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Abstract—Unmanned aerial vehicles (UAVs) may be used
for providing seamless network coverage in urban areas for
improving the performance of conventional cellular networks.
Given the predominantly line-of-sight (LOS) channel of drones,
UAV-aided seamless coverage becomes particularly beneficial in
case of emergency situations. However, a single UAV having
a limited cruising capability is unable to provide seamless
long-term coverage, multiple drones relying on sophisticated
recharging and reshuffling schemes are necessary. In this context,
both the positioning and the flight strategy directly affect the
efficiency of the system. Hence, we first introduce a novel UAV
energy consumption model, based on which an energy-efficiency
based objective function is derived. Secondly, we propose an
energy-efficient rechargeable UAV deployment strategy optimized
under a seamless coverage constraint. Explicitly, a two-stage
joint optimization algorithm is conceived for solving both the
optimal UAV deployment as well as the cyclic UAV recharging
and reshuffling strategy (CRRS). Our simulation results quantify
the efficiency of our proposed algorithm.

Index Terms—Unmanned aerial vehicle (UAV), seamless cov-
erage, cyclic recharging and reshuffling strategy (CRRS).

I. INTRODUCTION

G IVEN their low cost and high flexibility, unmanned aeri-
al vehicles (UAVs) may find application both in military

and in civilian scenarios for supporting seamless information
services [1]. More explicitly, UAVs can be viewed as ‘airborne
access points’ (AAPs), which are capable of providing high-
quality line-of-sight (LOS) links upon avoiding blockage by
tall buildings and trees on the ground [2]–[5]. Furthermore,
UAV-assisted on-demand communication may be the only
viable technique of supporting seamless broadband informa-
tion coverage in the context of disasters, when the terrestrial
infrastructure breaks down. However, the energy constraint of
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a single drone limits both its cruising and hovering duration,
but fortunately the cooperation of networked UAVs is capable
of improving the situation [6], [7]. Hence, how to design
an efficient UAV deployment strategy and cruising route for
supporting seamless coverage becomes a crucial problem.

Energy-efficient UAV assisted information services have
been widely investigated in the literature. Alzenad et al. [8]
explored an energy-efficient 3D UAV placement scheme for
maximizing the number of users that can be served at the mini-
mum transmit power. Mozaffari et al. [9] proposed a beneficial
resource allocation scheme by striking a trade-off between the
communication capability and the UAV’s hovering duration.
However, the authors of [8] and [9] only aimed for optimizing
the transmit power. Given the fact that the energy consumed
by the propulsion of drones is much higher than that consumed
by communication, Lu et al. [10] focused their attention
both on the on-board circuit power and on the propulsion
power requirements for the sake of minimizing the frequency
of the UAV’s battery charging operation. Furthermore, the
authors of both [11] and [12] considered the UAV’s propulsion
power in the context of UAV-to-ground communications. By
contrast, the authors of both [13] and [14] aimed for finding
the energy-efficient flight path of UAVs under the condition
of sweeping through all IoT nodes, since communications
in IoT systems tend to be delay-tolerant [15]. Even though
these contributions have indeed considered the propulsion
power of drones, the limited flight duration may also limit the
practicability of drones in supporting seamless and long-term
network coverage. Arranging for the cooperation of multiple
rechargeable UAVs may be the only viable way of providing
seamless long-term communication services to users, where
each target point has at least one drone at any moment of
service provision.

In this paper, we consider a swarm of rechargeable UAVs
providing seamless long-term coverage. Given the energy
constraint of UAVs, improving the energy efficiency as well
as maintaining seamless coverage poses a critical challenge.
To address this challenge, we consider an energy-efficient
UAV-aided seamless information infrastructure conceived for
a dense urban area relying on small rechargeable drones,
where the drones having a low battery level should return
to the charging station for replenishing their energy. At the
same time, the drones having high-battery level take over the
provision of information services at the target location. Our
new contributions are summarized as follows:

• To the best of our knowledge, this is the first study of
an energy-efficient UAV-aided seamless long-term infor-
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mation coverage infrastructure relying on a beneficially
designed UAV deployment strategy, which specifically
considers the propulsion power and recharging strategy
of small drones.

• We simplify the energy-efficient information coverage
problem into a generalized assignment problem. More-
over, a two-stage joint UAV deployment as well as cyclic
UAV recharging and reshuffling optimization algorithm
is proposed, which is then solved based on an efficient
particle swarm optimization (PSO) algorithm.

• The performance of our proposed two-stage joint opti-
mization algorithm is characterized by extensive simula-
tions.

The rest of this paper is organized as follows. Section II
surveys the prior art on the subject of the paper. In Section III,
the channel model as well as the cyclic recharging and reshuf-
fling strategy (CRRS) is defined, and then the energy efficient
CRRS problem is formulated. Section IV introduces our PSO-
based two-stage algorithm and analyzes its complexity. In
Section V, we present our simulation results. Finally, the paper
is concluded in Section VI.

II. RELATED WORKS

As a benefit of the UAVs’ flexibility, UAV-assisted commu-
nications may find applications in diverse scenarios [16], [17].
One of the aspects is the provision of long-lasting seamless
UAV-aided coverage [18]–[27]. Naturally, this ambitions goal
is assisted by UAV-aided relaying [28]–[30], where UAVs act
as relays for the sake of enhancing the connectivity of two
or more distant nodes. This is achieved by taking advantage
of the high probability of LOS channels as a benefit of their
high altitude. The third application is UAV-aided information
dissemination and data collection [13], [14], [31], [32], where
the UAV collects or broadcasts non-realtime sensor data to
distributed nodes, when the UAV scans the target area.

