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Generalized Iterative Learning Control using
Successive Projection: Algorithm, Convergence and
Experimental Verification

Yiyang Chen, Bing Chtuand Christopher T. Freeman

Abstract—lIterative learning control (ILC) is a high perfor-  design flexibility to be exploited. Various intermediateirgo
mance control design method for systems working in a repetitive |LC algorithms were proposed to provide explicit algoriiam
manner. ILC has traditionally focused on tracking a reference solutions to this problem. For example, several approaches

defined at all points over a finite time interval; recent develop- h dated a ° lete’ ref . th h all th
ments have begun to exploit the design freedom unlocked by ave upcdated a compiete’ reference passing through a e

tracking only a finite number of distinct time instants driven by ~ desired intermediate points along the trial [25]—{27]. Das
the needs of e.g. robotic pick-and-place tasks. This paper proges without explicitly updating the whole reference based on an
a generalized ILC paradigm which extends and unifies the scope optimization approach was considered in [31]-[36]. A spkci

of existing design frameworks by amalgamating previous task case called terminal ILC was studied in [37]~[40], whichyonl
descriptions and embedding system constraints on the input and track f defined at th d oint of th’ trial
output. A novel solution is then derived using a successive praje TACKS a IeISfence Gelinec at the end POINt of the ial.

tion method which provides well defined convergence properties. ~ ThiS paper proposes a generalized ILC design paradigm
The proposed design framework is illustrated by applying itto a that unifies and further extends existing design frameworks

spatial reference tracking problem with experimental results on to tackle more general tracking requirements, including a
a gantry robot testing platform demonstrating its effectivenes. mix of intermediate point tracking, sub-interval trackiagd

Index Terms—iterative learning control, projection methods, constraint satisfaction on system inputs and outputs,|@no®

constraint handling, spatial path tracking which cannot be addressed using existing design methods.
Examples of such tasks include but are not limited to weld-
. INTRODUCTION ing or cutting movements where the tracking is required at

|lterative |earning control (|LC) is a control design metbbd certain discrete pOSitionS, and the movement between them i
ogy which has focused on improving the tracking accuracy gtstricted to line segments with hard/soft system corgsai
systems repeatedly tracking a reference sigrdgfined over a To solve this problem, we formulate the design requirements
finite time horizon0, V]. By updating the control input basedusing an abstract Hilbert space setting and derive an éfgori
on experimental data, e.g. the outpytfrom previous trials, Using a successive projection method with well defined con-
a rich theoretical framework has emerged in [1]-[5] to emabVergence properties. Note that the initial concept wasrteo
the tracking erroe = r —y to converge to zero after sufficientin [41], which however used a different norm optimal ILC
trials even without using an exact model information. ThidPProach and could not incorporate the system constréaiats t
feature has led ILC to be widely applied to precision indabtr are key to the aforementioned applications.
tasks, such as robotic systems [6]-[9], chemical batchgeoc The proposed generalized ILC is very powerful as it can
[10], [11], medicine [12] and stroke rehabilitation [13]es handle many different types of tracking requirements and a
[14]-[16] for a detailed overview. number of existing ILC design methods can be recovered

ILC traditionally focuses on tracking a reference define@s special cases: e.g. classical ILC [14]-[24], interntedia
over the whole trial interva[0, N] with a range of design Point ILC [25]-[36], terminal ILC [37]-[40], intermediate
algorithms available in the literature [14]-[24]. Howevier and sub-interval ILC [41], [42] and piecewise linear spatia
many application domains, the output may only be availableC [43]. As a particularly interesting application, it can
at certain time instants, or only certain time instants may € applied to solve the challenging problem of tracking a
relevant to capture the task requirement, e.g. high-acttee reference defined in space with agriori temporal stipulation
positioning tables [25], robotic manipulators [26], twass by considering the spatial tracking requirement as coimsra
systems [27], electro-mechanical systems [28], [29] and h@n the system output. By removing the unnecessary temporal
man motor system [30]. In recent years, the ‘classical’ IL&facking constraints, the design freedom of this ‘spatialck-
problem has been extended to meet the above needs leadfifigProblem setup can potentially yield significantly bette
to the so-called intermediate point (or point-to-point)CIL tracking performance in practice. This problem has been
This eliminates the unnecessary output tracking requingsnestudied in the wider non-ILC setting, e.g. in [44], [45] bdse

between the intermediate points, and allows significantrobn 0N feedback linearization and in [46], [47] using optimiaat
techniques, which assume an accurate model. However, the
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considered using ILC. It was first considered in the contéxt of non-negative integer®™ andR"*™ denote the sets of
a 2D corner tracking problem in [48], then in [49] to the toequdimensional real vectors andx m real matrices respectively;
ripple minimization problem in switch reluctance motorsda S, is the set of alh.xn real positive definite matrices;|a, b]
most recently in [50], [51] for robotic manipulators withindenotes the space @®‘ valued Lebesgue square-summable
a 2D plane, in [52] for a class of nonlinear systems, arskquences defined on an internjalb]; (z,y) is the inner
in [53] for additive manufacturing. However, all existingproduct of x and y in some Hilbert spaceX x Y is the
implementations of spatial ILC are application specificd anCartesian product of two spac& and Y ; Po(x) denotes
none has proposed a general spatial ILC framework appécalthe projection ofr to the set® in some Hilbert spacdm M
to a broad system class. In addition, all focus on purebnd Ker M are the image and kernel of an operatif,
achieving the path tracking, and have not fully harnessed ttespectively. Other notation will be introduced as needed.
design freedom of spatial ILC to optimize a general addélon

cost function while following the defined path. As will be

seen, the proposed generalized ILC design provides aaoluti Il. PROBLEM FORMULATION

to address these limitations.

