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Abstract
This paper aims to propose an efficient numerical method for the most challenging
problem known as the robust Euclidean embedding (REE) in the family of multi-
dimensional scaling (MDS). The problem is notoriously known to be nonsmooth,
nonconvex and its objective is non-Lipschitzian. We first explain that the semidefinite
programming (SDP) relaxations and Euclidean distancematrix (EDM) approach, pop-
ular for other types of problems in the MDS family, failed to provide a viable method
for this problem. We then propose a penalized REE (PREE), which can be econom-
ically majorized. We show that the majorized problem is convex provided that the
penalty parameter is above certain threshold. Moreover, it has a closed-form solution,
resulting in an efficient algorithm dubbed as PREEEDM (for Penalized REE via EDM
optimization). We prove among others that PREEEDM converges to a stationary point
of PREE, which is also an approximate critical point of REE. Finally, the efficiency
of PREEEDM is compared with several state-of-the-art methods including SDP and
EDM solvers on a large number of test problems from sensor network localization
and molecular conformation.
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1 Introduction

This paper aims to propose an efficient numerical method for the most challenging
problem in the Multi-Dimensional Scaling (MDS) family, which has found many
applications in social and engineering sciences [6,10]. The problem is known as the
Robust Euclidean Embedding, a term borrowed from [8]. In the following, we first
describe the problem and its three variants. We then explain our approach and main
contribution. We will postpone the relevant literature review to the next section in
order to shorten the introduction.

1.1 Problem description

The problem can be described as follows. Suppose we are given some dissimilarity
measurements (e.g., noisy distances), collectively denoted as δi j , for some pairs (i, j)
among n items. The problem is to find a set of n points xi ∈ �r , i = 1, . . . , n such
that

di j := ‖xi − x j‖ ≈ δi j (i, j) ∈ E, (1)

where ‖x‖ is the Euclidean norm (i.e., �2 norm) in �r and E is the set of the pairs
(i, j), whose dissimilarities δi j > 0 are known (E can be thought of the edge set if
we treat δi j as a weighted edge distance between vertex i and vertex j , resulting in a
weighted graph.) Throughout, we use “:=” or “=:” to mean “define”. The space �r

is called an embedding space and it is most interesting when r is small (e.g., r = 2, 3
for data visualization). One may also try to find a set of embedding points such that:

Di j := ‖xi − x j‖2 ≈ δ2i j (i, j) ∈ E . (2)

A great deal of effort has been made to seek the best approximation from (1) or (2).
The most robust criterion to quantify the best approximation is the Robust Euclidean
Embedding (REE) defined by

min
X

f (d,1)(x1, . . . , xn) :=
n∑

i, j=1

Wi j |di j − δi j |, (3)

where Wi j > 0 if δi j > 0 and Wi j ≥ 0 otherwise (Wi j can be treated as a weight for
the importance of δi j ), and X := [x1, . . . , xn] with each xi being a column vector. In
[1,8], Problem (3) was referred to as a robust variant of MDS and is denoted as rMDS.
We will reserve rMDS for the Robust MDS problem:

min
X

f (D,1)(x1, . . . , xn) :=
n∑

i, j=1

Wi j |Di j − δ2i j |. (4)

The reference rMDS for the problem (4) is more appropriate because it involved the
squared distances Di j , which were used by the classical MDS [22,29,43,49,53]. The
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preceding two problems are robust because of the robustness of the �1 norm used to
quantify the errors [31, Sect. IV].

When the least squares criterion is used to (1), we have the popular model known
as the Kruskal’s stress [30] minimization:

min
X

f (d,2)(x1, . . . , xn) :=
n∑

i, j=1

Wi j

(
di j − δi j

)2
, (5)

Similarly, when the least-squares criterion was applied to (2), we get the so-called
squared stress [6]:

min
X

f (D,2)(x1, . . . , xn) :=
n∑

i, j=1

Wi j

(
Di j − δ2i j

)2
, (6)

In many applications such as molecular conformation [21], lower and upper bounds
data on the distances can also be collected:

Li j ≤ Di j ≤ Ui j , ∀ (i, j), (7)

where 0 ≤ Li j ≤ Ui j . In applications such as nonlinear dimensionality reduction [47]
and sensor network localization [44,54], upper bounds Ui j can be computed by the
shortest path distances and Li j are simply set to be zero.

According to [8, Sect. 5.1], all of those problems are NP-hard. However, some
problems are computationally more “difficult” to solve than the others. The most chal-
lenging one, which is also the main focus of this paper, is the problem (3) with/without
the constraint (7). The difficulty comes from the nonsmooth term of �1 norm and the
distance terms di j used. All other problems either involve the squared distances Di j

or the squared �2 norm, which make them “easier” to approximate. We will explain
the reasons in the literature review part.

In contrast to all other three problems, there lacks efficient methods for the REE
problem (3). One of the earliest computational papers that discuss this problem is
Heiser [23], which is followed up by [28], where the Huber smoothing function was
used to approximate the �1 norm near zero with a majorization technique. It was
emphasized in [28] that “the function is not differentiable at its minimum and is hard
to majorize, leading to a degeneracy that makes the problem numerically unstable”.
Another important method is the PlaceCenter (PC for short) algorithm studied in
[1]. We will compare with it in the numerical part. The difficulty in solving (3) is also
well illustrated by a sophisticated Semi-definite Programming (SDP) approach in [35,
Sect. IV] (see the literature review part). We now describe our approach proposed in
this paper.

1.2 Our approach andmain contributions

Our approach heavily makes use of the concept of Euclidean Distance Matrix (EDM).
We need some notation. Let Sn denote the space of all n × n symmetric matrices,
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endowed with the standard inner product. The induced norm is the Frobenius norm,
denoted by ‖A‖ for A ∈ Sn . The (i, j)th element of A ∈ Sn is often written as Ai j .
Let Sn+ be the cone of positive semidefinite matrices in Sn and we write A 	 0 for
A ∈ Sn+. A matrix D ∈ Sn is called an EDM if there exists a set of points xi ∈ �r ,
i = 1, 2 . . . , n such that the (i, j)th element of D is given by Di j := ‖xi − x j‖2,
i, j = 1, . . . , n. The smallest dimension r is called the embedding dimension of D
and r = rank(J DJ ), where J := I − 1

n 11
T is known as the centring matrix with I

being the identity matrix in Sn and 1 being the vector of all ones in �n . We useDn to
denote the set of all Euclidean distance matrices of size n × n.

A very useful characterization for D ∈ Dn [22,49] is

diag(D) = 0 and − (J DJ ) 	 0. (8)

This result shows that Dn is a closed and convex cone. Moreover, a set of embedding
points are generated by the classical MDS method [22,43,49,53]:

[x1, x2, . . . , xn] = diag(
√

λ1,
√

λ2, . . . ,
√

λr )
[
p1,p2, . . . ,pr

]T
, (9)

where the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λr > 0 and the corresponding eigenvectors
p1,p2, . . . ,pr are from the eigen-decomoposition:

− 1

2
(J DJ ) = [

p1,p2, . . . ,pr
]
diag(λ1, λ2, . . . , λr )

[
p1,p2, . . . ,pr

]T (10)

with r = rank(J DJ ). Therefore, the REE problem (3) with the constraint (7) can be
reformulated in terms of EDM as

minD f (D) := ∑n
i, j=1 Wi j |

√
Di j − δi j | = ‖W ◦ (

√
D − Δ)‖1

s.t. D ∈ Dn, rank(J DJ ) ≤ r

D ∈ B := {A | L ≤ D ≤ U } ,

(11)

where “◦” is the Hadamard product for matrices (i.e., A ◦ B = (Ai j Bi j )),
√
D is the

elementwise square root of D, Δi j := δi j , and ‖ · ‖1 is the �1 norm. Once we obtained
an optimal solution of (11), we use (9) and (10) to generate the required embedding
points.