As for the UAV-aided seamless coverage, several state-of-
the-art studies have been disseminated [18]–[27]. To elaborate,
Hourani et al. [18] analyzed the altitude of the UAV with the
intention of maximizing the coverage quality/area in urban
environments. Their results showed that the optimal altitude
was determined by the maximum allowed path-loss as well
as by the statistical parameters of the target environment.
Mozaffari et al. [19] studied the 3D deployment of two
UAVs for maximizing the coverage quality/area and mini-
mizing the transmit power considering both interference-free
and interference-infested scenarios. By contrast, Alzenad et
al. [20] focused their attention on the 3D UAV placement
for maximizing the number of users having different QoS
requirements. Moreover, Yaliniz et al. [21] investigated the
optimal UAV placement mainly for maximizing the revenue
of the network. Tao et al. [22] addressed the problem of
capacity enhancement using UAVs in tele-traffic hot-spots by
relying on an analytical ergodic capacity model., The authors
of [23]–[25] focused their attention on conceiving efficient
UAV deployment algorithms for covering the target area.
Furthermore, UAV-aided communication systems can also co-
exist with other systems. In this spirit, Mozaffari et al. [26]

considered underlaid device-to-device (D2D) communication
within a UAVs’ coverage area, where they studied the optimal
UAV deployment with the objective of maximizing the number
of D2D user supported both by static and by mobile UAV. Lyu
et al. [27] analyzed the coexistence of the UAV as an arial
BS and of a ground BS. Explicitly, they jointly considered the
optimization of the UAVs’ flight trajectory, resource allocation
and user assignment.

In carefully considering the UAV’s limited flight duration,
maximizing the energy efficiency is critical. The authors of [8]
focussed their attention on the optimal 3D deployment of
UAVs for minimizing the transmit power by formulating
the deployment problem as a circle placement problem. By
contrast, Wang et al. [33] considered both hotspot and average
tele-traffic scenarios. Yu et al. [34] aimed for minimizing the
transmit power of mobile devices by dynamically deploying
UAVs upon additionally taking into account the mobility
of devices on the ground. However, the propulsion power
consumption of UAVs is much higher than their transmit
power consumption, hence the former determines the service
duration of UAV. Li et al. [28] investigated the specific choice
of the optimal cooperative UAV-aided relaying scheme for the
sake of maximizing the network life time and at the same time
guaranteeing the bit error rate (BER) requirement by carefully
balancing the energy consumption of UAVs. Zhang et al. [29]
aimed for striking a trade-off between the bandwidth efficiency
and energy efficiency by appropriately adjusting the time
allocation as well as flying speed and trajectory. Moreover,
Angelo et al. [35] investigated how to prolong the network life
time for various target area coverage ratios by considering the
recharging operation. As a further development, Hua et al. [13]
proposed an optimal communication scheme by jointly consid-
ering the user schedule, UAV trajectory and power allocation
for minimizing the power consumption of UAVs. Franco et
al. [14] focused their attention on finding energy efficient flight
paths for scanning all ground users in practical non-regular
coverage area. Mozaffari et al. [31] investigated the optimal
UAV movement for minimizing the uplink transmit power of
IoT nodes in an IoT network, while jointly considering the
device association, device power control and UAV position.
Relying on the specific design of fixed-wing UAVs, a trade-
off was struck between the transmission energy of IoT nodes
and the propulsion energy of the UAV by Yang et al. [12].
However, in contrast to the IoT scenario, the provision of
seamless UAV-aided coverage for users on the ground requires
access to at least one UAV at any time.

III. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a multi-UAV scenario,
where M drones serve as base stations for providing infor-
mation services for users on the ground. All the drones are
capable of operating in both cruising and hovering modes
at the same altitude H . Each UAV is equipped with a
rechargeable battery and can serve the users within a circle
having the radius of R. The capacity of each UAV’s battery
is denoted by W . In our model, we assume that there are a
total of N target service locations for the hovering drones,
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Fig. 1. UAV aided seamless coverage.

TABLE I
SUMMARY OF NOTATIONS

Symbol Description

N Total number of target service locations

H Flight altitude of UAVs

R Coverage radius of the UAV

W Capacity of the UAV’s battery

M Total required number of UAVs

J Total required number of flight circles

Mj Required number of UAVs in the j-th flight circle

Nj Number of target service locations in the j-th flight circle

ηlos, ηnlos The attenuation factors corresponding to the LOS and NLOS
UAV-user channel

a, b Environment-specific coefficients

Ptr Transmit power of the UAV

plos Probability of LOS channel in the UAV-user links

Lm(r) Average path loss of the UAV-user link for the users that are r
far from the m-th UAV

Cn(R) The capacity supported by the UAV located at the n-th target
location with the coverage radius R

Tcharge Charging duration of the UAV at the charging station

Thome The duration that includes the durations of vertical descending,
charging and vertical ascending over the charging station

Th
j Hovering duration of the UAV at each target location in the j-th

flight circle

Td
j Total discharging duration of the UAV in the j-th flight circle

Tj Charging-and-discharging period of the UAV in the j-th flight
circle

Dj Total path length of the j-th flight circle

Pj(t) Instantaneous power at time t of the UAV in the j-th flight circle

Ph Hovering power of the UAV

Pt, Vt Traveling power and traveling speed of the UAV

Pa, Va Ascending power and ascending speed of the UAV

Pd, Vd Descending power and descending speed of the UAV

and UAVs provide information services while hovering at one
of the target locations. They can also be equipped with a
small balloon inflated by a cartridge for saving energy when
hovering or for preventing crashing owing to sudden loss of
battery power. For the sake of providing seamless information
coverage for ground users, a cyclic recharging and reshuffling
strategy (CRRS) is conceived, where the drones having a high-
battery level replace the low-battery drones in the provision
of coverage at the target location. To achieve this, the UAVs
visit all or some of the target service locations during their
charging-discharging cycles.

