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The stability of a shear flow imposed along a diffusive interface that separates two miscible liquids
(a heavier liquid lies underneath) is studied using direct numerical simulations. The phase-field
approach is employed for description of a thermo- and hydrodynamic evolution of a heterogeneous
binary mixture. The approach takes into account the dynamic interfacial stresses at a miscible
interface and uses the extended Fick’s law for setting the diffusion transport (the diffusion flux
is proportional to the gradient of chemical potential). The shear flow is unstable to two kinds of
instabilities: (i) the Kelvin-Helmholtz instability, with an immovable vortex formed in the middle
of an interface (in the vertical direction), and (ii) the Holmboe instability, with travelling waves
along the interfacial boundary. The development of the Holmboe instability results in a stronger
enhancement of molecular mixing between the mixture components. Earlier, the boundaries of
these instabilities were determined using the linear stability analysis and employing the concept of a
‘frozen interface’. In the current work, through the solution of full equations, we obtain the stability
boundaries for several sets of governing parameters, showing a greater variety of the possible shapes
of the stability diagrams. The Kelvin-Helmholtz instability always occurs at lower gravity effects
(lower density contrasts), while the Holmboe instability occurs when gravity is stronger. We show
that for some parameters these two instabilities are separated by a zone where the shear flow is
stable, and this zone disappears for the other sets of parameters.

I. INTRODUCTION

Mixing in liquid/liquid or gas/liquid systems can be
intensified by taking advantage of hydrodynamic insta-
bilities, e.g. the instabilities induced by a shear flow.
In the current work we investigate the effects of a shear
flow on the mixing of two miscible liquids that are ini-
tially separated by a thin horizontal interface, and with
a heavier liquid lying underneath. We assume that the
liquids are just brought into contact, so the initial ther-
modynamic state of a mixture is different from the state
of thermodynamic equilibrium, which induces the inter-
facial diffusion. The resultant simultaneous thermo- and
hydrodynamic changes in a heterogeneous binary mix-
ture are examined.

It is well known that the shear flow in a homogeneous
fluid is unstable due to the Kelvin-Helmholtz instability
[1, 2]. This instability was studied in numerous works,
and the major results are summarised in books [3, 4]. In
the current work, we consider the shear flow in a inhomo-
geneous fluid. Namely, the shear flow is enforced along
the interface of two liquids of different densities. It is
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known that the density stratification affects the develop-
ment of the Kelvin-Helmohotz instability.

The density stratification is traditionally determined
by the Richardson number Ri = N2/U2, where U is the
local mean velocity and N is the Väisälä frequency,

N(y) =

√
−g
ρ

dρ

dy
. (1)

In this formula, ρ is the fluid density, g is the gravity
acceleration, and y is the vertical coordinate. Miles and
Howard [5] found that the Kelvin-Helmholtz instability
in a density-stratified medium does not develop if the
density stratification is relatively strong, namely, when
Ri > 1/4 everywhere. Holmboe [6] however showed that
if the thickness of a density profile is much smaller than
the thickness of a shear flow profile, then, despite the
strong density stratification, the flow is unstable due to
a new instability that develops through the growth of two
travelling waves in the layer. Thus, in a density stratified
medium the shear flow may become unstable to both the
Kelvin-Helmholtz and Holmboe instabilities.

In a number of later studies the boundaries of the
Kelvin-Helmholtz and Holmboe instabilities were deter-
mined for various density and velocity profiles [7–13], in-
cluding the cases when the central points of the den-
sity and velocity profiles were not coincident [14, 15].
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The influence of other complexities, such as surface ten-
sion [16], larger density contrasts [17, 18], and diffu-
sion [19, 20] were also examined. The existence of both
Kelvin-Helmholtz and Holmboe instabilities were also ex-
perimentally confirmed [21–23].

