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Cable Equations

The program calculates the configuration of the cable
system in the presence of a steady state current alone, in the

absence of time dependent excitations,
The differential equations for the steady-state

configuration are well known and take the following form for

the co-ordinate system as in figure 1, e.g. Berteauxw.
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where T cable tension

¢ = angle of the cable segment from the vertical
s, = reference p?ble length (T = To), measured from
initial point
To = reference tension
I, G= normal and tangential drag forces, per unit
length, acting on the cable, respectively.
w = weight of the cable per unit length in the
fluid. .
& = stretched cable length measured from initial peint
€ = cable strain, & =0, T = To
= horizontal displacement, +ve to the right
Y = vertical displacement, +ve to downward

For smooth, approximately round cable, the normal and
tangential drag may be taken as respectively proportional
to the squares of the velocities normal and tangential to the

cable.

Thus
I=2pcC dc lc_] 1
2P %p n'n

=L
¢G=5ecCrdc |c]|

where_ﬁiis the fluid density
CD,
d cable diameter

CT normal and tangential drag coefficients

Cn component of the current normal te the cable, C cos¢
Ct component of the current tangential to the cable, C sin¢

C magnitude of the current, acting in the x-direction only.

The tension strain function is assumed to be of the form

€2
T=T + C £ 3
o 1

where Cl constant of elasticity, Cl = AE for linear elastic.cable

A cross sectional area T 62/4 for round cable

E modulus of elasticity



C2 an exponent, Gz = 1 for linear elastic model.

Thus equation 3 enables a non-linear tension strain

relation to be modeled by only two inﬁut variables C. and C

1 2

It is often convenient to express € as a function of (T—To)

in order to eliminate it from the cable equatiors (A+E)

o )1/C2
Q

€1

Thus €

Intermediate Bodies

In the integration of the conditions at the top of the
cable, it is assumed that:these are known; the integration of
the cable equations proceeds down the cable. To allow for
discontinuities in the cable, the integration procedure must
be interrupted, and the unknown cable variablesTu, ¢u below the
body must be related to the known wvariables Tk' ¢k above the

body. For two dimensional cases the egquations become

Tu = /Q(sin¢k) Tk + D¥)2+ (—Tk cos¢k + WB)2 5
b - o { ) :
where Dx = the drag on the body
WB = the weight of the bedy in the fluid
D= %- P CD-Ax clel 7

\

CD Ax is the drag area of the body for the flow in the x-direction,

Boundary Conditicns

The integration of the differential equations is most

convenient when the tension T and the angle ¢ are known at one



end of the cable. These will be known for certain cases of
single—pointmobred cables and towing cables. For the moored
cases, the program starts with the known condition at the top
of the cable and integratés the five differential equations
until the lower end of the cable is reached. This is the
simplest case for the program, since the numbering of the cable
segments starts at the top. For towing cables, where the conditions
‘are known at the lower towed end, the program integrates the
equation twice. They are first integrated from the towed body
to the upper point, thus fixing the conditions at this point.
Then in order to conform to the numbering system which is

used for the dynamic calculation, the equations are integrated

once again from the upper point down to the lower towed body.

In many applications, the values of T and ¢ are not known
a prioriat any point along the cable. It is necessary to
treat these cases as boundary value problems and use iteration

technigques to obtain the soclution.

The program centains two iteration schemes of particular

interest to sonobuocy systems.

A. A cable of given length moored in a given ocean
depth.
B. A free floating cable system.

For a long wave, according to linear theory, the wave

particles prescribe the following motion

gﬁ.;'a e XY cos (kx - wt + 6) 8a
Y, =" 2 e sin (kx - wt +'8) 8b

where X 0 Yw are the water particle displacement

a is the wave amplitude
k is the wave number = 27/A
X is the wavelength

w is the radian freguency = 21f = ¥2wg/A for long waves



is the wave frequency
is time

is gravity constant

@ Q it H

is the wave phase angle

For an ‘irregular sea consisting of N distinct components, the

resultant water particle displacement are obtained as

_ °©N ~Kkiy -
gw = izl ai e cos (ki X mit + 61) 9a

e ¥1Y gin (k;, ¥ - w.t+ Bi} 9b

S I =t i
: i=1
The program allows the user to specify the irregular seaway in

one of two ways.

