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Generalized Iterative Learning Control using
Successive Projection: Algorithm, Convergence and

Experimental Verification
Yiyang Chen, Bing Chu∗ and Christopher T. Freeman

Abstract—Iterative learning control (ILC) is a high perfor-
mance control design method for systems working in a repetitive
manner. ILC has traditionally focused on tracking a reference
defined at all points over a finite time interval; recent develop-
ments have begun to exploit the design freedom unlocked by
tracking only a finite number of distinct time instants driven by
the needs of e.g. robotic pick-and-place tasks. This paper proposes
a generalized ILC paradigm which extends and unifies the scope
of existing design frameworks by amalgamating previous task
descriptions and embedding system constraints on the input and
output. A novel solution is then derived using a successive projec-
tion method which provides well defined convergence properties.
The proposed design framework is illustrated by applying it to a
spatial reference tracking problem with experimental results on
a gantry robot testing platform demonstrating its effectiveness.

Index Terms—iterative learning control, projection methods,
constraint handling, spatial path tracking

I. I NTRODUCTION

Iterative learning control (ILC) is a control design methodol-
ogy which has focused on improving the tracking accuracy of
systems repeatedly tracking a reference signalr defined over a
finite time horizon[0, N ]. By updating the control input based
on experimental data, e.g. the outputy, from previous trials,
a rich theoretical framework has emerged in [1]–[5] to enable
the tracking errore = r−y to converge to zero after sufficient
trials even without using an exact model information. This
feature has led ILC to be widely applied to precision industrial
tasks, such as robotic systems [6]–[9], chemical batch process
[10], [11], medicine [12] and stroke rehabilitation [13]. See
[14]–[16] for a detailed overview.

ILC traditionally focuses on tracking a reference defined
over the whole trial interval[0, N ] with a range of design
algorithms available in the literature [14]–[24]. Howeverin
many application domains, the output may only be available
at certain time instants, or only certain time instants may be
relevant to capture the task requirement, e.g. high-acceleration
positioning tables [25], robotic manipulators [26], two-mass
systems [27], electro-mechanical systems [28], [29] and hu-
man motor system [30]. In recent years, the ‘classical’ ILC
problem has been extended to meet the above needs leading
to the so-called intermediate point (or point-to-point) ILC.
This eliminates the unnecessary output tracking requirements
between the intermediate points, and allows significant control
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design flexibility to be exploited. Various intermediate point
ILC algorithms were proposed to provide explicit algorithmic
solutions to this problem. For example, several approaches
have updated a ‘complete’ reference passing through all the
desired intermediate points along the trial [25]–[27]. Design
without explicitly updating the whole reference based on an
optimization approach was considered in [31]–[36]. A special
case called terminal ILC was studied in [37]–[40], which only
tracks a reference defined at the end point of the trial.

This paper proposes a generalized ILC design paradigm
that unifies and further extends existing design frameworks
to tackle more general tracking requirements, including a
mix of intermediate point tracking, sub-interval trackingand
constraint satisfaction on system inputs and outputs, problems
which cannot be addressed using existing design methods.
Examples of such tasks include but are not limited to weld-
ing or cutting movements where the tracking is required at
certain discrete positions, and the movement between them is
restricted to line segments with hard/soft system constraints.
To solve this problem, we formulate the design requirements
using an abstract Hilbert space setting and derive an algorithm
using a successive projection method with well defined con-
vergence properties. Note that the initial concept was reported
in [41], which however used a different norm optimal ILC
approach and could not incorporate the system constraints that
are key to the aforementioned applications.

The proposed generalized ILC is very powerful as it can
handle many different types of tracking requirements and a
number of existing ILC design methods can be recovered
as special cases: e.g. classical ILC [14]–[24], intermediate
point ILC [25]–[36], terminal ILC [37]–[40], intermediate
and sub-interval ILC [41], [42] and piecewise linear spatial
ILC [43]. As a particularly interesting application, it can
be applied to solve the challenging problem of tracking a
reference defined in space with noa priori temporal stipulation
by considering the spatial tracking requirement as constraints
on the system output. By removing the unnecessary temporal
tracking constraints, the design freedom of this ‘spatial’track-
ing problem setup can potentially yield significantly better
tracking performance in practice. This problem has been
studied in the wider non-ILC setting, e.g. in [44], [45] based
on feedback linearization and in [46], [47] using optimization
techniques, which assume an accurate model. However, the
resulting design can be sensitive to model uncertainties and
perfect tracking of the spatial reference signal is generally
not guaranteed. The spatial tracking problem has also been
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considered using ILC. It was first considered in the context of
a 2D corner tracking problem in [48], then in [49] to the torque
ripple minimization problem in switch reluctance motors, and
most recently in [50], [51] for robotic manipulators within
a 2D plane, in [52] for a class of nonlinear systems, and
in [53] for additive manufacturing. However, all existing
implementations of spatial ILC are application specific, and
none has proposed a general spatial ILC framework applicable
to a broad system class. In addition, all focus on purely
achieving the path tracking, and have not fully harnessed the
design freedom of spatial ILC to optimize a general additional
cost function while following the defined path. As will be
seen, the proposed generalized ILC design provides a solution
to address these limitations.

The main contributions of the paper are as follows:

• Rigorous Formulation of the Generalized ILC Design
Problem (Section II): The design problem is formulated
rigorously incorporating the intermediate point and sub-
interval tracking requirements, and the constraints on the
system input and output. The problem formulation is
based on an abstract operator form in Hilbert space and
illustrated using a linear discrete time invariant system,
which allows the essence of the results to be generalized
to other system models without difficulty.

• Development of a Generalized ILC Algorithm (Sections
III, IV and V): A generalized ILC algorithm is developed
to solve the design problem using a successive projection
method. The proposed algorithm has well-defined con-
vergence properties meeting tracking requirements and
satisfying the system constraints under mild conditions.
Convergence properties and implementation procedures
of the proposed algorithm are described in detail.

• Application to Spatial Reference Tracking Problem (Sec-
tion VI): To illustrate the power of the proposed design
method, it is applied to solve a spatial reference tracking
problem. It is shown that the spatial reference tracking
requirement can be formulated into the generalized ILC
framework by defining constraints on the system output.
The generalized ILC algorithm developed above can then
be applied to track the desired spatial reference. The
convergence properties and computational aspects of the
solution are discussed.

