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Abstract This paper aims to propose an efficient numerical method for the most
challenging problem known as the robust Euclidean embedding (REE) in the fam-
ily of multi-dimensional scaling (MDS). The problem is notoriously known to be
nonsmooth, nonconvex and its objective is non-Lipschitzian. We first explain that
the semidefinite programming (SDP) relaxations and Euclidean distance matrix
(EDM) approach, popular for other types of problems in the MDS family, failed
to provide a viable method for this problem. We then propose a penalized REE
(PREE), which can be economically majorized. We show that the majorized prob-
lem is convex provided that the penalty parameter is above certain threshold.
Moreover, it has a closed-form solution, resulting in an efficient algorithm dubbed
as PREEEDM (for Penalized REE via EDM optimization). We prove among others
that PREEEDM converges to a stationary point of PREE, which is also an approx-
imate critical point of REE. Finally, the efficiency of PREEEDM is compared with
several state-of-the-art methods including SDP and EDM solvers on a large num-
ber of test problems from sensor network localization and molecular conformation.
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1 Introduction

This paper aims to propose an efficient numerical method for the most challenging
problem in the Multi-Dimensional Scaling (MDS) family, which has found many
applications in social and engineering sciences [6, 10]. The problem is known as
the Robust Euclidean Embedding, a term borrowed from [8]. In the following, we
first describe the problem and its three variants. We then explain our approach
and main contribution. We will postpone the relevant literature review to the next
section in order to shorten the introduction.

1.1 Problem description

The problem can be described as follows. Suppose we are given some dissimilarity
measurements (e.g., noisy distances), collectively denoted as δij , for some pairs
(i, j) among n items. The problem is to find a set of n points xi ∈ <r, i = 1, . . . , n
such that

dij := ‖xi − xj‖ ≈ δij (i, j) ∈ E , (1)

where ‖x‖ is the Euclidean norm (i.e., `2 norm) in <r and E is the set of the pairs
(i, j), whose dissimilarities δij > 0 are known (E can be thought of the edge set if
we treat δij as a weighted edge distance between vertex i and vertex j, resulting
in a weighted graph.) Throughout, we use “:=” or “=:” to mean “define”. The
space <r is called an embedding space and it is most interesting when r is small
(e.g., r = 2, 3 for data visualization). One may also try to find a set of embedding
points such that:

Dij := ‖xi − xj‖2 ≈ δ2
ij (i, j) ∈ E . (2)

A great deal of effort has been made to seek the best approximation from (1) or
(2). The most robust criterion to quantify the best approximation is the Robust
Euclidean Embedding (REE) defined by

min
X

f (d,1)(x1, . . . ,xn) :=
n∑

i,j=1

Wij |dij − δij |, (3)

where Wij > 0 if δij > 0 and Wij ≥ 0 otherwise (Wij can be treated as a weight
for the importance of δij), and X := [x1, . . . ,xn] with each xi being a column
vector. In [1, 8], Problem (3) was referred to as a robust variant of MDS and is
denoted as rMDS. We will reserve rMDS for the Robust MDS problem:

min
X

f (D,1)(x1, . . . ,xn) :=

n∑
i,j=1

Wij |Dij − δ2
ij |. (4)

The reference rMDS for the problem (4) is more appropriate because it involved
the squared distances Dij , which were used by the classical MDS [22,29,43,49,53].
The preceding two problems are robust because of the robustness of the `1 norm
used to quantify the errors [31, Sect. IV].
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When the least squares criterion is used to (1), we have the popular model
known as the Kruskal’s stress [30] minimization:

min
X

f (d,2)(x1, . . . ,xn) :=
n∑

i,j=1

Wij

(
dij − δij

)2
, (5)

Similarly, when the least-squares criterion was applied to (2), we get the so-called
squared stress [6]:

min
X

f (D,2)(x1, . . . ,xn) :=
n∑

i,j=1

Wij

(
Dij − δ2

ij

)2
, (6)

In many applications such as molecular conformation [21], lower and upper
bounds data on the distances can also be collected:

Lij ≤ Dij ≤ Uij , ∀ (i, j), (7)

where 0 ≤ Lij ≤ Uij . In applications such as nonlinear dimensionality reduction
[47] and sensor network localization [44, 54], upper bounds Uij can be computed
by the shortest path distances and Lij are simply set to be zero.

According to [8, Sect. 5.1], all of those problems are NP-hard. However, some
problems are computationally more “difficult” to solve than the others. The most
challenging one, which is also the main focus of this paper, is the problem (3)
with/without the constraint (7). The difficulty comes from the nonsmooth term
of `1 norm and the distance terms dij used. All other problems either involve
the squared distances Dij or the squared `2 norm, which make them “easier” to
approximate. We will explain the reasons in the literature review part.

In contrast to all other three problems, there lacks efficient methods for the
REE problem (3). One of the earliest computational papers that discuss this prob-
lem is Heiser [23], which is followed up by [28], where the Huber smoothing function
was used to approximate the `1 norm near zero with a majorization technique. It
was emphasized in [28] that “the function is not differentiable at its minimum and
is hard to majorize, leading to a degeneracy that makes the problem numerically
unstable”. Another important method is the PlaceCenter (PC for short) algorithm
studied in [1]. We will compare with it in the numerical part. The difficulty in
solving (3) is also well illustrated by a sophisticated Semi-definite Programming
(SDP) approach in [35, Sect. IV] (see the literature review part). We now describe
our approach proposed in this paper.

1.2 Our approach and main contributions

Our approach heavily makes use of the concept of Euclidean Distance Matrix
(EDM). We need some notation. Let Sn denote the space of all n× n symmetric
matrices, endowed with the standard inner product. The induced norm is the
Frobenius norm, denoted by ‖A‖ for A ∈ Sn. The (i, j)th element of A ∈ Sn is
often written as Aij . Let Sn+ be the cone of positive semidefinite matrices in Sn
and we write A � 0 for A ∈ Sn+. A matrix D ∈ Sn is called an EDM if there
exists a set of points xi ∈ <r, i = 1, 2 . . . , n such that the (i, j)th element of D is
given by Dij := ‖xi − xj‖2, i, j = 1, . . . , n. The smallest dimension r is called the



4 Zhou, Xiu and Qi

embedding dimension of D and r = rank(JDJ), where J := I− 1
n11T is known as

the centring matrix with I being the identity matrix in Sn and 1 being the vector
of all ones in <n. We use Dn to denote the set of all Euclidean distance matrices
of size n× n.

A very useful characterization for D ∈ Dn [22, 49] is

diag(D) = 0 and − (JDJ) � 0. (8)

This result shows that Dn is a closed and convex cone. Moreover, a set of embed-
ding points are generated by the classical MDS method [22,43,49,53]:

[x1,x2, . . . ,xn] = diag(
√
λ1,
√
λ2, . . . ,

√
λr) [p1,p2, . . . ,pr]

T , (9)

where the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λr > 0 and the corresponding eigenvectors
p1,p2, . . . ,pr are from the eigen-decomoposition:

− 1

2
(JDJ) = [p1,p2, . . . ,pr] diag(λ1, λ2, . . . , λr) [p1,p2, . . . ,pr]

T (10)

with r = rank(JDJ). Therefore, the REE problem (3) with the constraint (7) can
be reformulated in terms of EDM as

minD f(D) :=
∑n
i,j=1Wij |

√
Dij − δij | = ‖W ◦ (

√
D −∆)‖1

s.t. D ∈ Dn, rank(JDJ) ≤ r
D ∈ B := {A | L ≤ D ≤ U} ,

(11)

where “◦” is the Hadamard product for matrices (i.e., A ◦ B = (AijBij)),
√
D is

the elementwise square root of D, ∆ij := δij , and ‖ · ‖1 is the `1 norm. Once we
obtained an optimal solution of (11), we use (9) and (10) to generate the required
embedding points.

The reformulation well captures four difficulties in solving the REE problem
(3).

(i) The objective function f(D) is not convex. The term |
√
Dij − δij | is convex

when δ2
ij > Dij and concave otherwise.

(ii) The objective function is nonsmooth. It is not differentiable at certain points
due to the `1 norm and the square root operation involved.

(iii) The objective function is not Lipschizian. The Lipschitz constant goes to in-
finity as Dij goes to zero. The implication is that the subdifferential of the
objective function [42, Def. 8.3] may be unbounded. This would create a huge
obstacle in establishing any convergence results of iterative algorithms for (11).

(iv) The rank constraint is not convex and is hard to approximate. This is a common
issue for any optimization problem with a rank constraint.

We note that no matter what reformulations one may use for (3), those four
difficulties would appear in different forms and won’t go away. We also note that
all other three problems, when reformulated in terms of EDM, have a convex
objective function. This distinctive feature alone makes the problem (11) the most
challenging one to solve.

Existing numerical experiments have shown that the MDS embedding (9) and
(10) works well as long as D is close to a true EDM. A typical example is when the
data sits on a lower-dimensional manifold [47]. Motivated by this, we are going to
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generate an approximate EDM instead of a true EDM in our algorithm. It follows
from (8) that (also see [32, Thm. A]):

D ∈ Dn ⇐⇒ diag(D) = 0 and −D ∈ Kn+, (12)

where Kn+ is known to be the conditionally positive semidefinite cone:

Kn+ :=
{
A ∈ Sn | vTAv ≥ 0, ∀ v ∈ 1⊥

}
and 1⊥ is the subspace in <n orthogonal to 1. The diagonal constraint in (12)
can be integrated to the set B with the choice Lii = Uii = 0 for i = 1, . . . , n. We
combine Kn+ with the rank constraint into the set Kn+(r):

Kn+(r) := Kn+ ∩ {A ∈ Sn | rank(JAJ) ≤ r} .

We call it the conditionally positive semidefinite cone with the rank-r cut. Conse-
quently, the constraints in (11) become −D ∈ Kn+(r) and D ∈ B.

Next, we quantify the feasibility of −D belonging to Kn+(r) as follows. Let
ΠB
Kn

+(r)(A) be the set of all nearest points in Kn+(r) from a give matrix A ∈ Sn.

That is

ΠB
Kn

+(r)(A) := argmin {‖A− Y ‖ | Y ∈ Kn+(r)} . (13)

Since Kn+(r) is not convex (unless r ≥ n − 1), the projection ΠB
Kn

+(r)(A) is a set

instead of a single point. We let ΠKn
+(r)(A) be any element in ΠB

Kn
+(r)(A) and

define the function

g(A) :=
1

2
‖A+ΠKn

+(r)(−A)‖2. (14)

Since g(A) is just the half of the squared distance from (−A) to Kn+(r), it does
not depend on which element ΠKn

+(r)(A) is being used. It is easy to see that

−D ∈ Kn+(r) if and only if g(D) = 0.

Hence, the problem (11) is equivalent to

minD f(D) = ‖W ◦ (
√
D −∆)‖1

s.t. g(D) = 0, D ∈ B. (15)

This is a classical constrained optimization problem with an equality constraint
and a simple box constraint. Therefore, the quadratic penalty method [34, Chp. 17]
can be applied to get the following problem:

minD fρ(D) := f(D) + ρg(D), s.t. D ∈ B, (16)

where ρ > 0 is the penalty parameter. We refer to this problem as the penalized
REE problem (PREE).

The quadratic penalty method is used often in practice [34, P. 497]. In fact, it
is particularly suitable to (11) because it overcomes all four difficulties discussed
above. We will need two more important tools to help us efficiently solve the
penalty problem (16). One is the majorization technique that has recently become
very popular in engineering sciences [46] (also see [6, Chp. 8] for its extensive use
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in MDS). Suppose we have the current iterate Dk. We construct a majorization
function gm(D,Dk) for g(D) at Dk such that

gm(Dk, Dk) = g(Dk) and gm(D,Dk) ≥ g(D) ∀ D ∈ Sn. (17)

The majorization is constructed in such a way that it is easier to solve the ma-
jorized problem:

Dk+1 = argmin
{
fkρ (D) := f(D) + ρgm(D,Dk), D ∈ B.

}
(18)

It can be seen that

fρ(D
k+1) = f(Dk+1) + ρg(Dk+1)

(17)

≤ f(Dk+1) + ρgm(Dk+1, Dk) = fkρ (Dk+1)

(18)

≤ fkρ (Dk) = f(Dk) + ρgm(Dk, Dk) = f(Dk) + ρg(Dk) = fρ(D
k).

Hence, the algorithm generates a sequence {Dk} that is nonincreasing in fρ(D).
Since fρ(D) is bounded below by 0, the functional sequence {fρ(Dk)} converges.
However, we are more concerned where the iterate sequence {Dk} converges. The
second concern is how the subproblem (18) has to be solved. This brings out the
second technique, which is to solve the following one-dimensional problem:

min
x∈<

{
q(x) := (1/2)(x− ω)2 + β|

√
x− δ| | a ≤ x ≤ b

}
, (19)

for given δ > 0 and 0 ≤ a ≤ b. We will show that the solution of this problem will
lead to a close-form solution of (18).

Since our method is for the Penalized REE by EDM optimization, we call
it PREEEDM. The major contribution of this paper is to make the outlined so-
lution procedure water-tight. In particular, we will investigate the relationship
between the PREE problem (16) and the original problem (11) in terms of the
ε-optimality (Prop. 1). We will also show that the majorization function gm(·, ·)
can be economically constructed (Subsect. 3.2). Moreover, the majorized function
fkρ (D) is guaranteed to be convex provided that the penalty parameter is above
certain threshold and the subdifferentials at the generated sequences are bounded
(Prop. 4). Furthermore, each majorization subproblem has a closed form solution
(Thm. 1). We are also able to prove that any accumulation of the generated se-
quence by PREEEDM is a stationary point of (16), which is also an approximate
stationary point of (11) (Thm. 2). Built upon its solid convergence results and
simple implementation, PREEEDM is demonstrated to be comparable to six state-
of-the-art software packages in terms of solution quality and outperform them in
terms of the computational time for a large number of tested problems from sensor
network localizations and molecular conformations.

1.3 Organization of the paper

In the next section, we give a selective literature review mainly on the Semi-
Definite Programming (SDP) and EDM approaches. In Sect. 3. we introduce some
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necessary background and prove a key technical result (Lemma 1) that is crucial to
the convexity of the majorization subproblem. We study the relationship between
the penalized REE (16) and the original REE in Sect. 4, where the majorized
subproblem is shown to have a closed-form solution. In Sect. 5, we provide a
complete set of convergence results for the proposed PREEEDM algorithm. Numerical
experiments are included in Sect. 6. The paper concludes in Sect. 7. All proofs
except that of Thm. 2 can be found in Appendix.

