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Abstract This work presents a methodology for reconstructing full-field surface pressure information from de-

flectometry measurements on a thin plate using the Virtual Fields Method (VFM). Low-amplitude mean pressure

distributions of the order of few O(100) Pa from an impinging air jet are investigated. These are commonly mea-

sured point-wise using arrays of pressure transducers, which require drilling holes into the specimen. In contrast,

the approach presented here allows obtaining a large number of data points on the investigated specimen without

impact on surface properties and flow.

Deflectometry provides full-field deformation data on the specimen surface with remarkably high sensitivity. The

VFM allows extracting information from the full-field data using the principle of virtual work. A finite element

model is employed in combination with artificial grid deformation to assess the uncertainty of the pressure recon-

structions. Both experimental and model data are presented and compared to show capabilities and restrictions

of this method.

Keywords Deflectometry · Virtual Fields Method · Surface pressure reconstruction · Full-field measurement ·

Fluid-structure interaction

1 Introduction

Full-field surface pressure measurements are highly relevant for engineering applications like material testing,

component design in aerodynamics and the use of impinging jets for cooling, de-icing and drying. Surface pres-

sure information can be used to determine aerodynamic loads [44] and to evaluate the performance of impinging

jets used for heat and mass transfer [24]. They are however difficult to achieve, as available methods are not

universally applicable. Most commonly, large numbers of pressure transducers are fitted into the investigated

surface. This is an invasive technique as it requires one to drill holes into the sample. Further, it yields limited

spatial resolution [9, 10]. Pressure sensitive paints allow obtaining full-field data, but are not suited for low-range
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differential pressure measurements [43, 45, chapter 4.4]. They further require extensive calibration efforts, as

well as a controlled experimental environment. Calculating pressure from Particle Image Velocimetry (PIV) is a

non-invasive method that yields full-field data in the flow field [27, 32]. This allows estimations of pressure along

lines on which the surface coincides with the field of view.

Another approach is the reconstruction of pressure information from full-field surface deformation measurements

by solving the local equilibrium equations. Recently, wall pressure was calculated from 3D-Digital Image Corre-

lation (DIC) measurements on a flexible Kevlar wind-tunnel wall in an anechoic chamber [8]. This was achieved

by projecting the measured deflections onto polynomial basis functions and inserting their derivatives into the

corresponding equilibrium equations. The obtained pressure coefficients compared well to transducer data for the

relatively large spatial scales that were investigated. Many problems in the field of fluid-structure interactions can

be simplified to low amplitude loads acting on thin plates. This allows employing the Love-Kirchhoff thin plate

theory [40] to write the local equilibrium of the plate. The required full-field deformation information on the test

surface can be obtained using a number of measurement techniques, e.g. DIC, Laser Doppler Vibrometers (LDV)

or interferometry techniques. However, the fourth order deflection derivatives required to solve the Love-Kirchhoff

equilibrium equation make an application in the presence of experimental noise challenging, particularly for low

signal-to-noise ratios. To a degree, this issue can be addressed by applying regularisation techniques. In studies

based on solving the equilibrium equation locally by employing a finite difference scheme, regularisation was

achieved by applying wave number filters [28] or by adapting the number of data points used for the finite differ-

ences [20]. This allowed an identification and localisation of external vibration sources acting on the investigated

specimen. Similarly, the acoustic component of a flow was identified using wave number filters in an investigation

of a turbulent boundary layer [21]. Generally, the accuracy of this approach in terms of localisation and amplitude

identification depends strongly on the chosen regularisation.

An alternative for solving the thin plate problem using full-field data is the Virtual Fields Method (VFM), which

is based on the principle of virtual work and only requires second order deflection derivatives. The VFM is

an inverse method that uses full-field kinematic measurements to identify mechanical material properties from

known loading or vice versa. A detailed overview of the method and the range of applications is given in [29]. It

notably does not require detailed knowledge of the boundary conditions and does not rely on computationally

expensive iterative procedures. A study comparing Finite Element Model Updating, the Constitutive Equation

Gap Method and the VFM for constitutive mechanical models using full-field measurements found that the VFM

consistently performed best in terms of computational cost with reasonable results [22]. The VFM has been

adapted for load reconstruction in a number of studies, including dynamic load identification in a Hopkinson bar

[23] [30]. The data were found to compare reasonably well to standard measurement techniques. The VFM was

also used to reconstruct spatially-averaged sound pressure levels from an acoustic field using a scanning Laser

Doppler Vibrometer (LDV) [34]. Dynamic transverse loads, as well as vibrations caused by acoustic pressure were

identified using the same technique in [7]. The results were found to be accurate for distributed loads. The latter

used a VFM approach based on piecewise virtual fields, which allows more accurate descriptions of boundary
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conditions for complex shapes and heterogeneous materials [42]. This approach was extended to random spatial

wall pressure excitations in [6], reconstructing power spectral density functions from measured data and using

the VFM to describe the plate response. The authors found that this method requires piecewise virtual fields

to be defined over small regions. Recently, the VFM approach was combined with deflectometry for the identi-

fication of mechanical point loads of several O(1) N [25]. Deflectometry is a highly sensitive technique for slope

measurement [38]. It was successfully used in a range of applications like damage detection of composites [14],

the analysis of stiffness and damping parameters of vibrating plates [16] and for imaging of ultrasonic lamb waves

[13]. Since deflectometry measurements yield surface slopes, the combination with the VFM reduces the required

order of derivatives of experimental data for pressure reconstruction to one. Known loads were reconstructed

in [25] with good accuracy for certain reconstruction window sizes which were found empirically. Deflectometry

and the VFM were also used to identify pressure auto-spectra of spatially averaged random excitations in [26].

The results agreed well with microphone array measurements, except at the structural resonance frequencies

and for poor signal-to-noise-ratios. In the same study, the VFM approach was extended to membranes and the

applicability was investigated using a simulated experiment. A shortcoming of these previous studies was that the

accuracy was not assessed for unknown input loads. This is an important step because neither the resolution in

space nor the uncertainty in pressure amplitude can be predicted directly as they depend on the signal amplitude

and distribution, the noise level and the reconstruction parameters.