In the current work the evolution of a heterogeneous bi-
nary mixture is traced on the basis of the phase-field ap-
proach. This approach represents an interface as a transi-
tional layer of a finite thickness, with all variables, includ-
ing density, experiencing sharp but continuous changes
across the interfacial boundary. By imposing a shear
flow along the interface we obtain a classical problem of
stability of a shear flow in a density stratified medium.
However, in contrast with other studies the use of the
phase-field approach allows an accurate description of a
multi-phase system. Namely, the approach takes into
account the effects of interfacial stresses that should be
also associated with miscible boundaries [24, 25]. In ad-
dition, the approach takes into account that the classi-
cal Fick’s law is only applicable for lower concentration
gradients and thus the Fick’s law is not strictly valid
for liquid/liquid interfaces when the concentration gra-
dients are large. The phase-field approach is based on
the extended Fick’s law that states that the diffusion
flux is proportional to the gradient of chemical potential.
This extension, in particular, allows for the convenient
description of the interfacial diffusion in partially misci-
ble liquids that are miscible until saturation levels are
reached in neighbouring phases (which is an obvious case
when the Fick’s law fails, as in this case there is a strong
concentration gradient across the interface but there is no
interfacial diffusion). In addition, this extension allows
for the account of barodiffusion effect.

All these features make the problem studied in our
work different from the other studies of the Kelvin-
Helmholtz and Holmboe instabilities. In the current work
the development of the classical hydrodynamic instabil-
ities occurs in a two-phase system with an undergoing
phase transition, while in other studies the development
of the instabilities happen either in a single-phase strat-
ified medium, or in a two-phase immiscible system.

The linear stability of a phase boundary in a heteroge-
neous binary system is investigated in work [26], where
the boundaries of the Kelvin-Helmholtz and Holmboe in-
stabilities are determined. It is found that the zones of
instability are larger for thinner interfaces. The zones of
instability are also enlarged by diffusive and capillary ef-
fects. Viscosity is found to play its usual stabilising role.
The linear stability analysis is based on the the assump-
tion of a ‘frozen interface’, i.e. assuming that the diffusive
smearing of the interface occurs slowly, much slower than
the growth of the hydrodynamic perturbations. The aim
of the current work is to verify the linear analysis by
solving the full non-linear equations, to understand the
differences in the flow fields that characterise these two
different instabilities, and to extend our previous findings
by examining the stability of the shear flow for greater
variety of governing parameters.

II. MATHEMATICAL MODEL

The idea of the phase-field approach is to apply one
system of the governing equations to determine the flow
fields in a whole multiphase system, including interfaces.
The interfaces are represented by transitional layers of a
finite thickness. The position of interfaces is determined
from the field of concentration, namely, the interfaces
correspond to the places with larger concentration gra-
dients. To take into account the surface tension effects
that are associated with interfacial boundaries, the free
energy function of a mixture is re-defined by adding a
new gradient term [27],

f(C,∇C) = f0(C) +
ε

2
(∇C)2. (2)

Here, f is the specific free energy function of a binary
mixture, f0 is its classical part, and ε is the capillary
constant that defines the strength of the capillary effects.
The capillary constant is usually so small that the sec-
ond term is negligible everywhere except for the places
with large concentration gradients, i.e. except for the
interfaces.

The full hydrodynamic equations for a binary system
that is defined by free energy function (2) were derived
by Lowengrub and Truskinovsky [28]. The full equations
are however too hard for direct numerical simulations, as
these equations include the full continuity equation (that
is called the effect of quasi-compressibility and that is
explained by the dependence of the mixture density on
concentration). It was later shown that the slower con-
vective and diffusive evolution of a mixture can be de-
termined on the basis of the fully incompressible equa-
tions, that represent the Boussinesq approximation of the
full Cahn-Hilliard-Navier-Stokes equations [29, 30]. The
Boussinesq approximation of the Cahn-Hilliard-Navier-
Stokes equations are numerically solved in the current
work to describe the evolution of a heterogeneous binary
mixture.

The governing equations include the equations for con-
servation of momentum, species, and mass,

∂~u

∂t
+ (~u · ∇)~u = −∇Π +

1

Re
∇2~u− C∇µ, (3)

∂C

∂t
+ (~u · ∇)C =

1

Pe
∇2µ, (4)

∇ · ~u = 0. (5)

Here ~u is the fluid velocity, Π is the modified pressure that
is to be determined from an incompressibility constraint,
t is the time, C is the concentration that is defined as the
mass fraction of one of the components in a mixture, and
µ is the chemical potential. The Navier-Stokes equation
(3) includes an additional term (frequently called the Ko-
rteweg force) that takes into account the surface tension
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effects on a liquid/liquid interface. The diffusion process
is driven by the gradient of the chemical potential that
is defined by the following expression,

µ = Gr(~r · ~γ) +
df0
dC
− Cn∇2C. (6)

