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INTRODUCTION

Slender body methods for predicting ship motions response
to sea waves have proved to be very successful and are now used by
naval architects in design work. There have been a number of papers
seeking to evaluate forces and moments on slenderbodies in uniform
motion that could form the basis of a treatment of forces and moments
arising when a ship is manceuvring in calm water. However, these
techniques have not been developed to the point of forming a usable
design tool for the prediction of course keeping stability and steady

rates of turn.

The manceuvring situation differs from the ship motion case
in that the significant factor in the generation of lateral forces
on the vessel is the formation of vortex sheets either downstream of a
lifting surface (such as a yacht keel or a rudder) or due to separaticn
of the flow round the hull itself. The latter phenomenon gives rise
to non-linear forces and moments on the vessel that become important

at larger angles of yaw.

It is usual in slender bodf theory, as applied to lifting bodies,
to treat fully submerged bodies and to represent a ship operating in a
free surface by a double model, symmetric about a horizontal plane
representing the nominal free surface. This treatment of the free
surface as a rigid surface can be justified by order of magnitude
arguments, as being consistent with the assumption of a slenderbody,
and this implies that wave making effects can be expected to be small
compared to the basic double model forces and moments. This is preobably
correct in relation to moments acting on the vessel, but there are
clrcumstances in which the double model forces approach zero and in
such casés bodf wave making may need to be taken into account in

estimating lateral forces acting on the vessel.

A salling vessel normally adopts a heeled attitude, whilst
most vessels turning at high speed will heel because of the vertical

separation of the centre of gravity and the line of action of the

‘lateral force acting on the below water hull form. When the vessel

is heeled the equivalent double body has sections which are not symmetrical
about the vertical centreline plane. '

This paper presents a treatment of the flow of an ideal fluid
past a slender body for which



(a) Transverse sections are symmetric about a

horizontal plane'

(b) The sections are not necessarily symmetric about

a vertical plane

Ic) The body may be fitted with lifting'surface
appendages

(d) Vortex sheets may exist due to the presence of
these appendages or due to flow separation along the

body length.

It will be assumed that the body is moving forward at uniform
speed, but that it may be executing lateral motions. The primary aim
is to evaluate total forces and moments acting on the body including
any historical effects implied in the timewise development of the
vortex sheets. The paper draws together a number of topics treated
in other earlier papers, but includes a treatment of the effects of

asymmetry as a major extension of previous theory.

1. BASIC FORMULATION OF THE POTENTIAL PROBLEM

The problem is treéted as a potential flow problem in which
the bedy produces a disturbance to a uniform stream of speed U defined
by a velocity potential ¢(x, y, &, t). The direction of the free
stream flow and the coordinate system chosen is indicated in fig. 1,

At this stage the surface of the body will be defined by the equation
y = ¥(x - 4{g,t), &) 1.1

where d(£,t) represents a lateral displacement of the body relative to
some nominal datum position. In this form the displacement is allowed
to vary along the body length as well as with time. There is no formal
need for this displacement function to represent a rigid body motion,

although this will normally be the case.
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In fig. 1 a typical cross section is shaded. This section is
supposed symmetric about the (x,f) plane, but may be asymmetric about
the (y,%{) plane.

Orders of magnitude of the various quantities occurring in
the problem will be expressed in terms of a slenderness parameter ¢
which is to be thought of as the ratio of a typical transverse
body dimension (e.g. body beam) to a typical longitudinal dimension
(e.g. waterline length). The parameter € is assumed small (i.e.

€ << 1,0},

For the general three dimensional case the disturbance

potential satisfies the Laplace equation
v = + + = 0 1.2
$ = b bt O

subject to the kinematic boundary condition (no flow through the
hull surface) which takes the form

b, =[o, + d-tv - b) - al. ¥ - w=-9e). ¥, 1.3

In equations 1.2 and 1.3 and in all subsequent equations a

subécript denotes partial differentiation.

That is 2
¢ H ¢ etc,



Equation 1.3 is to apply everywhere over the body surface. The
disturbance potential will naturally decay to zero remote from the

body and from any trailing vortex system.

Once a disturbance potential has been found, pressures
within the fluid and hence forces acting on the body can be found

from Bernoulli's equation in its unsteady form

2 1
U+ §'¢

2 1
X + 2 ¢ -

hﬂr‘

2., + L U - 2 1.4
S0ty (U=, v :
Here p is the fluid pressure above its hydrostatic value, so that

force estimates using 1.4 will not include buoyancy effects.

The essence of the slenderbody method is to examine the
order of magnitude of each term in egns 1.2, 1.3 and 1.4 either by a
process of scaling the coordinates Sr by reference to approximate
solutions for the streamflow past a body of revolution. A consistent

scaling process yields the following orders of magnitude :

o]
Terms of order ¢ =1 : U, §, Yoo ¢xx' ¢
Terms of order e : X, ¥, 4, ¥, Y., ¢, ¢
2 E" "x' Ty
Terms of order : ¢, ¢E' ¢EE' ¢t

Some texts give the order of magnitude of ¢ as 62 ln €
(based on flow past a body of revolution), but arrive at the same
reduced equations as those given below, so that the simpler form
will be taken here.

A gystematic rejection of the smallest terms in the basic

equations leads to the following equations :

1.2 reduces to ¢ + ¢ =0 . 1.5
XX YY
1.3 reduces to ¢, = [¢x +U.4,- dé] Y, - UL 1.6
] L2 L2
1.4 reduces to 5 + ¢t U.¢E + 3 ¢x + 5 ¢y o] 1.7

neglected terms

2
retained terms = Olen)

In each equation the ratio



so that, if € = 1/7 is regarded as typical, the neglected terms
should be of the order of 2% of those retained. The importance of
this reduction is that at each crossflow plane along the body length,
the disturbance potential is obtained as a solution to a two
dimensional problem to which very powerful conformal mapping methods
may be applied.

2. THE LOCAL LATERAL FORCE

fig. 2 represents one particular
cross séction of the body. The
line AB could represent either a
flat plate fin attached to the
body or it could represent a

cut through a vortex sheet shed in

the wake of some upstream lifting

appendage.

The lateral force per unit length of body experienced by the
body at this cross section is given by

F(Ert) = - J de 2.1
c .

The integration can be carried out round the contour indicated
in fig. 2 since there is zero pressure difference acrogs any portion
of AB that represents a vortex sheet rather than part of an appendage.
The inclusion of all vortex sheets within the contour clin this way
makes it possible to evaluate F(f,t) by integration round any contour
reconcilable with ¢ And in many circumstances considerable simplification

can result by taking a very large contour enclosing the section.