The main contributions of the paper are as follows: This section introduces the system dynamics and defines the

general tracking requirement, together with input and outp

» Rigorous Formulation of the Generalized ILC Desigitonstraints to yield a generalized ILC problem formulation
Problem (Section I) The design problem is formulated

rigorously incorporating the intermediate point and sub-

interval tracking requirements, and the constraints on tg\e

system input and output. The problem formulation is

based on an abstract operator form in Hilbert space andConsider arf-input, m-output discrete linear time-invariant

illustrated using a linear discrete time invariant systensystem given in state space form

which allows the essence of the results to be generalized

to other system models without difficulty. zi(t 4+ 1) = Az (t) + Bug(t),
« Development of a Generalized ILC Algorithm (Sections yr(t) = Cai(t),

I, IV and V): A generalized ILC algorithm is developed

to solve the design problem using a successive projectinmerek € N denotes the trial numbet;c [0, N] is the time

method. The proposed algorithm has well-defined coimdex (e.g. sample number) with< N < oo the trial length;

vergence properties meeting tracking requirements amgl(t) € R”, ux(t) € R andy,(t) € R™ are the state, input

satisfying the system constraints under mild conditionand output on thé*" trial respectively;A, B andC are system

Convergence properties and implementation procedurestrices of compatible dimensions. At the end of each trial,

of the proposed algorithm are described in detail. the state is reset to an identical initial value, g(0) = .

« Application to Spatial Reference Tracking Problem (Sedo facilitate later problem formulation and algorithm dgsi
tion VI): To illustrate the power of the proposed desigthe system is represented in an equivalent operator form
method, it is applied to solve a spatial reference tracking
problem. It is shown that the spatial reference tracking yr = Gug + d, (2)
requirement can be formulated into the generalized ILC
framework by defining constraints on the system outpuktherey;, € 15'[0, NJ, ux € 15[0, N] represent the system
The generalized ILC algorithm developed above can thentput and input, respectively; the input and output Hilber
be applied to track the desired spatial reference. TBpaced5[0, N] andiz*[0, N] are defined with inner products
convergence properties and computational aspects of #red associated induced norms
solution are discussed.

« Experimental Verification on a Gantry Robot Test Plat-
form (Section VII) The proposed design method is ver- (u,v)p = Zu
ified experimentally on a gantry robot test platform for
the spatial reference tracking problem. The results show Y)g = Zx s = /(w9 (4)
that the proposed design achieves accurate tracking of
the reference, at the same time satisfying the system
constraints. In addition, by exploiting the flexibility inin which R ¢ Sf f,andS esm,; G: 15[0, N] — I3[0, N]
choosing the tracking time allocation along each sulps the system operator anble 150, N] represents the effect
interval, significant benefit can be obtained in terms of thsf initial condition taking the following forms
control effort reduction,simultaneously maintaining hig

System Dynamics

@

”uHR - <U,U>R, (3)

1=0

tracking performance. The results also show that the pro- i1 et .
posed algorithm exhibits a degree of robustness against (Gu)(t) =Y CA™*~'Bu(s), d(t) = CA'z,.  (5)
modeling mismatch/error due to the use of previous data, s=0

which is clearly desirable in practical applications. Without loss of generality, it is assumed thdt— 0 by

The notation used in this paper is standailis the set incorporating it into the reference (see [22] for more dptai
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B. Generalized Control Design Objective
80

A generalized control design objective is now describec o
In classical ILC the system is required to repeatedly track 7ot
desired reference defined on the whole horizon; in interatedi

point ILC the system is required to track a given referenc
defined on finite intermediate points. The general contrc sof
design objective subsumes both the intermediate poirkitrgc

requirement at time instants, i = 1,..., M, where > 40

O<t1<--- <ty =N, (6) sor
and the linear tracking requirement at each sub-intervi 201
(ti—1, t;], 4 =1,...,M, wherety, = 0 is used for ease of ol

notation. To extract the intermediate point and sub-irterv

tracking requirements, a linear mapping is defined as

pe (7)

where H is the Hilbert space defined as

H=R" x - x RIM 5 B (4, t1] x -+ X 5™ (tar—1, tar]

ce, N]HCEeH:G:[FC],

with inner product and associated induced norm

M ti
((w,v), (1, \))g = Z{%TQUM +> v (HQNG)Y

J=ti—1

[(w,V)llg =4/ ((w,v), (W, V)5 )
Note that(w, v), (u, A\) € H have the following forms
w = (wlv W2, ...y wM)? n= (:u17 M2, -y .uJVf)v

v="_(v1, Vo,..., Var)y, A= (A1, Aoyt Am), 9)

wherew;, p; € R, v;, A € 15'ti1, ti], i=1,...,M and
@ denotes the data s€01,...,Qn, Q1,...,Qn} inwhich
Qiesl,, Q est, fori=1,..., M.

60
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Fig. 1. Exemplary Outpuy in R2.

between the system input and the extended outpyf can
therefore be modelled by

PGu (12)

y¢ = G = (Gu)® = [FGU} ,
where G¢ : 15[0, N] — H is a linear operator. For the
generalized control design, the system is required to meet
the tracking requirement that the system extended oujput
(repeatedly) follows a desired referencec H, i.e. y® = r¢.

To illustrate the relation betweanandy©, the output signal
represented by the blue line in Figure 1 is considered as an
example. This outpuy is defined in 2D spacei{ = 2) on the
time interval [0, 10] and has two intermediate time instants
(M = 2) given by5 and 10 corresponding to the red circles
in the figure. When the matrices are chosenfas= I = I,

In the above mapping, operatdr selects the important P, = [1, — 1] and P, = [1, — 2], it follows that the FGu

elements or linear combination of elements (ofat the in-

termediate time instants, i = 1,..., M, and is defined as
Fi((t1)
F¢ = ; , Fi¢(t;) e R, i=0,...,M, (10)
FarC(tar)
with F; € Rf*™ a full row rank matrix fori = 1,..., M.
OperatorP extracts a linear combination of elements(oét
each sub-intervalt,_1, t;], i =1,..., M, as follows
(PO
P¢=| |, (11)
(POm

where the componentP(); € 15 (t;—1, t;] is defined as
(PQ)i(t) = Pi((t), t € (ti—1, ti,

in which P, € RP:*™ jis a full row rank matrix fori =
1 M.

geeey

From definitions (10) and (11), it follows that the ‘extended
output’ y¢ comprises a subset of outputs at distinct intermedi-
ate points, together with a subset of plant outputs defined ov

component of the extended outpyft is [50, 50, 100, 75]"
(i.e. the coordinates of the two red circles), and R&u
component is expressed &8Gu),(t) = 0, for t € (0, 5]
and (PGu)q(t) = =50, for ¢ € (5, 10] (i.e. the line segments
connecting the origin and the two red circles).