2 Literature Review

One can find a thorough review on all of the four problems in [17] by France and
Carroll, mainly from the perspective of applications. One can also find valuable
discussion on some of those problems in [2]. So the starting point of our review
is that those problems have their own reasons to be studied and we are more
concerned how they can be efficiently solved.

Most of existing algorithms can be put in three groups. The first group con-
sists of alternating coordinates descent methods, whose main variables are xi,
i = 1, . . . , n. A famous representative in this group is the method of SMACOF for
the stress minimization (5) [13, 14]. The key idea is to alternatively minimize the
function f (d,2) with respect to each xi, while keeping other points xj (j 6= i)
unchanged, and each minimization problem is relatively easier to solve by employ-
ing the technique of majorization. SMACOF has been widely used and the interested
reader can refer to [6] for more references and to [54] for some critical comments on
SMACOF when it is applied to the sensor network localization problem. The second
and third group consist respectively the methods of SDP and EDM optimization.
We will give a more detailed review on the two groups because of their close rel-
evance to our proposed method in this paper. The main purpose of our review is
to show that there lacks efficient numerical methods for the REE problem (3).

2.1 On SDP approach

We note that each of the four objective functions either involves the Euclidean
distance dij or its squared Dij = d2

ij . A crucial observation is that constraints on
them often have SDP relaxations. For example, it is easy to see

Dij = d2
ij = ‖xi − xj‖2 = ‖xi‖2 + ‖xj‖2 − 2xTi xj

= Yii + Yjj − 2Yij , (20)

where Y := XTX � 0. Hence, the squared distance d2
ij is a linear function of the

positive semidefinite matrix Y . Consequently, the EDM cone Dn can be described
through linear transformations of positive semidefinite matrices. One can further
relax the constraint Y = XTX to Y � XTX. By the Schur-complement, one has

Z :=

[
Y XT

X Ir

]
� 0 has rank r ⇐⇒ Y = XTX. (21)

By dropping the rank constraint, the robust MDS problem (4) can be relaxed to
a SDP, which was initiated by Biswas and Ye [15].
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For the Euclidean distance dij , we introduce a new variable Tij = dij . One
may relax this constraint to Tij ≤ dij , which has a SDP representation:

T 2
ij ≤ d2

ij = Dij ⇐⇒
[

1 Tij
Tij Dij

]
� 0. (22)

Combination of (20), (21) and (22) leads to a large number of SDP relaxations.
Typical examples, for the robust MDS problem (4), are the SDP relaxation method
[5] and the edge-based SDP relaxation method [38, 50] and [27], which leads to a
comprehensive Matlab package SFSDP. For the squared stress (6), one may refer
to [16, 25]. For the stress problem (5), a typical SDP relaxation can be found
in [35, Problem (8)]. However, unlike the problems (4), (5) and (6), the REE
problem (3) does not have a straightforward SDP relaxation. We use an attempt
made in [35] to illustrate this point below.

First, it is noted that problem (3) can be written in terms of EDM:

min
∑n
i,j=1Wij |

√
Dij − δij |

s.t. D ∈ Dn, rank(JDJ) ≤ r.

The term |
√
Dij − δij | is convex if δij >

√
Dij and is concave otherwise. A major

obstacle is how to efficiently deal with the concavity in the objective.
Secondly, by dropping the rank constraint and through certain linear approxi-

mation to the concave term, a SDP problem is proposed for (3) (see [35, Eq. (20)]):

minD,T∈Sn 〈W, T 〉
s.t. (δij − Tij)2 ≤ Dij , (i, j) ∈ E

aijDij + bij ≤ Tij , (i, j) ∈ E
D ∈ Dn,

(23)

where the quantities aij and bij can be computed from δij . We note that each
quadratic constraint in (23) is equivalent to a positive semidefinite constraint on
S2

+ and D ∈ Dn is a semidefinite constraint on Sn+ by (8). Therefore, the total
number of the semidefinite constraints is |E| + 1. Finally, the optimal solution of
(23) is then refined through a second-stage algorithm (see [35, Sect. IV(B)]). Both
stages of the algorithmic scheme above would need sophisticated implementation
skills and its numerical efficiency and solution quality are yet to be confirmed due
to the twice relaxation schemes (dropping the rank constraint and linearization).
The lack of efficient algorithms for (3) motivated our research in this paper.

2.2 On EDM approach

A distinguishing feature from the SDP approach is that this approach treats EDM
D as the main variable, without having to rely on its SDP representation. This
approach works because of the characterization (12) and that the orthogonal pro-
jection onto Kn+ has a closed-form formula [19, 20]. Several methods are based
on this formula. The basic model for this approach is the so-called nearest EDM
problem:

min
D∈Sn

‖D −∆(2)‖2 s.t. diag(D) = 0 and −D ∈ Kn+, (24)
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which is a convex relaxation of (6) with the special choice Wij ≡ 1. Here the

elements of the matrix ∆(2) are given by ∆
(2)
ij := δ2

ij . The relaxation is obtained
by dropping the rank constraint rank(JDJ) ≤ r. Since the constraints of (24)
are the intersection of a subspace and a convex cone, the method of alternation
projection was proposed in [19,20] with applications to molecule conformation [21].
Newton’s method for (24) was developed in [39]. Extensions of Newton’s method
for the model (24) with more constraints including general weights Wij , the rank
constraint rank(JDJ) ≤ r or the box constraints (7) can be found in [3,11,40]. A
recent application of the model (24) with a regularization term to Statistics is [55],
where the problem is solved by an SDP, similar to that proposed by Toh [48].

There are two common features in this class of methods. One is that they re-
quire the objective function to be convex, which is true for the problems (4), (5)
and (6) when formulated in EDM. The second feature is that the nonconvexity
is only caused by the rank constraint. However, as already seen in Subsect. 1.2,
the REE problem (3) in terms of EDM has a nonconvex objective coupled with
the distance dij (not squared distances) being used. This has caused various dif-
ficulties in applying the existing EDM-based methods mentioned above to (3). A
latest research [56] by the authors has tried to extend the EDM approach to the
stress minimization problem (5) along a similar line as outlined in Subsect. 1.2.
Once again, we emphasize that the key difference between the problem (3) and
(5) is about nonconvex objective vs convex objective and non-differentiability vs
differentiability. Hence, the problem (3) is significantly more difficult to solve than
(5). Nevertheless, we will show that it can be efficiently solved by the proposed
EDM optimization.

3 Background and Technical Lemmas

In this part, we introduce the necessary background about subgradient and pos-
itive roots of a special depressed cubic equation. In particular, we will prove a
technical result about a composite function between the absolute value and the
square root functions. This result (Lemma 1) is in the style of Taylor-expansion
for differentiable functions.

3.1 Subgradients of functions

An important function appearing in our EDM reformulation (11) of the REE
problem (3) is φδ(·) : <+ 7→ <+ defined for a given constant δ > 0 by

φδ(x) := |
√
x− δ|, ∀ x ≥ 0,

where <+ is the set of all nonnegative numbers. We will need to compute its
subgradient in the sense of Rockafellar and Wets [42].

Definition 1 [42, Def. 8.3] Consider a function f : <n 7→ < ∪ {−∞,+∞} and a
point x̄ with f(x̄) finite. For a vector v ∈ <n, one says that

(a) v is a regular subgradient of f at x̄, written v ∈ ∂̂f(x̄), if

f(x) ≥ f(x̄) + 〈v, x− x̄〉+ o(‖x̄− x‖),
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where the little ‘o’ term is a short-hand notation for the one-sided limit con-
dition:

lim inf
x→x̄
x 6=x̄

f(x)− f(x̄)− 〈v, x− x̄〉
‖x− x̄‖ ≥ 0;

(b) v is a (general) subgradient of f at x̄, written v ∈ ∂f(x̄), if there are sequences

xν → x̄ with f(xν)→ f(x̄) and vν ∈ ∂̂f(xν) with vν → v.

We call ∂f(x̄) the subdifferential of f at x̄. For a given number x ∈ <, we
define its sign by

sign(x) :=


{1} if x > 0
[−1, 1] if x = 0
{−1} if x < 0.

Apparently, φδ(x) is continuous for x > 0 and its subdifferential at x > 0 is given
by directly applying Def. 1 (note δ > 0)

∂φδ(x) =
sign(

√
x− δ)

2
√
x

for x > 0. (25)

We note that the subdifferential of φδ(x) at x = 0 is more complicated to describe.
Fortunately, we won’t need it in our analysis. We state our key lemma below.

Lemma 1 Let δ > 0 be given. It holds

φδ(y) ≥ φδ(x) + ζ(y − x)− (x− y)2

8δ3
, ∀ x > 0, y > 0, ζ ∈ ∂φδ(x).

Compared with the definition of classical convex function, the inequality above has
an extra negative quadratic term, which is not sufficient for φδ(x) to be convex on
(0,+∞) (actually, φδ(x) is quasi-convex.) Fortunately, this property allows us to
make the function φδ +µϕ convex provided ϕ is a strongly convex and µ is chosen
properly. And this is one of the key ideas developed in this paper.

3.2 Construction of the majorization function

A major building block in our algorithm is the majorization function gm(D,Dk)
at a given point Dk for the function g(A) defined in (14). We construct it below.

Suppose A ∈ Sn has the following eigenvalue-eigenvector decomposition:

A = λ1p1pT1 + λ2p2pT2 + · · ·+ λnpnpTn , (26)

where λ1 ≥ λ2 ≥ . . . ≥ λn are the eigenvalues of A in non-increasing order,
and pi, i = 1, . . . , n are the corresponding orthonormal eigenvectors. We define a
PCA-style matrix truncated at r:

PCA+
r (A) :=

r∑
i=1

max{0, λi}pipTi . (27)

Recall the definition of ΠB
Kn

+(r)(A) in (13). We let ΠKn
+(r)(A) be an element of

ΠB
Kn

+(r)(A) and note that the function g(A) in (14) does not depend on the

choice of ΠKn
+(r)(A). As seen from the known results below, one particular el-

ement ΠKn
+(r)(A) can be computed through PCA+

r (A).
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Lemma 2 For a given matrix A ∈ Sn and an integer r ≤ n. The following results
hold.

(i) [40, Eq. (22), Prop. 3.3] One particular ΠKn
+(r)(A) can be computed through

ΠKn
+(r)(A) = PCA+

r (JAJ) + (A− JAJ) (28)

(ii) [40, Eq. (26), Prop. 3.3] We have

〈ΠKn
+(r)(A), A−ΠKn

+(r)(A)〉 = 0. (29)

(iii) [40, Prop. 3.4] The function

h(A) :=
1

2
‖ΠKn

+(r)(A)‖2

is well defined and is convex. Moreover,

ΠKn
+(r)(A) ∈ ∂h(A),

where ∂h(A) is the subdifferential of h(·) at A.
(iv) [56, Lemma 2.2] Let g(A) be defined in (14). We have for any A ∈ Sn

g(A) =
1

2
‖A‖2 − h(−A) and ‖ΠKn

+(r)(A)‖ ≤ 2‖A‖. (30)

Since h(·) is convex and ΠKn
+(r)(A) ∈ ∂h(A) (Lemma 2)(ii)), we have

h(−D) ≥ h(−Z) + 〈ΠKn
+(r)(−Z), −D + Z〉 ∀ D,Z ∈ Sn.

This, with Lemma 2(iii), implies

g(D) = (1/2)‖D‖2 − h(−D)

≤ (1/2)‖D‖2 − h(−Z) + 〈ΠKn
+(r)(−Z), D − Z〉

= (1/2)‖D +ΠKn
+(r)(−Z)‖2 + 〈ΠKn

+(r)(−Z),−Z −ΠKn
+(r)(−Z)〉

(29)
= (1/2)‖D +ΠKn

+(r)(−Z)‖2

=: gm(D,Z). (31)

It is straightforward to check that the function gm(·, ·) in (31) satisfies the ma-
jorization properties (17).

3.3 Positive roots of depressed cubic equations

In our algorithm, we will encounter the positive root of a depressed cubic equation
[7, Chp. 7], which arises from the optimality condition of the following problem

min
x≥0

s(x) := (x− t)2 + ν
√
x, (32)

where ν > 0 and t ∈ < are given. A positive stationary point x must satisfy the
optimality condition

0 = s′(x) = 2(x− t) +
ν

2
√
x
. (33)
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Let y :=
√
x. The optimality condition above becomes

4y3 − 4ty + ν = 0.

This is in the classical form of the so-called depressed cubic equation [7, Chp. 7]. Its
roots (complex or real) and their computational formulae have a long history with
fascinating and entertaining stories. A comprehensive revisit of this subject can
be found in Xing [51] and a successful application of the depressed cubic equation
to the compressed sensing can be found in [36,52]. The following lemma says that,
under certain conditions, the equation (33) has two distinctive positive roots and
its proof is a specialization of [9, Lem. 2.1(iii)] when p = 1/2 therein.

Lemma 3 [9, Lemma 2.1(iii)] Consider the problem (32). Let

x̄ = (ν/8)2/3 and t̄ = 3x̄.

When t > t̄, s(x) has two different positive stationary point x̂1 and x̂2 satisfying

s′(x) = 0 and x̂1 < x̄ < x̂2.

4 Penalized REE Model and Its’ Majorization Subproblem

With the preparation above, we are ready to address our penalized REE problem
(16) and its majorization subproblem (18). We first address the relationship be-
tween (16) and its original problem (11). We then show how the subproblem (18)
is solved.

4.1 ε-optimal solution and critical point

The classical results on penalty methods in [34] on the differentiable case (i.e., all
functions involved are differentiable) are not applicable here. Recently, the penalty
approach was studied by Gao in her PhD thesis [18] in the context of semidefinite
programming, which motivated our investigation below. The main result is that
(16) provides an ε-optimal solution and ε-critical point for the original problem
when the penalty parameter is above certain threshold.