Using equation 1.7 it is now possible to write

F(E,t) = f [ctat -Ub, + 34+ ¢2] dy 2.2
¢ Y

Now define A(f,t) by the equation

CAE,t) = [ ¢ dy 2.3
(o]



On y = Y{x - d(g,t), &) at fixed y

0=y [6x - a6 -a st] + ¥_.8E

£ £
, Y
Thus at fixed time §x a. - _E
£ £ Y,
and at fixed longitudinal position %’é = a,
It follows that
¢ (
3A _ _TE} .
A J [4’5; + [dE Y] ¢x] dy - 2.4
o4 X
3A
and 3¢ T L [ + a0, av - 2.5

Equation 2.4 can be rewritten by making use of the body boundary

conditions 1.6 :

oA ¢x

Ua_s' = Ic {U¢€ + Udg_d;x - z [(¢x + de - dt)Yx - ¢Y ]} dy

which simplifies to give ;

A _ 2
uE = L [(U¢g +9,.8, - 8 Ay + 4.4, ax] 2.6

Thus, on using 2.2, 2.5 and 2.6 :

A oA

F(E{t) +QUE— B_t

1,,2 2
p f S0 -67) dy + ¢ ¢ dx] 2.7
c Y Y

Now, as is demonstrated in appendix 1, the contour integral on the
right hand side of 2.7 vanishes identically. This means that the
load per unit length is given simply by

dA A

F(§,t) = - pUEE- + psE- 2.8



This remarkable result reduces the evaluation of hydrodynamic forces

and moments simply to the evaluation of

A(g,t) = f ¢ dy

c

The total force and the moment acting on the body are then obtained
by integration'along the body length.

3. THE DETERMINATION OF THE DISTURBANCE POTENTIAL

The complete disturbance potential can be regarded as the
linear sum of three components, each of which provides its own

separate contribution to the total force on the body.

= + + ¢
Thus ¢ ¢o ¢y ¢,
where ¢o = general streaming flow past a stationary body
¢l = flow generated by body lateral motions
¢, = flow due to external vortex sheets.

The position and strength of the external vortex sheets at any given
station along the length and at any given time will, 'of course, depend
on the convection processes occurring upstream of the given section

taking into account all three components of $.

The general boundary condition 1.6 can thus be split into
tﬁe following three sub-problem conditions, each to be satisfied on
the body surface :

¢oy = ¢°x.Yx - UYE ' 3.1
¢ly = (¢lx + Udg - dt)Yx 3.2
and ¢2y = ¢2x'Yx 3.3



4. SECTION MAPPING FUNCTION

In order to arrive at a complex potential function corresponding

to each contribution to the disturbance potential ¢ it will be
assumed that the body section can be mapped from the unit circle

L = eie by a mapping function of the form

®© an(E)

n=1 Cn

4.1

z=x+1y= xo(E) + ao(E).t +

For convenience X will be written in place of xO(E) and xé will

be written in place of

1)
e

A similar convention will be adopted for the coefficients ajra. It
should be noted that symmetry about the real (x) axis implies that
xo, ao, an are all real and that the even order coefficients a2m
arise because of a lack of symmetry about the imaginary (y) axis.
In an application of this method 4.1 would be truncated suitably
and the coefficients would be determined numerically from the actual

section shapes. .

As a further. convenient notation the body shape can be

represented variously as

= Z(Ere) 4.2

or X X{(£,0) and ¥y = Y(§,8) 4.3

In terms of the mapping function 4.1 the partial derivatives of 2

can be written as

© na_
ZB =i [aot; - Z --n—'] 4.4
n=1 [
. = ]
and z_ =x' +a'z + ) 22 4.5
£ o (o] n=1 cn



. -

In deriving the complex potential for ¢o the following relation will

prove useful

whence 2_. Ea -

3

The product Zg.

(X

2

£'e

8

+ :LYE)(Xe -

(X, X. + Y.¥Y ) + i(xe.Y

£E™0

2i(XB.Y

i¥y)

£ —‘XE.'YG)

X, .Y,.)

3 S

Z_can be written out .in terms.of the mapping

function, using the result that for peints on the body cZ = 1.0

| NP—
| p—
f

i o~38
o]

Fall I

N -}

| e e

o _
5 1

4.6

4.7

Appendix 2 shows that this eries may be rearranged in inverse powers

of [ and E as

= _ -
ZE'ZS i [ao a,

® na a

)

n=1.

This result is valid for points on the body for which § =

no_
-n+1l
g

xl

-]

! 1

n=1s=1

-]
E na a + Z n+l

‘n=l g n=1
(n+s)an+sak b .W
— - 11l

T n=ls=1

5. SOLUTION OF THE GENERAL STREAMFLOW

Since ¢° is a solution of a two dimensional problem, governed

by equation 1.5 it is possible to define a corresponding stream '

function wo and to write

¢° + iwo

=W
o

(¢,8}

5.1

The appropriate boundary condition on the body (L = eie) is from eq. 3.1

¢

OY=

$

Y

ox’ 3X

Y
| "0

£ Const X Const



o § U3y
- = - 5.2
° wox ¢°Y §x 3% X const

Now, from équations 4.3

éx = xE 68 + X, 8 =0
Y .X, - X_ .Y
and 6y =Y SE+y 66 =—2tb_ & 8 4
£ ) xe
vy ..X, - XY
fe. M S e L 5.3
X const 6 '

Using this result the body boundary condition 5.2 can be rewritten

as

Bwo

EC

E-xe - XE.YG) 5-4

It follows that the boundary condition finally takes the form

oW oW 2139 - -
5 - o T Tt u[zg.ze - Zg.24) 5.5

To summarize the position at this stage, it is necessary to find a
function WO(C,E) which satisfies equation 5.5 on [ = eie and which
represents a flow which dies away as lcl+m. By considering the

terms in equation 4.8 and in its complex conjugate, it can be seen

that equation 5.5 is satisfied if, on the body

BWO E . aoxé E aoaé E nanx;
—=—~iU|:aa‘- na a' + - + -
L) oo 2, nn = Z;n-i-l 1 cn
oo 1 1 oo [ ]
) z nanao ) E E (n+s)an+sas ) Z E sasan+s
n+l n n
n=1 ¢ n=ls=1l 4 n=ls=1 T

The last two terms are obtained by interchanging the roles of n and s

in the double summations and reversing the order of summation.



This result can now be integrated round the body contour to obtain

a complex potential given by

a x! « naa'-aa'
OO+ no on
. n=1 (n+l)l;n+l

WO(C:E) =~-U [(aoaé - Zl nana&} Ing -
n= :

® na x' + ) + ' '
) no  p=1 lin+s)a  a  + s aa),} ]

- n
n= - n. g

This equation can be conveniently written as

@ A
- - n
WQ(C:E) = U [AO ing + 2 —n] | 5.6
n=1
[--]
wh = ' - '
ere Ao aoao Z nanan
n=1
[--]
A ==ax' +ax"'"+ + ' '
1 o0 170 nzl tts l)as+las * sasas+l}
and for n 2 2
l - -]
A = — -1 L. [ '
n . n [(n Ya _qa- 2@, tnax 4+ 521 {(n+s)an+saé + sasaﬁ+s}]

 This result gives an explicit solution for the complex potential
representing the general streaming motion past a slender body with
transversely asymmetric body sections represented by the mapping function
4.1. It should be noted that since the coefficients X0 8y and a,
occurring in the mapping function are all real the coefficients Ao
and An occurring in 5.6 are also real. The complex potential can be
used to compute transverse velocity components at any field point in
the cross flow plane and such a computation is required in order to
follow through the convection process for any free vortex sheet present
near the body. The contribution of this general streaming motion to

the hydrodynamic lateral force can be obtained as follows :-

. -
On the body contour ¢° = - U, Z An Cosnf 5.7
. =l



whilst from the mapping function

y = a, sind - Z a, sinmé
m=]
27 @ o .

