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1 Event Details

Title Semantics & Knowledge Learning for Chemical Design

Organisers AI3 Science Discovery Network+

Dates 01/05/2019

Programme Programme

No. Participants 17

Location Solent Conference Centre

2 Event Summary and Format

This event was run by AI3SD and was designed to explore the different aspects of using semantic
web technologies in the chemical space, and to promote discussions about why these technologies
are so important and the different ways in which they can be used. The event was a full day,
hosted at the Solent Conference Centre in Southampton. The programme was made up of a
number of presentations, starting with the importance of provenance of data and a history of
the semantic web over the last 20 years with some details of where we are now. The event then
progressed to some more specific talks about using semantic web technologies in the chemical
domain, to make predictions and to model different aspects of chemistry in ontologies. These
presentations were all run consecutively so it was possible to attend each talk, and the final
order of the day was an expert panel made up of the speakers. There was plenty of time for
networking, as there was both a lunch and drinks session included as part of the day.

Figure 1: Solent Conference Centre
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3 Event Background

Designing chemicals, discovering new drugs, discovering materials and indeed all aspects of
scientific discovery are all tasks that are highly data driven, and Semantic Web technologies
are key to enabling researchers to deal with high levels of data in a useful and meaningful way.
Semantic technologies facilitate representing data in a formal, structured, and interoperable
way, and enable data to be reasoned over to infer potential relationships. AI3SD organised
this workshop to explore the ways in which Semantic Web technologies can be used to drive
predictions in chemical design, including using Machine Learning and other AI techniques to
exploit semantic links in knowledge graphs and linked datasets. This event forms part of the
AI3SD Event Series, which aims to bring people together around important areas of using
Artificial Intelligence for Scientific Discovery.

4 Talks

Figure 2: Professor Jeremy Frey

The session of talks was opened by Professor Jeremy Frey giving a short introduction to the
Network+ and the workshop format. In his talk Jeremy stated that the Semantic Web is the
missing link between data and AI. This workshop was organized to explore the different ways in
which Semantic Web technologies can be used for chemical discovery, and one of the intended
outputs of this workshop is to create an article or white paper about this event. Jeremy cast
our minds back to the AI3SD Launch meeting held at the SCI back in December 2018, noting
that whilst we had lots of fantastic discussions and presentations about Machine Learning, AI
and scientific discovery, there was a warning note sounded by our advisory board member Tony
Hey. The Government is backing AI very heavily, and have made a big bet on it with high
expectations of its prospects, If we fail to deliver more than just an incremental change, then this
could be more than the third disaster for AI and Science, and acceptability of science. We need
to deliver interesting and important things, and thus far people have had many misconceptions
about the Semantic Web and we need to put those right.

5 You did WHAT? - Dr Age Chapman

Our first talk was by Dr Age Chapman, an Associate Professor at the University of Southamp-
ton, and it centred around the importance of provenance. Age begins by saying, there has been
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Figure 3: Dr Age Chapman

a lot of work done to explain what is going on in Machine Learning, but in reality, this is a
great black box and there aren’t really explanations about what is going on behind the scenes.
Age makes these points with some real -world examples of headlines of stories, that mask a lot
of information behind their titles.

Example 1: “I sent more police officers to Oakland than Berkeley-Ashby’ - A recom-
mender system suggested that more officers should be sent to Oakland than Berkeley-Asbury,
but why? Underneath this system is a machine-learning algorithm that determines where to
send police forces. Using a non-racist machine-learning algorithm, this system will consider
information about the prevalence of recent crime among certain postcodes, and make recom-
mendations about which postcodes should have more police officers sent to them. This is an
explanation of sorts, but in no means tells the whole story. It’s also arguably not really a
machine-learning algorithm. It’s a mathematical equation for predicting where events will hap-
pen based on previous events. If a series of events get to a certain level then it is activated and
triggers a response, in this case to send police officers to a specific place. But is this actually an
accurate representation of crime? Does it mean that these areas will have more crime? What
data is actually being put into this algorithm? Seemingly data from the police forces is being
used, which means it will have a systemic bias. We already send more police to certain areas,
which raises the potential for uncovering crime -based activity in these areas, which in turn
means that they will hit the activation level sooner. The transparency required here isn’t just
about understanding the algorithm, it’s about understanding where the data for the algorithm
came from, and what was done with it.

Example 2: “I decided to investigate the effect of human/mouse MAPI on AB-
mediated inhibition of LTP” – This is a loaded title where a lot of decisions have been
made to ascertain what study to conduct. The backend searches of the right area to be invest-
igated here relied on the knowledge representation. But who did this? And how or why should
we trust it?

3



Example 3: “I issued a recall on burgers in school meals” – Why did you do this? How
did this happen?