We first introduce the concept of critical point of (11) (i.e., (15)), which is a
first order optimality condition. It is associated with the Lagrange function of (15)
defined by

L(D,β) := f(D) + βg(D) + IB(D), (34)

where β ∈ < is the Lagrangian multiplier and IB(D) is the indicator function
taking value 0 if D ∈ B and +∞ otherwise. We say D ∈ Sn is a critical point of
(15) if it satisfies 0 ∈ ∂L(D̄, β̄) for some β̄ ∈ <, namely, there exists Γ ∈ ∂f(D)
and C ∈ Conv(ΠB

Kn
+(r)(−D)) such that

g(D) = 0 and
〈
Γ + β̄D + β̄C, D −D

〉
≥ 0, ∀ D ∈ B
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where we used the following facts: ∂g(D) = D + Conv(ΠB
Kn

+(r)(−D)) (see [40,

Prop. 3.4] and Conv(Ω) denotes the convex hull of a given set Ω) , and the sub-
differential of the indicator function of a convex set Ω is its normal cone, namely,
∂IΩ(x) = NΩ(x) = {y : 〈y, z − x〉 ≤ 0, ∀ z ∈ Ω}. We will see the choice
C = ΠKn

+(r)(−D) is enough for our analysis and hence it is used in our definition
of approximate critical point.

Definition 2 (i) (ε-optimal solution) Suppose D∗ is an optimal solution of (11).

For a given error tolerance ε > 0, a point D̂ is called an ε-optimal solution of
(11) if it satisfies

D̂ ∈ B, g(D̂) ≤ ε and f(D̂) ≤ f(D∗).

(ii) (ε-critical point) A point D is called an ε-critical point of (11) if there exist
Γ ∈ ∂f(D) and β̄ ∈ < such that

g(D) ≤ ε,
〈
Γ̄ + β̄D + β̄ΠKn

+(r)(−D), D −D
〉
≥ 0, ∀ D ∈ B. (35)

Obviously, if ε = 0, ε-optimal solution D̂ would be an optimal solution of
(11). We will show that the optimal solution of (16) is ε-optimal as well as an
ε-critical point provided that ρ is large enough. Let D∗ρ be an optimal solution of
the penalized REE (16) and Dr be any feasible solution of the original problem
(11). If the lower bound matrix L ≡ 0, then we can simply choose Dr = 0. Define

ρε := f(Dr)/ε.

We have the following result.

Proposition 1 For any ρ ≥ ρε, D
∗
ρ must be an ε-optimal solution as well as an

ε-critical point of (11). That is, there exists Γ ∗ ∈ ∂f(D∗ρ) such that

D∗ρ ∈ B, f(D∗ρ) ≤ f(D∗), g(D∗ρ) ≤ ε (36)〈
Γ ∗ + ρD∗ρ + ρΠKn

+(r)(−D∗ρ), D −D∗ρ
〉
≥ 0, ∀ D ∈ B. (37)

4.2 Solving the Subproblem

Having constructed the majorization function in (31), we now focus on how to
solve the majorization subproblem (18), which is equivalent to the solution of the
following problem. Given the current iterate Z ∈ B, the majorization subproblem
aims to compute an improved iterate, denoted by Z+, by solving

Z+ = arg min
D∈B

f(D) + ρgm(D,Z)

= arg min
D∈B

n∑
i,j=1

Wij |
√
Dij − δij |+

ρ

2
‖D +ΠKn

+(r)(−Z)‖2

= arg min
D∈B

n∑
i,j=1

Wij |
√
Dij − δij |+

ρ

2
‖D − ZK‖2, (38)
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where the matrix ZK := −ΠKn
+(r)(−Z). This subproblem has a perfect separability

property that allows it to be computed elementwise:

Z+
ij = arg min

Lij≤Dij≤Uij

ρ

2
[Dij − (ZK)ij ]

2 +Wij |
√
Dij − δij |

= arg min
Lij≤Dij≤Uij

1

2
[Dij − (ZK)ij ]

2 +
Wij

ρ
|
√
Dij − δij |. (39)

For the ease of our description, we denote the subproblem solution process by

Z+ = PREEEDMB(ZK , W/ρ, ∆). (40)

Here, PREEEDM stands for the Penalized REE by EDM optimization. We will show
how (40) can be computed.

Let us consider a simplified one-dimensional optimization problem, whose so-
lution will eventually give rise to PREEEDM. Let B denote the interval [a, b] in <
with 0 ≤ a ≤ b. For given ω ∈ <, δ > 0 and β > 0, we aim to compute

dcrootB [ω, β, δ] := arg min
a≤x≤b

q(x) :=
1

2
(x− ω)2 + β|

√
x− δ|. (41)

The acronym dcroot stands for the root of depressed cubic equation, which will
eventually give rise to the solution formula of (41). It suffices to consider the case
that matters to us:

β > 0, δ > 0 and a ≤ δ2 ≤ b.

Before solving the above problem, we define some notation for convenienceγω,β :=

[
ω+
√
ω2+2β

]2

4 , u := β
4 , v := ω

3 and τ := u2 − v3

B− := [a, δ2] and B+ := [δ2, b].
(42)

Obviously, q(x) has a representation of two pieces:

q(x) =

{
q−(x) := 1

2 (x− ω)2 − β
√
x+ βδ for x ∈ B−

q+(x) := 1
2 (x− ω)2 + β

√
x− βδ for x ∈ B+

It is noted that q−(x) is convex, but q+(x) may not necessarily so. We will show
that both pieces have a closed-form formula for their respective minimum.

Proposition 2 Consider the optimization problem:

x∗− := argmin q−(x), s.t. x ∈ B−. (43)

Define

x−ω,β =


[
(u+

√
τ)1/3 + (u−

√
τ)1/3

]2
, τ ≥ 0,

4v cos2
[

1
3arccos(uv−3/2)

]
, τ < 0.

(44)

Then (43) has a unique solution x∗− given by

x∗− = ΠB−(x−ω,β) := min{δ2,max{a, x−ω,β}} and x∗− ≥ min{δ2, 1, γω,β}.
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Now we characterize the optimal solution of q+(x) over B+.

Proposition 3 Assume that β < 4δ3 and consider the optimization problem:

x∗+ := argmin q+(x), s.t. x ∈ B+. (45)

Define

x+
ω,β :=


δ2 if τ ≥ 0

4v cos2
[

1
3 arccos(−uv−3/2)

]
if τ < 0,

(46)

Then q+(x) is strictly convex over the interval [δ2,∞) and

x∗+ = ΠB+
(x+
ω,β) := max{δ2,min{b, x+

ω,β}}.

Putting together Prop. 2 and Prop. 3 gives rise to the optimal solution of (41).
The optimal solution is either x∗− or x∗+, whichever gives a lower functional value
of q(x). This is the first result of our major theorem below. We note that both
Prop. 2 and Prop. 3 make use of the convexity of q−(x) and q+(x) on the respective
interval [a, δ2] and [δ2, b]. In fact, we can establish a stronger result that when the
two pieces join together, the resulting function q(x) is still convex on the whole
interval [a, b]. This result is very important to our convergence analysis in the next
section and is the second result of the theorem below. A key tool for the proof is
Lemma 1.

Theorem 1 Let B denote the interval [a, b] with 0 ≤ a ≤ δ2 ≤ b. We assume
0 < β < 4δ3. Then, the following hold.

(i) The optimal solution of the problem (41) is given by

dcrootB [ω, β, δ] =

{
x∗−, if q(x∗−) ≤ q(x∗+),
x∗+, if q(x∗−) > q(x∗+).

(ii) The function q(x) is strictly convex on [a, b]. Consequently, there exists ξ ∈
∂q(dcrootB [ω, β, δ]) such that

ξ(x− dcrootB [ω, β, δ]) ≥ 0 for any x ∈ B.

(iii) Let γω,β be defined in (42), then dcrootB [ω, β, δ] ≥ min{δ2, b, 1, γω,β}. We
view dcrootB [ω, β, δ] as a function of ω. Suppose C > 0 is an arbitrarily given
constant. Then there exists a constant κ > 0 such that

dcrootB [ω, β, δ] > κ ∀ ω such that |ω| ≤ C.

Comment: The optimal solution dcrootB [ω, β, δ] is unique, since q(x) is strictly
convex over [a, b]. However, its location could be within the interval [a, σ2] or
[σ2, b], depending on the magnitudes of the parameters (ω, β and δ) involved. The
dependence is illustrated in Fig. 1. We also note that the function q(x) may not
be convex if the condition β < 4δ3 is violated. ut
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Fig. 1: Illustration of the convexity of q(x) = 0.5(x − ω)2 + β|
√
x − δ| over the

interval [0, 6] and β = 4: Global minimum happens on q−(x) (left) with ω = 1,
δ = 2 and global minimum happens on q+(x) (right) with ω = 5, δ =

√
2.

It now follows from Thm. 1 that the optimal solution Z+
ij in (39) can be com-

puted by:

Z+
ij =


dcroot[Lij ,Uij ][(ZK)ij , Wij/ρ, δij ], Wij > 0

Π[Lij ,Uij ]((ZK)ij), Wij = 0
(47)

Consequently, Z+ = PREEEDMB(ZK ,W/ρ,∆) in (40) is well defined and its elements
can be computed by (47).

5 Algorithm PREEEDM and Its Convergence

With the preparations above, we are ready to state our algorithm. Let Dk ∈ B be
the current iterate. We update it by solving the majorization subproblem of the
type (38) with Z replaced by Dk:

Dk+1 = arg min
{
fkρ (D) := f(D) + ρgm(D,Dk)

}
, s.t. D ∈ B, (48)

which can be computed by

Dk+1 = REEEDMB(−ΠKn
+(r)(−Dk), W/ρ, ∆). (49)

In more detail, we have

fkρ (D) = ‖W ◦ (
√
D −∆)‖1 +

ρ

2
‖D +ΠKn

+(r)(−Dk)‖2

=
∑
i,j

[
ρ

2

(
Dij − (ZkK)ij

)2
+Wij |

√
Dij − δij |

]
︸ ︷︷ ︸

=:fk
ij(Dij)
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where ZkK := −ΠKn
+(r)(−Dk), and the elements of Dk+1 are computed as follows:

Dk+1
ij = argmin

Lij≤Dij≤Uij

{
1

2

[
Dij − (ZkK)ij

]2
+
Wij

ρ

∣∣∣√Dij − δij∣∣∣}

=


dcroot[Lij ,Uij ]

[
(ZkK)ij , Wij/ρ, δij

]
, if Wij > 0

Π[Lij ,Uij ]

[
(ZkK)ij

]
, if Wij = 0.

(50)

Our algorithm PREEEDM is formally stated as follows.

Algorithm 1 PREEEDM Method

1: Input data: Dissimilarity matrix ∆, weight matrix W , penalty parameter ρ > 0, lower-
bound matrix L, upper-bound matrix U and the initial D0. Set k := 0.

2: Update: Dk+1 = PREEEDMB(−ΠKn
+(r)(−Dk), W/ρ, ∆) by (50).

3: Convergence check: Set k := k + 1 and go to Step 2 until convergence.

A major obstacle in analysing the convergence for the penalized EDM model
(16) is the non-differentiability of the objective function. We need the following
two reasonable assumptions:
Assumption 1: The constrained box B is bounded.
Assumption 2: For ∆ and U , we require Wij = 0 if δij = 0 and Uij ≥ δ2

ij ≥ Lij
if δij > 0

Assumption 1 can be easily satisfied (e.g., setting the upper bound to be
n2 max{δ2

ij}). Assumption 2 means that if δij = 0 (e.g., value missing), the cor-
responding weight Wij should be 0. This is a common practice in applications.
If δij > 0, then we require δ2

ij to be between Lij and Uij . We further define a
quantity that bounds our penalty parameter ρ from below:

ρo := ρo(W,∆) := max
(i,j):Wij>0

Wij

4δ3
ij

(51)

Our first result in this section is about the boundedness of the subdifferential of
f(·) along the generated sequence {Dk}.

Proposition 4 Suppose Assumptions 1 and 2 hold. Let ρ > ρo and {Dk} be the
sequence generated by Alg. 1. Then the following hold.

(i) There exists a constant c1 > 0 such that

Dkij ≥ c1 for all (i, j) such that Wij > 0 and k = 1, 2, . . . .

(ii) Let ∂f(D) denote the subdifferential of f(D) = ‖W ◦ (
√
D−∆)‖1. Then there

exists a constant c2 > 0 such that

‖Γ‖ ≤ c2 ∀ Γ ∈ ∂f(Dk), k = 1, 2, . . . .

(iii) The function fkρ (D) is convex for all k = 1, 2, . . .. Moreover, there exists

Γ k+1 ∈ ∂f(Dk+1) such that the first-order optimality condition for (49) is〈
Γ k+1 + ρDk+1 + ρΠKn

+(r)(−Dk), D −Dk+1
〉
≥ 0, ∀ D ∈ B. (52)
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Thm. 1(i) ensures that Dkij > 0 for all k = 1, . . . , . Hence, we can apply Lem. 1

to each function φδij (·) with x = Dk+1
ij and y = Dkij . This yields for any ζk+1

ij ∈
∂φδij (Dk+1

ij )

φδij (Dk+1
ij )− φδij (Dkij) ≤ ζk+1

ij (Dk+1
ij −Dkij) +

1

2

(Dk+1
ij −Dkij)2

4δ3
ij

,

Multiplying Wij on both sides and adding those inequalities over (i, j), we get

f(Dk+1)− f(Dk) ≤ 〈Γ k+1, Dk+1 −Dk〉+
ρo
2
‖Dk+1 −Dk‖2, (53)

where Γ k+1
ij := Wijζ

k+1
ij . We note that the inequality (53) holds for any Γ k+1 ∈

∂f(Dk+1).

Theorem 2 Let ρ > ρo and {Dk} be the sequence generated by Alg. 1. Suppose
Assumptions 1 and 2 hold.

(i) We have

fρ(D
k+1)− fρ(Dk) ≤ −ρ− ρo

2
‖Dk+1 −Dk‖2 for any k = 0, 1, . . . , .

Consequently, ‖Dk+1 −Dk‖ → 0.

(ii) Let D̂ be an accumulation point of {Dk}. Then there is Γ̂ ∈ ∂f(D̂) such that

〈Γ̂ + ρD̂ + ρΠKn
+(r)(−D̂), D − D̂〉 ≥ 0 for any D ∈ B. (54)

That is, D̂ is a critical point of the problem (16). Moreover, for a given ε > 0,
if D0 ∈ Kn+(r) ∩ B and

ρ ≥ ρε := max{ρo, f(D0)/ε},

then D̂ is an ε-critical point of the original problem (11).