The classical part of the free energy function, f0, is cho-
sen so to define the expected thermodynamic behaviour
of a binary mixture. In this work, we study the evolu-
tion of a heterogeneous binary mixture with undergoing
phase transformations. In particular, we consider a bi-
nary mixture with the upper critical solution tempera-
ture (that defines the position of the so-called consolute
point), when the components of a mixture are miscible in
all proportions above the critical temperature, and only
partially miscible (up to a certain solubility level) if the
mixture temperature is below the critical value. This is
the most popular type of the phase behaviour among all
binary mixtures. The thermodynamic behaviour of such
a mixture may be set by the Landau formula [31],

f0 = AC2 + C4. (7)

Another choice of the free energy function is given by
the ‘regular solutions’ function (also known as the Flory-
Huggins theory) that is frequently used for setting the
thermodynamic behaviour of polymer solutions [25, 27,
32],

f0 =

(
A− 3

2

)
C2 +

3

4

(
1

2
+ C

)
ln

(
1

2
+ C

)
(8)

+
3

4

(
1

2
− C

)
ln

(
1

2
− C

)
,

Here, for simplicity, the original definition of concentra-
tion, as the mass fraction of one of the components in a
mixture and that varies in the interval of [0..1], is modi-
fied by a transition, C → (C −Cc). In addition, for sim-
plicity, we assume that the phase diagram is symmetrical
about the consolute point and Ccr = 1/2. As a result,
the range of the modified concentration is [−1/2..1/2].

Figure 1a depicts the shapes of functions (7) and (8)
and figure 1b depicts the shapes of the phase diagrams,
that define equilibrium states of a mixture, and that are
obtained on the basis of functions (7) and (8). One sees
that the consolute point of a mixture is determined by
the coordinates (A = 0, C = 0). A mixture is always
homogeneous in equilibrium when A > 0, and a mixture
may be either homogeneous or heterogeneous (that is de-
fined by the overall mass balance) when A < 0. Hence,
the non-dimensional parameter A that appears in formu-
lae (7) and (8) plays the role of the mixture tempera-
ture. This parameter is defined as A = a/b, where a and
b are the two standard phenomenological parameters of
the Landau theory for near-critical systems [31].

Both functions (7) and (8) produce quite similar phase
diagrams, and both phase diagrams reproduce features of
the experimentally expected thermodynamic behaviour,

see e.g. the phase diagram of isobutyric acid/water mix-
ture in Ref. [33]. Thus, from the point of view of match-
ing the experimental behaviour, both functions can be
successfully used.

Nevertheless, primarily owing to computational rea-
sons, we select function (8) for the current study. In
this work, the range of concentrations, [−1/2..1/2], cor-
responds to the interface of physically relevant values of
concentrations. In figure 1 one sees that function (8) co-
incides with the Landau function near the critical solu-
tion point, and this function defines a different behaviour
when |C| → 1/2, where overshooting (non-physical val-
ues in the concentration field) are excluded by the loga-
rithmic terms. Free energy function (8) was previously
used in our other works where evolving heterogeneous bi-
nary systems were examined in the frameworks of other
physical problems [34–38].

The above equations are written in the non-
dimensional form. The following scales were used to non-
dimensionalise the equations,

L∗ = h, τ =
L∗
u∗
, u∗ = µ

1/2
∗ , µ∗ = b, Π∗ = ρ∗µ∗. (9)

Here h is the height of the layer, τ , u∗, µ∗ and Π∗ are
the time scale, velocity scale, the scales of the chemical
potential, and pressure; ρ∗ is the typical density that can
be defined as the density of one of components of the
mixture.

The governing equations include the following non-
dimensional parameters,

Pe =
ρ∗L∗

αµ
1/2
∗

, Re =
ρ∗µ

1/2
∗ L∗
η∗

, Gr = φ
gL∗
µ∗

, (10)

Cn =
ε

µ∗L2
∗
. (11)

These are the Peclet, Reynolds, Grashof, and Cahn num-
bers. We use the standard names for the first three
parameters, although they are defined through non-
standard phenomenological parameters that are intro-
duced within the phase-field approach. These parameters
appear in front of the corresponding terms of the hy-
drodynamic equations and play similar roles in dynamic
similarity of different flows.