The reformulation well captures four difficulties in solving the REE problem (3).

(i) The objective function f (D) is not convex. The term |√Di j − δi j | is convex
when δ2i j > Di j and concave otherwise.

(ii) The objective function is nonsmooth. It is not differentiable at certain points due
to the �1 norm and the square root operation involved.

(iii) The objective function is not Lipschizian. The Lipschitz constant goes to infinity
as Di j goes to zero. The implication is that the subdifferential of the objective
function [42, Def. 8.3] may be unbounded. This would create a huge obstacle in
establishing any convergence results of iterative algorithms for (11).
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(iv) The rank constraint is not convex and is hard to approximate. This is a common
issue for any optimization problem with a rank constraint.

We note that no matter what reformulations one may use for (3), those four difficulties
would appear in different forms and won’t go away. We also note that all other three
problems, when reformulated in terms of EDM, have a convex objective function. This
distinctive feature alone makes the problem (11) the most challenging one to solve.

Existing numerical experiments have shown that the MDS embedding (9) and (10)
works well as long as D is close to a true EDM. A typical example is when the data
sits on a lower-dimensional manifold [47]. Motivated by this, we are going to generate
an approximate EDM instead of a true EDM in our algorithm. It follows from (8) that
(also see [32, Theorem A]):

D ∈ Dn ⇐⇒ diag(D) = 0 and − D ∈ Kn+, (12)

where Kn+ is known to be the conditionally positive semidefinite cone:

Kn+ :=
{
A ∈ Sn | vT Av ≥ 0, ∀ v ∈ 1⊥}

and 1⊥ is the subspace in �n orthogonal to 1. The diagonal constraint in (12) can be
integrated to the set B with the choice Lii = Uii = 0 for i = 1, . . . , n. We combine
Kn+ with the rank constraint into the set Kn+(r):

Kn+(r) := Kn+ ∩ {
A ∈ Sn | rank(J AJ ) ≤ r

}
.

We call it the conditionally positive semidefinite cone with the rank-r cut. Conse-
quently, the constraints in (11) become −D ∈ Kn+(r) and D ∈ B.

Next, we quantify the feasibility of −D belonging to Kn+(r) as follows. Let
Π B

Kn+(r)(A) be the set of all nearest points in Kn+(r) from a give matrix A ∈ Sn .

That is

Π B
Kn+(r)(A) := argmin

{‖A − Y‖ | Y ∈ Kn+(r)
}
. (13)

Since Kn+(r) is not convex (unless r ≥ n − 1), the projection Π B
Kn+(r)(A) is a set

instead of a single point. We let ΠKn+(r)(A) be any element in Π B
Kn+(r)(A) and define

the function

g(A) := 1

2
‖A + ΠKn+(r)(−A)‖2. (14)

Since g(A) is just the half of the squared distance from (−A) to Kn+(r), it does not
depend on which element ΠKn+(r)(A) is being used. It is easy to see that

−D ∈ Kn+(r) if and only if g(D) = 0.
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Hence, the problem (11) is equivalent to

minD f (D) = ‖W ◦ (
√
D − Δ)‖1

s.t. g(D) = 0, D ∈ B.
(15)

This is a classical constrained optimization problem with an equality constraint and a
simple box constraint. Therefore, the quadratic penalty method [34, Chp. 17] can be
applied to get the following problem:

minD fρ(D) := f (D) + ρg(D), s.t. D ∈ B, (16)

where ρ > 0 is the penalty parameter. We refer to this problem as the penalized REE
problem (PREE).

The quadratic penalty method is used often in practice [34, P. 497]. In fact, it is
particularly suitable to (11) because it overcomes all four difficulties discussed above.
We will need twomore important tools to help us efficiently solve the penalty problem
(16). One is the majorization technique that has recently become very popular in
engineering sciences [46] (also see [6, Chp. 8] for its extensive use in MDS). Suppose
we have the current iterate Dk . We construct a majorization function gm(D, Dk) for
g(D) at Dk such that

gm(Dk, Dk) = g(Dk) and gm(D, Dk) ≥ g(D) ∀ D ∈ Sn . (17)

The majorization is constructed in such a way that it is easier to solve the majorized
problem:

Dk+1 = argmin
{
f kρ (D) := f (D) + ρgm(D, Dk), D ∈ B.

}
(18)

It can be seen that

fρ(Dk+1) = f (Dk+1) + ρg(Dk+1)

(17)≤ f (Dk+1) + ρgm(Dk+1, Dk) = f kρ (Dk+1)

(18)≤ f kρ (Dk) = f (Dk) + ρgm(Dk, Dk) = f (Dk) + ρg(Dk) = fρ(Dk).

Hence, the algorithm generates a sequence {Dk} that is nonincreasing in fρ(D). Since
fρ(D) is bounded below by 0, the functional sequence { fρ(Dk)} converges. However,
we aremore concernedwhere the iterate sequence {Dk} converges. The second concern
is how the subproblem (18) has to be solved. This brings out the second technique,
which is to solve the following one-dimensional problem:

min
x∈�

{
q(x) := (1/2)(x − ω)2 + β|√x − δ| | a ≤ x ≤ b

}
, (19)
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for given δ > 0 and 0 ≤ a ≤ b. We will show that the solution of this problem will
lead to a close-form solution of (18).

Since our method is for the Penalized REE by EDM optimization, we call it
PREEEDM. The major contribution of this paper is to make the outlined solution
procedure water-tight. In particular, we will investigate the relationship between the
PREE problem (16) and the original problem (11) in terms of the ε-optimality (Propo-
sition 1).Wewill also show that themajorization function gm(·, ·) can be economically
constructed (Sect. 3.2). Moreover, the majorized function f kρ (D) is guaranteed to be
convex provided that the penalty parameter is above certain threshold and the subdif-
ferentials at the generated sequences are bounded (Proposition 4). Furthermore, each
majorization subproblem has a closed form solution (Theorem 1). We are also able to
prove that any accumulation of the generated sequence by PREEEDM is a stationary
point of (16), which is also an approximate stationary point of (11) (Theorem 2). Built
upon its solid convergence results and simple implementation, PREEEDM is demon-
strated to be comparable to six state-of-the-art software packages in terms of solution
quality and outperform them in terms of the computational time for a large number of
tested problems from sensor network localizations and molecular conformations.

1.3 Organization of the paper

In the next section, we give a selective literature review mainly on the Semi-Definite
Programming (SDP) and EDM approaches. In Sect. 3. we introduce some necessary
background and prove a key technical result (Lemma 1) that is crucial to the convexity
of the majorization subproblem.We study the relationship between the penalized REE
(16) and the original REE in Sect. 4, where the majorized subproblem is shown to have
a closed-form solution. In Sect. 5, we provide a complete set of convergence results
for the proposed PREEEDM algorithm. Numerical experiments are included in Sect. 6.
The paper concludes in Sect. 7. All proofs except that of Theorem 2 can be found in
“Appendix”.

2 Literature review

Onecanfinda thorough reviewonall of the four problems in [17] byFrance andCarroll,
mainly from the perspective of applications. One can also find valuable discussion
on some of those problems in [2]. So the starting point of our review is that those
problems have their own reasons to be studied and we are more concerned how they
can be efficiently solved.