In our model, a single fixed charging station is consid-
ered, which is located at the bottom left corner of Fig. 1.
We assume that each UAV has the same charging duration
Tcharge. Moreover, ground users are capable of accessing
the UAV via orthogonal frequency division multiplex access
(OFDMA), hence we neglect the interference amongst the
UAV-user links. The UAVs can cache data in advance, and
exchange data through UAV-UAV links, where the UAV-UAV
links are modelled as a line-of-sight channel associated with
different frequency bands than the UAV-user links. Assuming
that the UAV-UAV LOS links have sufficient capacity, we
only consider the downlink air-to-ground channel model in
the paper.

A. Air-to-Ground Channel Model

In the paper, we focus on the downlink model of UAV-
user communications. We consider a pair of air-to-ground
communication channels, i.e. the LOS channel and the non-
line-of-sight (NLOS) channel. Given a UAV m located at
(Xm, Ym) and a user located at (x, y), the path loss between
(Xm, Ym) and (x, y) can be expressed by [10]: Lm,los(x, y) = ηlos

(
4πf
c

)2
d2m(x, y), if LOS link,

Lm,nlos(x, y) = ηnlos

(
4πf
c

)2
d2m(x, y), if NLOS link,

(1)
where ηlos and ηnlos represent the attenuation factors cor-
responding to the LOS and NLOS link, respectively, while
f is the carrier frequency and c denotes the speed of light.
Furthermore, dm(x, y) =

√
(x−Xm)2 + (y − Ym)2 +H2 is

the distance between the UAV m and the user considered. In
our paper, the probability of having a LOS UAV-user link can
be expressed as:

plos(r) =
1

1 + a exp(−b[θ − a])
, (2)

where a and b represent environment-specific coeffi-
cients [18], while we have θ = 180

π tanh(H/r) and r =√
(x−Xm)2 + (y − Ym)2. Hence, the probability of a NLOS

link obeys pnlos(r) = 1−plos(r). Therefore, the average path
loss can be formulated as:

L̄m(r) = plosLm,los + (1− plos)Lm,nlos. (3)

Let the downlink transmit power of each UAV be Ptr. Then,
upon relying on Shannon’s formula, the average capacity of
each link can be formulated as:

c̄m(r) = B log2

(
1 +

Ptr

L̄m(r)σ2B

)
, (4)

where B represents the bandwidth allocated to the user, while
σ2 is the white Gaussian noise variance at the receiver. Given
its circular service area with a radius of R, the capacity
supported by the UAV m can be calculated as:

Cm(R) =

∫ R

0

λ(r)c̄m(r)dr, (5)

where λ(r) denotes the user density.
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Fig. 2. The power consumption model of a drone.

B. Cyclic Recharging and Reshuffling Strategy for UAVs

The CRRS of UAVs is conceived for providing ground
users with seamless information services. However, each drone
has to leave its service location for recharging, when its
battery level is below the alert level. Meanwhile, another drone
should replace the low-battery drone at the target location for
supporting uninterrupted service. In this paper, we assume that
during a single discharging cycle, a drone cannot visit all the
N target locations. Hence, we have a total of J independent
flight route circles for covering all the N target locations. In
the j-th flight circle, Nj target locations are served by Mj

UAVs, and we have
∑J

j=1 Nj = N as well as
∑J

j=1 Mj = M .
1) UAV Power Model: The power of a multi-rotor

UAV has three components [36], i.e. the induced pow-
er Pi, the profile power Pp and the parasite pow-
er Ppar. Let mg be the gravity of the UAV, T =√
(mg − (c5(Vhorcosα)2 + c6T ))2 + (c4V 2

hor)
2 be the thrust,

Vvert and Vhor be the vertical speed and horizontal speed.
The induced power Pi which produces thrust by propelling
air downward can be formulated as [36]:

Pi(T, Vvert) = k1T

Vvert

2
+

√(
Vvert

2

)2

+
T

k22

 . (6)

The profile power Pp overcomes the rotational drag encoun-
tered by the rotating propeller blades, which can be expressed
by [36]:

Pp(T, Vhor) = c2T
3/2 + c3(Vhorcosα)

2T 1/2, (7)

where α shows the angle of attack when Vhor is not zero. The
parasite power Ppar is used to resist body drag when there
is relative translational motion between the vehicle and wind,
which can be expressed by [36]:

Ppar(Vhor) = c4V
3
hor. (8)

The notations k1, k2, c2, c3, c4, c5, c6 in Eq. (6), Eq. (7) and
Eq. (8) represent constant parameters related to the physical
properties of the UAV.