(iii) If D̂ is an isolated accumulation point of the sequence {Dk}, then the whole

sequence {Dk} converges to D̂.

Proof (i) We are going to use the following facts that are stated on Dk+1 and Dk.
The first fact is the identity:

‖Dk+1‖2 − ‖Dk‖2 = 2〈Dk+1 −Dk, Dk+1〉 − ‖Dk+1 −Dk‖2. (55)

The second fact is due to the convexity of h(D) (see Lemma 2(ii)):

h(−Dk+1)− h(−Dk) ≥ 〈ΠKn
+(r)(−Dk), −Dk+1 +Dk〉. (56)
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The last fact is that there exists Γ k+1 ∈ ∂f(Dk+1) such that (52). Those facts
yield the following chain of inequalities:

fρ(D
k+1)− fρ(Dk)

= f(Dk+1)− f(Dk) + ρg(Dk+1)− ρg(Dk)

(53)

≤ 〈Γ k+1, Dk+1 −Dk〉+
ρo
2
‖Dk+1 −Dk‖2 + ρg(Dk+1)− ρg(Dk)

(30)
= 〈Γ k+1, Dk+1 −Dk〉+

ρo
2
‖Dk+1 −Dk‖2

+ (ρ/2)(‖Dk+1‖2 − ‖Dk‖2)− ρ[h(−Dk+1)− h(−Dk)]

(55)
= 〈Γ k+1 + ρDk+1, Dk+1 −Dk〉

− ρ− ρo
2
‖Dk+1 −Dk‖2 − ρ[h(−Dk+1)− h(−Dk)]

(56)

≤ 〈Γ k+1 + ρDk+1 + ρΠKn
+(r)(−Dk), Dk+1 −Dk〉 − ρ− ρo

2
‖Dk+1 −Dk‖2

(52)

≤ −ρ− ρo
2
‖Dk+1 −Dk‖2.

This proves that the sequence {Fρ(Dk)} is non-increasing and it is also bounded
below by 0. Taking the limits on both sides yields ‖Dk+1 −Dk‖ → 0.

(ii) Suppose D̂ is the limit of a subsequence {Dk`}, ` = 1, . . . ,. Since we have
established in (i) that (Dk`+1−Dk`)→ 0, the sequence {Dk`+1} also converges to

D̂. Furthermore, there exist a sequence of Γ k`+1 ∈ ∂f(Dk`+1) such that (52) holds.
Prop. 4(ii) ensures that there exists a constant c2 > 0 such that ‖Γ k`+1‖ ≤ c2 for
all k`. Hence, there exists a subsequence of {k`} (we still denote the subsequence

by {k`} for simplicity) such that Γ k`+1 converges to some Γ̂ ∈ ∂f(D̂). Now taking
the limits on both sides of (52) on {k`}, we reach the desired inequality (54). We

now prove D̂ is an ε-critical point of (11). Since we already have (54), we only

need to show g(D̂) ≤ ε. It follows from D0 ∈ Kn+(r) ∩ B that

f(D0) = f(D0) + ρg(D0) (because g(D0) = 0)

(18)

≥ f(D1) + ρgm(D1, D0) (because D0 ∈ B)

(31)

≥ f(D1) + ρg(D1) = fρ(D
1)

≥ · · · ≥ fρ(Dk) = f(Dk) + ρg(Dk). (because of (i))

Taking the limit on the right-hand side yields

f(D0) ≥ f(D̂) + ρg(D̂) ≥ ρg(D̂),

where we used f(D̂) ≥ 0. Therefore, thanks to ρ > ρε, it has

g(D̂) ≤ f(D0)/ρ ≤ f(D0)/ρε = ε.

(iii) We note that we have proved in (i) that (Dk+1−Dk)→ 0. The convergence

of the whole sequence to D̂ follows from [26, Prop. 7]. ut
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6 Numerical Experiments

In this part, we will conduct extensive numerical experiments of our algorithm
PREEEDM by using MATLAB (R2014a) on a desktop of 8GB of memory and Inter(R)
Core(TM) i5-4570 3.2Ghz CPU, against 6 leading solvers on the problems of sensor
network localizations (SNL) in <2 (r = 2) and Molecular Conformation (MC) in
<3 (r = 3). This section is split into the following parts. Our implementation
of PREEEDM was described in Subsect. 6.1. We will give a brief explanation how
the six benchmark methods were selected in Subsect. 6.2. Descriptions of how the
test data of SNL and MC were collected and generated, and extensive numerical
comparisons are reported in Subsect. 6.3.

6.1 Implementation

The PREEEDM Alg. 1 is easy to implement. We first address the issue of its stopping
criterion that is to be used in Step 3 of Alg. 1. We monitor two quantities. One
is on how close of the current iterate Dk is to be Euclidean (belonging to Kn+(r)).
This can be computed by using (28) as follows.

Kprogk :=
2g(Dk)

‖JDkJ‖2 =
‖PCA+

r (−JDkJ) + (JDkJ)‖2

‖JDkJ‖2

= 1−
∑r
i=1

[
λ2
i − (λi −max{λi, 0})2

]
λ2

1 + . . .+ λ2
n

≤ 1,

where λ1 ≥ λ2 ≥ . . . ≥ λn are the eigenvalues of (−JDkJ). The smaller Kprogk is,
the closer Dk is to Kn+(r). The benefit of using Kprog over g(D) is that the former
is independent of any scaling of D.

The other quantity is to measure the progress in the functional values fρ(·)
by the current iterate Dk. In theory (see Thm. 2), we should require ρ > ρo,
which is defined as (51) and is potentially large. As with the most penalty meth-
ods [34, Chp. 17], starting with a very large penalty parameter may degrade the
performance of the method (e.g., causing ill-conditioning). We adopt a dynamic

updating rule for ρ. In particular, we choose ρ0 =
κmax δij
n3/2 and update it as

ρk+1 =


1.25ρk, if Kprogk > Ktol, Fprogk ≤ 0.2Ftol,
0.75ρk, if Fprogk > Ftol, Kprogk ≤ 0.2Ktol,

ρk, otherwise,

where

Fprogk :=
fρk−1(Dk−1)− fρk−1(Dk)

1 + ρk−1 + fρk−1(Dk−1)
, (57)

and Ftol = ln(κ) × 10−4 and Ktol = 10−2 with κ being the number of non-zero
elements of ∆. We terminate PREEEDM when

Fprogk ≤ Ftol and Kprogk ≤ Ktol,
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Since our computation of each iteration is dominated by ΠKn
+(r)(−D) in the con-

struction of the majorization function gm(·, ·) in (31), the computational complex-
ity is about O(rn2) (we used MATLAB’s built-in function eigs.m to compute
PCA+

r (A) in (27)). For the problem data input, ∆, L and U will be described be-

low. For the initial point, we follow the popular choice used in [44,47]
√
D0 := ∆̂,

where ∆̂ is the matrix obtained by the shortest path distances among ∆. If ∆ has
no missing values, then ∆̂ = ∆.

6.2 Benchmark methods

We select six representative state-of-the-art methods for comparison. They are
ADMMSNL [37], ARAP [54], EVEDM (short for EepVecEDM) [12], PC [1], PPAS (short for
PPA Semismooth) [24] and SFSDP [27]. Those methods have been shown to be ca-
pable of returning satisfactory localization/embedding in many applications. We
will compare our method PREEEDM with ADMMSNL, ARAP, EVEDM, PC and SFSDP for
Sensor Network Localization (SNL, r = 2) problems and with EVEDM, PC, PPAS

and SFSDP for Molecular Conformation (MC, r = 3) problems since the current
implementations of ADMMSNL, ARAP do not support the embedding for r ≥ 3.

We note that ADMMSNL is motivated by [45] and aims to enhance the package
diskRelax of [45] for the SNL problems (r = 2). Both methods are based on the
stress minimization (5). As we mentioned before, SMACOF [13, 14] has been a very
popular method for (5). However, we will not compare it with other methods here
since its performance demonstrated in [54,56] was not very satisfactory (e.g., when
comparing with ARAP) for either SNL or MC problems. To our best knowledge, PC
is the only viable method, whose code is also publicly available for the model (3).
We select SFSDP and PPAS because of their high reputation in the field of SDP
and quadratic SDP in returning quality localizations and conformations. We note
that SFSDP is for the model (4) and the methods PPAS and EVEDM are proposed for
the model (6). It is worth mentioning that the MADMM package in [29] is capable of
solving the Robust MDS (4) as well as other nonsmooth optimization problems.
However, MADMM does not contain the implementation of its listed example: Robust
MDS. So we were not able to compare it with ours here. We also implemented
the subgradient method of Cayton and Dasgupta [8] for their robust Euclidean
embedding. Numerical experiments showed that its performance was similar to PC

on our tested problems. It works well when a large number of the dissimilarities
in ∆ are available and it often performs poorly otherwise. Hence, we omitted it
from our reported results.

In our tests, we used all of their default parameters except one or two in
order to achieve the best results. In particular, for PC, we terminate it when
|f(Dk−1) − f(Dk)| < 10−4 × f(Dk) and set its initial point to be the embed-
ding by cMDS on ∆. For SFSDP which is a high-level MATLAB implementation of
the SDP approach initiated in [50], we set pars.SDPsolver = “sedumi” because
it returns the best overall performance, and pars.objSW = 1 when m > r+ 1 and
= 3 when m = 0. We also note that the parameter pars.minDegree controls the
degree of a graph and thus enhances the strength of the SDP relaxation. Numerical
experiments have shown that the larger it is, the more accurate solutions might
be generated by SFSDP. However, the computational time shoots up dramatically



22 Zhou, Xiu and Qi

when it increases even for small n. Our extensive experiments suggest that its de-
fault value (pars.minDegree = r+2) is a balanced choice between solution quality
and time of computation for large n. Hence we choose to use its default setting
in our test. For ARAP, in order to speed up the termination, we let tol = 0.05
and IterNum = 20 to compute its local neighbour patches. Numerical performance
demonstrated that ARAP could yield satisfactory embedding, but would take very
long time for some examples with large n.

6.3 Numerical Comparison

To assess the embedding quality, we adopt a widely used measure RMSD (Root of
the Mean Squared Deviation) defined by

RMSD :=

[
1

n−m

n∑
i=m+1

‖x̂i − xi‖2
]1/2

,

where xi’s are the true positions of the sensors or atoms in our test problems and
x̂i’s are their corresponding estimates. The x̂i’s were obtained by applying the
classical MDS (cMDS) method to the final output of the distance matrix, followed
by aligning them to the existing anchors through the well-known Procrustes pro-
cedure (see [54], [6, Chp. 20] or [41, Prop. 4.1] for more details). Furthermore,
upon obtaining x̂i’s, a heuristic gradient method can be applied to improve their
accuracy and it is called the refinement step in [5]. We report rRMSD to highlight
its contribution. As we will see, all tested methods benefit from this step, but with
varying degrees.

The quality of the general performance of each method can be better appre-
ciated through visualizing their key indicators: RMSD, rRMSD, rTime (time for the
refinement step) and the CPU Time (in seconds) which is the total time includ-
ing rTime. Hereafter, for all examples, we test 20 randomly generated instances
for each case (n,m,R, nf) in SNL or each case (n,R, nf) in MC, and record the
average results.

6.3.1 Comparison on SNL

SNL has been widely used to test the viability of many existing methods for the
stress minimization. In such a problem, we typically have m anchors (e.g., sensors
with known locations) and the rest sensors need to be located. We will test two
types of SNL problems. One has a regular topological layout (Examples 1 and 2
below). The other has an irregular layout (Example 3).

Example 1 (Square Network with 4 fixed anchors) This example is widely tested
since its detailed study in [5]. In the square region [−0.5, 0.5]2, 4 anchors x1 =
a1, · · · ,x4 = a4 (m = 4) are placed at (±0.2,±0.2). The generation of the rest
(n −m) sensors (xm+1, · · · ,xn) follows the uniform distribution over the square
region. The noisy ∆ is usually generated as follows.

δij := ‖xi − xj‖ × |1 + εij × nf|, ∀ (i, j) ∈ N := Nx ∪Na
Nx := {(i, j) | ‖xi − xj‖ ≤ R, i > j > m}
Na := {(i, j) | ‖xi − aj‖ ≤ R, i > m, 1 ≤ j ≤ m} ,
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where R is known as the radio range, εij ’s are independent standard normal ran-
dom variables, and nf is the noise factor (e.g., nf = 0.1 was used and it corre-
sponds to 10% noise level). In literature (e.g., [5]), this type of perturbation in δij
is known to be multiplicative and follows the unit-ball rule in defining Nx and Na
(see [3, Sect. 3.1] for more detail). The corresponding weight matrix W and the
lower and upper bound matrices L and U are given as in the table below. Here,
M is a large positive quantity. For example, M := nmaxij ∆ij is the upper bound
of the longest shortest path if the network is viewed as a graph.

(i, j) Wij ∆ij Lij Uij
i = j 0 0 0 0

i, j ≤ m 0 0 ‖ai − aj‖2 ‖ai − aj‖2
(i, j) ∈ N 1 δij 0 R2

otherwise 0 0 R2 M2

Example 2 (Square Network with m random anchors) This example also tested
in [5] is similar to Example 1 but with randomly generated anchors. The generation
of n points follows the uniform distribution over the square region [−0.5, 0.5]2.
Then the first m points are chosen to be anchors and the last (n −m) points to
be sensors. The rest of the data generation is same as in Example 1.

Example 3 (EDM word network) This problem has a non-regular topology and
was first used in [3] to challenge existing methods. In this example, n points are
randomly generated in a region whose shape is similar to the letters “E”, “D” and
“M”. The ground truth network is depicted in Fig. 2. We choose the first m points
to be the anchors. The rest of the data generation is same as in Example 1.
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Fig. 2: Ground truth EDM network with n = 500 nodes.

a) Effect of the radio range R. It is easy to see that the radio range R
decides the amount of missing dissimilarities among all elements of ∆. The smaller
R is, the fewer numbers of δij are available, leading to more challenging problems.
Therefore, we first demonstrate the performance of each method to the radio range
R. For Example 1, we fix n = 200,m = 4, nf= 0.1, and alter the radio range R
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among {0.2, 0.4, · · · , 1.4}. The average results were demonstrated in Figure 3. It
can be seen that ARAP and PREEEDM were joint winners in terms of both RMSD and
rRMSD. However, the time used by ARAP was the longest. When R became bigger
than 0.6, ADMMSNL, SFSDP and EVEDM produced similar rRMSD as ARAP and PREEEDM,
while the time consumed by ADMMSNL was significantly larger than that by SFSDP,
EVEDM and PREEEDM. By contrast, PC only worked well when R ≥ 1.
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Fig. 3: Average results for Example 1 with n = 200,m = 4, nf= 0.1.