The main focus of the work presented here is the determination of static low-amplitude pressure distributions

with peak values of few O(100) Pa from time-averaged full-field slope measurements, as well as an assessment of

the uncertainties of the method. In the following sections 2 and 3, a brief overview of the theoretical background

and experimental setup is given. In section 4, experimental results are presented for two different specimen and

for several reconstruction parameters. The pressure reconstructions are compared to pressure transducer mea-

surements. Section 5 introduces a numerical model for simulated experiments. This allows an assessment of the

uncertainty of the method in terms of both systematic errors and the influence of random noise. In section 5, a

finite element updating procedure is proposed to compensate for systematic errors.

2 Theory

2.1 Impinging Jets

A fan-driven, round air jet was used to apply a load on the specimen. The flow generated by this impinging jet can

be divided into the free jet, stagnation and wall region [19]. These regions, shown in fig. 1, consist of subregions

with distinct flow features which are governed by the ratio between downstream distance and nozzle diameter

H/D and Reynolds number Re. Directly downstream from the nozzle exit, the free jet develops for sufficiently

large H/D & 2 [47]. The velocity profile spreads as it moves downstream due to entrainment and viscous

diffusion causing a transfer of momentum to surrounding fluid particles. Upon approaching the impingement

plate a stagnation region forms, characterized by an increase in static pressure up to the stagnation point on the
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Fig. 1: Impinging jet regions.

plate surface. The rising static pressure results in pressure gradients diverting the flow radially away from the

jet centerline. The laterally diverted flow forms the wall region. The pressure distribution on the impingement

surface is approximately Gaussian [5]. This study focuses on the measurement of the mean load distribution on

the impingement plate.

2.2 Deflectometry

Deflectometry is an optical full-field measurement technique for surface slopes [38]. Fig. 2 shows a schematic of

the setup. A camera measures the reflected image of a periodic spatial signal, here a cross-hatched grid, on the

surface of a specular reflective sample. The distance between the grid and sample is denoted by hG and the grid

pitch by pG. The angle θ has to be sufficiently small to minimize grid distortion in the recorded image. A pixel

directed at point M on the specimen surface will image the reflected grid at point P in an unloaded configuration.

If a load is applied to the surface, it deforms locally and the same pixel will now image the reflected grid at

point P′. It is assumed here that rigid body movements and out of plane deflections are negligible (for details

see section 7 below). The displacement u between P and P′ relates to the phase difference dφ in the grid signal

in x- and y-direction respectively as follows:

dφx = 2π
pG
ux, dφy = 2π

pG
uy (1)

A spatial shift by one grid pitch pG corresponds to a phase shift of 2π. However, a direct displacement estimation

from the phase difference between a reference and a deformed image does not take into account that the physical

point on the plate surface is subject to a displacement. An iterative procedure to improve the displacement results

given in [17, section 4.2] is employed here:

un+1(x) = −pG2π (φdef (x + un(x))− φref (x)) (2)
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Fig. 2: Deflectometry setup, top view.

A relationship between slopes and displacement is derived e.g. in [33]. It is based on geometric considerations

and assumes that θ is sufficiently small, so the camera records images in normal incidence and hG is large against

the shift u:

dαx = ux
2hG

, dαy = uy
2hG

(3)

Otherwise, a more complex calibration is required [3, 39]. Equation 3 will be used here.

The spatial resolution of the method is driven by pG. The phase resolution is noise dependent and can be defined

as the standard deviation of a phase map detected between two stationary images. Consequently, slope resolution

depends on pG, hG and the phase resolution.

2.3 Phase detection

The literature describes a number of methods for retrieving phase information from grid images, e.g. [11, 17, 37].

Here, a spatial phase-stepping algorithm is employed which allows investigating dynamic events [31, 36]. One

phase map is calculated per image. The chosen algorithm needs to be capable of coping with miscalibration,

i.e. a slightly non-integer number of pixels per grid period. This can occur due to imperfections in the printed

grid, misalignment between camera, sample and grid, lens distortion, as well as fill factor issues. In addition, the

investigated signal is not generally sinusoidal. This requires an algorithm suppressing harmonics and sets a lower

limit to the required number of samples, i.e. pixels recorded per grid pitch [18]. A windowed discrete Fourier

transform algorithm using triangular weighting and a detection kernel size of two grid periods as used in e.g. [37]

and [2] will be used in this study.
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2.4 Pressure Reconstruction

The problem investigated here is a thin plate in pure bending, which allows the Love-Kirchhoff theory to be

employed [15]. Assuming that the plate material is linear elastic, isotropic and homogeneous, the principle of

virtual work is expressed by:∫
S

p w∗dS = Dxx

∫
S

(
κxxκ

∗
xx + κyyκ

∗
yy + 2κxyκ∗xy

)
dS

+ Dxy

∫
S

(
κxxκ

∗
yy + κyyκ

∗
xx − 2κxyκ∗xy

)
dS + ρ tS

∫
S

a w∗dS .

(4)

S is the surface area, p the investigated pressure, Dxx and Dxy the plate bending stiffness matrix components, κ

the curvatures, ρ the plate material density, tS the plate thickness, a the acceleration, w∗ the virtual deflection

and κ∗ the virtual curvatures. Here, the parameters Dxx, Dxy, ρ and tS are known from the plate manufacturer.

κ and a are obtained from deflectometry measurements, see section 3.5 below. For the selection of the virtual

fields w∗ and κ∗ one needs to take into account theoretical as well as practical restrictions of the problem like

continuity, boundary conditions and sensitivity to noise.

The problem can be simplified by assuming the pressure p to be constant over the investigated area and by

approximating the integrals with discrete sums.

p =
(
Dxx

N∑
i=1

κixxκ
∗i
xx + κiyyκ

∗i
yy + 2κixyκ∗ixy

+ Dxy

N∑
i=1

κixxκ
∗i
yy + κiyyκ

∗i
xx − 2κixyκ∗ixy + ρ tS

N∑
i=1

ai w∗i

) (
N∑
i=1

w∗i

)−1

.