These three examples all bring up the question of why? How and why did we get to these an-
swers? This leads us to provenance. This is a record of the history of creation and modification
of data. It is modelled as a series of entities or artefacts. We want to know who is using our
data, and if there is a problem with the data. Provenance is very important to the Semantic
Web. Take the third example of the burger recall from above. What is the chain of process?
How is it done now? Does this process occur from when somebody gets sick? Do we trace
back to records from the last inspection to see when this might have occurred? If we know that
something goes back to a certain place – what is the risk of ending up with an issue? And what
is the origin? Wouldn’t it be nice to know where to put the sensors, rather than waiting for
someone to get sick? This would be a better way to track and trace food and assess risk up and
down the food supply. But we need to capture what information is needed at each place. By
law this should be the way things are done, however realistically even in the best-case scenario
this information can just about be pulled into a digital record. If we can trace the food going
around the schools, then we can assess the risks and the certainty going forward. By using risk
models we know what the potential issues to look out for are, e.g. pathogens in the food such
as E.coli. However, in order to be able to do this we need to be able to go up and down the
food chain.

Going forward we need to be asking how and why did I get to these particular results? If we are
using AI we need to use the answers to understand the uncertainty and whether the informa-
tion should be trusted or not. We need provenance. There is a formal standard for provenance
(W3C). There are different ways of representing provenance information depending on what
you are looking to do. But, how do you capture the provenance and keep the chain together?
There are challenges when it comes to provenance such as identity issues. For example, if you
do a calculation and end with some data which is put on a shared drive. If you then make a
copy or email it to somebody or re-name it because you are working on the next version, then
how can people know if they are working on the same thing? You can use URIs to specify
different versions so you can make sure you work off the same document. This would require a
handshake so you can establish provenance.

To decide how to use provenance you need to think about your use cases, and what do you
care about using it for? For the food chain example, you need to care about where to put the
sensors and where contamination enters the food chain. It is important to have information
about the food, and storage temperatures etc. Whereas if we were looking to care about health
of sensors, we would want to consider the battery life on the sensors and capture information at
different points. Essentially, to successfully implement provenance you need to understand the
flow of information and how many people it goes through. This will allow you to determine the
capture points. You also need to decide what instruments you are using for this information
capture and how that information is going to be stored. Provenance can be used as a new data
stream, the metadata can be captured and record where a source or process is tainted. We need
to consider where the data is actually coming from and who has touched it along the way.

Age’s gave us two final take homes from this presentation:

1. Unfortunately provenance suffers from us not eating our own dog food, as does the Se-
mantic Web. There are many advocates of this technology but unfortunately it is fre-
quently not used in practice. Equally there are some systems that lend themselves really
well to provenance, and others do not, which means that they frequently get disregarded
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with respect to recording provenance information. We need to be using the technologies
that the community produce. Furthermore, when publishing standards it shouldn’t be
a case of publish and forget, we need to active and critical consumers of the things we
produce.

2. Secondly, it is exciting to do AI for science, and it is important to get better techniques
and know what is going on in the black box with the AI but we need to know what is
being fed into the AI, what is the AI used for and what did the data look like and what
happened to the data? It’s complicated enough to follow a process that exists, let alone
one you are unable to envisage. In scientific discovery we do things for one reason and
create data and we don’t know what it is going to be used for, and we do our best to
describe it. We need a tool to teach best practices and enable us to do this better.

6 The Semantic Web at 20: Lessons from two decades of devel-
oping Linked Data Applications: Dr Nicholas Gibbins

Figure 4: Dr Nicholas Gibbins

Our second talk of the day was presented by Dr Nicholas Gibbins, an Associate Professor at the
University of Southampton who has a long history of working with Semantic Web Technologies.
He was actually on the team itself that produced OWL and part of the team who won the first
Semantic Web Challenge.

Nick began his presentation by reminding us that it has been twenty years since the first RDF
standard was published. In 1999 Tim Berners-Lee outlined his vision for the web which links
to the Semantic Web. We weren’t there in 1999 and realistically we still aren’t quite there
now, and it isn’t 100% clear how we are going to get there. Realistically the Semantic Web
is symbolic AI (as opposed to non-symbolic AI such as Machine Learning) and AI has been
through several blunders over the years. The 1993 report killed off all AI funding except for
projects that didn’t specifically explain that they were AI such as expert systems and neural
networks. There have been fashions with AI and Symbolic AI came into fashion in the 70’s.
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So knowing that the Semantic Web is Symbolic AI, what is the Semantic Web? The Semantic
Web brings context and meaning to data, and has three main strands of technologies.

• RDF [1] (Resource Description Framework) which represents the data in triples of the
form (subject → predicate → object)

• RDF Schema [2] (RDFS) and OWL [3] (Web Ontology Language) which are languages
used to create ontologies

• SPARQL [4] which is the query language of the Semantic Web, which uses an SQL esque
syntax

Figure 5: Semantic Web Layer Cake [5]

It has been 20 years since RDF was first published, but has it grown since then? Tim Berners-
Lee said in his vision that there should be a lot of data on the web. There is a project in
Germany that tries to track data on the web published using Semantic Web technologies. They
have shown that the Web of Data was quite small in 2007, but has grown significantly in the last
twelve years. However, there are definitely some domains that are more prevalent than others
in this Web of Data. Figure 9 demonstrates that lots of data is being published, particularly
by domains such as the life sciences but is it actually being used? And if so why not?