C. Input and Output Constraints

In practice, input and output constraints exist widely in
control systems due to physical limitations or performance
requirements. For example, the input constrain{setpically
assumes one of the following forms:

« Input saturation constraint
Q= {u €50, N]:|ut)] = M(t), 0 <t < N}, (13)

where M(t) = 0, 0 < t < N are the (possibly time varying)
saturation limits,
« Input effort constraint

N
Q={ueclfo, N: Y u' (Hu(t) <M}, (14)
0

sub-intervals of the task duration. The dynamic relatigmshwhere M > 0 is the total control effort limit,
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« Input rate constraint
Q= {u €0, N]:|Au(t)] 2 M(t), 1<t< N}, (15)
where Au(t) = u(t) —u(t —1) and M(t) = 0, 1 <t < N

are the (possibly time varying) input rate limits. Simijarthe
output constraint seb usually has one of the forms:

« Output saturation constraint

= {y e 13[0, N]: [y(H)] <N(1), 0<t <N}, (16)

where N/ (t) > 0 represents the output saturation limit, or Fig. 2. lllustration of the Successive Projection Algomith

« Output polyhedral constraint
d={yel0, N]:ay(t) <bi, a; €R™, b; €eR A. Successive Projection Interpretation
i=1,...,M, 0<t< N} 17) The design objective of the generalized ILC problem is to

iteratively find an inputu* such that i) the extended output

In particular, the latter constraint restricts the systampot y* = G°u* tracks the desired referencg, i.e. y** = r¢, ii)

to a specified convex region, and can be used to formulate the outputy™ = Gu* satisfies the constraint" € ® and iii)

spatial reference tracking problem as described prewaus| the inputu™ meets the constraint requiremenit € 2. This

the introduction. is equivalent to iteratively finding a poirfy¢*, y*, «*) in the
intersection of the two following convex sets:

S ={("y,u) € H:y° = G, y = Gu}, (20)

D. Generalized ILC Design Problem R
S ={("yu) e H:y" =1 yed ueQ}, (21)

Using the extended output (12) combined with the above
constraints, we are now in a position to state the genethlizghere the setS; represents the plant dynamics ars
ILC design problem. This problem is defined as follows:  represents the tracking requirements and system cortstrain
Definition 1. (Generalized ILC design problen): The gen- H is the Hilbert space defined by
eralized ILC design problem is to find an input update law . A P
based on a function of the previous trial's input and tragkin 11 = R’ X - X RIM B! (to, ta] > -+
error of the form x BM (tar—1, ta] x 15°[0, N] x 150, N], (22)

whose inner product and associated induced norm are derived
naturally from (3), (4) and (8).

wheree§ = r¢ — y¢ is the extended tracking error, such that The problem of finding a point in the intersection of two

Uk+1 = ]'—(Uk-; 62)7 (18)

the tracking error converges to zero/ass oo, i.e. sets can be solved by the method of successive projection.
The basic successive projection scheme from [54] is shown in
lim e =0 Figure 2 with guaranteed convergence performance as shown

k—roo in the following theorem.

and the converged input and output satisfy the constrdiets, Theoreml. [54], [55] Let S; and Sz be two closed convex
sets in a Hilbert spac&’. Define projection operatorBg, (-)

lim up =w* €Q, lm y, =y"* € ®. (19) andPs,(-) as
k—o0 k—o00
— 3 Lo — 2
Note that the generalized ILC design problem collapses to Ps(z) = arggensnl 12 =2l (23)
specific ILC design problems by setting appropriate valdfes o P, (z) = arg min ||& — $||§( ’ (24)
parameters), @, F' and P, e.9.Q; = 0, P, = I, classical z€S2
ILC; @i =0, F; = I, intermediate point ILC. where|| - || is the induced norm inX. Then given the initial

estimatezy € X, the sequencegj}i>o and {zx}i>o

enerated b
IIl. GENERALIZED ILC USING SUCCESSIVEPROJECTION 9 y

In this section, the above generalized ILC design problemis "1~ Py (@x); 41 = Psy (Tr), k20 (25)
formulated USing the SUCCESSive pI’OjeCtion framework wr"%_re unique|y defined for eam c X and Satisfy the fo“owing
was used previously to derive classical and intermediatiet pPomonotonic convergence conditions
ILC algorithms [22], [32]. Based on this formulation, a nbve
ILC algorithm is proposed to solve this generalized problem |Frre — zhiallx < |Zae1 — 2% - (26)
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If either set is compact or finite dimensional, the sequenceslV. CONVERGENCEPROPERTIES OF THEALGORITHM
{Zk}r>0 and {zy } x>0 converge to fixed pointg* € S; and

) When S; N Se # @, perfect tracking of the reference is
z* €Sy, i.e.

possible. Algorithm 1 iteratively solves the generalizéd |
m 3y = 7. i o 27 design problem (19) with desirable convergence propesses
oo Th =T, 0 Tk = (@7) shown in the next theorem.
Theorem2. If S; NSy # @, perfect tracking of the reference

defining the minimum distance between two sets, i.e. is possible. In this case Algorithm 1 achieves perfect tragk