• Experimental Verification on a Gantry Robot Test Plat-
form (Section VII): The proposed design method is ver-
ified experimentally on a gantry robot test platform for
the spatial reference tracking problem. The results show
that the proposed design achieves accurate tracking of
the reference, at the same time satisfying the system
constraints. In addition, by exploiting the flexibility in
choosing the tracking time allocation along each sub-
interval, significant benefit can be obtained in terms of the
control effort reduction,simultaneously maintaining high
tracking performance. The results also show that the pro-
posed algorithm exhibits a degree of robustness against
modeling mismatch/error due to the use of previous data,
which is clearly desirable in practical applications.

The notation used in this paper is standard:N is the set

of non-negative integers;Rn andR
n×m denote the sets ofn

dimensional real vectors andn×m real matrices respectively;
S
n
++ is the set of alln×n real positive definite matrices;lℓ2[a, b]

denotes the space ofRℓ valued Lebesgue square-summable
sequences defined on an interval[a, b]; 〈x, y〉 is the inner
product of x and y in some Hilbert space;X × Y is the
Cartesian product of two spacesX and Y ; PΘ(x) denotes
the projection ofx to the setΘ in some Hilbert space;ImM

and KerM are the image and kernel of an operatorM ,
respectively. Other notation will be introduced as needed.

II. PROBLEM FORMULATION

This section introduces the system dynamics and defines the
general tracking requirement, together with input and output
constraints to yield a generalized ILC problem formulation.

A. System Dynamics

Consider anℓ-input,m-output discrete linear time-invariant
system given in state space form

xk(t+ 1) = Axk(t) +Buk(t),

yk(t) = Cxk(t),
(1)

wherek ∈ N denotes the trial number;t ∈ [0, N ] is the time
index (e.g. sample number) with0 < N < ∞ the trial length;
xk(t) ∈ R

n, uk(t) ∈ R
ℓ and yk(t) ∈ R

m are the state, input
and output on thekth trial respectively;A, B andC are system
matrices of compatible dimensions. At the end of each trial,
the state is reset to an identical initial value, i.e.xk(0) = x0.
To facilitate later problem formulation and algorithm design,
the system is represented in an equivalent operator form

yk = Guk + d, (2)

where yk ∈ lm2 [0, N ], uk ∈ lℓ2[0, N ] represent the system
output and input, respectively; the input and output Hilbert
spaceslℓ2[0, N ] andlm2 [0, N ] are defined with inner products
and associated induced norms

〈u, v〉R =

N
∑

i=0

uT (i)Rv(i), ‖u‖R =
√

〈u, u〉R, (3)

〈x, y〉S =
N
∑

i=0

xT (i)Sy(i), ‖y‖S =
√

〈y, y〉S , (4)

in which R ∈ S
ℓ
++ andS ∈ S

m
++; G : lℓ2[0, N ] → lm2 [0, N ]

is the system operator andd ∈ lm2 [0, N ] represents the effect
of initial condition taking the following forms

(Gu)(t) =

t−1
∑

s=0

CAt−s−1Bu(s), d(t) = CAtx0. (5)

Without loss of generality, it is assumed thatd = 0 by
incorporating it into the reference (see [22] for more detail).



MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 3

B. Generalized Control Design Objective

A generalized control design objective is now described.
In classical ILC the system is required to repeatedly track a
desired reference defined on the whole horizon; in intermediate
point ILC the system is required to track a given reference
defined on finite intermediate points. The general control
design objective subsumes both the intermediate point tracking
requirement at time instantsti, i = 1, . . . ,M , where

0 < t1 < · · · < tM = N, (6)

and the linear tracking requirement at each sub-interval
(ti−1, ti], i = 1, . . . ,M , where t0 = 0 is used for ease of
notation. To extract the intermediate point and sub-interval
tracking requirements, a linear mapping is defined as

ζ ∈ lm2 [0, N ] 7→ ζe ∈ H : ζe =

[

Fζ

Pζ

]

, (7)

whereH is the Hilbert space defined as

H = R
f1 × · · · × R

fM × l
p1

2 (t0, t1]× · · · × l
pM

2 (tM−1, tM ]

with inner product and associated induced norm

〈(ω, ν), (µ, λ)〉Q̃ =
M
∑

i=1

{ω⊤
i Qiµi +

ti
∑

j=ti−1

ν⊤i (j)Q̂iλi(j)},

‖(ω, ν)‖Q̃ =
√

〈(ω, ν), (ω, ν)〉Q̃. (8)

Note that(ω, ν), (µ, λ) ∈ H have the following forms

ω = (ω1, ω2, . . . , ωM ), µ = (µ1, µ2, . . . , µM ),

ν = (ν1, ν2, . . . , νM ), λ = (λ1, λ2, . . . , λM ), (9)

whereωi, µi ∈ R
fi , νi, λi ∈ l

pi

2 [ti−1, ti], i = 1, . . . ,M and
Q̃ denotes the data set{Q1, . . . , QM , Q̂1, . . . , Q̂M} in which
Qi ∈ S

fi
++, Q̂i ∈ S

pi

++, for i = 1, . . . ,M .
In the above mapping, operatorF selects the important

elements or linear combination of elements ofζ at the in-
termediate time instantsti, i = 1, . . . ,M , and is defined as

Fζ =







F1ζ(t1)
...

FMζ(tM )






, Fiζ(ti) ∈ R

fi , i = 0, ...,M, (10)

with Fi ∈ R
fi×m a full row rank matrix fori = 1, . . . ,M .

OperatorP extracts a linear combination of elements ofζ at
each sub-interval(ti−1, ti], i = 1, . . . ,M , as follows

Pζ =







(Pζ)1
...

(Pζ)M






, (11)

where the component(Pζ)i ∈ l
pi

2 (ti−1, ti] is defined as

(Pζ)i(t) = Piζ(t), t ∈ (ti−1, ti],

in which Pi ∈ R
pi×m is a full row rank matrix for i =

1, . . . ,M .
From definitions (10) and (11), it follows that the ‘extended

output’ ye comprises a subset of outputs at distinct intermedi-
ate points, together with a subset of plant outputs defined over
sub-intervals of the task duration. The dynamic relationship
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Fig. 1. Exemplary Outputy in R2.

between the system inputu and the extended outputye can
therefore be modelled by

ye = Geu = (Gu)e =

[

FGu

PGu

]

, (12)

where Ge : lℓ2[0, N ] → H is a linear operator. For the
generalized control design, the system is required to meet
the tracking requirement that the system extended outputye

(repeatedly) follows a desired referencere ∈ H, i.e. ye = re.
To illustrate the relation betweeny andye, the output signal

represented by the blue line in Figure 1 is considered as an
example. This outputy is defined in 2D space (m = 2) on the
time interval [0, 10] and has two intermediate time instants
(M = 2) given by 5 and 10 corresponding to the red circles
in the figure. When the matrices are chosen asF1 = F2 = I,
P1 = [1, − 1] andP1 = [1, − 2], it follows that theFGu

component of the extended outputye is [50, 50, 100, 75]⊤

(i.e. the coordinates of the two red circles), and itsPGu

component is expressed as(PGu)1(t) = 0, for t ∈ (0, 5]
and(PGu)2(t) = −50, for t ∈ (5, 10] (i.e. the line segments
connecting the origin and the two red circles).