Most of existing algorithms can be put in three groups. The first group consists of
alternating coordinates descent methods, whose main variables are xi , i = 1, . . . , n.
A famous representative in this group is the method of SMACOF for the stress min-
imization (5) [13,14]. The key idea is to alternatively minimize the function f (d,2)

with respect to each xi , while keeping other points x j ( j �= i) unchanged, and each
minimization problem is relatively easier to solve by employing the technique of
majorization. SMACOF has been widely used and the interested reader can refer to [6]
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for more references and to [54] for some critical comments on SMACOF when it is
applied to the sensor network localization problem. The second and third group consist
respectively the methods of SDP and EDM optimization. We will give a more detailed
review on the two groups because of their close relevance to our proposed method
in this paper. The main purpose of our review is to show that there lacks efficient
numerical methods for the REE problem (3).

2.1 On SDP approach

We note that each of the four objective functions either involves the Euclidean distance
di j or its squared Di j = d2i j . A crucial observation is that constraints on them often
have SDP relaxations. For example, it is easy to see

Di j = d2i j = ‖xi − x j‖2 = ‖xi‖2 + ‖x j‖2 − 2xTi x j

= Yii + Y j j − 2Yi j , (20)

where Y := XT X 	 0. Hence, the squared distance d2i j is a linear function of the
positive semidefinite matrix Y . Consequently, the EDM cone Dn can be described
through linear transformations of positive semidefinite matrices. One can further relax
the constraint Y = XT X to Y 	 XT X . By the Schur-complement, one has

Z :=
[
Y XT

X Ir

]
	 0 has rank r ⇐⇒ Y = XT X . (21)

By dropping the rank constraint, the robust MDS problem (4) can be relaxed to a SDP,
which was initiated by Biswas and Ye [15].

For the Euclidean distance di j , we introduce a new variable Ti j = di j . One may
relax this constraint to Ti j ≤ di j , which has a SDP representation:

T 2
i j ≤ d2i j = Di j ⇐⇒

[
1 Ti j

Ti j Di j

]
	 0. (22)

Combination of (20), (21) and (22) leads to a large number of SDP relaxations.
Typical examples, for the robust MDS problem (4), are the SDP relaxation method
[5] and the edge-based SDP relaxation method [38,50] and [27], which leads to a
comprehensive Matlab package SFSDP. For the squared stress (6), one may refer to
[16,25]. For the stress problem (5), a typical SDP relaxation can be found in [35,
Problem (8)]. However, unlike the problems (4), (5) and (6), the REE problem (3)
does not have a straightforward SDP relaxation. We use an attempt made in [35] to
illustrate this point below.

First, it is noted that problem (3) can be written in terms of EDM:

min
∑n

i, j=1 Wi j |
√
Di j − δi j |

s.t. D ∈ Dn, rank(J DJ ) ≤ r .
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The term |√Di j − δi j | is convex if δi j >
√
Di j and is concave otherwise. A major

obstacle is how to efficiently deal with the concavity in the objective.
Secondly, by dropping the rank constraint and through certain linear approximation

to the concave term, a SDP problem is proposed for (3) (see [35, Eq. (20)]):

minD,T∈Sn 〈W , T 〉
s.t. (δi j − Ti j )2 ≤ Di j , (i, j) ∈ E

ai j Di j + bi j ≤ Ti j , (i, j) ∈ E
D ∈ Dn,

(23)

where the quantities ai j and bi j can be computed from δi j . We note that each quadratic
constraint in (23) is equivalent to a positive semidefinite constraint on S2+ and D ∈ Dn

is a semidefinite constraint onSn+ by (8). Therefore, the total number of the semidefinite
constraints is |E | + 1. Finally, the optimal solution of (23) is then refined through a
second-stage algorithm (see [35, Sect. IV(B)]). Both stages of the algorithmic scheme
above would need sophisticated implementation skills and its numerical efficiency and
solution quality are yet to be confirmed due to the twice relaxation schemes (dropping
the rank constraint and linearization). The lack of efficient algorithms for (3)motivated
our research in this paper.

2.2 On EDM approach

A distinguishing feature from the SDP approach is that this approach treats EDM D
as the main variable, without having to rely on its SDP representation. This approach
works because of the characterization (12) and that the orthogonal projection ontoKn+
has a closed-form formula [19,20]. Several methods are based on this formula. The
basic model for this approach is the so-called nearest EDM problem:

min
D∈Sn

‖D − Δ(2)‖2 s.t. diag(D) = 0 and − D ∈ Kn+, (24)

which is a convex relaxation of (6) with the special choiceWi j ≡ 1. Here the elements

of the matrix Δ(2) are given by Δ
(2)
i j := δ2i j . The relaxation is obtained by dropping

the rank constraint rank(J DJ ) ≤ r . Since the constraints of (24) are the intersection
of a subspace and a convex cone, the method of alternation projection was proposed
in [19,20] with applications to molecule conformation [21]. Newton’s method for (24)
was developed in [39]. Extensions of Newton’s method for the model (24) with more
constraints including general weights Wi j , the rank constraint rank(J DJ ) ≤ r or the
box constraints (7) can be found in [3,11,40]. A recent application of the model (24)
with a regularization term to Statistics is [55], where the problem is solved by an SDP,
similar to that proposed by Toh [48].

There are two common features in this class of methods. One is that they require
the objective function to be convex, which is true for the problems (4), (5) and (6)
when formulated in EDM. The second feature is that the nonconvexity is only caused
by the rank constraint. However, as already seen in Sect. 1.2, the REE problem (3) in
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terms of EDM has a nonconvex objective coupled with the distance di j (not squared
distances) being used. This has caused various difficulties in applying the existing
EDM-based methods mentioned above to (3). A latest research [56] by the authors
has tried to extend the EDM approach to the stress minimization problem (5) along a
similar line as outlined in Sect. 1.2. Once again, we emphasize that the key difference
between the problem (3) and (5) is about nonconvex objective vs convex objective and
non-differentiability vs differentiability. Hence, the problem (3) is significantly more
difficult to solve than (5). Nevertheless, we will show that it can be efficiently solved
by the proposed EDM optimization.

3 Background and technical lemmas

In this part, we introduce the necessary background about subgradient and positive
roots of a special depressed cubic equation. In particular, we will prove a technical
result about a composite function between the absolute value and the square root
functions. This result (Lemma 1) is in the style of Taylor-expansion for differentiable
functions.

3.1 Subgradients of functions

An important function appearing in our EDM reformulation (11) of the REE problem
(3) is φδ(·) : �+ �→ �+ defined for a given constant δ > 0 by

φδ(x) := |√x − δ|, ∀ x ≥ 0,

where �+ is the set of all nonnegative numbers. We will need to compute its subgra-
dient in the sense of Rockafellar and Wets [42].

Definition 1 [42, Def. 8.3] Consider a function f : �n �→ � ∪ {−∞,+∞} and a
point x̄ with f (x̄) finite. For a vector v ∈ �n , one says that

(a) v is a regular subgradient of f at x̄, written v ∈ ∂̂ f (x̄), if

f (x) ≥ f (x̄) + 〈v, x − x̄〉 + o(‖x̄ − x‖),

where the little ‘o’ term is a short-hand notation for the one-sided limit condition:

lim inf
x→x̄
x �=x̄

f (x) − f (x̄) − 〈v, x − x̄〉
‖x − x̄‖ ≥ 0;

(b) v is a (general) subgradient of f at x̄, written v ∈ ∂ f (x̄), if there are sequences
xν → x̄ with f (xν) → f (x̄) and vν ∈ ∂̂ f (xν) with vν → v.
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We call ∂ f (x̄) the subdifferential of f at x̄. For a given number x ∈ �, we define
its sign by

sign(x) :=

⎧
⎪⎨

⎪⎩

{1} if x > 0

[−1, 1] if x = 0

{−1} if x < 0.

