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Abstract—Beamspace channel estimation is indispensable for
millimeter-wave (mmWave) MIMO systems relying on lens an-
tenna arrays for achieving substantially increased data rates,
despite using a small number of radio-frequency (RF) chains.
However, most of the existing beamspace channel estimation
schemes have been designed for narrowband systems, while
the rather scarce wideband solutions tend to assume that the
sparse beamspace channel exhibits a common support in the
frequency domain, which has a limited validity owing to the
effect of beam squint caused by the wide bandwidth in practice.
In this paper, we investigate the wideband beamspace channel
estimation problem without the common support assumption.
Specifically, by exploiting the effect of beam squint, we first prove
that each path component of the wideband beamspace channel
exhibits a unique frequency-dependent sparse structure. Inspired
by this structure, we then propose a successive support detec-
tion (SSD)-based beamspace channel estimation scheme, which
successively estimates all the sparse path components following
the classical idea of successive interference cancellation (SIC).
For each path component, its support at different frequencies is
jointly estimated to improve the accuracy by utilizing the proved
sparse structure, and its influence is removed to estimate the
remaining path components. The performance analysis shows
that the proposed SSD-based scheme can accurately estimate the
wideband beamspace channel at a low complexity. Simulation
results verify that the proposed SSD-based scheme enjoys a
reduced pilot overhead, and yet achieves an improved channel
estimation accuracy.

Index Terms—MIMO, millimeter-wave, lens antenna array,
wideband beamspace channel estimation.

I. INTRODUCTION

M Illimeter-wave (mmWave) multiple-input multiple-
output (MIMO) working at 30-300 GHz has been
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recently recognized as a promising technique to substantially
increase the data rates of wireless communications [1], since
it can provide a very wide bandwidth (e.g., 2-5 GHz) [2].
However, in the conventional MIMO architecture working
at sub-6 GHz cellular frequencies, each antenna requires a
dedicated radio-frequency (RF) chain (including the digital-
to-analog/analog-to-digital converter, mixer, and so on) [3],
[4]. Employing this architecture in mmWave MIMO will lead
to unaffordable hardware cost and power consumption due to
the following two reasons [5]: 1) the number of antennas is
usually very large to compensate for the severe path loss (e.g.,
256 antennas may be used at mmWave frequencies instead of 8
antennas at cellular frequencies) [6]; 2) the power consumption
of the RF chain is high due to the increased sampling rate
(e.g., 250 mW/RF chain at mmWave frequencies, compared
to 30 mW/RF chain at cellular frequencies) [7]. To solve this
problem, mmWave MIMO relying on lens antenna array has
been proposed [8]. By employing the lens antenna array (an
electromagnetic lens with power focusing capability and a
matching antenna array with elements located on the focal
surface of the lens [9]), we can focus the signal power
arriving from different directions on different antennas [10],
and transform the mmWave MIMO channel from the spatial
domain to its sparse beamspace representation (i.e., beamspace
channel) [11]. This allows us to select a small number of
power-focused beams for significantly reducing the effective
MIMO dimension and the associated number of RF chains.
Consequently, the high power consumption and hardware cost
of mmWave MIMO systems can be mitigated [12]–[14].

To select the power-focused beams, a high-dimensional
beamspace channel is required at the base station (BS). How-
ever, this is not a trivial task in mmWave MIMO systems
relying on lens antenna arrays, since the number of RF chains
is much smaller than the number of antennas so that we cannot
directly observe the complete channel in the baseband [15].
To circumvent this problem, some beamspace channel estima-
tion schemes have been proposed in [16]–[20]. For example,
in [16], a training-based scheme is proposed. It first scans all
the beams and only retains a few strong beams. Then, the
least squares (LS) algorithm is employed for estimating the
reduced-dimensional beamspace channel. In [17], a modified
version of [16] is proposed, where the overhead of beam
training is reduced by simultaneously scanning several beams
with the help of power splitters at the BS. In [18], a support
detection based scheme is proposed for further reducing the
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Fig. 1. Architecture of wideband mmWave MIMO-OFDM system relying on lens antenna array.

pilot overhead. It exploits the sparsity of the beamspace
channel to directly estimate the channel support (i.e., the index
set of nonzero elements in a sparse vector). However, all of
these schemes have been designed for narrowband systems,
while realistic mmWave MIMO systems are more likely to be
of wideband nature for achieving high data rates. For wideband
systems, there are only a few recent contributions. In [19],
a simultaneous orthogonal matching pursuit (SOMP)-based
scheme is proposed. It first regards the wideband beamspace
channel estimation problem as a multiple measurement vector
(MMV) problem associated with a common support (i.e.,
the channel support at different frequencies is assumed to
be the same), and then solves it by the SOMP algorithm.
In [20], an orthogonal matching pursuit (OMP)-based scheme
is proposed. It first estimates the support of the wideband
beamspace channel at some frequencies independently by the
OMP algorithm. Then, it combines them into the common
support at all frequencies. Unfortunately, the common support
assumption in [19], [20] has limited validity in the practical
wideband mmWave MIMO systems. As discussed in [21], the
combination of a wide bandwidth and a large number of an-
tennas will make the channel spreading factor defined in [21]
larger than one, and the effect of “beam squint” becomes more
obvious, where “beam squint” is used to imply that the indices
of the power-focused beams are frequency-dependent [22]. As
a result, the support of wideband beamspace channels also
tends to be frequency-dependent, and the existing wideband
solutions [19], [20] relying on the common support assumption
will suffer from an obvious performance loss in practice.

In this paper, inspired by the classical successive inter-
ference cancellation (SIC) conceived for multi-user signal
detection [23], we propose a successive support detection
(SSD)-based wideband beamspace channel estimation scheme
without the common support assumption. Specifically, the
contributions of this paper can be summarized as follows:

1) By exploiting the effect of beam squint, we first prove
that each path component of the wideband beamspace chan-
nel exhibits a unique frequency-dependent sparse structure.
Specifically, for each sparse path component, we demonstrate
that: i) its frequency-dependent support is uniquely determined
by its spatial direction at the carrier frequency; ii) this spatial
direction can be estimated by tentatively generating several
beamspace windows (BWins) to capture the path power.

2) Inspired by the idea of SIC, we propose to decompose the
wideband beamspace channel estimation problem into a series
of sub-problems, each of which only considers a single path
component. For each path component, its support observed at
different frequencies is estimated jointly to improve the accu-
racy by utilizing the proved sparse structure, and then its influ-
ence is removed to estimate the remaining path components.
The performance analysis shows that the proposed scheme can
accurately estimate the wideband beamspace channel at a low
complexity.

3) We provide extensive simulation results to verify the ad-
vantages of the proposed SSD-based scheme. We demonstrate
that our scheme achieves a satisfactory channel estimation
accuracy at a lower pilot overhead than the existing schemes.
We also show that our wideband scheme performs well in
narrowband systems.

The rest of the paper is organized as follows. In Section
II, the system model of wideband mmWave MIMO-OFDM
relying on lens antenna array is introduced, and the problem
of wideband beamspace channel estimation is formulated
when single-antenna users are considered. In Section III, the
proposed SSD-based scheme is specified, together with its
performance analysis. In Section IV, the proposed SSD-based
scheme is extended to the scenario with multiple-antenna
users. In Section V, our simulation results are provided to
verify the advantages of the proposed SSD-based scheme.
Finally, our conclusions are drawn in Section VI.

Notation: Lower-case and upper-case boldface letters a and
A denote a vector and a matrix, respectively; AT , AH , A−1,
and A† denote the transpose, conjugate transpose, inverse, and
pseudo inverse of matrix A, respectively; ∥A∥2 and ∥A∥F
denote the spectral norm and Frobenius norm of matrix A,
respectively; ∥a∥2 denotes the l2-norm of vector a; |a| denotes
the amplitude of scalar a; |S| denotes the cardinality of set S;
A (S, :) and A (:,S) denote the sub-matrices of A consisting
of the rows and columns indexed by S, respectively; a (S)
denotes the sub-vector of a indexed by S. Finally, IN is the
identity matrix of size N ×N .

II. SYSTEM MODEL

As shown in Fig. 1, we consider an uplink time division
duplexing (TDD) wideband mmWave MIMO-OFDM system
with M sub-carriers. The BS employs an N -element lens
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antenna array and NRF RF chains to simultaneously serve
K users. In this section, we assume that each user employs
single antenna, while in Section IV, multiple-antenna users
will be considered. Next, we will first introduce the wideband
beamspace channel. Then, the wideband beamspace channel
estimation problem will be formulated.