C. Input and Output Constraints

In practice, input and output constraints exist widely in
control systems due to physical limitations or performance
requirements. For example, the input constraint setΩ typically
assumes one of the following forms:

• Input saturation constraint

Ω = {u ∈ lℓ2[0, N ] : |u(t)| � M(t), 0 6 t 6 N}, (13)

whereM(t) � 0, 0 6 t 6 N are the (possibly time varying)
saturation limits,

• Input effort constraint

Ω = {u ∈ lℓ2[0, N ] :

N
∑

0

u⊤(t)u(t) 6 M}, (14)

whereM > 0 is the total control effort limit,
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• Input rate constraint

Ω = {u ∈ lℓ2[0, N ] : |∆u(t)| � M(t), 1 6 t 6 N}, (15)

where∆u(t) = u(t) − u(t − 1) andM(t) � 0, 1 6 t 6 N

are the (possibly time varying) input rate limits. Similarly, the
output constraint setΦ usually has one of the forms:

• Output saturation constraint

Φ = {y ∈ lm2 [0, N ] : |y(t)| � N (t), 0 6 t 6 N}, (16)

whereN (t) > 0 represents the output saturation limit, or

• Output polyhedral constraint

Φ = {y ∈ lm2 [0, N ] : a⊤i y(t) 6 bi, ai ∈ R
m, bi ∈ R,

i = 1, . . . ,M, 0 6 t 6 N}. (17)

In particular, the latter constraint restricts the system output
to a specified convex region, and can be used to formulate the
spatial reference tracking problem as described previously in
the introduction.

D. Generalized ILC Design Problem

Using the extended output (12) combined with the above
constraints, we are now in a position to state the generalized
ILC design problem. This problem is defined as follows:

Definition 1. (Generalized ILC design problem): The gen-
eralized ILC design problem is to find an input update law
based on a function of the previous trial’s input and tracking
error of the form

uk+1 = F(uk, e
e
k), (18)

whereeek = re − yek is the extended tracking error, such that
the tracking error converges to zero ask → ∞, i.e.

lim
k→∞

eek = 0

and the converged input and output satisfy the constraints,i.e.

lim
k→∞

uk = u∗ ∈ Ω, lim
k→∞

yk = y∗ ∈ Φ. (19)

Note that the generalized ILC design problem collapses to
specific ILC design problems by setting appropriate values of
parametersQ, Q̂, F and P , e.g.Qi = 0, Pi = I, classical
ILC; Q̂i = 0, Fi = I, intermediate point ILC.

III. G ENERALIZED ILC USING SUCCESSIVEPROJECTION

In this section, the above generalized ILC design problem is
formulated using the successive projection framework which
was used previously to derive classical and intermediate point
ILC algorithms [22], [32]. Based on this formulation, a novel
ILC algorithm is proposed to solve this generalized problem.

S1

S2

x0

x̃1

x1

x̃2

S1 ∩ S2

Fig. 2. Illustration of the Successive Projection Algorithm.

A. Successive Projection Interpretation

The design objective of the generalized ILC problem is to
iteratively find an inputu∗ such that i) the extended output
ye∗ = Geu∗ tracks the desired referencere, i.e. ye∗ = re, ii)
the outputy∗ = Gu∗ satisfies the constrainty∗ ∈ Φ and iii)
the inputu∗ meets the constraint requirementu∗ ∈ Ω. This
is equivalent to iteratively finding a point(ye∗, y∗, u∗) in the
intersection of the two following convex sets:

S1 = {(ye, y, u) ∈ Ĥ : ye = Geu, y = Gu}, (20)

S2 = {(ye, y, u) ∈ Ĥ : ye = re, y ∈ Φ, u ∈ Ω}, (21)

where the setS1 represents the plant dynamics andS2

represents the tracking requirements and system constraints;
Ĥ is the Hilbert space defined by

Ĥ = R
f1 × · · · × R

fM × l
p1

2 (t0, t1]× · · ·

× l
pM

2 (tM−1, tM ]× lm2 [0, N ]× lℓ2[0, N ], (22)

whose inner product and associated induced norm are derived
naturally from (3), (4) and (8).

The problem of finding a point in the intersection of two
sets can be solved by the method of successive projection.
The basic successive projection scheme from [54] is shown in
Figure 2 with guaranteed convergence performance as shown
in the following theorem.

Theorem1. [54], [55] Let S1 andS2 be two closed convex
sets in a Hilbert spaceX. Define projection operatorsPS1

(·)
andPS2

(·) as

PS1
(x) = arg min

x̂∈S1

‖x̂− x‖2X , (23)

PS2
(x) = arg min

x̂∈S2

‖x̂− x‖2X , (24)

where‖ · ‖ is the induced norm inX. Then given the initial
estimatex0 ∈ X, the sequences{x̃k}k>0 and {xk}k>0

generated by

x̃k+1 = PS1
(xk), xk+1 = PS2

(x̃k+1), k > 0 (25)

are uniquely defined for eachx0 ∈ X and satisfy the following
monotonic convergence conditions

‖x̃k+2 − xk+1‖
2
X 6 ‖x̃k+1 − xk‖

2
X . (26)
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If either set is compact or finite dimensional, the sequences
{x̃k}k>0 and{xk}k>0 converge to fixed points̃x∗ ∈ S1 and
x∗ ∈ S2, i.e.

lim
k→∞

x̃k = x̃∗, lim
k→∞

xk = x∗ (27)

defining the minimum distance between two sets, i.e.

‖x̃∗ − x∗‖2X = min
x̃∈S1,x∈S2

‖x̃− x‖2X . (28)

Furthermore, ifS1 ∩ S2 6= ∅, the following convergence
condition is satisfied

‖xk+1 − x‖2X 6 ‖xk − x‖2X , ∀x ∈ S1 ∩ S2, k > 0. (29)

Proof. See [54], [55] for the detailed proof.

B. Generalized ILC Algorithm

Direct application of Theorem 1 to the generalized ILC
design problem (19) withX = Ĥ andS1, S2 defined in (20)
and (21) yields the next algorithm.

