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ABSTRACT

We present a new Bayesian hierarchical model (BHM) named Steve for performing type Ia supernova
(SN Ia) cosmology fits. This advances previous works by including an improved treatment of Malmquist
bias, accounting for additional sources of systematic uncertainty, and increasing numerical efficiency.
Given light curve fit parameters, redshifts, and host-galaxy masses, we fit Steve simultaneously for
parameters describing cosmology, SN Ia populations, and systematic uncertainties. Selection effects are
characterised using Monte-Carlo simulations. We demonstrate its implementation by fitting realisations
of SN Ia datasets where the SN Ia model closely follows that used in Steve. Next, we validate on more
realistic SNANA simulations of SN Ia samples from the Dark Energy Survey and low-redshift surveys
(DES Collaboration et al. 2019). These simulated datasets contain more than 60 000 SNe Ia, which we
use to evaluate biases in the recovery of cosmological parameters, specifically the equation-of-state of
dark energy, w. This is the most rigorous test of a BHM method applied to SN Ia cosmology fitting,
and reveals small w-biases that depend on the simulated SN Ia properties, in particular the intrinsic
SN Ia scatter model. This w-bias is less than 0.03 on average, less than half the statistical uncertainty
on w. These simulation test results are a concern for BHM cosmology fitting applications on large
upcoming surveys, and therefore future development will focus on minimising the sensitivity of Steve
to the SN Ia intrinsic scatter model.

Keywords: cosmology: supernovae

1. INTRODUCTION

Two decades have passed since the discovery of the ac-
celerating universe (Riess et al. 1998; Perlmutter et al.
1999). Since that time, the number of observed type Ia
supernovae (SN Ia) has increased by more than an or-
der of magnitude, with contributions from modern sur-
veys at both low redshift (Bailey et al. 2008; Freedman
et al. 2009; Hicken et al. 2009a; Contreras et al. 2010;
Conley et al. 2011), and higher redshift (Astier et al.
2006; Wood-Vasey et al. 2007; Frieman et al. 2008; Bal-
land et al. 2009; Amanullah et al. 2010; Chambers et al.
2016; Sako et al. 2018). Cosmological analyses of these
supernova samples (Kowalski et al. 2008; Kessler et al.
2009b; Conley et al. 2011; Suzuki et al. 2012; Betoule
et al. 2014; Rest et al. 2014; Scolnic et al. 2017) have
been combined with complementary probes of large scale
structure and the CMB. For a recent review, see Huterer
& Shafer (2018). While these efforts have reduced the
uncertainty on the equation-of-state of dark energy (w)
by more than a factor of two, it is still consistent with
a cosmological constant and the nature of dark energy
remains an unsolved mystery.

In attempts to tease out the nature of dark energy, ac-
tive and planned surveys are continually growing in size
and scale. The Dark Energy Survey (DES, Bernstein
et al. 2012; Abbott et al. 2016) has discovered thou-
sands of type Ia supernovae, attaining both spectroscop-
ically and photometrically identified samples. The Large
Synoptic Survey Telescope (LSST, Ivezic et al. 2008;
LSST Science Collaboration et al. 2009) will discover
tens of thousands of photometrically classified super-
novae. Such increased statistical power demands greater
fidelity and flexibility in modelling supernovae for cos-

mological purposes, as we will require reduced system-
atic uncertainties to fully utilise these increased statis-
tics (Betoule et al. 2014; Scolnic et al. 2017).

As such, considerable resources are aimed at develop-
ing more sophisticated supernova cosmology analyses.
The role of simulations mimicking survey observations
has become increasingly important in determining biases
in cosmological constraints and validating specific super-
nova models. First used in SNLS (Astier et al. 2006) and
ESSENCE analyses (Wood-Vasey et al. 2007), and then
refined and improved for SDSS (Kessler et al. 2009b),
simulations are a fundamental component of modern
supernova cosmology. Betoule et al. (2014) quantise
and correct observational bias using simulations, and
more recently Scolnic & Kessler (2016) and Kessler &
Scolnic (2017) explore simulations to quantify observa-
tional bias in SN Ia distances as a function of multi-
ple factors to improve bias correction. Approximate
Bayesian computation methods also make use of simu-
lations, trading traditional likelihoods and analytic ap-
proximations for more robust models with the cost of
increased computational time (Weyant et al. 2013; Jen-
nings et al. 2016). Bayesian Hierarchical models abound
(Mandel et al. 2009; March et al. 2011, 2014; Rubin et al.
2015; Shariff et al. 2016; Roberts et al. 2017), and ei-
ther use simulation-determined distance-corrections to
correct for biases, or attempt to find analytic approxi-
mations for effects such as Malmquist bias to model the
biases inside the BHM itself.

In this paper, we lay out a new hierarchical model
that builds off the past work of Rubin et al. (2015). We
include additional sources of systematic uncertainty, in-
cluding an analytic formulation of selection efficiency
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which incorporates parametric uncertainty. We also
implement a different model of intrinsic dispersion to
both incorporate redshift-dependent scatter and to in-
crease numerical efficiency, allowing our model to per-
form rapid fits to supernovae datasets.

Section 2 is dedicated to a quick review of super-
nova cosmology analysis methods, and Section 3 outlines
some of the common challenges faced by analysis meth-
ods. In Section 4 we outline our methodology. Model
verification on simulated datasets is given in Section 5,
along with details on potential areas of improvement.
We summarise our methodology in Section 6.

2. REVIEW

Whilst supernova observations take the form of pho-
tometric time-series brightness measurements in many
bands and a redshift measurement of the supernova (or
its assumed host), most analyses do not work from these
measurements directly. Instead, most techniques fit an
observed redshift and these photometric observations to
a supernova model, with the most widely used being that
of the empirical SALT2 model (Guy et al. 2007, 2010).
This model is trained separately before fitting the su-
pernova light curves for cosmology (Guy et al. 2010; Be-
toule et al. 2014). The resulting output from the model
is, for each supernova, an amplitude x0 (which can be
converted into apparent magnitude, mB = −2.5 log(x0)),
a stretch term x1, and color term c, along with a covari-
ance matrix describing the uncertainty on these sum-
mary statistics (Cη). As all supernovae are not identical,
an ensemble of supernovae form a redshift-dependent,
observed population of m̂B, x̂1 and ĉ, where the hat de-
notes an observed variable.

This ensemble of m̂B, x̂1 and ĉ represents an observed
population, which – due to the presence of various se-
lection effects – may not represent the true, underly-
ing supernova population. Accurately characterising
this underlying population, its evolution over redshift,
and effects from host-galaxy environment, is one of the
challenges of supernova cosmology. Given some mod-
elled underlying supernova population that lives in the
redshift-dependent space MB (absolute magnitude of the
supernova, traditionally in the Bessell B band), x1, and
c, the introduction of cosmology into the model is simple
– it translates the underlying population from absolute
magnitude space into the observed population in appar-
ent magnitude space. Specifically, for any given super-
nova our map between absolute magnitude and apparent
magnitude is given by the distance modulus:

µobs = mB+αx1−βc−MB+∆M ·m+other corrections, (1)

where MB is the mean absolute magnitude for all SN Ia
given x1 = c = 0, α is the stretch correction (Phillips
1993; Phillips et al. 1999), and β is the color correction
(Tripp 1998) that respectively encapsulate the empiri-
cal relation that broader (longer-lasting) and bluer su-
pernovae are brighter. ∆M · m refers to the host-galaxy

mass correlation discussed in Section 4.4.3. The dis-
tance modulus µobs is a product of our observations,
however a distance modulus µC can be precisely cal-
culated given cosmological parameters and a redshift.
The ‘other corrections’ term often includes bias correc-
tions for traditional χ2 analyses. Bias corrections can
take multiple forms, such as a redshift-dependent func-
tion (Betoule et al. 2014) or a 5D function of c, x1, α, β
and z (Kessler & Scolnic 2017; Scolnic et al. 2017).

2.1. Traditional Cosmology Analyses

Traditional χ2 analyses such as that found in Riess
et al. (1998); Perlmutter et al. (1999); Wood-Vasey et al.
(2007); Kowalski et al. (2008); Kessler et al. (2009b);
Conley et al. (2011); Betoule et al. (2014), minimise the
difference in distance modulus between the observed dis-
tance modulus attained from equation 1, and the cosmo-
logically predicted distance modulus. The χ2 function
minimised is

χ2 = (µobs − µC)†C−1
µ (µobs − µC), (2)

where C−1
µ is an uncertainty matrix that combines sta-

tistical and systematic uncertainties (see Brout et al.
(2019) for a review of these uncertainties for the DES
supernova analysis). The predicted µC is defined as

µC = 5 log
[

dL

10pc

]
, (3)

dL = (1 + z) c
H0

∫ z

0

dz′

E(z′), (4)

E(z)=
√
Ωm(1 + z′)3 +Ωk(1 + z′)2 +ΩΛ(1 + z′)3(1+w)(5)

where dL is the luminosity distance for redshift z given
a specific cosmology, H0 is the current value of Hubble’s
constant in km s−1 Mpc−1 and Ωm, Ωk , and ΩΛ represent
the energy density terms for matter, curvature and dark
energy respectively.

The benefit this analysis methodology provides is
speed – for samples of hundreds of supernovae or less,
efficient matrix inversion algorithms allow the likelihood
to be evaluated quickly. The speed comes with several
limitations. Firstly, formulating a χ2 likelihood results
in a loss of model flexibility by assuming Gaussian un-
certainty. Secondly, the method of creating a covariance
matrix relies on computing partial derivatives and thus
any uncertainty estimated from this method loses infor-
mation about correlation between sources of uncertainty.
For example, the underlying supernova color popula-
tion’s mean and skewness are highly correlated, how-
ever this correlation is ignored when determining popu-
lation uncertainty using numerical derivatives of popula-
tion permutations. Whilst correlations can be incorpo-
rated into a covariance matrix, it requires human aware-
ness of the correlations and thus methods that can au-
tomatically capture correlated uncertainties are prefer-
able. Thirdly, the computational efficiency is dependent
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on both creating the global covariance matrix, and then
inverting a covariance matrix with dimensionality lin-
early proportional to the number of supernovae. As this
number increases, the cost of inversion rises quickly, and
is not viable for samples with thousands of supernovae.
A recent solution to this computational cost problem is
to bin the supernovae in redshift bins, which produces
a matrix of manageable size and can allow fitting with-
out matrix inversion at every step. Whilst binning data
results in some loss of information, recent works tested
against simulations show that this loss does not result in
significant cosmological biases (Scolnic & Kessler 2016;
Kessler & Scolnic 2017).

Selection efficiency, such as the well known Malmquist
bias (Malmquist K. G. 1922) is accounted for by correct-
ing the determined µobs from the data, or equivalently,
adding a distance bias to the µC prediction. Specifically,
Malmquist bias is the result of losing the fainter tail of
the supernova population at high redshift. An example
of Malmquist bias is illustrated in Figure 1, which simu-
lates supernovae according to equation (1). Simulations
following survey observational strategies and geometry
are used to calculate the expected bias in distance mod-
ulus, which is then subtracted from the observational
data. When using traditional fitting methods such as
that found in Betoule et al. (2014), these effects are not
built into the likelihood and instead are formed by cor-
recting data. This means that the bias uncertainty is not
captured fully in the χ2 distribution, and subtle corre-
lations between cosmological or population parameters
and the bias correction is lost. Recent developments
such as the BBC method (Kessler & Scolnic 2017) in-
corporate corrections dependent on α and β, improving
their capture of uncertainty on bias corrections in the
χ2 likelihood.