(5)

Here, N is the number of discretised surface elements dSi.
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Fig. 3: Example Hermite 16 virtual fields with superimposed virtual elements and nodes (black). ξ1, ξ2 are
parametric coordinates. The example window size is 32 points in each direction. Full equations can be found in
[29, chapter 14].
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2.5 Virtual Fields

For the present problem of identifying an unknown load distribution, it is beneficial to choose piecewise virtual

fields due to their flexibility [7, 25, 34, 42]. In this study, the virtual fields are defined over a window of chosen

size which is then shifted over the surface S until the entire area is covered. One pressure value is calculated for

each window. In the following, this window will be referred to as pressure reconstruction window PRW. This

procedure also allows for oversampling in the spatial reconstruction by shifting the window by less than a full

window size.

Here, the only theoretical requirements for the virtual fields are continuity and differentiability. Since curvatures

relate to deflections through their second spatial derivatives for a thin plate in pure bending, the virtual deflections

are required to be C1 continuous. It is further necessary to eliminate the unknown contributions of virtual work

along the plate boundaries. This is achieved by choosing virtual displacements and slopes that are zero around

the window borders. 4-node Hermite 16 element shape functions as used in FEM [46] fulfill these requirements.

The full equations defining these functions can be found in [29, chapter 14]. Fig. 3 shows example virtual fields. 9

nodes are defined for a PRW. All degrees of freedom are set to zero except for the virtual deflection of the center

node, which is set to 1.

The size of the PRW is an important parameter for the pressure reconstruction. Generally, the presence of random

noise requires a larger PRW in order to average out the effect of noise on the pressure value within the window.

A smaller PRW however can perform better at capturing small scale spatial structures, as large windows may

average out amplitude peaks. One challenge in varying the window size is that the systematic error varies with

it, as well as the effect of random noise on pressure reconstruction. This problem is investigated numerically in

section 5.

3 Experimental Methods

3.1 Setup

Fig. 4 shows a schematic of the experimental setup. A round, fan-driven impinging air jet was used to apply

pressure on the specimen. The jet was fully turbulent at a downstream distance of 0.5 cm from the nozzle exit.

The specimen was glued on a square acrylic frame. The grid was printed on transparency and fixed between two

hG

Grid Light 

source

Sample

Camera 

hN

wD

Jet

Fig. 4: Experimental setup.
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glass plates in the setup. A white light source was placed behind it. The camera was placed next to the grid

at the same distance from the sample such that the reflected grid image is recorded at normal incidence. The

distance between the sample and grid was chosen to be as large as possible in order to minimise the angle θ (see

fig. 2). Two different glass sample plates were investigated, one with thickness of 1 mm and the other 3 mm. All

relevant experimental parameters are listed in table 1.

3.2 Grid

A cross-hatched grid printed on a transparency was used as the spatial carrier. Sine grids printed in x- and

y-direction would be preferable for phase detection as they do not induce high frequency harmonics in the phase

detection. Printing these in sufficient quality is however difficult to achieve with standard printers. Using a

hatched grid and slightly defocusing the image achieves a similar result because the discrete black and white

areas become blurred, effectively yielding a grey scale transition between minimum and maximum intensity. This

does however result in a slightly lower signal to noise ratio. It should be noted that when printing the grid, an

integer number of printed dots per half pitch is required to avoid aliasing (e.g. [12]). For the current setup, grids

with 1 mm pitch were printed on transparencies using a Konica Minolta bizhub C652 printers at 600 dpi.

3.3 Sample

The choice of the sample plate material and finish proved crucial for the investigation of small pressure amplitudes

and spatial scales. The surface slopes under loading need to be large enough for detection, while at the same

time the sample surface has to be plane enough for the grid image to be sufficiently in focus over the entire field

of view. Perspex mirrors, polished aluminium and glass plates with reflective foils proved either too diffusive

due to the Rayleigh criterion or insufficiently plane, resulting in a lack of depth of field when trying to image

the reflected grid. Optical glass mirrors were chosen instead, as they provide adequate stiffness parameters and

remain sufficiently plane when mounted. As it was possible to estimate the slope resolution from the noise level

observed when recording two undeformed images on any sample thickness, deformation estimations based on the

expected experimental load were used as input for finite element simulations to select suitable plate parameters.

It was found that plates with thickness of 3 mm or lower were required. Good results were achieved using a

1 mm thick first-surface glass mirror as specimen. Still, fitting the 1 mm glass mirror on the frame caused it to

bend slightly, resulting in small deviations from a perfect plane and subsequent local lack of depth of field. This

was addressed by closing the aperture. A second, 3 mm thick mirror was used for comparison as it did not bend

notably when mounted, though signal amplitudes for this case proved to be very low. The sample plates were

glued onto a perspex frame along all edges.
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Optics
Camera Photron Fastcam

SA1.1
Technology CMOS
Camera pixel size 20 µm
Surface Fill Factor 52 %
Dynamic range 12 bit
Settings
Resolution 1024×1024 pixels
Frame rate f 50 fps
Exposure 1/100 s
Region of interest 64×64 mm2

Magnification M 0.32
f-number NLens 32
Focal length fLens 300 mm
Light source Halogen, 500 W
Sample
Type First-surface mirror
Material Glass
Young’s modulus E 74 GPa
Poisson’s ratio ν 0.23
Density ρ 2.5 103 kg m−3

Thickness tS 1 mm, 3 mm
Side length ls ca. 90 mm, 190 mm
Grid
Printed grid pitch pG 1.02 mm
Grid-sample distance hG 1.03 m
Pixels per pitch ppp 8
Jet
Nozzle shape Round
Nozzle diameter D 20 mm
Area contraction ratio 0.13
Nozzle exit dynamic pexit 630 Pa
pressure
Reynold’s number Re 4·104

Sample-nozzle distance hN 40 mm

Table 1: Setup parameters.

3.4 Transducer Measurements

Pressure transducer measurements allowed a validation of the pressure reconstructions from deflectometry and

the VFM. Endevco 8507C-2 type transducers were fitted in an aluminium plate along a line from the stagnation

point outwards. The transducers have a diameter of 2.5 mm and were fitted with a spacing of 5 mm. They were

fitted to be flush with the surface to within approximately 0.5 mm. Data was acquired at 10 kHz over 20 s using

a NI PXIe-4330 module.