Algorithm 1. Given system dynamics (1), input constraint set
Ω, output constraint setΦ, extended referencere, any initial
valuesu0 ∈ Ω andr̃0 ∈ lℓ2[0, N ], the input sequence{uk}k>0

defined by the updating law

ũk+1 = uk +Gs∗(I +GsGs∗)−1esk (30)

followed by the projections

uk+1 = PΩ(ũk+1) = argmin
z∈Ω

‖z − ũk+1‖
2
S , (31)

r̃k+1 = PΦ(ỹk+1) = argmin
z∈Φ

‖z − ỹk+1‖
2
R , (32)

iteratively solves the generalized ILC problem (19). Note that
Gs is a linear operator defined by

Gsu =

[

Geu

Gu

]

: lℓ2[0, N ] → H̃, (33)

whose Hilbert adjoint operator isGs∗, esk is the error

esk =

[

eek
ẽk

]

, eek = re − yek, ẽk = r̃k − yk, (34)

and H̃ is the Hilbert space

H̃ = R
f1 × · · · ×R

fM × l
p1

2 (t0, t1]×

· · · × l
pM

2 (tM−1, tM ]× lm2 [0, N ], (35)

whose inner product and associated induced norm are naturally
derived from (4) and (8).

Proof. See Appendix A.

IV. CONVERGENCEPROPERTIES OF THEALGORITHM

When S1 ∩ S2 6= ∅, perfect tracking of the reference is
possible. Algorithm 1 iteratively solves the generalized ILC
design problem (19) with desirable convergence propertiesas
shown in the next theorem.

Theorem2. If S1 ∩ S2 6= ∅, perfect tracking of the reference
is possible. In this case Algorithm 1 achieves perfect tracking
of the extended reference, i.e.

lim
k→∞

yek = re. (36)

In addition, the inputuk and outputyk converge as

lim
k→∞

uk = u∗, lim
k→∞

yk = y∗, (37)

and satisfy the system constraints thatuk ∈ Ω, ∀k > 0, y∗ ∈
Φ. Furthermore, the inputuk converges monotonically with
respect to the cost function

J̃k = ‖r̃k − y∗‖2S + ‖uk − u∗‖2R , (38)

and the erroresk converges monotonically with respect to the
cost function

Jk = ‖Mesk‖
2
[Q] + ‖N esk‖

2
R , (39)

whereM = (I + Gs∗Gs)−1, N = Gs∗(I + Gs∗Gs)−1 and
[Q] = {Q̃, S}.

Proof. See Appendix B.

The above theorem shows that the proposed algorithm
solves the generalized ILC design problem, i.e. perfect track-
ing is achieved and that the converged input and output satisfy
the system constraints. Moreover, this convergence has a
specific form of monotonicity with respect to the performance
defined above, e.g. weighted error norm as in (39), which is
appealing in practice. Furthermore, as a by product, when there
are no constraints, the algorithm can be simplified and has the
property that it will converge to a minimum norm solution
with zero initial input, i.e. the control input with minimum
control effort is achieved, as shown in the following corollary.

Corollary 1. If S1 ∩ S2 6= ∅, in the absence of system con-
straints, Algorithm 1 control updating law has the following
simplified form

uk+1 = uk +Ge∗(I +GeGe∗)−1eek,

and the algorithm converges monotonically with respect to the
performance index

Ĵk = 〈uk − u∗, H(uk − u∗)〉X (40)

for all k > 0, u0 and u∗, whereH = Ge∗G + I, andGe∗

is the Hilbert adjoint operator ofGe. Moreover, the control
effort converges to the minimum value with initial condition
u0 = 0, i.e.

lim
k→∞

‖uk‖
2
R = min

u
{‖u‖2R , s.t. re = Geu}. (41)

Proof. See Appendix C.
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On the other hand, perfect tracking of the reference is not
possible whenS1∩S2 = ∅. No input exists to satisfy the track-
ing requirement without violating the system constraints.In
this case, this algorithm still attempts to solve the constrained
generalized ILC design, as shown in the next theorem.

Theorem3. If S1 ∩ S2 = ∅, perfect tracking of the reference
under the system constraints is not possible. In this case,
Algorithm 1 still achieves convergence of the inputuk, output
yk and extended outputyek as follows

lim
k→∞

yek = ye∗, lim
k→∞

yk = y∗, lim
k→∞

uk = u∗, (42)

where

u∗ = argmin
u∈Ω

Jk = argmin
u∈Ω

‖Mes‖2[Q] + ‖N es‖2R , (43)

and
ye∗ = Geu∗, y∗ = Gu∗

in which M = (I + Gs∗Gs)−1, N = Gs∗(I + Gs∗Gs)−1

and [Q] = {Q̃, S}. In addition, the inputuk at each trial
satisfies the constraint thatuk ∈ Ω. Furthermore, the erroresk
converges monotonically with respect to the cost functionJk
defined in (43).

Proof. See Appendix D.

Remark1. It is worth pointing out that the scenario in the
above theorem is not well-posed. In practice an appropriate
tracking requirementre should be specified to avoid this
impossible tracking task, i.e.S1 ∩ S2 = ∅.

V. I MPLEMENTATION OF THE ALGORITHM

Implementation of Algorithm 1 consists of two steps: the
ILC update (30) and projection steps (31), (32). The update
(30) can be directly implemented as a feedforward solution
using uk and esk to constructũk+1. Alternatively, it can be
implemented using a causal feedback plus feedforward struc-
ture by employing the state feedback to further embed robust
performance in practice. This exploits the special properties
of the linear operatorGe and its adjoint operatorGe∗. To
formulate the causal feedback plus feedforward solution, the
following lemma is needed.

Lemma1. The Hilbert adjoint operatorGs∗ : (ω, ν, y) ∈ H̃ →
u ∈ lℓ2[0, N ] has the following analytic form

u(t) = R−1B⊤p(t), (44)

wherep(t) is computed in reverse time as follows

p(t) = A⊤p(t+ 1) + C⊤(P⊤
i Q̂iνi(t+ 1) + Sy(t+ 1)),

t ∈ [ti−1, ti), i = 1, . . . ,M, (45)

with boundary conditions

p(ti − 1) = p(ti) + C⊤F⊤
i Qiωi, i = 1, . . . ,M,

p(N) = 0. (46)

Proof. The proof follows that of [56] with modifications
applied to the extended operator in Hilbert space.

Using Lemma 1, the feedback plus feedforward implemen-
tation is given in the next proposition.