2.2. Approximate Bayesian Computation

To avoid the limitations of the traditional approaches,
several recent methods have adopted Approximate
Bayesian Computation, where supernova samples are
forward modelled in parameter space and compared to
observed distributions. Weyant et al. (2013) provides
an introduction into ABC methods for supernova cos-
mology in the context of the SDSS-II results (Sako et al.
2014) and flat ΛCDM cosmology, whilst Jennings et al.
(2016) demonstrates their superABC method on simu-
lated first season Dark Energy Survey samples. In both
examples, the supernova simulation package SNANA
(Kessler et al. 2009a) is used to forward model the data
at each point in parameter space.

Simulations provide great flexibility and freedom in
how to treat the systematic uncertainties and selection
effects associated with supernova surveys. By using for-
ward modelling directly from these simulations, data
does not need to be corrected, analytic approximations
do not need to be applied, and we are free to incorpo-
rate algorithms that simply cannot be expressed in a
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Figure 1. An example of the effects of Malmquist bias. Here

are shown 1000 simulated supernovae redshifts and distance

modulus given fiducial cosmology. The simulated survey is

magnitude limited, and all supernovae brighter than mag-

nitude 24 are successfully observed (shown as blue dots),

and all dimmer than 24th magnitude are not successfully

observed (shown as red dots). By binning the supernovae

along redshift, and taking the mean distance modulus of the

supernovae in each bin, we can see that at higher redshift

where Malmquist bias kicks in, the population mean drops

and becomes biased. This source of bias must either be cor-

rected by adjusting the data (such as subtracting the found

bias) for by incorporating Malmquist bias explicitly in the

cosmological model.

tractable likelihood such as those found in traditional
analyses from Section 2.1. This freedom comes with a
cost – computation. The classical χ2 method’s most
computationally expensive step in a fit is matrix inver-
sion. For ABC methods, we must instead simulate an
entire supernova population – drawing from underlying
supernova populations, modelling light curves, applying
selection effects, fitting light curves and applying data
cuts. This is an intensive process.

One final benefit of ABC methods is that they can
move past the traditional treatment of supernovae with
summary statistics (mB, x1, and c). Jennings et al.
(2016) presents two metrics, which are used to measure
the distance between the forward modelled population
and observed population, and are minimised in fitting.
The first metric compares forward modelled summary
statistic populations (denoted the ‘Tripp’ metric) and
the second utilises the observed supernova light curves
themselves, moving past summary statistics. However,
we note that evaluation of systematic uncertainty was
only performed using the Tripp metric.

2.3. Bayesian Hierarchical Models
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Sitting between the traditional models simplicity and
the complexity of forward modelling lies Bayesian hi-
erarchical models (BHM). Hierarchical models utilise
multiple layers of connected parameters, with the layers
linked via well defined and physically motivated condi-
tional probabilities. For example, an observation of a
parameter from a population will be conditioned on the
true value of the parameter, which itself will be condi-
tioned on the population distribution of that parame-
ter. We can thus incorporate different population dis-
tributions, and parameter inter-dependence which can-
not be found in traditional analyses where uncertainty
must be encapsulated in a covariance matrix. Unlike
ABC methods, which can model arbitrary probability
distributions, BHM methods are generally constrained
to representing probabilities using analytic forms.

With the introduction of multiple layers in our model,
we can add more flexibility than a traditional analy-
sis whilst still maintaining most of the computational
benefits that come from having a tractable likelihood.
Mandel et al. (2009, 2011, 2017) construct a hierarchi-
cal model that they apply to supernova light-curve fit-
ting. March et al. (2011) derive a hierarchical model
and simplify it by analytically marginalising over nui-
sance parameters to provide increased flexibility with
reduced uncertainty over the traditional method, but
do not incorporate bias corrections. March et al. (2014)
and Karpenka (2015) improve upon this by incorporat-
ing redshift-dependent magnitude corrections from Per-
rett et al. (2010) to remove bias, and validate on 100
realisations of SNLS-like simulations. The recent BA-
HAMAS model (Shariff et al. 2016) builds on this and
reanalyses the JLA dataset (using redshift dependent
bias corrections from Betoule et al. 2014), whilst in-
cluding extra freedom in the correction factors α and β,
finding evidence for redshift dependence on β. Ma et al.
(2016) performed a reanalysis of the JLA dataset within
a Bayesian formulation, finding significant differences in
α and β values from the original analysis from Betoule
et al. (2014). Notably, these methods rely on data that
is bias corrected or the methods ignore biases, however
the UNITY framework given by Rubin et al. (2015) in-
corporates selection efficiency analytically in the model,
and is applied to the Union 2.1 dataset (Suzuki et al.
2012). The assumption made by the UNITY analysis is
that the bias in real data is perfectly described by an an-
alytic function. They validate their model to be free of
significant biases using fits to thirty realisations of super-
nova datasets that are constructed to mimic the UNITY
framework. The well known BEAMS (Bayesian esti-
mation applied to multiple species) methodology from
Kunz et al. (2007) has been extended and applied in sev-
eral works (Hlozek et al. 2012), most lately to include
redshift uncertainty for photometric redshift application
as zBEAMS (Roberts et al. 2017) and to include simu-
lated bias corrections in Kessler & Scolnic (2017). For
the latter case, by inferring biases using Bayesian mod-

els, sophisticated corrections can be calculated and then
applied to more traditional χ2 models.

Whilst there are a large number of hierarchical models
available, none of them have undergone comprehensive
tests using realistic simulations to verify each models’
respective bias. Additionally, testing has generally been
performed on supernovae simulations with either ΛCDM
cosmology or Flat ΛCDM cosmology. However, quanti-
fying the biases on wCDM cosmology simulations with
realistic simulations is becoming critically important as
precision supernovae cosmology comes into its own, and
focus shifts from determination of Ωm to both Ωm and
w.

The flexibility afforded by hierarchical models allows
for investigations into different treatments of underly-
ing supernova magnitude, color and stretch populations,
host-galaxy corrections, and redshift evolution, each of
which will be discussed further in the outline of our
model below. Our model is designed to increase the
numerical efficiency of prior works whilst incorporating
the flexibility of hierarchical models. We reduce our de-
pendence on an assumed scatter model in simulations
by not utilising bias-corrections in an effort to provide
a valuable cross-check on analysis methodologies which
utilise scatter-model-dependant bias corrections.

3. CHALLENGES IN SUPERNOVA COSMOLOGY

The diverse approaches and implementations applied
to supernova cosmology are a response to the signifi-
cant challenges and complications faced by analyses. In
this Section, we outline several of the most prominent
challenges.

Forefront among these challenges is our ignorance of
the underlying type Ia intrinsic dispersion. Ideally, anal-
ysis of the underlying dispersion would make use of an
ensemble of time-series spectroscopy to characterise the
diversity of type Ia supernovae. However this data is
difficult to obtain, and recent efforts to quantify the dis-
persion draw inference from photometric measurements.
The underlying dispersion model is not a solved prob-
lem, and we therefore test against two dispersion mod-
els in this work. The first is based on the Guy et al.
(2010, hereafter denoted G10) scatter model, the sec-
ond is sourced from Chotard et al. (2011, hereafter de-
noted C11). As the SALT2 model does not include full
treatment of intrinsic dispersion, each scatter model re-
sults in different biases in mB, x1, and c when fitting
the SALT2 model to light curve observations, and re-
sults in increased uncertainty on the summary statistics
that is not encapsulated in the reported covariance Cη .
These two scatter models are currently assumed to span
the possible range of scatter in the underlying supernova
population. We have insufficient information to prefer
one model over the other, and thus we have to account
for both possible scatter models.

The underlying supernova population is further com-
plicated by the presence of outliers. Non-type Ia super-
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novae often trigger transient follow-up in surveys and
can easily be mistaken for type Ia supernovae and repre-
sent outliers from the standardised SN Ia sample. This
contamination is not just a result of non-SN Ia being
observed, but can also arise from host galaxy misiden-
tification causing incorrect redshifts being assigned to
supernovae. Different optimizations to the host-galaxy
algorithm can result in misidentification of the host at
the 3% to 9% level (Gupta et al. 2016), resulting in
a broad population of outliers. For spectroscopic sur-
veys, where both supernova type and redshift can be
confirmed through the supernova spectra, this outlier
population is negligible. However, for photometric sur-
veys, which do not have the spectroscopic confirmation,
it is one of the largest challenges; how to model, fit, and
correct for contaminants.

Finally, one of the other persistent challenges facing
supernova cosmology analyses are the high number of
systematics. Because of the rarity of SN Ia events,
datasets are commonly formed from the SN Ia discov-
eries of multiple surveys in order to increase the num-
ber of supernovae in a dataset. However, each survey
introduces additional sources of systematic error, from
sources within each survey such as band calibration,
to systematics introduced by calibration across surveys.
Peculiar velocities, different host environments, and dust
extinction represent additional sources of systematic un-
certainty which must all be modelled and accounted for.

4. OUR METHOD

We construct our hierarchical Bayesian model Steve
with several goals in mind: creation of a redshift-
dependent underlying supernova population, treatment
of an increased number of systematics, and analytic cor-
rection of selection effects, including systematic uncer-
tainty on those corrections. We also desire Steve more
computationally efficient than prior works, such that
cosmological results from thousands of supernovae are
obtainable in the order of hours, rather than days. As
this is closest to the UNITY method from Rubin et al.
(2015, hereafter denoted R15), we follow a similar model
scaffold, and construct the model in the programming
language Stan (Carpenter et al. 2017; Stan Development
Team 2017). The primary challenge of fitting hierarchi-
cal models is their large number of fit parameters, and
Stan, which uses automatic differentiation and the no-
U-turn Sampler (NUTS, a variant of Hamiltonian Monte
Carlo), allows us to efficiently sample high dimensional
parameter space.

At the most fundamental level, a supernova cosmol-
ogy analysis is a mapping from an underlying population
onto an observed population, where cosmological param-
eters are encoded directly in the mapping function. The
difficulty arises both in adequately describing the bi-
ases in the mapping function, and in adding sufficient,
physically motivated flexibility in both the observed and
underlying populations whilst not adding too much flex-

ibility, such that model fitting becomes pathological due
to increasing parameter degeneracies within the model.

In the analysis of this article, the underlying model
universe maps to the observed universe as sketched in
the BHM of Figure 2. The dependencies that between
the model and observations can be tracked following the
arrows of the BHM, and a summary of all the conditional
probabilities can be found in 4.5.

In the following sections, we will describe the model
parameters, the mapping functions that connect them to
data, the effect of sample selection (in Equation (12)),
and the pathologies that can occur when evaluating the
model. Summaries of observables and model parameters
are shown in Table 1 for easy reference.

4.1. Observed Populations

4.1.1. Observables

Like most of the BHM methods introduced previ-
ously, we work from the summary statistics, where each
observed supernova has a brightness measurement m̂B

(which is analogous to apparent magnitude), stretch x̂1
and color ĉ, with uncertainty on those values encoded
in the covariance matrix Cη . Additionally, each super-
nova has an observed redshift ẑ and a host-galaxy stellar
mass associated with it, m̂, where the mass measurement
is converted into a probability of being above 1010 so-
lar masses. Our set of observables input into the Steve
is therefore given as {m̂B, x̂1, ĉ, ẑ, m̂, Cη}, as shown in the
probabilistic graphical model (PGM) in Figure 2.