. J ¢ dy=-10U I ] A_Cosng: [a Cos8 - ] ma_ Cosmé] ae

o n o m

c o n=1 : m=1
2n . T (n=m#O0)
Using the identity [ Cosnf Cosmé 48 = {
o o (n#m)
it follows that
o
Ao(i) = Ic'¢o dy = - nU[aoAl - nzl nanAn] 5.8

and from equation 2.8 the corresponding cross force per unit body
length is

- 2 ., ‘ '
FO(E) =p 70 AO(E) 5.9

The total transverse force and yawing moment compeonents from

this streaming motion are

N
- - 2 -
L, = I F_(£)AE =p wU [AO(EN) AO(ET)] 5.10
Ep ‘
En . Ey  En
= - 2 -
and M, = £ F_(E)4E = p mU [E.AO(E)l J Aé(ﬁ)dE ] 5.11
Ep £, En

In these equations the nose (or bow) of the body is at E = EN
and the tail (or stern) is at § = ET and Mo'is the moment about £= O.
If the body sections shrink smoothly to a point at the body ends AO(EN)
= AO(ET) = O so that L, = O and the streaming motion produces a simple

couple



‘ En ‘
M =-p 70 AO(E)dE 5.12
b

Where the body is symmetric longitudinally about £ = O the couple
Mo will vanish on the basis that xo, ao and an are even functions

of £, consequently aé, a;, AO and An are all odd functions of £,

" which in turn implies that AO(E) is also an odd function of § for

which EN :
' [. A (g)ae = o
&

Thus it is necessary for the body to be asymmetric longitudinally
as well as transversely in order that the general streaming motion

should preoduce a couple Mo acting on the bhody.

6. TRANSVERSELY SYMMETRI{ BODIES YAWED

Previous texts on slenderbody theory have dealt with
transversely symmetric bodies yawed at a small angle o to
the main streamflow, This case is embedded in the theory presented
here and can be extracted by noting that in the mapping function

aZm = O for transversely symmetric sections.

With this restriction only those terms correspending to odd
values of n contribute to the sum occurring in equation 5.8. Now,
for odd n,terms like a a' = 0 since a = 0 if 5 is odd and

n+s s n+s
aé = 0 if s is even. Thus the coefficients occurring in the complex

potential (equation 5.6} reduce in this case (for odd n) to

A

I

- ]
1 (al ao) xo
A =a xé (odd n > 2)
Thus in 5.8 AO(E) reduces to

Ao(§)=+‘rrU[(al—a°)2+ ) nai] x!
n=3



where the summation involves odd n only.

Now the cross-sectional area enclosed by the body contour

can be obtained from the mapping function as
2 2 ¢ _2
Area = f xdy = n[ao -a - E nan] {odd n only)
c n=3
Thus i1f the substitution xé = ¢ 1s made the case of transverse

symmetry reduces to

AO(E) = -~ Un [Zﬂ aO(al - ao) + Area] 6.1

In other words in order to evaluate forces on a transversely
symmetric double body it is only necessary to determine the mapping

coefficients ao and al for each body section.

7. CONTRIBUTION DUE TO LATERARL MOTIONS

The contribution to the velocity potential due to body
lateral motions (¢1) satisfies the boundary condition 3.2 :
¢1

= (¢1x + U4, - dt) Yx

Y g

This is the boundary condition fﬁr a two dimensional body moving
laterally with a speed v = dﬁ - Udg. By superinposing a lateral
velocity -v in the z plane to convert the problem to that of a

uniform stream past a stationary body, the corresponding complex

potential can be written down immediately as

]

wl(z,t) -ayv [c + %-] + vz

a o a i
= - -2 2
or w(z,t) = (@ -va) [~ + ] 7.1

n=1 Cn

Equation 7.1 follews on substituting the section mapping function
(equation 4.1). '



From this result it follows, using the same methods as in sections

S and 6 that
A, (g,8) = Ic ¢, dy = (&, -,UdE) [2n a (a, -a)+ Area] 7.2

If dt is set to zero and 4. to a yaw angle ¢ it can be seen that

& ‘
equation 7.2 is in agreement with equation 6.1. This clearly should
be the case. In the case of a purely lateral motion dg = 0 and the
corresponding lateral body force is’

JA

l —
FI(E,t) =p gg= = [2n a (a, - a) + Area] . 4., 7.3

This corresponds to a section added mass in lateral motion given

by
m(E) = - p[2n ao(al - ao) + Area] ) 7.4

For the alternative case of a body set at a fixed yaw angle &

7.2 reduces to

2 _ _ 2
pU Al(E) = pU a[2ﬂ a.o(a:L ao) + Area] =m{f) Ua
The lateral bedy force is now
FL(E) = - pU Al (E) = va. m' (£) , 7.3

This relationship between lateral forces on a yawed body and the
section added mass in lateral motion is in fact a well known

slenderbody result.

. B. CONTRIBUTION DUE TO EXTERNAL VORTEX SHEETS

The last contribution to the total flow at any cross section
is that due to any vortex sheets preéent, generated either at the
trailing edge of a lifting appendage or in some separation process
taking place along the body length. Deferring for the moment the

problem of the determination of the location and strength of the vortex



sheets, the veiocity potential at any given section and at any
particular time is governed by the boundary condition 3.3 :

This boundary corré5ponds to the flow generated by the vortex sheet
round a stationary two dimensional body and on the body surface

the corresponding stream function wz will have a constant value.

Consider first the evaluation of the integral I ¢2 dy
‘ : c

taken round a contour ¢ as shown in figure 2 comprising the body

contour and both surfaces of each attached vortex sheet.

f ¢2 dy = Re - i [ ¢2 dz = Re -1 J {WZ - iwz} dz
c c _ c

wz(z)dz - Re'f wz dz 8.1

Thus [ ¢2 dy = - Re i [
c c

c

Now, since wz is continuous across each vortex sheet and constant

round the closed body contour it follows that '

¢2 dz = 0
c
so that J ¢2 dy = - Re i I wz(z)dz 8.2
. c e :

The integral can be taken round any reconcilable contour, and in

. particular if there is no vorticity outside ¢ a very large contour

z = Re16 (Ro) may be used.
If as |z|+°° v, can be expanded in the form
© A
- n
w2 (z)y~+ z Y 8.3
n=1 =z
the contour integral will reduce to the residue of the term in z-1

only.

That is I ¢2 dy = 27 Re Al 8.4
c



This extremely useful result can be found in Lamb's “Hydrodynamics”,
but it is not as well known as it deserves to be. It provides a
powerful method of evaluating added mass coefficients for awkward
shaped sections, Here it will be used to determine the contribution

of the vortex sheets to the lateral force on the body.

If an element of a vortex sheet is idealized as a point
vortex of strength kK ata point L =L in the circle plane, its
contribution to v, is obtained by the method of iinages as :

Swy= 1K 1n (€ - L) -~ iK ln (- =) 8.5
m ‘ m m 7
_ m
At large |z| the mapping function 4.1 can be partially inverted
as
z - X
. o 1 .
[ a + O _Z— } 8.6
o ‘
z xo + ao;m 1
whence 1in(g - Cm) + ln {a_ [l -— + 0 {( 5 )]}
o z
X +at
=1n 2 - R
a z 2
o z
It follows fhaﬁ 6w7 = - iK a (g -l—-) l‘--l- O(l—) 8.7
: 2 m °© "m F ‘oz 2 -
Equation 8.7 is the beginnings of an expansion of éw; in a series
of the form of equation 8.3 and from 8.4 it follows that
6¢, dy = 2r Re 1~ 1K _a_ | -1
2 : m o | m =
.c 4
_ m
18m
On writing ;m =re this yields the result
8¢ dy = 21 K a_ (r +-£--)Sin0 8.8
o 2 %Y m o m r m '

Equations 8.5 and 8.8 can be extended to the whole assembly

of vortex sheets either by a process of integration or, perhaps more



practically, by representing the sheets by a discrete set of

point vortices.