Proposition 1. The ILC update (30) in Algorithm 1 can be
implemented in a feedforward plus feedback solution

uk+1(t) = uk(t) +R−1B⊤pk+1(t), (47)

with

pk+1(t) = −K(t)(I +BR−1B⊤K(t))−1A

(xk+1(t)− xk(t)) + ξk+1(t), (48)

whereK(t) is the solution of the Riccati equation

K(t) = A⊤K(t+ 1)(I +BR−1B⊤K(t+ 1))−1A

+ C⊤(S + Q̂(t+ 1))C, (49)

with boundary conditions

K(ti − 1) = K(ti) + C⊤F⊤
i QiFiC, i = 1, . . . ,M,

K(N) = 0, (50)

andξk+1(t) denotes the feedforward term at the(k+1)th trial
generated by the difference equation

ξk+1(t) = (I +K(t)BR−1B⊤)−1(A⊤ξk+1(t+ 1)

+ C⊤Q̂(t+ 1)ek(t+ 1) + C⊤Sẽk(t+ 1)), (51)

with boundary conditions

ξk+1(ti − 1) = ξk+1(ti) + C⊤F⊤
i QiFiek(ti),

ξk+1(N) = 0, (52)

in which Q̂(t) = P⊤
i Q̂iPi for t ∈ (ti−1, ti], i = 1, . . . ,M .

Proof. See Appendix E.

The ILC update (30) is then followed by the projection steps
in (31) and (32) to project the unconstrained inputũk+1 and
output ỹk+1 into the input and output constraint setsΦ andΩ
respectively which are usually straightforward. For example,
the input constraint setΩ is usually a pointwise constraint
in practice, so the solution of the projection operatorPΩ in
(31) is straightforward. As another example, when the input
constraint setΩ has the saturation form (13), the solution of
u = PΩ(ũ) is given by

u(t) =











M(t), ũ(t) ≻ M(t),

ũ(t), −M(t) � ũ(t) � M(t),

−M(t), ũ(t) ≺ −M(t)

(53)

for 0 6 t 6 N . Also the solution of the projection operator
PΦ in (32) is guaranteed to be unique. Consider the saturation
output constraint set (16) for example, the solution ofr̃ =
PΩ(ỹ) is given by

r̃(t) =











N (t), ỹ(t) ≻ N (t),

ỹ(t), −N (t) � ỹ(t) � N (t),

−N (t), ỹ(t) ≺ −N (t),

(54)

for 0 6 t 6 N .
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Fig. 3. Piecewise Spatial Path inR2.

VI. PIECEWISEL INEAR SPATIAL PATH TRACKING

As described in the introduction, the spatial tracking prob-
lem requires the output trajectory to follow a continuous path
defined in space with no temporal constraints. The framework
developed in this paper can be applied to produce the first
spatial ILC algorithm capable of converging to an optimal
solution to the problem for a general class of systems. We
consider the common class of piecewise spatial tracking tasks
defined as follows:

Definition 2. The piecewise linear spatial tracking problem is
to design an input such that the output travels between each
pair of verticesri−1 and ri in ascending order, i.e. having
reachedri−1 at ti−1, remain in the interval betweenri−1 and
ri until ri is reached atti and then repeat the process for the
next pairri andri+1.

Note that the verticesri, i = 0, . . . ,M are defined in
Cartesian spaceRm asri = [r1i , r2i , . . . , r

m
i ]⊤, and a special

example of the piecewise spatial path, i.e.m = 2, is shown in
Figure 3.

The next theorem illustrates how Algorithm 1 solves the
spatial problem of Definition 2 as a special case.

Theorem4. The piecewise linear spatial path tracking problem
is solved by Algorithm 1 with

re =

[

Fr

Pr

]

, (55)

wherer ∈ lm2 [0, N ] is given by

r(t) = ri, t ∈ (ti−1, ti], i = 1, . . . ,M, (56)

the operatorF is defined byFi = I, i = 1, . . . ,M and the
operatorP by Pi ∈ R(m−1)×m a full rank matrix satisfying

KerPi = Im ai, (57)

in which ai = ri−ri−1, for i = 1, ...,M . The input constraint
setΩ is chosen according to the power capability of the plant,
and the output constraint set is

Φ = {y ∈ lm2 [0, N ] : a⊤i ri−1 6 a⊤i y(t) 6 a⊤i ri,

t ∈ (ti−1, ti], i = 1, . . . ,M}, (58)

which prevents overshoot beyond each linear segment of the
path. Using Algorithm 1 the inputuk and outputyk both
converge as

lim
k→∞

uk = u∗ ∈ Ω, lim
k→∞

yk = y∗. (59)

Furthermore, ifS1 ∩ S2 6= ∅, the outputyk and extended
outputyek have the following convergence properties

lim
k→∞

yk = y∗ ∈ Φ, lim
k→∞

yek = re. (60)

That is, perfect tracking of the spatial path is achieved.

Proof. See Appendix F.

The above theorem states that the proposed Algorithm 1
solves the high performance piecewise linear spatial tracking
problem. From Corollary 1, Algorithm 1 also fully exploits the
spatial tracking task’s inherent design freedom in the temporal
domain, resulting in the spatial tracking problem being solved
with minimum control effort for a general class of systems,
under mild conditions whenS1 ∩ S2 6= ∅ and the system
constraints do not engage (e.g. if overshoot can be tolerated
or does not occur).

Remark2. The implementation of the aforementioned spatial
path tracking design is exactly the same as that discussed in
previous sections, in particular the unique solutionr̃ = PΦ(ỹ)
is given as

r̃(t) =











ỹ(t) + ∆i,i(t), a⊤i ỹ(t) > a⊤i ri,

ỹ(t), a⊤i ri−1 6 a⊤i ỹ(t) 6 a⊤i ri,

ỹ(t) + ∆i,i−1(t), a⊤i ỹ(t) < a⊤i ri−1,

(61)

for t ∈ (ti−1, ti], i = 1, . . . ,M where

∆i,j(t) = (a⊤i ai)
−1a⊤i (rj − ỹ(t))ai.

Remark3. It is worth pointing out that the spatial path tracking
problem considered in this section is still time dependent as:
the input depends implicitly on the transition time instants ti,
i = 0, ...,M and the input has to be implemented on the time
interval [0, N ]. A different ILC approach was developed in
[53] for addictive manufacturing, where no temporal dynamics
was involved, but it is not suitable for spatial path tracking.
Please refer to [57], [58] for more information.

VII. E XPERIMENTAL VERIFICATION ON A GANTRY ROBOT

In this section, the proposed algorithm is validated ex-
perimentally on a three-axis gantry robot test platform to
demonstrate its effectiveness.