The Peclet number sets the relative importance of dif-
fusive effects. The coefficient α is called the mobility co-
efficient, and its value can be estimated as α = ρ∗D/µ∗,
where D is the standard diffusion coefficient. We assume
that the Peclet number is always large, which means that
diffusion is relatively weak, at least, on short time peri-
ods.

The Reynolds number sets the importance of the vis-
cous force. For simplicity we assume that the difference
in the viscosity coefficients of the mixture components is
not strong, so that the use of one Reynolds number is
sufficient.

The Grashof number sets the importance of the grav-
ity term. We assume that the density contrast φ =
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FIG. 1. The classical part of a free energy function (a) and the shapes of the phase diagrams (b) given by formulae (8), solid
lines, and (7), dashed lines. The dots in (b) indicate the initial state of the mixture, and the arrows indicate the directions of
the thermodynamic transformations experienced by the mixture in the current work.

(ρ2 − ρ1)/ρ∗ is small, which is true for all liquid/liquid
mixtures. The gravity term enters the governing equa-
tions though the definition of the chemical potential (6).
Substitution of the chemical potential into the Navier-
Stokes equation (3) would generate a standard convec-
tive force. Substitution of the chemical potential into
the equation for the species transport (4) would cancel
the gravity term. Nevertheless, the effect of the gravity
in diffusion (barodiffusion) still remains, and would enter
the problem through the boundary condition. To exclude
the diffusive transport through the wall one needs to set
zero value of the normal derivative of the chemical po-
tential at the wall, which brings the gravity term. This
effect in particular is responsible for equilibrium stratifi-
cation in a mixture when the concentration of a heavier
component grows towards the bottom of a layer.

The Cahn number sets the strength of the capillary
forces. It also sets the equilibrium thickness of the inter-
face that is determined as δeq =

√
−Cn/A [28, 39].

One additional non-dimensional parameter in equa-
tions (3)-(6) is A that was introduced above and that
sets the ‘temperature’ of a mixture (the thermodynamic
behaviour of a mixture).

The governing equations are supplemented with the
boundary conditions. Normally, at the rigid walls one
sets the velocity vector to be zero (the no-slip condi-
tion), the normal derivative of the chemical potential to
be zero (no diffusive flux through walls), and the normal
derivative of concentration to be zero (the neutral wet-
ting conditions, i.e. the contact line is orthogonal to the
wall).

III. PROBLEM STATEMENT

We present the results of the 2D direct numerical mod-
elling of the Kelvin-Helmholtz and Holmboe instabilities
in a system composed of two miscible liquids that are ini-
tially separated by a flat horizontal interface. The mix-
ture fills in a horizontal plane layer. We assume that the
liquids are just brought into contact, the initial thermo-
dynamic state of the mixture is different from the state
of thermodynamic equilibrium, which induces the pro-
cess of interfacial diffusion. The lighter liquid is placed
on top of the denser one. The shear flow is additionally
imposed along the interface. The mixture is assumed to
remain isothermal.

Thus, the heterogeneous binary mixture is enclosed
within a rectangular computational domain. The sta-
bility of the liquid/liquid interface with respect to an
one-mode harmonic perturbation, characterised by the
wavenumber k = 2π/λ, is studied. The periodic bound-
ary conditions are imposed in a horizontal direction. The
horizontal size of the domain is chosen to be equal to the
wavelength, λ, of the initial perturbation, and thus it
varies for different runs. The vertical size of the layer
is used as the length scale. The horizontal and vertical
coordinates are denoted by x and y, respectively.

The initial concentration profile is set by the expression

C0(x, y) = 0.495 tanh

(
y − 0.5(1 + 0.1 cos(kx))

δ0

)
(12)

Here 0.495 are the initial concentrations in the two liquids
in contact, and δ0 is the initial interface thickness. The
amplitude of a perturbation is 0.1 for all runs.
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The externally imposed flow along the interface is set
by the following profile

U(y) = U0 tanh

(
y − 0.5

δU

)
. (13)

Here U0 and δU are the amplitude and thickness of the
velocity profile.

In the current work, the thicknesses of the concentra-
tion and velocity profiles are treated as two independent
parameters. Since we consider the evolution of a thermo-
dynamically non-equilibrium binary mixture the initial
thickness of the concentration profile is taken different
from the thickness of an equilibrium interface, that is
δeq =

√
−Cn/A.