For the sake of avoiding collision with buildings, the power
consumption model of a drone is illustrated in Fig. 2, i.e.
horizontally flying from one target location to the next target
location, hovering at one target location for providing services,

vertically descending to the ground at the charging station and
vertically ascending to the altitude H , when fully charged.
Specifically, we define Pt representing the power required for
horizontally flying at a constant speed Vt. From Eq. (6) to
Eq. (8), Pt can be derived as [36]:

Pt(Vt) = Pi(T, 0) + Pp(T, Vt) + Ppar(Vt)

= (c1 + c2)T
3/2 + c3(Vtcosα)

2T 1/2 + c4V
3
t

≈ (c1 + c2)T
3/2 + c4V

3
t ,

(9)

where c1 = k1

k2
. Similarly, the hovering power represented by

Ph can be expressed by [36]:

Ph = Pi(T, 0) + Pp(T, 0) = (c1 + c2)(mg)3/2. (10)

Considering a constant ascending speed of Va and descending
speed of Vd, the ascending-related power denoted by Pa and
the descending-related power denoted by Pd of the UAV at
the charging station can be derived based on Eq. (6), Eq. (7)
and Eq. (8), that is [36]:

Pa(Va) = Pi(T, Va) + Pp(T, 0)

= k1mg

Va

2
+

√(
Va

2

)2

+
mg

k22

+ c2(mg)3/2,

(11)
Pd(Vd) = Pi(T,−Vd) + Pp(T, 0)

= k1mg

−Vd

2
+

√(
Vd

2

)2

+
mg

k22

+ c2(mg)3/2.

(12)
We can see from Eq. (9) to Eq. (12) that Ph, Pt, Pa and Pd are
all fixed when given fixed Vt, Va and Vd. Since the transmit
power (normally less than 1W) used for communication is
significantly lower than the flight power (normally more than
100W) of a UAV, the transmit power is neglected in the power
model. Then, neglecting the acceleration and deceleration
process of the UAV, the total energy consumed by a UAV
during its j-th flight circle can be approximated by:∫ Td

j

0

Pj(t)dt ,
Nj∑
n=1

PhT
h
j,n +

Nj+1∑
k=1

Pt
dj,k
Vt

+ Pa
H

Va
+ Pd

H

Vd
,

(13)
where T d

j is the total discharging duration of the drone in the
j-th flight circle, while Th

j,n is its hovering duration at the n-
th target location, i.e. its service duration. There are a total
of (Nj + 1) flight path segments when the drone visits Nj

target locations and the charging station, and dj,k represents
the length of the k-th flight path segment. Assuming that the
total battery energy of each UAV is W , the energy constraint
of a single UAV in the j-th flight circle can be expressed by:∫ Td

j

0

Pj(t)dt ≤ W, ∀j = 1, 2, ..., J. (14)

2) CRRS Constraint: We assume that each UAV has the
same energy storage (battery) and can support the same total
service duration.

In order to provide seamless coverage for Nj target location-
s using Mj UAVs in the j-th flight circle, when a UAV leaves
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Fig. 3. The CRRS strategy of UAVs.

a target point, an alternative UAV should fly to the related
point for replacing the low-energy UAV. Since the flight time
interval of UAVs depends on the smallest Th

j,n, Th
j,n should

have the same value in the j-th flight circle, that is we have
Th
j,n = Th

j , ∀n = 1, 2, ..., Nj . Hence, Mj UAVs construct a
circular chain relying on the same trajectories as well as on
the same service schedule, which is shown in Fig. 3. The
arc lengths in Fig. 3 indicate the durations of UAVs in their
various states, where the perimeter of the circle shows the
UAV’s charging-and-discharging period. It is plausible that the
time interval between the UAVs should be less than Th

j for
guaranteeing seamless services provision at the target points.
Therefore, the total service duration of all Mj reshuffling
UAVs should be longer than the total duration of a UAV’s
charging-and-discharging period. Hence we have:

MjT
h
j ≥

∑Nj+1
k=1 dj,k
Vt

+NjT
h
j + Thome, (15)

where Thome , Tcharge +H/Va +H/Vd, and Tcharge is the
charging duration of each UAV at the charging station. We
define Dj =

∑Nj+1
k=1 dj,k, and the service duration Th

j of a
UAV at a specific target location can be formulated by:

Th
j ≥

Dj

Vt
+ Thome

Mj −Nj
, (16)

where we require Mj > Nj .

C. Problem Formulation

In this section, first of all, we denote the UAV deployment
strategy as A and the UAV CRRS strategy as B. Given a
fixed value of N , A represents the strategy conceived for
determining the N specific UAV hovering locations, while
B represents the policy determining the J flight circles,
including the value of Nj and Mj in each flight circle. Let

Tj ,
∑Nj+1

k=1 dj,k

Vt
+ NjT

h
j + Thome be the charging-and-

discharging period of the UAV in the j-th flight circle. In this
paper, we assume that only one UAV can provide information
services when multiple UAVs overlap in a target location.
Hence, from Eq. (15) and Fig. 3, Tj also indicates the total

service duration of Mj UAVs at each target point in the j-th
flight circle. Moreover, the system’s energy efficiency, where
M UAVs serve a total of N target locations relying on J flight
circles, can be defined as:

η(A,B) =

∑J
j=1

∑Nj

n=1 TjCn(R)∑J
j=1 MjW

, (17)

where Cn(R) is the downlink capacity of the UAV hovering
at the n-th target location, which is formulated by Eq. (5).
The numerator of Eq. (17) shows the amount of transmit-
ted information, while each UAV completes a charging-and-
discharging operation. The denominator of Eq. (17) indicates
the total expended energy. Observe from Eq. (17) that the
deployment locations directly determine the capacity of UAVs,
since the user density in the covered zone directly affects
the capacity, but at the same time the overlapping of covered
zones potentially reduces the capacity, while users connect the
nearest drone. Moreover, in Eq. (16), Dj is jointly determined
by the specific deployment locations as well as by the CRRS
strategy, and the CRRS strategy in turn also determines Nj .
Therefore, the deployment locations and the CRRS strategy
jointly determine the number Mj of UAVs required. Hence,
strategy A and strategy B jointly affect the system’s energy
efficiency η. Our objective is to maximize the energy effi-
ciency η. Hence, the joint UAV deployment as well as UAV
cyclic recharging and reshuffling optimization problem can be
formulated as:

P1 : max
A,B

η(A,B)

s.t. C1 :

∫ Td
j

0

Pj(t)dt ≤ W, ∀j = 1, 2, ..., J,

C2 : MjT
h
j ≥ Tj > 0, ∀j = 1, 2, ..., J,

C3 : Mj > Nj , ∀j = 1, 2, ..., J,

C4 :

J∑
j=1

Mj = M,

J∑
j=1

Nj = N.

(18)

IV. DISTRIBUTED PARTICLE SWARM OPTIMIZATION
AIDED SOLUTION

A. Analysis and Simplification

Considering the homogeneity of the drones, Eq. (17) can be
rewritten as:

η(A,B) =
J∑

j=1

∑Nj

n=1 TjCn(R)

Mj

∫ Td
j

0 Pj(t)dt
·
Mj

∫ Td
j

0
Pj(t)dt∑J

j=1 MjW
,

J∑
j=1

ηjδj ,

(19)

where ηj ,
∑Nj

n=1 TjCn(R)

Mj

∫ Td
j

0 Pj(t)dt

represents the specific energy

efficiency of the j-th flight circle, while δj , Mj

∫ Td
j

0 Pj(t)dt∑J
j=1 MjW

denotes the j-th flight circle’s energy consumption ratio a-
gainst the system’s total energy. Moreover, it may be readily
inferred that we have Tj = MjT

h
j in (15), when η reaches its

maximum value. Let us define the energy consumed by a UAV
in the j-th flight circle as Wj ,

∫ Td
j

0
Pj(t)dt. Furthermore, we
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have:

ηj =
MjT

h
j

∑Nj

n=1 Cn(R)

MjWj
=

Th
j

∑Nj

n=1 Cn(R)

Wj
, (20)

δj =
MjWj

MW
, (21)

where
∑J

j=1 δj = 1, 0 < δj ≤ 1. Upon combining Eq. (13)
and Eq. (20), we arrive at:

ηj =

(
Wj − Dj

Vt
Pt − Pa

H
Va

− Pd
H
Vd

)∑Nj

n=1 Cn(R)

NjPhWj
, (22)

where Dj =
∑Nj+1

k=1 dj,k.
It can be readily seen that ∂ηj

∂Wj
> 0 and ∂δj

∂Wj
> 0. Hence,

for the sake of maximizing η(A,B), we have to satisfy:

Wj = W,∀j = 1, 2, ..., J. (23)

Furthermore, upon relying on Eq. (13), Eq. (15) and E-
q. (23), we obtain:

Th
j =

W − Pa
H
Va

− Pd
H
Vd

− Pt
Dj

Vt

NjPh
, j = 1, 2, ..., J, (24)

as well as:

Mj =

⌈
Nj

(
Ph

Dj

Vt
+ PhThome

W − Pa
H
Va

− Pd
H
Vd

− Pt
Dj

Vt

+ 1

)⌉
, j = 1, 2, ..., J,

(25)
where ⌈·⌉ is the ceiling function representing the upper integer
value. Moreover, Eq. (25) satisfies the constraint of C3 in
the optimization problem P1. In practice, we can adjust the
charging duration of Tcharge, which is a function of Thome,
to realize the integer ceiling operation. Therefore, problem P1
can be reformulated as:

P2 : max
A,B

η(A,B) =
J∑

j=1

ηjδj

s.t. C1 : MjT
h
j ≥ Tj > 0, ∀j = 1, 2, ..., J,

C2 :

J∑
j=1

Mj = M,

J∑
j=1

Nj = N,

(26)

where ηj = Th
j

∑Nj

n=1 Cn(R)/W and δj = Mj/M .

B. Distributed-PSO Algorithm Design

PSO is a stochastic optimization algorithm, which is in-
spired by the swarming behavior of collective forging for
food by birds, bees or fish. In a PSO algorithm, M particles
fly in an n-dimensional solution space, where {Xm(l) =
(xm,1(l), xm,2(l), ..., xm,n(l)),m ∈ {1, 2...,M}} represents
the position of the m-th particle in the l-th iteration, while
{Vm(l) = (vm,1(l), vm,2(l), ..., vm,n(l)),m ∈ {1, 2...,M}}
represents the current velocity of the m-th particle. Assum-
ing that the objective function of η is employed as the
fitness function, each particle has a hitherto best position
{Pm(l) = (pm,1(l), pm,2(l), ..., pm,n(l)),m ∈ {1, 2...,M}}
associated with its hitherto best fitness value, while the current
globally optimal position of all particles is expressed by

Algorithm 1 Distributed Particle Swarm Optimization Algo-
rithm

input:
user distribution, number of target locations (N ), location
of charging station, UAV altitude (H), UAV coverage ra-
dius (R), propagation parameters (ηlos, ηnlos, a, b), iteration
numbers (IA, IB = OB ∗N ), particle numbers (MA,MB);
start:
Randomly initialize coordinates of N target locations (strat-
egy A) as A∗(0);
Initialize strategy B as B∗(0) of N flight circles;
Initialize iteration count: k = 1;
repeat
Stage-A start:

Save current best strategy A: XA
1 = A∗(k − 1);

Randomly generate rest particles’ position:XA
m(m ̸= 1);

Randomly generate particles’ velocity: V A
m ;

Calculate each particle’s fitness value according to E-
q. (17): FA(X

A
m) , η(XA

m, B∗(k−1)), and get current PA
m

and PA
g ;

while l < IA do
Update velocity V A

m and particles’ position XA
m

according to Eq. (27);
Update each particles’ private best position PA

m;
Update global best position PA

g ;
end while
Update best strategy A: A∗(k) = PA

g ;
Stage-A end;
Stage-B start:

Save current best strategy B: XB
1 = B∗(k − 1);

Randomly generate rest particles’ position:XB
m(m ̸= 1);

Randomly generate particles’ velocity: V B
m ;

Discrete XB
m according to Eq. (28);

Calculate each particle’s fitness value according to E-
q. (17): FB(X

B
m) , η(A∗(k), XB

m), and get current PB
m

and PB
g ;

while l < IB do
Update particles’ velocity V B

m and position XB
m

according to Eq. (27);
Discrete XB

m according to Eq. (28);
Update each particles’ private best position PB

m ;
Update global best position PB

g ;
end while
Update best strategy B: B∗(k) = PB

g ;
Stage-B end;

Update k = k+1;
until The fractional increase of the objective value over Ls

iterations is below the threshold ϵg > 0;
output:
Optimal strategy A and Optimal strategy B: A∗, B∗.

{Pg(l) = (pg,1(l), pg,2(l), ..., pg,n(l))}. In order to converge
to the globally optimal position, the update functions of the
velocities {Vm,m ∈ {1, 2...,M}} as well as the positions
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{Xm,m ∈ {1, 2...,M}} are formulated as:
Vm(l + 1) = wVm(l) + c1ζ1(Pm(l)−Xm(l))

+ c2ζ2(Pg(l)−Xm(l)),m ∈ {1, 2...,M},
Xm(l + 1) = Xm(l) + Vm(l + 1),m ∈ {1, 2...,M},

(27)
where w is the so-called inertia coefficient, while c1 and c2
represent the influence of the hitherto best position and the
globally optimal position, respectively. Finally, ζ1 and ζ2 are
a pair of random coefficients.

For solving problem P2 in Eq. (26), we propose a two-stage
joint optimization algorithm termed as the distributed-PSO
algorithm for the UAV deployment and CRRS problem. First
of all, given the fixed N -location deployment strategy A, the
capacity Cn(R), n = 1, 2, ..., N within each service circle area
can be determined. Then, problem (26) reduces to a single-
strategy optimization problem in terms of B = {J,Nj ,Mj}.
Furthermore, when relying on Eq. (22) to Eq. (25), minimizing
Dj yields the maximization of ηj . Let us define the shortest
Dj of j-th flight circle as Dmin,j , where Dmin,j and Nj

in each flight circle can be calculated for a specific assign-
ment strategy of the N target locations, respectively. Given
that ηj is a function of both Dmin,j and Nj , the single-
strategy optimization problem considered can be viewed as
a generalized assignment problem, which is NP-hard. We can
use a powerful discrete particle swarm optimization (DPSO)
algorithm for finding a near-optimal solution of the CRRS
strategy given a fixed A, say B∗ = {J∗, N∗

j ,M
∗
j }. We define

this stage as stage-B. On the other hand, when the strategy
B = {J,Nj ,Mj} is given, the problem P2 becomes a so-
called point deployment problem, which is a kind of facility
location problems and is NP-hard. Hence, we apply the PSO
algorithm for finding a near-optimal deployment strategy A∗.
We name this stage as stage-A. Upon invoking a sufficiently
high number of iterations, we arrive at a near-optimal strategy
{A∗, B∗} of the joint UAV deployment and UAV recharging
and reshuffling problem.

Algorithm 1 summarizes the flow of our proposed
distributed-PSO algorithm. In the algorithm, A∗(k) and B∗(k)
represent the current optimal strategy A∗ and B∗ in the k-
th iteration. Each iteration in the external loop includes two
stages, namely stage-A and stage-B. Specifically, stage-A is
composed by a PSO relying on IA number of iterations, while
stage-B represents a DPSO having IB number of iterations.
The algorithm ends when the fractional increase of the objec-
tive function value over Ls iterations is below the threshold
ϵg > 0. The details of the two stages are described as follows.

1) Stage-A: The objective of stage-A is to find a near-
optimal strategy A in conjunction with a given fixed CRRS
strategy B, which can be initialized or be calculated by the
iterative result of stage-B. We use the PSO algorithm for
optimizing strategy A, where XA

m = (xA
m,1, x

A
m,2, ..., x

A
m,N )

is defined as a N -dimensional variable. Moreover, xA
m,n =

(xm,n, ym,n) in XA
m represents the horizontal coordinate of

the n-th target location of the m-th particle, where we have
m ∈ {1, 2, ...,MA}, with MA representing the number of PSO
particles at this stage. Furthermore, the fitness function of the
PSO is η in Eq. (26).