9. THE CONVECTION OF VORTEX SHEETS

The developmeht of the form of the vortex sheets depends on
the fact that pressure must be continucus through the sheets (to
avoid infinite fluid acceleration at the sheet). Adopting the
notation f+ and £_ for the values of a quantity f on opposite
sides of a sheet at any particular point on the sheet, and writing

Af = f+ - £, the behaviour of the sheet can be derived as follows :

Fluid pressure is governed by eguation 1.7

9.2

§-+¢t—u¢s'+%¢i+%¢§ o
Now A2 = (4, -4 ) (¢"+:¢"') = 8¢ .0
where ¢xv = ¢x+ ; ¢x-
Thus %‘Ap + A¢t - UA¢E + A¢x'¢xv + A¢y.¢yv =0 9.1
or, since Ap = O, %%i =0
where g; ='-%E - U%E * by %;— * ooy %;
Thus A¢ = coﬁstant along a trajectory defined by the equations
These relations are equivalent to
ax o hav g oty
aE -~ v @ Fg < U : 2.4



Integrations of these relations along the body length from the point

of attachment of the trajectory or vortex line will determine the location
of the vortex sheet in any crossflow plane abaft the point of attachment.
At this location the jump in velocity potential A¢ is known. from the
value at the point of attachment, and hence the local strength of

the vortex sheet is known from the relation

y(s) = %%i ’ 9.5
where s is an arc length measurement along the vortex sheet in the
transverse plane. This gradient can be determined from the values
of A¢ for neighbouring trajectories on the sheet. If the.sheet is

to be represented by a set of point vortices the strength of the
substitution vortex between two neightbouring trajectories a distance

§s apart would be

K =1vy(s)fs = A¢2 - A¢l 9.6

The strength K will then be constant at all transverse planes

for which both trajectories exist.

Two final comments may be made concerning the formation
of the vortex sheets. The first concerns the evaluation of the
crossflow velocity components ¢xv and¢yv. These components will
have contributions from each of the velocity potentials ¢°, ¢l and
¢2. If a contribution from ¢2 is included the processes by which
the vortex sheets roll up into concentrated longitudinal vortex
cores will be reproduced, if the contribution from ¢2 is omitted the
roll up will be suppressed. The simpler form of calculation may be
adeqguate for the discussion of linear effects due to infinitessimally
small departures from uniform straight line motion, but the full cal-
culation would be required to cope with non-linear behaviour at large

yaw angles.

The second comment relates to the evaluation of A¢ at the

point of attachment of the trajectory. Where the trajectory originates



at a sharp trailing edge of a lifting appendage A¢ will be continuous
as the trajectory crosses the trailing edge and can thus be obtained
from a solution to the flow problem in the plane immediately upstream
of the trailing edge. This is the equivalent of the well known
"Kutta condition" principle. Where the trajectory originates at a
line of separation alﬁng the body length the appropriate value of

A¢ is much less clear, although the application of a Kutta condition
may still be attempted. Some practical procedure based on

experimental evidence may'be requireh in this case.

10, CONCLUDING REMARKS

The purpose of this paper has been to present the sclution
to the asymmetric streamflow problem set in the general context of
a slenderbody theory capable in principle of providing estimates
of forces and moments acting on manoeuvring double bodies. The
suggestion is that such a theory could be the basis of a rational

hydrodynamic theory of ship manoeuvrihg.

Since the paper is concerned with general principles certalin
numerical details have been omitted, particularly in the evaluation
of the mapping coefficients from the geometry of each body cress
section and in the processes of integration along vortex trajectories

to determine the geometry of trailing vortex sheets.

The use of slenderbody methods offers a tremendous simplification

over any fully three dimensional method, but never the less still
represents a very formidable computational task for any arbitrary
manoeuvres. 'Pragtical computational procedures may need to be
restricted to two simplified cases :
(a) A steady turn for which the lateral motion is described simply
by

4 -uva =U{z -al

t E R
where R = radius of turn and o = drift angle

{b) Infinitessimal periodic motions about a straight path.

The steady turn case wili correspond to a fully developed
pattern of vortex sheets whose geometry is independent of time,
whilst the infinitessimal periodic motion case is capable of further
analytic development to avoid the necessity of following the history



of the motion numerically, time step by time step. It is also likely
that in the latter case body separation will not take place and vortex
sheet roll up méy be safely ignored.

A major feature of all slenderbody methods is the direct
evaluation of total lateral force without the need for a numerical
integration of pressure round the body contour. There are three
independent contributions to the velocity potential and each provides
a separate contribution to total force since the integration concerned
is linear in ¢, There is a practical need to evaluate hydrodynamic
heeling moments on a real ship represented by one half of the double
body and this can only be done by the direct evaluation of pressure
loadings from equation l1.7. Since this equation is not linear in ¢

the heeling moment cannot be separated into independent contributions.



APPENDIX 1 RHS OF EQUATION 2.7

Consider a simple connected region
S bounded by two closed contours C
and Cy, and rendered simply connected
by a cut joining C to C.-

By applying Gauss theorem

{ fc* L } [ 6] - 65 ay + 6,0 ax]

n

f{w - 62 - (40,0, } axdy.
=”{¢ fey ™ Pudux ™ gty = by} axdy

o (¢ + ¢yy } dxdy

Since ¢ is a solution to the Laplace equation ¢xx + ¢yy =0,

2 2 2 2
R fcfwy -4 dy + ¢ 6 ax] = fc (atoy, - o) ay +4 ¢ ax]

Now examination of ¢°, ¢1 and ¢2 shows that at large distances r
from the body contour € ¢ = O (ln r) whilst dx, dy = O(r)

Hence I [ ] > 0(24 + 0 as - rw
. c r

2 .2 _
. L [};wy 6,) 4y + 6.8, ax] = o.

This is the result required to eliminate the RHS of equation 2.7.



APPENDIX 2 REARRANGEMENT OF SERIES 4.7

Equation 4.7 contains the product

SR C IR R Y
Lt w1l T

This can be rearranged when L[ = 1.0 as fellows :

o% . T %% _ § max’ = maar
P=aal + + 1 -1 -m —m+1
n=l [ m=l g m=l 7

The complete array of terms in the
double sum, covering all values of
n and m can be separated into

(1) The diagonal terms n = m

(ii) The terms below the diagonal m > n

Ry (iii) The terms above the diagonal n > m

Taking each separately and substituting s =m -nor s =n - m as
appropriate it is found that for £ = 1.0

® o mama:']. @ @ @ (n+s) an+sa;l
; z n-m ; naga, * ) E s
n=lm=1 ¢ n=1 . n=ls=1 ‘ L
+ e mama:;1+s
] ] —mme

m=ls=1 4

Substituting this series for the double sum in P yields the RHS of
equation 4.8.
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INTRODUCTION

Slender body methods for predicting ship motions response
to sea waves have proved to be very successful and are now used by
naval architects in design work. There have been a number of papers
seeking to evaluate forces and moments on slenderbodies in uniform
motion that could form the basis of a‘treatment of forces and moments
arising when a ship is manoceuvring in calm water. However, these
techniques have not been developed to the point of forming a usable
design tool for the prediction of course keeping stability and steady

rates of turn.