~x w2 . - 2 of the extended reference, i.e.
|#" —a"|% = _min [|F -] (28)
TES1, €S, .
khm yp =re. (36)
Furthermore, ifS; N S, # @, the following convergence N . e

condition is satisfied In addition, the inputu;, and outputy; converge as
li =u*, li =y" 37
lenss — 2% < ok — )%, Vo € S NS, k>0 (29) g =’y lm g =y 37)

and satisfy the system constraints thate Q, Vk > 0, y* €
®. Furthermore, the input; converges monotonically with

respect to the cost function
Proof. See [54], [55] for the detailed proof. O

Te = 17 — v lle + e — w1 (38)
) ) and the error; converges monotonically with respect to the
B. Generalized ILC Algorithm cost function
Direct application of Theorem 1 to the generalized ILC T = [IMes |2 Ned |2 39
design problem (19) withk = H and S, S defined in (20) b= IMeilli) + IN €kl (39)
and (21) yields the next algorithm. where M = (I + G**G*)™', N = G**(I + G**G*)~" and

Algorithm 1. Given system dynamics (1), input constraint sdfdl = {@7 St.
Q, output constraint seb, extended reference’, any initial

valuesu, € Q2 and7, € 15[0, NJ, the input sequencguy }r>o Proof. See Appendix B. -
defined by the updating law The above theorem shows that the proposed algorithm
solves the generalized ILC design problem, i.e. perfecktra
g1 = ugp + G (I + GG**) e (30) ing is achieved and that the converged input and outputfgatis
the system constraints. Moreover, this convergence has a
followed by the projections specific form of monotonicity with respect to the performanc
defined above, e.g. weighted error norm as in (39), which is
uk+r = Po(lr+1) = argmin ||z — 1)z, (31) appealing in practice. Furthermore, as a by product, whereth

are no constraints, the algorithm can be simplified and has th
property that it will converge to a minimum norm solution
with zero initial input, i.e. the control input with minimum

G* is a linear operator defined by

i1 = Po(fry1) = arg min Iz = Gkl (32)

Corollary 1. If 51 NSy # &, in the absence of system con-

. Geul o, . straints, Algorithm 1 control updating law has the follogin
Gou= [Gu} 1[0, N] = H, (33)  simplified form
_ ex evex\—1 e
whose Hilbert adjoint operator i§°*, ¢} is the error k1 = up + G+ GOGT) ey,
. and the algorithm converges monotonically with respechéo t
[ek] €S =1 — 4t & = Fr — yns (34) performance index
k

€L = |-
Jp = (up, —u”, H(up —u")) (40)

and 1 is the Hilbert space for all & > 0, ug andu*, whereH{ = G**G + I, and G¢*

is the Hilbert adjoint operator ofz¢. Moreover, the control

H=R"x ... xRM™ x B8 (ty, t - . -
o sza (o, ta]x m effort converges to the minimum value with initial conditio
S M (tar—1, tau] x 150, NJ, (35) ug = 0, i.e.

whose inner product and associated induced norm are rigtural lm ugl|% = min{|jul|5, s.t.7¢ = Gu}.  (41)
derived from (4) and (8). hroe “

Proof. See Appendix A. 0 Proof. See Appendix C. O
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On the other hand, perfect tracking of the reference is notUsing Lemma 1, the feedback plus feedforward implemen-
possible wherb; NS> = @. No input exists to satisfy the track-tation is given in the next proposition.

ing requirement without violating the system constraitis. Proposition 1. The ILC update (30) in Algorithm 1 can be
this case, this algorithm still attempts to solve the caistd implemented in a feedforward plus feedback solution
generalized ILC design, as shown in the next theorem.

Theorem3. If S; NS, = @, perfect tracking of the reference U1 (t) = up(t) + R™'B ppia(t), (47)
under the system constraints is not possible. In this cagtin

Algorithm 1 still achieves convergence of the input, output

yr and extended outpuf; as follows pei1(t) = —K(t)(I+ BRT'BTK(t)) A
lim yi =y, lim yp =y, lim up =u", (42) (@r1(t) — 2(t) + Ee41(t),  (48)
k—oo k—o00 k— o0

where where K () is the solution of the Riccati equation

u” = argmin J;, = argmin [Mes|[ig + IINe*|[,  43)  K(t)=ATK(t+1)I+BR'B'K(t+1))'A

and +CT(S+Q(t+1))C, (49)

Y =G, Yyt =Gu® with boundary conditions

in which M = (I + G*G*)™!', N = G**(I + G**G*)! K(t;—1) = K(t;)+C F QFC, i=1,...,M,
and [Q] = {Q, S}. In addition, the inputu; at each trial K(N) — 0 ’ 50
satisfies the constraint thaj, € Q2. Furthermore, the errar; (N) =0, (50)
converges monotonically with respect to the cost functipn gnqg £x41(t) denotes the feedforward term at thie+ 1) trial
defined in (43). generated by the difference equation

Proof. See Appendix D. O _ _
) ) ot A & (t) = (I + K()BRT'BT) " (A & (t +1)
Remark1. It is worth pointing out that the scenario in the TA T ax

above theorem is not well-posed. In practice an appropriate QU+ Dex(t+1)+C St +1)), (51)
tracking requirement-¢ should be specified to avoid thiswith boundary conditions

impossible tracking task, i.e51 N .S; = &. S
Sor1(ti —1) = &Ga(ti) +C F; QiFiex(t:),

V. IMPLEMENTATION OF THE ALGORITHM k1 (N) = 0, (52)
Implementation of Algqrithm 1 consists of two steps: thg, which Q(t) _ P;QiPZ- for ¢ € (ti_1, t;],i=1,..., M.