Next we test a number of instances with larger size n ∈ {300, 500, 1000, 2000}.
For Example 1, the average results were recorded in Table 1. When R =

√
2 under

which no dissimilarities were missing because Example 1 was generated in a unit
region, PC, ARAP and PREEEDM produced the better RMSD ( almost in the order of
10−3). But with the refinement step, all methods led to similar rRMSD. This meant
SFSDP and EVEDM benefited a lot from the refinement step. For the computational
speed, PREEEDM outperformed others, followed by PC, EVEDM and SFSDP. By contrast,
ARAP consumed too much time even for n = 500. When R = 0.2, the picture was
significantly different since there were large amounts of unavailable dissimilarities
in ∆. Basically, ADMMSNL, PC and SFSDP failed to localize even with the refinement
due to undesirable RMSD and rRMSD (both in the order of 10−1). Clearly, ARAP and
PREEEDM produced the best RMSD and rRMSD, and EVEDM got comparable rRMSD but
inaccurate RMSD. In terms of the computational speed, EVEDM and PREEEDM were
very fast, consuming about 30 seconds to solve problems with n = 2000 nodes. By
contrast, ARAP still was the slowest, followed by ADMMSNL and PC.



Robust Euclidean Embedding 25

Table 1: Comparison of six methods for Example 1 with m = 4, nf = 0.1. Results
of ADMMSNL when R =

√
2 were omitted since it made our desktop ran out of

memory. We omitted some results of ARAP because it consumed too much time.

n ADMMSNL PC SFSDP ARAP EVEDM PREEEDM

R =
√

2

300

RMSD 2.07e-2 8.31e-3 1.21e-1 1.01e-2 5.95e-2 1.11e-2
rRMSD 7.82e-3 7.86e-3 7.89e-3 7.96e-3 7.93e-3 7.80e-3
rTime 3.63 0.66 3.87 0.94 3.35 1.06
Time 348.13 1.36 6.79 503.86 3.84 1.36

500

RMSD −− 6.11e-3 1.19e-1 7.51e-3 5.87e-2 8.46e-3
rRMSD −− 5.94e-3 5.96e-3 6.04e-3 6.70e-3 6.11e-3
rTime −− 1.37 14.79 3.26 13.35 3.92
Time −− 3.83 20.22 2479.8 14.44 4.41

1000

RMSD −− 4.46e-3 1.25e-1 −− 5.81e-2 6.59e-3
rRMSD −− 4.15e-3 7.34e-3 −− 6.53e-3 4.59e-3
rTime −− 3.51 83.96 −− 68.06 9.75
Time −− 23.05 103.29 −− 71.52 10.85

2000

RMSD −− 3.30e-3 1.20e-1 −− 5.92e-2 4.57e-3
rRMSD −− 3.10e-3 7.82e-3 −− 1.24e-2 3.37e-3
rTime −− 12.74 282.88 −− 258.97 13.04
Time −− 143.41 398.87 −− 271.91 18.49

R = 0.2

300

RMSD 3.48e-1 4.42e-1 1.93e-1 4.02e-2 6.81e+1 1.88e-2
rRMSD 3.33e-1 3.12e-1 1.73e-1 6.83e-3 1.72e-1 6.84e-3
rTime 0.50 0.44 0.41 0.36 0.48 0.36
Time 84.19 2.37 3.45 24.11 0.56 0.47

500

RMSD 3.53e-1 4.30e-1 2.02e-1 1.95e-2 1.52e-1 1.77e-2
rRMSD 3.35e-1 3.11e-1 1.80e-1 5.57e-3 5.59e-2 5.51e-3
rTime 1.11 1.15 1.06 0.80 1.11 0.92
Time 156.76 5.50 6.90 161.04 1.30 1.23

1000

RMSD 3.62e-1 4.54e-1 1.79e-1 9.96e-3 7.21e-2 1.46e-2
rRMSD 3.44e-1 3.16e-1 1.28e-1 3.57e-3 4.06e-3 3.83e-3
rTime 5.58 5.58 5.25 1.69 5.16 3.76
Time 450.03 24.82 19.90 2833.5 6.00 5.86

2000

RMSD 3.71e-1 4.35e-1 1.80e-1 −− 5.92e-2 1.37e-2
rRMSD 3.51e-1 3.63e-1 8.29e-2 −− 3.53e-3 3.29e-3
rTime 40.40 40.65 37.94 −− 24.72 4.58
Time 1255.1 171.01 77.03 −− 32.31 17.51

Now we test those methods for the irregular network in Example 3. The average
results were recorded in Table 2. We note that this example was generated in the
region [0, 1]× [0, 0.5] as presented in Fig. 2. It implies that no dissimilarities in ∆
were missing when R =

√
1.25 while a large number of dissimilarities in ∆ were

missing when R = 0.1. When R =
√

1.25, it can be clearly seen that SFSDP and
EVEDM failed to localize before the refinement step due to their large RMSD (in the
order of 10−1), whilst the rest four methods succeeded. However, they all achieved
a similar rRMSD after the refinement except for EVEDM under the case n = 500. Still,
PREEEDM ran the fastest and ARAP came the last, (5.13s vs. 2556.3s when n = 500).
Their performances for the case R = 0.1 are quite contrasting. PREEEDM generated
the most accurate RMSD and rRMSD (in the order of 10−3) whilst the results of the
rest methods were only in the order of 10−2. Obviously, ADMMSNL, PC and EVEDM

failed to localize. Compared with the other methods, EVEDM and PREEEDM were
joint winners in terms of the computational speed, only using 30s when n = 2000
(a larger scale network). But we should mention that EVEDM failed to localize.
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Table 2: Comparisons of six methods for Example 3 with m = 10, nf = 0.1.

n ADMMSNL PC SFSDP ARAP EVEDM PREEEDM

R =
√

1.25

300

RMSD 4.02e-2 5.33e-3 1.45e-1 1.27e-2 1.62e-1 9.26e-3
rRMSD 5.12e-3 5.14e-3 5.11e-3 5.12e-3 5.09e-3 5.15e-3
rTime 3.28 0.66 3.71 1.69 3.94 1.44
Time 346.98 2.00 6.74 553.87 4.42 1.87

500

RMSD −− 4.09e-3 1.07e-1 8.50e-3 1.63e-1 7.15e-3
rRMSD −− 4.03e-3 4.04e-3 4.05e-3 1.02e-1 4.15e-3
rTime −− 2.68 17.28 7.07 17.39 3.12
Time −− 7.24 23.44 2556.3 18.89 5.13

1000

RMSD −− 3.07e-3 1.12e-1 −− 1.28e-1 5.05e-3
rRMSD −− 2.98e-3 3.50e-3 −− 4.15e-3 3.15e-3
rTime −− 10.35 119.79 −− 122.12 15.73
Time −− 43.69 140.66 −− 125.46 20.11

2000

RMSD −− 2.36e-3 1.15e-1 −− 1.03e-1 3.75e-3
rRMSD −− 2.28e-3 7.34e-3 −− 7.78e-3 2.26e-3
rTime −− 13.43 537.70 −− 489.30 10.59
Time −− 238.31 659.71 −− 500.72 20.25

R = 0.1

300

RMSD 1.81e-1 3.77e-1 8.64e-2 8.19e-2 4.06e-1 3.97e-2
rRMSD 1.43e-1 1.24e-1 6.69e-2 5.38e-2 1.17e-1 8.21e-3
rTime 0.27 0.22 0.21 0.21 0.22 0.21
Time 76.57 1.21 3.24 7.24 3.41 0.32

500

RMSD 9.73e-2 3.30e-1 5.08e-2 5.77e-2 2.16e-1 3.63e-2
rRMSD 7.82e-2 1.15e-1 3.48e-2 3.08e-2 9.78e-2 3.63e-3
rTime 0.67 0.63 0.60 0.58 0.61 0.50
Time 148.06 3.63 6.41 50.81 2.07 1.85

1000

RMSD 2.26e-1 3.29e-1 4.80e-2 8.75e-2 2.22e-1 5.01e-2
rRMSD 1.01e-1 1.21e-1 9.15e-3 4.55e-2 1.02e-1 2.95e-3
rTime 2.74 2.66 2.67 2.58 2.61 2.60
Time 353.07 18.01 17.10 842.43 3.22 4.24

2000

RMSD 1.66e-1 3.29e-1 8.21e-2 −− 1.02e-1 5.73e-2
rRMSD 1.22e-1 1.53e-1 7.10e-2 −− 3.64e-2 4.97e-3
rTime 23.22 23.30 23.06 −− 23.12 17.99
Time 887.30 108.81 62.65 −− 26.12 29.89
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Fig. 4: Average results for Example 2 with n = 200, R = 0.2, nf= 0.1.
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b) Effect of the number of anchors m. As one would expect, more anchors
would lead to more information available, and hence lead to easier localization. In
this part, we demonstrate the degree of the effect of the varying anchors’ numbers
on the 6 methods. For Example 2, we fix n = 200, R = 0.2, nf= 0.1 with choosing
m from {5, 10, · · · , 40}. As illustrated in Fig. 4, ARAP and PREEEDM were again joint
winners in terms of RMSD and rRMSD. And rRMSD produced by the rest methods
declined rapidly as more anchors being used. Moreover, PREEEDM was the fastest,
followed by EVEDM, PC and SFSDP, whilst ADMMSNL and ARAP were quite slow.
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Fig. 5: Localization for Example 3 with n = 500, R = 0.1, nf= 0.1.
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For Example 3 with fixed n = 500, R = 0.1, nf= 0.1, we test it under
m ∈ {10, 30, 50}. As depicted in Fig. 5, ARAP and PREEEDM were always capa-
ble of capturing the shape of letters ‘E’, ‘D’ and ‘M’ that was similar to Fig. 2.
By contrast, SFSDP and EVEDM derived desirable outline of three letters only when
m = 50, and the localization quality of both ADMMSNL and PC improved along with
the increasing m but still with a deformed shape of letter ‘M’.

Table 3: Comparisons of six methods for Example 2 with R = 0.2, nf = 0.1.

n ADMMSNL PC SFSDP ARAP EVEDM PREEEDM

m = 10

300

RMSD 2.56e-1 4.59e-1 1.34e-1 2.60e-2 2.72e-1 3.99e-2
rRMSD 2.49e-1 2.43e-1 7.19e-2 6.71e-3 1.44e-1 6.69e-3
rTime 0.40 0.43 0.36 0.26 0.39 0.28
Time 81.62 2.02 3.18 24.92 0.47 0.40

500

RMSD 1.86e-1 4.41e-1 9.70e-2 2.42e-2 8.62e-2 3.29e-2
rRMSD 1.82e-1 2.07e-1 4.99e-2 5.07e-3 5.05e-3 5.07e-3
rTime 0.81 1.30 0.93 0.69 0.84 0.64
Time 163.55 4.70 6.67 170.82 1.04 1.02

1000

RMSD 1.82e-1 4.39e-1 9.93e-2 2.71e-2 6.88e-2 3.95e-2
rRMSD 1.60e-1 1.96e-1 2.92e-2 3.21e-3 3.20e-3 3.63e-3
rTime 4.79 5.53 4.38 3.90 4.66 3.71
Time 441.08 24.70 18.64 2861.9 5.47 5.88

2000

RMSD 2.17e-1 4.39e-1 1.30e-1 −− 6.08e-2 5.03e-2
rRMSD 1.87e-1 2.54e-1 6.88e-2 −− 2.64e-3 2.82e-3
rTime 39.22 39.32 36.29 −− 33.85 14.43
Time 1251.07 170.55 75.29 −− 37.33 28.95

m = 50

300

RMSD 3.19e-2 4.49e-1 3.09e-2 5.30e-2 1.09e-1 5.07e-2
rRMSD 3.10e-2 4.39e-2 1.13e-2 1.26e-2 1.84e-2 5.78e-3
rTime 0.12 0.20 0.09 0.09 0.11 0.09
Time 74.71 1.44 2.41 48.83 0.22 0.25

500

RMSD 2.80e-2 4.60e-1 3.54e-2 4.39e-2 5.10e-2 6.09e-2
rRMSD 2.68e-2 4.93e-2 6.77e-3 4.42e-3 5.61e-3 4.42e-3
rTime 0.24 0.50 0.21 0.21 0.19 0.19
Time 144.93 4.25 4.67 232.14 0.46 0.72

1000

RMSD 1.91e-2 4.57e-1 3.21e-2 2.27e-2 5.06e-2 5.99e-2
rRMSD 1.27e-2 3.75e-2 4.76e-3 2.94e-3 2.94e-3 2.94e-3
rTime 1.05 2.52 1.10 1.05 1.01 1.12
Time 406.88 20.29 12.48 3150.6 1.86 4.02

2000

RMSD 2.17e-2 4.47e-1 3.63e-2 −− 5.16e-2 4.72e-2
rRMSD 6.13e-3 2.78e-2 3.52e-3 −− 2.06e-3 2.06e-3
rTime 11.89 25.95 10.43 −− 8.80 7.71
Time 1171.22 156.45 40.45 −− 11.15 22.53

Finally we test a number of instances of Example 2 with choosing n ∈ {300,
500, 1000, 2000} and m ∈ {10, 50}. The average results were recorded in Table
3. When m = 10, ADMMSNL and PC produced undesirable RMSD and rRMSD (both
in the order of 10−1). SFSDP benefited greatly from the refinement because it
generated relatively inaccurate RMSD. By contrast the rest three methods enjoyed
the successful localization except for EVEDM under the case n = 300. With regard to
the computational speed, EVEDM and PREEEDM were the fastest, followed by SFSDP,
PC, ADMMSNL and ARAP. When m = 50, more information was known, the results
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were better than before, especially for the methods ADMMSNL and PC. But PC still
heavily relied on the refinement step to get the satisfactory localization. The rest
five methods produced a satisfactory localization with varying degree of accuracy.
It is encouraging to see that PREEEDM produced the most accurate rRMSD for all
cases. The comparison of the computational speed is similar to the case of m = 10.
We repeated the test for Example 3 and the average results were recorded in Table
4, where we observed a similar performance of the six methods as for Example 2.
We omit the details.

