building regulations concerned and

accuracy required.

-It is important to realise that some stress blocks used in
design contain a 'partial safety factor',(ym), which in 'CP 110
is 1.5._ This must be. accounted for when making the mathematical
model for the failure section. The different stress blocks also
use either tbe cube strength féu or the uniaxial compressive

strength fé. They are related by

fcu = 0.78fé . (3.8)

Figure 1 shows a variety of stress blocks which are described

below,



(a} Hogensteéd et Al. i

This 1s the most accurate model which relates the area and
the moment arm of the resultant force to the enclosing rectangle.
The constants A2’ A3 have been found experimentally and are presented

empirically making use of this stress block tedious.

(b} CP 110

This is a design curve from Reference 6. Adjustmenés to the
tultimate stress have to be made accordingly. It is a simple
parabolic curve up to a variable strain value defined by Ecu'

the ultimate stress being constant up to the limiting strain.

{c) Witney

This is the most accurate rectangular stress block. The
constant stress of O.BSfé has been derived to. account for the
shape limitation and moment arm and reduction in stress near to

the edge due to shrinkage.

(d) CEB

Reference 7 uses this stress block which is similar to the
CP 110 one, -but has the simplification of a fixed strain at

the transition from the parabolic to the constant stress regions.

3.3.4 Comparison of Stress Blocks

The CEB stress block is used in the mathematicﬁl model for the

failure section in section 3.3.5.

Witney and other stress blocks such as triangular, trapezoid

and (b) and {c) from above were tried with the following observations.

For sections with very little reinforcement the neutral
axis was so close to the compression face that the shape of the
stress block becomes more critical in defining the location of

the neutral axis and thus the resultant moment of resistance.

It was for this reason that the CEB stress bleck was chdéen
as the basis for the final model of the failure section because

it poésesses simple geometry with a good representation of the

.Eeal shape. Any improvement in accuracy by using the Hogenstead

stress block is not significant in this situation when applied to

.the failure of a panel.
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3.3.5 Mathematical Model of the Failure  Section

h
L o T
hy
t |dn ® o [d; h
J I X
Cross Section G Stresses . Strain

#le

The finql mathematical model for the failure section
was made usiﬁg“the CEB stress block. The behaviocur of the steel
was modelled ﬁ;‘a simplified version of the stress-strain diagram
for single reihforcement strand tests from Figure 2. It was
assumed that the the behaviour of the steel was similar in

tension and compression.

Reference 1 includes the development of the expressions
below from which the depth of the neutral axis and hence the

moment of resistance to bending can be calculated.

Consider the horizontal forces on the components of the
section, noting the simple mathematics of the parabolic stress block.

1 0.002
(t-dn) [ -3 [ ] ] 0.85 fé

For the concrete, P

If

For elastic steel, PsE =T As ou 0 < di < h1
-z AS cu hl < d1 < t

dn_di
For plastic steel, PSP = 5 [ ] a_ ., hl < di < h2

The depth of the neutral axis dn satisfies the equation for
horizontal equilibrium,

+ + = .
PC PSE PSP 0 (3.9

Hence the moment of resistance of the steel and concrete components

of the section are given by
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2 3
Mc = (t-dn) [0.5 —[B] X
Msp = Ll (dn_di)l - B
2
" ~ (dn_di)
SE h Ou

Then the total moment is given by

(3.10)
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4.0 THE APPLICATION OF CLASSICAL PLATE THEORY TO THE UNCRACKED PANEL

4.1 fsotropic-Plate Theory - The Navier—-Stokes Equation

The Navier-Stckes equation for the deflection of a simply
supported.square panel of side 'a' is derived in Appendix 2 as

\
- 'mm _ .
4 o @ sin. [—— 8in [—1 ] 4 ) :
w = lgga E 2a 55 2 = légﬂ—ki,n,m_odd (4.1)
7D n=1l m=1 nm (n° +m) T D .

where the flexural rigidity used to compare isotropic to orthotropic
plate theory is a mean of those of the two principal directions of
the panel i.e.
1
D== (D +D
2 ¢ X y)
CE Iy,

l—v2

1

where D
: X

L

and 'Ix' is the second moment of area per unit width,

The values of the summation term ki can be calculéted by a

co-ordinates in the panel, giving in particular from Figure 6.

(x/a : y/a) ki

1/2 : 1/2 0.2441
1/3 : 1/3 0.1873
1/2 : 1/4 0.1765
/6 : 1/6 0.0663

4.2 Orthotropic Plate Theory -

Ed

The equations governing orthotropic plate theory are included
in Appendix 3. A similar expression to the Navier-Stokes solution
for the deflection of the panel was obtained by another Fourier

Séries sdlution. .

: :'The'solution leads to the following equation for the deflection
of the panel, to illustrate the comparison with isotroplc theory P

6a’p § o Si“['r%}‘] Si“[n%ﬂ 16a’ '
‘”:E—P' D) T = P k{ n,m odd (4.2)
Dy n=lm=l nm (n+im") T Dy

where Dx is the flexural rigildity in one direction, taken as the

smaller one.

ST e
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and X = Dy/Dx

Note that when'X = 1, the isotropic equation is returned where

Values of the summation factor ki have been plotted against A

5nd are shown in Figure 7.

4.3 Comparison Between Isotropic and Orthotropic Plate Theory

-

Mathematically, comparison between the theories can be established

for a square panel as follows.

Consider the central point as the most sensitive to deflection.

Isotropic and orthotropic theories respectively, give the deflections

Ll

w, and wo where

i
From (4.1) 5 nx) -
16a4 ve v SLD[_E—M 31“['qu 16a4
Yy ® _53"2" ) p) 2.2 = £ ky
T D n=l m=1 nm(n +m) mD
and-(4:2y
L6ad w o sin[ﬂﬂf] sin[EﬂX] Leal
Yo T T 6 ) az 2 ; = 78 £ kg
"Dy n=lm=l nmi{{n +im) D
on division
W, k D
i - i, =x
v T x5 {4.3)
o i
D
where D=22%"Dy . 1 43 ZX, sinceDd = AD (4.4)
2 2 Yy X

At the centre of the panel isotropic theory from Figure 3

gives ki = 0,244)1. Hence the v§}ue of ;i- can be calcula@ed for
various values of A by reading ki from Figure 7 as follows
W

A ki ;i

1.0 0.2441 1.00

1.1 0.233 1,00

1.2 0.222 l1.01

1.4 0.204 1.03

1.6 0.190 l1.04 .