The manceuvring situation differs from the ship motion case
in that the significant factor in the generation of lateral forces
on the vessel is the formation of vortex sheets either downstream of a
lifting surfaceé {such as a yacht keel or a rudder) or due to separation
of the flow round the hull itself. The latter phenomenon gives rise
to ﬂon—linear forces and moments on the vessel that become important

at larger angles of yaw.

It is usual in slender body theory, as applied to lifting bodies,
to treat fully submerged bodies and to represent a ship operating in a
free surface by a double model, symmetric about a horizontal plane
representing the nominal free surface. This treatment of the free
surface as a rigid surface can be justified by order of magnitude
arguments, as being consistent with the assumption of a slenderbody,
and this implies that wave making effects can be expected to be small
compared to the basic double model forces and moments. This is probably
correct in relation to moments acting on the vessel, but there are
circumstances in which the double model forces approach zero and in
such cases body wave making may need to be taken into account in

estimafing lateral forces acting on the vessel.

A sailing vessel normally adopts a heeled attitude, whilst
most vessels turning at high speed will heel because of the vertical
separation of the centre of gravity and the line of action of the
lateral force acting on the below water hull form. When the vessel
is heeled the equivalent double body has sectionsuwhich are not symmetrical

about the wertical centreline plane.

This paper presents a treatment of the flow of an ideal fluid
past a slender body for which



{a) Transverse sections are symmetric about a

horizontal plane

{b} The sections are not necessarily symmetric about

a vertical plane

(¢} The body may be fitted with lifting surface
appendages

{d) Vortex sheets may existsdue to the presence of
these appendages or due to flow separation along the

body length.

It will be assumed that the body is moving forward at uniform
speed, but that it may be executing lateral motions. The primary aim
is to evaluate total forces and moments acting on the body including
any historical effects implied in the timewise development of the
vortex sheets. The paper draws together a number of topics treated
in other earlier papers, but includes a treatment of the effects of

asymmetry as a-major extension of previous theory.

1. BASIC FORMULATION OF THE POTENTIAL PROBLEM

The problem is treated as a potential flow problem in which
the body produces a disturbance to a uniform stream of speed U defined
by a velocity potentiai ¢(x, v, £, t}). The direction of the free
stream flow and the coordinate system chosen is indicated in f£ig. 1.

At this stage the surface of the body will be defined by the equation
y = ¥(x - pd(g,t), &) 1.1

where 4(£,t) represents a lateral displacement of the body relative to
some nominal datum position. In this form the displacement is allowed
to vary along the body length as well as with time., There is no formal
need for this displacement function to represent a rigid body motion,

although this will normally be the case.
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In fig. 1 a typical cross section is shaded. This section is
supposed symmetric about the (x,£) plane, but may be asymmetric about
the (y,{) plane.

Orders of.magnitude of the various quantities occurring in
the problem will be expressed in terms of a slenderness parameter €
which is to be thought of as the ratio of a typical trahsverse
body dimension (e.g. body beam) to a typical longitudinal dimension
{e.g. waterline length). The parameter € is assumed small (i.e.

€ << 1.0).

Y
For the general three dimensional case the disturbance
potential satisfies the Laplace equation
V2¢=¢ + ¢ + 9 =0 1.2
143 xx YY ’
subject to the . kinematic boundary condition (nec flow through the
hull surface) which takes the form

b, =[o, * a; W - o) - 4l ¥, - w-ep. ¥, 1.3

In equations 1.2 and 1.3 and in all subsequent equations a
subscript denotes partial differentiation.

That is

2
= M etc,
ag?

et



Equation 1.3 is to apply everywhere over the body surface. The
disturbance potential will naturally decay to zero remote from the

body and from any trailing vortex system.

Once a disturbance potential has been found, pressures
within the fluid and hence forces acting on the body can be found

from Bernoulli's equation in its unsteady form

)2 1.4

P 1 1,2
5 + ¢t + 5 (U ¢E + 2 ¢x

mél—d

1 2
+_

2 ¢y
Here p is the fluid pressure above its hydrostatic value, so that

force estimates using 1.4 will not include buoyancy effects.

The essence of the slenderbody method is to examine the
order of magnitude of each term in egns 1.2, 1.3 .and 1.4 either by a
process of scaling the coordinates or by reference to approximate
solutions for the streamflow past a body of revolution. A consistent

scaling process yields the following orders of magnitude :

o

Terms of order € =1 : u, &, Yx' ¢xx' ¢yy

Terms of order € : x, v, 4, ¥, Y., 0., ¢
2 E" "x" Ty

Terms of order ¢ : ¢, ¢E,¢¢gg. ¢t

Some texts give the order of magnitude of ¢ as 82 ln €
(pased on flow past a body of reveolution), but arrive at the same
reduced equations as those given below, so that the simpler form

will be taken here.

A systematic rejection of the smallest terms in the basic

equations leads to the following equations :

1.2 reduces to ] + ¢ =0 1.5
XX Yy
1.3 reduces to ¢y = [¢x + U'dE_ dt] < Y- U.YE 1.6
2 _ 1.2 1.2 _ )
1.4 reduces to 5 + ¢t U.¢E + > ¢x + 2 ¢y o] 1.7

neglected terms

2
o]
retained terms (™)

In each equation the ratio



so that, if € = 1/7 ls regarded as typical, the neglected terms
should be of the order of 2% of those retained. The importance of
this reduction is that at each crossflow plane along the body length,
the disturbance potential is obtained as a solution to a two
dimensional problem to which very powerful conformal mapping methods

may be applied..

2. THE LOCAL LATERAL FORCE

fig. 2 represents one particular
cross section of the body. The
line AB could represent either a
flat plate fin attached to the
body or it could represent a

cut through a vortex sheet shed in

the wake of some upstream lifting

appendage.

The lateral force per unit length of body experienced by the
body at this cross section is given by :

F(g,t) = ~ I pay 2.1
[~

The integration can be carried out round the contour indicated
in f£ig. 2 since there is zero pressure difference across any portion
of AB that represents a vortex sheet rather than part of an appendage.
The inclusion of all vortex sheets within the contour c in this way
makes it possible to evaluate F(f,t) by integration round any contour
reconcilable with ¢ and in many circumstances considerable simplification

can result by taking a very large contour enclosing the section.