3.5 Data Acquisition and Processing

One reference image was taken in an unloaded configuration before activating the jet. The jet required approxi-

mately 20 s to settle, after which a series of images was recorded. One data point was calculated per grid pitch
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during phase detection. Slopes were calculated relative to the reference image. Time averaged mean slope maps

were calculated over N = 5400 measurements at 50 Hz, limited by camera storage. From the slope maps the

curvatures were obtained through spatial differentiation using centered finite differences. This requires knowledge

of the physical distance between two data points on the specimen. It corresponds to the portion of the mirror

required to observe the reflection of one grid pitch, which can be determined geometrically assuming θ is suffi-

ciently small (see fig. 2). In the present setup, camera sensor and grid were at the same distance from the mirror

hG, such that the distance was half a printed grid pitch. Since differentiation tends to amplify the effect of noise,

it can be beneficial to filter slope data before calculating curvatures. Here, the mean slopes were filtered using a

2D Gaussian filter, performing a convolution in the spatial domain. The filter kernel is characterized by its side

length which is determined by the standard deviation, here denoted σα, and truncated at 3 σα in both directions.

Because of its size, the filter kernel cannot be applied to the data points at the border of the field of view without

padding. As padding should be avoided to prevent bias, 6 σα − 1 data points were cropped along the edges of

the field of view. While acting as a low-pass filter which reduces the effect of random noise, this technique also

tends to reduce signal amplitude.

For the investigated problem of a mean flow profile, the accelerations average out to zero. This was confirmed

with vibrometer measurements on several points along the test surface using a Polytec PDV 100 Portable Dig-

ital Vibrometer. Data was acquired at 4 kHz over 20 s. The noise level in LDV measurements was 0.3 ms−2.

The observed standard deviations varied with the position along the plate surface and reached up to 1.4 ms−2.

Therefore, the term involving accelerations in equation 4 is zero as well and will therefore be neglected in the

following.

Pressure reconstructions were conducted for several PRW sizes. The results were oversampled by shifting the

PRW over the investigated field of view by one data point per iteration. Note that due to the finite size of these

windows, half a PRW of data points is lost around the edges of the field of view.

4 Experimental Results

Slope maps obtained from deflectometry measurements were processed and temporally averaged as described in

section 3.5. Results for both specimens are presented in the following, one plate with 1 mm thickness and 90 mm

side length, and one with 3 mm thickness and 190 mm side length. The region of interest is 64 mm in both

directions for each test cases. Fig. 5a-5d show the measured mean slope maps for both test plates. Distances are

given in terms of radial distance from the impinging jet’s stagnation point r, normalized by the nozzle diameter

D, in x- and y-direction respectively. Note that the region of interest showing the jet center does not coincide

with the plate center, so the slope amplitudes are not necessarily symmetric. The signal amplitudes for the 3 mm

test case are significantly lower than for the 1 mm case. Slope shapes are different for both cases because the

plates have different side length while the field of view remains the same size. Further, the stagnation point is

off-center in the 3 mm test.
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Fig. 5e-5p shows mean curvature maps with and without Gaussian filter. Stripes are visible in all curvature maps

for the unfiltered 1 mm test data. This indicates the presence of a systematic error source in the experimental

setup. Without slope filter, curvatures obtained from the 3 mm plate test are governed by noise. The curvature

map for κ̄xx (fig. 5g) additionally shows fringes. These disappear after slope filtering, though filtered data still

appear asymmetric, again indicating a systematic error. To assure that this issue occurring in for both plates does

not originate from a lack of convergence, mean and instantaneous curvature maps were calculated and compared.

All maps show the same bias, with small variations in amplitude.

This may be caused by misalignment between grid and image sensor due to imperfections in the printed grid,

combined with the CMOS chip’s fill factor. This results in a slightly varying number of pixels per grid pitch over

the field of view, which leads to errors in phase detection and fringes. While this issue could be mitigated by

careful realignment of camera and grid as well as slightly defocusing the image to address the low camera fill

factor, it could not be fully eliminated. Another possible error source is the deviation of the plate surface from a

perfect plane, e.g. due to deformations of the sample during mounting. Since differentiation amplifies the impact

of noise, filtering the slope maps yields much smoother curvature maps. The downside is a possible loss of signal

amplitude and of data points along the edges (see section 3.5).

Fig. 6a-6d show pressure reconstructions using different PRW sizes. Pressure is given in terms of difference to

atmospheric pressure, ∆p. Here, one data point corresponds to a physical distance of 0.5 mm, such that a PRW

of 28 points corresponds to a window side length of 14 mm or 0.7 rD−1. The large number of data points

is a result of oversampling by shifting the PRW over the investigated area by one point per iteration. The

expected Gaussian shape of the distribution is found to be well reconstructed for filtered data and sufficiently

large PRW, here above ca. 22 data points, for the 1 mm plate. Reconstructions from 3 mm plate tests are less

symmetric. The position of the stagnation point is visible for all shown parameter combinations, but the shape of

the distribution shows a recurring pattern which stems from the systematic error already observed in curvature

maps. For both tests, some reconstructions show areas of negative differential pressure, which is unexpected

for the mean distributions in this flow. This is likely to be a consequence of random noise, as similar patterns

were observed in simulated experiments for noisy model data (see section 5.3 below). For comparisons with the

transducer measurements, pressure reconstructions were averaged circumferentially for each corresponding radial

distance from the stagnation point. Fig. 6e and 6f show the results. The vertical error bars on transducer data

represent both the systematic errors of the equipment as well as the random error of the mean pressure value.

The horizontal error bars indicate the uncertainty in placing the transducers relative to the jet. Results from the

1 mm plate measurements appear to show a systematic underestimation of the pressure amplitude at all points.