A. Test Platform Specification

The multi-axis gantry robot shown in Figure 4 is employed
as test platform. The gantry robot’s input are the voltages
applied to the three motors controlling the motions of the robot
overx, y, z directions, and the output are the displacements of
the three axes. The control design objective is to use both the
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Fig. 4. Multi-axis Gantry Robot Test Platform.

x-axis and z-axis (m = 2) to track a piecewise linear spatial
path composed of five line segments (M = 5) with

r0 =

[

0
0

]

, r1 =

[

0.00476
0.00345

]

, r2 =

[

0.00294
0.00905

]

,

r3 =

[

−0.00294
0.00905

]

, r4 =

[

−0.00476
0.00345

]

, r5 =

[

0
0

]

as shown in Figure 5 (the yellow line), during the given
tracking time T = 2s. The tracking time instants of the
intermediate points are given as

t1 = 0.4, t2 = 0.8, t3 = 1.2, t4 = 1.6, t5 = 2.0. (62)

The x-axis and z-axis are modelled based on frequency re-
sponse tests in [59] with state space parameters

Ax =





































1.0673 −0.0242 0.0097 −0.0047 0.0028 −0.0009 0.0005

0.0827 0.999 0.0004 −0.0002 0.0001 0 0

0.0016 0.04 1 0 0 0 0

0 0.0004 0.02 1 0 0 0

0 0 0.0001 0.01 1 0 0

0 0 0 0 0.01 1 0

0 0 0 0 0 0.0025 1





































Bx =

[

0.403 0.0159 0.0001 0.0002 0 0 0

]

⊤

× 10
−4

,

Cx =

[

0.0013 −0.0005 0.0001 0 −0.0001 0.0001 −0.0001

]

,

Az =



















1.0291 −0.0077 0.0035 −0.0011

0.0406 0.998 0.0001 0

0.0002 0.001 1 0

0 0 0.005 1



















, Bz =



















0.3957

0.0079

0

0



















× 10
−4

,

Cz =

[

0.0026 −0.0004 −0.0004 0.0005

]

, (63)

and a proportional feedback gain300 is added on the z-axis.
The system is sampled with a zero-order hold at0.01s. The
input voltage has the saturation constraint in the form (13)with
M(t) = [0.5, 4]⊤. The parametersFi, Pi andr(t) are chosen
according to the values in (55). For simplicity, the weighting
matricesQi, Q̂i, S andR are chosen to be diagonal.

B. Performance of the Proposed Algorithm

Firstly, we artificially remove the system constraints (i.e.
setting Ω = lℓ2[0, N ] and Φ = lm2 [0, N ]) and apply the
proposed algorithm to this task on the gantry robot for100
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)

Fig. 5. Spatial Path and Converged Hybrid Output Trajectories with and
without Output Constraints.
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Fig. 6. Converged Input Trajectories with and without InputConstraints.

trials to see the performance for the unconstrained case. The
final converged hybrid output and inputs of the two axes
are plotted in Figure 5 and Figure 6 respectively. Although
the converged hybrid output performs near perfect tracking
along the piecewise linear reference path, it is clear that
the overshoot problem takes place. In the gantry robot test
platform, the overshoot problem may lead to collision between
the end-effector and the frame, which causes damage to the
machine. In addition, the corresponding inputs of the two axes
exceeds the input constraint setΩ defined in (58) at certain
time intervals, which is allowed not in practice. Therefore, it
is necessary to apply the system constraints in practice to meet
the actual system requirement of the design task.

To avoid the above problems, we next apply Algorithm 1 to
the same task with the input saturation constraint defined in
(13) and the hard output constraint defined in (58). In the
experiment, we choosêQi = 100, 000I, Qi = 500, 000I,
S = 10, 000I and R = I, and a total of100 update trials
are performed. The final converged hybrid output of the two
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Fig. 7. Mean Square Tracking Error over100 Trials with System Constraints.

axes is plotted as the dashed magenta trajectory in Figure 5.
Compared to the previous overshoot result in the same figure,
it is clear that Algorithm 1 not only achieves the generalized
tracking requirement, but keeps the hybrid output trajectory
within the output constraint setΦ defined in (58), i.e. this
algorithm solves the overshoot problem. Furthermore, the final
converged input voltages of the two axes are plotted as the
dashed magenta trajectories in Figure 6, and it is clear that
both stay within the input constraint setΩ defined in (58).
Note that the inputs of both axes increase while approaching
the transition vertices as more control effort is needed to
change the moving direction of the end-effector. Therefore, it
is clear from Figure 5 and Figure 6 that Algorithm 1 not only
guarantee high performance spatial tracking, but also handles
the system constraints well.

We further apply the proposed algorithm with different
parameters to compare convergence properties. We keepQ̂i =
100, 000I, S = 10, 000I and R = I constant, andQi is
selected to take the values200, 000I, 300, 000I, 500, 000I,
800, 000I, and 1, 200, 000I. A total of 100 update trials are
performed for each value ofQi, and the mean square error
esk at each trial is plotted in Figure 7. From this figure, it is
obvious that the convergence rate increases as we increase the
weighting valueQi. It is noted that all plots converge to below
0.01 mean square error, which verifies accurate tracking in
practice despite of model uncertainty and random disturbance.
It is noted that there are no particular concerns about the
fluctuation in the figure as the mean square errors all converge
and satisfy the practical tracking requirement.

In addition, the converged control effort for different values
of Qi are shown in Table I. If performed within the classical
ILC framework, the end-effector would commonly be assumed
to move at a constant speed. This classical setup has been
implemented, and the control effort needed is also shown in
this table for comparison. The table shows that the proposed
algorithm fully exploits the design freedom in the temporaldo-
main in terms of an approximate18% control effort reduction
from that provided by classical ILC.

Experiments with other combinations ofQi, Q̂i, S andR

yield similar convergence performance to the results in Figure
7. For brevity, these results are omitted.

TABLE I
CONTROL EFFORTCOMPARISON.

Control Effort (V 2 ·ms)
Qi = 200, 000I 5,462
Qi = 300, 000I 5,467
Qi = 500, 000I 5,461
Qi = 800, 000I 5,459

Qi = 1, 200, 000I 5,458
Classical ILC 6,649

VIII. C ONCLUSION

This paper develops a novel unified ILC design framework
capable of solving tracking requirements defined on both
intermediate point and sub-intervals as well as handling a
mixed form of system constraints, which substantially extends
the existing ILC research. To solve this problem, the paper
proposes a new ILC algorithm using successive projection
method with well defined convergence properties. A partic-
ularly powerful feature of the proposed algorithm is that it
can handle many different types of tracking requirements. As
an example, it is applied to solve a challenging problem of
high performance spatial reference tracking. The algorithm
achieves high tracking accuracy as well as fully exploits the
design freedom in the temporal domain to minimize some
cost functions, e.g. minimum control effort. The algorithm’s
convergence properties have been analyzed rigorously, and
then verified on a gantry robot platform by tracking a spa-
tial path with stipulated input and output constraints, which
demonstrates its practical efficacy.