Apparently, φδ(x) is continuous for x > 0 and its subdifferential at x > 0 is given by
directly applying Def. 1 (note δ > 0)

∂φδ(x) = sign(
√
x − δ)

2
√
x

for x > 0. (25)

We note that the subdifferential of φδ(x) at x = 0 is more complicated to describe.
Fortunately, we won’t need it in our analysis. We state our key lemma below.

Lemma 1 Let δ > 0 be given. It holds

φδ(y) ≥ φδ(x) + ζ(y − x) − (x − y)2

8δ3
, ∀ x > 0, y > 0, ζ ∈ ∂φδ(x).

Compared with the definition of classical convex function, the inequality above has
an extra negative quadratic term, which is not sufficient for φδ(x) to be convex on
(0,+∞) (actually, φδ(x) is quasi-convex.) Fortunately, this property allows us to
make the function φδ + μϕ convex provided ϕ is a strongly convex and μ is chosen
properly. And this is one of the key ideas developed in this paper.

3.2 Construction of themajorization function

A major building block in our algorithm is the majorization function gm(D, Dk) at a
given point Dk for the function g(A) defined in (14). We construct it below.

Suppose A ∈ Sn has the following eigenvalue-eigenvector decomposition:

A = λ1p1pT1 + λ2p2pT2 + · · · + λnpnpTn , (26)

where λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of A in non-increasing order, and pi ,
i = 1, . . . , n are the corresponding orthonormal eigenvectors. We define a PCA-style
matrix truncated at r :

PCA+
r (A) :=

r∑

i=1

max{0, λi }pipTi . (27)

Recall the definition of Π B
Kn+(r)(A) in (13). We let ΠKn+(r)(A) be an element of

Π B
Kn+(r)(A) and note that the function g(A) in (14) does not depend on the choice of
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ΠKn+(r)(A). As seen from the known results below, one particular element ΠKn+(r)(A)

can be computed through PCA+
r (A).

Lemma 2 For a given matrix A ∈ Sn and an integer r ≤ n. The following results
hold.

(i) [40, Eq. (22), Proposition 3.3] One particular ΠKn+(r)(A) can be computed
through

ΠKn+(r)(A) = PCA+
r (J AJ ) + (A − J AJ ) (28)

(ii) [40, Eq. (26), Proposition 3.3] We have

〈ΠKn+(r)(A), A − ΠKn+(r)(A)〉 = 0. (29)

(iii) [40, Proposition 3.4] The function

h(A) := 1

2
‖ΠKn+(r)(A)‖2

is well defined and is convex. Moreover,

ΠKn+(r)(A) ∈ ∂h(A),

where ∂h(A) is the subdifferential of h(·) at A.
(iv) [56, Lemma 2.2] Let g(A) be defined in (14). We have for any A ∈ Sn

g(A) = 1

2
‖A‖2 − h(−A) and ‖ΠKn+(r)(A)‖ ≤ 2‖A‖. (30)

Since h(·) is convex and ΠKn+(r)(A) ∈ ∂h(A) (Lemma 2)(ii)), we have

h(−D) ≥ h(−Z) + 〈ΠKn+(r)(−Z), −D + Z〉 ∀ D, Z ∈ Sn .

This, with Lemma 2(iii), implies

g(D) = (1/2)‖D‖2 − h(−D)

≤ (1/2)‖D‖2 − h(−Z) + 〈ΠKn+(r)(−Z), D − Z〉
= (1/2)‖D + ΠKn+(r)(−Z)‖2 + 〈ΠKn+(r)(−Z),−Z − ΠKn+(r)(−Z)〉
(29)= (1/2)‖D + ΠKn+(r)(−Z)‖2
=: gm(D, Z). (31)

It is straightforward to check that the function gm(·, ·) in (31) satisfies the majorization
properties (17).
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3.3 Positive roots of depressed cubic equations

In our algorithm, we will encounter the positive root of a depressed cubic equation [7,
Chp. 7], which arises from the optimality condition of the following problem

min
x≥0

s(x) := (x − t)2 + ν
√
x, (32)

where ν > 0 and t ∈ � are given. A positive stationary point x must satisfy the
optimality condition

0 = s′(x) = 2(x − t) + ν

2
√
x
. (33)

Let y := √
x . The optimality condition above becomes

4y3 − 4t y + ν = 0.

This is in the classical form of the so-called depressed cubic equation [7, Chp. 7].
Its roots (complex or real) and their computational formulae have a long history with
fascinating and entertaining stories. A comprehensive revisit of this subject can be
found in Xing [51] and a successful application of the depressed cubic equation to the
compressed sensing can be found in [36,52]. The following lemma says that, under
certain conditions, the Eq. (33) has two distinctive positive roots and its proof is a
specialization of [9, Lemma 2.1(iii)] when p = 1/2 therein.

Lemma 3 [9, Lemma 2.1(iii)] Consider the problem (32). Let

x̄ = (ν/8)2/3 and t̄ = 3x̄ .

When t > t̄ , s(x) has two different positive stationary point x̂1 and x̂2 satisfying

s′(x) = 0 and x̂1 < x̄ < x̂2.

4 Penalized REEmodel and its’ majorization subproblem

With the preparation above, we are ready to address our penalized REE problem (16)
and its majorization subproblem (18). We first address the relationship between (16)
and its original problem (11). We then show how the subproblem (18) is solved.

4.1 �-optimal solution and critical point

The classical results on penalty methods in [34] on the differentiable case (i.e., all
functions involved are differentiable) are not applicable here. Recently, the penalty
approach was studied by Gao in her PhD thesis [18] in the context of semidefinite
programming, which motivated our investigation below. The main result is that (16)
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provides an ε-optimal solution and ε-critical point for the original problem when the
penalty parameter is above certain threshold.

We first introduce the concept of critical point of (11) [i.e., (15)], which is a first
order optimality condition. It is associated with the Lagrange function of (15) defined
by

L(D, β) := f (D) + βg(D) + IB(D), (34)

where β ∈ � is the Lagrangian multiplier and IB(D) is the indicator function taking
value 0 if D ∈ B and +∞ otherwise. We say D ∈ Sn is a critical point of (15) if
it satisfies 0 ∈ ∂L(D̄, β̄) for some β̄ ∈ �, namely, there exists Γ ∈ ∂ f (D) and
C ∈ Conv(Π B

Kn+(r)(−D)) such that

g(D) = 0 and
〈
Γ + β̄D + β̄C, D − D

〉 ≥ 0, ∀ D ∈ B

where we used the following facts: ∂g(D) = D + Conv(Π B
Kn+(r)(−D)) (see [40,

Proposition 3.4] and Conv(Ω) denotes the convex hull of a given set Ω) , and the
sub-differential of the indicator function of a convex set Ω is its normal cone, namely,
∂ IΩ(x) = NΩ(x) = {y : 〈y, z − x〉 ≤ 0, ∀ z ∈ Ω}. We will see the choice
C = ΠKn+(r)(−D) is enough for our analysis and hence it is used in our definition of
approximate critical point.

Definition 2 (i) (ε-Optimal solution) Suppose D∗ is an optimal solution of (11). For
a given error tolerance ε > 0, a point D̂ is called an ε-optimal solution of (11) if
it satisfies

D̂ ∈ B, g(D̂) ≤ ε and f (D̂) ≤ f (D∗).