As we are focused on the spectroscopically confirmed
supernovae for this iteration of the method, we assume
the observed redshift ẑ is the true redshift z such that
P(ẑ |z) = δ(ẑ− z). Potential sources of redshift error (such
as peculiar velocities) are taken into account not via un-
certainty on redshift (which is technically challenging to
implement as varying redshifts introduce computational
complexity in computing the distance modulus integral
by reducing the amount of pre-computation that can
be utilised) but instead uncertainty on distance modu-
lus. Similarly, we take the mass probability estimate m̂
as correct, and do not model a latent variable to rep-
resent uncertainty on the probability estimate. One of
the strengths of Steve (and the R15 analysis) is that
for future data sets where supernovae have been clas-
sified photometrically, and we expect some misclassifi-
cation and misidentification of the host galaxies, these
misclassifications can naturally be modelled and taken
into account by introducing additional populations that
supernovae have a non-zero probability of belonging to.

4.1.2. Latent Variables for Observables

The first layer of hierarchy is the set of true (latent)
parameters that describe each supernova. In contrast
to the observed parameters, the latent parameters are
denoted without a hat. For example, c is the true color
of the supernova, whilst ĉ is the observed color, which,
as it has measurement error, is different from c.
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Table 1. Model Parameters

Parameter Description

Global Parameters
Ωm Matter density
w Dark energy equation of state
α Stretch standardisation
β color standardisation
δ(0) Scale of the mass-magnitude correction
δ(∞)/δ(0) Redshift-dependence of mass-magnitude correction
δZi Systematics scale
〈MB〉 Mean absolute magnitude

Survey Parameters
δS Selection effect deviation
〈xi1〉 Mean stretch nodes

〈ci〉 Mean color nodes
αc Skewness of color population
σMB Population magnitude scatter
σx1 Population stretch scatter
σc Population color scatter
κ0 Extra color dispersion
κ1 Redshift-dependence of extra color dispersion

Supernova Parameters
mB True flux
x1 True stretch
c True color
z True redshift
MB Derived absolute magnitude
µ Derived distance modulus

Input Dataa

m̂B Measured flux
x̂1 Measured stretch
ĉ Measured color
C Covariance on flux, stretch and color
ẑ Observed redshift
m̂ Observed mass probability

aNot model parameters but shown for completeness.

For the moment, let us consider a single supernova and
its classic summary statistics mB, x1, c. For convenience,
let us define η ≡ {mB, x1, c}. A full treatment of the sum-
mary statistics would involve determining p(ŷ |η), where
ŷ represents the observed light curves fluxes and uncer-
tainties. However, this is computationally prohibitive
as it would require incorporating SALT2 light curve fit-
ting inside our model fitting. Due to this computational
expense, we rely on initially fitting the light curve ob-
servations to produce a best fit η̂ along with a 3 × 3
covariance matrix Cη describing the uncertainty on η̂.
Using this simplification, our latent variables are given

m̂B, x̂1, ĉ, Ĉ−1
ηẑ Emass

mBx1, cz
mass

µ

MB

〈xi1〉, 〈ci〉,
σx1, σc, αc

κ0, κ1

Ωm,w 〈MB〉,
σMB

δZi
α, β,

δ(0), δ(∞)

∀ SN

∀ Survey

Figure 2. Probabilistic graphical model for our likelihood

without selection effects. Double-lined nodes represent ob-

served variables, diamond nodes represent deterministic vari-

ables, single-lined ellipse nodes represent fit variables. The

SN box represents observed variables and latent variables

for each individual supernova, whilst the survey box rep-

resents survey-specific variables, which in general describe

the supernova population for the survey and the systemat-

ics associated with it. Variables that appear outside both

boxes represent top level model parameters. We note that

we have shown the model to have latent variables {MB, x1 c},
which uniquely determines mB, given µ and other parame-

ters. Thus, the two nodes MB and mB, make up a single

layer in our hierarchy, not two layers. In the code implemen-

tation, mB is more efficiently parametrised instead of MB,

however the mathematics remains constant regardless of if

you parametrise MB or mB as one can determine the other.

We write out mass instead of m to reduce possible confusion

with magnitude in the diagram. Finally, as we take redshift

measurement ẑ and mass probability ˆmass as exact they are

not conditioned on underlying distributions and are top level

parameters.

by
p(η̂ |η) ∼ N (η̂ |η, Cη). (6)

As discussed in Section 3, the SALT2 model does not in-
clude full treatment of intrinsic dispersion, and thus this
approximation does not encapsulate the full uncertainty
introduced from this dispersion.

4.2. Underlying Population
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4.2.1. Type Ia population

Unlike many previous formalisms which utilise MB as
a singular number and model magnitude scatter on the
apparent magnitude mB, we incorporate this scatter into
the underlying rest-frame population by having a popu-
lation in absolute magnitude space. This is mathemat-
ically equivalent, however allows us to model the un-
derlying population and intrinsic scatter distinctly. To
denote this difference, we refer to the mean of our abso-
lute magnitude population with 〈MB〉.

In addition to absolute magnitude, the underlying su-
pernova population is also characterised by distributions
in color and stretch. We follow the prior work of R15 and
model the color population as an independent redshift-
dependent skew normal distribution for each survey. For
the stretch population, we adopt a redshift-dependent
normal distribution, and magnitude dispersion is mod-
elled as a normal distribution. We also tested a skew-
normal approach for these parameters, reverting to the
normal distributions as they are computationally easier
to evaluate and we found no reduction in cosmologi-
cal bias with the skew-normal distributions for stretch
and magnitude. Following R15 we allow the mean color
and stretch to vary over redshift, anchoring four equally
spaced redshift nodes spanning the redshift range of
each survey, linearly interpolating between the nodes to
determine the mean stretch and color for a given red-
shift. These nodes are represented as 〈xi1〉 and 〈ci〉.
Both the color and stretch means are modelled with
normal priors. Initial versions of our model adopted
a fully covariant multivariate skew normal (with skew-
ness set to zero only for the magnitude component) to
capture correlations between mB and c, however patho-
logical fitting complications required us to simplify our
treatment. We parametrise the color skewness αc by

sampling δc = αc/
√

1 + α2
c which itself is given a uni-

form prior U(0, 0.98) that allows αc to span positive val-
ues in the realm of physical plausibility as determined
from constraints in Scolnic & Kessler (2016). We sample
δc in log space for efficiency in sampling close to zero.
The width of the population, represented by the vector
{σMB, σx1, σc} is subject to Cauchy priors with mean 0
and width 1, following recommendations from the Stan
user guide.

The only constant between survey populations is the
absolute magnitude 〈MB〉. We model the colour skew-
ness and the redshift-dependent means and width of the
colour and skew distributions individually for each sur-
vey. The probability for a supernova to have true values
MB, x1, c given the underlying population is thus given
as

P(MB, x1, c, z |θ) = N (MB |〈MB〉, σMB )N (x1 |〈x1(z)〉, σx1 )
N skew(c |〈c(z)〉, σc, αc), (7)

where θ = {〈MB〉, 〈x1(z)〉, 〈c(z)〉, σmB, σx1, σc, αc} for leg-
ibility.

4.2.2. Outlier populations

For the spectroscopic paper we do not consider out-
lier populations, however we ensure that our model has
flexibility for such populations for future use with pho-
tometrically classified surveys. We thus include a sim-
plistic outlier population model. We follow R15 (and
therefore Kunz et al. 2007) by implementing a Gaus-
sian mixture model, where an additional observable of
the SN Ia probability would be needed in order to in-
form the weights of the mixture model. For surveys
with low rates of contamination, it is not possible to fit
a contamination population, and the mean of the out-
lier population has been fixed to the SN Ia population
in prior works. However, with the increased number of
contaminants expected in the DES photometric sample,
we seek a more physically motivated outlier population.
We find that an acceptable parametrisation is to model
the outlier population with a mean absolute magnitude
of 〈Moutl

B 〉 = 〈MB〉 + δoutl
MB

, where δoutl
MB

is constrained to
be positive, or even to be greater than a small positive
number to reduce degeneracy between the two popula-
tions. We note that this represents the mean brightness
of outliers, and so outliers could both be brighter and
dimmer than the mean SN Ia absolute magnitude. We
set the population width to σoutl = 1 in MB, x1 and c in
our tests. The probability of each supernova falling into
either population is determined by the observed type Ia
probability p̂. For the spectroscopic survey, we set this
to unity, and thus it is not included in Figure 2 or Table
1. For the photometric proof-of-concept we provide an
accurate probability estimate. Further investigation on
the effect of inaccurate estimates will be left for future
improvements during the analysis of the DES photomet-
ric sample.

4.3. Correcting biased summary statistics

With the fitted summary statistics η̂ being biased and
their uncertainty under-reported, we face a significant
challenge utilising these statistics naively in supernova
cosmology. We must either correct the observables to
remove the biases introduced by the intrinsic dispersion
of the underlying population, or incorporate this disper-
sion into our model. We should also avoid assuming a
specific dispersion model – either the G10 or C11 model,
or utilise the results of computing the bias from both
models.

We model the extra dispersion only in color, and do
so by adding independent uncertainty on the color ob-
servation ĉ. We note that extra dispersion in magni-
tude m̂B (from coherent scatter) is absorbed completely
by the width of the underlying magnitude population
(discussed in Section 4.2.1) without introducing cosmo-
logical bias, which is not true of the color term, hence
the requirement for modelling additional color disper-
sion. Tests on incorporating extra dispersion on stretch
as well show that stretch is less biased than color, and
causes negligible bias in cosmology.
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As shown in (Kessler et al. 2013b), the extra color
dispersion shows heavy redshift dependence, increasing
with redshift. This is an artifact of different filters, how-
ever as we may be subject to similar effects in our ob-
servational data, we decide to incorporate redshift de-
pendence in our extra uncertainty. We thus add κ0 + κ1z
to our observed color uncertainty (in quadrature). The
κ parameters are highly degenerate with the width of
the intrinsic color population σc. We subject them to
Cauchy priors centered on zero and with width 0.05,
where κ is bounded between 0 and 0.05. We pick this
maximum value to allow extra dispersion without com-
pletely subsuming the intrinsic population widths due
to the severe degeneracy, where this maximum value
easily encapsulates the determined dispersion according
to the results of Kessler et al. (2013b). As such, our
combined covariance on the observation η̂ is given by
Ctot = Cη + DiagMatrix

[
0, 0, (κ0 + κ1z)2

]
.

Fully covariant extra dispersion on {mB, x1, c} (rather
than just dispersion on c) was also tested, by modelling
the dispersion as a multivariate Gaussian, but it showed
negligible improvement in recovering unbiased cosmol-
ogy over just color dispersion, and was far more com-
putationally inefficient. We note here that we model
dispersion in magnitude, but this is done at the level of
underlying populations, not observed populations. This
magnitude dispersion is modelled with redshift indepen-
dence.

4.4. Mapping function

4.4.1. Cosmology

We formulate our model with three different cosmo-
logical parameterisations; Flat ΛCDM, Flat wCDM, and
standard ΛCDM (without a flatness prior). Ωm is given
the prior U(0.05, 0.99), ΩΛ was treated with U(0, 1.5)
and the equation of state w was similarly set to a flat
prior U(−0.4,−2.0). For calculating the distance mod-
ulus, we fix H0 = 70km s−1 Mpc−1. If the Hubble con-
stant has a different value, the absolute magnitude is
MB +5 log(H0/70km s−1 Mpc−1) with the other cosmolog-
ical parameters unaffected.

4.4.2. Supernova Standardisation Parameters

With increasingly large datasets and more nuanced
analyses, the choice of how to handle α and β be-
comes an important consideration when constructing a
model. R15 employs a broken linear relationship for
both color and stretch, where different values of α and β
are adopted depending on whether x1 and c are positive
or negative (although the cut could be placed at a loca-
tion other than 0). Shariff et al. (2016) instead model
β as redshift-dependent, testing two phenomenological
models; β(z) = β0+ β1z and a second model which effects
a rapid but smooth change in β at a turnover redshift
zt .