A. Wideband beamspace channel

We commence with the wideband mmWave MIMO channel
in the conventional spatial domain. To characterize the disper-
sive mmWave MIMO channel [24], we adopt the widely used
Saleh-Valenzuela multipath channel model presented in the
frequency domain. The N × 1 spatial channel hm of a certain
user at sub-carrier m (m = 1, 2, · · · ,M ) can be presented
as [4], [21], [25]

hm =

√
N

L

L∑
l=1

βle
−j2πτlfma (φl,m), (1)

where L is the number of resolvable paths, βl and τl are the
complex gain and the time delay of the l-th path, respectively,
φl,m is the spatial direction at sub-carrier m defined as

φl,m =
fm
c
d sin θl, (2)

where fm = fc +
fs
M

(
m− 1− M−1

2

)
is the frequency of

sub-carrier m with fc and fs representing the carrier fre-
quency and the bandwidth (sampling rate), respectively, c
is the speed of light, θl is the physical direction, and d
is the antenna spacing, which is usually designed accord-
ing to the carrier frequency as d = c/2fc [4]. Note that
in narrowband mmWave systems with fs ≪ fc, we have
fm ≈ fc, and φl,m ≈ 1

2 sin θl is frequency-independent. How-
ever, in wideband mmWave systems, fm ̸= fc, and φl,m is
frequency-dependent. Finally, a (φl,m) is the array response
vector of φl,m. For the typical N -element uniform linear
array (ULA), we have a (φl,m) = 1√

N
e−j2πφl,mpa , where

pa =
[
−N−1

2 ,−N+1
2 , · · · , N−1

2

]T
[4].

The spatial channel hm can be transformed to its beamspace
representation by employing the lens antenna array, as shown
in Fig. 1. Essentially, this lens antenna array plays the role of
an N ×N -element spatial discrete fourier transform (DFT)
matrix Ua

1, which contains the array response vectors of N
orthogonal directions (beams) covering the entire space as [8]

Ua = [a (φ̄1) ,a (φ̄2) , · · · ,a (φ̄N )], (3)

where φ̄n = 1
N

(
n− N+1

2

)
for n = 1, 2, · · · , N are the spatial

directions pre-defined by the lens antenna array. Accordingly,

1The reason why the lens antenna array realizes the spatial DFT can be
found in [10, Lemma 1]. Explicitly, it is shown that the power-focusing
capability of the lens relies on the spatial phase shifters on the lens’ aperture,
which usually cannot be adjusted according to different frequencies. As a
result, the response of the lens antenna array cannot be frequency-dependent
as in (1). However, we would like to surmise that it may be possible but rather
challenging to conceive a frequency-dependent lens antenna array capable of
compensating for the effect of beam squint. In this case, the proposed SSD-
based scheme can be further simplified to its narrowband version as we have
proposed in [18], since the beamspace channel at different sub-carriers will
have the common support.

the wideband beamspace channel h̃m at sub-carrier m can be
presented by

h̃m = UH
a hm =

√
N

L

L∑
l=1

βle
−j2πτlfm c̃l,m, (4)

where c̃l,m denotes the l-th path component at sub-carrier m
in the beamspace, and c̃l,m is determined by φl,m as

c̃l,m = UH
a a (φl,m) (5)

= [Ξ (φl,m−φ̄1) ,Ξ (φl,m−φ̄2) , · · · ,Ξ (φl,m−φ̄N )]
T
,

where Ξ (x) = sinNπx
sinπx is the Dirichlet sinc function [12].

Based on the power-focusing capability of Ξ (x) [12], [18],
we know that most of the power of c̃l,m is focused on only
a small number of elements. Additionally, due to the limited
scattering in mmWave systems, L is also small [24], [26].
Therefore, h̃m should be a sparse vector [27]. However, since
φl,m in (5) is frequency-dependent in wideband mmWave
systems (i.e., fm ̸= fc), the beam power distribution of the l-
th path component should be different at different sub-carriers,
i.e., c̃l,m1 ̸= c̃l,m2 for m1 ̸= m2. This effect is termed as
beam squint [21], which is a key difference between wideband
and narrowband systems. For example, when we consider a
narrowband system with θl = −π/4, N = 32, and fc = 28
GHz, the beam power distribution of the l-th path component
is shown by the black line in Fig. 2, which is fixed. By contrast,
when we extend this system to a wideband one with M = 128
and fs = 4 GHz, the beam power distributions of c̃l,1 and c̃l,M
are shown by the blue line and red line in Fig. 2, respectively.
We observe that c̃l,1 only has a single strong beam c̃l,1 (6),
while c̃l,M has 2 strong beams, namely c̃l,M (4) and c̃l,M (5),
which are different. Fig. 3 shows the effect of beam squint
from another perspective, where the parameters are the same
as in Fig. 2, and the curve indexed by n represents the power
variation of the nth element (beam) of c̃l,m over frequency. We
observe from Fig. 3 that in contrast to the narrowband systems
where the power of each beam is frequency-independent [18],
the power of each beam in wideband systems varies signifi-
cantly over frequency. Due to beam squint and the fact that
the beamspace channel is the summation of several resolvable
path components, we can conclude that the support of the
beamspace channel should be frequency-dependent, which is
different from the common support assumption considered in
the existing beamspace channel estimation schemes2.

B. Problem formulation

In TDD systems, the users are required to transmit pilot
sequences to the BS for uplink channel estimation, and the
channel is assumed to remain unchanged during this peri-
od [29], [30]. In this paper, we adopt the widely used or-
thogonal pilot transmission strategy, and therefore the channel
estimation invoked for each user is independent [31]. Let us
consider a specific user without loss of generality, and define
sm,q as its transmitted pilot at sub-carrier m and instant q (each

2It is worth pointing out that beam squint also exists in wideband mmWave
MIMO systems using the conventional phased arrays [28]. The proposed
channel estimation scheme in this paper can be also used in such systems.
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Fig. 2. Beam power distributions of the l-th path component in a narrowband
system and in a wideband system.
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user transmits one pilot per instant) before the M -point IFFT
and cyclic prefix (CP) adding [20]. Then, as shown in Fig. 1,
the NRF × 1 received pilot vector ym,q at the BS after receiver
combining (realized by the adaptive selection network [18]),
CP removal, and M -point FFT can be presented as [20]

ym,q = Wqh̃msm,q +Wqnm,q, m = 1, 2, · · · ,M, (6)

where Wq of size NRF ×N is the receiver combining matrix
(fixed at different sub-carriers due to the analog hardware
limitation [20]) and nm,q ∼ CN

(
0, σ2IN

)
of size N × 1 is

the noise vector with σ2 representing the noise power. After
Q instants of pilot transmission, we can obtain the overall
measurement vector ȳm =

[
yTm,1,y

T
m,2, · · · ,yTm,Q

]T
as

ȳm = W̄h̃m + neff
m , m = 1, 2, · · · ,M, (7)

where we assume sm,q=1 for q=1, 2, · · · , Q without loss
of generality [32], and define neff

m as the effective noise
vector. Furthermore, we define W̄ =

[
WT

1 ,W
T
2 , · · · ,WT

Q

]T
of size QNRF ×N as the overall combining matrix, which
is designed according to the hardware realization of the
adaptive selection network. For example, if the adaptive se-
lection network is realized by low-cost 1-bit phase shifters

as in [18]3, the elements of W̄ can be randomly selected
from the set 1√

QNRF
{−1,+1} with equal probability. Here

the normalization factor 1√
QNRF

is used for guaranteeing
that W̄ has unit-norm columns [34]. The reason we adopt
a randomly selected matrix is that it has been shown to
have a low mutual-column coherence, and therefore can be
expected to achieve a high recovery accuracy according to
well-established compressive sensing theory [35]. Finally, it
should be noted that hardware impairments are indeed imposed
on the adaptive selection network, leading to an element-wise
gain/phase offset in Wq , which cannot be fully captured in
the estimated channel. This is a common problem inherent in
most of the popular channel estimation schemes conceived for
hybrid analog and digital architectures [4], since the analog
modules (e.g., phase shifter network) are usually involved
in the channel estimation procedure. Fortunately, since the
gain/phase offsets are usually not serious in practice, the
channel estimation accuracy degradation caused by hardware
impairments will not be significant.

According to (7), we now can recover h̃m given ȳm and
W̄. Since h̃m is sparse, this problem can be solved relying
on compressive sensing (CS) algorithms with a significant-
ly reduced number of instants for pilot transmission (i.e.,
Q≪ (N/NRF)) [27], [36]. However, most of the existing
schemes using CS algorithms have been designed for nar-
rowband systems [16]–[18], while mmWave MIMO systems
are more likely to be of wideband nature for achieving
high data rates. For wideband systems, only the SOMP-
based scheme [19] and the OMP-based scheme [20] have
been proposed, but they assume that h̃1, h̃2, · · · , h̃M share
a common support, which is not strictly valid in practice due
to the effect of beam squint, as shown in Fig. 2 and Fig. 3 [21].

III. WIDEBAND BEAMSPACE CHANNEL ESTIMATION

In this section, we first explicitly demonstrate that the wide-
band beamspace channel exhibits a sparse structure. Then, we
propose an efficient SSD-based scheme. Finally, the associated
performance analysis is provided to quantify the advantages
of our scheme.