Possible sources for this error are discussed in detail in section 7 below. However, the shape of the distribution

is captured reasonably well. The 13 mm plate results show a good reconstruction of the peak amplitude, but the

shape of the pressure distribution deviates due to the influence of random noise patterns. The results clearly show

that the effects of the size of the PRW and the Gaussian smoothing kernel σα on the reconstruction outcome are
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(d) ᾱy for tS = 3 mm plate
test.
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(e) κ̄xx from unfiltered slopes
for tS = 1 mm plate test.
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(f) κ̄xx from filtered slopes
for tS = 1 mm plate test,
σα = 3.
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(g) κ̄xx from unfiltered slopes
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(h) κ̄xx from filtered slopes
for tS = 3 mm plate test,
σα = 6.
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for tS = 1 mm plate test.
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(j) κ̄yy from filtered slopes,
σα = 3 for tS = 1 mm
plate test.
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(k) κ̄yy from unfiltered slopes
for tS = 3 mm plate test.
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(l) κ̄yy from filtered slopes
for tS = 3 mm plate test,
σα = 6.
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(m) κ̄xy from unfiltered slopes
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Fig. 5: Measured mean slope and curvature maps.
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(f) Comparison between transducer measurements and
VFM pressure reconstructions for 3 mm plate test.

Fig. 6: Comparison of VFM pressure reconstruction with pressure transducer data.

significant. Therefore, the influence of the reconstruction parameters is investigated numerically in the following

section.

5 Simulated Experiments

Comparisons of the VFM pressure reconstruction with the pressure transducer data shows that there are discrep-

ancies between the results. Furthermore, it is unclear what parts of the reconstructed pressure amplitude stems

from signal, random noise or systematic error. Processing experimental data with noise can produce pressure

distributions that are indistinguishable from the signal of interest. It is also important to note that the complex

measurement chain from images to pressure does not allow for analytical expressions to be obtained and only

numerical simulations can shed light on the problem.

Numerical studies allow addressing this problem and estimating the effects of random and systematic error [17].

As a first step, a finite element model of the investigated thin plate problem is created. By applying a model

load, the local displacements and slopes that result from the bending experiment can be simulated. For the next

step, the grid image recorded with the camera is modelled numerically. The simulated displacements are used to

calculate the deformations of the model grid image. Experimentally observed grey level noise is added to these

grids. The simulated grids serve as input for a study of the influence of processing parameters on the pressure

reconstruction. Comparisons with the model load allow an assessment of the uncertainties of the processing tech-
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Fig. 7: ANSYS model in- and output for 1 mm plate model.

nique in the presence of random noise. In the last subsection, a finite element correction procedure is introduced

to compensate for the reconstruction error.

5.1 Finite Element Model

Numerical data of slope maps from a thin plate bending under a given load distribution was calculated using

a finite element simulation. This was conducted using the software ANSYS APDLv181. SHELL181 elements

were chosen as they are well suited for modelling the investigated thin plate problem [4]. Both experimental test

plates were simulated as homogeneous with the parameters detailed in table 1. All degrees of freedom were fixed

along the edges. For both plates a square mesh was used with 1440 elements for the 1 mm thick plate and 2280

elements for the 3 mm thick plate. This allowed obtaining 1024 points in a window corresponding to 64 mm,

which corresponds to the experimental number of camera pixels and field of view. Fig. 7a shows the Gaussian

pressure distribution used as input, with an amplitude of 630 Pa and σload = 9 mm. Fig. 7b shows the resulting

deflections, fig. 7c and 7d the model slopes for the 1 mm plate case.

5.2 Systematic Error

The simulated slopes can be used as input for the VFM pressure reconstruction the same way as those obtained

experimentally. This allows an assessment of the systematic error of the processing technique independent from

experimental errors. A metric for estimating the error of a reconstruction was defined taking into account the

difference between reconstructed and input pressure amplitude in terms of the local input amplitude at each

point:

ε = 1
N

N∑
i=1

∣∣∣∣√(prec,i − pin,i)2/pin,i
∣∣∣∣ (6)

prec, i is the reconstructed and pin, i the input pressure at each point i with a total number of points N. Pressure

values below 1 Pa were omitted for this metric. Fig. 8a shows the results for the accuracy estimate for pressure

reconstructions from noise free slope data for different PRW. The results are oversampled as in the experimental

case by shifting the PRW by one point per iteration. A minimum exists at PRW = 22 with ε = 0.12, which
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Fig. 8: Systematic error estimate for VFM.

indicates an average accuracy of ca. 88% of the local amplitude. The corresponding pressure reconstruction map

is shown in fig. 8b. It should be noted that the local pressure amplitudes are underestimated for all investigated

cases. For increasing PRW sizes, the peak amplitude is underestimated because the virtual fields act as a weighted

average over the entire window. Small PRWs were expected to yield best results in a noise free environment since

they average over fewer data points. This is not confirmed here. Different finite element mesh sizes were tested

to rule out model convergence issues. The low accuracy obtained for small windows is probably due to a lack

of heterogeneity of (real) curvature in small windows. If curvatures are constant, they can be taken out of the

integral in eq. 4. Because the virtual curvatures average out to zero over one window, the integral then yields zero.

For small windows, this situation is approached, likely leading to wrong pressure values. Choosing heterogeneous

virtual curvature fields could be used to address this issue in future studies. One approach could be to defined

more nodes on each virtual field and a non-zero virtual deflections on a node other than the center one to

increase heterogeneity. Another way could be to employ higher order approaches for pressure calculation within

one window, which is expected to yield higher accuracy for large PRW.

5.3 Grid Deformation Study

Artificial grid deformation allows for a more comprehensive assessment of error propagation by including the

effects of camera resolution and noise. Following the approach described in [35], a periodic function with a

wavelength corresponding to the experimental grid pitch was used in x- and y-direction to generate the artificial

grid.
I(x, y) = Imin + Imin − Imax

2 + Imax
4

·

(
cos
(

2πx
pG

)
+ cos

(
2πy
pG

)

−
∣∣∣∣cos

(
2πx
pG

)
− cos

(
2πy
pG

)∣∣∣∣
) (7)
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(a) Artificial grid after inte-
gration and with added noise.

(b) Experimental grid.