Nick has put together nine lessons for the Semantic Web, focusing on some of the missteps that
have been taken so far, and providing recommendations for enhancing the usage of Semantic
Web technologies going forward.

Nine lessons for the Semantic Web

1. Beware of the Hype – Early publications raised an unrealistic hype, such as Tim
Berners-Lee and Jim Hendler’s famous article in Scientific American in 2001 [7]. This
is extremely unrealistic. The Semantic web isn’t a silver bullet and it isn’t good for
everything, for example, it isn’t particularly good for quantitative data, it can be repres-
ented but it’s not natural. The Semantic Web is not good for reasoning with uncertainty.
However, it is good for representing qualitative data, combining heterogeneous data and
facilitating interoperability. Lesson: We need to be aware of what the Semantic Web can
do.
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Figure 6: Web of Data [6]

2. A Little Semantics Goes a Long Way – The semantics in the Semantic Web should
be used with a lowercase s. It is important to remember that a small amount of semantics
goes a long way. We mostly only need a light touch of reasoning, and reasoning at
scale with expressive languages is expensive. The initial Semantic Web standards were
expressive ontology languages where OWL and RDFS complicated each other with their
presence and these technologies weren’t user centred; it was a solution driven project
which made things too complicated. Nobody asked the users what they wanted, and it is
imperative to include the people. Lesson: Going forward we need to play to the strengths
of the technologies when creating ontologies. For a lot of things you may only need RDFS
reasoning, and you won’t always need OWL reasoning. Furthermore, if you have a very
large dataset then you aren’t going to want to perform OWL reasoning over the entire
dataset.

3. It’s the triples, stupid – Early Semantic Web development included an XML push,
and realistically RDF-XML wasn’t a great idea and it wasn’t particularly well behaved or
usable. It was arguably the worst of both worlds. It was a verbose format that didn’t play
well with any XML tools or formats that other people were using. Because RDF-XML
wasn’t overly useable, other members of the community kept coming up with new formats
such as N3, Ntriples, Turtle, RDFa, JSON-LD. This resulted in wasting time on arguments
about the right format to use and promote, when in reality it is irrelevant. What really
matters is that RDF has the underlying simple triple model. We are representing the
triples and these formats are just about how we write this stuff down, and there are
multiple libraries for conversion if necessary. Lesson: If you are going to use SW you need
to be format agnostic.

4. The Myth of “build it and they will come” – Just because you put your linked data
online doesn’t mean anyone will use it. There was an early enthusiasm for Semantic Web
with Government Open Data, but people didn’t use it. Complex technologies typically
have high barriers to adoption and usage. Realistically it takes significant effort to publish
semantic open data and yet people don’t’ seem to be seeing the benefits. So then is it
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worth it? Lesson: To see a return on this you need to understand how and why users will
use your data. Be supportive of your users, make your data accessible and your processes
sustainable.

5. The Semantic Web is part of the Web – Tim Berners-Lee’s vision was about links
between data, but seemingly people forgot about this for the first 10 years. The early
standards focused on representation and query languages like OWL and SPARQL. We
use URIs to identify SW resources. But what do they mean and what can you do with
them? What happens if you put a URI that identifies a person into a web browser? These
people won’t appear so what should? This opens up philosophical discussions about what
should happen here, and these questions weren’t thought about at the beginning. Lesson:
Need to follow the hard won modern best practices, which is still a difficult thing to do!.

6. It matters HOW you publish! – It’s not enough just to put your data online, but
how do you do it? Does it go all in one big file? Should you break it down? That would
be easier for consumers who only want to access specific sections of the data, but it is
more effort for the publisher, and additionally more effort for consumers if they do wish
to retrieve all of the data. You could also offer query interfaces so you can get what you
want, but SPARQL queries are expensive and also require an understanding of SPARQL.
Lesson: When you publish consider how your users will want to interact with the data,
and model how it is going to be used.

7. Context Matters! – In the early days of the Semantic Web, the Semantic Web Layer
Cake was created (see Figure 5), and trust was at the top of these layers. What do we
mean by trust now? Who said something (digital signatures) and evidence that they were
telling the truth? Tim Berners-Lee was talking about mathematical proofs but now we
should be talking about provenance. If you publish something online, why should users
use your data or trust it? Lesson: You must publish data with metadata and give them
enough information to use it! Who published it? When was it published? Where did it
come from? Use the Provenance ontologies (Prov-o).

8. ‘Standard’ is not ‘Mature’ – There are countless standards in W3C, and not all of
them are mature or independent; therefore just because something exists as a standard, it
doesn’t mean that it will always be worth using. W3C demand that you publish standards
with examples of implementations. Which is good, but even if they’ve come through this
process they may not scale or have been tested widely, and quite a lot aren’t used. This is
the chicken and egg issue, which perpetuates in Semantic Web technologies. There is no
point in adopting technology without an implementation, but there is equally no point in
implementing technology without users. Lesson: Make pragmatic decisions when choosing
technologies. Do you have access to robust mature implementations? Do your users?.