Using equation 1.7 it is now possible to write

FIE,t) = p [ [¢t - Up + -;-qsi + % ¢2] dy 2.2
e y

Now define A(E,t) by the equation

A(Elt) = J ¢ dy 2.3
C



On y = Y(x - d(E,t), &) at fixed ¥y

o=y [6x - 4 8E - a st] + ¥, .88
t"',-"fx ’ YE.
Thus at fixed time EE = dE - §;
and at fixed longitudinal position %% = dg
It follows that
Y
3A J [ 1_5
3 - ¢, + {d -—]-¢]dy 2.4
13 c E £ Y. X
3A : .
and 3% = Jc [¢t + dt'¢x] dy 2.5

Equation 2.4 can be rewritten by making use of the body boundary

conditions 1.6 :

¢
dA _x _ _ :
Ugp = L {Uq;g + Va9 . {4, +va -apy b, 1} dy

which simplifies to give

A _ 2
U = L [(Udng +4,.8, - $) ay + 6.6 ax| 2.6

Thus, on using 2.2, 2.5 and 2.6 :

3A A _ 1.2 2 .
F(E,t) + pU g5 ~ pyg = 0 L 200, 0 Ay + 9. ax] 2.7

Now, as is demonstrated in appendix 1, the contour integral on the
right hand side of 2.7 vanishes identically. This means that the
load per unit length is given simply by

A J9A

F(E,t) = - pUsE- + o3t 2.8



This remarkable result reduces the evaluation of hydrodynamic forces

and monments simply to the evaluation of

A(E,t)y = I ¢ dy

[

The total force and the moment acting on the body are then obtained
by integration along the body length.

3. THE DETERMINATION OF THE DISTURBANCE POTENTIAL

The complete disturbance potential can be regarded as the
linear sum of three components, each of which provides its own

separate contribution to the total force on the body.

Thus ¢ ¢0 + ¢l + ¢2

where ¢o
¢l
¢2

general streaming flow past a stationary body

flow generated by body lateral motions

I

flow due to external vortex sheets.

The position and strength of the external vortex sheets at any given
station along the length and at any given time will, of course, depend
on the convection processes occurring upstream of the given section

taking into account all three components of ¢.

The general boundary condition 1.6 can thus be split into
the following three sub-problem conditions, each to be satisfied on
the body surface :

¢0y = oY, T UYE_ 3.1
¢ly = (¢lx + UdE_ - dt)Yx 3.2
and ¢2y = ¢2x'Yx 3.3
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4. SECTION MAPPING FUNCTION

In order to arrive at a complex potential function corresponding
to each contribution to the disturbance potential ¢ it will be

assumed that the body section can be mapped from the unit circle

L = ele by a mapping function of the form

o an(ﬁ)
z=x+1iy=x(§) +a {§).;c + Z
o o .

. n=1 g

n

For convenience xO will be written inkplace of xo(E) and xég will
be written in place of

dx
=]

—_—

dg-

A similar convention will be adopted for the coefficients agra . It
should be noted that symmetry about the real (x) axis implies that
X, a,r an are all real and that the even order coefficients an
arise because of a lack of symmetry about the imaginary (y) axis.

In an application of this method 4.1 would be truncated suitably

and -the coefficients would be detefmined numerically from the actual

section shapes.

As a further convenient nctation the body shape can be

represented variocusly as

N
]

Z(§,0) 4,2

»
]

X(£,0) and y = Y(£,8) 4.3

In terms of the mapping function 4.1 the partial derivatives of Z

can be written as

[ - ] =2
z. =1lag - — 4.4
6 Lo} n=1 cn -
and 2, = X_ +ag ¥ ] = 4.5

n=1 ;n



In deriving the complex potential for ¢° the following relation will
prove useful

ZE; ZB = (XE + iYﬁ) (Xe - 1Y6)
= (xgxe + YEYB) + i(xe.YE - XE' Yy}
whence ZE' Ze - ZE' Ze = 2:|.(Xe.YE - xg.Ye) 4.6
The product-zg. Eecan be written out.in terms of the mapping ..
function, using the result that for points on the body ;E = 1.0 :
. [ ag E ar a E' nia_
2_..2=-1|x"+— + -——][——--— — 4.7
£ e ¢ n=1 g" ©  onm AR o
Appendix 2 shows that this ssries may be rearranged in inverse powers
of £ and E as ; e .
—_— - — - e o ——— -— —_ - -- 0 i
f’______._r"‘:'!__,_...-_-—-—] lu
it e ' w 7.7 " w g a' % na :
ﬁrlu. [ . o © a2 a4 ﬁji on _ n '
sl Rty =41 |a_ a' + A - i +1 - =n ’
pff;,,LiLEE Po °© © & o I n=LrCn n=l g
® na a- o o (n+s)a_. a'- » #m
-y =2e_ §V¥W —__ptsn _ §Y
-n+1 bod =
n=l n=ls=1 r =

This result is valid for points on the bedy for which g = e

5. SOLUTION OF THE GENERAL STREAMFLOW

Since ¢o is a solution of a two dimensional problem, governed

by equation 1.5 it is possible to define a corresponding stream
function wo and to write

+ iy =
¢o lwo %

(¢.£) 5.1
The appropriate boundary condition on the body (L = ele) is from eq. 3.1
. 2Y Y
¢oy - éox"gfl v oL

£ Const X Const



or I A Uﬁ%- : 5.2

ox oy 6% 3 x const

Now, from equations 4.3

8x =Axg 5 + Xe gg =0
Y. .X, - X_.Y
and Sy =Y cc+v o0 =—2—0__E O 4
£ 5] xe ,
. by _ Yo X~ XYy
i.e. 3 = X 5.3
X const 8

Using this result the body boundary condition 5.2 can be rewritten

as

Bwo
— = U{Y_.X, - X_.Y

59 g-Xg ~ Xp.Yp) ' 5.4

It follows that the boundary condition‘finally takes the form

oW oW 219y
o [s] (o] - =

R R el LS N 55

To summarize the position at this stage, it is necessary to find a
function WO(C,E) which satisfies equation 5.5 on ¢ = eie and which
represents a flow which dies away as |C|¢m. By considering the

terms in equation 4.8 and in its complex conjugate, it can be seen

that equation 5.5 is satisfied if, on the body

BWO § ) Oxé E ao ; E nanxé
—=-iU|:a a' - na a' + + -
4
a6 o O n=1 nn [ n=1 Cn 1 o1 cn
w a' ® ™ (n+s)a a! o oo gsa a'
_ z no _ E e n+s s Z Z s n+s
n+l By n n
. n=1l ¢ n=ls=1 z n=ls=1 [

The last two terms are cbtained by interchanging the roles of n and s

in the double summations and reversing the order of summation.



This result can now be integrated round the body contour to obtain

a complex potential given by

g e -

—— - _————

AR T mgey - g
W I(g,E} =-1U [(a a’ - z na a') Iny - + Az -
(o] [o )} <] n r n+l
n=1 n=1 {n+l)g
© LIS z + !
. z na x! el {(n s)an+saS + 5 asan+s} J
n
=1 n. ¢
This equation can be conveniently written as
A
w(c£)=—U[A lnz;+z 5.6
n=1 ;
oo
where A = aa' "= z na a'
o) c 0 nn
n=1
(4]
A = - '+ LY v '
1 ax! +ax! nzi {(s+1)as+las + sasas+l}
and for n 2 2
o0
ar. .. a2 x A = l-[(n-—l)a a'- a a’ + na x' + z {(n+s)a_, a’' +
T n n n—l‘o n-1 no sol n+s s

e ————

sa a'
= )

This result gives an explicit solution for the complex potential

%gpresenting the general streaming motion past a slender body with

. (-]
- . z A Cosnf
n=1

'transversely asymmetric body sections represented by the mapping function

+s)]




whilst from the mapping function

Resd
Yy =a sind - z a sinmb
m=1
2m . o
. J ¢ dy=-1U J J A cCosné: [a Cosd - )| ma Cosm8] a8
o n o m
c © n=1 m=1

2n T{n=m#0)
Using the identity I Cosnf Cosmd d6 = {
o o) (n#m)

it follows that .