We tested two models with varying β against simu-
lated supernova sets; β(c) = β0+ β1c and β(z) = β0+ β1z.

See Section 5.2 for details on simulation generation. We
found for both models that non-zero values for β1 are
preferred even with constant β used in simulation, due
to severe degeneracy with selection effects. This degen-
eracy resulted in a significant bias in recovered cosmol-
ogy. Due to the recovery of non-zero β1, we continue to
adopt the constant α and β found in traditional anal-
yses. As such, our calculation of distance modulus µ
mirrors that found in Equation (3).

4.4.3. Host Galaxy Environment

There are numerous results showing statistically sig-
nificant correlations between host-galaxy environment
and supernova properties (Kelly et al. 2010; Lampeitl
et al. 2010; Sullivan et al. 2010; D’Andrea et al. 2011;
Gupta et al. 2011; Johansson et al. 2013; Rigault et al.
2013). The latest sample of over 1300 spectroscopi-
cally confirmed type Ia supernovae show > 5σ evidence
for correlation between host mass and luminosity (Ud-
din et al. 2017). The traditional correction, as em-
ployed in analyses such as Suzuki et al. (2012) and Be-
toule et al. (2014), invokes a step function such that
∆M = γH(log(M) − 10)), where H is the Heaviside step
function, M is the galaxy mass in solar masses and γ
represents the size of the magnitude step. The scale of
this step function varies from analysis to analysis, and
is treated as a fit parameter. In this work we adopt the
model used in R15, which follows the work from Rigault
et al. (2013), such that we introduce two parameters to
incorporate a redshift-dependent host galaxy mass cor-
rection:

∆M = δ(0)

1.9

(
1 − δ(0)

δ(∞)

)
0.9 + 100.95z +

δ(0)
δ(∞)

 , (8)

where δ(0) represents the correction at redshift zero,
and δ(∞) a parameter allowing the behaviour to change
with increasing redshift. We take flat priors on δ(0) and
δ(0)/δ(∞). Finally, we assume that the observed mass
probability m̂ supplied to the model is perfectly deter-
mined, and thus set P(m̂|m) = δ(m̂ − m).

4.4.4. Uncertainty Propagation

The chief difficulty with including systematic uncer-
tainties in supernova analyses is that they have difficult-
to-model effects on the output observations. As such,
the traditional treatment for systematics is to compute
their effect on the supernova summary statistics – com-

puting the numerical derivatives dm̂B

dZi
, dx̂1

dZi
, dĉ

dZi
for each

supernova light curve fit, where Zi represents the ith

systematic.
Assuming that the gradients can be linearly extrapo-

lated – which is a reasonable approximation for modern
surveys with high quality control of systematics – we
can incorporate into our model a deviation from the ob-
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served values by constructing a (3×Nsys) matrix contain-
ing the numerical derivatives for the Nsys systematics and
multiplying it with the row vector containing the offset
for each systematic. By scaling the gradient matrix to
represent the shift over 1σ of systematic uncertainty, we
can simply enforce a unit normal prior on the systematic
row vector to increase computational efficiency.

This method of creating a secondary covariance ma-
trix using partial derivatives is used throughout the tra-
ditional and BHM analyses. For each survey and band,
we have two systematics — the calibration uncertainty
and the filter wavelength uncertainty. We include these
in our approach, in addition to including HST Calspec
calibration uncertainty, ten SALT2 model systematic
uncertainties, a dust systematic, a global redshift bias
systematic, and also the systematic peculiar velocity un-
certainty. A comprehensive explanation of all systemat-
ics is given in Brout et al. (2019); see Table 4 for de-
tails. This gives thirteen global systematics shared by
all surveys that apply globally to all supernova sum-
mary statistics, plus two systematics per band in each
survey. Systematics with known correlations are shifted
together to produce covariant deviations, and we thus
assume that the numerical derivatives input into our
model represent independent systematics. Full details
can be found in Brout et al. (2019). With η ≡ {mB, x1, c},
our initial conditional likelihood for our observed sum-
mary statistics shown in Equation (6) becomes

P
(
η̂,

∂η̂

∂Zi
|η, δZi,Cη

)
= N

(
η̂ + δZi

∂η̂

∂Zi
|η, Cη

)
. (9)

4.4.5. Selection Effects

One large difference between traditional methods and
BHM methods is that we treat selection effects by in-
corporating selection efficiency into our model, rather
than relying on simulation-driven data corrections. We
describe the probability that the possible events we
observe are drawn from the distribution predicted by
the underlying theoretical model and that those events,
given they happened, are observed and pass cuts. To
make this extra conditional explicit, we can write the
likelihood of the data given an underlying model, θ, and
that the data are included in our sample, denoted by S,
as

L(θ; data) = P(data|θ, S). (10)

As our model so far describes components of a basic
likelihood P(data|θ), and we wish to formulate a func-
tion P(S |data, θ) that describes the chance of an event
being successfully observed, we rearrange the likelihood
in terms of those functions and find

L(θ; data) = P(S |data, θ)P(data|θ)∫
P(S |D, θ)P(D|θ) dD

, (11)

where the denominator represents an integral over all
potential data D, and θ represents top-level parameters.

In the case that our selection effects are best charac-
terised by latent variables instead of data, we can add
them to our formulation and our likelihood becomes

L(θ; data)=
∫

P(S |L, θ)P(data|L)P(L |θ) dL∬
P(S |L, θ)P(L |θ)dL

, (12)

where L represents our latent parameters. This is de-
rived in Appendix A.1. To evaluate the effect of our
selection effects, we need to evaluate both the selection
effect terms in the numerator and the integral in the
denominator. The numerator represents the probabil-
ity we caught the supernova and it was selected into the
cosmology sample. The integral represents our global se-
lection efficiency at a location in parameter space, rather
than the probability of our data being selected into our
sample. As θ represents the vector of all top-level model
parameters, and L represents a vector of all latent pa-
rameters, this is not a trivial integral. Techniques to
approximate this integral, such as Monte-Carlo integra-
tion or high-dimensional Gaussian processes failed to
give tractable posterior surfaces that could be sampled
efficiently by Hamiltonian Monte-Carlo, and post-fitting
importance sampling failed due to high-dimensionality
(a brief dismissal of many months of struggle). We there-
fore simplify the integral and approximate the selection
effects from their full expression in all of θ-space, to
apparent magnitude and redshift space independently
(not dependent on x1 or c), such that the denominator
of equation (12), denoted now d for simplicity, is given
as

d =
∫ [∫

P(S |mB)P(mB |z, θ) dmB

]
P(S |z)P(z |θ) dz,

(13)
where P(mB |z, θ) can be expressed by translating the un-
derlying MB, x1, and c population to mB given cosmo-
logical parameters. A full derivation of this can be found
in Appendix A.2.

We now apply two further approximations similar to
those made in R15 – that the redshift distribution of
the observed supernovae reasonably well samples the
P(S |z)P(z |θ) distribution, and that the survey color and
stretch populations can be treated as Gaussian for the
purposes of evaluating P(mB |z, θ). We found that dis-
carding the color population skewness entirely resulted
in highly biased population recovery (see Figure 12 to
see the populations), and so we instead characterise the
skew normal color distribution with a Gaussian that fol-
lows the mean and variance of a skew normal; with mean

given by 〈c(z)〉 +
√

2
πσcδc and variance σ2

c (1 − 2δ2
c/π).

This shifted Gaussian approximation for color com-
pletely removes the unintended bias when simply dis-
carding skewness. This shift was not required for the
stretch population, and so was left out for the stretch
population for numerical reasons. The impact of this
approximation on the calculated efficiency is shown in
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Figure 3. Testing the correctness of our normal approx-

imation to the skewed color distribution. The ‘correct’

line (shown in black) represents the exact integral w =∫
P(S |x)P(x)dx where P(S |x) is an error function (following

our high-redshift surveys) and P(x) = N Skew(x, 0.1, 2), calcu-

lated numerically. The x-axis is analogous to mB is cosmo-

logical context. As expected, all efficiencies drop towards

zero as shift increases (as objects get fainter). The unshifted

normal approximation shows significant discrepancy in the

calculated efficiency as it transitions from 1 to 0, whilst the

shifted normal approximation shows negligible error to the

correct solution. From these plots, further refinement of the

normal approximation (such as including kurtosis or higher

powers) are unnecessary.

Figure 3, and more detail on this shift and resulting
population recovery can be found in Appendix A.3.

The population P(mB |z, θ) becomes N (mB |m∗B(z), σ∗mB
),

where

m∗B(z)= 〈MB〉 + µ(z) − α〈x1(z)〉 + β〈c(z)〉 (14)

σ∗2mB
=σ2

MB
+ (ασx1 )2 + (βσc)2. (15)

What then remains is determining the functional form
of P(S |mB). For the treatment of most surveys, we find
that the error function, which smoothly transitions from
some constant efficiency down to zero, is sufficient. For-
mally, this gives

P(S |mB) = Φc(mB |µCDF, σCDF), (16)

where Φc is the complementary cumulative distribution
function and µCDF and σCDF specify the selection func-
tion. The appropriateness of an error function has been

found by many past surveys (Dilday et al. 2008; Barbary
et al. 2010; Perrett et al. 2012; Graur et al. 2013; Rod-
ney et al. 2014). However, for surveys which suffer from
saturation and thus rejection of low-redshift supernovae,
or for groups of surveys treated together (as is common
to do with low-redshift surveys), we find that a skew
normal is a better analytic form, taking the form

P(S |mB) = N Skew(mB |µSkew, σSkew, αSkew). (17)

The selection functions are fit to apparent magnitude
efficiency ratios calculated from SNANA simulations, by
taking the ratio of supernovae that are observed and
passed cuts over the total number of supernovae gen-
erated in that apparent magnitude bin. That is, we
calculate the probability we would include a particular
supernova in our sample, divided by the number of such
supernovae in our simulated fields. To take into account
the uncertainty introduced by the imperfection of our
analytic fit to the efficiency ratio, uncertainty was uni-
formly added in quadrature to the efficiency ratio data
from our simulations until the reduced χ2 of the analytic
fit reached one, allowing us to extract an uncertainty co-
variance matrix for our analytic fits to either the error
function or the skew normal. This is mathematically
identical to fitting the efficiency ratio with a second ‘in-
trinsic dispersion’ parameter which adds uncertainty to
the efficiency ratio data points.

We thus include into our model parametrised selection
effects by including the covariance matrix of selection ef-
fect uncertainty. Formally, we include deviations from
the determined mean selection function parameters with
parameter vector δS, and apply a normal prior on this
parameter as per the determined uncertainty covariance
matrix. Whilst this uncertainty encapsulates the poten-
tial error from the simulations not matching the analytic
approximations, it does not cover potential variations of
the selection function at the top level — varying cos-
mology or spectroscopic efficiency. Tests with changing
the intrinsic scatter model used in the selection efficiency
simulations show that the uncertainty introduced is neg-
ligible.

With the well-sampled redshift approximation we can
remove the redshift integral in Eq (13) and replace it
with a correction for each observed supernova. For the
error function (denoted with the subscript ‘CDF’) and
skew normal selection functions respectively (denoted
with a subscript ‘Skew’), the correction per SN Ia be-
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comes

dCDF = Φ
c
©«

m∗B − µCDF√
σ∗2mB

+ σ2
CDF

ª®®¬ (18)

dSkew = 2N
©«

m∗B − µSkew√
σ∗2mB

+ σ2
Skew

ª®®¬ ×
Φ

©«
sign(αSkew)(m∗B − µSkew)

σ∗2mB
+σ2

Skew
σ2

Skew

√
σ2

Skew
α2

Skew
+

σ∗2mB
σ2

Skew
σ∗2mB

+σ2
Skew

ª®®®®¬
, (19)

and is incorporated into our likelihood. Note that the
above efficiencies utilise the common form of the normal
distribution rather than the conditional probability no-
tation found previously in this work. This is illustrated
in Figure 4. Our corrections for the DES spectroscopic
data utilise the CDF functional form, with the combined
low redshift surveys being modelled with the skew nor-
mal efficiency. Further details on this choice are given
in Section 5.2.