(ii) (ε-Critical point) A point D is called an ε-critical point of (11) if there exist
Γ ∈ ∂ f (D) and β̄ ∈ � such that

g(D) ≤ ε,
〈
Γ̄ + β̄D + β̄ΠKn+(r)(−D), D − D

〉
≥ 0, ∀ D ∈ B. (35)

Obviously, if ε = 0, ε-optimal solution D̂ would be an optimal solution of (11). We
will show that the optimal solution of (16) is ε-optimal as well as an ε-critical point
provided that ρ is large enough. Let D∗

ρ be an optimal solution of the penalized REE
(16) and Dr be any feasible solution of the original problem (11). If the lower bound
matrix L ≡ 0, then we can simply choose Dr = 0. Define

ρε := f (Dr )/ε.

We have the following result.

Proposition 1 For any ρ ≥ ρε , D∗
ρ must be an ε-optimal solution as well as an ε-

critical point of (11). That is, there exists Γ ∗ ∈ ∂ f (D∗
ρ) such that
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D∗
ρ ∈ B, f (D∗

ρ) ≤ f (D∗), g(D∗
ρ) ≤ ε (36)

〈
Γ ∗ + ρD∗

ρ + ρΠKn+(r)(−D∗
ρ), D − D∗

ρ

〉
≥ 0, ∀ D ∈ B. (37)

4.2 Solving the subproblem

Having constructed the majorization function in (31), we now focus on how to solve
the majorization subproblem (18), which is equivalent to the solution of the follow-
ing problem. Given the current iterate Z ∈ B, the majorization subproblem aims to
compute an improved iterate, denoted by Z+, by solving

Z+ = arg min
D∈B

f (D) + ρgm(D, Z)

= arg min
D∈B

n∑

i, j=1

Wi j |
√
Di j − δi j | + ρ

2
‖D + ΠKn+(r)(−Z)‖2

= arg min
D∈B

n∑

i, j=1

Wi j |
√
Di j − δi j | + ρ

2
‖D − ZK ‖2, (38)

where the matrix ZK := −ΠKn+(r)(−Z). This subproblem has a perfect separability
property that allows it to be computed elementwise:

Z+
i j = argmin

Li j≤Di j≤Ui j

ρ

2

[
Di j − (ZK )i j

]2 + Wi j |
√
Di j − δi j |

= argmin
Li j≤Di j≤Ui j

1

2

[
Di j − (ZK )i j

]2 + Wi j

ρ
|√Di j − δi j |. (39)

For the ease of our description, we denote the subproblem solution process by

Z+ = PREEEDMB(ZK , W/ρ, Δ). (40)

Here, PREEEDM stands for the Penalized REE by EDM optimization. We will show
how (40) can be computed.

Let us consider a simplified one-dimensional optimization problem, whose solution
will eventually give rise to PREEEDM. Let B denote the interval [a, b] in � with
0 ≤ a ≤ b. For given ω ∈ �, δ > 0 and β > 0, we aim to compute

dcrootB[ω, β, δ] := arg min
a≤x≤b

q(x) := 1

2
(x − ω)2 + β|√x − δ|. (41)

The acronym dcroot stands for the root of depressed cubic equation, which will
eventually give rise to the solution formula of (41). It suffices to consider the case that
matters to us:

β > 0, δ > 0 and a ≤ δ2 ≤ b.
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Before solving the above problem, we define some notation for convenience

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γω,β :=
[
ω+

√
ω2+2β

]2

4 ,

u := β
4 , v := ω

3 and τ := u2 − v3

B− := [a, δ2] and B+ := [δ2, b].
(42)

Obviously, q(x) has a representation of two pieces:

q(x) =
{
q−(x) := 1

2 (x − ω)2 − β
√
x + βδ for x ∈ B−

q+(x) := 1
2 (x − ω)2 + β

√
x − βδ for x ∈ B+

It is noted that q−(x) is convex, but q+(x) may not necessarily so. We will show that
both pieces have a closed-form formula for their respective minimum.

Proposition 2 Consider the optimization problem:

x∗− := argmin q−(x), s.t. x ∈ B−. (43)

Define

x−
ω,β =

⎧
⎨

⎩

[
(u + √

τ)1/3 + (u − √
τ)1/3

]2
, τ ≥ 0,

4v cos2
[ 1
3arccos(uv−3/2)

]
, τ < 0.

(44)

Then (43) has a unique solution x∗− given by

x∗− = ΠB−(x−
ω,β) := min{δ2,max{a, x−

ω,β}} and x∗− ≥ min{δ2, 1, γω,β}.

Now we characterize the optimal solution of q+(x) over B+.

Proposition 3 Assume that β < 4δ3 and consider the optimization problem:

x∗+ := argmin q+(x), s.t. x ∈ B+. (45)

Define

x+
ω,β :=

⎧
⎨

⎩

δ2 if τ ≥ 0

4v cos2
[ 1
3 arccos(−uv−3/2)

]
if τ < 0,

(46)

Then q+(x) is strictly convex over the interval [δ2,∞) and

x∗+ = ΠB+(x+
ω,β) := max{δ2,min{b, x+

ω,β}}.
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Putting together Propositions 2 and 3 gives rise to the optimal solution of (41). The
optimal solution is either x∗− or x∗+, whichever gives a lower functional value of q(x).
This is the first result of our major theorem below. We note that both Propositions 2
and 3 make use of the convexity of q−(x) and q+(x) on the respective interval [a, δ2]
and [δ2, b]. In fact, we can establish a stronger result that when the two pieces join
together, the resulting function q(x) is still convex on the whole interval [a, b]. This
result is very important to our convergence analysis in the next section and is the
second result of the theorem below. A key tool for the proof is Lemma 1.

Theorem 1 Let B denote the interval [a, b] with 0 ≤ a ≤ δ2 ≤ b. We assume
0 < β < 4δ3. Then, the following hold.

(i) The optimal solution of the problem (41) is given by

dcrootB[ω, β, δ] =
{
x∗−, if q(x∗−) ≤ q(x∗+),

x∗+, if q(x∗−) > q(x∗+).

(ii) The function q(x) is strictly convex on [a, b]. Consequently, there exists ξ ∈
∂q(dcrootB[ω, β, δ]) such that

ξ(x − dcrootB[ω, β, δ]) ≥ 0 for any x ∈ B.

(iii) Let γω,β be defined in (42), then dcrootB[ω, β, δ] ≥ min{δ2, b, 1, γω,β}. We
view dcrootB[ω, β, δ] as a function of ω. Suppose C > 0 is an arbitrarily
given constant. Then there exists a constant κ > 0 such that

dcrootB[ω, β, δ] > κ ∀ ω such that |ω| ≤ C .

Comment: The optimal solution dcrootB[ω, β, δ] is unique, since q(x) is strictly
convex over [a, b]. However, its location could bewithin the interval [a, σ 2] or [σ 2, b],
depending on themagnitudes of the parameters (ω, β and δ) involved. The dependence
is illustrated in Fig. 1. We also note that the function q(x) may not be convex if the
condition β < 4δ3 is violated. ��

It now follows fromTheorem1 that the optimal solution Z+
i j in (39) can be computed

by:

Z+
i j =

⎧
⎨

⎩

dcroot[Li j ,Ui j ][(ZK )i j , Wi j/ρ, δi j ], Wi j > 0

Π[Li j ,Ui j ]((ZK )i j ), Wi j = 0
(47)

Consequently, Z+ = PREEEDMB(ZK ,W/ρ,Δ) in (40) is well defined and its ele-
ments can be computed by (47).
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Fig. 1 Illustration of the convexity of q(x) = 0.5(x − ω)2 + β|√x − δ| over the interval [0, 6] and β = 4:
global minimum happens on q−(x) (left) with ω = 1, δ = 2 and global minimum happens on q+(x) (right)
with ω = 5, δ = √

2

5 Algorithm PREEEDM and its convergence

With the preparations above, we are ready to state our algorithm. Let Dk ∈ B be the
current iterate. We update it by solving the majorization subproblem of the type (38)
with Z replaced by Dk :