AO(E) = I 9¢0 dy = - nU[aoAl - z nanAhJ 5.8
c n=1

and from equation 2.8 the corresponding cross force per unit boedy

length is
F (E) = rr02 A'(E) 5.9
o P o )

The total transverse force and yawing moment components from

this streaming motion are

EN
- - 2 _
L, = J F (8)aE = p nU”[A (g - 2 ()] 5.10
Ep
EN EN EN
- _ 2 | A
and M_ = J £F_(E)dE = p 70" [E.a_(£) [ AL (E)AE ] 5.11
Ep E. Ep

In these equations the nose (or bow) of the body is at £ = éﬁ

and the tail (or stern) is at £ = £_ and Mo is the moment about £= 0.

. T
If the body sections shrink smoothly to a point at the body ends AO(EN)
- o= AO(ET) = 0 so that L,=0 and the streaming motion produces a simple’

coﬁple



En
M =-~p nUz Ao(i)dE 5.12

[}
Ep

Where the body is symmetric longitudinally about £ = O the couple
Mo will vanish on the basis that XA and a are even functions
of £, consequently aé, aﬁ, Ao and An are all odd functions of &,
which in turn implies that AO(E) is alsc an odd function of { for
which En

I Ab(E)dE =0

%T

Thus it is necessary for the body to be asymmetric longitudinally
as well as transversely in order that the general streaming motion

should produce a couple Mb acting on the body.

6. TRANSVERSELY SYMMETRIC BODIES YAWED

Previous texts on slenderbody theory have dealt with
transversely symmetric bodies yawed at a small angle o to
the main streamflow. This case is embedded in the theory presented
here and can be extracted by—noting that in the mapping function

a5, = O for transversely symmetric sedtions,

With this restriction only those terms corresponding to odd
values of n contribute to the sum: occurring in equation 5.8. Now,

for.odd n,terms like a a' = Q0 since a =0 if s is odd and
n+s s n+s

aé = 0 if & is even. Thus the coefficients occurring in the complex

potential (equation 5.6).reduce in this case (for odd n} to

o
1

— r
(al ao) X!
A = a xé (oédd n > 2)
Thus in 5.8 AO(E) reduces to

‘ 2 3 2
A(E) =+TU [(al -a) 4+ n£3 na ] x!



where the summation involves odd n only.
Now the cross-sectional area enclosed by the body contour
can be obtained from the mapping function as

-2 2 v o2 '
Area = Jc xdy = ﬂ[ao -a - z na ] | (odd n only)

n=3 n

Thus if the substitution X' = o is made the case of transverse

1
o)
symmetry reduces to

Ao(i) = - Uo [2ﬂ ao(a1 - ao) + Area] 6.1

In other words in order to evaluate forces on a transversely
symmetric double body it is only necessary to determine the mapping

coefficients a and a, for each body section.

7. CONTRIBUTION DUE TO LATERAL MOTIONS

The contribution to the velocity potential due to body
lateral motions (¢l) satisfies the boundary condition 3.2 :

¢ly = (0, + U3 -3 ¥,

This is the boundary condition for a two dimensicnal body moving

laterally with a speed v = dt - Udg.

velocity -v in the z plane to convert the problem to that of a

By superinposing a lateral

uniform stream past a stationary body, the corresponding complex

potential can be written down immediately as

wo (z,t) = - ayv [z + %-] + vz

[ a E an]
(d, - Ud,) - — —_ 7.1
t £ T nel Cn

or wl(z,t)

Equation 7.1 follows on substituting the section mapping function

{equation 4.1).



From this result it follows, using the same methods as in sections

5 and 6 that
Al(E,t) = Ic ¢y dy = (dt - Udg) [Zﬂ ao(al - ao) + Area] 7.2

If dt is set to zero and d, to a yaw angle a it can be seen that

3

equation 7.2 is in agreement with egquation 6.1. This clearly should

be the case. In the case of a purely lateral motion dE = 0 and the
corresponding lateral body force is
3Aa
F_(E,t) =¢ L = P [2n a (a; —a) + Areal . d 7.3
1 “Foat o' 1l ~ "o _ tt

This corresponds to a section added mass in lateral motion given

by
m(g) = - p[21r ao(al - ao) + Area] 7.4

For the alternative case of a body set at a fixed yaw angle &

7.2 reduces to
pU A_(E) = - pU2 d[Zw a (a, -a) + AreaJ = m(E) Uza
1 o 1 o
Thellateral body force is now
- ' 2 ) -
Fl(E) = - pU Al(E) = U a. m'{£) 7.3
This relationsﬁip between lateral forces on a yawed body and the

section added mass in lateral motion is in fact a well known

slenderbody result,

8, CONTRIBUTION DUE TO EXTERNAL VORTEX SHEETS

The last contribution to the total flow at any cross section
is that due to any vortex sheets present, generated either at the
trailing edge of a lifting appendage or in some separation process
taking place along the body length. Deferring ﬁor the moment the

problem of the determination of the location and strength ¢f the vortex



sheets, the velocity potential at any given section and at any

particular time is governed by the boundary condition 3.3 :

This boundary corresponds to the flow generated by the vortex sheet

round a stationary two dimensional body and on the body surface

the corresponding stream function ¢2 will have a constant value,
Consider first the evaluation of the integral J ¢2 dy

¢
taken round a contour c as shown in figure 2 comprising the body

contour and both surfaces of each attached vortex sheet.

J ¢2 dy = Re - 1 Il ¢2 dz = Re - i I {w2 - iwz} dz
¢ c c

wz(z)dz - Re I wz dz 8.1
c od

Thus f ¢2 dy = - Re i (
e
Now, since wz is continuous across each vortex sheet and constant

round the closed body contour it follows that

wz dz 2 0
c

so that I ¢2 dy = - Re i [ wz(z)dz 8.2
c c

The integral can be taken round any reconcilable contour, and in
particular if there is no vorticity outside ¢ a very large contour

Z = Rele (R*°) may be used.
If as [z|—>oo w, can be expanded in the form

[ ] An
wy(z)» § = 8.3
n
n=%t =z

the contour integral will reduce to the residue of the term in z"l

only.

That is [ ¢2 dy = 27 Re Al 8.4
c



This extremely useful result can be found in Lamb's "Hydrodynamics",
but it is not as well known as it deserves to be. It provides a
powerful method of evaluating added mass coefficients for awkward
shaped sections. Here it will be used to determine the contribution

of the vortex sheets to the lateral force on the body.

If an element of a vortex sheet is idealized as a point
vortex of strength Km at a point 7 = cm in the circle plane, its

contribution to Wy is obtained by the method of imagessas

ll—'

Gwz = :i.K.ln in (¢ - Cm) -1i Km in (L -

ot

m
At large [z! the mapping function 4.1 can be partially inverted

as

) B.6

o z Z
X +at
=12 - ro (1)
a z 2
(o) z
= 1 -1 1
It follows that fw, = - iK a (g - —). =4+ 0(—=") 8.7
2 m o] m z z z2
m

Equation 8.7 is the beginnings of an expansion of éw; in a series

of the form of equation 8.3 and from 8.4 it follows that

}

IH

Jc 6¢2 dy = 27 Re {- 1Km a, [Cm -

Lt

m

On writing Cm = rmelem this yields the result

1 ,
[c 6¢2 dy = 2w K.m a (rm + T ) Slnem 8.8

Equations 8.5 and B.8 can be extended to the whole assembly

of vortex sheets either by a process of integration or, perhaps more



practically, by representing the sheets by a discrete set of

point vortices.