The total vector of velocity is split into the background
and perturbation parts, ~u = U~i+~v (the unit vector~i that
defines the direction of the x-axis also defines the direc-
tion of the imposed shear flow). The governing equations
(3)-(6) are supplemented with the periodic boundary con-
ditions in the horizontal direction, and with the following
conditions at the bottom and upper plates,

y = 0, 1 :
∂vx
∂y

= 0, vy = 0,
dµ

dy
= 0,

dC

dy
= 0. (14)

Thus, we impose the no-stress condition for the x-
component of the velocity, and the no-penetration con-
dition for the y-component of the fluid velocity. The
boundary conditions for the chemical potential and
concentration assume the absence of the diffusive flux
through the walls, and the condition of neutral wetting.
In the current work we are interested in the development
of the instabilities near the interface, which is in the mid-
dle of a layer, far from the walls. The conditions at the
walls are less important for this study, and the boundary
condition (14) were chosen so to minimise their influence
on the flows in the bulk layer.

For the numerical solution, equations (3-6) are re-
written in the streamfunction (vx = ∂ψ/∂y and vy =
−∂ψ/∂x)-vorticity (ω = (∂vx/∂y − ∂vy/∂x)) formula-
tion:

∂ω

∂t
+ J(ψ, ω) =

1

Re
(−U ′′′ +∇2ω) + J(µ,C), (15)

∂C

∂t
+ U

∂C

∂x
+ J(C,ψ) =

1

Pe
∇2µ, (16)

∇2ψ = −ω, (17)

µ = Gr ·y+
3

4
ln

(
1/2 + C

1/2− C

)
−(3−2A)C−Cn∇2C. (18)

Here, J ≡ ∂/∂x−∂/∂y, and prime stands for the deriva-
tive in respect with y. The periodic boundary conditions
are imposed in the x direction, and on the walls we set,

ψ = 0,
∂ψ

∂y
=
∂µ

∂y
=
∂C

∂y
= 0. (19)

The resultant set of equations and boundary conditions
are solved using the finite-difference method on a uniform
mesh. The explicit first order in time and second-order
in space discretisation scheme is used.

IV. NUMERICAL RESULTS

To choose the optimal numerical resolution we perform
several numerical runs using the grids with the different
numbers of computational nodes. The results of these
runs are depicted in figure 2. We plot the time depen-
dencies of the kinetic energy of a perturbation,

Ek =
1

2

∫
V

v2dV (20)

(here V is the volume of the computational domain),
and the time dependencies of the length of an interfa-
cial boundary for two different amplitudes of the exter-
nally imposed flow U0 = 0.2 (figure 2a,b) and U0 = 0.4
(figure 2c,d). One sees that perturbations decay for the
lower amplitude of the shear flow and perturbations grow
when the externally imposed flow is stronger.

In figure 2, the results obtained with the use of dif-
ferent meshes converge (the distance between the curves
decreases upon the gradual improvement of the numeri-
cal resolution). In a stable case, the curves remain close
to each other during the entire numerical run, until a
perturbation completely decays. In an unstable case, the
curves obtained with the use of different grids eventually
diverge from each other. Although, as one sees in fig-
ure 2c,d, for the set of parameters used to generate this
figure, the curves with two best resolutions remain quite
close at least until t ≤ 10. We then assume that the reso-
lution with the grid size of 1/500 is sufficient to produce
the accurate results for an initial evolution of a mixture,
t ≤ 10, and a better resolution would be needed for trac-
ing the growth of a perturbation on a longer time inter-
val. Although, the improved resolution can be required
for thinner initial profiles of the concentration and veloc-
ity fields, and for higher Peclet numbers (when diffusive
skin-layers become thinner) and lower Cahn numbers (as
this parameter sets the equilibrium thickness of the in-
terface).