Dk+1 = argmin
{
f kρ (D) := f (D) + ρgm(D, Dk)

}
, s.t. D ∈ B, (48)

which can be computed by

Dk+1 = REEEDMB(−ΠKn+(r)(−Dk), W/ρ, Δ). (49)

In more detail, we have

f kρ (D) = ‖W ◦ (
√
D − Δ)‖1 + ρ

2
‖D + ΠKn+(r)(−Dk)‖2

=
∑

i, j

[
ρ

2

(
Di j − (Zk

K )i j

)2 + Wi j |
√
Di j − δi j |

]

︸ ︷︷ ︸
=: f ki j (Di j )

where Zk
K := −ΠKn+(r)(−Dk), and the elements of Dk+1 are computed as follows:

Dk+1
i j = argminLi j≤Di j≤Ui j

{
1

2

[
Di j − (Zk

K )i j

]2 + Wi j

ρ

∣∣∣
√
Di j − δi j

∣∣∣
}

=

⎧
⎪⎪⎨

⎪⎪⎩

dcroot[Li j ,Ui j ]
[
(Zk

K )i j , Wi j/ρ, δi j

]
, if Wi j > 0

Π[Li j ,Ui j ]
[
(Zk

K )i j

]
, if Wi j = 0.

(50)
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Our algorithm PREEEDM is formally stated as follows.

Algorithm 1 PREEEDM Method
1: Input data: Dissimilarity matrix Δ, weight matrix W , penalty parameter ρ > 0, lower-bound matrix

L , upper-bound matrix U and the initial D0. Set k := 0.
2: Update: Dk+1 = PREEEDMB(−ΠKn+(r)(−Dk ), W/ρ, Δ) by (50).

3: Convergence check: Set k := k + 1 and go to Step 2 until convergence.

A major obstacle in analysing the convergence for the penalized EDM model (16)
is the non-differentiability of the objective function. We need the following two rea-
sonable assumptions:

Assumption 1 The constrained box B is bounded.

Assumption 2 For Δ and U , we require Wi j = 0 if δi j = 0 and Ui j ≥ δ2i j ≥ Li j if
δi j > 0

Assumption 1 can be easily satisfied (e.g., setting the upper bound to be
n2 max{δ2i j }). Assumption 2 means that if δi j = 0 (e.g., value missing), the cor-
responding weight Wi j should be 0. This is a common practice in applications. If
δi j > 0, then we require δ2i j to be between Li j and Ui j . We further define a quantity
that bounds our penalty parameter ρ from below:

ρo := ρo(W ,Δ) := max
(i, j):Wi j>0

Wi j

4δ3i j
(51)

Our first result in this section is about the boundedness of the subdifferential of f (·)
along the generated sequence {Dk}.
Proposition 4 Suppose Assumptions 1 and 2 hold. Let ρ > ρo and {Dk} be the
sequence generated by Algorithm 1. Then the following hold.

(i) There exists a constant c1 > 0 such that

Dk
i j ≥ c1 for all (i, j) such that Wi j > 0 and k = 1, 2, . . . .

(ii) Let ∂ f (D) denote the subdifferential of f (D) = ‖W ◦ (
√
D−Δ)‖1. Then there

exists a constant c2 > 0 such that

‖Γ ‖ ≤ c2 ∀ Γ ∈ ∂ f (Dk), k = 1, 2, . . . .

(iii) The function f kρ (D) is convex for all k = 1, 2, . . .. Moreover, there existsΓ k+1 ∈
∂ f (Dk+1) such that the first-order optimality condition for (49) is

〈
Γ k+1 + ρDk+1 + ρΠKn+(r)(−Dk), D − Dk+1

〉
≥ 0, ∀ D ∈ B. (52)
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Theorem 1(i) ensures that Dk
i j > 0 for all k = 1, . . . , . Hence, we can apply Lemma 1

to each function φδi j (·) with x = Dk+1
i j and y = Dk

i j . This yields for any ζ k+1
i j ∈

∂φδi j (D
k+1
i j )

φδi j (D
k+1
i j ) − φδi j (D

k
i j ) ≤ ζ k+1

i j (Dk+1
i j − Dk

i j ) + 1

2

(Dk+1
i j − Dk

i j )
2

4δ3i j
,

Multiplying Wi j on both sides and adding those inequalities over (i, j), we get

f (Dk+1) − f (Dk) ≤ 〈Γ k+1, Dk+1 − Dk〉 + ρo

2
‖Dk+1 − Dk‖2, (53)

where Γ k+1
i j := Wi jζ

k+1
i j . We note that the inequality (53) holds for any Γ k+1 ∈

∂ f (Dk+1).

Theorem 2 Let ρ > ρo and {Dk} be the sequence generated byAlgorithm 1. Suppose
Assumptions 1 and 2 hold.

(i) We have

fρ(Dk+1) − fρ(Dk) ≤ −ρ − ρo

2
‖Dk+1 − Dk‖2 for any k = 0, 1, . . . , .

Consequently, ‖Dk+1 − Dk‖ → 0.

(ii) Let D̂ be an accumulation point of {Dk}. Then there is Γ̂ ∈ ∂ f (D̂) such that

〈Γ̂ + ρ D̂ + ρΠKn+(r)(−D̂), D − D̂〉 ≥ 0 for any D ∈ B. (54)

That is, D̂ is a critical point of the problem (16). Moreover, for a given ε > 0, if
D0 ∈ Kn+(r) ∩ B and

ρ ≥ ρε := max{ρo, f (D0)/ε},

then D̂ is an ε-critical point of the original problem (11).
(iii) If D̂ is an isolated accumulation point of the sequence {Dk}, then the whole

sequence {Dk} converges to D̂.

Proof (i) We are going to use the following facts that are stated on Dk+1 and Dk . The
first fact is the identity:

‖Dk+1‖2 − ‖Dk‖2 = 2〈Dk+1 − Dk, Dk+1〉 − ‖Dk+1 − Dk‖2. (55)

The second fact is due to the convexity of h(D) (see Lemma 2(ii)):

h(−Dk+1) − h(−Dk) ≥ 〈ΠKn+(r)(−Dk), −Dk+1 + Dk〉. (56)
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The last fact is that there exists Γ k+1 ∈ ∂ f (Dk+1) such that (52). Those facts yield
the following chain of inequalities:

fρ(Dk+1) − fρ(Dk)

= f (Dk+1) − f (Dk) + ρg(Dk+1) − ρg(Dk)

(53)≤ 〈Γ k+1, Dk+1 − Dk〉 + ρo

2
‖Dk+1 − Dk‖2 + ρg(Dk+1) − ρg(Dk)

(30)= 〈Γ k+1, Dk+1 − Dk〉 + ρo

2
‖Dk+1 − Dk‖2

+ (ρ/2)(‖Dk+1‖2 − ‖Dk‖2) − ρ[h(−Dk+1) − h(−Dk)]
(55)= 〈Γ k+1 + ρDk+1, Dk+1 − Dk〉

− ρ − ρo

2
‖Dk+1 − Dk‖2 − ρ[h(−Dk+1) − h(−Dk)]

(56)≤ 〈Γ k+1 + ρDk+1 + ρΠKn+(r)(−Dk), Dk+1 − Dk〉 − ρ − ρo

2
‖Dk+1 − Dk‖2

(52)≤ −ρ − ρo

2
‖Dk+1 − Dk‖2.

This proves that the sequence {Fρ(Dk)} is non-increasing and it is also bounded below
by 0. Taking the limits on both sides yields ‖Dk+1 − Dk‖ → 0.