1.8 0.177 1,07

2.0 0.169 1.09
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it is observed that for values of A close to 1 the analysis
dives similér central deflection. Consideration of the theoretical
value of A for a wide variation of wiremesh arrangements showed a

range for A of 1.0 - 1.2. Hence there was theoretically no value

in applying orthotropic theory to square panels. Experiment showed

that there was no significant difference in the deflections measured
at similar points on orthogonal centrelines in the panels tested

thus supporting the thecretical conclusion.

4.4 Moment Fields in Simply Supported Panels

Varicus features of the panels in bendiﬁg prompted an investigation
of the moment fields in the pa.nel.. In particular, the formation of
cracks which occured along the diagonals and in the central region
of the panel. It was also observed that there was negative curvature
along the diagonals towards the corners and this indicated the presence

of negative moments in the panel,

The Nav;er—Stokes equation was used to calculate the mement

field, expressing it in terms of the principal moments.

The diagram below illustrates the plane moment system in the

Ont axes set,

Ntl’l Mt

Mat

Ht('l‘\”t“
i

3

Ma

-Mn and Mt are principal moments in the plate 1if the 'twisting

f o= =
moment', M . =0. M =M.

These moments are directly related to the principal stresses

‘8ince they arise from the 1ntegration of in-plane forces throughout

the depth of the panel by equations A.2.4 and A.2.5.

Appendix 4 deals with the determination of the éagnitude
and direction of the principal moments from the Navier-Stokes

equation.

A computer program was written to calculate the moment

fields from the analysis using a value of Poisson's Ratio & 0.3.
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The two principal moments were then plotted in contour-form,from

the values calculated on a grid on the panel,in Figure 8.

~From Fidure 8 the negétive moments along the diagonals
explaineﬂlthe negative curvature. The maénitudes of the principal
moﬁents are greatest across the diagonals and in the centre of the
panel. This explained the features observed when the panel underwent

transition.

4.5.0 Prediction of Panel Behaviour up to Initlation of Cracking

(First Transition)

A serles of 8 panels of identical dimensions, but differing
mesh arrangement were accurately made as described in Reference 1.
6étéils of panels are given in Appendix 5. From the measurements
made in testiné the panels the value of applying claésical plate theory
firstly to the érediction of deflections and seéondly the first

transition point was examined.

4.5.1 Prediction of Uncracked Panel Deflections

From the curves in Figures 9 to 16 showing the deflection of
the panels with pressure it was cbserved that there was no initial
linear elastic behaviour in most cases. Only the panelé containing
least reinforcement exhibited this linear behavicur and a well
defined transition point. It was decided to use these curves for
panels 1, 2, 3 to see if a consistent application of plate theory

could be made.

_ An initial model of the uncrackedsection was made agsuming
that the concrete was continuous throughout the depth. Substituting this
stiffness into the Navier-Stokes equation (4.1) in the form

. nrx mra .
W 16a4 @ o 8in —;—J sin{—z—J _
== ) 5 = n,m odd (4.5)
? ™D n=1l m=1 nmin + m)

made the panels theoretically 40 - 50% too stiff, when compared
with the measured g- slopes. Hence modification to the initial

uncracked section was made. ‘

One of the two alternatives to the initial model investigated

used the assumption that Young's Modulus of concrete could be lower

in tension.than compression. An expression for the equivalent stiffness

of the uncracked section where the Young's Modulus in tension and
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compresSian*held a constant fixed ratio was deﬁeloped. In .order
to get a good fit to these curves the required ratié was approximately
0.3 to 0.4. This value appeared to be too low and thus the model

was discounted.

The final model adopted the reasonably assumptions that the
'panel-cpntained initial cracking in the covering layer which was
effectively useless in tension. In view of the limited experimental
data obtained any assumptions made about the depth of initial cracking
in both of the orthogonal directions are of little significance.

An adequate stiffness for use in isotfopic theory could be obtained
in two ways. Firstly, the I value way calculated in orthogonal
directions with an initial crack depth half a wire diameter below

the lowest layer as shown in (a) below and the-mean value taken,
Alternatively, }he panel could be considered cracked up to the lowest

level of reinforcement in either direction as in (b)

4 -
¥ DD
T I/

dey

D
Il

-

fda

(a} (b)

ch b J-r.g

As mentioned above there was no significant difference between
the two methods, but in view of the fact that the stiffness of the
uncracked panel was dominated by the concrete and that the uncracked
phése of the panel deflecticn was limited in most cases anyway,'it'
is convenient to use the second method and consider the panel as

a solid panel of concrete with an ineffective surface layer in tension.

:It was also observed that the shape of panels 1,2 and 3 as
defined. by the deflections at other points on the surface followed
that given by the Navier-Stokes equation.

Finally, it was observed from the panels with most reinforcement
and little if any initial linear elastic behaviour that applying this
method did at least give a reasonable tangent to the slope at the origin.
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4.5.2 Prediction of the First Transition Point

Prom_the pressure-deflection curves for panelsll,2 and 3
a distinct transition point can be identified which corresponds
to the initiation of cracking in the panel,. An investigation was

made in order to determine a criterion for this transition point.

The initiation of cracking will occur when the concrete .

can no longer stand the maximum local tensile stress.

The Navier-Stckes equation (4.1)

16 a4 e w sin [Eﬂ_’i 8in [m] .
w==02 7 1 R n,m odd (4.6)
T D n=1 m=1 nm{n + m) .

was used to calculate the local stressea in the panel. From
equation (A.2.4), the equation for the stress at a distance Z °
from the neutrel axis of -the panei‘ipithe Ox direction is

%

2 2

. € . (Z2) = Z 5 3~£—+ v i—%
% 1-v ax -3y
2 o o sin[nnx] sin[mﬂy)
_Z - E Z Z a a
- 2 2 2 2.2
1-v a i D n=1 m=lnm (n° + m )
) ) 4
-2 ["_} lépa (4.7)
2 2
l-v a D
Hence the stress is
oxx(z) = E_ Exx(Z) {4.8)

It follows from Figure 8 that the maximum principal moments
and. hence'stresses occur in the corners of the panel. Calculations’
of the tensile stresses in the corners gave exceptionally high
predicted values of stress. Because of this and doubt about the
physical conditions at the corners it was decided to use the centfe
of the panel as the point of reference. Visual obseévetion also
showed that cracking appeared at the centre and along the diagonals

of the panels simultaneously.