9. THE CONVECTION OF VORTEX SHEETS

The development of the form of the vortex sheets depends on
the fact that pressure must be continuous through the sheets (to
avoid infinite fluid acceleration at the sheet). Adopting the
notation f+ and f_ for the values of a quantity f on opposite
sides of a sheet at any particular point on the sheet, and writing

Af = f+ - £ _, the behaviour of the sheet can be dé:ived as follows :

Fluid pressure is governed by equation 1.7

E - 1,2,1,2 _
5 + ¢t U¢£ + > ¢x + > ¢y s}
o .+ ¢
1,2 _ X+ X- _
Now §-A¢x = (¢x+ ¢x_) ( 5 Y} o= A¢x.¢xv
¢x+ + ¢x—
where ¢ =
XV
1
Thus 5 Ap + A¢t - UA¢»E + A¢x.¢xv + A¢y'¢yv =0 9.1
. _ dng
or, since Ap = 0O, x - o] 9,2
4 _ 3 | A 8 3
where dat =~ 3t o& + ¢xv ax + ¢yv Ay

Thus A¢ = constant along a trajectory defined by the equations

&€ & dy

dt =-U EE = ¢xv and dt = ¢yv 9.3
These relations are equivalent to
¢ ¢
dx Xxv ay yv
& - X = - 9.4
atf v - 2" g U



Integrations of these relations along the body length from the point

of attachment of the trajectory or vortex line will determine the location
of the vortex sheet in any crossflow plane abaft the point of attachment.
At this location the jump in wvelocity potential A¢ is known from the

value at the point of attachment, and hence the local strength of

the wvortex sheet is known from the relation

_ _ 4%
-y¥(s} = s | 9.5

where s is an arc length measurement along the vortex sheet in the
transverse plane. This gradient can be determined from the values
of A¢ for neighbouring trajectories on the sheet. If the sheet is
to be repres;nted by a set of point vortices the strength of the
substitution vortex between two neightbouring trajectories a distance

§s apart would be

K = v(s)8s = 86, - Ab, 9.6

The strength K will then be constant at all transverse planes

for which both trajectories exist.

Two final comments may be made concerning the formation
of the vortex sheets. The first concerns the evaluation of the
crossflow velocity cohponents ¢xv and¢yv. These components will
have contributions from each of the velocity potentials ¢o' ¢l and
¢2. If a contribution from ¢2 is included the processes by which
the vortex sheets roll up into concentrated longitudinal vortex
cores will be reproduced, if the contribution from ¢2 is omitted the
roll up will be suppressed. The simpler form of calculation may be
adequate for the discussion of linear effects due to infinitessimally
small departures from uniform straight line motion, but the full cal-
culation would be required to cope with non-linear behaviour at large

yaw angles.

The second comment relates to the evaluation of A¢ at the

point of attachment of the trajectory. Where the trajectory originates



at a sharp trailing edge of a lifting appendage A¢ will be continuous
as the trajectory crosses the trailing edge and can thus be obtained
from a solution to the flow problem in the plane immediately upstream
of the trailing edge. This is the equivalent of the well known
"Kutta condition" principle. Where the trajectory originates at a
line of separation along the body length the appropriate value of

A¢ is much less clear, although the application of a Kutta condition
may still be attempted. Some practical procedure based on

experimental evidence may be required in this case.

10. CONCLUDING REMARKS

The purpose of this paper has been to present the solution
to the asymmetric streamflow problem set in the general context of
a slenderbody theory capable in principle of providing estimates -
of forces and moments acting on manceuvring double bodies. The
suggestion is that such a theory could be the basis of a rational

hydrodynamic theory of ship manceuvring.

Since the paper is concerned with general principles certain
numerical details have been omitted, particularly in the evaluation
of the mapping coefficients from the geometry of each body cross
section and in the processes of integration along vortex trajectories

to determine the geometry of trailing vortex sheets.

The use of slenderbody methods offers a tremendous simplification
over any fully three dimensional method, but never the less still
represents a very formidable computational task for any arbitrary
manoeuvres, Practical computational procedures may need to be

restricted fto two simplified cases :

{a) A steady turn for which the lateral motion is described simply -
by

dt-UdE =U{x -al

where R = radius of turn and a = drift angle

(b} Infinitessimal pericdic motions about a straight path.

The steady turn case will correspond to a fully developed
pattern of vortex sheets whose geometry is independent of time,

whilst the infinitessimal periodic motion case is capable of further

analytic development to avold the necessity of following the history



of the motion numerically, time step by time step. It is also likely
that in the latter case bedy separation will not take place and vortex

sheet roll up may be safely ignored.

A major feature of all slenderbody methods is the direct
evaluation of total lateral force without the need for a numerical
integration of pressure round the body contour. There are three
independent contributions to the velocity potential and each provides
a separate contribution to total force since the integration concerned
is linear in ¢% There is a practical need to evaluate hydrodynamicy
heeling moments on a real ship represented by one half of the double
body and this can only be done by the direct evaluation of pressure
lecadings from equation 1.7. Since this equation is not linear in ¢

the heeling moment cannot be separated into independent contributions.



. APPENDIX 1 RHS OF EQUATION 2.7

Consider a simple connected region
S bounded by two closed contours C

}“ and C, and rendered simply connected
bc -~ by a cut joining C to C_.

Co

By applying Gauss theorem

{JC - JC} [w;- ¢i ) dy+¢x¢yde

<[ (562 -62) - 6o ) axa
y X b 4 X y y Y-

/s Y Xy - ¢x¢xx N ¢XY¢Y - ¢x¢yy} dxdy

‘=f ¢ {9 +¢W}dxdy

Since ¢ is a solution to the Laplace equation ¢xx + ¢YY =0,

2 2 N 2 2
Ll}wy -4 ay + 9.6 ax] = I (o) - o) ay v ¢ ax]

C

(-]

Now examination of ¢0, ¢1 and ¢2 shows that at large distances r
from the body contour C ¢ = O {ln r) whilst dx, dy = 0(r)

Hence [ [ ] > 0(20 + 0  as e
c r

. 2 2 -
S L [xte, - 0 ay + 00 ax] =o.

This is the result required to eliminate the RHS of equation 2.7.



APPENDIX 2 REARRANGEMENT OF SERIES 4.7

Equation 4.7 contains the product

ma
m]
.
C

This can be rearranged when [ = 1.0 as follows :

| [ 25 ‘g a;] [% ‘z"
P = |x'" + w=— 4 — . =2 .

m=1

x;ao ° aoaé ° mamxé E m é
P=aa' + + - -
' + - -m+
o) [ nel cn 1 el Cm o=l cm 1

The complete array of terms in the
double sum, covering all values of

n and m can be separated into

(1) 'The diagonal terms n =‘m

(i1) The terms below the diagonal m > n

(11i1) The terms above the diagonal n > m

Taking each separately and substituting s =m -nor s =n - m as

appropriate it is found that for zZf = 1.0

® o ' © ®w o (;1+5)a+a'
! 1 5 =l maa + ] ] ——sn
n=lm=1 cm n= nn n=1s=l A

Substituting this series for the double sum in P yields the RHS of
equétion 4.8,