(ii) Suppose D̂ is the limit of a subsequence {Dk�}, � = 1, . . . ,. Since we have
established in (i) that (Dk�+1 − Dk� ) → 0, the sequence {Dk�+1} also converges to
D̂. Furthermore, there exist a sequence of Γ k�+1 ∈ ∂ f (Dk�+1) such that (52) holds.
Proposition 4(ii) ensures that there exists a constant c2 > 0 such that ‖Γ k�+1‖ ≤ c2
for all k�. Hence, there exists a subsequence of {k�} (we still denote the subsequence
by {k�} for simplicity) such that Γ k�+1 converges to some Γ̂ ∈ ∂ f (D̂). Now taking
the limits on both sides of (52) on {k�}, we reach the desired inequality (54). We now
prove D̂ is an ε-critical point of (11). Since we already have (54), we only need to
show g(D̂) ≤ ε. It follows from D0 ∈ Kn+(r) ∩ B that

f (D0) = f (D0) + ρg(D0) (because g(D0) = 0)
(18)≥ f (D1) + ρgm(D1, D0) (because D0 ∈ B)

(31)≥ f (D1) + ρg(D1) = fρ(D1)

≥ · · · ≥ fρ(Dk) = f (Dk) + ρg(Dk). (because of (i))

Taking the limit on the right-hand side yields

f (D0) ≥ f (D̂) + ρg(D̂) ≥ ρg(D̂),

where we used f (D̂) ≥ 0. Therefore, thanks to ρ > ρε , it has

g(D̂) ≤ f (D0)/ρ ≤ f (D0)/ρε = ε.
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(iii) We note that we have proved in (i) that (Dk+1 − Dk) → 0. The convergence
of the whole sequence to D̂ follows from [26, Proposition 7]. ��

6 Numerical experiments

In this part, we will conduct extensive numerical experiments of our algorithm
PREEEDM by usingMATLAB (R2014a) on a desktop of 8GB of memory and Inter(R)
Core(TM) i5-4570 3.2Ghz CPU, against 6 leading solvers on the problems of sensor
network localizations (SNL) in �2 (r = 2) and Molecular Conformation (MC) in
�3 (r = 3). This section is split into the following parts. The MATLAB package
is available at DOI: https://doi.org/10.5281/zenodo.3343047. Our implementation of
PREEEDM was described in Sect. 6.1. We will give a brief explanation how the six
benchmark methods were selected in Sect. 6.2. Descriptions of how the test data of
SNL and MC were collected and generated, and extensive numerical comparisons are
reported in Sect. 6.3.

6.1 Implementation

The PREEEDM Algorithm 1 is easy to implement. We first address the issue of its
stopping criterion that is to be used in Step 3 ofAlgorithm1.Wemonitor twoquantities.
One is on how close of the current iterate Dk is to be Euclidean (belonging toKn+(r)).
This can be computed by using (28) as follows.

Kprogk := 2g(Dk)

‖J Dk J‖2 = ‖PCA+
r (−J Dk J ) + (J Dk J )‖2

‖J Dk J‖2

= 1 −
∑r

i=1

[
λ2i − (λi − max{λi , 0})2

]

λ21 + · · · + λ2n
≤ 1,

where λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of (−J Dk J ). The smaller Kprogk is,
the closer Dk is to Kn+(r). The benefit of using Kprog over g(D) is that the former
is independent of any scaling of D.

The other quantity is to measure the progress in the functional values fρ(·) by
the current iterate Dk . In theory (see Theorem 2), we should require ρ > ρo, which
is defined as (51) and is potentially large. As with the most penalty methods [34,
Chp. 17], starting with a very large penalty parameter may degrade the performance
of the method (e.g., causing ill-conditioning). We adopt a dynamic updating rule for
ρ. In particular, we choose ρ0 = κ max δi j

n3/2
and update it as

ρk+1 =

⎧
⎪⎨

⎪⎩

1.25ρk, if Kprogk > Ktol,Fprogk ≤ 0.2Ftol,

0.75ρk, if Fprogk > Ftol,Kprogk ≤ 0.2Ktol,

ρk, otherwise,
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where

Fprogk := fρk−1(D
k−1) − fρk−1(D

k)

1 + ρk−1 + fρk−1(D
k−1)

, (57)

and Ftol = ln(κ) × 10−4 and Ktol = 10−2 with κ being the number of non-zero
elements of Δ. We terminate PREEEDM when

Fprogk ≤ Ftol and Kprogk ≤ Ktol,

Since our computation of each iteration is dominated by ΠKn+(r)(−D) in the con-
struction of the majorization function gm(·, ·) in (31), the computational complexity is
about O(rn2) (we used MATLAB’s built-in function eigs.m to compute PCA+

r (A)

in (27)). For the problem data input, Δ, L and U will be described below. For the
initial point, we follow the popular choice used in [44,47]

√
D0 := Δ̂, where Δ̂ is the

matrix obtained by the shortest path distances among Δ. If Δ has no missing values,
then Δ̂ = Δ.

6.2 Benchmarkmethods

We select six representative state-of-the-art methods for comparison. They are
ADMMSNL [37],ARAP [54],EVEDM (short for EepVecEDM) [12],PC [1],PPAS (short
for PPA Semismooth) [24] and SFSDP [27]. Those methods have been shown to
be capable of returning satisfactory localization/embedding in many applications. We
will compare our method PREEEDM with ADMMSNL, ARAP, EVEDM, PC and SFSDP
for Sensor Network Localization (SNL, r = 2) problems and with EVEDM, PC, PPAS
and SFSDP for Molecular Conformation (MC, r = 3) problems since the current
implementations of ADMMSNL, ARAP do not support the embedding for r ≥ 3.

We note that ADMMSNL is motivated by [45] and aims to enhance the package
diskRelax of [45] for the SNL problems (r = 2). Both methods are based on the
stress minimization (5). As we mentioned before, SMACOF [13,14] has been a very
popular method for (5). However, we will not compare it with other methods here
since its performance demonstrated in [54,56] was not very satisfactory (e.g., when
comparing with ARAP) for either SNL or MC problems. To our best knowledge, PC
is the only viable method, whose code is also publicly available for the model (3).
We select SFSDP and PPAS because of their high reputation in the field of SDP
and quadratic SDP in returning quality localizations and conformations. We note that
SFSDP is for the model (4) and the methods PPAS and EVEDM are proposed for
the model (6). It is worth mentioning that the MADMM package in [29] is capable
of solving the Robust MDS (4) as well as other nonsmooth optimization problems.
However, MADMM does not contain the implementation of its listed example: Robust
MDS. So we were not able to compare it with ours here. We also implemented the
subgradient method of Cayton andDasgupta [8] for their robust Euclidean embedding.
Numerical experiments showed that its performance was similar to PC on our tested
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problems. It works well when a large number of the dissimilarities in Δ are available
and it often performs poorly otherwise. Hence, we omitted it from our reported results.

In our tests, we used all of their default parameters except one or two in order
to achieve the best results. In particular, for PC, we terminate it when | f (Dk−1) −
f (Dk)| < 10−4 × f (Dk) and set its initial point to be the embedding by cMDS on
Δ. For SFSDP which is a high-level MATLAB implementation of the SDP approach
initiated in [50], we set pars.SDPsolver = “sedumi” because it returns the best
overall performance, and pars.objSW = 1 when m > r + 1 and = 3 when m = 0.
We also note that the parameterpars.minDegree controls the degree of a graph and
thus enhances the strength of the SDP relaxation. Numerical experiments have shown
that the larger it is, the more accurate solutions might be generated by SFSDP. How-
ever, the computational time shoots up dramatically when it increases even for small n.
Our extensive experiments suggest that its default value (pars.minDegree = r+2)
is a balanced choice between solution quality and time of computation for large n.
Hence we choose to use its default setting in our test. For ARAP, in order to speed
up the termination, we let tol = 0.05 and IterNum = 20 to compute its local
neighbour patches. Numerical performance demonstrated that ARAP could yield sat-
isfactory embedding, but would take very long time for some examples with large n.