Fig. 9: Example grid sections.

Here, Imin and Imax are the minimum and maximum intensity values of the experimental grid images. The signal

amplitude values were discretised to match the camera’s dynamic range. All simulated image parameters were

set to replicate the experimental conditions as described in table 1. This spatial grid signal was oversampled by

a factor of 10 and spatially integrated to simulate the signal recording process of the camera, as detailed in [35].

To further assess the actual experiment, random noise was added to the artificial grid images based on the grey

level noise measured during experiments, here 0.95% and 0.61% of the used dynamic range in case of the 1 mm

and 3 mm plate tests respectively. It varies because the illumination varied between both experiments, such that

the used dynamic range was different. The amount of random noise is reduced with the number of measurements

over which the mean value is calculated. However, the reduction of noise is not described by 1/
√
N as would

be expected. The same observation was made in [12]. It was investigated by taking a series of images without

applying a load to the specimen. It was found that the amount of noise in phase maps increases with the time that

has passed between two images being taken. It is likely that this is a result of small movements or deformations

of the sample, printed grid and camera due to vibrations and temperature changes during the measurement.

This does not fully account for the observed effect however. As a consequence, the amount of random noise

for averages over multiple measurements has to be determined experimentally. For 5400 measurements on the

undeformed sample, it was found that the random noise in phase was reduced by a factor of ca. 2.5 compared to

two measurements. The values are statistically well converged after 30 realisations of simulated noise.

The simulation neglects the effects of grid defects, lens imperfections, inhomogeneous illumination and imperfec-

tions of the specimen. However, it does account for any systematic errors associated with the number of pixels on

the camera sensor and the random errors coming from grey level noise in the images. Fig. 9 shows a close-up view

of simulated and experimental grid images. Simulated slopes yield corresponding deformations of the artificial

grid at every point using eqs. 1 and 3. The obtained artificial grids for deformed and undeformed configurations

can now be used as input for the phase detection algorithm. Areas with negative pressure amplitude were ob-

served in reconstructions from noisy model data, very similar to those observed experimentally. A lower limit for

pressure resolution was determined by adding noise to two undeformed artificial grids and processing them. The

standard deviation of pressure values obtained from this reconstruction can be interpreted as a metric for the

lower detection limit of the pressure reconstruction for the corresponding parameter combination. Values below
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(a) Error estimates for varying slope filter kernel and
PRW size for 1 mm plate test and with grey level noise
0.95 % of the dynamic range.
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(b) Error estimates for varying slope filter kernel
and PRW size for 3 mm plate test and with grey
level noise 0.6 % of the dynamic range.

Fig. 10: Pressure reconstruction accuracy analysis.
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σα = 2, PRW = 28 recon-
struction.

Fig. 11: Model input pressure distribution sections for comparison with reconstruction results.

the obtained threshold are neglected in all reconstructions in the following.

Phases obtained from artificial, deformed grids were processed and the reconstructed and input pressure were

compared using the metric introduced in eq. 6. This allows quantifying the systematic error of phase detection

and VFM for all combinations of the relevant processing parameters. Oversampling in the phase detection al-

gorithm, i.e. calculating more than one phase value per grid pitch, was found to improve the results, though at

high computational cost. Particularly in combination with larger PRW and slope filter kernels, phase oversam-

pled slope maps yield diminishing improvements in accuracy in terms of the overall cost. In the VFM pressure

reconstruction, oversampling provided a significant improvement at acceptable cost. The slope filter kernel size

σα also increases computational cost, but mitigates the effects of random noise efficiently. The influence of both

the size of σα and PRW are investigated in the following as they yield the most significant improvements.

Figs. 10a and 10b show the findings for varying parameters σα and PRW for each plate. These allow selecting

parameter combinations with highest precision in terms of amplitude over the entire field of view. Fig. 12-13

show example comparisons of pressure reconstructions for different ε. Fig. 12 shows experimental data with two

different parameter combinations for both plates and fig. 13 below shows the corresponding results obtained using
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(d) Pressure reconstruction
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curacy estimate (σα = 2,
PRW = 28, ε > 0.5).

Fig. 12: Comparison of pressure reconstructions from experimental data for different parameter combinations.
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for 3 mm plate for poor ac-
curacy estimate (σα = 2,
PRW = 28, ε > 0.5).

Fig. 13: Comparison of pressure reconstructions from noisy model data for different parameter combinations.

model data. For reference, fig. 11 shows on top the model input distribution sections in the respective field of

view. As expected, reconstructions using larger smoothing kernels tend to yield lower peak amplitudes. However,

the amplitudes in other areas are be captured better, as noise induced peaks are filtered more efficiently. The fact

that some numerical reconstructions do not represent Gaussian distributions well shows that noise effects are not

averaged out entirely. For the low signal to noise ratio encountered in the 3 mm plate case, some reconstructions

overestimate the peak pressure amplitude. This is a consequence of the differentiation of slope noise, which leads

to large curvature and thus pressure values. Since this also leads to areas in which the pressure amplitude is

underestimated, the effect averages out for sufficiently large slope smoothing kernel and PRW.

6 Finite Element Correction

The systematic error caused by the reconstruction technique which was identified above shows an underestimation

of the input pressure for noise free data. In the presence of noise, a similar observation is made for large enough

signal to noise ratio as in the 1 mm plate case. This error source can be mitigated with a finite element correction

procedure. For this approach, an initial reconstructed pressure distribution is used as input for the numerical
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model described above. In practice, this is the experimentally identified distribution from the VFM. Processing

the resulting slope maps obtained using the finite element model (see section 5.1) yields the first iterated pressure

distribution. The difference between this iteration and the original pressure reconstruction corresponds to the

systematic error at every point of the pressure map. This difference is generally lower in amplitude than that

between the original reconstruction and the real pressure distribution caused by systematic error, but it serves

as a first estimation of that difference. Adding this difference to the original reconstruction yields an updated

approximation of the real pressure distribution:

dpupdate,n = prec + (prec − pit,n) (8)

This procedure can be repeated until (prec − pit,n) falls below a chosen threshold. Fig. 14 shows how the input

load is well recovered after only few iterations for modelled, noise free data. For the shown case, the second

iteration result is already well converged and much closer to the input distribution, with an improvement from

ca. 15% average error to below 6%. Similar results were found for the other investigated PRW sizes.