At the centre of the paﬁel the principal stresses are equal

and in the O, and Oy directions and here equations 4.7 and 4.8 become,
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with k, = 0.2921,

2
- 16 a2 Ec ‘ : ‘
0(z) = 2 —49-—— = x 0.2921 (4.9)
B (¢ Iu s . :

by substituting for 'D'. The maximum principal tensile stress in
the panel is obtained by substitution for Z'aé the distance fro@ '
the neutral.aXis to the extreme depth of concreté. From section
4.5.1 it was found that the panel behaved as though it was cracked

through the surface covering layer so the value of 2 used was the

distance from the neutral axis to the depth of the lowest layer of

reinforcement,

-
+

It was decided to relate the maximum tensile stress calculated
at the centre of the panel to the Modulus of Rupture, given in
Appendix 1 as

ce = 0.6225 VEY (4.10)

%(2)

ft
; ct
2.23 and 2.16 respectively. A mean value of

This gave values of for each of panels 1, 2 and 3 as 2.50,

= 2.3 (4.11)

was taken as the criterion for locating the first transition point

for these panels.

The most importaht observation to be made is the large amount
by which the predicted stress exceeds the maximum empirical tensile
stress of the concrete at the centre of the panel. There are many
assumptions which have been made which can alte; the relationships
of the calculated stress and the Modulus of Rupture such as the
working value of Young's Modulus used, and the value of Z taken.

It is known that Young's Modulus for concrete in tension can vary
from the compressive value. The Modulus of Rﬁpture'is‘an empirical
Qalue and thus subject to a degree of uncertainty and it is also

known that well-reinforced concrete can sustain a significant increase

in tensile stress,

Fd

Using the criterion of equation 4.11 the transition point

was predicted for the remaining panels, 4 - 8. Even thoﬁgh no

distinct transition point is present, the general observation was

that transition appeared to occur earlier with an increasing amount

of reinforcement. In fact, in the case of panel 8 with the most
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reinforcement it appearea thht transition could have been considered

to occur at the origin.

Further discussion of first transition is included in section

5.2 with regard to the prediction of c;gcggg banel deflection.
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5.0 EXTENSION OF CLASSICAL PLATE THEORY TO THE CRACKED PANELS

5.1 General Behaviour of A Cracked Panel

[ cracked

uncracked :‘
1 '
transitigq o
.4 ]
]
Pressure !
[}

W }
—« T lst Transition

Load
Cycle

{6 = 0.75¢t)

Central Deflection

An idealised form of the pressure-deflection curve for a

ferrocement panel is shown above. It features the initial

linear elastic_ behaviour up to the first transition point-where

cracking begins. The next stage is of transition to a.fully

-y cracked panel. The panel effectively behaves elastically in both
the uncracked and cracked phases. This does not however mean
that the panel will return to zerc deflection when unloaded from
a point above the uncracked phase, but will have én initial 'set’
as shown above by a typical load / unload cycle. This is explained
because the panel changes it structure when it cracks. The panel
now has many open discrete cracks, but it still behaves effectively

elastically since no yilelding has occurred in the reinforcement.

The duration of the trénsition stage depends on the amount
of reinforcement in the panel. For instance the panel could reach
Lb'_ : transition and go straight to failure as shown in (a) below; or
the transition period may be so extended that a fully cracked panel
is not achieved before the interference of membrane action as in ;
(b) . {
To extend classical plate theory to the cracked panél in
'.fthe ideal case shown below, the first transition point, P, and
; ; the extent of the transition phase would be calculated in order to
._find an equivalent transition point,P! from which the prediction
can be extended. However, because of the variation of behaviour
hd "in practice with reinforcement arrangement, the predictions were

based on the first transition point only and observations made on
this assumption.
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(a) - () .

Pressure | ' I
| i
I |
Deflection (6= ©.75t) " Deflection (6 = 0.75t)
, —F ! Measured
Pressure P ==
4 F N =~ Prediction
? ]
¥
Deflection (6§ = 0.75¢)

5.2 Fully Cracked Panel. Predictions of Deflection

The pressure-deflection slope for the fully cracked.ganel
was calculated using the flexural rigidity, as a mean of those of
the O, and Oy directions, given by the cracked section in the
Navier-Stokes equation (4.5} This line was extended from the fikst
transition poiﬁt as calculated from Section 4.5.2 The péédictioﬂé
were drawn on Figures 9 to 16 from which the following observations

were made.

For the identical paneis 1l and 2, with one layer of
reinforcement, it appeared that the panels transformed straight
into a failure mode. In the case of panels 3, 4, 5 and 7, with
3 or 4 layers of reinforcement, the predictions formed a fairly
good envelope to the behaviour. The two éxceptional cases were
panel 8 with most reinforcement and panel 6 with a diagonal
reinforcement arrangement. The prediction for the cracked secticn
of panel 8 gives deflections which are toco small and ?n fact it
would have been better to have considered the panel ini&ially
fully cracked. ' In the case of panel 6 with diagonal reinforcement
the t;ansition'wés delayed, possibly as a consequence of mesh orien-
ﬁatioh,'but further experimental evidence i8 needed to qualify this

. obgervation.

;o
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In conclusion, it Qas 6bserved that the effective position

of first transition -occurred earlier with increasing reinforcement

content. Clearly more experimental data has to be 6b;ained before

this behaviour can be confidently predicted, perhaps with regard

to reinforcement direction as indicated hy panel 6.

However, the

gradient of the pressure deflection curve was well predicted

where a cracked phase was present,.

5.3 Partially Cracked Panel Solutions
(a} D = Const, {b} p = const.
/P-O - D'D,
- - ‘
/F-PI /D’Dz
7 4 /,// /7 L/ 1
iz . ______%//f N
I |
- CL iy hd a .ll

An investigation revealed two possible applications of classical

plate theory as approximations to a panel with both cracked and

uncracked regions.

mainly in the central reglon and also aleng the diagonals,

solutions were investigated.

Two

Firstly a solution to a panel under a square central area

of pressure was taken from Reference B,

diagram (a) above the solution is

Using the éymbola in

sin[ﬁgﬂi sin[lmTrw
a a

Observation indicated that the cracking occurred

Bin[n“x] sin[Em}q
a a

16a4 ‘ oo o n+m
w=12ap vy )T
(33
n D - n=1 m=1

2.2

nm {n” +m)

(5.1)

The second approximation considered a panel of two stiffnesses

as shown in diagram (b) above.

Reference 1 to give the following equation

)

16a4p
W= R
w [(1-x%p, .+ a%,]

n=1l m=1

s sin[-——

This solution was deveioped in

nnx sin[mﬂxj
a a
2 2,2

)

(5.2)

n,m o
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These ﬁethods'were invééfigated in érder te find an
approximation to the g slope of the panel in the cracked phase
assuming it still contained both cracked gnd uncracked secﬁiona
as defined by A. However, since the cracked area, and hence X,
can vary with deflection and because an adequate prediction was
more easily available by section 5.2 using the fully cracked
approximation so further investigation into the application,of

this method was not continued.