9. Eat your own Dog Food – Similarly to Age’s presentation the final point here is to
practice what you preach! We produce and promote technologies that we don’t actually
use and we are good at producing and promoting data that we don’t use. Don’t publish
and forget! You can’t expect your users to put up with what you won’t put up with
yourself. Lesson: We need to make sure that we are active and critical consumers of what
we make.

So what are our future directions? The Semantic Web is twenty years old and has pretty fixed
foundations with respect to it’s technologies. RDF, OWL and SPAQRL haven’t been updated
briefly over the years but a realistically pretty fixed and are now at a quite robust stage. Some of
the technologies seem to be at a dead end such as Semantic Web Services, and Rule Interchange
Format. There is currently no industrial use or academic research around these technologies.
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Some of the more recent standards work at W3C has been to create a linked data platform
to make the Semantic Web part of the Web finally. There has also been work done towards
representing the context of published data using prov-o and derived ontologies. Finally they
have been supporting the use of Semantic Web technologies in specific domains, with domains
specific ontologies and community ontology endeavours such as schema.org, which is used to
semantically represent websites so they can be better searched. As shown by the Linked Data
Cloud in Figure 9, the life sciences community is very active in this area and the life sciences
and chemistry communities have been conducting a lot of this work themselves, whilst W3C
tries to work out the bridges between these communities and identify where more things could
happen. To conclude, we have the technologies; we now need the human endeavour to push
them forward.

7 Challenging Chemistry: Solving Molecular Problems - Pro-
fessor Jonathan Goodman

Figure 7: Professor Jonathan Goodman

The third talk of the day was given by Professor Jonathan Goodman, who is a Professor of
Chemistry and Director of Studies of Chemistry at the University of Cambridge where he also
serves as Academic Dean. The focus of Jonathan’s talk was around solving molecular problems.
He begins by pointing out that AI has already begun to change the way that chemistry is done,
and there have been promises that AI will “revolutionise” chemistry, but there are still many
things left to solve. So what is holding us back?

Chemistry is quantitative, uncertain and complicated, which isn’t ideal for semantic analysis.
There is a plethora of chemical data and a lot of it isn’t well understood. Provenance is very
important in this area as when data comes out of a machine, scientists want to know where
it came from and what assumptions went into creating it, and the theories that underpinned
those assumptions. We need the tools to achieve this but the currently available tools aren’t
suitable, and there aren’t many people working on the types of tools that are needed.

Taking the periodic table as an example, when it was first conceptualised it looked somewhat
ragged, with the impression that something was missing and that it was clearly a work in pro-
gress. Realistically today it is still a work in progress but additional work has been done to
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make it look tidy, which could be perceived to be a solution but in reality, this does not change
the fact that there is still a lot of unknown information surrounding it.

Work has been done to try and use Machine Learning on the periodic table to discover which
elements are connected to which other elements using chemistry papers. This approach used
the Bag-of-Words Model [8]. This Machine Learning algorithm identified that Palladium was
very similar to rhodium, but was substantially less similar to silver.

This type of unsupervised learning can elicit information that makes sense, and even though
there are likely to be errors in singular papers, it could be hoped that these would be averaged
out using a larger set of papers. If surprises occur then these should be questioned and investig-
ated. Realistically we should be able to figure out what is going on, even with uncertainty. For
example if you have a star diagram, and you identify a new star, you can be fairly confident that
it will fit into that diagram, and you can be equally confident about where there are unlikely
to be any stars.

However, as discussed above, chemistry is a really difficult and complex domain. Creating new
molecules or transformations is hard. We know about 108 molecules, and about 10200 small
molecules that are possible. But does every molecule we know about help us to explain the
10192 molecules? This is a very complex problem, and arguably an even more complex problem
is chemical reactions, we know about 107 reactions, but how many more are there?
We have a lot of data about the molecules that we do know about, and potentially have com-
puter science tools that will help us analyse something. We can try and use successes and
surprises in predicting how molecules should behave to try and discover where our knowledge
is limited and uncover new ways to solve molecular problems.

Jonathan then considers some areas in which Machine Learning could be used to further molecu-
lar research. For example, take maitotoxin, the largest single molecule that has been attempted
to be synthesized. It has a ‘repeating’ pattern expect for a single ring which is arguably ‘odd’.
How can we know this is the right structure? This is the sort of molecule you could look at
through one shot learning than through traditional Machine Learning ways, to understand this
you need to generate all the molecules like it and put into a neural network or Machine Learning
algorithm. Or you could just look at this molecule and consider the interesting points and find
exceptions. Machine learning is good at looking for patterns in the data and finding exceptions
so this could be a helpful tool in this process.

A second example was to consider a smaller molecule: C168H338. This is an interesting but
complicated molecule. Even though it looks simpler than maitotoxin, there are more possible
isomers than particles in the universe, and even though many of these are impossible to make,
there are still countless different potentials. This raises the question of what is the smallest
molecule that cannot be made? This motif could be checked for in the possible isomers, to
identify if it is disallowed, but the ratio of allowed to disallowed drops to almost zero when
looking at all the possible isomers. The chemical space is extraordinarily complicated, as it
you make a tiny change in a molecule it can vastly change the properties of the molecule. And
in addition to these complexities, it is still very difficult to get hold of the necessary chemical
data to perform this research. We need to identify how computers can help in these instances.
Chemistry knows and understands a lot of these points, but how can this knowledge be repres-
ented in an ontology? We need data to be accessible in a way that it can be made use of by
computer science tools.