As discussed in the introductory section, there are two
instabilities that may develop in the layer. Figures 3 and
4 show the snapshots that illustrate the typical devel-
opments of the Kelvin-Helmholtz and Holmboe instabil-
ities, respectively. For the Kelvin-Helmholtz instability,
one observes the development of a vortex in the middle
of the layer (right in the middle of the interface). The
size of the vortex and the amplitude of the flow veloc-
ity increase with time, although the horizontal location
of the vortex always remains the same. In the case of
the Holmboe instability, one observes the development
of travelling waves on the interface and the formation
of vortices that move along the layer. These simple dif-
ferences (whether vortices are stationary or moving and
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FIG. 2. The time dependencies of the total kinetic energy (a,c) and of the length of interface (b,d) are plotted for the numerical
runs performed with the use of different grids, with 250×250 (dash-dotted lines), 500×500 (dashed lines), and 750×750 (solid
lines) nodes. The other parameters for these runs were k = 6.28, Pe = 106, Cn = 4 · 10−4, δ0 = δU = 0.028, and U0 = 0.2 (a,b)
and U0 = 0, 4 (c,d).

whether the interface is flat or wavy) allow us to dis-
tinguish the instabilities, and to associate the governing
parameters with the particular kind of instability.

Next we want to obtain the stability diagrams to show
the boundaries of the Kelvin-Helmholtz and Holmboe in-
stabilities. For this end, we perform the series of numer-
ical runs and calculate various integral characteristics.
Namely, we calculate

- the kinetic energy of perturbations using equation
(20);

- the length of the interface, L (The position of the
interface is determined by the concentration level
C = 0. To determine the length of the interface,
L, we first search for the nodes between which the
concentration changes its sign, and determine the
position of the interface between these nodes by
using the linear interpolation; we next obtain the
length of an interface element that lies within a cell
made of four nodes; and finally we sum up these el-
ementary lengths to obtain the length of the whole
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FIG. 3. Development of the Kelvin-Helmholtz instability. The fields of concentration (isolines) and velocity (vectors) at
different time moments. The data are obtained for δ = δU = 0.2, U0 = 1, Re = 100, Cn = 10−3, Pe = 106, Gr = 0.5, k = 4.19,
resolution 750× 500 nodes.

interfacial line);

- the thickness of the interface δ using the formula
δ = Vδ/L (here Vδ is the volume of the transitional
zone that is defined as the region in the computa-
tional domain with the concentration levels in the
range, |C| ≤ 0.2);

- the coefficient of the surface tension σ = Ei/L (here
Ei is the interfacial energy that is calculated as
Ei = Cn

∫
V

(∇C)2dV );

- the average concentrations in each phase, C1 and
C2 (the phases are distinguished by the sign of
the concentration; the average concentration in the
part of the computational domain with positive
concentrations is denoted as C1, and the average
concentration in the other part of the computa-
tional domain is C2).

Figure 5 depicts two typical time evolutions of the in-
tegral characteristics. Namely, the curves are obtained
for the different levels of the Grashof number, when the
Kelvin-Helmhotz (solid lines) and Holmboe instabilities
(dashed lines) develop. The curves demonstrate the clear

differences in the time changes of the integral character-
istics for these two instabilities.

For the Kelvin-Helmholtz instability, the kinetic en-
ergy of a perturbation (that has a form of a single sta-
tionary vortex) grows monotonically. For the case of the
Holmboe instability, the oscillatory growth of the kinetic
energy is observed, which is explained by travelling vor-
tices. Indeed, in figure 4, one sees that the velocity field in
the computational domain is strongly different at differ-
ent time moments, and this explains the strong changes
(oscillations) in the values of the kinetic energy.

As stated above, the position of an interface is defined
by a level of concentration, C = 0, which is depicted by
the central isoline in both figures 3 and 4. This definition
is not very accurate for rather diffusive interfaces consid-
ered in this work. Nevertheless, in figure 3 one sees that
the central isoline becomes quite disturbed by the Kelvin-
Helmholtz vortex, which explains the observed growth of
the interface length, L, in figure 5b (solid line). In figure
4, in the case of the Holmboe instability, the length of
the central isoline remains almost undisturbed, which is
confirmed by a shape of the dashed line in figure 5b.

Figure 5c depicts the time changes of the interface
thickness. The interfacial stresses are characterised by
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FIG. 4. Development of the Holmboe instability. The fields of concentration (isolines) and velocity (vectors) at different time
moments. The data are obtained for δ = δU = 0.2, U0 = 1, Re = 100, Cn = 10−3, Pe = 106, Gr = 10, k = 4.19, resolution
750× 500 nodes.

the surface tension coefficient, which time changes are
shown in figure 5d. One sees that the surface tension
coefficient remains constant for the Holmboe instability,
and this coefficient grows at the initial time moments
for the Kelvin-Helmholtz instability. Finally, figures 5e,f
show that the Kelvin-Helmholtz instability results in a
stronger enhancement of the molecular mixing across the
liquid/liquid boundary.