4.5. Model Summary

Having laid out each individual aspect of the model,
the relationships between variables and our treatment of
uncertainty, here we summarise the relationships in our
model mathematically. In this summary of P(data|θ),
we leave out sample selection for simplicity. Referring
to equation (12), the relationships with P(data|θ) are as
follows:

P(data|θ) ∝∫
dµ dmB dx1 dc dz, dm P(ẑ |z)P(m̂|m)

P(m̂B, x̂1, ĉ, Ĉ−1
η |mB, x1, c, δZi, κ0, κ1)

P(x1, c |〈xi1〉, 〈c
i〉, σx1, σc, z)

P(mB |〈MB〉, µ, δ(0), δ(∞), σMB, σx1, σc, α, β, z,m)
P(µ|z,Ωm,w). (20)

The denominator of equation (12) is then given by
either equation (18) or (19) depending on the survey,
and similarly P(S |data, θ) is given by equation (17) or
(16) respectively. Combining all of these gives us our full
model likelihood with selection effects accounted for.

5. MODEL VERIFICATION

In order to verify our model we run it through strin-
gent tests. First, we validate on toy models, verifying
that we recover accurate cosmology when generating toy
supernovae data constructed to satisfy the assumptions
of the BHM construction. We then validate our model
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Figure 4. The efficiency for supernova discovery at an ar-

bitrary redshift. Shown in both panels in dashed blue is

the SN Ia population distribution, which takes the form of a

normal distribution. The top panel shows a CDF based sur-

vey efficiency (green dotted line), whilst the bottom panel

shows a skew normal based survey efficiency (red dotted

line), as functions of apparent magnitude. The survey ef-

ficiency, given the SN Ia population, is shown as a solid line

in both panels, and the probability of observing a SN Ia is

found by integrating over the population detection efficiency

as described in equation (13), and has been shown by shading

the area integrated. This area is what is analytically given

by equations (18) and (19).

on SNANA simulations based on a collection of low red-
shift surveys and the DES three-year spectroscopic sam-
ple, termed the DES-SN3YR sample

5.1. Applied to Toy Spectroscopic Data

We generate simple toy data to validate the basic
premise of the model. The data generation algorithm
is described below:

1. Draw a redshift from a power law distribution. For
the low redshift survey this is U(0.0004, 0.01)0.5, and
for the DES-like survey this is U(0.008, 1.0)0.33. For
the low redshift survey, this is equivalent to sampling

y = z from 0.02 to
√

0.1, for the high redshift sur-
vey, this is equivalent to sampling y = z2 from 0.2 to
1.0. These distributions are arbitrary, and this test
has been performed with various flat and power law
distributions.



Steve 13

0.4 0.6 0.8 1.0

z

−20.0

−19.6

−19.2

−18.8

−18.4

m
B
−
µ

High-redshift

0.02 0.04 0.06 0.08 0.10

z

−20.0

−19.6

−19.2

−18.8

−18.4

m
B
−
µ

Low-redshift

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

C
ol

ou
r

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

C
ol

ou
r

Figure 5. Population distributions shown in redshift and

uncorrected absolute magnitude mB − µ for 1000 supernovae

in both high-redshift and low-redshift surveys. Selection ef-

fects are visible in both samples, where red supernovae are

often cut as redshift increases, creating a skewed color pop-

ulation. The color of the data points is representative of the

supernova color itself, a negative color value showing bluer

supernovae, with positive color values representing redder

supernovae.

Table 2. Cosmological Parameters for toy supernova data

Model Ωm 〈µ〉, 〈σ〉(scatter) w 〈µ〉, 〈σ〉(scatter)

Flat ΛCDM 0.301, 0.015 (0.012) –

Flat wCDM – −1.00, 0.042 (0.030)

Note—Cosmological parameters determined from the sur-

faces of 100 fits to independent realisations of toy super-

nova data. As described in the main text, each dataset

comprised 1000 low-redshift supernovae and 1000 high-

redshift supernovae. For each chain, we record the mean

and standard deviation, and then show the average mean

and average standard deviation in the table. The scatter

introduced by simulation variance (the standard deviation

of the 100 mean parameter values) is shown in brackets.

Model bias would appear as shifts away from the simula-

tion values of Ωm = 0.3, w = −1.
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Figure 6. Maximal posterior points for 100 realisations of

supernova data with the Flat ΛCDM model, with a repre-

sentative contour from a single data realisation shown for

context. Even a large supernova sample when treated ro-

bustly is insufficient to provide tight constraints on either

Ωm or ΩΛ separately due to the severe degeneracy between

the parameters.

2. Draw a random mass probability from U(0, 1) and
calculate the mass-brightness correction using δ(0) =
0.08, δ(0)/δ(∞) = 0.5, and equation (8).

3. Draw an absolute magnitude, stretch and color from
the respective distributions N (−19.3, 0.1), N (0, 1),
N (0, 0.1).

4. Calculate µ(z) given the drawn redshift and cosmo-
logical parameters Ωm = 0.3, w = −1 under Flat
ΛCDM cosmology. Use this to determine the true
apparent magnitude of the object mB using mB =

µ + MB − αx1 + βc.

5. Determine if the SN Ia is detected using detec-
tion probability P(S |mB) = N skew(13.72, 1.35, 5.87)
for the low redshift survey (numeric values ob-
tained by fitting to existing low redshift data).
For the DES-like survey, accept with probability
P(S |mB) = ΦC(23.14, 0.5). Repeat from step one
until we have a supernova that passes. We use re-
alistic values for the selection probability to ensure
our model is numerically stable with highly skewed
selection functions.

6. Add independent, Gaussian observational error onto
the true mB, x1, c using Gaussian widths of 0.04, 0.2,
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Figure 7. Maximal posterior points for 100 realisations of

supernova data with the Flat wCDM model, with a repre-

sentative contour from a single data realisation shown for

context. The well known banana shaped contour is re-

covered, with the marginalised distributions in Ωm and w

shown to recover input cosmology. For contours that are

non-Gaussian due to the curved degeneracy between Ωm

and w, the marginalised distributions can provide mislead-

ing statistics where maximum marginalised distribution can

disagree with the maximum likelihood in multiple dimen-

sions. For our contours, the non-Gaussianity is small and

the marginalised distributions still provide a valuable met-

ric. The recovered posteior maximums show the same de-

generacy direction as the representative surface, and scatter

around the truth values input into the simulation, which are

shown in dashed lines.

0.03 respectively (following the mean uncertainty for
DES-like SNANA simulations). Add extra color un-
certainty in quadrature of κ0 + κ1z, where κ0 = κ1 =
0.03.

The selection functions parameters (a skew normal
for low-redshift and a complementary error function for
high-redshift) are all given independent uncertainty of
0.01 (mean and width for the CDF selection function,
and mean, width and skewness for the skew normal se-
lection function). Draw from each survey simulation un-
til we have 1000 low-z supernovae and 1000 DES-like
supernovae, representing a statistical sample of greater
power than the estimated 350 supernovae for the DES-
SN3YR sample. Sample data for 1000 high and low red-
shift supernovae are shown in Figure 5, confirming the

presence of strong selection effects in both toy surveys,
as designed.

We test four models: Flat ΛCDM, Flat wCDM,
ΛCDM, and Flat wCDM with a prior Ωm ∼ N (0.3, 0.01),
with the latter included to allow sensitive tests on bias
for w. To achieve statistical precision, we fit 100 realisa-
tions of supernovae datasets. Cosmological parameters
are recovered without significant bias. Combined pos-
terior surfaces of all 100 realisations fits for ΛCDM are
shown in Figure 6 and fits for Flat wCDM are shown in
Figure 7. By utilising the Stan framework and several ef-
ficient parametrisations (discussed further in Appendix
B), fits to these simulations of 2000 supernovae take only
on order of a single CPU-hour to run.

To investigate biases in the model in fine detail, we
look for systematic bias in Ωm in the Flat ΛCDM cos-
mology test, and bias in w for the Flat wCDM test with
strong prior Ωm ∼ N (0.3, 0.01). This allows us to investi-
gate biases without the investigative hindrances of non-
Gaussian or truncated posterior surfaces. The strong
prior on Ωm cuts a slice through the traditional ‘ba-
nana’ posterior surface in the w-Ωm plane of Figure 7.
Without making such a slice, the variation in w is larger
due to a shift along the degeneracy direction of the ‘ba-
nana’. By focusing the slice at an almost fixed Ωm, we
can see the variation in the mean value of w approxi-
mately perpendicular to the lines of degeneracy, instead
of along them. The results of the analysis are detailed in
Table 2, and demonstrate the performance of our model
in recovering the true cosmological parameters. As we
are using 100 independent realisations, the precision of
our determination of the mean simulation result is ap-
proximately a tenth of the quoted scatter (as a degree
of non-Gaussianity of our fits will make this relation-
ship inexact). The deviation from truth values is below
this threshold, no significant bias is detected in either
the Flat ΛCDM model or the Flat wCDM model. With
this simple data, we also correctly recover underlying
supernova populations, which can be seen in Figure 12.

5.2. DES SN data validation

Many BHM methods have previously been validated
on data constructed explicitly to validate the assump-
tions of the model. This is a useful consistency check
that the model implementation is correct, efficient and
free of obvious pathologies. However, the real test
of a model is its application to realistic datasets that
mimic expected observational data in as many possible
ways. To this end, we test using simulations (using the
SNANA package) that follow the observational schedule
and observing conditions for the DES and low-z sur-
veys, where the low-z sample is based on observations
from CfA3 (Hicken et al. 2009a,b), CfA4 (Hicken et al.
2012) and CSP (Contreras et al. 2010; Folatelli et al.
2010; Stritzinger et al. 2011). Simulation specifics can
be found in Kessler et al. (2019). The primary differ-
ence between the toy data of the previous section are
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Note—The SK16 low-z stretch distribution is formed as sum

of two bifurcated Gaussians, with the mean and spread of

each component given respectively.

Table 3. Supernova population distributions

Model 〈x1〉 σx1 〈c〉 σc

SK16 low-z 0.55 & −1.5 +0.45
−1.0 & +0.5

−0.5 −0.055 +0.15
−0.023

SK16 DES 0.973 +0.222
1.472 −0.054 +0.101

0.043

the different underlying colour and stretch, inclusion of
spectroscopic data cuts and light curve cuts, and inclu-
sion of intrinsic dispersion models.

Prior analyses often treated intrinsic dispersion simply
as scatter in the underlying absolute magnitude of the
underlying population (Conley et al. 2011; Betoule et al.
2014), but recent analyses require a more sophisticated
approach. In our development of this model and tests
of intrinsic dispersion, we analyse the effects of two dif-
ferent scatter models via simulations, the G10 and C11
models described in Section 3. The G10 models dis-
persion with 70% contribution from coherent variation
and 30% from chromatic variation whilst the C11 model
has 25% coherent scatter and 75% from chromatic varia-
tion. These two broadband scatter models are converted
to spectral energy distribution models for use in simula-
tions in Kessler et al. (2013a).