5.4 The Initiation of Yielding

The existence of a second transition point at which the

reinforcement begins to yield was investigated as follows.

It was assumed that the panel was completely cracked
and the centre of the panel was taken as the location of
maximum principal stresses. The calculation of this transition
point was based on the overall deflection of. the panel and
not the pressure, since the strains in a panel are a geometric
property depending on panel deflection. If the prediction had
been based on pressure, then the location of the first transition

point would have been of importance.

From the Navier-Stokes equation (4.1)

16pa’
W= | TeR k, (5.3)
m D

an expressidn for strain was obtained as equation (4.7)

' 2y 2 _
e.= —% lgp“ | Lok, (5.4)
1l-v mTD J a
Hence, on division, where at the centre ki = (0.2441, k2 = 00,2921
0.2921 n2 yA
0.2441 2 2 v (5.5)
a 1l-v

A yield: strain of ¢ = 0.004 was taken from Figure 2 and the value

of w thus calculated for each panel and drawn on Figures 9 to 16.

It was observed that there was no significant change of
slope to give evidence of the transition. Note that the calculated
values are close to deflection at which membrane action becomes
significant. . The spread of yielding.in the panel will develop

}
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over a wider range of panel deflection than the development of
cracking. This is because the yield strain of steel is much higher
than that of concrete at cracking. These reasons explain why a

second transition point is not clearly visible.
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6.0 ULTIMATE LOAD SOLUTIONS

6.1 Panel'Failuré Modes and Prediction of Faillure Loads

Ultimate load theory relies on the definition of a mode of
failure at which the panel collapses with a_presbribed hinge
pattern. The ultimate load solution usually considers the pattern

which requires the least pressure for collapse by the hinge mechanism,

It was found from the panel tests that two modes of failure
were observed. In the case of the panels with 1 or 2 layers of
reinforcement only,cracks were observed aloné,thé diagonals as
shown below as the lst mode of failure. The second mode of failure
was obeyed by the other panels and is also shown,

(a) Mode 1 (b) Mode 2

oy

The theory used for calculating the relationship of failure
pressure and hinge moment of resistance per unit width' for both
modes was considered in Reference 1. Although the two modes could
be considered separately, the first is the limiting case of the
second with A = O, ' ' ) '

Frbm Reference 1

2
‘Mode 2 MP = %%—‘ (l—AB) or p = EEEB (6.1)
(1-A7)a
thus with A = 0,
2
Mode 1 : M = B3 or p = 23¥% (6.2)
o 24 a2

The moment of resistance is calculated from the failure section

as consildered in Section 3.3.

In order to predict the failure pressure for Mode 2 the value
of X must be known. It was observed that the value was not constant

during failure and so it was decided to use the value calculated

-
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from measurements made at.collapse. The failure presahres_so

calculated are-indicated on the Figures 9 to’ 16.

It waé;pbserved that the predictions'were all very low.
The most likely reason was the presence of membrane forces at very
large deflections. The effect of the orientation of the reinforcement
on the hinge moment of resistance was considered in Section 6.2. It
was also noticed that excessive hinge movements allowed the edges of
the panels to be restrained. This was only significant in the case
of panel 7 where the fallure pressure could not be safely rdached.
It was taken up to 16 N/cm2 whereas comparable panels reached 9 - 10

N/cm?

6.2 The Effect of Mesh Orientation on the Failure Mcments

The orientation of the wiremesh can affect the failure
moment if kinking of the wiremesh develops across cracks in

the hinge as shdwn below

zgﬁf_

T

LA}

() D)

Consider the moment along a hinge at an angle ¢ to the Oy -
direction. Suppose that My and My are princlipal moments so that

Myy = O. ' Then from equation A.4.1.

M =M 0052 p + M sin2 ¢ (6.3)
n X Yy

Thus for case (a) above, where there is no kinking of wiremesh,
the failure moment for an isotropic panel with component failure

moments M, = My is

M =M (sin2 o + cos2 ) = M (6.4)
u X X

i.e, it is independent of direction.

This is an upper-bound solution. A 'lower-bound' solution

exidts where the effect of theé twistlng moment 1§ included in (6.3).
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It is found, héwever, that twisting moments have very little effect

on faillure moments,

Diagram :(b) above shows the effect of reinforcement kinking
across a wide crack. Resolving moment vectors along a unit

length of the hinge now gives

Mn = Mx cos ¢ + MY sin ¢ (6.5)

The maximum effect for an isotropic panel occurs when ¢ = 45°

when M = M 80 that
X Y
M =22 =  /f2nm (6.6)

Thus the kinkihg of the mesh in a wide crack could give up to

40% more moment of resistance. This is clearly restricted:since;‘\,
complete kinkfﬁ&ris unlikely to occur because the concrete would
crumble first.

In order to investigate this effect parnel number 6 was arraﬁgéd
with the reinforcement parallel to the diagonals. It was to be .
compared with panels 4 and 5 which were similar but with reinforcement
parallel to the edges. However, since these panels failed in Mode
2, thus with reinforcement both parallel and diagonal to the hinge
clements, and number 6 in Mode 1, no significance cou}d be attached
to the result. In fact all three panels failed at approximately
10.0 N/cmz.

In the case of panels 1 and B each with only one layer of"
reinforcement the first mode of failure was observed. Thus with
the reinforcehent placed parallel to the edges the wiremesh strands
were at the diagonal to the hinges. Kinking &f the strands was -
actually visible. However, even increasing the moment of resistance
by the factér of V2 as given by Equation 6.3 the prediction of the

failure is sf111%too low as shown on Figures 9 and 10.

6.3 Prediction of Beam Fallure Modes

Reference 10 gives experimental data on the resﬁlté of testing
ferrocement beams under a constant bending moment. Of particular
interest here is the prediction of the fallure load of the beams. A
re%analysié of the predictions made in Reference 10 using the failure

section of section 3.3.5 gives better agreement. Typlcal load-

‘deflection diagrams with predictions of fallure loads are shown in
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Figures 17 and 18.

It was observed that the failure éecﬁion can be used to
give a good approximation to the ultimaﬁe load for Qimple bending.
Tﬁia contrasts with the poorer predictions made for the panels in
section 6.2 which are most likely attribuéed to the causes listed
there. However, the predictions made for the beams were all
congistently low leaving uncertainty as to whether this Qas_due

to any limitations in experimental techﬁique or theoretical

considerations.
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7.0 CONCLUSIONS

From the experimental and theoretical work in this report

the following observations have been made.