An application to experimental data is more challenging. Each iteration tends to amplify noise patterns in pres-

sure maps from both random and systematic error sources. Reconstructions from smoothed slope maps mitigate

this issue, but suffer from a reduced number of available data points. Note that for each iteration, the size of

one smoothing window, i.e. 6 σα, plus half a PRW of data points is lost around the edges (see also section

3.5). Here, this can be mitigated by using reconstructions with small slope smoothing kernels and by calculating

circumferential averages from the stagnation point outwards, thus averaging out some of the random noise. These

are then extrapolated to 2D distributions to obtain a suitable input for the finite element updating procedure.

The entire process is applied to both numerical and experimental data, allowing for a comparison of the results

and thus further assessment of the influence of systematic experimental errors.

To select the correct reconstruction parameters for this approach, the accuracy assessment was repeated using

circumferential averages instead of the entire field of view. The results vary, because low amplitude pressures are

now averaged over a larger number of data points. Further, part of the field of view with low pressure amplitude

Fig. 14: FE corrected results for noise free model data.
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is not taken into account as it is rectangular. The result is shown in fig. 15. Fig. 16 shows the results for itera-

tions of experimental data and noisy model data. A 10% error bar corresponding to the estimated uncertainty

resulting from the material’s Young’s modulus is shown for the iterations on experimental data at the positions of

transducers for comparison. Fig. 16a shows that for σα = 3 and PRW = 28 the peak amplitude from transducer

measurements is approximated to about 10% after 2 iterations of the experimental data. Since slope smoothing

leads to a significant loss in data points, no further iterations are possible for this case. The corresponding nu-

merical case, see fig. 16b, shows a close approximation of the input load.

For experimental data and σα = 0 and PRW = 34, see fig. 16c, the influence of noise patterns becomes visible.

These patterns are amplified by the correction procedure. Numerical data show a very good approximation of

the input load, whereas experimental VFM data deviate from transducer data by ca. 10% after correction.

For σα = 0 and PRW = 22, see fig. 16e, noise effects in experimental data are significant. Therefore, regularisa-

tion is necessary before iterating the results. Here, a fourth order polynomial was fitted to the averaged results.

The iterated corrections once again approximate the transducer data to within ca. 10% of the peak amplitude.

Fig. 16f shows that for noisy model data an acceptable original estimation of the input amplitude is obtained.

The corresponding corrected pressure distribution overestimates the peak and low range pressure amplitudes of

the input distribution by ca. 5% of the peak amplitude. The in comparison to numerical data more pronounced

noise patterns in experimental data (see also figs. 11b and 12b) were found to stem not only from random but

also from systematic error sources (see section 4). They may also be the reason for the large difference between

experimental and numerical data in the initial reconstruction amplitude, here for PRW = 22 ca. 15%.

All iterations appear reasonably well converged after the second iteration. Notably, the difference in peak am-

plitude is reduced to around 10% or better for all investigated cases. The outcome depends on the prevalence

of noise patterns, which is more pronounced for small PRWs and small or no slope filters. However, larger re-

construction windows and filter kernels do not allow for many iterations since the loss of data points around the

edges increases with PRW size.
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Fig. 15: Error estimates for circumferentially averaged pressure reconstructions for varying slope filter kernel and
PRW size for 1 mm plate test and with grey level noise 0.95% of the dynamic range.
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(a) Iteration of experimental data, σα = 3 and PRW = 28. (b) Iteration of model data with noise, σα = 3 and PRW =
28.

(c) Iteration of experimental data, σα = 0 and PRW = 34. (d) Iteration of model data with noise, σα = 0 and PRW =
34.

(e) Iteration of experimental data, σα = 0 and PRW = 22. (f) Iteration of model data with noise, σα = 0 and PRW =
22.

Fig. 16: Finite element updating results. Error bars on VFM represent the estimated uncertainty resulting from
the material’s Young’s modulus. Error bars on transducer data represent both the systematic errors of the
equipment as well as the random error of the mean pressure value.
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7 Error Sources

The presented comparisons between real and simulated experiments have shown the influence of random noise

and processing parameters on the pressure reconstruction. Experimental random noise patterns were qualitatively

reproduced with the modelled data for all investigated cases. The presence of random noise was found to have a

significant impact on the reconstruction results. A systematic error in the processing method was found to result

in an underestimation of pressure amplitudes for noise-free model data. This error varies with the processing

parameters. Further, a systematic experimental error appears between reconstructed and transducer-measured

pressures. It was found that reconstructions from model data were consistently closer to the input data than the

experimental reconstructions were to pressure transducer data, which are an established measurement technique.

Based on the comparisons of numerical and experimental data shown in section 6, this error resulted in an

additional underestimation of approximately 10% of the peak amplitude.

There are several possible sources for this experimental error. Miscalibration, i.e. non-integer numbers of pixels

per pitch in the recorded grid, can lead to errors in the detected phases. It can be caused by misalignments

between camera sensor and printed grid. Even with careful arrangement, small deformations of the specimen

surface can cause misalignment issues. Note that these can also occur due to the deformations of the specimen

under the investigated (dynamic) load. Misalignment can particularly result in fringes which can lead to the

unexpected patterns observed in curvature maps in section 4. Irregularities and damages in the printed grid can

also result in errors during phase detection. The influence of these error sources on pressure amplitude is however

difficult to quantify. Another possible error source is wrong material parameter values, particularly the Young’s

modulus. The data information provided by the manufacturer gives a value of E = 74 GPa, but values between

47 GPa - 83 GPa are found for glass in the literature (e.g. [1, table 15.3]). 3- and 4-point bending tests on the

specimen yielded values between 69 GPa and 83 GPa before the sample broke. Note that the relationship between

Young’s modulus and plate stiffness matrix components, and thus pressure amplitudes (see eq. 4), is linear, i.e. a

10% higher value of E would increase all pressure amplitudes by 10%, compensating for the discrepancy observed

here. Deviations of the Poisson’s ratio from the manufacturer information would have a similar impact. Since

the plate stiffness matrix components are proportional to the third power of the plate thickness, errors in its

determination have a higher impact than is the case for the other material parameters. Several measurements

did however confirm the thickness values provided by the manufacturer. Assuming an error of 0.1% in the plate

thickness as worst case estimate, one obtains a 3% error in the pressure amplitude.