Table 4: Comparisons of six methods for Example 3 with R = 0.1, nf = 0.1.

n ADMMSNL PC SFSDP ARAP EVEDM PREEEDM

m = 10

300

RMSD 1.80e-1 3.77e-1 8.86e-2 7.97e-2 3.88e-1 4.05e-2
rRMSD 1.48e-1 1.24e-1 6.24e-2 4.51e-2 1.19e-1 6.25e-3
rTime 0.28 0.22 0.21 0.22 0.23 0.21
Time 76.83 1.12 3.00 7.22 5.92 0.41

500

RMSD 9.71e-2 3.30e-1 4.97e-2 5.97e-2 2.10e-1 3.81e-2
rRMSD 8.07e-2 9.98e-2 3.21e-2 3.38e-2 1.04e-1 3.91e-3
rTime 0.68 0.59 0.60 0.59 0.59 0.47
Time 142.20 3.37 6.35 48.98 2.10 0.98

1000

RMSD 2.30e-1 3.29e-1 4.98e-2 8.86e-2 2.24e-1 4.93e-2
rRMSD 1.02e-1 1.18e-1 2.33e-2 4.53e-2 1.07e-1 2.37e-3
rTime 2.92 2.84 2.82 2.80 2.85 2.84
Time 354.77 18.59 17.43 838.48 3.85 4.55

2000

RMSD 1.66e-1 3.29e-1 7.96e-2 −− 1.03e-1 5.72e-2
rRMSD 1.22e-1 1.52e-1 6.92e-2 −− 4.25e-2 4.89e-3
rTime 23.24 23.17 23.08 −− 23.05 13.07
Time 882.40 98.20 66.58 −− 26.21 24.17

m = 50

300

RMSD 2.24e-2 3.34e-1 1.72e-2 4.04e-2 2.22e-1 3.35e-2
rRMSD 2.13e-2 2.44e-2 8.36e-3 1.19e-2 2.11e-2 4.34e-3
rTime 0.22 0.21 0.11 0.13 0.22 0.14
Time 69.59 0.55 2.30 26.37 0.30 0.29

500

RMSD 2.53e-2 3.41e-1 2.50e-2 4.95e-2 6.14e-2 4.18e-2
rRMSD 2.46e-2 3.67e-2 6.64e-3 4.89e-3 2.97e-3 2.96e-3
rTime 0.34 0.58 0.42 0.38 0.43 0.37
Time 130.58 2.96 5.07 83.65 0.60 0.79

1000

RMSD 1.97e-2 3.30e-1 1.94e-2 4.82e-2 5.60e-2 4.90e-2
rRMSD 1.89e-2 3.07e-2 1.95e-3 3.50e-3 1.96e-3 1.96e-3
rTime 1.02 2.78 1.04 1.49 1.36 1.23
Time 314.30 14.31 12.87 947.29 1.97 3.48

2000

RMSD 4.64e-3 3.28e-1 2.10e-2 −− 6.30e-2 5.72e-2
rRMSD 1.32e-3 3.01e-2 1.32e-3 −− 1.32e-3 1.32e-3
rTime 14.59 23.23 13.03 −− 13.87 8.28
Time 811.23 99.02 44.12 −− 15.99 19.45

c) Effect of the noise factor nf. To see the dependence of the performance of
each method on the noise factor, we first test Example 3 with fixing n = 200,m =
10, R = 0.3 and varying the noise factor nf ∈ {0.1, 0.2, · · · , 0.7}. As shown in Fig.
6, in terms of RMSD it can be seen that ARAP got the smallest ones, whilst EVEDM and
PC obtained the worst ones. The line of ADMMSNL dropped down from 0.1 ≤ nf ≤ 0.3
and then ascended. By contrast the line of PREEEDM reached the peak at nf = 0.3
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but declined afterwards and gradually approached to RMSD of ARAP. However, after
the refinement step, ARAP, SFSDP and PREEEDM all derived a similar rRMSD while
the other three methods produced undesirable ones. Apparently, EVEDM was indeed
the fastest (yet with the worst rRMSD), followed by PC, SFSDP and PREEEDM. Again,
ARAP and ADMMSNL were quite slow.
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Fig. 6: Average results for Example 3 with n = 200,m = 10, R = 0.3.

Next, we test Example 2 with a moderate size (for the visualization purpose
in Fig. 7) n = 200,m = 4 and R = 0.3 and varying nf ∈ {0.1, 0.3, 0.5}. The
actual embedding by each method was shown in Fig. 7, where the four anchors
were plotted in green square and x̂i in pink points were jointed to its ground truth
location (blue circle). It can be clearly seen that ARAP and PREEEDM were quite
robust to the noise factor since their localization matched the ground truth well.
EVEDM failed to locate when nf = 0.5. By contrast, SFSDP generated worse results
when nf got bigger, and ADMMSNL and PC failed to localize for all cases.

Finally, we test Example 1 with larger sizes n ∈ {300, 500, 1000, 2000} and
fixed m = 4, R = 0.3. The average results were recorded in Table 5. When nf =
0.1, ADMMSNL and PC failed to render accurate embedding. Compared with ARAP,
EVEDM and PREEEDM, SFSDP generated lager RMSD and rRMSD. Again, EVEDM and
PREEEDM ran faster than ARAP. When nf = 0.7, the results were different. ARAP

and PREEEDM were still able to produce high-quality RMSD and rRMSD. However, the
former took extremely long time (16617 vs. 83 seconds). By contrast, ADMMSNL and
PC again failed to reconstruct the network. Furthermore, EVEDM got large RMSD but
comparable rRMSD when n ≤ 1000, but it failed when n = 2000.

6.3.2 Comparison on MC

MC has long been an important application of EDM optimization [2, 21, 33]. We
will test two types of MCs respectively from an artificial data set and a real data set
in Protein Data Bank (PDB) [4]. For the former, we adopt the rule of generating
data from [2, 33]. For the latter, we used the real data of 12 molecules derived
from 12 structures of proteins from PDB. They are 1GM2, 304D, 1PBM, 2MSJ,

1AU6, 1LFB, 104D, 1PHT, 1POA, 1AX8, 1RGS, 2CLJ. They provide a good set
of test problems in terms of the size n, which ranges from a few hundreds to a few
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thousands (the smallest n = 166 for 1GM and the largest n = 4189 for 2CLJ). The
distance information was obtained in a realistic way as done in [24].

Example 4 (Artificial data) As described in [2,33], the artificial molecule has n =
s3 atoms (x1, · · · ,xn) located in the three-dimensional lattice

{(i1, i2, i3) : i1, i2, i3 = 0, 1, . . . , s− 1}

for some integer s ≥ 1, i.e., xi = (i1, i2, i3)T . We define Nx for the index set on
which δij are available as:

Nx := {(i, j) : |p(xi)− p(xj)| ≤ R} (58)

where p(xi) := 1 + (1, s, s2)Txi = 1 + i1 + si2 + s2i3 and R is a given constant
(e.g., R = s2). The corresponding dissimilarity matrix ∆, weight matrix W and
the lower and upper bound matrices L and U are given as in the table below. Here
the generation of δij is the same as Example 1.

(i, j) Wij ∆ij Lij Uij
i = j 0 0 0 0

(i, j) ∈ Nx 1 δij 1 max(i,j)∈Nx
||xi − xj ||2

otherwise 0 0 1 3(s− 1)2

Example 5 (Real PDB data) Each molecule comprises n atoms {x1, . . .xn} in
<3 and its distance information is collected as follows. If the Euclidean distance
between two of the atoms is less than R, the distance is chosen; otherwise no dis-
tance information about this pair is known. For example, R = 6Å (1Å = 10−8cm)
is nearly the maximal distance that the nuclear magnetic resonance (NMR) ex-
periment can measure between two atoms. For realistic molecular conformation
problems, not all the distances below R are known from NMR experiments, so one
may obtain c% (e.g., c = 50%) of all the distances below R. Denote Nx the set
formed by indices of those measured distances. Moreover, the distances in Nx can
not be exactly measured. Instead, only lower bounds `ij and upper bounds uij are
provided, that is for (i, j) ∈ Nx,

`ij = max {1, (1− |εij |)‖xi − xj‖} , uij = (1 + |εij |)‖xi − xj‖.

where εij , εij ∼ N(0, nf2× π/2) are independent normal random variables. In our
test, we set the noise factor nf = 0.1 and the parameters W,∆,L,U ∈ Sn are given
as in the table below, where M > 0 is the upper bound (e.g., M := nmaxij ∆ij).

(i, j) Wij ∆ij Lij Uij
i = j 0 0 0 0

(i, j) ∈ Nx 1 (`ij + uij)/2 `2ij u2
ij

otherwise 0 0 0 M2
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As we mentioned before, the current implementations of ADMMSNL, ARAP do not
support the embedding for r ≥ 3 and thus are removed in the following comparison,
where the method PPAS will be added. The main reason for adding PPAS is that it
is particularly suitable and credible for the MC problems [24,25].
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Fig. 7: Localization for Example 2 with n = 200,m = 4, R = 0.3.
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Table 5: Comparisons of six methods for Example 1 with m = 4, R = 0.3.

n ADMMSNL PC SFSDP ARAP EVEDM PREEEDM

nf = 0.1

300

RMSD 3.16e-1 4.46e-1 1.74e-1 1.03e-2 6.58e-2 1.64e-2
rRMSD 2.84e-1 3.10e-1 9.63e-2 6.62e-3 6.55e-3 6.57e-3
rTime 0.75 0.71 0.62 0.31 0.43 0.34
Time 101.07 3.09 4.39 117.33 0.55 0.57

500

RMSD 2.96e-1 4.02e-1 1.59e-1 6.73e-3 5.25e-2 1.25e-2
rRMSD 2.14e-1 2.81e-1 6.05e-2 4.59e-3 4.64e-3 4.73e-3
rTime 1.68 1.74 1.50 0.50 1.03 0.81
Time 182.09 9.10 6.16 769.39 1.32 1.48

1000

RMSD 3.47e-1 4.77e-1 1.83e-1 5.35e-3 5.57e-2 1.13e-2
rRMSD 2.71e-1 2.52e-1 5.52e-2 3.63e-3 3.65e-3 3.49e-3
rTime 14.89 15.11 12.00 1.97 10.32 5.22
Time 601.92 56.65 24.49 15686.4 11.63 10.03

2000

RMSD −− 4.47e-1 1.81e-1 −− 5.53e-2 1.16e-2
rRMSD −− 4.25e-1 2.21e-2 −− 3.32e-3 3.12e-3
rTime −− 82.17 82.35 −− 45.12 5.85
Time −− 470.32 122.45 −− 49.18 34.68

nf = 0.7

300

RMSD 2.80e-1 4.36e-1 3.27e-1 6.70e-2 2.08e-1 5.04e-2
rRMSD 2.31e-1 3.60e-1 2.47e-1 5.48e-2 6.10e-2 4.92e-2
rTime 0.75 0.83 0.83 0.29 0.47 0.38
Time 107.48 1.74 83.73 123.18 0.59 7.49

500

RMSD 2.64e-1 4.53e-1 −− 4.24e-2 1.76e-1 3.73e-2
rRMSD 1.94e-1 3.59e-1 −− 3.52e-2 3.47e-2 3.23e-2
rTime 1.66 1.88 −− 0.47 0.87 0.67
Time 177.24 5.13 −− 844.74 1.31 20.15

1000

RMSD 2.21e-1 4.52e-1 −− 2.84e-2 1.45e-1 2.79e-2
rRMSD 9.69e-2 3.26e-1 −− 2.47e-2 2.93e-2 2.40e-2
rTime 9.83 15.69 −− 1.41 7.78 2.54
Time 599.30 41.55 −− 16617.1 9.16 83.64

2000

RMSD −− 4.51e-1 −− −− 2.26e-1 2.13e-2
rRMSD −− 3.35e-1 −− −− 1.23e-1 1.52e-2
rTime −− 92.45 −− −− 58.25 3.79
Time −− 274.90 −− −− 62.52 303.43

d) Test on Example 4. To see the performance of each method on this
problem, we first test it with fixing s = 6 (n = 63), nf = 0.1 but varying
R ∈ {36, 38, · · · , 48}. We note that the percentage of available dissimilarities
increased from 32.47% to 39.87% with R increasing from 36 to 48, making the
problem become ‘easier’ for conformation. The Average results were recorded in
Fig. 8. Clearly, PREEEDM and PPAS outperformed the other three methods in terms
of RMSD and rRMSD. The former generated the best RMSD when R ≥ 42 while the
latter got the best RMSD when R ≤ 42, but they both obtained similar rRMSD. As
for the computational speed, PREEEDM ran much faster than PPAS. By contrast, the
other three methods failed to produce accurate embeddings due to the worse RMSD

and rRMSD. Notice that the refinement would not always make the final results
better. For instance, rRMSD yielded by SFSDP was bigger than RMSD for each s.

We then test the example with fixing s = 6 (n = 63), R = s2 and varying
nf ∈ {0.1, 0.2, · · · , 0.5}. As illustrated in Fig. 9, in terms of RMSD and rRMSD, it
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can be clearly seen that PREEEDM and PPAS were the joint winners. In particular,
our method rendered the best RMSD when nf ≥ 0.2 and also ran much faster than
PPAS. Obviously, the other three methods again failed to obtain desirable RMSD and
rRMSD irrelevant of the time they used.
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Fig. 8: Average results for Example 4 with s = 6, nf = 0.1.
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Fig. 9: Average results for Example 4 with s = 6, R = s2.
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Fig. 10: Average results for Example 4 with n = s3, R = s2, nf = 0.1.
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Finally, for larger size problems with n = s3 and s ∈ {7, 8, . . . , 13}, the average
results were presented in Fig. 10, where we omitted the results by PPAS for s > 10
because it took too much time to terminate. It is worth mentioning that the
percentage of the available dissimilarities over all elements of ∆ decreases from
26.78% to 14.83% when s increasing from 7 to 13, making the problems more
and more challenging. Clearly PC, SFSDP and EVEDM failed to locate all atoms in
<3. PPAS rendered the most accurate RMSD when s ≤ 10 whilst PREEEDM achieved
the most accurate RMSD when s > 10 and the most accurate rRMSD for all cases.
Equally important for PREEEDM is that it spent less than 50 seconds for all tested
cases, while PPAS took much more time to terminate (e.g., consuming over 2000
seconds when s ≥ 10).

e) Test on Example 5. For the 12 collected real data, we fixed R = 6, c =
50% and nf = 0.1. The generated embeddings by the five methods for the three
molecules 1GM2, 1AU6 and 1LFB were shown in Fig. 11, where the true and estimated
positions of the atoms were plotted by blue circles and pink stars respectively. Each
pink star was linked to its corresponding blue circle by a pink line. For these three
data, PREEEDM and PPAS almost conformed the shape of the original data. Clearly,
the other three methods failed to conform. The complete numerical results for the
12 problems were reported in Table 6. It can be clearly seen that PREEEDM and
PPAS performed significantly better in terms of the RMSD and rRMSD than the other
methods. What is more impressive is that PREEEDM only used a small fraction of
the time by PPAS, which in general took relatively long time to terminate. For
example, PREEEDM only used 22.64 seconds for 2CLJ, which is a very large data set
with n = 4189. In contrast, we had to omit the result of PPAS for this instance (as
well as to omit for other tested instances, and the missed results were indicated
as “−−” in Table 6) because it took too long to terminate.