A. Sparse structure of wideband beamspace channel

As shown in Fig. 2 and Fig. 3, the common support
assumption is not strictly valid in practice due to the effect
of beam squint. Fortunately, the wideband beamspace channel
still exhibits a unique frequency-dependent sparse structure.
This will be proved by the following lemmas, which constitute
the basics of the proposed SSD-based scheme.

Lemma 1. Consider the l-th path component of the wideband
beamspace channel. The frequency-dependent support Tl,m
of c̃l,m for m = 1, 2, · · · ,M is uniquely determined by the

3It is worth pointing out that during data transmission, an adaptive selection
network relying on 1-bit phase shifters can also be configured to realize
conventional beam selection [12]. To achieve this, we can turn off some phase
shifters to realize “unselect” [33] and set some phase shifters to shift the phase
0◦ to realize “select”.
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spatial direction φl,c of the l-th path at the carrier frequency
fc, which is defined as φl,c = (fc/c) d sin θl = (1/2) sin θl.

Proof: Based on the analysis in [18], the index of the
strongest element n⋆l,m of c̃l,m is determined by φl,m as

n⋆l,m = argmin
n

|φl,m − φ̄n| , (8)

where φ̄n is defined in (3). Then, the support of c̃l,m can be
obtained by

Tl,m = ΘN
{
n⋆l,m − Ω, · · ·n⋆l,m +Ω

}
, (9)

where ΘN (x) = modN (x− 1) + 1 is the mod function guar-
anteeing that all elements in Tl,m belong to {1, 2, · · · , N}, and
Ω determines how much power can be preserved by assuming
that c̃l,m is a sparse vector with support Tl,m. For example,
when N = 256 and Ω = 4, at least 96% of the power can be
preserved [18]. The reasonable nature of (9) can be explained
as follows. In practice, φl,m is arbitrary, which is usually
different from the pre-defined beam directions φ̄1, φ̄2, · · · φ̄N .
In this case, the power of c̃l,m will be distributed across several
beams. According to the properties of Ξ (x) in c̃l,m, Ξ (x) is
larger when x is closer to 0, and we know that the indices of
these power-focused beams should be adjacent. The detailed
proof can be found in [18, Lemma 2].

On the other hand, based on (2) and the definition of φl,c,
φl,m can be rewritten following [21] as

φl,m =

{
1 +

fs
Mfc

(
m− 1− M − 1

2

)}
φl,c, (10)

which is only determined by φl,c (M , fc, fs are given system
parameters). As a result, once φl,c is known, the support Tl,m
of c̃l,m for m = 1, 2, · · · ,M can be obtained based on (8)
and (9).

Lemma 1 implies that φl,c is a crucial parameter for deter-
mining Tl,m for m = 1, 2, · · · ,M . In the following Lemma
2, we will provide some insights about how to estimate φl,c.

Lemma 2. Let us define Cn = [c̃l,1, c̃l,2, · · · , c̃l,M ], where we
assume φl,c = φ̄n. Then, the power of the s-th row Cn (s, :)
of Cn can be calculated as

∥Cn (s, :)∥22 =
M

αn

∫ αn
2

−αn
2

Ξ2

(
n− s

N
+∆φ

)
d∆φ, (11)

where αn = fsφ̄n/fc. Moreover, if we define a beamspace
window (BWin) Υn=ΘN {n−∆n, · · · , n+∆n} centered
around n, the ratio γ between the power of the sub-matrix
Cn (Υn, :) and the power of Cn can be presented as

γ=
∥Cn (Υn, :)∥2F

∥Cn∥2F
=

1

αn

∆n∑
i=−∆n

∫ αn
2

−αn
2

Ξ2

(
i

N
+∆φ

)
d∆φ.

(12)

Proof: Based on (5), the power of the s-th row Cn (s, :) of
Cn can be calculated as

∥Cn (s, :)∥22 =
M∑
m=1

Ξ2 (φl,m − φ̄s). (13)
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Defining ∆φm =
fsφl,c

Mfc

(
m− 1− M−1

2

)
, we can rewrite (13)

based on (10) as

∥Cn (s, :)∥22 =
M∑
m=1

Ξ2 (φl,c +∆φm − φ̄s)

(a)
=

M∑
m=1

Ξ2

(
n− s

N
+∆φm

)
, (14)

where (a) is valid since φl,c = φ̄n. Note that M is usually a
large number (e.g., M = 512). Therefore, ∆φm is small and
the summation in (14) can be well-approximated by its integral
form as

∥Cn (s, :)∥22 =
M

αn

∫ αn
2

−αn
2

Ξ2

(
n− s

N
+∆φ

)
d∆φ, (15)

where the integral interval is determined by ∆φ1 and ∆φM
with M−1

M ≈ 1. Furthermore, based on (15), the power of
Cn (Υn, :) can be written as

∥Cn (Υn, :)∥2F =
M

αn

∑
i∈Υn

∫ αn
2

−αn
2

Ξ2

(
n−i
N

+∆φ

)
d∆φ (16)

(a)
=
M

αn

∆n∑
i=−∆n

∫ αn
2

−αn
2

Ξ2

(
i

N
+∆φ

)
d∆φ,

where (a) is due to the fact that Υn is centered around n. On
the other hand, since

∑N
s=1 Ξ

2 (φl,m−φ̄s)=1, the total power
of ∥Cn∥2F is M . Then, the conclusions can be derived.

According to Lemma 2, we observe that if φl,c = φ̄n,
the most power of Cn can be captured by a carefully de-
signed BWin Υn centered around n. For example, given
N = 256, fc = 28 GHz, fs = 4 GHz, φl,c = φ̄1, we can
capture γ ≈ 92% of the power of C1 by using the BWin
Υ1 = Θ256 {1− 8, · · · , 1 + 8} (∆1 = 8). On the other hand,
if φl,c ̸= φ̄1, e.g., φl,c = φ̄10, using Υ1 to capture the power
of C10 will lead to serious power leakage, where we only
have γ ≈ 47%. This observation is further illustrated in Fig.
4 (a) and (b). Therefore, we can conclude that the BWin Υn
centered around n can be considered as a feature specialized
for φl,c = φ̄n, which can be exploited for estimating φl,c.
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The next problem is how to design ∆n in the Bwin Υn. Note
that our target is to estimate φl,c by using different BWins to
capture the power of the l-th path component4, and we assume
that φl,c belongs to the set {φ̄1, φ̄2, · · · , φ̄N} pre-defined by
the lens antenna array (the corresponding quantization error is
negligible when N is large, e.g., N = 256 [8]). For the specific
case where φl,c = φ̄n (i.e., Cn = [c̃l,1, c̃l,2, · · · , c̃l,M ]), φl,c
can only be correctly estimated when the following condition
is satisfied

∥Cn (Υn, :)∥2F > max
n′ ̸=n

(
∥Cn (Υn′ , :)∥2F

)
. (17)

In practice, Cn may be corrupted by interference or noise. To
overcome this problem, Υn should be designed to capture the
power Cn as much as possible, which is formulated as

Υ∗
n = argmax

Υn

∥Cn (Υn, :)∥2F , (18)

while Υn′ for n′ ̸= n should be designed to capture the power
of Cn as little as possible, leading to

Υ∗
n′ = argmin

Υn′

∥Cn (Υn′ , :)∥2F . (19)

Upon considering all the cases φl,c = φ̄1, φ̄2, · · · , φ̄N and col-
lecting the optimization problems related to Υn, we conclude
that Υn should be designed to optimize the following problem

max
∆n

(
∥Cn (Υn, :)∥2F −max

n′ ̸=n
∥Cn′ (Υn, :)∥2F

)
, (20)

where Cn′ is constructed with φl,c = φ̄n′ , and we replace
the optimization variable Υn by ∆n, since designing Υn
is equivalent to designing ∆n. Due to the power-focusing
capability of Ξ (x), we know that ∥Cn′ (Υn, :)∥2F will be
larger, if n′ is closer to n. Therefore, the inner maximization
in (20) can be presented as5

max
n′ ̸=n

∥Cn′ (Υn, :)∥2F =
∥∥CΘN (n+1) (Υn, :)

∥∥2
F
. (21)

Based on (21) and Lemma 2, the target to maximize in (20)
can be rewritten as

∥Cn (Υn, :)∥2F −
∥∥CΘN (n+1) (Υn, :)

∥∥2
F

(22)

(a)
≈ M

αn

∆n∑
s=−∆n

∫ αn
2

−αn
2

(
Ξ2
( s
N

+∆φ
)
−Ξ2

(
s+1

N
+∆φ

))
d∆φ

(b)
=
M

αn

∫ αn
2

−αn
2

(
Ξ2

(
−∆n

N
+∆φ

)
−Ξ2

(
∆n+1

N
+∆φ

))
d∆φ

(c)
=
M

αn

∫ αn
2

−αn
2

(
Ξ2

(
∆n

N
+∆φ

)
−Ξ2

(
∆n+1

N
+∆φ

))
d∆φ,

where (a) is reasonable since φ̄ΘN (n+1) ≈ φ̄n and
αΘN (n+1) ≈ αn with large N , (b) is obtained by exchanging
the orders of integral and summation, and (c) is true due to
the fact that Ξ2 (x) = Ξ2 (−x).