The experimental results suggest that the proposed algo-
rithm has a degree of robustness against model uncertainties.
A rigorous robustness analysis of the proposed algorithm will
be undertaken. In addition, the Hilbert space setting of the
problem formulation means the results in this paper can be
in principle extended to many other situations of interest,
e.g. continuous linear state space models, linear time varying
systems and switched linear systems. Some initial results on
continuous linear state space models were recently reported in
[60]. However, more research is needed to fully characterize
its convergence properties and thoroughly validate its perfor-
mance. This paper considers piecewise linear path tracking
problem with prescribed transition time instants. Future work
includes fully unlocking the design freedom to incorporate
more ILC design freedom, e.g. the optimal tracking time
allocation problem [35], curved spatial paths and more general
ILC design problems. These constitute part of our future
research and will be reported separately.

APPENDIX A
PROOF OFALGORITHM 1

To apply Theorem 1 to generalized ILC problem (19), we
first compute the necessary projections. From the definitionof
Hilbert spaceĤ in (22), denotex = (ye, y, u) to be an element
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belonging toĤ. The projection operatorPS1
is hence

PS1
(x) = arg min

x̂∈S1

‖x̂− x‖2X

= arg min
(ŷe,ŷ,û)∈Ĥ

∥

∥

(

ŷe, ŷ, û
)

−
(

ye, y, u
)∥

∥

2

{Q̃, S, R}
,

s.t. ŷe = Geû, ŷ = Gû

= arg min
(ŷe,ŷ,û)∈Ĥ

‖ŷe − ye‖2Q̃ + ‖ŷ − y‖2S + ‖û− u‖2R ,

s.t. ŷe = Geû, ŷ = Gû.

= argmin
û

‖Geû− ye‖2Q̃ + ‖Gû− y‖2S + ‖û− u‖2R . (64)

The optimization problem (64) yields solution̂u = u∗ with

u∗ = u+Gs∗(I +GsGs∗)−1

[

ye −Geu

y −Gu

]

. (65)

It follows from the definition (20) that

PS1
(x) =

(

Geu∗, Gu∗, u∗
)

, (66)

whereu∗ is given by (65). Performing a similar procedure for
projection operatorPS2

yields

PS2
(x) = arg min

x̂∈S2

‖x̂− x‖2X

= arg min
(ŷe,ŷ,û)∈Ĥ

∥

∥

(

ŷe, ŷ, û
)

−
(

ye, y, u
)∥

∥

2

{Q̃, S, R}
,

s.t. ŷe = re, û ∈ Ω, ŷ ∈ Φ

= arg min
(ŷe,ŷ,û)∈Ĥ

‖ŷe − ye‖2Q̃ + ‖ŷ − y‖2S + ‖û− u‖2R ,

s.t. ŷe = re, û ∈ Ω, ŷ ∈ Φ. (67)

In the optimization problem (67), the elementsŷe, ŷ and û

are independent of each other, which means this solution can
be obtained separately. Using (31) and (32), it follows that

PS2
(x) =

(

re, PΦ(y), PΩ(u)
)

. (68)

Consider update (25) in Theorem 1, and also letxk =
(re, r̃k, uk) and x̃k = (ỹek, ỹk, ũk). At the kth trial, the el-
ements̃xk+1 andxk+1 are updated using projection operators
PS1

and PS2
. For x̃k+1 = PS1

(xk), it follows from the
solution (66) that

ũk+1 = uk +Gs∗(I +GsGs∗)−1

[

re − yek
r̃k − yk

]

, (69)

ỹek+1 = Geũk+1, ỹk+1 = Gũk+1, k > 0, (70)

and forxk+1 = PS2
(x̃k+1), it follows from (68) that

r̃k+1 = PΦ(ỹk+1), uk+1 = PΩ(ũk+1), k > 0, (71)

which directly illustrates how the inputuk+1 and the reference
r̃k+1 are updated byPS2

. Therefore, Theorem 1 can be applied
to problem (19) with the solutions (69) and (71) to yield
Algorithm 1, which updates the input sequence{uk}k>0 along
the trial under the initial conditionx0 = (re, r̃0, u0) ∈ S2, i.e.
r̃0 ∈ Φ, u0 ∈ Ω.

APPENDIX B
PROOF OFTHEOREM 2

If S1 ∩ S2 6= ∅, there exists intersection between the two
sets and perfect tracking under system constraints is possible.
As both S1 and S2 are finite dimensional closed convex
sets in the Hilbert spacêH, it follows from equation (27)
in Theorem 1 that the two sequences{(ỹek, ỹk, ũk)}k>0 and
{(re, r̃k, uk)}k>0 both converge as

lim
k→∞

(ỹek, ỹk, ũk) = (ỹe∗, ỹ∗, ũ∗),

lim
k→∞

(re, r̃k, uk) = (re, r̃∗, u∗), (72)

which attain the minimum distance between the two sets, i.e.

‖re − ỹe∗‖2Q̃ + ‖r̃∗ − ỹ∗‖2S + ‖u∗ − ũ∗‖2R = 0. (73)

So we obtainye∗ = re for perfect tracking and we also know
that they∗ belongs to the output constraint setΦ as y∗ =
r̃∗ ∈ Φ. Hence all these give rise to (37). In addition, the
input uk is obtained from the projection operatorPΩ at each
trial so uk ∈ Ω. Then, substitutẽxk = (ỹek, ỹk, ũk) andxk =
(re, r̃k, uk) with the update solution (30) into the monotonic
convergence condition (26) to giveJk+1 6 Jk, and substitute
x∗ = (re, y∗, u∗) ∈ S1 ∩ S2 and xk = (re, r̃k, uk) into the
monotonic convergence condition (29) to givẽJk+1 6 J̃k,

which completes the proof.

APPENDIX C
PROOF OFCOROLLARY 1

In the absence of system constraints, the setsS1 andS2 can
be simplified as follows.