We also performed the numerical runs for the different
values of the parameters, U0, Pe, Cn. We found that
the increase of the amplitude of the shear flow speeds up
the instability. Lower Peclet numbers mean stronger dif-
fusion effects, and the instability develops slower in this
case owing to additional diffusive dissipation. The in-
crease of the Cahn number increases the surface tension
effect, which makes the interface less prone to deforma-
tions, and this reduces the amplitude of the waves and
the amplitude of the hydrodynamic motion in the layer.
Similar observations were earlier achieved with the help
of the linear stability analysis [26].

The stability diagrams are depicted in figure 6. The
Kelvin-Helmhotz instability is always limited to lower
Grashof numbers, while the evolution at higher Grashof
numbers is dominated by the Holmboe instability. The

zone of the Holmboe instability is large (in comparison
to the zone of the Kelvin-Helmholtz instability), and re-
mains unclosed from the top. Stronger viscous and dif-
fusion effects should result in a closure of the zone of the
Holmboe instability, although such cases are not mod-
elled in the present work. Similar stability diagrams were
earlier reported by other researchers [11, 12, 26]. In par-
ticular, figure 6a is adopted from our earlier work [26],
where this diagram is obtained by using the linear sta-
bility analysis for an interface that separates two semi-
infinite domains of two miscible liquids.

Figures 6b-d are obtained with the help of the numer-
ical solution of the full equations. To perform the direct
numerical simulations we assume that the liquids occupy
a plane layer of finite height, that is used as a unit of
length. The thickness of the velocity profile is taken as
δU = 0.2. The thickness of the concentration profile was
taken either equal to δU (figure 5c) or five-times smaller
than δU (figure 5b,d). In the linear stability theory the
thickness of the velocity profile was used as a length scale.
For correlation of these sets of data, in figures 6b-d we
re-scale the wavenumber and Grashof number as kδU and
GrδU . The values of the other parameters should be also
re-scaled as PeδU , ReδU , and Cn/δ2U .
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FIG. 5. (a) The total kinetic energy, (b) the thickness of the interface, (c) the length of the interface, (d) the surface tension
coefficient, and (e,f) the average concentrations in each phase vs. time. The data are obtained for δ = δU = 0.2, U0 = 1,
Re = 100, Cn = 0.001, Pe = 106, k = 4.19, Gr = 0.5 (solid line) and Gr = 10 (dashed line).
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FIG. 6. The neutral curves defining the zones of the Kelvin-Helmoltz (marked by ‘KHI’) and Holmboe (‘HI’) instabilities.
(a) The results of the linear stability analysis (see work [26] for more details) obtained for an immiscible interface (Pe = ∞)
with no surface tension effects (Cn = 0) that separates two semi-infinite inviscid liquid domains (Re = ∞); other parameters
are U0 = 1, δ0 = 0.2. The thickness of the velocity profile, δU , was used as a length scale. (b-d) The results of the direct
numerical simulations. The data are obtained for Pe = 106, Re = 100, U0 = 1, and (b) δ0 = 0.04, δU = 0.2, Cn = 4 · 10−5;
(c) δ0 = δU = 0.2, Cn = 0.001; (d) δ0 = 0.04, δU = 0.2, Cn = 0.001. The unit of length is the height of the plane layer. The
axis in (b-d) are re-scaled to simplify the comparisons with (a). Square symbols correspond to the phase-field simulations, and
circles are the points obtained using the classical approach.

The new diagrams look very similar to the diagram
obtained with the help of the linear stability theory. The
addition of the surface tension effects extends the zones
of the Kelvin-Helmholtz and Holmboe instabilities, as al-
ready noted in the linear stability study [26]. Although,
we also identify a new behaviour, that was not observed
in [26], when the zones of the Kelvin-Helmholtz and

Holmboe instabilities are separated by a zone of a sta-
ble shear flow (figure 6c): at lower Grashof numbers the
shear flow is unstable to the Kelvin-Helmholtz instabil-
ity, at higher Grashof numbers the shear flow develops
the Holmboe instability, and there is a range of interme-
diate Grashof numbers when the shear flow is stable. In
the linear study [26] the thickness of the interface was al-
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ways taken smaller than the thickness of the velocity pro-
file, which is a generally expected relation for these pa-
rameters: the phase boundary is usually very thin (and,
frequently, could be just several molecular layers), nev-
ertheless, the interface thickness may be wider e.g. near
a consolute point, when the behaviour depicted in figure
6c can be realised.