6,, a, for 9a and 9

1. By specifying N, ki, i "

2. By using a known energy spectrum S(w)

The latter defines the wave amplitudes as

a; = 'fs(wi)Aw 10
where wi = mi_l + Aw .
Aw = (mu 5 mL)/N

0 is the upper limit of w's

mL is the lower limit of w's

-B/yd
e fud 11
w

fl

The program uses Si{w)

where A = 0.0081 g2, B = 33.56 hiz, where h% is the significant

wave height in feet. The values of Bi are evenly spaced from

Bl to 360 + Bl degrees.



Prescribed Surface Motions

The program allows the user to prescribe the motion
at the surface or to describe it by means of differential

equations of motion for a surface buoy.

If the surface buoy or ship is sufficiently large
that its motions are not dppreciably affected by the presence of
the cable, these motions may be calculated separately and used

as input for the present program.

The program considers the prescribed motion of the upper
end of the cable as composed af a series of sinusoidal components

in the horizontal and vertical direction

| g ='z a; cos {- w, t o+ ¢i) 12a
i=] .
y_ = zm - a sin (- w, t + ¢.) 12b
s o1 yi i i

where X_» ys are the horizontal and vertical components. of the surface
motion
‘ 5 .th
a i ayi are the amplitudes of the i component of xs, Yo

mf, ¢i are the frequency and phase angle of the ith component.

It is equally as easy to prescribe any analytic function of

time in the program.

Dynamic Cable Egquations

wWhen the moéring cable is connected to a surface buoy the
added mass coefficients of the surface buoy are in general
functions of frequency. In the time domain, which is obviously
where the solution should be, this requires the solution of
integrodifferential equations, which usually contain copvolution
integrals. If the frequency dependéh£5 coefficients are
expressed as simple polynomials of the frequency, then the
integrodifferential equations may be replaced by a set of

higher order differential equations. In either case the



solutions are costly. Thus usually the surface buoy motions

have been solved in the frequéncy domain, then to give the
response in the sea spectrum the principle of linear superposition
is used. The one big failure of this method is that it fails

to predict the large dynamic snap loads which occur when the

load goes slack.

As the prediction of dynamic loads is of paramount
importance, the frequency domain method was not used: To
give some credence to the time domain approach, only sp;r
buoys and small surface buoys are allowed, because their added
mass and damping values are essentially those of infinite

fluid.

There are two main methods of solution of this problem
in the time domain, (1) by ;he method of characteristics;
{(2) by the finite element method. The main drawback of the
method of characteristics is that it requires unusually long

computation times.

The finite element method seeks to represent the actual
cable system by a series of segments and nodes. The set of
partial differential equations is then reduced to a set of

ordinary differential equations of motion of the nodes.

The method has much flexibility allewing the user to
choose the number and location of nodes. Only straight

element nodes are used.

Formulation of Equations of Motion

The two unknowns are the inclination and stretch of the
cable element, with all the forces defined in terms of the
tangential and normal directions. The major problem is the
presence of intermediate bodies along the cable, for which
the inertia-and drag are most conveniently expressed in the

spatial x and y directions.

The cable is divided into a number of massless straight

elastic segments. The inertia, weight, and drag forces acting



on each cable segment are equally divided between the two

‘nodes at the ends of the segment.
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The two second order differential equations of motion

of the node i, in the x-y coordinate system are :
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for all cable elements i =1, ..... M

where

Jx' Jy' Ki are the inertia coefficients defined below

X, ¥ subscripts denoting x, y direction

F sum of all forces acting at the node

T tension of the cable due to stretch and internal damping
Dn normal drag force acting on the cable

Dt taﬁgentiél‘ drag force acting on the cable

W_  weight of cable in the fluid

W_ weight of the intermediate body in the fluid

c
M total number of nodes

Decoupling the above two egquations to give

3
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Definition of Cable Forces