S1 = {(ye, u) ∈ H × lℓ2[0, N ] : ye = Geu}, (74)

S2 = {(ye, u) ∈ H × lℓ2[0, N ] : ye = re}. (75)

Substitutex∗ = (re, u∗) and xk = (re, uk) into monotonic
convergence condition (29), which hence gives rise toĴk+1 6

Ĵk, ∀k > 0. The proof of control effort follows from Theorem
1 in [41] by considering the Lagrangian associated with the
minimum control effort

L(u, λ) = ‖u‖2R + 2 〈λ, re −Geu〉Q̃ , (76)

whereλ is the Lagrange multiplier. The problem has a unique
stationary pointu∞ = Ge∗λ and re = Geu∞ which hence
leads tore = GeGe∗λ. The stationary point solution solves
the minimum control effort problem. In the absence of system
constraints, the inputuk is

uk = Ge∗
k

∑

i=1

Xiee0 = Ge∗
k−1
∑

i=0

Xi(I −X)λ0

= Ge∗(I −Xk)λ0, (77)

whereX = (I + GeGe∗)−1 and ee0 = re = GeGe∗λ0 as
u0 = 0. It follows thatuk converges in norm to an inputû∞ =
Ge∗λ0 and re = GeGe∗λ0, which is the unique stationary
point of the Lagrangian. It is clear thatû∞ = u∞ andλ0 = λ,
and hence the control effort converges to the minimum control
effort. This completes the proof.
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APPENDIX D
PROOF OFTHEOREM 3

If S1 ∩ S2 = ∅, perfect tracking is not possible under
system constraints. As bothS1 andS2 are finite dimensional
closed convex sets in the Hilbert spacêH, it also follows
Theorem 1 that the two sequences{(ỹek, ỹk, ũk)}k>0 and
{(re, r̃k, uk)}k>0 still converge as shown in (72) yielding (42),
and attain the minimum distance between the two sets, i.e.

min
ũ,u∈Ω,r̃∈Φ

‖re −Geũ‖2Q̃ + ‖r̃ −Gũ‖2S + ‖u− ũ‖2R , (78)

which can be further written as

min
u∈Ω,r̃∈Φ

{min
ũ

‖re −Geũ‖2Q̃+‖r̃ −Gũ‖2S+‖u− ũ‖2R}. (79)

The inner optimization problem in (79) yields

ũ = u+N es, (80)

and hence the solution (43) foru∗ is obtained by substituting
(80) into (79). Also, the inputuk at each trial belongs to the
input constraint setΩ as it is obtained from the projection
operatorPΩ. The proof of the monotonic convergence with
respect toJk follows from the similar proof in Theorem 2.
The proof is now complete.

APPENDIX E
PROOF OFPROPOSITION1

The ILC update (30) is equivalent to

uk+1(t) = uk(t) +Gs∗ẽsk+1(t), (81)

where ẽsk+1 = [eek+1, êk+1]
⊤ and êk+1 = r̃k − yk+1. From

Lemma 1,Gs∗ẽsk+1(t) can be computed using

Gs∗ẽsk+1(t) = R−1B⊤pk+1(t), (82)

where the costatepk(t) is computed in reverse time as

pk+1(t) = −A⊤pk+1(t+ 1)− C⊤(P⊤
i Q̂iPiek+1(t+ 1)

+ Sêk+1(t+ 1)), t ∈ [ti−1, ti), i = 1, . . . ,M, (83)

with boundary conditions

pk+1(ti − 1) = pk+1(ti) + C⊤F⊤
i QiFiek+1(ti),

pk+1(N) = 0. (84)

Substituting (82) into (81) yields the solution (47).
Assuming full state knowledge, the costate equation (82)

yields a causal implementation

pk+1(t) = −K(t)(I +BR−1B⊤K(t))−1A

(xk+1(t)− xk(t)) + ξk+1(t). (85)

Then use the method proposed in [61] such that it follows
from (1), (47) and (85) that

xk+1(t+ 1)− xk(t+ 1)

= A(xk+1(t)− xk(t)) +B(uk+1(t)− uk(t))

= A(xk+1(t)− xk(t)) +BR−1B⊤pk+1(t)

= (I +BR−1B⊤K(t))−1A(xk+1(t)− xk(t))

+BR−1B⊤ξk+1(t). (86)

Then substitute (85) and (86) into the costate equation (82)to
yield an equation of the form

H(A,B,C, S, Q̂i, Pi, R
−1,K(t),K(t+ 1))

[xk+1(t)− xk(t)] = G(A,B,C, S, Q̂i, Pi, R
−1,

K(t), ξk+1(t), ξk+1(t+ 1), ek(t+ 1), ẽk(t+ 1)), (87)

where H(·) and G(·) are functions of their arguments and
independent of the states. If both functions are set to zero,
the equation (87) holds independently of the difference of the
current difference of in state. Doing this yields the discrete Ma-
trix Riccati equationK(t) and the optimal predictorξk+1(t)
in (49) and (51).

Comparing to the boundary conditions in equation (84),
there is one more termC⊤F⊤

i QiFiek+1(ti) added at the end.
Note that

ek+1(ti) = ek(ti)− C(xk+1(ti)− xk(ti)), (88)

which yields

C⊤F⊤
i QiFiek+1(ti) =C⊤F⊤

i QiFiC(xk+1(ti)− xk(ti))

+ C⊤FiQiFiek(ti), (89)

and gives rise to the boundary conditions in (50) and (52).

APPENDIX F
PROOF OFTHEOREM 4

According to Definition 2, the piecewise spatial tracking
requirement is to track the transition verticesri at time
instantsti and the linear path betweenri−1 andri during the
sub-interval(ti−1, ti]. Therefore, the piecewise spatial path
tracking problem is

(Gu)(ti) = ri, i = 1, . . . ,M,

Gu(t) ∈ Ri, t ∈ (ti−1, ti], i = 1, . . . ,M, (90)

whereRi is the set of all points along each linear sub-path,
i.e. Ri = {y ∈ Rm : y = ri − γ(ri − ri−1), γ ∈ [0, 1]}. Note
the all the elements inRi have the linear relationship

Piy = Piri, ∀y ∈ Ri, (91)

wherePi ∈ R(m−1)×m is a full row rank matrix. It follows
that

Pi(ri − γ(ri − ri−1)) = Piri, (92)

which yieldsPiai = 0, and further gives rise to the condition
(57). In addition, the hard output constraint set defined in (58)
is used to prevent overshoot. Therefore, a piecewise spatial
ILC problem is formulated as

lim
k→∞

yk = y∗ ∈ Φ, lim
k→∞

yk(ti) = ri, i = 0, . . . ,M,

lim
k→∞

Piyk(t) = Piri, t ∈ (ti−1, ti], i = 1, . . . ,M. (93)

Therefore, it is clear that the generalized ILC problem (19)
is reduced to exactly the problem (93) when the parameters
are set to the values described in this theorem. Therefore,
Algorithm 1 can solve the problem (90) as a special case. As
the piecewise spatial path tracking problem is a special case
of generalized ILC problems, the proofs of the convergence
properties in (59) and (60) follow exactly from the proofs of
Theorem 2 and 3.
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