Accessibility is a key issue here, to both data and research. We need access to data to be able
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to discover the peculiar links that will further research. Things are changing with open access
publishing in ways that we don’t understand. Universities are struggling to afford the expensive
journals, and are starting to move more towards open access publishing, although that is still a
costly endeavour. However, hopefully that should on average make more chemical information
available that we currently have. Additionally, there are some chemical data providers such as
the International Union of Pure and Applied Chemistry (IUPAC) [9], The American Chemistry
Society (ACS) [10] and The Royal Society of Chemistry (RSC) [11]. However, we cannot hope
to make any real steps forward without computational help, and to do this we need the data!

This data also needs to be in a format that can be consumed by the Semantic Web and AI
technologies. The patterns that chemists are looking for aren’t actually that complicated but
the data that holds this information needs to be able to be formatted in a way that makes
it computationally accessible, and currently chemical data is currently not in a format that
could be easily handled using these technologies. For example, if we are creating something
dangerous such as hydrogen cyanide, how can we get this across in a research paper? Highlight
it? Could we write a program to put this into RDF and automatically make these connections?
Realistically we should be able to answer this now. There is probably a lot of data that could
make products safer but we need to work together with computer scientists to put the data into
the correct semantic formats to actually do this, as the chemical data isn’t there yet.

This could be addressed by putting molecules into a usable format such as InChI Keys [12]
which are a text encoding of a molecular structure, but this could cause clashes as there are less
InChI keys than there are molecules. Further, InChI keys don’t work for everything, they don’t
work well for organometallics or reactions yet either. We should be making things FAIR [13]
and if this is achieved we should be able to handle our molecular data better. All molecular
data comes from a complicated process. Do we have the right structure? We often do, but can’t
always be certain that what we think we have is what we actually have. Certainty is less 100%
but tools are being developed to increase this. If we do this well we can make more of the data
we already have. We should be able to get a computer to pull out patterns in a large group of
papers. However, again a significant barrier to this is getting the data available in a convenient
form and being legally allowed to re-use it.

A key conclusion here that reverberates around every Machine Learning discussion, is that
Machine Learning needs data! Tools are being developed to try and ensure that data doesn’t
leave the laboratory without being appropriately captured and now we need to work together
to get chemical data into an accessible reusable interoperable form so the powers of Semantic
and AI technologies can truly be realised to make significant progress in the areas of molecular
discovery.

8 Semantics vs. Statistics in Chemistry – Dr Colin Bachelor

The penultimate talk of the day was presented by Colin Bachelor, a theoretical chemist by
training who works at the Royal Society of Chemistry. Colin took us through semantics versus
statistics in the world of chemistry. This talk comprised five main sections, beginning by dis-
cussing the different approaches of Semantic Web technologies and statistics, highlighting some
important questions about these areas in 2011, discussing the notion of whether you can tell if
something works or not, followed by detailing the work that has been done at the Royal Society
of Chemistry in this area, and finishing with some tentative conclusions.

Colin begins by introducing the notion of semantics vs statistics, and noting that this talk could
also have been entitled “rationalism vs empiricism in chemical data”. So what are these two
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Figure 8: Dr Colin Bachelor

approaches? We have language as a formal, logical system; or language as a use. We have
gotten quite a long way with the first one.

Colin introduces us to two important quotes about the notion of language. Firstly, one by
Karen Spärck Jones, who created the search engine and coined the quote “words stand only for
themselves”. Secondly J.R. Firth, a linguist who stated “You shall know a word by the company
it keeps”. This notes that we need to know about the words around a words, e.g. cat can mean
different things depending on what words it is next to. Realistically, this is a statement about
context, and the Semantic Web puts things into context and gives them meaning. Whereas
statistics can be used for deep learning.

These two approaches use different types of classifications. The Semantic Web approach is Ar-
istolian, using hierarchies and ontologies; whereas for statistics the approaches are unsupervised
such as clustering, but they identify a set of features. These can be combined by using formal
concept analysis and essentially creating tick boxes for all the different features and creating a
diamond lattice of your ontology.

Despite how long the Semantic Web, and indeed AI technologies have been around, there are
still many questions surrounding how to use these technologies and around what their true
capabilities are. The questions that were posed around these areas in 2011 were:

1. What can you achieve through letting words or images stand for themselves? - What are
you actually trying to do? Is it solution led and you have the capabilities of OWL2 etc
and you look for a problem to apply to it.

2. What do you hope to achieve through semantic markup?

3. What kinds of non-textual internal data do you have access to?

4. What can you do with your non-textual data?

5. What external data do you have access to?

We have suffered some AI Winters, for example in the 1970’s and 80’s, but we are now living in
an AI Summer, and these questions are still relevant, particularly questions 3 to 5. Which leads
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us to the big question of: How can you tell if something works or is valid? There are typically
two ways of approaching this, intrinsic criteria where a system is evaluated with respect to its
overall objective and whether that objective has been met, or by extrinsic evaluation whereby
a system is evaluated based on its functions in a specific context, such as usage or usability.