Each cable element is taken to be a long thin cylinder
for which fluid inertia is added only for acceleration ffzc;rma]:-‘

to the segment.
f.

o {”@}' lo»a+ My lob N ap A,_é lCéc052¢ . c:', “p Ag;‘ob c052¢
2 2 a 2 b
+ MBV.'«:.] X
.+ [- G(‘p Aa ton sinp_ cos¢_ - . m sing, C°5¢b] Y]}
+i[- ?—p'-g;ﬁé sing_ cos$_ - %A-Elb—b' sing,, costbb] x
+[ Ha 1oa2+ TR van a1, sinz% vaoa 1, Sin2¢’b .

MBVy] y] 1
=[Jxx+1<_§;]:‘l\._+[K;-:+Jyy]j .
where the subscripts a, b denote the cable segments above and

below the node. MBVx' MBVy are the virtual mass of the

intermediate body in the x,y directions.

The tension forces for an extensible cable se¢gment,

depends upon the strain €, and the strain rate €.

€=féf-fc ='%——1= r/(xg-xu)2+ (y£<—yu)2 -1

Lo “fo _ =
.g"o
s de _ (g, = %)) (g - x ) + (YR- - ¥ (ug, - yu)
a ¥ io



where 2 is the stretched length of the cable segment, and
the subscripts &, t u refer to the lower and upper ends of

the cable segment.

The general relationship for tension -that is used is

Co .
= + +
T T0 Cl € CI €

where CI is the internal damping coefficient.

Since the cable segments above and below act on the node,
then

Tx = Ta 51n¢a - Tb 51n¢b

= +
TY rTa cos¢a Tb cos¢b

The drag forces on the cables are proportional to the

relative velocities normal, and tangential to the cable,

Vrn = {C + xw - %) cos¢ + (yy - ¥) siné

i

Vrt - (C + Xy ™ x) sin¢ + (yw - y) cosg

If one half of the drag forces acting on the cable segments

above and below the node are summed, then

an = %.Dna cos¢a + %'Dnb cosdab
Dny = %-Dnb sin¢a + %-Dnb sin¢b
Dtx =" %-Dta Sin¢a - %-Dtb Sin¢b
Dty = %'Dta cos¢a + %'Dtb cos¢b



with

1 .

Dn = 5 CD d 2’0 Vrn ‘Vrnl
_1 ;

D=3 & d Lo Vet Ivrtl

<
1]

- + L]
n X, cosd Y, sing

Vrt

-k sing + Y, cosd

where the subscript a, or b can be applied to the above four

egquations.

INPUT.

Card 1 N CASES . FORMAT (I3)
This allows different number of current profiles

to be input N CASES > 1

Card 2 TITLE FORMAT (20R4)
Title of the job. This has to appear on one card.

Card 3. NsSM, NSW, NCABj; NCUR, ITER, MTRC. FORMAT (613)

NSM number of surface motion components g 20

NSW number of surface wave components g20

NCAB number of cable segments 2 £ NCAB £ 50

NCUR number of current profiles 2 g NCUR g 10

MTRC 2 1 metric units, € O Imperial units

ITER iteration index.

ITER = O, no iteration (prescribed initial steady state card)
1, free floating cable system
2, moored cable with given length in given depths

Card 4 FSM(K), K =1, NSM FORMAT (8F10.4}

Frequencies of surface motion in Hz. .{
N.B. is 2000 > FsSM(l) 2 1000, the program takes the prescribed
surface motion components egual to the surface wave components

by setting FSM(K)

FRSW(K), AXSM(K) = AYSM(K) = ASW({K), FIDSM(K)

= FIDSW(K), for K 1, to'NSM, and automatically NSM = NSW.



if BOOQfeFSM 3 2000, the program accepts input data
for a spar buoy and considers AXSM(K) to be the crossisectibnal
area of the buoy at depth AfSM(K) below the surface. AYSM(l) = O,
and A&SM(NSM) = total draught under the combined action of the
buocy weight in air and the vertical component of the stéady

state tension. NSM should be cdd.

if FSM 2z 3000, the program accepts input data for
a sphercidal buoy and considered AXSM(l) to be the radius of
the buoy cross—-section at the free surface, AXSM(l) to be the
draught. The rest of the input values AXSM(K), AYSM(K),
FID%p(K), K =2, ... can take any value, e.g. O
LA
Card 5 AXSM(K), K = 1, NSM FORMAT (BF10.4)

These are the amplitude of the horizontal surface motion.