ILC update (30) and projection steps (31), (32). The update
(30) can be directly implemented as a feedforward solutidtroof. See Appendix E. O
using u, and ej to constructiy4,. Alternatively, it can be ) o
implemented using a causal feedback plus feedforward-struc The ILC update (30) is then followed by the projection steps
ture by employing the state feedback to further embed robit(31) and (32) to project the unconstrained inpyt , and
performance in practice. This exploits the special progert OUtPULYx-1 into the input and output constraint seisand (2
of the linear operatoG¢ and its adjoint operatot:**. To respectively which are usually straightforward. For exemp

formulate the causal feedback plus feedforward solutiba, tthe input constraint se® is usually a pointwise constraint
following lemma is needed. in practice, so the solution of the projection operaf®y in

~ (31) is straightforward. As another example, when the input

Lemlr?gl. ;hi:s"?ﬁét;ﬁgm;Or;er:gltﬁs’;(;rg’V’ y)€H = onstraint sef has the saturation form (13), the solution of
u € 5[0, N] wing i u = Pq(u) is given by

u(t) = R™*BTp(t), (44) M), a(t) = M(),
wherep(t) is computed in reverse time as follows u(t) = a(t), —M(t) 2at) = M(t), (53)
p(t) _ ATp(t+ 1) + CT(PiTQiVi(t + 1) + Sy(t+ 1))7 *M(t)y 'Zt(t) < *M(t)

teftiy, t;), i=1,...,M, (45) for 0 < t < N. Also the solution of the projection operator
Ps in (32) is guaranteed to be unigue. Consider the saturation

with boundary conditions output constraint set (16) for example, the solution7of=
p(ti—1) = p(ty)+CTF Quii=1,..., M, Po(y) is given by
p(N) = 0. (46) N(@), 4(t) = N(2),
(1) = gt), —N(t) 2 g(t) K N(1), (54)

Proof. The proof follows that of [56] with modifications
applied to the extended operator in Hilbert space. O for0<t<N.
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which prevents overshoot beyond each linear segment of the
path. Using Algorithm 1 the input;;, and outputy,; both

P, converge as
1 ey
Mot lim ug = u* € Q, lim Y =y (59)
k—oo k— o0
Furthermore, ifS; NS, # @, the outputy, and extended
outputy;, have the following convergence properties
[ ] Transition Vertices ri lim Y = y* c (I), lim yz = re€. (60)
k—o00 k— o0

Piecewise Spatial Path
That is, perfect tracking of the spatial path is achieved.

Proof. See Appendix F. O
Fig. 3. Piecewise Spatial Path i&?.

The above theorem states that the proposed Algorithm 1
solves the high performance piecewise linear spatial ingck
VI. PIECEWISELINEAR SPATIAL PATH TRACKING problem. From Corollary 1, Algorithm 1 also fully exploitset
As described in the introduction, the spatial tracking protsPatial tracking task’s inherent design freedom in the tenaip
lem requires the output trajectory to follow a continuoushpadomain, resulting in the spatial tracking problem beinged|
defined in space with no temporal constraints. The framewofith minimum control effort for a general class of systems,
developed in this paper can be applied to produce the fitstder mild conditions wherb; N S; # @ and the system
spatial ILC algorithm capable of converging to an optimgionstraints do not engage (e.g. if overshoot can be toterate
solution to the problem for a general class of systems. V& does not occur).
consider the common class of piecewise spatial trackirkgtasRemark2. The implementation of the aforementioned spatial
defined as follows: path tracking design is exactly the same as that discussed in

Definition 2. The piecewise linear spatial tracking problem igrevious sections, in particular the unique solutior Py (3)
to design an input such that the output travels between edgHiven as
pair of verticesr;_; andr; in ascending order, i.e. having - T - T
- . t At S y(t i Ti
reachedr;_; att;_;, remain in the interval between_; and &)+ Ria(t),  a; g(t) > a; i,

r; until r; is reached at; and then repeat the process for the 7(t) = { 7(t), a; ri-1 < a; §(t) <ar;, (61)
next pairr; andr; . G(t) + Aiio1 (1), af §5(t) < al i1,

Notg that the n\?/ertlce%, zl :20,. MTare defined in fort € (tiv, 4], i=1,..., M where
Cartesian spacR™ asr; = [r}, r7,...,r™]", and a special
e>_<amp|e of the piecewise spatial path, he= 2, is shown in A (1) = (a] @)~ Ya] (rj — §(t))as.
Figure 3.

The next theorem illustrates how Algorithm 1 solves thBRemark3. It is worth pointing out that the spatial path tracking
spatial problem of Definition 2 as a special case. problem considered in this section is still time dependent a

Theoremd. The piecewise linear spatial path tracking probIerWe input depends implicitly on the transition time instant
is solved by Algorithm 1 with ., M and the input has to be implemented on the time

mterval [ , NJ]. A different ILC approach was developed in
e _ Fr (55) [53] for addictive manufacturing, where no temporal dynesni
Pr|’ was involved, but it is not suitable for spatial path trackin

L Please refer to [57], [58] for more information.
wherer € [5*[0, N] is given by

r(t) =1, t € (ticy, t], i =1,..., M, (56) VII. EXPERIMENTAL VERIFICATION ON A GANTRY ROBOT

the operatorF is defined byF; = I, i = 1,...,M and the In this section, the proposed algorithm is validated ex-
operatorP by P, € R(™~1xm g full rank matrix satisfying perimentally on a three-axis gantry robot test platform to

demonstrate its effectiveness.
Ker P; = Imay, (57)

inwhicha; = r; —r;_1, fori =1,..., M. The input constraint A, Test Platform Specification
set() is chosen according to the power capability of the plant,

and the output constraint set is The multi-axis gantry robot shown in Figure 4 is employed

as test platform. The gantry robot’s input are the voltages

O = {yell0, N]:alri1 <aly(t) <alrs, applied to the thr'ee motors controlling the motlpns of tHeoto
overzx, y, z directions, and the output are the displacements of

t e (tio, ti]’ i=1,...,M}, (58) the three axes. The control design objective is to use bath th
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Fig. 4. Multi-axis Gantry Robot Test Platform.

0.01
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0.007 " W
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z-axis, yz(m)

0.004 " )
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0.002 N .