Colin then took us through three projects that have been worked on by the Royal Society of
Chemistry in the area of semantic technologies.

Project Prospect: This project involved semantic annotation of chemistry articles using
manual annotation and text mining to produce enhanced HTML, RSS feeds and open source
ontologies. It is already possible to extract chemical structures using molecule names as these
are a structured language in themselves, and equally code can be written to extract chemical
structures from binary files such as ChemDraw files. Therefore, the rationale behind this pro-
ject was to understand what hand created ontologies could add to chemistry articles beyond the
tried and tested methods of indexing and searching by chemical structures. As part of this pro-
ject, the Named Reactions Ontology (RXNO) was created [14]. This was done by getting two
experts with synthetic organic chemistry PhDs to annotate documents individually to classify
batches of reactions, and then see how their classifications compared to each other. The differ-
ences were discussed and the guidelines were put into a flowchart. Unfortunately, this does have
limitations as much as RXNO was classified by hand and as such automatic reasoners cannot
copy very well with it. This project was evaluated partially by usage and partly by impact. In
this instance there wasn’t entirely solid evaluation criteria as there was uncertainty about what
to look for. More information on this project can be found in [15].

Subject Categories for RSC Advances: The idea behind this project was to divide up
megajournal (RSC Advances) [16] into browsable chunks using bag-of-words and bag-of-cited-
journals [8] and output a contents page. If it is citing new combinations of journals then that is
worth noting. More categories mean that it takes longer to calculate topics, e.g. if you have 100
categories then 80% of these will potentially look interesting and the other 20% won’t be worth
using. These categories will be created by taking suggestions from editors and selecting a seed
article and iterating until you are satisfied with the generated list. This project was evaluated
partly on usage and partly via governance. Realistically uptake has not been significant. This
could be because of the design of the website or because it isn’t something people actually want
to use. A potential lesson here is that whilst a research board of a project might be in favour
of the outputs, doesn’t mean the users necessarily will.

OpenPhacts: This third project was to use shared identifiers to describe disparate data of
interest in drug discovery, and output large RDF files for input into industrial systems. Two
dozen properties were calculated for > 106 molecules using the CHEMINF ontology [17]for
cheminformatics, the QUDT Ontology [18] for units and measures, and ChemSpider [19] for the
molecule IDs, This project was evaluated based on whether it worked and then its take-up by
industry, which was a difficult and anecdotal way to measure success.

Colin then took us through some of the aspects of the core technologies that make up the Se-
mantic Web.

So what is RDF? Everything is binary and there are no variables, things are divided into pre-
dicates, individuals and classes. This has similarities to First-Order Logic, although this only
has predicates and no classes. Although OWL can use logic of this ilk for reasoning and infer-
encing. OWL however provides sophisticated class handling and facilities handling classes and
predicates together. This suggests that RDF subjects and objects (in the subject → predicate

13



→ object formation of a triple) should be the ones to do the heavy lifting, not the predicate.
Hence in OWL ontologies a lot of the logic is attributed to the classes rather than the predicates
(which are referred to as object properties and data properties in an ontology).

When you are creating RDF you can choose what your triples look like as there are a number
of representation options:

• Dublin core – everything lives in the predicate, and this has a large amount of predicates.
OWL is good at handling classes but less good at handling predicates.

• Ad hoc Semantics – write down sentences and make links based on English. Here there
is no clear division of labour between predicates/subjects/objects.

• Event Semantics – this reduces the work done by predicates.

In conclusion. Semantics can mean all kinds of things. It can have explicit meanings or abstract
meanings, and there are a wide variety of types of semantics such as event semantics or ad hoc
semantics as detailed above. There is no one set definition, in fact the more meanings of
the word semantics you come across, the more lenses you have to look at a given problem.
Furthermore, data for semantic representation can come in all different forms such as tables,
pictures, protocols etc, and you need lots of information to be able to make the correct decision
about which semantics to use, and generally this will depend on the data available and the
overall aims of what you are trying to achieve with the data as to which method or methods is
the most suitable.

9 EMMO (European Materials & Modelling Ontology): se-
mantic knowledge organisation for applied sciences - Dr Al-
exandra Simperler

Our final speaker of the day was Dr Alexandra Simperler from Goldbeck Consulting. Alexandra
works on the EMMO Project, which stands for European Materials & Modelling Ontology [20].
This project is between Goldbeck Consulting, Access, SINTEF, The Fraunhofer Institute IWM
and the University of Bologna.

Alexandra begins by giving us an introduction into ontologies. Ontologies are for if you need
to connect data, or discover new things, or discover new materials. Thus far the Far East is
dominating with ontologies to generate materials ontologies. However, most of these are unfor-
tunately short lived. Typically someone will decide that they need an ontology for a specific
purpose, create it, and then it will disappear over time.