1. By increasing the reinforcement content, the general properties
of the panel improve such that the maximum load and deflection are
increased. With more reinforcement, cracking in the panels was
dispersed over larger areas. The stiffness of the panels 1s mostly
dependent upon the outer layers and does not differ signifiéantly

in the principal directions of the reinforcement.

2., It was found both theoretically and axperimentélly that the
application of isotropic plate theory was guite sufficient for square
panels and would certainly be so for a low aspect ratioc with this

type of arrangement. Orthotropic plate theory need only be considered
when there are large differences in the directional properties of

the material such as when longitudinal steel rods are included in

the construction.

3. The use of isotropic plate theory to predict the deflections of
the uncracked panel require that the panels be considered to have an
ineffective surface layer in the tension surface. The stiffness of
the panels is calculated by assuming that the 'uncracged' section
has an initial crack in the surface layer up toc the lpw?st level of

the reinforcement.

4. From tests of panels with }1 or 2 reinforcement layers, a transition

point was evident. The following criterion exists at this point -~
= L]
a 2.3 fct

where o is the maximum fibre stress in the concrete at the centre of
the panel and at the depth of the lowest layer of reinforcement. fét
is the 'Modulus of Rupture' from Appendix 1;

! =
fct 0.6225 V%t ‘

Applying this criterion to the initiation of cracking in the other
panels indicated that transition appeared to occur earlier with
increasing reinforcement content, It was also observed that the

orlientation of the relnforcement affected transition.

Some research has been carried out, Reference 12, to investigate
cracking which is important as a limit on service to maintain water-

tightness and so prevent reinforcement corrosion. The general
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conclusion of these investigétions has been that the transition

stress increases with reinforcement contént which contradicts the
cbservaticns madé here. This reference'also shows that the stress

in the concrete at transition varies between 9.5 —.4.0 fét , depending
on the varying assumptions made. This confirms the accepted increase

in tensile strength of concrete due to the pfgsence of. reinforcement.

5. The mathematical model of the cracked séction can be used

to reasonably predict the slope of the preaéure-deflection turve in
the cracked phase. The accuracy of the prediction of cracked panel
deflections by extending this slope from the first transition point
depends on the location of the transition point as indicated in (4).
In particular, for panel 8 with most reinforcement sufficient
accuracy could be obtained by drawing the cracked phase from the

origin of the préssure—deflection diagram.

6. The use of limit state theory in the prediction of failure
loads for simpie beams is good. However, predictions for panel
failure were too high because of the complications introduced by

membrane forces etc.

This report shows the value of applying classical plate theory
in a simple way to ferrocement panels. The initial tests have
shown this as a promising method of predicting panel deflection.
However, further information is required in order to calculate
the effective first transition point to extend thelprediction intoc
the cracked phase. Further investigation should aiso be carried
out with regard to the prediction of panel failure loads althougﬁ
the simple application of limit state theory providéd a consistently

safe estimate in these tests reported.
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~ In order to construct a complete picture of the behaviocur
of ferrocement to large deflections more experimental data must
be obtained on the initiation of cracking with regard to reinforcement
arrangement. From the work done it is clear that reinforcement
content is significant and so also is reinforcement orientation.
Other factors will also affect transition, for example, the rein-
forcement type and the thickness of the covering layer over the
reinforcement. Such experiments may well give better results by
using wide beams or panels in cylindrical bending thereby eliminating
the complication of double curvature with fully supported panels of
low aspect ratio. Attention is drawn to various articles concerning

cracking of ferrocement such as References 12 and 13,

Finally more information is required to assess the problems
involved in the prediction of failure loadings of panels using limit

state analysis, including the effects of mesh orientation.
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A.1.0, MATERIAL PROPERTIES

A.l1.1 The Properties of Concrete

Structure

Concrete consists of a mixture of aggregate and cement.

The aggregate consists of fine crystalline solids of rock and is

"bound together by the cement which is formed of colloidal lumps

of solids. Many references to the many types of cements and

aggregates are easily available such as reference 4.

The strength end the properties of the concrete depend on
many factors from the earliest stages of mixing and proportioning

to curing etc.

Compressive Strength

This is the most important property of concrete. Simple
crushing tests indicate a typical strength of 40 N/mmz. It is
from this figure that the Grade number is taken, as Grade 40,
50 etc. The easiest test to perform is the cube test. Small
cubes of the mix are made .typically 5 or 10 cm wide and crushed

to find the cube strength fcu'

The direct uni-axial compressive stress fé is obtained from
the crushing of cylindrical test-pieces where there are no
weakening shape effects. The cube strength and direct uni-axial

compressive strength are related by

£ = 0.78 £!
cu c

for ordinary strength concrete.

The maximum compressive strength of concrete is variable
under a bi-axial state of stress. Consider the element in diagram
{a) below, then the compressive strength in one principal direction
can be related to the applied stress in the orthogonal direction.
This is shown by diagram (b)
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There is typically an increase of up to 20% over the uni-axial

compressive stress.

Compressive strength increases with curing time as a
consequence of the diffusion of the water into the colloids

of cement in the cuxing process.

The variation of strength with time is shown in Figure
3. Normally a 28 day curing strength at 20°C is used sipce the
rate of change of strength with time is then low,though 3

and 7 day strengths are useful in the short term.
Tensile Strength

Compared with the compressive strength the tensile strength
is very.low., It is about 7 - 10% of the compressive strength in
uni-axial tension. The tensile stress as found from concrete beam
tests is called the 'Modulus of_Rupturé'. It has accepted empirical

forms such as the following from Reference 9

£'y = 0.8225 Vfé
Simple tensile tests are difficult to perform and are usually done
as a combination experiment by jacketing the test piece in a metal

sheath.

Although it is small the tensile strength helps to resist
cracking due to thermal shrinkage and horizontal shear effects in
beams. The tensile strength of a reinforced concrete can be

- significantly higher than when unreinforced.
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Shear Strength

Although it is not referred to directly in this report the
shear strength is worthy of note since it is low. Shear strength
is dependent to a large extent on the interlocking of the aggregate
grains. Thus a better aggregate increases the shear strength. 1In

general it is about 0.15 - 0.25 of the compressive strength.
Modulus of Elasticity