Spatial Path
= = =Unconstrained #1qp |

0.001 - N s~
? .
- - =Constrained yig9

. |
6 -4 -2 0 2 4 6

x-axis, y, (m) %103

x-axis and z-axis/y = 2) to track a piecewise linear spatial

path composed of five line segmenf¥ = 5)

with

To [ 0.00476 [ 0.00294
o= o [T T ] 0.00345 |2 T | 0.00905 |°

[ —0.00294 [ —0.00476 To
"= 0.00905 |04 T 000345 0P T | 0

as shown in Figure 5 (the yellow line), during the given
2s. The tracking time instants of the

tracking time T'
intermediate points are given as

t1 =04, to=0.8, t3 =12, t, =16, t5

The x-axis and z-axis are modelled based on frequency r

=20. (62)

sponse tests in [59] with state space parameters

[1.0673

—0.0242 0.0097 —0.0047 0.0028 —0.0009 0.0005]
0.0827 0.999 0.0004 —0.0002 0.0001 0 0
0.0016 0.04 1 0 0 0 0
Ag = 0 0.0004 0.02 1 0 0 0
0 0 0.0001 0.01 1 0 0
0 0 0 0 0.01 1 0
0 0 0 0 0 0.0025 1
T
By = [0.403 0.0159 0.0001 0.0002 0 0 o] x107%
Cy = [00013 —0.0005 0.0001 0 —0.0001 0.0001 —0.0001],
1.0291 —0.0077 0.0035 —0.0011 0.3957
A = 0.0406 0.998 0.0001 0 - 0.0079 104,
0.0002 0.001 1 0 0
0 0 0.005 1 0
Cy = [0.0026 —0.0004  —0.0004 0.0005] ) (63)

and a proportional feedback gad00 is added on the z-axis.

The system is sampled with a zero-order hold)&fls. The
input voltage has the saturation constraint in the form (i)

M(t) =[0.5, 4]T. The parameters;, P; andr(t) are chosen
according to the values in (55). For simplicity, the weighti

matrices(Q);, Ql S and R are chosen to be diagonal.

B. Performance of the Proposed Algorithm

Fig. 5. Spatial Path and Converged Hybrid Output Trajeetorvith and
without Output Constraints.

N
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< ~ = = Constrained 99
>
~ o0sf ~ i
[0} 1 l
j=2) / *
= P | I ~
% N 1 1 S
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= -05 \ ! | | 1 1 L L L
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S - k=== 1
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- 2 L L L L L L L L L

0 0.2 0.4 0.6 0.8 1 12 1.4 16 18 2

Time, t (s)

Fig. 6. Converged Input Trajectories with and without In@nstraints.

trials to see the performance for the unconstrained case. Th
final converged hybrid output and inputs of the two axes
are plotted in Figure 5 and Figure 6 respectively. Although
the converged hybrid output performs near perfect tracking
along the piecewise linear reference path, it is clear that
the overshoot problem takes place. In the gantry robot test
platform, the overshoot problem may lead to collision be&mwe
the end-effector and the frame, which causes damage to the
machine. In addition, the corresponding inputs of the twesax
exceeds the input constraint $etdefined in (58) at certain
time intervals, which is allowed not in practice. Therefate
is necessary to apply the system constraints in practiceetet m
the actual system requirement of the design task.

To avoid the above problems, we next apply Algorithm 1 to
the same task with the input saturation constraint defined in
(13) and the hard output constraint defined in (58). In the

Firstly, we artificially remove the system constraints .(i.eexperiment, we choos€); = 100,000, Q; = 500,0001,
setting Q = 14[0, N] and ® = I3[0, N]) and apply the S = 10,000/ and R = I, and a total ofl00 update trials
proposed algorithm to this task on the gantry robot 66 are performed. The final converged hybrid output of the two
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, TABLE |

1 AR CONTROL EFFORT COMPARISON.
a ——Q, = 200, 0001

E _8 ;‘23333% Control Effort (V2 - ms)
5 100 Qi = 800,0007 Q; = 200,0007 5,462

u:J —Q; = 1,200,000/ Q; = 300,0007 5,467

o Q; = 500,0007 5,461

S Qi = 800, 0001 5,459

8‘10'2 Q; = 1,200,0001 5,458

c Classical ILC 6,649

g

=

10 - . - - - - - - -
0 10 20 30 40 50 60 70 80 90 100
Number of Trials, k VIII. CONCLUSION

Fig. 7. Mean Square Tracking Error ovE30 Trials with System Constraints. . . .
This paper develops a novel unified ILC design framework

capable of solving tracking requirements defined on both

intermediate point and sub-intervals as well as handling a
axes is plotted as the dashed magenta trajectory in Figuremgxed form of system constraints, which substantially ealte
Compared to the previous overshoot result in the same figuifee existing ILC research. To solve this problem, the paper
it is clear that Algorithm 1 not only achieves the generalizeproposes a new ILC algorithm using successive projection
tracking requirement, but keeps the hybrid output trajgctomethod with well defined convergence properties. A partic-
within the output constraint seb defined in (58), i.e. this ularly powerful feature of the proposed algorithm is that it
algorithm solves the overshoot problem. Furthermore, tra fi can handle many different types of tracking requirements. A
converged input voltages of the two axes are plotted as tB@ example, it is applied to solve a challenging problem of
dashed magenta trajectories in Figure 6, and it is clear tihigh performance spatial reference tracking. The algarith
both stay within the input constraint sét defined in (58). achieves high tracking accuracy as well as fully exploits th
Note that the inputs of both axes increase while approachifigsign freedom in the temporal domain to minimize some
the transition vertices as more control effort is needed €®st functions, e.g. minimum control effort. The algoritam
change the moving direction of the end-effector. Therefitre convergence properties have been analyzed rigorously, and
is clear from Figure 5 and Figure 6 that Algorithm 1 not onlyhen verified on a gantry robot platform by tracking a spa-
guarantee high performance spatial tracking, but alsolbandtial path with stipulated input and output constraints, abhi
the system constraints well. demonstrates its practical efficacy.