4Note that the method described above is heuristic. In Section V, we will
verify that this method is simple and efficient. Designing the optimal method
to estimate φl,c is also interesting, which will be left for our future work.

5It can be also written as max
n′ ̸=n

∥Cn′ (Υn, :)∥2F =
∥∥CΘN (n−1) (Υn, :)

∥∥2
F

,

and the final results will be the same.
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Fig. 5. Relationship between the target in (20) and ∆n when N = 256,
M = 128, fc = 28 GHz, and fs = 4 GHz.

From (22), we know that the optimal ∆n should
make the degradation from

∫ αn
2

−αn
2
Ξ2
(
∆n

N +∆φ
)
d∆φ to∫ αn

2

−αn
2
Ξ2
(
∆n+1
N +∆φ

)
d∆φ the largest. Based on the power-

focusing capability of Ξ (x), we can conclude that if the
integral includes Ξ2 (0), it will be a large value. Otherwise,
it should be small. An example is shown in Fig. 4 (c).
Since ∥C3 (2, :)∥22 = M

α3

∫ α3
2

−α3
2

Ξ2
(

1
N +∆φ

)
d∆φ includes

Ξ2 (0), while ∥C3 (1, :)∥22 = M
α3

∫ α3
2

−α3
2

Ξ2
(

2
N +∆φ

)
d∆φ

does not, ∥C3 (2, :)∥22 is much lager than ∥C3 (1, :)∥22.
This means that the largest degradation will happen
when

∫ αn
2

−αn
2
Ξ2
(
∆n

N +∆φ
)
d∆φ includes Ξ2 (0), while∫ αn

2

−αn
2
Ξ2
(
∆n+1
N +∆φ

)
d∆φ does not. In other words, ∆n

should satisfy⌊
∆n

N
− |αn|

2

⌋
=

⌊
∆n

N
− fs |φ̄n|

2fc

⌋
= 0, (23)

where ⌊x⌋ returns the largest integer smaller than x. It indi-
cates that the optimal ∆n is

∆n =

⌊
Nfs |φ̄n|

2fc

⌋
. (24)

Note that the optimal ∆n has the similar form to the channel
spreading factor defined in [21], which is utilized to quantify
the severity of beam squint. However, they are actually two d-
ifferent parameters designed for different purposes and derived
in different ways.

In Fig. 5, we plot the relationship between the target in (20)
and ∆n when N = 256, M = 128, fc = 28 GHz, and fs = 4
GHz. We observe from Fig. 5 that the ∆n in (24) satisfies
the requirement above and can be expected to achieve a good
performance. Moreover, Fig. 5 also shows that the derived
∆n varies with different φl,c values (leading to different Cn

as defined in Lemma 2). The reason for this is that different
φl,c values incur different degrees of power leakage due to
beam squit. Therefore, we have to change ∆n to make sure
that we can always capture most of the power of Cn.
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Input:
Measurement matrix: Ȳ
Combining matrix: W̄
Total number of channel paths: L
Initialization: R = Ȳ
for 1 ≤ l ≤ L

1. Υn=ΘN {n−∆n, · · · , n+∆n}, ∆n =
⌊
Nfs|φ̄n|

2fc

⌋
2. Al = W̄HR

3. n⋆l,c = argmax
n

∥Al(Υn,:)∥2
F

|Υn|
4. φl,c = φ̄n⋆

l,c

for 1 ≤ m ≤M

5. φl,m =
{
1 + fs

Mfc

(
m− 1− M−1

2

)}
φl,c

6. n⋆l,m = argmin
n

|φl,m − φ̄n|

7. Tl,m = ΘN

{
n⋆l,m − Ω, · · ·n⋆l,m +Ω

}
8. c̃l,m = 0N×1, c̃l,m (Tl,m) = W̄† (:, Tl,m) rm
9. rm = rm − W̄ (:, Tl,m) c̃l,m (Tl,m)

end for
end for
for 1 ≤ m ≤M
10. T̃m = T1,m ∪ T2,m ∪ · · · ∪ TL,m
11. h̃m = 0N×1, h̃m

(
T̃m
)
= W̄†

(
:, T̃m

)
ȳm

end for
Output:
Estimated beamspace channel: H̃ =

[
h̃1, h̃2, · · · , h̃M

]
Algorithm 1: SSD-based wideband beamspace channel
estimation scheme.

B. Proposed SSD-based scheme

Based on the sparse structure proved above, we propose
an efficient SSD-based scheme to estimate the wideband
beamspace channel. Its key idea is to decompose the total
channel estimation problem into a series of sub-problems,
each of which only considers a single path component. We
first estimate the support of the strongest path component
at all sub-carriers jointly. Then, its influence is removed
for estimating the second strongest path component. This
procedure is repeated until all path components have been
considered.

To realize it, we first rewrite (7) as

Ȳ = W̄H̃+N, (25)

where Ȳ = [ȳ1, ȳ2, · · · , ȳM ], H̃ =
[
h̃1, h̃2, · · · , h̃M

]
, and

N =
[
neff
1 ,neff

2 , · · · ,neff
M

]
. Then, the pseudo-code of the pro-

posed SSD-based scheme can be summarized in Algorithm 1
and discussed as follows.

For the initialization, we set R=[r1, r2 · · · , rM ]=Ȳ,
where rm denotes the residual at sub-carrier m.

For the l-th path component, we first estimate φl,c based
on Lemma 2. Specifically, in step 1, we generate N BWins
Υn = ΘN {n−∆n, · · · , n+∆n} with ∆n =

⌊
Nfs|φ̄n|

2fc

⌋
for

n = 1, 2, · · · , N . Then, in step 2, we calculate the correlation
matrix Al between W̄ and R as Al = W̄HR. Based on the
low mutual coherence property of W̄ (i.e., W̄HW̄ ≈ IN ) as
in the classical OMP or SOMP algorithms [35], in step 3,
we can utilize the N BWins to capture the power of Al, and

obtain the index n⋆l,c of the spatial direction of the l-th path
component at the carrier frequency fc as

n⋆l,c = argmax
n

∥Al (Υn, :)∥2F
|Υn|

, (26)

where we divide ∥Al (Υn, :)∥2F by |Υn| = 2∆n + 1 to avoid
that the large BWin captures more noise power. Finally, in
step 4, φl,c is estimated as φl,c = φ̄n⋆

l,c
.

After φl,c has been estimated, the frequency-dependent
support Tl,m of the l-th path component for m = 1, 2, · · · ,M
can be obtained by Lemma 1. Specifically, in steps 5 and 6,
we compute the spatial direction φl,m and the index n⋆l,m of
the strongest element at sub-carrier m based on (10) and (8).
Then, in step 7, Tl,m can be obtained based on (9).

After the support estimation, we remove the influence
of the l-th path component to estimate the remaining path
components. Specifically, in step 8, based on Tl,m, we estimate
the nonzero elements of the l-th path component c̃l,m at sub-
carrier m by the LS algorithm. Then, its influence is removed
in step 9 by

rm = rm − W̄ (:, Tl,m) c̃l,m (Tl,m) . (27)

The procedure above will then be repeated until the supports
of all path components have been estimated. In the end, we
estimate h̃1, h̃2, · · · , h̃M independently. Specifically, in step
10, we formulate the complete support T̃m of h̃m as

T̃m = T1,m ∪ T2,m ∪ · · · ∪ TL,m. (28)

Then, in step 11, the nonzero elements of h̃m are estimated
by the LS algorithm.

Note that the key difference between our scheme and the
conventional schemes is the support detection. For exam-
ple, for the OMP-based scheme, the support of wideband
beamspace channel at different sub-carriers is estimated in-
dependently [20], which is vulnerable to noise. As a result,
the detected support may be inaccurate, especially in the low
SNR region [35]. For the SOMP-based scheme, the support at
different sub-carriers is estimated jointly, but it assumes the
common support [19]. Due to the effect of beam squint, this
assumption will lead to serious performance loss, especially in
the high SNR region. By contrast, in our scheme, we jointly
recover the support without the common support assumption.
By fully exploiting the frequency-dependent sparse structure
of wideband beamspace channel, our scheme can be expected
to achieve a higher accuracy. These conclusions will be further
verified in Section V by simulation results.