Concrete does not have an initially linear stress-strain
relaticnship as is diagrammatically illustrated below. Thus an

initial tangent modulus or secant

Strei§ Tangent Modulus

/ - moduli for various working stresses
/ '/ can be defined. There is also the
'//Secgnt complication of creep effects and a
//' Modulus dynamic modulus can also be obtained.
’ - In tension the elastic modulus can

also vary because of the presence of
initial cracks due to drying and other effects, but no specific
reference could be found as to these effects. A typical experimental

stress-strain curve is drawn on Figure 5.
Creep

Although this was possibly of no importance here due to the
short duration of the tests, the effects of creep are worth mentioning.
Creep is an effect of squeezing the water content out of the colloidal
solids of the cement under pressure. It can be measured in a very
slow compression test, but it is most important in long term applications

of concrete, i.e. months or years.
Poisson's Ratio

Again this property is dependent to a small extent on the
other variables in concrete, but in general it is assumed to take

the value of v = 0.20 - 0.25 for normal weight concrete.
Coefficient of Coverage
The coefficient of coverage is a measure of the dispersion

of steel in a reinforced concrete component. It is defined as

K = surface area of steel in contact cement
X volume of concrete

A value of Kx greater than O.J.mm_l has been suggested to delineate

ferrocement from ordinary reinforced concrete.
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Blso useful in describing the reinforcement content is the
ratio of weights of steel to concrete. A typical range of values

for ferrocement construction is 10 - 25%

A.l.2 Testing of Concrete

In order to determine the characteristic properties of
the concrete in a ferrocement structure test pieces in the form
of cubes and prisms are made from the original mix and cured with
the parent structure. Various methods of determining the properties

are available and these are now reviewed.

The compressive strength is found from cube tests. Cube
testing is done in a hydraulic press in accordance with the strain
rate and other conditions specified by B.S. 1881, Reference 1ll. It
requires that the cubes are tested damp on removal from the curing
tanks sc that cracking on a microscopic level does not occur in-

drying out.

In order to determine Young's Modulus there are three simple
approaches available. Firstly, there are many empirical diagrams

such as Figure 4 relating parameters such as density and cube

 strength to Young's Modulus. Ultrasonic testing is the second

method which uses sonic probes attached to prisms or cubes to
measure the speed of sound in concrete, ¢ . Then Young's

Modulus can be calculated, essentially from

/ c
c = jJ—
p

but with standard corrections for shape effects and Poisson's Ratio.
This is a convenient on-site test method which is more reliable on
large test pieces. Finally, direct measurement by strain gaugeing
prisms and loading, by an Instron machine for example, inherently
forms the most accurate method of taking measurements of stress and
strain to obtain Young's Modulus. It must be noted that care ha;

to be taken to attach the strain gauge well to the porous surface

of the concrete. Direct measurements by an Instron machine are
difficult because concrete will only experience a very small elastic
strain of 0.0015 which can not easily be accurately detected unless

long and relatively thin test pieces are used.

From the investigation carried out in Reference 1 it was

found from strain gauge experiments that the empirical methods
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were reliable and that ultrasonic testing on small test pieces
produced unreliable results, Thus it was concluded that empirical

methods are quite sufficient, =

A.l.3 Testing of Wiremesh

To assess the characteristics of the wiremesh reinforcement
tensile tests must be carried out. The simplest method available
is that of single wire tests by an Instron machine although it is
likely that testing a wide strip of reinforcement mesh will give a

better overall assessment of behaviour.

Typical wiremesh is made of poor grade steel and can have
a variety of surface finishes. The reinforcement used in the panels
tested was galvanised and in order to calculate stresé leoadings the
calculations were done on the area of the steel beneath the thin,
weak galvanised coating. Removal of galvanising by acid attack or
scraping allowed accurate measurement of the wire diameter to be

made.

Consequently it was found that the wire had a low value of
Young's Modulus of 145 GN/m2 compared with the universally
accepted range of 200 - 210 GN/mz. It also achieved high ultimate
strains indicating the poor quality of the material. The presence

" of the weld séots on the welded square mesh was also considered

to be a contributory factor.

A stress-strain diagram is shown on Figure 2 and further
details "included in Appendix 5.
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A.2.0 CENERAL PLATE EQUATIONS

A.2.1 The Biharmonic Equation

CQY
o |
J/AT ll?ll
Qx'-)on\, O
dx v &y, %;?4{3
-
J
“ﬁhyggx
M L M +5M'Jx z

Consider a plate element under a shear force and bending

moment system as jillustrated above in the Oxy plane.
There are no in-plane membrane forces.

The panel is subject to a constant pressure p.
Let Q. Qy = shear forces / unit length

. = b i i .
Mx . My . Mxy ending moments / unit length

Then, for shear force equilibrium

29, 3,
—3§.dx dy + —§§'dy dx + pdx dy =0
. 9Q 3
NI & =
i.e. . + By +p=20

and for moment equilibrium

..BMY BMXY
— - -— X =
ax dy 5-d d -Q dyax=o0

Iy

(R.2.1)
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oM BMX
i 8. - - =
: Sy Bx & = ©
BMx aMxy .
similarly 5x + -—a—;- - Qx =90
Note that the complementary twisting moments Mxy = —'Myx.

From equations A.2,2 and A.2,1 the shear force terms can be

eliminated to give

2 2 2
e, My o, Py
ax2 ay? dx dy

The Relationship Between Bending Moment and Curvature’

(2 wr)

Consider an elemental section of the plate dxdy as a slice
of thickness dz in the Oxy plane at a distance z from the neutral

axis,

Let the curvature be defined by single curvature components
about the Ox and Oy axes respectively.

Strain in the x-direction due to curvature about Oy only
is '

€ = Z—F

32w
X ax2

From the elastic eguations

E =
Y

mlxo NL<Q

tﬂkq Mlxq
1
<

Hence for single curvature only

(A.2.2)

(a.2.3)



Superimposing the effect of curvature in both directions and

m
l
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(1-v2)

£
(1-v2)

“x
E

€ -
X

substituting for the strain components

i.e.

and

32w

L 3y2

E
l=-v
2
by ¥
9y
2
sy 2w
ox

(A.2.4)

Integration through the depﬁh of the panel gives the moments

per unit width

M
X

. M

. X
and M
Y

where D is the 'flexural rigidity' of the panel given by

D =

where 'I' is the second moment of area of the panel per unit width

Z3

J X 7 4z

a1
-, s

D 2—%-+ v g—g
| 9x y |
.2 2 ]

D _ag+v_ag
| 3y ax

EXI
(l—vz)

about the neutral axis.

(p.2.5)

Now considér_the shear in the elemental slice as taken above.

Suppose that the element is subject to displacements u and v in
the Oxy plane as shown below.

~z=direction be w.

directions is negligible.