We further apply the proposed algorithm with different, The experimental results suggest that the proposed algo-

parameters to compare convergence properties. Wed@eep r|th.m has a degree of robustrjess against model unc_ertiaintig
100,0007, S = 10,0007 and R — I constant, andy; is A rigorous robustness analysis of the proposed algorithiin wi

selected to take the valu€80.000I. 300.0007. 500.0007. Pe undertaken. In addition, the Hilbert space setting of the
800,0007, and 1,200,0001. A total of 100 update trials are problem formulation means the results in this paper can be

performed for each value af;, and the mean square errofl principle exte_nded to many other situa’Fions Qf ir_1terest,
e; at each trial is plotted in Figure 7. From this figure, it i€-9- continuous linear state space models, linear timengry
obvious that the convergence rate increases as we incteaseYSteMs and switched linear systems. Some initial resalts o
weighting value;. It is noted that all plots converge to belowtOntinuous linear state space models were recently reporte
0.01 mean square error, which verifies accurate tracking R0]- However, more research is needed to fully charaaeriz
practice despite of model uncertainty and random disturean!tS convergence properties and thoroughly validate itsoper

It is noted that there are no particular concerns about tA¥nce. This paper considers piecewise linear path tracking

fluctuation in the figure as the mean square errors all copveffOPlem with prescribed transition time instants. Futurgkv
and satisfy the practical tracking requirement. includes fully unlocking the design freedom to incorporate
more ILC design freedom, e.g. the optimal tracking time

of @Q; are shown in Table I. If performed within the classicaj| c design problems. These constitute part of our future
ILC framework, the end-effector would commonly be assumgdsearch and will be reported separately.

to move at a constant speed. This classical setup has been

implemented, and the control effort needed is also shown in

this table for comparison. The table shows that the proposed

algorithm fully exploits the design freedom in the tempatai APPENDIXA

main in terms of an approximate% control effort reduction PROOF OFALGORITHM 1
from that provided by classical ILC.

Experiments with other combinations &f;, Q;, S and R To apply Theorem 1 to generalized ILC problem (19), we
yield similar convergence performance to the results iruféig first compute the necessary projections. From the defindfon
7. For brevity, these results are omitted. Hilbert space in (22), denoter = (y¢,y, u) to be an element
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belonging toH. The projection operatoPs, is hence
Ps, (z) = in || — 3
s («) = arg min |2 — [y

~ PN 2

min 9°,0,4) — (Y%, 4, u) || 5 ;
(Qe@}ﬂ)eﬁH( i) = %y ) o, s my
s.t. ¢ = G, § = G

. ~ 2 ~ 2 ~ 2
=arg min [|§° —y°ll5 + 19 —ylls + 2 —ullg,
(9°.9,0) €l
s.t.9¢ = G, § = Ga.
. ~ 2 N 2 ~ 2

= argmin [|G°4 — y°[g + [|Ga —ylls + [|a —ull . (64)

= arg

The optimization problem (64) yields solutiah= u* with

y¢ — G

* Sk S vsk\—1
w* =u+ G (I + GG™) L,-Gu

] . (65)
It follows from the definition (20) that

Ps, (z) = (G°u*, Gu*,u*), (66)

APPENDIXB
PROOF OFTHEOREM 2

If S; NSy # @, there exists intersection between the two
sets and perfect tracking under system constraints islgessi
As both S; and S, are finite dimensional closed convex
sets in the Hilbert spacél, it follows from equation (27)
in Theorem 1 that the two sequencfs, U, tx) x>0 and
{(r®, 7, ur) }k>0 both converge as

im (g, Gk, U) = (§°*, 9", 0"),
k—o0

lim (r¢, 7g, ux) = (r%, 7, u"),
k—o0

(72)
which attain the minimum distance between the two sets, i.e.

~ex |2 ~ ~x 112 ~x12
I =g lg + 17" =7 lls + lu" —a*[[p=0.  (73)

So we obtainy®* = r¢ for perfect tracking and we also know
that they* belongs to the output constraint sétas y* =
7 € ®. Hence all these give rise to (37). In addition, the
input u, is obtained from the projection operatéy, at each

trial souy, € Q. Then, substitute;, = (J5, Jx, Ux) andzy, =

whereu* is given by (65). Performing a similar procedure fofr¢, 7, ux) with the update solution (30) into the monotonic

projection operatoPs, yields
. P 2
Ps, () = arg min [|Z — =/
~e A A 2

min . (yeuyvu) - (yea:%u) o ’
(ge,gra)e H e s m
stgf=rc, ueN, ged

~ >112 ~ 2 ~ 2
g =velle + 19— vlls + i —ullz

= arg

min
(9¢.9,0)€
stygf=rc ueQ, ged.

= arg
(67)

In the optimization problem (67), the elements § and @

are independent of each other, which means this solution can
be obtained separately. Using (31) and (32), it follows that g pstitutes*

PSz(x) = (revpé(y)apﬂ(u»' (68)
Consider update (25) in Theorem 1, and also dgt =

(re, 7k, ug) and ¥, = (J¢, Uk, ax). At the kt* trial, the el-

ementsi,. 1 andzy4, are updated using projection operators

Ps, and Ps,. For 41 = Pgs, (xg), it follows from the
solution (66) that

T = u + G+ GG T T (ee

Upyr = up + G (1 + ) [Tk-yk (69)

glec+1 = Geak-‘rla gk-‘rl = Gﬂk-‘rla k P Oa (70)
and forzy,1 = Ps,(Zx+1), it follows from (68) that

Fri1 = Po(Jr+1), ubs1 = Po(lky1), k=0, (71)

convergence condition (26) to givB..; < Ji, and substitute
z* = (re,y*,u*) € S1 NSy andzxy = (r€, 7k, uy) into the
monotonic convergence condition (29) to give.1 < Ji,

which completes the proof.

APPENDIXC
PROOF OFCOROLLARY 1

In the absence of system constraints, the Setand S, can
be simplified as follows.
Sy = {(y°u) € H x 15[0, N]:y° =G},
Sy = {(y°,u) € H x I§[0, N]:y¢=r°}.