In addition to the improvements in testing multiple
scatter models, we also include peculiar velocities for
the low-z sample, and our full treatment of systematics
as detailed in Brout et al. (2019). Our simulated popula-
tions are sourced from Scolnic & Kessler (2016, hereafter
SK16) and shown in Table 5.2. Initial tests were also
done with a second, Gaussian population with color and
stretch populations centered on zero and with respective
width 0.1 and 1, however cosmological parameters were
not impacted by choice of the underlying population and
we continue using only the SK16 population for compu-
tational efficiency. The selection effects were quantified
by comparing all the generated supernovae to those that
pass our cuts, as shown in Figure 8. It is from this sim-
ulation that our analytic determination of the selection
functions for the low-z and DES survey are based. We
run two simulations to determine the efficiency using the
G10 and C11 scatter models and find no difference in the
functional form of the Malmquist bias between the two
models. Uncertainty on the analytic selection function
is incorporated into our fits, mitigating the imperfection
of our analytic form by allowing it to vary in our fits.

Each realisation of simulated SN Ia light curves con-
tains the SALT2 light-curve fits and redshifts to 128 low-
z supernovae, and 204 DES-like supernovae, such that
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Figure 8. Fitting the selection function for both the DES

3YR spectroscopically confirmed supernova sample and the

low-z sample. Blue errorbars represent the efficiency cal-

culated by determining the ratio of discovered to generated

supernovae in apparent magnitude bins for SNANA simula-

tions. The black line represents the best fit analytic function

for each sample, and the light grey lines surrounding the best

fit value represent random realisations of analytic function

taking into account uncertainty on the best fit value.

the uncertainties found when combining chains is rep-
resentative of the uncertainty in the DES-SN3YR sam-
ple. As our primary focus is Dark Energy, we now focus
specifically on the Flat wCDM model with matter prior.

Points of maximum posterior for 100 data realisations
are shown in Figure 9. The parameter bounds and biases
for w are listed in Table 9, and secondary parameters are
shown in Table 8.

Table 9 shows that the G10 model is consistent with
w = −1, whilst the C11 model show evidence of bias
on w, scattering high. However, their deviation from
the truth value represents a shift of approximately 0.5σ
when taking into account the uncertainty on fits to w.
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Note—Standardisation parameters and base intrinsic scatter parameter results for the 100 fits to G10 and C11 simulations. We

show the average parameter mean and average standard deviation respectively, with the simulation scatter shown in brackets,

such that each cell shows 〈µ〉 [〈σ〉 (scatter)]. The width of the intrinsic scatter (σmB ) does not have an input truth value as it is

determined from the scatter model.

Table 4. Realistic simulation standardisation parameters

Model α − αTrue β − βTrue 〈MB〉 − 〈MB〉True σDES
mB

σlow−z
mB

G10 Stat + Syst 0.022 [0.009 (0.008)] 0.34 [0.19 (0.18)] −0.002 [0.028 (0.015)] 0.070 [0.022 (0.018)] 0.073 [0.025 (0.022)]
G10 Stat 0.000 [0.008 (0.008)] 0.33 [0.20 (0.17)] 0.001 [0.016 (0.013)] 0.069 [0.023 (0.019)] 0.072 [0.026 (0.023)]
C11 Stat + Syst 0.002 [0.009 (0.007)] −0.04 [0.15 (0.13)] 0.014 [0.030 (0.018)] 0.024 [0.016 (0.011)] 0.029 [0.020 (0.014)]
C11 Stat 0.000 [0.008 (0.007)] −0.05 [0.16 (0.13)] 0.006 [0.016 (0.015)] 0.025 [0.016 (0.012)] 0.027 [0.020 (0.015)]

Note—Investigating the combined 100 fits to G10 and C11

simulations, fitting with both statistics only and also when

including systematics. The quoted value for w represents

the average mean of the fits, with the average uncertainty

being shown in square brackets and the simulation scatter

(the standard deviation of the mean of 100 fits) shown in

standard brackets. The bias significance represents our con-

fidence that the deviation in the mean w away from −1 is not

due to statistical fluctuation.

Table 5. Realistic simulation determination of w

Model w 〈µ〉 [〈σw〉 (scatter)] w-Bias

G10 Stat + Syst −0.998 [0.097 (0.073)] (0.02 ± 0.07)σ
G10 Stat −1.008 [0.080 (0.068)] (−0.10 ± 0.08)σ
C11 Stat + Syst −0.945 [0.098 (0.077)] (0.55 ± 0.08)σ
C11 Stat −0.948 [0.079 (0.066)] (0.65 ± 0.08)σ

The bias is sub-dominant to both the size of the uncer-
tainty for each fit, and the scatter induced by statistical
variance in the simulations. We also note that the sim-
ulations do not vary cosmological parameters nor popu-
lation. As our model does include uncertainty on those
values, the simulation scatter is expected to be less than
the model uncertainty, and represents a minimum bound
on permissible uncertainty values.

Table 8 shows a clear difference in both β and σmB

across the G10 and C11 simulations. As expected, the
C11 simulations recover a far smaller intrinsic magni-
tude scatter, giving results of approximately 0.025 when
compared to the result of 0.070 for the G10 simulations.
The extra smearing of the C11 model does not result in
a significantly biased β value compared to the average
uncertainty on β, with recovery of β ≈ 3.76 close to the
input truth value of 3.8, however the β recovery for the
G10 simulations is biased high, finding β ≈ 3.44 with

an input of 3.1. Interestingly, w-bias is only found for
the C11 simulations. A measure of the significance of
the parameter bias can be calculated by comparing the
bias to a tenth of the scatter (as our Monte-Carlo esti-

mate uncertainty is
√

100 of the scatter). From this, we
can see that most biases are detected with high statisti-
cal significance due to the large number of simulations
tested against.

We investigate the cosmological bias and find its
source to be a bias in the observed summary statistics
(i.e. the m̂B, x̂1, ĉ output from SALT2 light curve fit-
ting), in addition to incorrect reported uncertainty on
the summary statistics. To confirm this, we run two
tests. The first of which, we replace the SALT2-fitted
m̂B, x̂1 and ĉ with random numbers drawn from a Gaus-
sian centered on the true SALT2 mB, x1 and c val-
ues with covariance as reported by initial light curve
fits. With this test, both the G10 and C11 fits recover
w = −1.00 exactly. Our second test aims to test our
model whilst allowing biases in the summary statistics
not caused from intrinsic scatter through. That is, the
first test ascertained that biases in the summary statis-
tics are the cause of cosmological bias. It is thus impor-
tant to determine the source of those biases; whether
they are from intrinsic scatter model or another aspect
of the simulation. To this end, we test a set of 100 simu-
lations generated using an intrinsic dispersion model of
only coherent magnitude scatter. We find w = −1.00,
showing that the source of the biases in summary statis-
tics is the underlying intrinsic scatter model. From this,
the main challenge of improving our methodology is to
handle the fact that observational uncertainty reported
from fitting the SALT2 model to light curves is incorrect,
non-Gaussian and biased. Our current model and tech-
niques can quantify the effect of different scatter mod-
els on biasing the observed summary statistics, but be-
ing unable to constrain the ‘correct’ (simulated) scatter
model in our model fit means we cannot fully correct for
the bias introduced by an unknown scatter model.
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Figure 9. Maximum posterior points for 100 realisations of

supernova data for two intrinsic dispersion models - the G10

model for the top panel and the C11 model for the bottom

panel. Points are shown for parameters Ωm, w, α and β, with

the other fit parameters being marginalised over. As we are

unable to fully correct observed summary statistics, a step

required by the lack of intrinsic scatter in the SALT2 model,

we expect to see an offset in α and β. This in turn effects

cosmology, resulting in small biases in w.

Note—Correlations determined from the combined 100 sim-

ulation fits. Correlations for the low-z band systematics and

the latent parameters representing selection function uncer-

tainty are not shown but have negligible correlation. Zero

superscripts indicate the Dark Energy Survey, and a super-

script one represents the low-z survey.

Table 6. Reduced parameter correlations with w.

Parameter G10 Stat+Syst C11 Stat+Syst

Ωm −0.19 −0.21
α −0.17 −0.20
β −0.29 −0.23
〈MB〉 0.68 0.66
δ(0) 0.00 0.00

δ(∞)/δ(0) 0.00 0.00

σ0
mB 0.04 0.07

σ1
mB 0.23 0.18

σ0
x1 0.04 0.03

σ1
x1 0.05 0.01

σ0
c 0.01 0.11

σ1
c 0.08 0.04
α0
c −0.04 0.04
α1
c 0.03 0.01

κ0
c0 −0.10 −0.05

κ1
c0 −0.20 −0.17

κ0
c1 −0.05 −0.01

κ1
c1 −0.01 0.01

〈x0
1〉 −0.01 −0.05

〈x1
1〉 −0.02 0.02

〈x2
1〉 −0.04 −0.04

〈x3
1〉 −0.03 −0.06

〈x4
1〉 −0.06 −0.06

〈x5
1〉 0.04 0.02

〈x6
1〉 0.04 0.04

〈x7
1〉 0.08 0.03

〈c0〉 −0.05 −0.12
〈c1〉 0.11 0.03
〈c2〉 0.11 0.06
〈c3〉 0.14 0.04
〈c4〉 −0.11 −0.11
〈c5〉 −0.15 −0.08
〈c6〉 −0.12 −0.13
〈c7〉 −0.12 −0.06

δ[SALT0] 0.05 0.05
δ[SALT1] −0.01 0.02
δ[SALT2] −0.10 −0.09
δ[SALT3] −0.03 −0.03
δ[SALT4] 0.08 0.09
δ[SALT5] 0.01 0.02
δ[SALT6] 0.05 0.07
δ[SALT7] −0.11 −0.10
δ[SALT8] 0.01 0.02
δ[SALT9] 0.02 0.02

δ[MWEB−V ] 0.03 0.02
δ[HSTCalib] −0.07 −0.07
δ[vpec] 0.00 −0.01
δ[δz] 0.01 0.00
δ[∆g] 0.05 0.11
δ[∆r] 0.16 0.10
δ[∆i] −0.16 −0.18
δ[∆z] −0.26 −0.26
δ[∆λg] 0.16 0.20
δ[∆λr ] 0.05 0.06
δ[∆λi] 0.00 −0.01
δ[∆λz ] 0.09 0.07
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Figure 10. Parameter correlations for the combined fits to the 100 G10 scatter model simulations. We see that the primary

correlations with w enter through α, β and 〈MB〉, as shown in Table 5. Whilst 〈MB〉 is generally thought to be a nuisance

parameter, we find cosmological correlation. We note that, by fixing H0 in our distance modulus calculation, 〈MB〉 absorbs

any cosmological uncertainty on this term. Additionally 〈MB〉 also effects the selection efficiency, which was computed from

simulations with a fixed MB value, introducing a second plausible source of correlation. Also visible in this figure are several

other interesting relationships. β is strongly anti-correlated with intrinsic dispersion σmB for both surveys (DES-like and low-z),
with σmB showing strong anti-correlation with κ0

c . This relationship is indeed expected — as κ0
c grows larger (more unexplained

dispersion on the color observation), the width of the supernova population in apparent magnitude space increases. As the fit

prefers it to conform to the observed width of the distribution, the extra width in color causes the inherent magnitude smearing

amount to decrease. And with extra freedom on the observed color from κ0
c , β shifts in response. The other striking feature

in the plot is the strong correlation blocks in the bottom right and the anti-correlation stripes on the edges. These too are

expected, for they show the relationship between the color distribution’s mean value, its width and its skewness. As skewness or

population width increases, the effective mean of the population shifts (see Appendix A.3 for details), creating anti-correlation

between skewness and the (Gaussian) mean color population. Strong anti-correlation between κ0
c0 and κ1

c0 with σmB reveals the

strong population degeneracy, and – for the C11 simulation results – a constrained positive value shows that a finite non-zero

extra color dispersion is indeed preferred by our model.
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Unfortunately, adding extra fit parameters to allow
for shifting observables washes out our ability to con-
strain cosmology, and applying a specific bias correction
requires running a fiducial simulation (assuming cosmol-
ogy, population and scatter model), which presents diffi-
culties when trying to account for correlations with pop-
ulation and scatter model. This is compounded by the
fact that bias corrections do not in general improve fits
(increase the log posterior), and so are difficult to fit
parametrically. Works such as Kessler & Scolnic (2017)
show that bias corrections can be applied to supernovae
datasets that can robustly handle multiple intrinsic scat-
ter models, and future work will center on uniting these
methodologies — incorporating better bias corrections
that separate intrinsic scatter bias and non-Gaussian
summary statistic bias from Malmquist bias, without
having to precompute standardisation parameters and
populations.