Let displacement of the panel in the

For small deflections the shear in the Oxz and Oyz
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The shear stresses are given by

r h!
- Jau, av
Txy Jdy 9x
r 3
= v aw| _
YYZ 3z ayb ©
r 3
7 x |9 x z)

Since u = O when w = 0, then C =

Hence

Hence

D=0

“Hence the shear stress is given by

N

2

T = G ¥ = 2G g—%%

* xy ax

Integration leads to the twisting moment, substituting G =

2
M = J T Z 4z
Xy Xy
%
1
82w
Mxy = D(1-v) XY

Substitution for Mx’ My' Mxy in A.2.3 leads to the Biharmonic

eguation
34w 34w 84w
s Y 2273t 4
ax 3x oy 3y

Y
(Zw)

(A.2.6)

(r.2.7)
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OR vy = - -g- : (A.2.8)

A.2.2 Strain Energy in a Panel in Bending

The general expression for the total strain energy in a plate
is
2 2 2

x¢ , 1y %
= Ox Ty agz T T E TZ ]
u J [2E t St Rt 56T 26t 3¢ av (A.2.9)

v

Now, for small deflections it can be assumed that compared with

a ., O 3
XX vy

Thus

2 2 2
Ty a T
= g - Xy
v J\:[ZE T2E Y o6 ] av

Substituting fori%, Gy, Txy by equations (A.2.4) then

. 2 2,17 2 202
_U=§”JZ2 12 3‘2’+u3"]+ 32w 32w
{(a-v9) 8x 2J 2 ax2J
. Xyz

ay 9y

- 2
+ (12") [g;"} dz dy dx
(1-v7) X'y
. 2 2. 12 24 a2 2. 12
=% ”J z* _ag+-—a,;‘+2(1—v) 3“’3"'-[3‘;} az dy dx
3x oy - ax? ay? Xy

2 2., 12 2., a2 2
w0t [ 2 2T o [ [ (£ wn
ax?  ay? ax? 3y? X%y

(A.2.10)
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It can be shown final integral term disappears for plates
with no edge strain. Thus for a simply supported panel the strain
energy is given by

o

2 2 ‘
v = 2 ” [E-—"i .@._‘1] ax dy (A.2.11)
2 2 2
ox 3y
Xy

A.2.3 The Navier-Stokes Egquation

A solution to eguation (A.2.7) is developed as follows

for a square panel of side a. Let the form of the deflection be
w = z z A sin[EEEJ sin[ﬂzzi , (A.2.12)
mn a a
n=1 m=1 :

" Then the strain energy in the panel is given by (A.2.11) as

2
2
U = D 3w 3w aa
2 ax2 5 2
A y
x> & 2.2 2.2)2 28
_ D ncws  mem 2 . _2|nTx ;.2 |mmy
_zzz [—az—-l-—ai—]AanJs;Ln[-—a]sn.n[a] dydx
n=lm=1
x=0y=0
a
vow, | en?[EH ax-
x=0
' p T T 2 . 2.2 2
LU= 2 I 7 @ +a’y" A (A.2.13)
8 2 mn
a n=1 m=1

To find the value of any coefficient Amn in the series
consider the change in strain energy &U due to a change dAmn in

A ., Thus
mn

L

ID % +wh?% 2a  ea . (A.2.14)
8a2 mn mn

du =

Now consider the work done on the panel by the pressure due to a

change of GAmn. The change in deflection is

w = SAmn sin [EEE} sinF%?q (A.2.15)



I*’

- 44 -

Thus the work done is

W = J p Sw 4da
a a nnx | mT
= p 6A J I sin[—h—q sin[—uz] dy dx
mn a a
x=0 y=0
a nix 2a
Now, { sin[—;fi dx = E;- R n odd
x=0 = 0 ’ n even
4a2
.. W = p éa . n,m odd
) mn nm1T2
To- = 0 ' n.m even

By Castigliano 8W = 8U, thus equating (A.2.14) and (A.2.16)

4
A = lgpa 12 > 5 n,m odd
mn m D nm (n+m}

E,Bence, the Navier-Stokes solution is

4 o @ sin[ﬂgﬁ] sin[EEXq

(A.2.16)

(A.2.17)

(h.2.18)
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A.3.1 General Equations

The following analysis .has been developed from Reference 8.
Consi@er a panel, using the same notation as in Appendix 2.
the purpose of this analysis it is assumed that the panel has
elastic properties which are symmetrical about the co-ordinate

Planes. Then four constants, Eé, E; E" and G are needed to define

the stress components as

o
Xy

E' e + E" e
X X Yy
E'e + E" ¢
Y ¥ X
Gy =2 Geg
Xy xy

The components of strain are

E =
X

Hence the corresponding stress components from (A.3.1) are

Q
]

Using these expressions the

moments are

It

i

g 2w
2

Ix

-2z |E
L)
(
-2 |E
- 2 2G

t/2

[ s
X

~t/o

Jt/z

_.t/
2
t/2

-]

-t/

g

r E_= -

2

] __+En
X ax2

r E__‘Zv__\'_Eu
Y 3y

2 dz =
Y

Z dz

T
Xy

\

d

2
w
8y2

2
w

e

]

3x

——

Y

.= - 27
Xy

(A.3.1)

{h.3.2)

(A.3.3)

stress components for bending and twisting

(A.3.4)
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E;t3 Eiii E"t3 Gt3
. Dx =17 Dy = 15 D1 = 12 ! ny = —1—2 (a.3.5)
t3 .
and v is the second moment of area of the slab per unit
width, 'I'.

Substituting {(A.3.4) into the differential equation for

equilibrium (A.2.7) we obtain

2w atu 2%w
p ¥ i2(m +2p ) =L _4+p T8 (A.3.6)
X qu 1 Xy ax23y2 y 3y4
or
4 4
D g Z + 2H 32w 5 + D 3 Z =p . (2.3.7)
9x ax oy ¥ Ay

A.3.2 Application to Reinforced Concrete

A simple analysis for reinforced concrete was developed

by Reference B. as follows.
In terms of the elastic constants of (AR.3.5) we have

approximately

EII

For a slab with reinforcement in the x and y directions we

then have, in terms of rigidities of equivalent concrete panels,

E ( )

c Es ]
Dx B 2 [ch + E_ 1 st]
1-v | ©
c 4
E, 'Es )
D = I:I + = -1 1 1
4 1oy 2 cy \Ec J sy
c
\ {(A.3.8)
D, = v vD D )
1 c Xy
- 4
D = l_Xg. YD D N
Xy 2 XYy ]

where I , I "and I , 1 are second moments of area about orthogonal
cx’ Tcy 5X sy _
axes,of the conrete and steel respectively. The expression for D

is also recommended by Reference 8. Substitution into (A.3.7) leads to
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Ry 54 54 _
Dx ——2- + 2 VDxD —712- + D "'-—';i =p (a.3.9)
ax ¥ ax“ay Y ay

A solution to {A.3.7) can be developed from a Fourier
"Series in a similar way to the Navier-Stokes solution in Appendix