There is a drive for interoperability, people want to work together and unify and standardise.
Examples of this can be found everywhere, such as the Allanthrope foundation. Typically when
you buy different equipment for analysis, these pieces of equipment would all use different file
formats, which didn’t interface with other pieces of equipment. A set of companies got together
to address this issue and created the Allanthrope foundation to facilitate unification. Another
example is the ISO Standards which are used across industry. These standards require at the
very least, taxonomies of terms.

Ontologies are also created and used in a bid to facilitate interoperability. Alexandra talks
through the Semantic of Knowledge Organisation Systems (as shown in Figure ??. Starting
from the bottom you have a list, and need to consider what should go into the list and how it
can be handled. Next comes the informal hierarchy such as a table of contents or xml, which
then go into a thesaurus to check for things that have the same spelling but different meanings.
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Figure 9: Web of Data taken from: [20]

This is followed by syntax interoperability. To reach semantic interoperability we have to start
with a taxonomy (formal hierarchy). The final piece in the puzzle is OWL, which Alexandra
compared to a spiders web as it can weave many complex relationships between your taxonom-
ies. These can be made as complicated or as simple as is necessary.

There is a big issue across ontologies with respect to speaking the same language. There is a
language issue as people speak about the same things in different ways and there are different
terms for the same things, and the same terms for different things across different disciplines.
With respect to reviewing materials modelling, we want models, where the models are optimistic
models with a chemistry equation (e.g. Schrodinger equation), and then the materials equation,
which together form the optimistic model. When people talk about multiscale modelling they
dispute over how they do this. Looking at the granularity the model goes for could do this, or
potentially one could take a picture of material and run a quantum chemistry equation on it.

In April 2018 the CEN (European Committee for Standardization) Workshop Agreement CWA
17284 was made with respect to “Materials Modelling – terminology, classification and metadata”.
The Modelling Data (MODA) is formed from the following components:

1. Use Case

2. Start translating this into the model – different questions about this model

3. Solver

4. Raw Data → need to do some post processing to get further

This requires formalisation and reasoning, and poses the question what should the EMMO
(European Materials & Modelling Ontology) be able to do? Should it be able to take a use case
from the real world, create an ontology to provide philosophy around everything that plays a
role in this use case? This would involve involves software, model, and measurement techniques
etc.

With respect to the EMMO there are only four primitives: the taxonomy (classification),
mereotopology (parthood and slicing), semiotic (philosophy), and the set theory (membership).
In the ontology world, physical entities are used to describe other physical entities, there is a
user world and a physical world. One can begin with an abstract concept of terms and progress
to the geometric/topological level and then to the physical level. EMMO gives users a way to
communicate their interpretations but is not an automatic connection between the real and the
ontological world.
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EMMO material entities are defined by a hierarchy of parthood relations, and can maintain its
granularity. Axioms are important! For example, birds can fly, but penguins are birds and they
can’t fly. We need axioms to stop us coming to the wrong conclusions.
The core of EMMO can be broken down into three layers:

• Abstract Conceptual Layer – clear separation between the set (set theory) and item
(mereotopology)

• Geometrical/Topological layer – this module works with space and time, and can be
time sliced in time, space or time and space

• Physical Level – real world entities

EMMO also contains semiotics, which are needed to determine the correct context, as translat-
ing between different languages and terms is more than just going word for word. As discussed
above different disciplines use different terms to describe the same thing, and the same words
to describe different things and therefore context is imperative.

The University of Bologna (a partner in this project) has a strong philosophy department and
the need for a philosophical input into the ontology was cited, although equally it was noted
that neither a physicist not a philosopher by themselves would be best placed to create the
ontology, and therefore they decided to work together.

EMMO is continuing to be developed and there are plans for its usage over the next few years
in materials modelling and ontologies. It can be used in many different fields including science,
modelling, AI and Big Data Analysis, Characterisation and Industry.

So where do we go from here? The Materials Modelling Council funding comes to an end in
august. This project has laid the foundations and they have been looking for things to make
this council go further, and it’s important to note that whilst the project has the word European
in it, it is for everyone to get involved with.

10 Discussion

The final discussions at this meeting were towards forming an action plan. Professor Frey star-
ted off our meeting by discussing the eScience projects and how at that instance the core pieces
were there but the required tools were not. At that point it was possible to sell the idea of what
could be done with linking data, but the tools and the triple stores did not work appropriately
at that time. The first version of a semantic ELN at the University of Southampton was on a
tablet for portability in the lab purposes [hughes2004semantic], but the memory and network
speed meant that the RDF graph of an experiment was not held on the tablet as that wasn’t
feasible. There were no specific boundaries to running software on the tablet so when it realised
that there were connections missing it added them, but then when it resynced with the triple
store after the experiment had been conducted it raised duplication issues. Realistically now
this would be less of an issue, but at the time this was a considerable problem. We need good
practice for creating these pieces of software.

Professor Frey queried the workshop group to discuss the pain points and where issues arise in
the current world of using Semantic Web technologies. A major pain point that is brought up at
every meeting we run in one way or another is regarding data. In this instance, the pain point
is that we spend a lot of time reconfiguring data from different places. Could we do something
here? Can the Semantic Web help? We consume data and produce it, and we know about the
issues regarding bringing data in but we often magnify the issues. What would we have liked
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someone else to have done to make the input data better?