Also, the assumptions of negligibility of rigid body movement and out of plane displacement need to be considered.

LDV measurements on the frame holding the specimen showed no results above noise level, which corresponds

to 0.1 µm here. Rigid body movement can therefore be ruled out as a relevant error source. The effect of out

of plane displacements can be estimated based on the expected deflections, w, and the distance between grid

and specimen. A detailed derivation of this relationship is given in [12, chapter 2.1.2]. The resulting error on

curvature maps is κoop = w
hS

. The finite element simulations from section 5 showed that the deflections for the
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1 mm plate test can be expected to be smaller than 2 µm, which would correspond to an error in curvature of

κoop = 2 10−3 km−1. This worst-case estimate corresponds to an error of only 0.05% of the peak curvature

signal amplitude. Finally, the thin plate assumptions were tested using the finite element simulation introduced

in section 5.1. The chosen SHELL181 elements are suited for linear as well as for large rotation and large strain

nonlinear applications. This means that simulated slopes and curvatures could deviate from those calculated from

the deflections using thin plate assumptions (see e.g. [40]), if the latter were in fact not applicable. The simulated

and the calculated slopes and curvatures were compared to verify the validity of the assumptions. For the 1 mm

thick plate it was found that the difference was five orders of magnitude below the signal amplitude in case of

slopes and thee orders of magnitude in case of curvatures.

8 Limitations and Future Work

This study shows that it is possible to obtain full-field pressure measurements of the order of few O(100) Pa

amplitude with the described setup and processing technique. A number of experimental limitations were encoun-

tered from applying this method to low amplitude loads. Small grid pitches are required to provide the required

slope resolution. These require a very smooth and plane specular reflective specimen surface. Further decreasing

the grid pitch would require more camera pixels to investigate the same region of interest, as the phase detection

algorithm requires a minimum amount of pixels per pitch. Alternatively, the distance between grid and sample

could be increased, which would require a different lens to achieve the same magnification. Furthermore, the

specimen has to be stiff enough to provide a plane surface when mounted to avoid bias errors, but is required to

deform sufficiently to provide enough signal for the measurement technique. The issue of misalignment could be

addressed by using high precision components like micro stages with stepper motors to arrange camera, sample

and grid.

Another approach is the use of infrared instead of visible light for deflectometry, with heated grids as spatial

carrier [41]. Since infrared light has a longer wavelength than visible light, it allows achieving specular reflection

on specimens that do not have mirror-like but reasonably smooth surfaces with up to about 1.5 µm of RMS

roughness, like perspex and metal plates. However, available cameras are limited in terms of spatial and tempo-

ral resolutions. Further issues are the lack of an aperture ring and that the lenses required to achieve comparable

magnification are more expensive. An extension of the application of deflectometry to moderately curved surfaces

was presented recently [39]. This approach requires a calibration for deformation measurement. Furthermore, the

required depth of field is a restricting factor for the use of small grid pitches. A successful combination of de-

flectometry measurements on curved surfaces with VFM pressure reconstruction would be of great value, as it

would allow direct measurements on practically relevant surfaces like e.g. aerofoils, fuselages and ship hulls.

In future studies, the turbulent fluctuations that occur in many practical flows like the impinging jet used here

will be investigated. Typically they have pressure amplitudes of the order of few O(10) Pa and below. These

could not be resolved in this study. Preliminary analyses of time resolved data taken at 4 kHz show that this is in
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parts due to a systematic experimental error, which results in spatial distributions fluctuating at low frequency

and relatively high amplitude. The application of Fourier analyses and Dynamic Mode Decomposition (DMD)

are currently being investigated with promising first results. Dynamic full-field pressure reconstruction of turbu-

lent fluctuations are a continuous challenge for current experimental measurement techniques due to their low

amplitudes and small spatial scales, rendering the further development of the technique presented here highly

relevant.

Another currently investigated improvement involves employing the aforementioned higher resolution cameras

and smaller grid pitches to increase slope sensitivity and spatial resolution. This approach does not allow for

time resolved measurements due to frame rate limitations of high resolution cameras, but first tests using phase

averaging for periodic flows generated by synthetic jets are very promising.

Finally, the selection of virtual fields is an important factor in improving the quality of reconstructions. Particu-

larly higher order approaches in pressure identification are likely to reduce the systematic error.

9 Conclusion

This work presents a method for surface pressure reconstructions from slope measurements using a deflectometry

setup combined with the VFM. Experimental and numerical methods have been introduced to assess the pressure

reconstructions.

– Low amplitude pressure distributions were reconstructed from full-field slope measurements using the material

constitutive mechanical parameters.

– Experimental results are presented and compared for several reconstruction parameters and for two different

specimen.

– VFM pressure reconstructions were compared to pressure transducer measurements.

– Simulated experiments employing a finite element model and artificial grid deformation were used to assess

the uncertainty of the method.

– The numerical results were used to select optimal reconstruction parameters, taking into account experimen-

tally observed noise.

– A finite element correction procedure was proposed to mitigate the systematic error of VFM pressure recon-

structions.

– Error sources were discussed based on the findings of both the experimental and the simulated results.

A systematic processing error leading to an underestimation of the pressure amplitude was identified. Since the

shape of the distribution is still reconstructed well, it is possible to compensate for this error using the proposed

numerical approaches as long as noise patterns are not too pronounced. A systematic experimental error was

found to result in an additional underestimation of the pressure amplitude by ca. 10% more than simulated

reconstructions. Yet, the results stand out in terms of the low pressure amplitudes and the large number of data

points obtained.
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10 Data Provision

All relevant data produced in this study will be made available upon publication of this manuscript.
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