In the end of this sub-section, we would like to point out that
in the proposed SSD-based scheme, we assume that the num-
ber of resolvable paths L is known in advance. A suggested
L can be obtained in advance by channel measurements [24].
For example, a measurement campaign carried out in New
York City has shown that the average number of resolvable
paths in a 28 GHz propagation environment is 6.8 with a
standard deviation of 2.2. Therefore we can set L = 9 in this
case ignoring the low-probability cases of having L > 9. In
practice, the actual number of resolvable paths should be a
little lower than L, but this will not significantly affect the
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performance of the proposed SSD-based scheme. Moreover, it
is worth pointing out that the prior knowledge of L is not
a necessary condition for our scheme. When L cannot be
obtained in advance, we can borrow the idea of the classical
OMP and SOMP algorithms, and run the proposed SSD-based
scheme several times [36]. Specifically, during the t-th run
(t = 1, 2, · · ·), we set L = t, and define the channel estimation

update as 1
MN

∥∥∥H̃(t) − H̃(t−1)
∥∥∥2
F

, where H̃(t−1) and H̃(t)

represent the previous estimated channel at the (t− 1)-th run
and the current estimated channel at the t-th run, respectively.
If the update is smaller than a threshold ζ (e.g., ζ = 0.1), then
we will terminate the procedure. In Section V, we will verify
that by utilizing this method, the proposed SSD-based scheme
can still achieve a satisfactory accuracy without the knowledge
of L.

C. Performance analysis

In this sub-section, we will prove that the proposed SSD-
based scheme is capable of correctly estimating the key
parameters φl,c for l = 1, 2, · · · , L with a certain probability.

To do this, we first rewrite H̃ in (25) as H̃ = TZ. Here,
we define Z of size

∑N
n=1 |Υn| ×M as an enlarged version

of H̃, which can be presented as Z =
[
ZH1 ,Z

H
2 , · · · ,ZHN

]H
with

Zn =

{
H̃ (Υn, :) , if n ∈ {n1, n2, · · · , nL} ,
0|Υn|×M , if n /∈ {n1, n2, · · · , nL} ,

(29)

and H̃ (Υnl
, :) = βlCnl

(Υnl
, :). Here, for the l-th path com-

ponent, we assume that φl,c = φ̄nl
and that all its power can

be captured by Cnl
(Υnl

, :) (this assumption only leads to a
negligible performance loss, as we have proved in Lemma
2). Correspondingly, T of size N ×

∑N
n=1 |Υn| is the trans-

formation matrix. More specifically, T can be presented as
T = [T1,T2, · · · ,TN ], where Tn is of size N × |Υn| and
its i-th column (i = 1, 2, · · · , |Υn|) only has a single nonzero
element 1 at the location Υn (i) with Υn (i) representing
the i-th element selected from the set Υn. By utilizing this
transformation, we can transfer each path component in H̃ to
a specific block in Z, as illustrated in Fig. 6, where different
blocks are non-overlapping.

According to the definitions of Z and T, we can rewrite (25)
as

Ȳ =
[
W̄ (:,Υ1) ,W̄ (:,Υ2) , · · · ,W̄ (:,ΥN )

]
Z+N. (30)

Then, the key matrix Al (Υn, :) used for estimating φl,c (i.e.,
step 2 of Algorithm 1) can be presented as

Al (Υn, :) (31)

= W̄H (:,Υn) Ȳ

= W̄H (:,Υn)N+
∑N

i=1
W̄H (:,Υn)W̄

H (:,Υi)Zi.

Next, we define a pair of auxiliary parameters µ and µB as

µ
∆
= max

1≤n≤N
max

i,j∈Υn,i̸=j

∣∣W̄H (:, i)W̄ (:, j)
∣∣ , (32)

Block 1

Block 2

Block 3

Block 4
H

Z

Fig. 6. Transformation from H̃ to Z.

and

µB
∆
= max

1≤i,j≤N,i ̸=j

1√
|Υi| |Υj |

∥∥W̄H (:,Υi)W̄ (:,Υj)
∥∥
2
,

(33)
respectively. Note that µ is exactly the same as the sub-
coherence of the dictionary W̄ in compress sensing theo-
ry [37], while µB can be regarded as a generalized version
of the block coherence introduced in [37].

Then, based on the discussion above, we have the following
Lemma 3.

Lemma 3. For the l-th path component, assume that
φl,c = φ̄nl

and that

(1− (|Υnl
| − 1)µ− µB |Υnl

|)√
|Υnl

|
|βl| ∥Cnl

(Υnl
, :)∥F (34)

≥ 2σ
√
αM + 2µB

∑
ni∈L\nl

√
|Υni | |βi| ∥Cni (Υni , :)∥F

for some constant α, where L = {n1, n2, · · · , nL}. Then, with
a probability exceeding∏N

n=1

(
1− 0.8 |Υn|α|Υn|/2−1e−α/2

)
, (35)

the proposed SSD-based scheme can correctly estimate φl,c.

Proof: To prove Lemma 3, we first list two useful lemmas,
which have been proved in [38].

Lemma 4. Let u be a Gaussian random vector of size d× 1.
Assuming that u has a mean of 0 and a covariance of Id, we
have

Pr
{
∥u∥22 ≥ t2

}
≤ 0.8dtd−2e−t

2/2. (36)

Proof: Please refer to [38, Lemma 4].

Lemma 5. Let v1,v2, · · · ,vM be M jointly Gaussian random
vectors. Let us assume that E (vm) = 0 for m = 1, 2, · · · ,M ,
but that the covariances of the vectors are unspecified and that
the vectors are not necessarily independent. Then, we have

Pr {∥v1∥2 ≤ c1, ∥v2∥2 ≤ c2, · · · , ∥vM∥2 ≤ cM} (37)

≥
∏M

m=1
Pr {∥vm∥2 ≤ cm}.

Proof: Please refer to [38, Lemma 3].
Based on Lemma 4 and Lemma 5, we have the following

Lemma 6.

Lemma 6. Let us assume that each column neff
m of N in (25)

is a Gaussian random vector of size QNRF × 1 with a mean
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of 0 and a covariance of σ2IQNRF . Then, we have

Pr
(∥∥W̄H (:,Υn)n

eff
m

∥∥2
2
≤τ2n

)
≥1−0.8 |Υn|α|Υn|/2−1e−α/2,

(38)
where we define

τ2n = σ2 (1+ (|Υn| − 1)µ)α, (39)

and α is a constant value introduced to guarantee that
0.8 |Υn|α|Υn|/2−1e−α/2 ≤ 1 for n = 1, 2, · · · , N .

Proof: Note that W̄H (:,Υn)n
eff
m is also a Gaussian

random vector with a mean of 0 and a covariance of
σ2W̄H (:,Υn)W̄ (:,Υn). Let us now define a auxiliary vector
u as

u
∆
=

1

σ

(
W̄H (:,Υn)W̄ (:,Υn)

)− 1
2W̄H (:,Υn)n

eff
m . (40)

We know that u should be a Gaussian random vector of size
|Υn| × 1 with a mean of 0 and a covariance of I|Υn|. As a
result, we have

Pr
{∥∥W̄H (:,Υn)n

eff
m

∥∥2
2
≤ τ2n

}
(41)

= Pr

{
σ2
∥∥∥(W̄H (:,Υn)W̄ (:,Υn)

) 1
2u
∥∥∥2
2
≤ τ2n

}
(a)

≥ Pr
{
σ2
∥∥(W̄H (:,Υn)W̄ (:,Υn)

)∥∥
2
∥u∥22 ≤ τ2n

}
,

where (a) is due to the spectral norm property of a matrix [39].
Note that all the diagonal elements of W̄H (:,Υn)W̄ (:,Υn)
are equal to 1, while all the off-diagonal elements of
W̄H (:,Υn)W̄ (:,Υn) have amplitudes smaller than µ ac-
cording to the definition in (32). Therefore, by the Gersh-
gorin circle theorem [39], we know that the largest singular
value of W̄H (:,Υn)W̄ (:,Υn) should be upper-bounded by
1 + (|Υn| − 1)µ, which means that∥∥(W̄H (:,Υn)W̄ (:,Υn)

)∥∥
2
≤ 1 + (|Υn| − 1)µ. (42)

Correspondingly, we have

Pr
{∥∥W̄H (:,Υn)n

eff
m

∥∥2
2
≤ τ2n

}
(43)

≥ Pr

{
∥u∥22 ≤ τ2n

σ2 (1 + (|Υn| − 1)µ)

}
.