6.4 Robustness of PREEEDM

The excellent performance of PREEEDM reported above was actually due to its ro-
bustness to noise. Previous examples all had Gaussian noise. We now demonstrate
below that PREEEDM works much better than the other methods when the noise is
from a heavy-tailed distribution, for instance, t-distribution with a small degree
of freedom. We also take this opportunity to test SQRREE solver of our own [56],
which also made use of penalty, majorization and minimization techniques, yet for
the least squares problem (5). We will see that PREEEDM outperforms SQRREE for
both types of noise (Gaussian and t distributions).

To shorten the presentation, we restrict our numerical tests on two representa-
tive examples: Example 1 with n = 100, R = 0.3 and Example 4 with s = 5, R = s2.
For each example, we generate 20 instances under two types of noise from stan-
dard normal distribution and Student-t distribution with the degree of freedom
being 1. We alter nf from {0.1, 0.2, · · · , 0.9} and from {0.01, 0.02, · · · , 0.09} for
the Gaussian and the Student-t noises respectively. Average RMSD were recorded
in Fig. 12. We have the following observations.

(i) PREEEDM is competitive under Gaussian noise. For Example 1, Figure 12a
showed ARAP yielded the best RMSD followed by PREEEDM and SQREDM. For Ex-
ample 4, Figure 12c showed that PREEEDM rendered the smallest RMSD for most
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cases, followed by PPAS and SQREDM (note that the current implementation of
ARAP is only for r = 2 and hence is not applicable to this example). In par-
ticular, when the nf is over 50%, PPAS and PREEEDM closely follow each other.
The behaviour of those methods under Gaussian noise is expected as the least-
squares formulation is equivalent to the maximum-likelihood criterion. On the
one hand, least squares favour large distances. On the other hand, under Gaus-
sian (thin-tailed), the number of large distance errors is relatively small and
hence would not cause significant distortion in locating the unknown sensors.

(ii) PREEEDM performs the best under heavy-tailed noise (from Student t1 distri-
bution). For Example 1, both PREEEDM and SQREDM behaved much better than
the other methods, see Figures 12b. For Example 4, PREEEDM stood out as the
best method when nf is bigger than 0.02 and is much better than SQRREE,
see Figures 12d. The test data now has more numbers of large distance errors
than under the Gaussian distribution and the absolute value criterion allevi-
ates the tendency of favouring large distances. Therefore, PREEEDM yielded the
best performance in such situations.

We conclude that PREEEDM based on the model (3) is robust to the noise in terms
of these two examples.

7 Conclusion

The purpose of this paper is to develop an efficient method for one of the most
challenging distance embedding problems in a low-dimensional space, which have
been widely studied under the framework of multi-dimensional scaling. The prob-
lem employs `1 norm to quantify the embedding errors. Hence, the resulting model
(3) appears to be robust to outliers and is referred to as the robust Euclidean em-
bedding (REE) model.

To the best knowledge of the authors, the only viable method, whose matlab
code is also publicly available for REE is the PlaceCenter (PC) algorithm proposed
in [1]. Our extensive numerical results on the SNL and MC test problems convinc-
ingly demonstrated that the proposed PREEEDM method outperform PC in terms
of both the embedding quality and the CPU time. Moreover, PREEEDM is also com-
parable to several state-of-the-art methods for other embedding models in terms
of the embedding quality, but is far more efficient in terms of the CPU time. The
advantage becomes even more superior as the size of the problem gets bigger.

The novelty of the proposed PREEEDM lies with its creative use of the Euclidean
distance matrix and a computationally efficient majorization technique to derive
its subproblem, which has a closed-form solution closely related to the positive
root of the classical depressed cubic equation. Furthermore, a great deal of effort
has been devoted to its convergence analysis, which well justifies the numerical
performance of PREEEDM. We feel that PREEEDM will become a very competitive
embedding method in the field of SNL and MC and expect its wide use in other
visualization problems.
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Table 6: Comparisons of the five methods for Example 5.

PC SFSDP PPAS EVEDM PREEEDM

RMSD 6.60e+0 6.65e+0 4.07e-1 6.51e+0 9.09e-1
1GM2 rRMSD 7.07e+0 6.92e+0 2.65e-1 7.41e+0 3.51e-1
n = 166 rTime 0.17 0.18 0.22 0.18 0.16

Time 0.98 4.84 15.43 0.98 0.27
RMSD 1.03e+1 1.03e+1 2.89e+0 1.02e+1 3.61e+0

304D rRMSD 1.07e+1 1.08e+1 1.43e+0 1.08e+1 2.50e+0
n = 237 rTime 0.16 0.16 0.55 0.16 0.15

Time 1.07 7.76 36.44 1.36 0.23
RMSD 8.45e+0 8.47e+0 5.29e-1 8.35e+0 1.23e+0

1PBM rRMSD 9.13e+0 8.91e+0 2.01e-1 9.28e+0 2.11e-1
n = 388 rTime 0.51 0.49 0.53 0.49 0.32

Time 2.84 28.64 112.82 1.45 0.54
RMSD 1.06e+1 1.06e+1 5.40e-1 1.05e+1 9.15e-1

2MSJ rRMSD 1.12e+1 1.11e+1 2.99e-1 1.10e+1 3.34e-1
n = 480 rTime 0.40 0.39 0.54 0.39 0.32

Time 2.32 118.60 196.12 1.47 0.59
RMSD 9.30e+0 9.31e+0 4.02e-1 9.20e+0 6.74e-1

1AU6 rRMSD 9.99e+0 9.83e+0 1.68e-1 9.69e+0 1.63e-1
n = 506 rTime 0.70 0.68 0.30 0.69 0.35

Time 4.12 47.68 262.28 1.47 0.70
RMSD 1.34e+1 1.34e+1 1.56e+0 1.33e+1 1.57e+0

1LFB rRMSD 1.39e+1 1.35e+1 5.41e-1 1.37e+1 7.38e-1
n = 641 rTime 0.49 0.49 1.63 0.48 0.37

Time 2.93 132.96 956.44 1.64 0.79
RMSD 1.23e+1 1.23e+1 4.30e+0 1.22e+1 3.27e+0

104D rRMSD 1.27e+1 1.27e+1 2.02e+0 1.26e+1 1.26e+0
n = 766 rTime 0.89 0.86 3.40 0.87 0.61

Time 5.04 72.16 2024.51 1.47 1.40
RMSD 1.23e+1 1.23e+1 1.70e+0 1.23e+1 1.58e+0

1PHT rRMSD 1.29e+1 1.26e+1 9.16e-1 1.26e+1 9.85e-1
n = 814 rTime 0.74 0.74 2.57 0.74 0.48

Time 4.86 411.14 4726.96 1.71 1.25
RMSD 1.42e+1 1.42e+1 1.39e+0 1.41e+1 1.48e+0

1POA rRMSD 1.45e+1 1.46e+1 3.27e-1 1.46e+1 4.51e-1
n = 914 rTime 0.58 0.55 1.34 0.55 0.52

Time 5.03 587.14 1623.43 1.99 1.45
RMSD 1.43e+1 1.43e+1 −− 1.43e+1 1.23e+0

1AX8 rRMSD 1.47e+1 1.45e+1 −− 1.44e+1 5.01e-1
n = 1003 rTime 0.62 0.58 −− 0.59 0.34

Time 5.78 1404.53 −− 1.54 1.49
RMSD 2.02e+1 −− −− 2.02e+1 1.99e+0

1RGS rRMSD 2.05e+1 −− −− 2.06e+1 6.76e-1
n = 2015 rTime 1.33 −− −− 1.25 0.94

Time 16.08 −− −− 3.69 5.71
RMSD 2.27e+1 −− −− 2.27e+1 1.54e+0

2CLJ rRMSD 2.30e+1 −− −− 2.29e+1 6.50e-1
n = 4189 rTime 4.46 −− −− 3.82 2.35

Time 43.10 −− −− 378.35 22.64
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(a) PC:rRMSD=8.39 (b) PC:rRMSD=10.7 (c) PC:rRMSD=13.7

(d) SFSDP:rRMSD=7.86 (e) SFSDP:rRMSD=9.55 (f) SFSDP:rRMSD=14.2

(g) PPAS:rRMSD=0.267 (h) PPAS:rRMSD=0.173 (i) PPAS:rRMSD=0.680

(j) EVEDM:rRMSD=9.75 (k) EVEDM:rRMSD=10.0 (l) EVEDM:rRMSD=14.2

(m) PREEEDM:rRMSD=0.322 (n) PREEEDM:rRMSD=0.160 (o) PREEEDM:rRMSD=0.727

Fig. 11: Molecular conformation by PC, SFSDP, PPAS, EVEDM and PREEEDM. Left:
1GM2 (n = 166); Middle: 1AU6 (n = 506); Right: 1LFB (n = 641).
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(a) Example 1 with standard normal noise
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(b) Example 1 with Student t noise
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(c) Example 4 with standard normal noise
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(d) Example 4 with Student t noise

Fig. 12: Robustness of PREEEDM.
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35. P. Oğuz-Ekim, J.P. Gomes, J. Xavier and P. Oliveira, Robust localization of nodes and
time-recursive tracking in sensor networks using noisy range measurements, IEEE Trans.
Signal Process., 59 (2011), pp. 3930-3942.

36. D.T Peng, N.H. Xiu and J. Yu, S1/2 regularization methods and fixed point algorithms
for affine rank minimization problems, Comput. Optim. Appl., 67 (2017), pp. 543–569.

37. N. Piovesan and T. Erseghe, Cooperative localization in WSNs: a hybrid convex/non-
convex solution, IEEE Trans. Signal and Information Processing over Networks, DOI
10.1109/TSIPN.2016.2639442 (IEEE early access article, 2016).

38. T.K. Pong, Edge-based semidefinite programming relaxation of sensor network localiza-
tion with lower bound constraints, Comput Optim Appl., 53, pp. 23-44, 2012.

39. H.-D. Qi, A semismooth Newton method for the nearest Euclidean distance matrix prob-
lem, SIAM J. Matrix Anal. Appl. 34 (2013), pp. 67-93.

40. H.-D. Qi and X.M. Yuan, Computing the nearest Euclidean distance matrix with low
embedding dimensions, Math. Prog., 147 (2014), pp. 351-389.

41. H.-D. Qi, N.H. Xiu, and X.M. Yuan, A Lagrangian dual approach to the single source
localization problem, IEEE Trans. Signal Process., 61, pp. 3815-3826, 2013.

42. R.T. Rockafella and R. J-B Wets, Variational Analysis (3rd Eds), Springer, 2009.
43. I.J. Schoenberg, Remarks to Maurice Frechet’s article Sur la definition axiomatque d’une

classe d’espaces vectoriels distancies applicbles vectoriellement sur l’espace de Hilbet, Ann.
Math., 36 (1935), pp. 724-732.

44. Y. Shang, W. Ruml, Y. Zhang and M.P.J. Fromherz, Localization from mere connectiv-
ity, in: Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking
& Computing, MobiHoc 03, ACM, New York, NY, USA, pp. 201-212, 2003.

45. C. Soares, J. Xavier and J. Gomes, Simple and fast convex relaxation method for coopera-
tive localization in sensor networks using range measurements, IEEE Trans. Signal Process.,
63(17), pp. 4532-4543, 2015.

46. Y. Sun, P. Babu and D.P. Palomar, Majorization-minimization algorithms in signal
processing, communications, and machine learning, IEEE Trans. Signal Process., 65 (2017),
pp. 794-816.

47. J.B. Tenenbaum, V. de Silva and J.C. Langford, A global geometric framework for
nonlinear dimensionality reduction, Science, 290 (2000), pp. 2319-2323.

48. K.C. Toh, An inexact path-following algorithm for convex quadratic SDP, Math. Prog.,
112 (2008), pp. 221254.

49. W.S. Torgerson, Multidimensional scaling: I. Theory and method, Psychometrika, 17
(1952), pp. 401-419.

50. Z. Wang, S. Zheng, Y. Ye and S. Boyd, Further relaxations of the semidefinite pro-
gramming approach to sensor network localization, SIAM J. Optim., 19 (2008), pp. 655-673.

51. F.C. Xing, Investigation on solutions of cubic equations with one unknown, J. Central
Univ. Nat. (Natural Sci. Ed.), 12 (2003), pp. 207-218.

52. Z. Xu, X. Chang, F. Xu and H. Zhang, L1/2 regularization: a thresholding representation
theory and a fast solver, IEEE Trans. Neural Netw. Learn. Sys., 23 (2012), pp. 1013-1027.

53. G. Young and A.S. Householder, Discussion of a set of points in terms of their mutual
distances, Psychometrika, 3 (1938), pp. 19-22.

54. L. Zhang, L. Liu, C. Gotsman and S.J. Gortler, An as-rigid-as-possible approach to
sensor network localization, ACM Trans. Sen. Netw., 6 (2010), pp. 35:1-35:21.

55. L. Zhang, G. Wahba and M. Yuan, Distance shrinkage and Euclidean embedding via
regularized kernel estimation, J. Royal Stat. Soc.: Series B, 78 (2016), pp. 849-867.

56. S.L. Zhou, N.H. Xiu and H.D. Qi, A Fast Matrix Majorization-Projection Method for
Penalized Stress Minimization With Box Constraints, IEEE Transactions on Signal Process-
ing, 66 (2018), pp. 4331 - 4346.