Difficulty in providing an adequate parametrisation
for realistic intrinsic dispersion, and the simplification of
Malmquist bias to only apparent magnitude also leads
to biases in the population parameters. To determine
if the underlying population mischaracterisation was a
cause of cosmological bias, we ran fits wherein the un-
derlying population was fixed to the known distributions
used for the simulation. These fits did not change the
bias in the C11 simulation. We conclude that the biased
population recovery is not the cause of cosmological bias.
As the population parameters recovered using the sim-
plistic toy supernova data in the previous section do not
exhibit significant bias, future work will focus on intrin-
sic dispersion and Malmquist bias rather than alternate
parametrisations of the underlying supernova popula-
tion.

Table 5 lists the fit correlations between our model fit
parameters (excluding the low-z band systematics, and
Malmquist bias uncertainty parameters which had neg-
ligible correlation), showing (in order) cosmological pa-
rameters, standardisation parameters, population width
and skewness parameters, intrinsic dispersion parame-
ters, mass-step parameters, population mean parame-
ters, SALT2 model systematics, dust systematic, global
HST calibration systematic, peculiar velocity system-
atic, global redshift systematic and DES band magni-
tude and wavelength systematics. Figure 10 show the
full correlations between all non-systematic model pa-
rameters. Other interesting correlations are shown and
discussed in Figure 10. The band systematics for DES
filters g, r and i also show significant correlation with w,
highlighting the importance of minimising instrumental
uncertainty.

For the sample size of the DES + low-z supernova
samples (332 supernova), the bias from intrinsic scatter
models is sub-dominant to the statistical uncertainty,
as shown in Figure 9. For our full systematics model,
the bias represents a deviation between 0σ to 0.5σ de-
pending on scatter model, and given that they remain

sub-dominant, we will leave more complicated treatment
of them for future work.

5.3. Uncertainty Analysis

With the increased flexibility of Bayesian hierarchi-
cal models over traditional models, we expect to find
an increased uncertainty on parameter inference. This
increased uncertainty is one of the strengths of hierarchi-
cal models as it represents a more thorough accounting
of model uncertainty. To characterise the influence of
the extra degrees of freedom in our model, we analyse
the uncertainty on w averaged across 10 nominal simu-
lations of the DES-SN3YR sample with various model
parameters allowed to either vary or stay locked to a
fixed value. By taking the difference in uncertainty in
quadrature, we can infer the relative contribution for
each model feature to the uncertainty error budget.

The error budget detailed in Table 5.3 shows that our
uncertainty is dominated by statistical error, as the total
statistical uncertainty is on w is ±0.08. With the low
number of supernovae in the DES-SN3YR sample, this is
expected. We note that the label ‘Systematics’ in Table
5.3 represents all numerically computed systematics (as
discussed in Section 4.4.4) and systematic uncertainty
on the selection function.

5.4. Methodology Comparison

We compare the results of our model against those of
the BBC+CosmoMC method (Kessler & Scolnic 2017).
BBC+CosmoMC has been used in prior analyses, such
as the Pantheon sample analysis of Scolnic et al. (2017)
and is being used in the primary analysis of the DES-
SN3YR sample (DES Collaboration et al. 2019). The
BBC method is a two-part process, BBC computes bias
corrections for observables, and then the corrected dis-
tances are fit using CosmoMC (Lewis & Bridle 2002).
For shorthand, we refer to this combined process as the
BBC method hereafter in this paper, as we are concerned
with the results of cosmological parameter inference. As
a leading supernova cosmology method, it provides a
good consistency check as to the current levels of accu-
racy in recovering cosmological parameters.

To this end, we take the results of the BBC method
which were also run on the same set of 200 validation
simulations and compare the recovered w values to those
of our method. The results are detailed in Table 8, and
a scatter plot of the simulation results is presented in
Figure 11.

As shown in Brout et al. (2019), the BBC method re-
covers cosmological parameters without bias so long as
the intrinsic scatter model is known. As we do not know
the correct intrinsic scatter model, the BBC method av-
erages the results when using bias corrections from G10
and from C11. As such, we expect the BBC method to
have a w-bias in one direction for G10 simulations and
the other direction for C11 simulations. These results
are consistent with those displayed in Table 8. Both
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Note—Error budget determined from analysing uncertainty on simulation data whilst progressively enabling model features.

We start from the top of the table, only varying cosmological parameters Ωm and w, and then progressively unlock parameters

and let them fit as we progress down the table. The cumulative uncertainty shows the total uncertainty on w on the fit for all,

where the σw term is derived by taking the quadrature difference in cumulative uncertainty as we progress.

Table 7. w error budget

Feature Parameters σw Cumulative

Cosmology Ωm, w 0.051 0.051

Standardisation α, β, 〈MB〉, δ(0), δ(∞)/δ(0) 0.046 0.068

Intrinsic scatter κ0, κ1 0.020 0.071

Redshift-independent populations σMB , σc , σx1 , αc 0.022 0.074

Redshift-dependent populations 〈ci〉, 〈x1,i〉 0.030 0.080

Systematics δZi , δS 0.054 0.096

BBC method and Steve are sensitive to the intrinsic
scatter model, finding differences of ∼ 0.066 and 0.053
respectively in w when varying the scatter model. The
BBC method finds w biased low for G10 and w biased
high for C11 (by about ±0.03), so taking the average
result only results in a small bias of −0.01 in w. Our
method shows a small improvement in the insensitivity
to the intrinsic scatter model (having a decrease in dif-
ference in w between the G10 and C11 models), finding
no bias for G10 but a w biased high for C11. This de-
crease in error is not statistically significant as we have
statistical uncertainty of ∼ 0.01 for 100 simulation reali-
sations. The average bias over the two scatter models is
+0.028, representing a larger bias than the BBC method.

When comparing both the G10 and C11 set of sim-
ulations independently, our model differs from BBC in
its average prediction of w by +0.044 and +0.033 re-
spectively. For the G10 model this difference is a result
of bias in the BBC results, however for the C11 simu-
lations this is a result of both bias from BBC, and a
larger bias from our method. These results also allow
us to state the expected values for w when run on the
DES-SN3YR sample. When using Planck priors our un-
certainty on w is reduced compared to using our simu-
lation Gaussian prior on Ωm, shrinking the average w-
difference from 0.06 to 0.04. After factoring this into our
uncertainty, we expect our BHM method to, on average,
recover wBHM = wBBC + 0.04 ± 0.04.

Having established that our method exhibits similar
shifts in the recovery of w compared to BBC, future
work will focus on improving the parametrisation of in-
trinsic scatter model into our framework, with the goal
of minimising the effect of the underlying scatter model
on the recovery of cosmology.

6. CONCLUSIONS

In this paper we have outlined the creation of a hier-
archical Bayesian model for supernova cosmology. The

Note—We characterise the bias on w using the 100 simula-

tions for the G10 scatter model and 100 simulations for C11

scatter model. We also show the results when combining the

G10 and C11 models into a combined set of 200 simulations.

The mean w value for our method and BBC are presented,

along with the mean when averaging the difference between

our method and BBC for each individual simulation. Aver-

ages are computed giving each simulation sample the same

weight. In the model, ∆ represents Steve - BBC. The final

row shows the scatter between Steve and BBC for the differ-

ent simulations.

Table 8. w bias comparison

Model G10 C11 (G10 + C11)

Steve 〈w〉 −0.998 ± 0.007 −0.945 ± 0.007 −0.972 ± 0.006
BBC 〈w〉 −1.044 ± 0.006 −0.978 ± 0.007 −1.010 ± 0.005a

∆ 〈w〉 +0.044 ± 0.006 +0.033 ± 0.006 +0.038 ± 0.004
∆ σw 0.057 ± 0.004 0.062 ± 0.004 0.060 ± 0.003

aThis value is computed with each simulation having the same

weight. It disagrees with the value provided in Brout et al.

(2019, Table 10, row 3) which uses inverse variance weighted

averages. We do not utilise this weight because the variance is

correlated with the value of w due to the Ωm prior applied in

the fitting process. We note that if inverse variance weighting

is applied to both datasets, they both shift by ∆w ≈ 0.005, and

thus the predicted difference between the BBC method and

Steve remains the same.

model takes into account selection effects and their un-
certainty, fits underlying populations and standardis-
ation parameters, incorporates unexplained dispersion
from intrinsic scatter color smearing and incorporates
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Figure 11. Recovered w for the 200 validation simulations

with full treatment of statistical and systematic errors. Un-

certainty on the recovered w value is shown for every second

data point for visual clarity.

uncertainty from peculiar velocities, survey calibration,
HST calibration, dust, a potential global redshift off-
set, and SALT2 model uncertainty. Furthermore, our
uncertainties in standardisation, population, mass-step
and more, being explicitly parametrised in our model,
are captured with covariance intact, an improvement on
many previous methods. The model has been optimised
to allow for hundreds of supernovae to be modelled fully
with latent parameters. It runs in under an hour of CPU
time and scales linearly with the number of supernovae,
as opposed to polynomial complexity of matrix inversion
of other methods.

The importance of validating models using high-
precision statistics gained by performing fits to hun-
dreds of data realisations cannot be overstated, however
this validation is lacking in many earlier BHM mod-
els for supernova cosmology. We have validated this
model against many realisations of simplistic simula-
tions with well-known and well-defined statistics, and
found no cosmological bias. When validating using
SNANA simulations, we find evidence of cosmological
bias which is traced back to light curve fits reporting
biased observables and incorrect covariance. Allowing
fully parametrised corrections on observed supernovae
summary statistics introduces too many degrees of free-
dom and is found to make cosmology fits too weak. Al-
lowing simulation based corrections to vary in strength
is found to give minor reductions in w bias, however the
uncertainty on the intrinsic scatter model itself limits

the efficacy of the bias corrections. For the data size
represented in the DES three-year spectroscopic survey,
the determined biases should be sub-dominant to other
sources of uncertainty, however this cannot be expected
for future analyses with larger datasets. Stricter bias
corrections calculated from simulations are required to
reduce bias. Ideally, this would include further work on
the calculation of intrinsic dispersion of the type Ia su-
pernova population such that we can better characterise
this bias.