According to the definition of τ2n in (39), the right side of (43)
can be rewritten as

Pr

{
∥u∥22≤

τ2n
σ2 (1+(|Υn|−1)µ)

}
=Pr

{
∥u∥22 ≤ α

}
. (44)

Based on Lemma 4, we can conclude that

Pr
(∥∥W̄H (:,Υn)n

eff
m

∥∥2
2
≤ τ2n

)
(45)

≥ 1− Pr
{
∥u∥22 ≥ α

}
= 1− 0.8 |Υn|α|Υn|/2−1e−α/2.

which completes the proof.
Next, we continue the proof of Lemma 3. For the l-th path

component, φl,c can only be correctly estimated if

∥Al (Υnl
, :)∥F√

|Υnl
|

≥ max
n/∈L

∥Al (Υn, :)∥F√
|Υn|

, (46)

where Al (Υn, :) is given by (31). Let us consider a specific
event

B =
{∥∥W̄H (:,Υn)n

eff
m

∥∥2
2
≤ τ2n, n = 1, 2, · · · , N

}
. (47)

Based on Lemma 5 and Lemma 6, we know that event B
will occur with a probability exceeding (35). When it occurs,
the right side of (46) can be upper-bounded by

max
n/∈L

∥Al (Υn, :)∥F√
|Υn|

(48)

= max
n/∈L

∥∥∥∥∥W̄H (:,Υn)N+
∑
ni∈L

W̄H (:,Υn)W̄ (:,Υni)Zni

∥∥∥∥∥
F√

|Υn|

≤ max
n/∈L

∥∥W̄H (:,Υn)N
∥∥
F√

|Υn|

+max
n/∈L

∑
ni∈L

∥∥W̄H (:,Υn)W̄ (:,Υni)
∥∥
2
∥Zni∥F√

|Υn|
.

Since N has M Gaussian random columns and event B
occurs, we know that∥∥W̄H (:,Υn)N

∥∥
F
≤

√
Mτn

(a)

≤ σ
√
αM |Υn|, (49)

where (a) is true due to the fact that µ ≤ 1. Combining this
result and the definition of µB in (33), (48) can be further
upper-bounded by

max
n/∈L

∥Al (Υn, :)∥F√
|Υn|

≤ σ
√
αM + µB

∑
ni∈L

√
|Υni |∥Zni∥F .

(50)
On the other hand, the left side of (46) can be lower-

bounded by

∥Al (Υnl
, :)∥F√

|Υnl
|

(51)

=

∥∥∥∥∥W̄H (:,Υnl
)N+

∑
ni∈L

W̄H (:,Υnl
)W̄ (:,Υni)Zni

∥∥∥∥∥
F√

|Υnl
|

≥ 1√
|Υnl

|
(∥∥W̄H (:,Υnl

)W̄ (:,Υnl
)Znl

∥∥
F
−
∥∥W̄H (:,Υnl

)N
∥∥
F

−

∥∥∥∥∥∥
∑

ni∈L\nl

W̄H (:,Υnl
)W̄ (:,Υni)Zni

∥∥∥∥∥∥
F

 .

Also according to the Gershgorin circle theorem as we have
used in Lemma 6, the first term of (51) can be lower-bounded
by∥∥W̄H (:,Υnl

)W̄ (:,Υnl
)Znl

∥∥
F√

|Υnl
|

≥ (1−(|Υnl
|−1)µ)√

|Υnl
|

∥Znl
∥F .

(52)
Since event B occurs, the second term of (51) is lower-
bounded by −σ

√
αM . Finally, similar to the manipulation

in (50), the third term of (51) can be lower-bounded by

−µB

(∑
ni∈L

√
|Υni |∥Zni∥F −

√
|Υnl

|∥Znl
∥F

)
. (53)
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Upon combining these results, we have

∥Al (Υnl
, :)∥F√

|Υnl
|

≥ (1−(|Υnl
| − 1)µ)√

|Υnl
|

∥Znl
∥F−σ

√
αM

(54)

−µB

(∑
ni∈L

√
|Υni|∥Zni∥F−

√
|Υnl

|∥Znl
∥F

)
.

Considering (50) and (54) together, we can conclude that when

(1− (|Υnl
| − 1)µ− µB |Υnl

|)√
|Υnl

|
∥Znl

∥F (55)

≥ 2σ
√
αM+2µB

∑
ni∈L\nl

√
|Υni |∥Zni∥F ,

φl,c can be correctly estimated with a probability exceed-
ing (35). Substituting the fact ∥Znl

∥F = |βl| ∥Cnl
(Υnl

, :)∥F
in (29) to (55), we can finally complete this proof.

Next, we give some insights of Lemma 3. From (35),
we observe that when α belongs to the feasible region
which makes 0 ≤

∏N
n=1

(
1− 0.8 |Υn|α|Υn|/2−1e−α/2

)
≤ 1,

the probability monotonically increases with the increased α.
In addition, when α is large enough, the term α|Υn|/2−1e−α/2

approaches 0, and the probability is close to 1. Based on these
facts, we can conclude from Lemma 3 that when the noise
power σ2 is large, the allowed α should be small when µ, µB ,
and the power of each path component |βi|2 ∥Cni (Υni , :)∥

2
F

(i = 1, 2, · · · , L) are given. Therefore, the probability of cor-
rectly estimating φl,c is low. Moreover, when the number
of instants Q for pilot transmission is large, W̄ of size
QNRF ×N can be expected to have lower µ and µB [35],
leading to a larger allowed α. As a result, the probability of
correctly estimating φl,c should be high.

The conclusions above are further verified by Fig. 7.
The simulation parameters of Fig. 7 are set as fol-
lows. We consider a wideband mmWave MIMO-OFDM
system with N = 256, fc = 28 GHz, fs = 4 GHz, and
M = 512. The channel is assumed to have L = 3 paths with
φ1,c = φ̄192 = 0.2480 (θ1 ≈ π/6), φ2,c = φ̄38 = −0.3535
(θ2 ≈ −π/4), and φ3,c = φ̄239 = 0.4316 (θ3 ≈ −π/3), and
all path components have the same normalized power
|βi|2 ∥Cni (Υni , :)∥

2
F =M (i = 1, 2, 3). Finally, we gener-

ate two overall combining matrices W̄. The first one with
µ = 0.0606 and µB = 0.0247 is obtained when Q = 16, while
the second one with µ = 0.0736 and µB = 0.0271 is obtained
when Q = 12. Fig. 7 shows the probability of correctly
estimating φ1,c, where we observe the trends consistent with
the conclusions of Lemma 3. Moreover, Fig. 7 also verifies
that the derived lower-bound in (35) is tight, especially when
the SNR is high.

In the end, we would like to point out that when the pilot
overhead Q is small (i.e., µ and µB in (34) are large), the
inequality in (34) may be meaningless (

√
α < 0), and the

lower-bound in (35) is unavailable. Although Q being small
is not the typical case for channel estimation, deriving the
universal result is still of great interest. We will try to solve
this challenging problem in our future work.
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Fig. 7. The probability of correctly estimating φ1,c.

D. Complexity analysis

In this subsection, we evaluate the complexity of the pro-
posed SSD-based scheme in terms of the number of complex
multiplications. According to Algorithm 1, we observe that
the complexity is dominated by steps 2, 3, 8, 9, 11.

In step 2, we need to compute the multiplication between
W̄H of size N ×QNRF and R of size QNRF ×M , which
has a complexity in order of O (NNRFMQ). In step 3,
the power of N sub-matrices Al (Υn, :) for n = 1, 2, · · · , N
is calculated. This can be solved by calculating the pow-
er of N rows of Al in advance, where the complexity
is in order of O (NM). In step 8, the pseudo inverse of
W̄ (:, Tl,m) of size QNRF × (2Ω + 1), and the multiplication
between W̄† (:, Tl,m) of size (2Ω + 1)×QNRF and rm of
size QNRF × 1 are required. Therefore, this step involves a
complexity in order of O

(
NRFQΩ2

)
. In step 9, we compute

the multiplication between W̄ (:, Tl,m) and c̃l,m (Tl,m) of size
(2Ω + 1)× 1 at a complexity in order of O (NRFQΩ). Finally,
in step 11, the LS algorithm is used again like in step 8,
where W̄

(
:, T̃m

)
is of size QNRF ×

∣∣∣T̃m∣∣∣ and ȳm is of size
QNRF × 1. As a result, this step has the complexity in order

of O
(
NRFQ

∣∣∣T̃m∣∣∣2), where
∣∣∣T̃m∣∣∣ ≤ L (2Ω + 1).

Note that steps 2, 3, 8, 9 are executed L times, and step
11 is executed only once. Therefore, the overall complexity of
the proposed SSD-based scheme can be summarized as

O (NML)+O
(
MNRFQLΩ

2
)
+O

(
MNRFQL

2Ω2
)
. (56)

By contrast, the complexity of both the OMP-
based and SOMP-based schemes can be presented as
O
(
MNRFQL

3Ω3
)
+O (NMNRFQLΩ) [19], [20].

Note that Ω is usually much smaller than N (e.g.,
Ω = 4 ≪ N = 256) as proved in [18], we can conclude
that the complexity of the proposed SSD-based scheme
is lower than that of the conventional OMP-based and
SOMP-based schemes.