42 Zhou, Xiu and Qi

8 Appendix

8.1 Proof of Lemma 1

Proof We prove it by considering three cases. Case 1: 0 < x < δ2; Case 2: x > δ2

and Case 3: x = δ2. For simplicity, we use φ(x) for φδ(x) in our proof. Let
ζ := η/(2

√
x), then ζ ∈ ∂φ(x) is equivalent to η ∈ sign(

√
x− δ).

Case 1: 0 < x < δ2. For this case, sign(
√
x − δ) = {−1} and η = −1. We note

that φ(x) = δ −
√
x is convex and differentiable at 0 < x < δ2. Thus,

φ(y) ≥ φ(x)− y − x
2
√
x

for any 0 < y < δ2.

For y ≥ δ2, we have the following chain of inequalities

φ(x)− y − x
2
√
x
≤ δ −

√
x− δ2 − x

2
√
x

= δ −
[√

x

2
+

δ2

2
√
x

]

≤ δ − 2

√√
x

2

δ2

2
√
x

= δ − δ = 0

≤ √y − δ = φ(y),

Hence, we proved the conclusion for this case.

Case 2: x > δ2. For this case, sign(
√
x − δ) = {1} and η = 1. By defining

Φ(θ, µ) := θ(θ2 − µ2)2 − 4δ3(θ + µ)2 + 16θδ4 with θ > δ and 0 < µ < δ, we have

∂Φ(θ, µ)

∂µ
= 2(θ + µ)(2θµ(µ− θ)− 4δ3) ≤ 0,

which indicates Φ(θ, µ) is non-increasing with respect µ and thus

Φ(θ, µ) ≥ Φ(θ, δ) = θ(θ2 − δ2)2 − 4δ3(θ + δ)2 + 16δ4θ

= (θ + δ)2(θ(θ − δ)2 − 4δ3) + 16δ4θ

≥ (δ + δ)2(δ(δ − δ)2 − 4δ3) + 16δ5

= 0. (59)

For 0 < y < δ2, we have

φ(x)− φ(y) =
√
x+
√
y − 2δ =

x− y
2
√
x

+
(
√
x+
√
y)2

2
√
x

− 2δ

=
x− y
2
√
x

+
(x− y)2

8δ3
−

[
(x− y)2

8δ3
−

(
√
x+
√
y)2

2
√
x

+ 2δ

]

=
x− y
2
√
x

+
(x− y)2

8δ3
−
Φ(
√
x,
√
y)

8δ3
√
x

(59)

≤ x− y
2
√
x

+
(x− y)2

8δ3
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For y ≥ δ2, we have the following chain of inequalities

φ(x)− φ(y) =
√
x−√y =

x− y
2
√
x

+
(
√
x−√y)2

2
√
x

=
x− y
2
√
x

+
(x− y)2

2
√
x(
√
x+
√
y)2

≤ x− y
2
√
x

+
(x− y)2

2δ(δ + δ)2
(60)

=
x− y
2
√
x

+
(x− y)2

8δ3
.

Hence, we proved the claim for this case.

Case 3: x = δ2. For this case, sign(
√
x − δ) = [−1, 1] and −1 ≤ η ≤ 1. For

0 < y < δ2, we have

φ(x)− φ(y) = δ −
√
x− (δ −√y)

=
√
y −
√
x =

y − x
√
y +
√
x
≤ −x− y

2
√
x
≤ η(x− y)

2
√
x

.

where the first and last inequalities hold due to y < δ2 = x and |η| ≤ 1. For y ≥ δ2,
similar to obtaining (60), we have

φ(x)− φ(y) =
√
x−√y ≤ x− y

2
√
x

+
(x− y)2

8δ3
≤ η(x− y)

2
√
x

+
(x− y)2

8δ3
,

where the last inequality is due to |η| ≤ 1 and x− y ≤ 0

For all three cases, we proved our claim and hence accomplish our proof. ut

8.2 Proof of Proposition 1

Proof Since D∗ρ is an optimal solution of (16), we have D∗ρ ∈ B. For any feasible
solution D to (11) (i.e., g(D) = 0, D ∈ B in (15)), it holds the following chain of
inequalities.

f(D) = f(D) + ρg(D) (because g(D) = 0)

= fρ(D)

≥ fρ(D
∗
ρ) (because D∗ρ minimizes (16))

= f(D∗ρ) + ρg(D∗ρ)

≥ max{f(D∗ρ), ρg(D∗ρ)}, (because ρ, f, g ≥ 0)

which together with the feasibility of Dr to (11) yields

g(D∗ρ) ≤ f(Dr)/ρ ≤ f(Dr)/ρε = ε

and the feasibility of D∗ to (11) derives

f(D∗) ≥ f(D∗ρ).
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It is well known from [42, Theorem 6.12] that a necessary condition for D∗ρ being
(locally) optimal of (16) is 0 ∈ ∂(f(D∗ρ)+ρg(D∗ρ)+IB(D∗ρ)), which in turn implies
(37). This together with g(D∗ρ) ≤ ε completes our proof. ut

8.3 Proof of Proposition 2

Proof For notational simplicity, denote z := x−ω,β . Let us consider

min q−(x), s.t. x ≥ 0. (61)

By noticing that the second derivative q′′−(x) = 1 + (β/4)x−2/3 > 1 for all x > 0,
q−(x) is strongly convex over (0,∞). It has been proved in [56, Prop. 3.1] that
z > 0 is the optimal solution of (61). Since q−(x) is a univariate convex function,
its optimal solution over B− is the projection of z onto B−, i.e., x∗− = ΠB−(x−ω,β).

Note that z is the optimal solution of (61) and z > 0. We must have q′−(z) =
z−ω−β/(2

√
z) = 0. If z ≤ 1 then

√
z ≥ z, implying

√
z−ω−β/(2

√
z) ≥ q′−(z) = 0,

which is equivalent to z ≥ γω,β > 0. Thus we must have z ≥ min{1, γω,β} and
it holds x∗− = ΠB−(z) = min{δ2,max{a, z}} ≥ min{δ2, 1, γω,β}, which is the
claimed lower bound for x∗−. ut

8.4 Proof of Proposition 3

Proof The first and the second derivatives of q+(x) are

q′+(x) = x− ω +
β

2
√
x
, q′′+(x) = 1− β

4
√
x3
, ∀ x > 0.

It is easy to verify that for x ≥ δ2 and β < 4δ3

q′′+(x) ≥ 1− β

4δ3
> 0,

which implies that q(x) is strictly convex on [δ2,∞).
We consider two cases. Case 1: τ ≥ 0. This implies ω ≤ 3u2/3. It follows that

for x > 0

q′+(x) = x− ω +
β

4
√
x

+
β

4
√
x

≥ 3

[
x

β

4
√
x

β

4
√
x

]1/3

− ω = 3

[
β2

42

]1/3

− ω = 3u2/3 − ω ≥ 0.

This implies that q+(x) is non-decreasing and hence x∗+ = δ2.

Case 2: τ < 0, which implies ω > 3u2/3. Consider the problem:

min q+(x) s.t. x ≥ 0. (62)

We will apply Lemma 3 to the problem (62) and show that exactly one of its two
positive stationary points falls within the interval [δ2,∞). We will further show
that this stationary point is defined by (46) for the case τ < 0. Since q+(x) is convex
over this interval, the optimal solution of the problem (45) is just the projection



Robust Euclidean Embedding 45

of this stationary point onto the interval B+ = [δ2, b]. This would complete the
proof.

Comparing the problem (62) with the problem (32), the corresponding quan-
tities are

ν = 2β, t = ω, x̄ = (ν/8)2/3 = (β/4)2/3 = u2/3 and t̄ = 3x̄.

It is obvious that t = w > 3u2/3 = 3x̄ (the condition of Lemma 3 is satisfied).
Lemma 3 implies that the problem (62) has two positive stationary points, which
must satisfy the optimality condition q′+(x̂) = 0, leading to

x̂− ω +
β

2
√
x̂

= 0.

Let ŷ :=
√
x̂, we then have

ŷ3 − ωŷ +
β

2
= 0. (63)

This is the well-known depressed cubic equation, whose solution (i.e., Cardan
formula) has a long history [7, Chp. 7].

Since ω > 3u2/3, it follows from the Cardan formula (in terms of the trigono-
metric functions, see [51, Sect. 3]) that (63) has three real roots, namely

ŷ1 := 2
√
v cos(θ/3), ŷ2 := 2

√
v cos((4π + θ)/3), ŷ3 := 2

√
v cos((2π + θ)/3)

with cos(θ) = −uv−3/2. Moreover, the three roots satisfy that ŷ1 ≥ ŷ2 ≥ ŷ3.
According to Lemma 3, two of them are positive. That is, ŷ1 > 0, ŷ2 > 0 and

ŷ2
2 < x̄ < ŷ2

1 .

Since β < 4δ3, we have

x̄ = u2/3 = (β/4)2/3 < δ2.

Therefore, ŷ2
1 is the only point that falls within the interval [δ2,∞]. Since q+(x)

is strictly convex, the minimum of the problem (45) must be the projection of
ŷ2

1 onto the interval B+. Hence, for the Case 2, we must have x∗+ = ΠB+
(ŷ2

1).

The proof is completed by noting that ŷ2
1 is just x+

ω,β defined in (46) for the case
τ < 0. ut

8.5 Proof of Theorem 1

Proof (i) is a direct consequence of Prop. 2 and Prop. 3. We now prove (ii). For
any x, y > 0 and any ξx ∈ ∂q(x), it follows that

ξx = x− ω + βζ with ζ ∈ ∂φδ(x)
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and

q(y)− q(x) =
1

2
(y − ω)2 − 1

2
(x− ω)2 + β(|√y − δ| − |

√
x− δ|)

= (x− ω)(y − x) +
1

2
(x− y)2 + β(|√y − δ| − |

√
x− δ|)

≥ (x− ω)(y − x) +
1

2
(x− y)2 − βζ(x− y)− β(x− y)2

8δ3

= (x− ω + βζ) (y − x) +
4δ3 − β

8δ3
(x− y)2

> ξx(y − x),

where the first inequality above used Lemma 1 and the last inequality used the
fact 4δ3 > β > 0. Swapping the role of x and y above yields

q(x)− q(y) > ξy(x− y) ∀ x, y > 0, ξy ∈ ∂q(y).

Therefore, we have

(ξx − ξy)(x− y) > 0 ∀ x, y > 0, ξx ∈ ∂q(x) and ξy ∈ ∂q(y).

This together with Thm. 12.17 of [42] proves that q(x) is strictly convex over
[a, b]. The rest in (ii) is just the first order optimality condition of the convex
optimization problem (41) because we just proved the convexity of q(x) over [a, b].
Finally, we prove (iii). It follows from (42) that

γω,β =

[
ω +

√
ω2 + 2β

2

]2

=

[
β√

ω2 + 2β − ω

]2

≥

[
β√

C2 + 2β + C

]2

:= κ0

and from Prop. 2 and Prop. 3 that

x∗− ≥ min{δ2, 1, κ0} and x∗+ ≥ δ2.

Therefore,

dcrootB [ω, β, δ] ≥ min{δ2, 1, κ0} := κ.

We finish our proof. ut

8.6 Proof of Proposition 4

Proof (i) Let us pick a pair (i, j) such that Wij > 0, which implies δij > 0
(Assumption 2). It follows from (50) that

Dkij = dcroot[Lij ,Uij ]

[
(Zk−1
K )ij , Wij/ρ, δij

]
,

where Zk−1
K := −ΠKn

+(r)(−Dk−1). Since B is bounded (Assumption 1) and Dk ∈
B, the sequence {Dk} is bounded. Lemma 2 implies

‖ −ΠKn
+(r)(−Dk−1)‖ ≤ 2‖Dk−1‖ ≤ 2‖U‖,
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which further implies |(Zk−1
K )ij | ≤ 2‖U‖ for all k = 1, . . . . Let βij := Wij/ρ. Then

0 < βij < 4δ3
ij

owing to ρ > ρo(W,∆). It follows from Thm. 1(iii) that there exists κij > 0 such
that Dkij ≥ κij for all k = 1, 2, . . . , . The choice of c1 by

c1 := min{κij : (i, j) such that Wij > 0} > 0.

satisfies the bound in (i).
(ii) We write f(D) in terms of Dij :

f(D) =
∑
i,j

Wij |
√
Dij − δij | =

∑
i,j

Wijφδij (Dij). (64)

We let ∂ijf(D) denote the subdifferential of f with respect to its (i, j)th element
Dij . We consider two cases. Case 1: Wij = 0. This implies that f(D) is a constant
function (≡ 0) of Dij and hence f(D) is continuously differentiable with respect
to Dij . Consequently, ∂ijf(Dk) = {0}.

Case 2: Wij > 0, which implies δij > 0 (Assumption 2). It follows from (i) that
there exists c1 > 0 such that Dkij ≥ c1 for all k = 1, 2, . . . , . The equations (64)
and (25) yield

∂ijf(Dk) = Wijsign
[√

Dkij − δij
]/ [

2
√
Dkij

]
,

which implies that for any ξkij ∈ ∂ijf(Dk) there exists ζkij ∈ sign((Dkij)
1/2 − δij)

such that

|ξkij | = Wij |ζkij |
/[

2
√
Dkij

]
≤Wij/

√
4c1.

In other words, ∂ijf(Dk) is bounded by Wij/
√
c1, which is independent of the

index k. It follows directly from the definition of subdifferential [42, Chp. 8.3] that

∂f(Dk) ⊆
⊗

∂ijf(Dk)

in the sense that for any Γ k ∈ ∂f(Dk), there exist ξkij ∈ ∂ijf(Dk) such that

Γ kij = ξkij , i, j = 1, . . . , n.

Consequently, we have for all k = 1, 2, . . . ,

‖Γ k‖ ≤ nmax
i,j
|ξkij | ≤ nWij/(2

√
c1) ≤ nmax

i,j
Wij/(2

√
c1) =: c2 > 0.

This completes the proof for (ii).

(iii) Since ρ > ρo, for each pair (i, j) we have βij := Wij/ρ < 4δ3
ij . It then

follows from Thm. 1(ii) that each separable function fkij(Dij) is convex and hence

the function fkρ (D) is convex over D ∈ B. Consequently, subproblem (48) is convex.
The first-order necessary and sufficient optimality condition is just (52). ut
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