With our model being validated against hundreds of
simulation realisations, representing a combined dataset
over more than 60 000 simulated supernovae, we have
been able to accurately determine biases in our model
and trace their origin. With the current biases being
sub-dominant to the total uncertainty, we now prepare
to analyse the DES three-year dataset.
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APPENDIX

A. SELECTION EFFECT DERIVATION

A.1. General Selection Effects

When formulating and fitting a model using a constraining dataset, we wish to resolve the posterior surface defined
by

P(θ |data) ∝ P(data|θ)P(θ), (A1)

which gives the probability of the model parameter values (θ) given the data. Prior knowledge of the allowed values
of the model parameters is encapsulated in the prior probability P(θ). Of primary interest to us is the likelihood of
observing the data given our parametrised model, L ≡ P(data|θ). When dealing with experiments that have imperfect
selection efficiency, our likelihood must take that efficiency into account. We need to describe the probability that the
events we observe are both drawn from the distribution predicted by the underlying theoretical model and that those
events, given they happened, are subsequently successfully observed. To make this extra conditional explicit, we write
the likelihood of the data given an underlying model, θ, and that the data are included in our sample, denoted by S,
as:

L(θ; data) = P(data|θ, S). (A2)

A variety of selection criteria are possible, and in our method we use our data in combination with the proposed model
to determine the probability of particular selection criteria. That is, we characterise a function P(S |data, θ), which
colloquially can be stated as the probability of a potential observation passing selection cuts, given our observations
and the underlying model. We can introduce this expression in a few lines due to symmetry of joint probabilities and
utilising that P(x, y, z) = P(x |y, z)P(y, z) = P(y |x, z)P(x, z):

P(data|S, θ)P(S, θ)=P(S |data, θ)P(data, θ) (A3)

P(data|S, θ)= P(S |data, θ)P(data, θ)
P(S, θ) (A4)

=
P(S |data, θ)P(data|θ)P(θ)

P(S |θ)P(θ) (A5)

=
P(S |data, θ)P(data|θ)

P(S |θ) (A6)

which is equal to the likelihood L. At this point, our derivation depends on whether our selection effects are best
modelled as a function of observables or as a function of latent parameters. In most cases, selection effects will be best
modelled directly as a function of observables, and we would introducing an integral over all possible events D, so we
can evaluate P(S |θ),

L(θ; data)= P(S |data, θ)P(data|θ)∫
P(S,D |θ) dD

(A7)

L(θ; data)= P(S |data, θ)P(data|θ)∫
P(S |D, θ)P(D |θ) dD

. (A8)

The second option, wherein selection effects can be more computationally efficiently modelled with the inclusion of
latent parameters (for example, in the case where we do not have direct access to the observables upon which our data
selection is determined), we can introduce our latent parameters in addition to an integral over all possible data:

L(θ; data)=
∫

P(S |data, L, θ)P(data|L)P(L |θ) dL∬
P(S |D, L, θ)P(D |L, θ)P(L |θ) dD dL

, (A9)

where L represents our latent parameters that model the true underlying values of our observables, such that our
data is conditioned directly on them. In this formulation, the selection effects can depend both on data and latent
variables.

A.2. Supernova Selection Effects

To turn the generalised equations from the previous sections into selection effects relevant for this model, need to
highlight that θ represents only our top level parameters (Ωm, w, α, β, etc), and that our parametrisation of true
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underlying values (for example mB) takes the form of latent parameters. We thus continue from equation (A9) and
write out denominator d:

d =
∬

P(S |D, L, θ)P(D |L, θ)P(L |θ) dD dL. (A10)

In our formulation, we assume that our selection effects can be sufficiently encapsulated by latent parameters. That
is, we simplify P(S |D, L, θ) → P(S |L). This allows us to isolate our integral

∫
P(D |L, θ) in the above equation, integrate

it to unity, and come to

d =
∫

P(S |L)P(L |θ) dL. (A11)

Here we can now move from the generic label L to something specific to our model. Specifically, we assume that
our selection effects can be quantified using the true apparent magnitude mB and redshift z, and so L → {mB, z}, or
formally P(S |D, L, θ) = P(S |z)P(S |mB). We do not write out other latent parameters found in the model as they do not
impact selection effects — we would simply find them integrated to unity. Note that this assumption does not capture
biases engendered by Poisson noise fluctuations. We advocate that future analyses with higher statistical precision do
use a precisely determined P(S |D). Writing out the latent variables, our denominator becomes

d =
∫

P(S |z)P(S |mB)P(z,mB |θ) dz dmB . (A12)

We can express P(z,mB |θ) as P(mB |z, θ)P(z |θ), where the first term requires us to calculate the magnitude distribution
of our underlying population at a given redshift, and the second term is dependent on survey geometry and supernovae
rates. We can thus state

d =
∫ [∫

P(S |mB)P(mB |z, θ) dmB

]
P(S |z)P(z |θ) dz. (A13)

By assuming that the distribution P(S |z)P(z |θ) is well sampled by the observed supernova redshifts, we can approximate
the integral over redshift by evaluating ∫

P(S |mB)P(mB |z, θ) dmB (A14)

for each supernova in the dataset – i.e. Monte Carlo integration with assumed perfect importance sampling.
As stated in Section 4.4.5, the underlying population in apparent magnitude, when we discard skewness, can be

represented as N (mB |m∗B(z), σ∗mB
), where

m∗B(z)= 〈MB〉 + µ(z) − α〈x1(z)〉 + β
(
〈c(z)〉 +

√
2
π
σcδc

)
(A15)

σ∗mB
=σ2

MB
+ (ασx1 )2 +

©«βσc

√
1 − 2δ2

c

π

ª®¬
2

. (A16)

Then, modelling P(S |mB) as either a normal or a skew normal, we can analytically perform the integral in equation
(A14) and reach equations (18) and (19).

A.3. Approximate Selection Effects

In this section, we investigate the effect of approximating the skew normal underlying color distribution as a normal.
Specifically, equations (A15) and (A16) make the assumption that, for our color distribution, N Skew(µ, σ, α) is well
approximated by N (µ, σ). We sought to improve on this approximation by adjusting the mean and standard deviation
of the approximated normal to more accurately describe the actual mean and standard deviation of a skew normal.

With δ ≡ α/
√

1 + α2, the correct mean and standard deviation are

µ1 = µ0 +

√
2
π
δσ0 (A17)

σ1 =σ0

√
1 − 2δ2

π
, (A18)

where we highlight that µ here represents the mean of the distribution, not distance modulus. We can then test
the approximation N Skew(µ0, σ0, α) → N (µ1, σ1). Unfortunately, this shift to the mean and standard deviation of the
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Figure 12. Marginalised probability distributions for 100 realisations of cosmology, fit to Flat wCDM with prior Ωm ∼
N (0.3, 0.01), each containing 1000 simulated high-z and 1000 simulated low-z supernovae. The dashed green surfaces represent a

fit to an underlying Gaussian color population with the unshifted model. The blue solid surface represents fits to a skewed color

population with the unshifted model, and the purple dotted surface represents a fit to a skewed color population with the shifted

model. The superscript 0 and 1 denote the two different surveys (high-z and low-z respectively), and similarly the first four 〈ci〉
parameters represent the four redshift nodes in the high-z survey, and the last four represent the nodes for the low-z survey.

We can see that the shifted model is far better able to recover skewed input populations than the unshifted, performing better

in terms of recovering skewness αc , mean color 〈c〉 and width of the color distribution σc . The unshifted model recovers the

correct color mean and width if you approximate a skew normal as a normal: ∆µ =
√

2/πσcδc ≈ 0.071, which is approximately

the deviation found in fits to the color population mean. Importantly, the unshifted model when run on skewed data (the solid

blue) shows extreme bias in αc , where it fits strongly around zero regardless, showing it to be a poor approximation. Based on

these results and the good performance in correctly recovering underlying populations of the shifted normal approximation, we

adopt the shifted normal approximation in our model.

normal approximation where we treat mB, x1, and c as a multivariate skew normal did not produce stable posterior
surfaces. Due to this, we treat the underlying mB, x1, and c populations as independent.

We tested a fixed σc in the shift correction, such that µ1 = µ0 +
√

2/πδk, where we set k = 0.1 to mirror the
width of the input simulation population. This resulted in stable posterior surfaces, however this introduced recovery
bias in several population parameters, and so we do not fix σc. Comparing whether we shift our normal in the
approximation or simply discard skewness, Figure 3 shows that the calculated efficiency is significantly discrepant to
the actual efficiency if the normal approximation is not shifted. The biases when using shifted or unshifted normal
approximations when we fit our model on Gaussian and skewed underlying populations are shown in Figure 12, and
only the shifted normal approximation correctly recovers underlying population parameters.
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B. NUMERICAL OPTIMISATIONS

Not many fitting methodologies and algorithms can handle the thousands of fit parameters our model requires.
By using Stan, we are able to take advantage automatic differentiation and the NUTS sampler, which is a class of
Hamiltonian Monte Carlo samplers. Even with these advantages, early implementations of our model still had excessive
fit times, with our desired sub-hour running time far exceeded.

The simplest and most commonly found optimisation we employed was to precompute as much as possible. This
is in a bid to reduce the complexity of the mathematical graph our model is translated into by Stan, to simplify the
computation of surface derivatives. For example, when computing the distance modulus, redshift is encountered to
various powers. Instead of computing those powers in Stan, we simply pass in several arrays of redshift values already
raised to the correct power. Small changes like this however only give small improvements.

The primary numerical improvement we made on existing frameworks was to remove costly probability evaluations
of multivariate normals. To increase efficiency, the optimum way to sample a multivariate normal is to reparameterise

it such that instead of sampling N (®x | ®µ, Σ), we sample N (®δ |0, 1) where ®x = ®µ + L ®δ and L is the cholesky decomposition
of Σ. In this way, we can efficiently sample the unit normal probability distribution instead of sampling a multivariate
normal probability distribution. Switching to this parametrisation resulted in a computational increase of an order of
magnitude, taking fits for a sample of approximately 500 supernovae from roughly four hours down to thirty minutes.

This parametrisation does come with one significant downside — inflexibility. For each step the algorithm takes,
we do not recompute the cholesky decomposition of the covariance of the summary statistics — that happens once
at the beginning of the model setup. If we had kept the full covariance matrix parametrisation we could modify the
matrix easily — for example when incorporating intrinsic dispersion we could simply add on a secondary matrix to
create an updated covariance. However as the cholesky decomposition of a sum of matrices is not equal to the sum of
the cholesky decomposition of each individual matrix, we would need to recompute the decomposition for each step,
which discards most of the computational benefit just gained.

Considering a 3 × 3 matrix with cholesky decomposition

L =
©«
a 0 0
b c 0
d e f

ª®®¬ , (B19)

the original covariance matrix Σ is given by

Σ =
©«

a2 ab ad
ab b2 + c2 bd + ce
ad bd + ce d2 + e2 + f 2

ª®®¬ . (B20)

Now, the primary source of extra uncertainty in the intrinsic dispersion models comes from chromatic smearing,
which primarily influences the recovered color parameter, which is placed as the last element in the observables vector
{mB, x1, c}. We can now see that it is possible to add extra uncertainty to the color observation on the diagonal
without having to recompute the cholesky decomposition - notice that f is unique in that it is the only element of L
that appears in only one position in the covariance matrix. To take our covariance and add on the diagonal uncertainty
for color an extra σe term, we get

C =
©«

σ2
mB

ρ0,1σmBσx1 ρ0,2σmBσc

ρ0,1σmBσx1 σ2
x1 ρ1,2σx1σc

ρ0,2σmBσc ρ1,2σx1σc σ2
c + σ

2
e

ª®®¬ . (B21)

The cholesky decomposition of this is, in terms of the original cholesky decomposition, is

L =
©«
a 0 0
b c 0
d e f + g

ª®®¬ , (B22)

where g =
√

f 2 + σ2
e − f . This allows an easy update to the cholesky decomposition to add extra uncertainty to the

independent color uncertainty. For both the G10 and C11 models, we ran fits without the cholesky parametrisation
to allow for extra correlated dispersion (instead of just dispersion on c), but find no decrease in bias or improved fit
statistics, allowing us to use the more efficient cholesky parametrisation.