(74)
(75)

= (r¢,u*) and z, = (r¢,ug) iNto monotonic
convergence condition (29), which hence gives risgito; <

jk, Vk > 0. The proof of control effort follows from Theorem

1 in [41] by considering the Lagrangian associated with the
minimum control effort

L(u, ) = |ull +2(\, r° = Gu)g, (76)

where )\ is the Lagrange multiplier. The problem has a unique
stationary pointu,, = G¢*\ andr¢ = G°us wWhich hence
leads torc = G°G°*)\. The stationary point solution solves
the minimum control effort problem. In the absence of system
constraints, the inputy, is

k k—1
up =Gy X'ef =Gy XN - X))\
1=1 =0

= G(I - X"\, (77)

which directly illustrates how the inpui;. 1, and the reference where X = (I + G°G**)™! ande§ = r¢ = G°G°*)\y as
Tr+1 are updated bys, . Therefore, Theorem 1 can be applied.; = 0. It follows thatwu, converges in norm to an inpit, =
to problem (19) with the solutions (69) and (71) to yield7¢*)\y and r¢ = G°G®* )\, which is the unique stationary

Algorithm 1, which updates the input sequedeg } > along
the trial under the initial conditiony = (r¢, 7o, ug) € So, i.€.
7o € D, ug € Q.

point of the Lagrangian. It is clear that, = u. andig = A,
and hence the control effort converges to the minimum céntro
effort. This completes the proof.
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APPENDIXD Then substitute (85) and (86) into the costate equationt(82)
PROOF OFTHEOREM 3 yield an equation of the form

If S; NSy = @, perfect tracking is not possible under H(A,B,C,S,Qi, P, R K(t), K(t+ 1))
system constraints. As botfy, and Ss areAfinite dimensional _ A 1
closed convex sets in the Hilbert spaég it also follows (w1 (t) —2(t)] = G(4, B, C, 5, Qilpi’R ’
Theorem 1 that the two sequencé&jS, ik, ix)}r>0 and K(t),6p1(t), Eppr(t + 1), en(t +1),ex(t +1)), (87)
{(r®, 7k, ur) }x>o Still converge as shown in (72) yielding (42),\where #(-) and G(-) are functions of their arguments and
and attain the minimum distance between the two sets, i.independent of the states. If both functions are set to zero,
[ — Gem% . GﬂHQs +lu— ﬂH?g, (78) the equa_tion (87) ho_Ids independentl_y of the diﬁerfencmeft

current difference of in state. Doing this yields the diseida-
trix Riccati equationX (¢) and the optimal predicto§y1(¢)
in (49) and (51).

Comparing to the boundary conditions in equation (84),
there is one more ter@@ " F,' Q; Fye;. 1 (t;) added at the end.
Note that

ert1(ti) = ex(ti) — Clapgr(ti) — zi(ti)),
and hence the solution (43) far* is obtained by substituting which yields

(80) into (79). Also, the input:; at each trial belongs to the
input constraint sef? as it is obtained from the projection
operator P,. The proof of the monotonic convergence with
respect toJ;, follows from the similar proof in Theorem 2.

min
WueQ,FED

which can be further written as

min

T 112 L llx _ )2 a2
L min {min[r* — <3+ 7~ Gally +lu — a3} (79)

The inner optimization problem in (79) yields
@=u+Ne’, (80) (88)

CTF'QiFiens1(t) =CTF, QiF,C(zy11(t;) — z1(t:))
+ CTF,QiFiex(t;), (89)

The proof is now complete.

APPENDIXE
PROOF OFPROPOSITION1

The ILC update (30) is equivalent to
w1 (t) = uk(t) + G €5 44 (1),

whereé; | = [ef, |, ér1]’ andépq = & = Yrr1. From
Lemma 1,G°*¢; . ,(t) can be computed using

G¥&i,1(t) = R'B prya(t),

(81)

(82)
where the costatg,(¢) is computed in reverse time as

Pei(t) = —ATpega(t+1) — CT(PT QiPiersa(t+1)

+Sék+1(t+1)), t e [tifl, ti), i=1,..., M, (83)
with boundary conditions
Pr1(ti — 1) = pry1(t;) + CTF Qi Fyery1(t),
Pr+1(N) = 0. (84)

Substituting (82) into (81) yields the solution (47).

and gives rise to the boundary conditions in (50) and (52).

APPENDIXF
PROOF OFTHEOREM 4

According to Definition 2, the piecewise spatial tracking
requirement is to track the transition vertices at time
instantst; and the linear path between_; andr; during the
sub-interval(t;—1, t;]. Therefore, the piecewise spatial path
tracking problem is

(Gu)(tb) =7 1= 1a" '7M7
Gu(t) ER; tE (tifl, ti], i=1,...,M, (90)

whereR; is the set of all points along each linear sub-path,

ie.R,={yeR":y=r;—y(r; —ri—1), 7 € [0, 1]}. Note

the all the elements ifR; have the linear relationship
Py = Piry, Yy € Ry, (91)

where P, ¢ Rm—Uxm is g full row rank matrix. It follows
that
Pi(rs = y(ri —ri—1)) = Piry, (92)

which yields P;a; = 0, and further gives rise to the condition

Assuming full state knowledge, the costate equation (8@7)' In addition, the hard output constraint set definebB) (

yields a causal implementation
~K(t)(I+BR'BTK(t))"'A
(@rr1(t) = k() + Erra (D)

Pry1(t)
(85)

is used to prevent overshoot. Therefore, a piecewise $patia

ILC problem is formulated as
lim y, =y* € ®, lim yp(t;) =ry, 0=0,..., M,
k—o0 k—o0

lim Plyk(t) =Pr;, te (ti—17 ti},i =1,..., M. (93)

Then use the method proposed in [61] such that it follows k—oo

from (1), (47) and (85) that

Trp1(t+1) —azp(t+1
= A(@p41(t) — zi(t)
= A(zp41(t) — i (t)
=(I+BR'BTK(t

+BRT'B &1 (1)

+ B(ug+1(t) — ux(t))
+BR™'B py1(t)
) A(zrga () — (1))

~— ~— —

~

(86)

Therefore, it is clear that the generalized ILC problem (19)
is reduced to exactly the problem (93) when the parameters
are set to the values described in this theorem. Therefore,
Algorithm 1 can solve the problem (90) as a special case. As
the piecewise spatial path tracking problem is a speciat cas
of generalized ILC problems, the proofs of the convergence
properties in (59) and (60) follow exactly from the proofs of
Theorem 2 and 3.
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