Figures 6c,d also include the points (circles) that were
obtained with the help of the classical approach, that
completely disregards the surface tension forces and that
models the diffusion process using the classical Fick’s law
(the diffusion flux is proportional to the gradient of con-
centration). In the classical approach there are no dif-
ferent phases, and instead, an evolution of a single-phase
liquid with a impurity is studied. Namely, the governing
equations for the classical approach read

∂~u

∂t
+ (~u · ∇)~u = −∇Π +

1

Rec
∇2~u−GrcC~γ, (21)

∂C

∂t
+ (~u · ∇)C =

1

Pec
∇2C, (22)

∇ · ~u = 0. (23)

These equations include three non-dimensional parame-
ters,

Pec =
L∗u∗
D

, Rec =
ρ∗u∗L∗
η∗

, Grc =
φgL∗
u2∗

, (24)

the Peclet number, the Reynolds number, and the
Grashof number.

In figure 6c,d one sees that the majority of the ‘classi-
cal’ points lie very close to the phase-field results. This
may be explained by the fact that too diffusive interfaces
are studied in this work, so the surface tension forces
remain low (the coefficient of the surface tension is re-
ciprocal to the interface thickness [26, 39]). The classical
and phase-field approaches are based on the different laws
for diffusion, but these differences remain inessential for
determination of the boundaries of the hydrodynamic in-
stabilities, as similar study is based on relatively shorter
numerical runs when diffusive transport remains low (the
changes in the average concentrations within each phase
are small).

V. CONCLUSIONS

We study the isothermal evolution of a heterogeneous
mixture of two slowly miscible liquids (with the heavier
liquid underneath) enclosed in a horizontal plane layer.
The shear flow is imposed along a miscible interface.
With the help of the direct numerical simulation we inves-
tigate the development of the Kelvin-Helmotz and Holm-
boe instabilities of the shear flow.

In particular, we show that these two instabilities are
characterised by a number of different distinctive fea-
tures, which allow easy identification of the instability
in each numerical run.

The development of the Kelvin-Helmholtz instability
occurs through the formation of a flow vortex in the mid-
dle of the interface. The position of the vortex does not
change with time. The kinetic energy associated with
this vortex grows monotonically. The development of the
Holmboe instability is associated with the formation of
travelling waves on the interface, and with formation of
moving vortices along the layer. In the case of Holmboe
instability, the oscillatory growth of the kinetic energy is
observed.

The identification of the instabilities help us to obtain
the stability diagrams for a number of the sets of govern-
ing parameters. As expected the Kelvin-Helmholtz in-
stability occurs at lower Grashof numbers (lower density
contrasts of the liquids in contact), while the Holmboe
instability occurs at higher Grashof numbers. For the
parameters considered in this work, we could not find
the level of the Grashof number when the zone of the
Holmboe instability becomes closed from the top. In our
simulations, even for very strong Grashof numbers, the
shear flow is unstable. We however found a novel shape of
the stability diagram, that has not been reported in ear-
lier studies, e.g. in the linear stability study [26], when
the zones of the Kelvin-Helmholtz and Holmboe insta-
bility are separated by an intermediate zone where the
shear flow remains stable.

The numerical results are obtained on the basis of the
phase-field approach. Some of the results (the stability
diagrams) are also compared against the data obtained
in the framework of the standard approach that models
a binary mixture as a single-phase medium with a im-
purity. We found that for the determination of stability
diagrams, the peculiarities of the phase-field approach
turned out to be unimportant. There are two major
differences of the phase-field approach from the classi-
cal model of miscible liquids, these are the account of
the surface tension effects and the different treatment for
the diffusion transport. The determination of the stabil-
ity boundaries is based on the relatively short numerical
runs. For similar runs, the interface remains almost flat,
which makes the surface tension effects less significant.
In addition, the Kelvin-Helmholtz and Holmboe instabil-
ities develop on shorter (hydrodynamic) times when dif-
fusion does not have time to impose any significant effect
on the behaviour of a binary mixture. The features of the
phase-field approach should become more pronounced for
a longer evolution, at later stages of the instabilities.
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