Card 6, AYSM(K), K = ), .NsSM FORMAT (8FlQ.4)

These are the amplitudesof the vertical surface motion.
Card 7 FIDSM(K), K = 1 NSM FORMAT (8F10.4)

These ‘are the phase angles of the surface motion

components,

Card B ASW(K), K= 1 NSW FORMAT (BFl0.4)

These are the amplitude of the surface wave componehts

if asw(l) > 1000, the program computes the amplitude of
the NSW surface wave componehts by using the Pierson Moskowitz
sea spectrum. The program considers the significant wave
height to be (ASW(l) - 1000}, and FRSW(l), and FRSW{2) to
be the upper and lower frequencies of the sea spectrum in Ez.
The program internally generates the phases of the wave components
by considering them to be uniformly separated by 360/NSW degrees.
The phase of the lowest frequency is FIDSW(l).



Card 9 FRSW(K}, K = 1, NSW FORMAT (8Fl0.4}

The frequency components in Hz of the surface waves.

Card 10 FIDSW(K), K= 1, NSW FORMAT (B8Fl0.4)

The phase of the surface wave components.

Card 11 RHO, SUBM, TWX, TIY, CDASX, AMC, ﬁFAC, TMIN FORMAT (8Fl0.4)
RHO fluid density in slug / ft3 (kg / m3)

SUBM submergence of top point of cable below free surface

TWX horizontal force acting at top of cable

TIY vertical ccmponent of tension at top of cable

CDASX drag area of surface buoy perpendicular to the x-axis

AMC added mass coefficient of cable, 1.0 for round cable

*rde
AFAC cross-section area of cable = AFAC nd

, AFAC = 1 for round

TMIN minimum algebraic tension which can be supported

N.B. For the case of the surface buoy, the program calculates
the drag acting on the surface buoy due to the ocean current
by taking the value of the current at SUBM units below the

surface.

The total horizontal at the top point of the cable
TIX = TWX + %—p *CDABX*CCF(SUBMT*iABS(CCF(SUBM))

In the cases where there is no surface buoy (i.e.
prescribed motion), TWX and / or CDASX may be set equal to
zero. For surface buoys, TWX represents the wind lecading.
: ! y
Card 12 TINVI, DTYl, TOTT, PT2, DIR, TBH, TBYMX FORMAT (8F10.4)
TINVL. initial time interval in seconds for dynamic calculations:
DTI'time step in seconds for which print out is required O<t g TINVi
TOTT total time interval for which dynamic*qélcs are required
DT2 time step in seconds for printout TINVD < t £ TOTIT
DIR,DIR < O if the initial conditions are special at the botteom
(e.g. towed cable), otherwise DIR z O,
TBH applied force on lower weight body NCAB-1, in x direction
TBYMK maximum absolute value of tension in cable just below buoy

- . for buoy-cable system set TBYMX = to say 99999,



Card 13 FILC(K), K = 1,NCAB FORMAT (8F10.2}
length of Kth cable segment

Card 14 DCI(K), K = 1,NCAB FORMAT (8Fl10.4)

Diameter of k™ cable segment in inches (cms)

Card 15 CDN(K), K = L, NCAB FORMAT (8F10.4)
Normal drag ccefficient of Kth cable segment

Card 16 CDT{(K), K = 1, NCAB FORMAT (BFl0.4)

Tangential drag coefficient of Kth cable segment

i
Card 17 WC{K), K =1, NCAB FORMAT (8F10.4)
Weight in fluid of the Kph cable segment at the

reference cable tension

Card 18 CM(K), K = 1, NCAB FORMAT (8F10.6)
Mass of Kth cable segment at the reference cable

tension

Card 19 TREF(K), K = 1 NCAB FORMAT (8F10,2)

Reference cable tensions cf the Kth cable segment

Card 20 Cl(K), XK = 1, NCAB FORMAT (8F10.0}
' The reference coefficient as in

:C2 (K)

Tension = TREF (K) + Cl(K)*€ + CINT (K) *E’

for linear elasticity ClL = AE, C2 = 1.