2. The sclution for a sguare panel of side a becomes

st 5 5 sun[] e[
w= —éL z z 7 55 1 n,m odd (A.3.10)
= T =l =1 nm (p'D_+ 2n'mH +m Dy)

Now, by substituting

D = AD where A > 1

Y X
- ud H = ¥D D
. Xy
) - Then y \
4 - o i nmx . |mmy
l6Ga Sin a sin a
w = —6——-9- Z 5 W (r.3.11)
T Dx n=lm=1l nm(n + Am ) -
.
16a4
or w=—2P g (A.3.12)
6 i
mn D
X
Finally, note that when A = 1, the Navier-Stckes solution (A.2.18)
for an isotropic panel is returned.
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A.4,0 THE PLANE MOMENT SYSTEM

A.4.1 Resolution of Moments - Principal Moments

Hy
: Myx
o] . ‘
- ‘“"?74"5 e
- MﬂJ‘\N&“ b4§3
/

Adopting the convention shown above, the twisting moments

vectors are positive along the outward normal.

The moments acting along a line whose normal makes an angle
8 with the x-axis can be determined by consideration of the triangular

plate element shown below.

t Mo

Noting that moments are per unit length, then resolving

moments vectors along Ot gives

M = (M cosf) cosb + (M sinf) sind + (M 5inf) cosH

n X Yy yX
- (M cosf) sind

Xy

= M c0529 + M sin26 - 2M sin® cosb (a.4.1)
X Yy Xy
since M,,, = ~ M
Yy ¥YX

A corresponding diagram can be drawn for M_, or by putting

t
6 = 90° + 6 and replacing Mn by Mt in (A.4.1).

M =M sinZB + M cos28 + 2M s5iné cosb . (A.4,2)
t X Y Xy

Resolving parallel with oh*
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M = (M cosfB) sin® - (M sinf) cosf + (M cosB) cosh
nt %X Y X
+ (M sinf) siné
yx
, - 2 2
= (M - M) sinb cosf + M {cos™B - sin”6)
X Y xy
= (M - M) sin20 + M cos28 (A.4.3)
X Y Xy
These equations are similar to those of a plane stress system
since the moment system is derived from the integration of the
stress (times a lever) through the depth.
.
There are two orthogonal directions of principal moments
corresponding to those at which the twisting moment Mnt = 0,
This occurs when
M
= Xy
. tan 26 = oM {(a.4.4)
Yy X
The plane moment field system is best defined in terms of
the Principal Moments. .
A.4.2 Principal Moment Fields
>-
The Navier-Stokes solution,
nmx . mﬂxl
S 16a4 o w sin = | sin|—5—
W =-—7?}1 Z > ) n.m odd
p" D n=lom=l nm(n° +m)
wag used to calculate the principal moment system as follows.
From equations (A.2.5)
r2 2\
Mx=_,33_w+\,§._g_
|9 3y )
'2 2'\
r . M =-0D E——;—+va—%
¥ |3y x|
‘ 2
9w
Mxy =D (1-v) dxdy
Then L6 a2 o - Sln[nﬂx sin m;z]
M ==E2_7 §7 0+ ) (A.4.5)
X 4 2,2
T n= =1 nm (n” +m)
' “(nnx) ’mﬂ
16pa’ ®© 51n[———- sin _EZI
. MY = ——%—— z z (m” + wn") . 5 2 (A.4.6)
. T n=1 m=1 nm (n” +m’)



’ 1
Leoa? o w Cos[ﬁz. cos[i"al-
M o= —B2_ (1-y) Z Z 5

T n=1 m=1 {(n~ + m2}

n,m odd

Using equation (A.4.4) the direction of the principal moments,
8, was calculated and this value substituted into equations A.4.1
and A.4.2 to obtain their magnitude. This was done by computer so

that a diagram of the moment fields could be drawn as Figure 8.

(A.4.7)
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A.5 TEST-PIECE DATA

Wiremesh

Type :- 19g galvanised?welded square steel mesh at nominal

4 in. spacing.

Measurement :-

Wire Diameter 0.89 mm beneath galvanising

Strand spacing 12.7 mm

Mass

1]

1.002 kg / m2 per iayer

Tensile Tests :—- See Figure 2

Yield Strength 360 N/mm2 at 0.004 strain

Ultimate Strength 430 N/mmznat 0.110 strain

Premature failure was frequent at welds at 0.030 strain.

—

Concrete

Sand : Cement : Water Ratio = 4.50 : 2.25 : 1

Cement :- Ordinary Portland Cement

Sand :- Oven dried and sieved. Mixed in proportions
Diameter (microns) % by weight
2400 - 1180 10
. 1180 - 600 50
' 600 - 300 30
300 - 150 9
i50 -~ o]

Details of individual concrete mix properties are included in

panel data.

Panels

Summary:- Panel Number Mesh Layers {(Tension : Compression)
1TOC

1T0C

1TIC

2TIC

2TIC

2TIC (Diagonal)

2T2C

3T2C

w o~ ! b W N

Details overleaf.
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T4 | FIG. b THE NAVIER SOLUTION TQ SIMPLY SUPPORTED PLATE UNDER
UNIFORM LOADING — DEFLECTIONRS

‘The Navier-Stokes solution. is

- leatp Sﬂicﬁr) on n
W= rep Ei ;; Am(nZ+em?2)?2 n,m odd .

« ek

The values of k, were calculated for (x/a , y/a) as follows 3

| (v/2) |
. (x/z)l.oo | .05 | .10} .15| .20 | .25 ] .30 | .35 | .40 | 45| .50
.05 |.0068 |.0790 |.0193 |.0247 [.0293 |.0332 |.0363 |.0385 |.0398 | .0402
f)4p - Lo .0261. 10379 | .0485 0576 | .0652 |.0712 .0756 |.0780 | .0790
IRt |.0551 | 0705 |.0839 |.0950 |.1038 |.1102 |.1140 }.1153
.20 _ | .0900 .5075 219 L1332 (1414 | 1463 | 1480
.;' .25 | ) .1281 .145% .1589 |[.1687 |.1746 | .1765
.30 The table is .1649 |.1803 {.1915 |.1982 { .2005

. - symmetric about the ‘ :
<33 diagonal, ' .1973% [.2005 |.2169 | .2194
| d .40 2226 | .2304 | .2331
45 _ ' .2413 | 2413
S  .so | | | e

Other important points are

x/a y/a ky
1/3 1/3 0,1871
1/6 1/6 0.0663
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FiG. 8 CONTOURS AND DIRECTIONS OF PRINCIPAL MOMENTS
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