2) Stage-B: The objective of stage-B is to optimize the
CRRS strategy B, while the fixed A is either the original
strategy or it is the one calculated by the iterative result of
stage-A. However, the objective function is actually equiv-
alent to that of an optimal assignment problem allocating
N target locations to a total of J flight circles. In order to
find the optimum relying on the DPSO algorithm, we define
XB

m = (xB
m,1, x

B
m,2, ..., x

B
m,N ) as an N -dimensional variable,

where xB
m,n = j (j ∈ {1, 2, ..., J}) indicates that the n-th

target location is assigned to the j-th flight circle. Furthermore,
considering the integer nature of XB

m in our DPSO algorithm,
we discretize XB

m in Eq. (27), and use the ceiling function:

XB
m,l = ⌈XB

m,l⌉. (28)

Additionally, considering that the choice of N may affect the
convergence efficiency, the number of iterations is set to IB =
OB ·N , where OB represents a scaling factor. Moreover, the
fitness function of the DPSO is η in Eq. (26).

C. Algorithmic Convergence Analysis

The proposed Algorithm 1 has two stages, i.e. stage-A and
stage-B, which are reminiscent of block coordinate descent
methods, where each stage can be viewed as a block. In the
algorithm, strategy A and strategy B are alternately optimized,
while always fixing the other strategy. Moreover, the strategies
obtained in the current iteration are the input of the next
iteration. In Algorithm 1, each stage adopts the PSO method,
yielding a near-optimal solution. Hence, the convergence of
Algorithm 1 cannot be directly analyzed by the classical block
coordinate descent method, which can be proved as follows.

In stage-A, the current optimal strategy A∗(k− 1) obtained
in the previous iteration is saved in the initial particles of the
PSO algorithm. As for the convergence properties of the PSO
algorithm, given fixed B∗(k − 1), we have:

η[A∗(k − 1), B∗(k − 1)] ≤ η[A∗(k), B∗(k − 1)]. (29)

Similarly, in stage-B, given fixed A∗(k), B∗(k − 1) follows:

η[A∗(k), B∗(k − 1)] ≤ η[A∗(k), B∗(k)]. (30)

Hence, based on Eq. (29) and Eq. (30), we have:

η[A∗(k − 1), B∗(k − 1)] ≤ η[A∗(k), B∗(k)]. (31)

Eq. (31) points out that the objective function value of Eq. (26)
is non-decreasing in each iteration. Since η is upper bounded
by a finite value, the convergence of Algorithm 1 is guaranteed.
Given that the PSO algorithm in stage-A and the DPSO
algorithm in stage-B are re-initialized in each iteration, the
proposed Algorithm 1 is capable of avoiding local optima.
Hence, Algorithm 1 closely approximates the optimal value,
even if the PSO algorithm and DPSO algorithm normally
arriving at a sub-optimal solution.

D. Algorithmic Complexity Analysis

The complexity order of the distributed-PSO algorithm can
be estimated as:

O (Ig · [(IA ·MA · TA) + (IB ·MB · TB)]) , (32)
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TABLE II
SIMULATION PARAMETERS [10], [37]

Parameters Values

Channel parameters (ηlos, ηnlos, a, b) (1,20,9.61,0.61)

Carrier frequency (f ) 2.4 GHz

Bandwidth (B) 1 MHz

Variance of noise (σ2) 5 × 10−15 W/Hz

UAV transmit power (Ptr) 0.5 W

UAV’s altitude (H) 100 m

UAV’s coverage radius (R) 100 m

UAV’s hovering power (Ph) 200 W

UAV’s flying power/speed (Pt/Vt) 240 W / 10 m/s

UAV’s ascending power/speed (Pa/Va) 250 W / 5 m/s

UAV’s descending power/speed (Pd/Vd) 180 W / 5 m/s

UAV’s battery capacity (W ) 97.58 Wh

Charging duration (Tcharge) 5 min⋆

⋆ In reality, we can replace the battery of drones for
achieving a sharp reduction in charging duration.

TABLE III
PARAMETERS OF DISTRIBUTED-PSO ALGORITHM

Parameters Values

Ls, ϵg 10, 10−4

Stage-A (IA,MA, c1, c2, w) (100, 100, 1.49 , 1.49, 0.729)

Stage-B (OB ,MB , c1, c2, w) (20, 50, 1.49, 1.49, 0.729)

where TA and TB represent each particles’ operation time
in the PSO algorithm of stage-A and stage-B respectively,
while Ig is the number of iterations in the external loop of
Algorithm 1. Since the number of dimensions of the particles
defined as XA

m = (xA
m,1, x

A
m,2, ..., x

A
m,N ) in stage-A equals to

the number of the target locations (N ), TA linearly increases
with the number N . Similarly, TB linearly increases with N .
Moreover, we have IB = OB · N . Hence, the complexity
of Algorithm 1 can be expressed as T (N) = O(N2), which
obeys a polynomial complexity order.

V. SIMULATION RESULTS

In our simulations, we consider a 500× 500 m rectangular
area, where the users are distributed following the Poissoni-
an clustering process. The center of the rectangular service
area is located at the origin [0, 0]. The essential parameters
are summarized in Table. II [10], where some of the UAV
parameters are those of the drone Matrice 100 produced by
DJI [37]. Table. III shows the parameters of distributed-PSO
algorithm. The numerical simulations are developed by using
MATLAB R2017a.