IV. EXTENSION TO MULTIPLE-ANTENNA USERS

In this section, we will discuss how to extend the proposed
SSD-based scheme to the scenario where each user employs
an U -element lens antenna array like the BS.
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A. Problem formulation

In this case, the N × U spatial channel Hm between the
BS and a certain user at sub-carrier m can be presented as [4]

Hm =

√
NU

L

L∑
l=1

βle
−j2πτlfma (φl,m)bH (ψl,m), (57)

where ψl,m =
{
1 + fs

Mfc

(
m− 1− M−1

2

)}
ψl,c is the spa-

tial direction at the user side similar to φl,m in (2),
ψl,c =

1
2 sinϑl is the spatial direction at the carrier frequency

fc with ϑl representing the corresponding physical direc-
tion, and b (ψl,m) is the U × 1 array response vector of
ψl,m. For ULA, we have b (ψl,m) = 1√

U
e−j2πψl,mpb , where

pb =
[
−U−1

2 ,−U+1
2 , · · · , U−1

2

]T
.

Accordingly, the wideband beamspace channel H̃m to be
estimated can be presented by [40]

H̃m = UH
a HmUb, (58)

where Ub =
[
b
(
ψ̄1

)
,b
(
ψ̄2

)
, · · · ,b

(
ψ̄U
)]

is the U × U s-
patial DFT matrix realized by the lens antenna array at the
user side and ψ̄u = 1

U

(
u− U+1

2

)
for u = 1, 2, · · · , U are the

corresponding pre-defined spatial directions.
To estimate H̃m, we assume that each user uses only

a single RF chain (user is likely to use cheaper hardware
with lower power consumption than the BS [41]) to transmit
orthogonal pilot sequences in the uplink, and adopts the
adaptive selection network as shown in Fig. 1 for precoding
the pilot sequences. Then, similar to (6), the received pilot
vector ym,q for a certain user at sub-carrier m and instant q
can be written as

ym,q = WqH̃mfqsm,q+Wqnm,q, m = 1, 2, · · · ,M, (59)

where fq of size U × 1 is the precoding vector. Like Wq , fq
is also fixed at different sub-carriers, and its elements can be
randomly selected from the set {−1,+1} with equal proba-
bility if they are realized by low-cost 1-bit phase shifters as
in [18]. By assuming sm,q = 1 and exploiting the relationship
vec (ABC) =

(
CT ⊗A

)
vec (B) [15], we can rewrite (59)

as

ym,q=
(
fTq ⊗Wq

) ˜̃
hm+Wqnm,q, m = 1, 2, · · · ,M, (60)

where ⊗ denotes the Kronecker product, and ˜̃hm of size
NU × 1 is defined as ˜̃hm = vec

(
H̃m

)
.

After Q instants of pilot transmission, the overall measure-
ment vector ȳm =

[
yTm,1,y

T
m,2, · · · ,yTm,Q

]T similar to (7)
can be obtained as

ȳm = Φ̄˜̃hm + neff
m , m = 1, 2, · · · ,M, (61)

where Φ̄ of size QNRF ×NU is defined as

Φ̄=
[(
fT1 ⊗W1

)T
,
(
fT2 ⊗W2

)T
, · · · ,

(
fTQ⊗WQ

)T ]T
. (62)

1
f f= cf f= Mf f=

( ), ,
,l c l cj y

( ),1 ,1
,l lj y

( ), ,
,l M l Mj y

1,2, ,u U= , ,u U, ,

=

Fig. 8. Power distribution of the l-th path component c̃l,md̃H
l,m in the

frequency domain.
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B

Fig. 9. Illustration of dividing Bl into blocks when N = 4, U = 2, and
M = 3: a) U blocks B̂l,u for u = 1, 2; b)N blocks B̌l,n for n = 1, 2, 3, 4.

B. Extension of the proposed SSD-based scheme

To extend the proposed SSD-based scheme to the scenario
with multiple-antenna users, we first rewrite (58) based on (57)
as

H̃m =

√
NU

L

L∑
l=1

βle
−j2πτlfmUH

a a (φl,m)bH (ψl,m)Ub

=

√
NU

L

L∑
l=1

βle
−j2πτlfm c̃l,md̃Hl,m, (63)

where d̃l,m is determined by ψl,m as

d̃l,m = UH
b b (ψl,m) (64)

=
[
Ξ
(
ψl,m−ψ̄1

)
,Ξ
(
ψl,m−ψ̄2

)
, · · · ,Ξ

(
ψl,m−ψ̄U

)]T
.

From (63), we observe that the l-th path component
c̃l,md̃Hl,m of H̃m now should be a matrix exhibiting 2D
sparsity as shown in Fig. 8, whose power is focused on
a few rows and columns. Moreover, since d̃l,m shares the
same structure as c̃l,m, we can also derive the following
conclusions by extending Lemma 1 and Lemma 2: 1) the
row support Tl,m (the index set of power-focused rows) and
column support Sl,m (the index set of power-focused columns)
of c̃l,md̃Hl,m can be uniquely determined by φl,c and ψl,c, re-
spectively; 2) φl,c can be estimated by utilizing N row BWins
Υn = ΘN {n−∆n, · · ·n+∆n} with ∆n = ⌊Nfs |φ̄n| /2fc⌋
for n = 1, 2, · · · , N , while ψl,c can be estimated by
U column BWins Xu = ΘU {u−∆u, · · · , u+∆u} with
∆u =

⌊
Ufs

∣∣ψ̄u∣∣ /2fc⌋ for u = 1, 2, · · · , U .
Based on the analysis above, we can extend the proposed

SSD-based scheme to estimate H̃m. To do this, we first
rewrite (61) as

Ȳ = Φ̄ ˜̃H+N, (65)

where Ȳ = [ȳ1, ȳ2, · · · , ȳM ], ˜̃H =
[
˜̃h1,

˜̃h2, · · · , ˜̃hM
]
, and

N =
[
neff
1 ,neff

2 , · · · ,neff
M

]
. Then, we replace W̄, H̃, and Al

in Algorithm 1 by Φ̄, ˜̃H, and Bl = Φ̄HR, respectively.



12

After that, we estimate φl,c and ψl,c based on Υn and
Xu like steps 1-4. Specifically, based on the low mutu-
al coherence property of Φ̄ (i.e., Φ̄HΦ̄ ≈ INU ) as in the
classical OMP or SOMP algorithms [35] and the relation-
ship ˜̃

hm (n+ (u− 1)N) = H̃m (n, u), we can divide Bl

into U blocks as shown in Fig. 9 (a). The u-th block
B̂l,u of size N ×M contains the rows belonging to the set
{1+(u−1)N, 2+(u−1)N, · · · , N+(u−1)N} of Bl. Then,
φl,c can be estimated as

φl,c = φ̄n⋆
l,c
, n⋆l,c = argmax

n

∑U

u=1

∥∥∥B̂l,u (Υn, :)
∥∥∥2
F

|Υn|
. (66)

Alternatively, we can also divide Bl into N blocks as shown
in Fig. 9 (b). The n-th block B̌l,n of size U ×M contains the
rows belonging to the set {n, n+N, · · · , n+ (U − 1)N} of
Bl. Then, ψl,c can be estimated as

ψl,c = ψ̄u⋆
l,c
, u⋆l,c = argmax

u

∑N

n=1

∥∥B̌l,n (Xu, :)
∥∥2
F

|Xu|
. (67)

After φl,c and ψl,c have been estimated, we can calculate
φl,m and ψl,m based on their definitions, and the row support
Tl,m and column support Sl,m of the l-th path component
c̃l,md̃Hl,m at sub-carrier m can be obtained like steps 5-7 as

Tl,m = ΘN
{
n⋆l,m − Ω, · · · , n⋆l,m +Ω

}
, (68)

Sl,m = ΘU
{
u⋆l,m − Ω, · · · , u⋆l,m +Ω

}
, (69)

respectively, where we define

n⋆l,m = argmin
n

|φl,m − φ̄n| , (70)

u⋆l,m = argmin
u

∣∣ψl,m − ψ̄u
∣∣ . (71)

Once Tl,m and Sl,m have been acquired, the support Dl,m
of l-th path component can be directly calculated by

Dl,m = {n+ (u− 1)N |n ∈ Tl,m, u ∈ Sl,m } , (72)

and the influence of this path component can be removed
like steps 8 and 9. Repeating this procedure until all path
components have been considered, we can finally obtain the
overall support of ˜̃hm for m = 1, 2, · · · ,M and estimate the
corresponding nonzero elements by the LS algorithm like steps
10 an 11.

In the end, we would like to point out that in practice,
the users are more likely to employ a conventional antenna
array, since the lens antenna array is usually bulky at the time
of writing. In this case, the power of wideband beamspace
channel at a specific sub-carrier will be focused on a small
number of rows instead of a small number of low-dimensional
sub-matrices. This property allows us to further simplify our
scheme. Specifically, when the conventional antenna array is
employed at the user side, we do not have to estimate the
column support Sl,m any more. After we have estimated the
row support Tl,m by (68) and (70), the support Dl,m of the
l-th path component can be directly obtained as Dl,m =
{n+ (u− 1)N |n ∈ Tl,m, u ∈ {1, 2, · · · , U}}.