Suggestions included:

• We could make use of the Software Sustainability Institute (SSI) tool [21]. This tool will
let you know if your software is sustainable and provide tailored advice on whether it is
worth preserving and how to improve it.

• We need software data tools that can answer questions such as: Is my data shareable? Is
it worth putting onto a database or an international database?

• Making sure that any data that is published comes with some sort of analysis tool so
people can make better use of it.

• Making ontologies available: Lots of academic papers detail the creation of ontologies but
don’t give any tangible link to where others can access this ontology.

This raised the question of what is reasonable to ask people to do with respect of their data?
Asking people to add a lot of metadata can prove lengthy and take a lot of time. We need to
identify the minimum subset of data requirements to make our data more useful. For example,
there are issues with producing the right metadata for models. Less information is needed to
describe the model than the terabytes of simulations, but it requires a lot of work to figure out
what is important, and some of the issues may only surface years later. It is also very difficult
to represent uncertainty in data; heterogeneous data can be represented but this doesn’t allow
for calculating the uncertainty. Potentially this needs to be calculated elsewhere and inserted in.

Another pain point that was referenced was how can one compose a patchwork quilt of different
Semantic Web approaches and toolkit. There is currently no unified representation. Addi-
tionally, there is uncertainty about how to remove information from the Semantic Web. For
example, if information about a molecule is made publicly available, and that information is
then found to be wrong, how does that information get removed? A further pain point is also
the nature of OWL property assertions, as OWL2 can have negative property assertions and
this causes inconsistencies, this is a known issue and potentially this is up to provenance to sort
out.

Following on from the issues related to removing incorrect information from the public domain,
there was a pain point issue raised in relation to journal papers, publications and reviews. Lots
of bad papers are currently slipping through the journal submission and review process and this
needs to be addressed. It is often not possible to check the data and code that is submitted
alongside these papers (assuming of course that it is submitted in the first place).

11 Action Plan & Conclusions

Overall, we need to set some examples of good practice. Semantics need to be appreciated for
that what they actually are, and not underappreciated because they have been given unreal-
istic promises to live up to. We need to find ways to minimise the effort and demonstrate the
real benefit that can come from using semantic technologies. Additionally, systems that use
Semantic Web technologies don’t always need to be really complicated, and we don’t always
need to use every high-level complicated feature available. Technologies should potentially only
be used in the correct context for their use and we need to decide on a minimum level for this,
and also ensure that the remits of these technologies (like the Semantic Web) are made clear
so there are no misinterpretations, and ensure that they aren’t made to sound unnecessarily
overcomplicated in presentations such that others perceive them to be too difficult to use.

17



The idea of plug and play with ontologies is a lie, we need to push for good upper level on-
tologies that can be expanded out into domain specific ontologies. We need to provide users
with an easier way in, and whilst we can use features during creation of these tools we cannot
rely on our users to make use of them, and we should be making our tools clear and simple to use.

We need to establish best practices. From the perspective of data, we need to decide on a
consistent standard and minimum set of requirements for datasets. Ideally there would be some
uses cases for where data can be tagged and or represented semantically. As we have so much
data and it is constantly changing, capturing this for reproducibility is hard, and this approach
is the only way that will make it possible. We need to set examples of good practice and in
the nature of eating our own dog food, provide provenance for each piece of data (or perhaps
create a tool that can do this automatically).

Similarly, for software we need to tune how we publish this to ensure that it is done in the
most useful way. It isn’t enough just to make software open source or publicly available, you
need to publish explanations and guidelines alongside the code. For journal papers we should
be making archives available of well curated data as demonstrators, to demonstrate the gold
standard that the scientific community needs. There could also potentially be a new role in this
process for data editors or reviewers, who review journal papers purely from a data perspective.

Finally, we need networks! There are people working with AI in many different areas, but we
need to expand the Semantic Web community! AI needs Semantics and the AI community
should be taking up these technologies both to enhance their own research and work, and to
make improvements in the usage and accessibility of semantic systems.

12 Participants

This was a small workshop attended by 17 individuals from industry and academia and a range
of disciplines. The majority of the participants were from academia, but there was still an
industry representation, and the participants expertise ranged across different aspects of both
Chemistry and Computer Science, including those with expert knowledge on Semantic Web
Technologies.

13 Related Events

For those who are interested in getting involved with the Semantic Web community and at-
tending related events there are some additional events that cover similar areas of interest.

• Semantics 2019 in Karlsruhe, Germany (9th-12th September 2019)

• ISWC – International Semantic Web Conference in Auckland, New Zealand (26th-30th

October 2019)

• ESWC – Extended Semantic Web Conference in Heaklion, Greece (31stMay-4th June 2020)

Each of these conferences are for presenting Semantic Web based research, innovative techno-
logy and applications.

Upcoming events of interest can be found on the AI3SD website events page.
http://www.ai3sd.org/events/ai3sd-events
http://www.ai3sd.org/events/events-of-interest
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