Card 21 C€2(K), K = 1, NCAB  FORMAT (8F10.4)

Exponents of non-linear elasticity for Kth segment

Card 22 CINT(K), K = 1, NCAB FORMAT (8F10.4)

S et e
Internal damping values for rate of elasticity.

Card 23 WBD(K), K = 1, NCAB FORMAT (8F10.4)

Weight in fluid of the Kth body

Card 24 CDABX(K), K = 1, NCRB FORMAT (8F10.4)

th
Drag area of K~ body for flow in x-direction.



Card 25 CDABY(K), K = 1, NCAB FORMAT (8F10.4}
Drag area of Kth body for flow in y-direction.

Card 26 XMBV(K), K = 1, NCAB FORMAT (8F10.4)
Virtual mass mass (mass + added mass) of th body

in x-direction. /

Card 27 YMBV(K), K = 1, NCAB FORMAT (8Fl0.4)

Virtual mass of Kth body in y-direction.

Card 28 YY(K}), K= 1, NCUR FORMAT (8Fl0.2)}

Value of y in feet of a current profile.

Card 29 PHID(X), K =1, NCAB FORMAT {8Fl0.4}
Initial value of ¢ of Kth cable element in degrees

Card 30 TENI{K), K = 1, NCAB, FORMAT (8Fl0.2)

Initial tension of Kth segment

Card 31 XPI(K), K= 1, NCAB FORMAT (8F10.2)

Initial value of % of Kth node.

Card 32 Y¥YPI(K), K= 1, NCAB FORMAT (8F10.4)

Initial value of y of k™ node.

Card 33 CCK{(I), K =1, NCUR FORMAT (8F10.4)
These are the velocities of the current in knots (m/s)

at the points on card 28.

The card 33 is repeated for as many current profiles

as card 1 says.

If the surface float is a buoy then two extra cards

are needed.

Card 34 CDASY, WAS; RWY, RTX, RTY, YCG, BIN

CDASY Drag area in the y-direction

WAS Weight in air

RWY Vertical distance of wind loading centre of pressure from

buoy centre of gravity YCG



RTX, RTY {x,y) distance of cable attachment point from YCG.

YCG The distance of centre of gravity below the free surface
under the action of its own weight in air WAS, and the
vertical component of the steady state tension - TIY.

BIN Moment of inertiazin air about YCG

XSI, ZETI, SYDI, Initial values of (x, §, ¥) where ¢ is the

7 vertical displacement of the centre of gravity
from the equilibrium value YCG.

XPSI, ZTPI, SYPDI Initial values of (%, &, {)

Sample problems and their solutions follow.

All units in the program are in ft (metres) and slugs (kgm)

except where stated explicityly.
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PROBLEM ‘D ’Cl=24@@0.@ ,CZ:I.‘H v . P )
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Llend 10,0009 10.ppe¢  @,0000

I 259,00 ,2787 T L AL AL 75,00
¢ 2 25e,90 ,2000  1,4080 ,ngn L1070  ARL008 25,00
3 259,92 ,20A0 (,40%d 0200, BI07 WATeeu 25,00
4 250,00 2908 1, WL .n200 21020 201000 25,.n0
¢ 5 580,00 0,000 0.A000 0,0007 0, 00000, ARORDY .00
%, 0000 9,2000 p,00Bd  99999,20R0
XA=n ' 12,0000 A= V. ogdXPA= . 0O00YP
‘3 b
TiX= 83 TiYz 9,00 DIRECTION=z wt 00
0 2,00 2,09 18,00 Q2,00 22,02
¢ 4 125,00 125 g2 ={7.98 ={21,1% 27,24
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z 5 93,4129 .00 154,14 631,88  ©,p00@ ?
-
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