Fig. 4 shows the energy efficiency η versus the X-coordinate
of the charging station (y = 0), parameterized by the total
number of target service locations N . Observe from the
figure that the communication energy efficiency near-linearly
decreases with the distance between the origin [0, 0] and the
charging station. Explicitly, since Tj = MjT

h
j as well as

bearing in mind Eq. (17), the energy efficiency η is a linear
function of the hovering duration Th

j , that is in turn a near-
linear function of the distance of the charging station from the
area center according to Eq. (24). Hence, the distance between
the charging station and the center of the service area imposes
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Fig. 4. Energy efficiency η versus the position of the charging station
parameterized by the total number of target service locations N .
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Fig. 5. Energy efficiency η versus the number of target points parameterized
by the X-coordinate of charging station.

a substantial impact on the deployment and cyclic recharging
of the UAVs. Moreover, when the number of target service
points N is increased, the energy efficiency is degraded. This
is because the target service areas may overlap, which results
in an energy efficiency reduction.

The performance of the energy efficiency η versus the
number N of target points is portrayed in Fig. 5, where we
can see that the energy efficiency η is reduced as a function of
the number of target points. Moreover, the larger the number
of target points, the more slowly the rate decreases, which is
a consequence of the linear relationship between the energy
efficiency η and the hovering duration Th

j as well as the
reciprocal relationship between Th

j and Nj in Eq. (24). As
shown in Fig. 5, the curve associated with the scenario, when
the X-coordinate of the charging station is 5000m is more flat
than those of the others, which implies that the influence of the
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Fig. 6. Required number of drones M versus the position of the charging
station parameterized by the total number of target service locations N .
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Fig. 7. Required number of drones M versus the number of target points
parameterized by the X-coordinate of charging station.

number of target points N on the energy efficiency η reduces,
when the charging station is farther away from the origin.

Fig. 6 illustrates the influence of the total number of drones
required, namely M versus the X-coordinate of the charging
station, where the Y-coordinate is fixed. The figure shows
that the required number of drones M non-linearly increases
when the charging station is located far away from the origin
[0, 0]. More explicitly, having a long distance between the
charging station and the service area results in a short hovering
duration for the UAV, which determines the longest affordable
reshuffling interval of the UAVs in each flight cycle and can
be corroborated by Eq. (24) and Eq. (25). Therefore, in order
to guarantee that each target point is supported by a hovering
UAV at any moment, more UAVs are needed.

Fig. 7 shows the required number of drones M versus the
number of target points parameterized by the X-coordinate of
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Fig. 9. Convergence analysis with different parameters at the condition of
N = 3, X-coordinate = 500.

the charging station. The required number of UAVs M linearly
increases with the number N of target points. Furthermore, the
slope of the curves M becomes steeper as the distance between
the coverage area center and the charging station becomes
longer.

Fig. 8 portrays the iterative performance improvement of our
proposed optimization algorithms, indicating that convergence
is attained after about 70 iterations. Moreover, the sub-figure
in Fig. 8 provides an example of near-optimal results for
the UAV deployment as well as for the CRRS strategy,
where the blue dots show the target locations used, while
the brown lines indicate the flight paths of UAVs. Finally,
the red star shows the location of charging station. Explicitly,
given a fixed charging station location of [500, 0] and a
total of N = 5 target service locations, we arrive at the
optimal UAV deployment strategy A∗ associated with the
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Fig. 10. The energy efficiency performance comparison among Distributed-
PSO, GA and GR.

coordinates of [−129.7, 12.91], [125.4, 88.67], [189.1, 48.11],
[36.38,−63.86] and [125.4,−75.45], respectively. Further-
more, as for the optimal UAV CRRS B∗, a total of J∗ = 3
independent flight route circles and M∗ = 9 UAVs are re-
quired for covering all the 5 target locations within each flight
route circle associated with N1 = 3,M1 = 5, N2 = 1,M2 = 2
and N3 = 1,M3 = 2, respectively.

Fig. 9 illustrates the convergence of the proposed algorithm
associated with various PSO and DPSO parameters, where
w, c1 and c2 are set to the same values for the PSO and
DPSO. The figure portrays that the change of parameters has
little effect on the convergence of the algorithm, while the pa-
rameters fall into the convergence area [38]. Furthermore, the
objective function values associated with various parameters
all converge to a similar value, which verifies the convergence
of the proposed algorithm.

For benchmarking the performance of the proposed algo-
rithm, we opt for the classic Genetic Algorithm (GA) and the
classic Greedy Algorithm (GR) for both stage-A and stage-B
in Algorithm 1. In the GA, the population sizes and generation
numbers are the same as the particle numbers and the iteration
numbers of the PSO and DPSO in Algorithm 1, while the
crossover probability and the mutation probability of GA are
set as Pc = 0.8 and Pm = 0.1, respectively. Fig. 10 contrasts
our results, where the position of the charging station is set
to (500, 0). Observe from Fig. 10 that the distributed-PSO
algorithm converges faster than both the GA and GR in the
context of both N = 5 and N = 10, which is because the
search trajectory of PSO is better guided than that of the GA
and GR as a benefit of its memory. Recall that the energy
efficiency of N = 5 is much higher than that of N = 10,
which is also seen in Fig. 5.

VI. CONCLUSIONS

Providing seamless long-term coverage in emergency sit-
uations is of vital importance. In this paper, we aimed for

optimizing the energy-efficiency of multi-UAV communica-
tion systems with the goal of providing seamless long-term
coverage in urban areas. Firstly, we introduced a novel UAV
energy consumption model and defined our energy-efficiency
objective function. Secondly, our energy-efficient rechargeable
UAV deployment strategy was optimized under the constraint
of providing seamless coverage. Thirdly, relying on PSO, we
designed a two-stage joint optimization algorithm for finding
the near optimal deployment strategy as well as UAV CRRS.
Finally, Our simulation results have confirmed the convergence
of the two-stage joint optimization algorithm.
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