V. SIMULATION RESULTS

In this section, we first consider a wideband mmWave
MIMO-OFDM system, where the BS equips an N = 256-
element lens antenna array and NRF = 8 RF chains to serve
K = 8 single-antenna users. The carrier frequency is fc = 28
GHz, the number of sub-carriers is M = 512, and the band-
width is fs = 4 GHz6. The spatial channel of each user in (1)
is generated as follows [19]: 1) L = 3; 2) βl ∼ CN (0, 1); 3)
θl ∼ U (−π/2, π/2); 4) τl ∼ U (0, 20ns) and max

l
τl = 20ns.

We define the SNR for channel estimation as 1/σ2. Finally,
we use the normalized mean square error (NMSE) to quantify
the accuracy of channel estimation for each user, which is
mathematically defined as

E

(
1

M

M∑
m=1

∥∥∥h̃m − h̃em

∥∥∥2
2
/
∥∥∥h̃m∥∥∥2

2

)
, (73)

where h̃em is the estimated beamspace channel at sub-carrier
m.

We first compare the proposed SSD-based scheme and the
conventional wideband schemes. Fig. 10 shows the NMSE of
channel estimation against the SNR, where for all schemes
we use Q = 16 instants per user for pilot transmission. For
the SSD-based scheme, we set Ω = 4 following the sugges-
tion in [18]. For both the OMP-based [20] and the SOMP-
based [19] schemes, we assume that the sparsity level is
L (2Ω + 1) = 27 < NRFQ = 128. We also consider the oracle
LS scheme as our benchmark, where the support of the wide-
band beamspace channel at different sub-carriers is assumed
to be perfectly known. Note that for all the schemes mentioned
above, we regard the elements of wideband beamspace channel
having indices outside the support as zeros.

We observe from Fig. 10 that the accuracy of the OMP-
based scheme is not satisfactory when the SNR is low, since
it ignores the potential sparse structure of the wideband
beamspace channel which can be exploited to suppress the
noise. On the other hand, the accuracy of the SOMP-based
scheme deteriorates when the SNR is high. This is because
that the common support assumption is not strictly valid in
wideband systems due to the effect of beam squint. By con-
trast, the proposed SSD-based scheme enjoys a much higher
accuracy than the OMP-based and the SOMP-based schemes
in all considered SNR regions, since it can fully exploit the
sparse structure of the wideband beamspace channel. Actually,
the proposed SSD-based scheme has already achieved the
NMSE quite close to that of the oracle LS scheme. Moreover,
Fig. 10 also shows that when the SNR is high (e.g., from 20-
30 dB), there is a NMSE floor for all schemes. This can be
explained by the fact that although the nonzero elements of the
wideband beamspace channel can be estimated accurately at
the sufficiently high SNR, the error induced by regarding the
elements with low power as zeros does not vanish. Finally,

6Note that for future wireless communications such as 5G, the sub-carrier
spacing of OFDM can be adjusted from 15 KHz to 240 KHz [42]. Therefore,
M = 512 is capable to support a large bandwidth, e.g., 4 GHz. Moreover, it
is worth pointing out that the impact of M on different beamspace channel
estimation schemes is negligible, since the NMSE (or sum-rate) is calculated
by averaging over M .



13

0 5 10 15 20 25 30
10

−2

10
−1

10
0

SNR (dB) for channel estimation

N
M

S
E

 (
dB

)

 

 

Oracle LS scheme
OMP−based scheme
SOMP−based scheme
SSD−based scheme with known  L
SSD−based scheme with unknown  L

Fig. 10. NMSE comparison against the SNR for channel estimation.

1 1.5 2 2.5 3 3.5 4

x 10
9

10
−1

Bandwidth  f
s
 (Hz)

N
M

S
E

 (
dB

)

 

 

Oracle LS scheme
OMP−based scheme
SOMP−based scheme
SSD−based scheme

Fig. 11. NMSE comparison against the bandwidth fs.

we also observe from Fig. 10 that by utilizing the method
described in the end of Section III-B, the proposed SSD-based
scheme with unknown L (we empirically set ζ = 0.1) can
achieve the accuracy quite close to the one with known L.
This indicates that the prior knowledge of L is actually not
necessary in the proposed SSD-based scheme.

Fig. 11 shows the NMSE comparison against the bandwidth
fs, where the SNR is set as 15 dB and the other simulation
parameters are the same as those in Fig. 10. We observe
from Fig. 11 that when fs is low (e.g., 1 GHz), the effect of
beam squint is less pronounced and the SOMP-based scheme
can also achieve the satisfactory performance. However, as
fs increases, the SOMP-based scheme becomes more and
more inaccurate. When fs is high enough (e.g., 4 GHz), its
performance becomes even worse than that of the OMP-based
scheme. This is due to the fact that for large fs, the support
of the wideband beamspace channel at different sub-carriers
will be more divergent, and the common support assumption
leads to more serious accuracy degradation. By contrast, we
observe that the proposed SSD-based scheme is robust to fs.
This indicates that our scheme works well even if the effect
of beam squint is not pronounced.

Fig. 12 shows the achievable sum-rate of the wideband beam
selection proposed in [21] along with different beamspace
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channel estimation schemes, where the simulation parameters
are the same as those in Fig. 10. We observe from Fig. 12
that by utilizing the proposed SSD-based scheme, the system
achieves a higher sum-rate, especially when the SNR for
channel estimation is low (e.g., 0 dB). Since the SNR for
channel estimation is usually low in TDD systems due to the
limited transmit power of users, we can conclude that our
scheme is attractive in practice. Moreover, Fig. 12 also shows
that when the SNR for channel estimation is moderate (eg.,
15 dB), the wideband beam selection using the SSD-based
scheme achieves a sum-rate close to the one with perfect
channel. Finally, we observe that the performance order of
all schemes changes with the channel estimation SNR. This
is due to the fact that when the SNR is high during data
transmission, the sum-rate performance of wideband beam
selection is dominated by channel estimation error.

Fig. 13 shows the impact of the number of instants Q of
pilot transmission on different beamspace channel estimation
schemes, where the SNR for data transmission is set as 10 dB.
From Fig. 13, we observe that to achieve the same sum-rate,
the number of instants Q required by the proposed SSD-based
scheme is much lower than the conventional schemes both in
the low and the moderate SNR regions. Therefore, we can
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also conclude that the proposed SSD-based scheme achieves
satisfactory performance at a low pilot overhead.

Finally, in Fig. 14 we evaluate the NMSE performance
of the proposed SSD-based scheme in the case of multiple-
antenna users. The simulation parameters are set as follows:
1) each user employs an U = 32-element lens antenna array;
2) ϑl ∼ U (−π/2, π/2); 3) Q = 128 instants per user (this
value is larger than that in Fig. 10 since we need to estimate
a much higher-dimensional channel ˜̃hm = vec

(
H̃m

)
with

more nonzero elements); 4) the other parameters are the same
as those in Fig. 10. From Fig. 14, we observe the trends
similar to those in Fig. 10, i.e., the SSD-based scheme enjoys
a higher accuracy than the conventional schemes and achieves
the NMSE close to the oracle LS scheme. This verifies that
our scheme still performs well in the case of multiple-antenna
users. Moreover, we would like to point out that in the
case of multiple-antenna users, the SNR required for channel
estimation to achieve a satisfactory NMSE is usually higher
than in the case of single-antenna users. However, as we
can see from Fig. 12, even if the SNR is not high enough
(e.g., 0 dB or 15 dB) during channel estimation, wideband
beam selection can still achieve a satisfactory sum-rate. The
reason for this is that for data transmission only the reduced-
dimensional beamspace channel having a much smaller size
is effective. Although the NMSE performance may not be
good enough for channel estimation at low SNRs, the reduced-
dimensional beamspace channel’s estimate is already accurate
enough for data transmission. Therefore, in practice we do not
have to estimate the beamspace channel so accurately at the
cost of requiring a high SNR.

VI. CONCLUSIONS

This paper investigated the wideband beamspace channel
estimation problem for mmWave MIMO systems relying on
lens antenna arrays. Specifically, we first proved that each
path component of the wideband beamspace channel exhibits a
unique frequency-dependent sparse structure. Then, by exploit-
ing this sparse structure, we proposed an efficient SSD-based
beamspace channel estimation scheme, where both single-
antenna users and multiple-antenna users were considered. The

performance analysis showed that our scheme can accurately
estimate the beamspace channel at a low complexity. The
simulation results verified that: i) our scheme achieves a better
NMSE performance than existing schemes in all considered
SNR regions; ii) our scheme performs well even if the effect
of beam squint is not pronounced; iii) our scheme considerably
reduces the pilot overhead. In our future work, we will extend
the proposed SSD-based scheme to 3D mmWave MIMO
systems, where the elevation directions are also considered.
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