6.3 Numerical comparison

To assess the embedding quality, we adopt a widely used measure RMSD (Root of the
Mean Squared Deviation) defined by

RMSD :=
[

1

n − m

n∑

i=m+1

‖̂xi − xi‖2
]1/2

,

where xi ’s are the true positions of the sensors or atoms in our test problems and x̂i ’s
are their corresponding estimates. The x̂i ’s were obtained by applying the classical
MDS (cMDS) method to the final output of the distance matrix, followed by aligning
them to the existing anchors through the well-known Procrustes procedure (see [54],
[6, Chp. 20] or [41, Proposition 4.1] for more details). Furthermore, upon obtaining
x̂i ’s, a heuristic gradient method can be applied to improve their accuracy and it is
called the refinement step in [5]. We report rRMSD to highlight its contribution. As
we will see, all tested methods benefit from this step, but with varying degrees.

The quality of the general performance of each method can be better appreci-
ated through visualizing their key indicators: RMSD, rRMSD, rTime (time for the
refinement step) and the CPU Time (in s) which is the total time including rTime.
Hereafter, for all examples, we test 20 randomly generated instances for each case
(n,m, R,nf) in SNL or each case (n, R,nf) in MC, and record the average results.

6.3.1 Comparison on SNL

SNL has been widely used to test the viability of many existing methods for the stress
minimization. In such a problem, we typically have m anchors (e.g., sensors with
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known locations) and the rest sensors need to be located. We will test two types of
SNL problems. One has a regular topological layout (Examples 1 and 2 below). The
other has an irregular layout (Example 3).

Example 1 (Square Network with 4 fixed anchors) This example is widely tested since
its detailed study in [5]. In the square region [−0.5, 0.5]2, 4 anchors x1 = a1, . . . , x4 =
a4 (m = 4) are placed at (±0.2,±0.2). The generation of the rest (n − m) sensors
(xm+1, . . . , xn) follows the uniform distribution over the square region. The noisy Δ

is usually generated as follows.

δi j := ‖xi − x j‖ × |1 + εi j × nf|, ∀ (i, j) ∈ N := Nx ∪ Na

Nx := {
(i, j) | ‖xi − x j‖ ≤ R, i > j > m

}

Na := {
(i, j) | ‖xi − a j‖ ≤ R, i > m, 1 ≤ j ≤ m

}
,

where R is known as the radio range, εi j ’s are independent standard normal random
variables, and nf is the noise factor (e.g., nf = 0.1 was used and it corresponds to
10% noise level). In literature (e.g., [5]), this type of perturbation in δi j is known to be
multiplicative and follows the unit-ball rule in defining Nx andNa (see [3, Sect. 3.1]
for more detail). The corresponding weight matrix W and the lower and upper bound
matrices L andU are given as in the table below. Here, M is a large positive quantity.
For example, M := nmaxi j Δi j is the upper bound of the longest shortest path if the
network is viewed as a graph.

(i, j) Wi j Δi j Li j Ui j

i = j 0 0 0 0
i, j ≤ m 0 0 ‖ai − a j‖2 ‖ai − a j‖2
(i, j) ∈ N 1 δi j 0 R2

otherwise 0 0 R2 M2

Example 2 (Square Network with m random anchors) This example also tested in [5]
is similar to Example 1 but with randomly generated anchors. The generation of n
points follows the uniform distribution over the square region [−0.5, 0.5]2. Then the
first m points are chosen to be anchors and the last (n − m) points to be sensors. The
rest of the data generation is same as in Example 1.

Example 3 (EDM word network) This problem has a non-regular topology and was
first used in [3] to challenge existing methods. In this example, n points are randomly
generated in a region whose shape is similar to the letters “E”, “D” and “M”. The
ground truth network is depicted in Fig. 2. We choose the first m points to be the
anchors. The rest of the data generation is same as in Example 1.

(a) Effect of the radio range R It is easy to see that the radio range R decides the
amount of missing dissimilarities among all elements of Δ. The smaller R is, the
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Fig. 2 Ground truth EDM
network with n = 500 nodes

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.2 0.4 0.6 0.8 1 1.2 1.4

R

0

0.2

0.4

0.6

0.8

R
M

SD

0.2 0.4 0.6 0.8 1 1.2 1.4

R

0

0.1

0.2

0.3

rR
M

SD
ADMMSNL
PC
SFSDP
ARAP
EVEDM
PREEEDM

0.2 0.4 0.6 0.8 1 1.2 1.4

R

100

101

102

Ti
m

e
Fig. 3 Average results for Example 1 with n = 200,m = 4, nf= 0.1

fewer numbers of δi j are available, leading to more challenging problems. There-
fore, we first demonstrate the performance of each method to the radio range R. For
Example 1, we fix n = 200,m = 4, nf= 0.1, and alter the radio range R among
{0.2, 0.4, . . . , 1.4}. The average results were demonstrated in Fig. 3. It can be seen
that ARAP and PREEEDM were joint winners in terms of both RMSD and rRMSD.
However, the time used by ARAP was the longest. When R became bigger than 0.6,
ADMMSNL, SFSDP and EVEDM produced similar rRMSD as ARAP and PREEEDM,
while the time consumed by ADMMSNL was significantly larger than that by SFSDP,
EVEDM and PREEEDM. By contrast, PC only worked well when R ≥ 1.

Next we test a number of instances with larger size n ∈ {300, 500, 1000, 2000}. For
Example 1, the average results were recorded in Table 1. When R = √

2 under which
no dissimilarities were missing because Example 1 was generated in a unit region,
PC, ARAP and PREEEDM produced the better RMSD ( almost in the order of 10−3).
But with the refinement step, all methods led to similar rRMSD. This meant SFSDP
and EVEDM benefited a lot from the refinement step. For the computational speed,
PREEEDM outperformed others, followed by PC, EVEDM and SFSDP. By contrast,
ARAP consumed too much time even for n = 500. When R = 0.2, the picture was
significantly different since there were large amounts of unavailable dissimilarities in
Δ. Basically, ADMMSNL, PC and SFSDP failed to localize even with the refinement
due to undesirable RMSD and rRMSD (both in the order of 10−1). Clearly, ARAP and
PREEEDM produced the best RMSD and rRMSD, and EVEDM got comparable rRMSD
but inaccurate RMSD. In terms of the computational speed, EVEDM and PREEEDM
were very fast, consuming about 30 s to solve problems with n = 2000 nodes. By
contrast, ARAP still was the slowest, followed by ADMMSNL and PC.
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Table 1 Comparison of six methods for Example 1 with m = 4,nf = 0.1

n ADMMSNL PC SFSDP ARAP EVEDM PREEEDM

R = √
2 300 RMSD 2.07e−2 8.31e−3 1.21e−1 1.01e−2 5.95e−2 1.11e−2

rRMSD 7.82e−3 7.86e−3 7.89e−3 7.96e−3 7.93e−3 7.80e−3

rTime 3.63 0.66 3.87 0.94 3.35 1.06

Time 348.13 1.36 6.79 503.86 3.84 1.36

500 RMSD – 6.11e−3 1.19e−1 7.51e−3 5.87e−2 8.46e−3

rRMSD – 5.94e−3 5.96e−3 6.04e−3 6.70e−3 6.11e−3

rTime – 1.37 14.79 3.26 13.35 3.92

Time – 3.83 20.22 2479.8 14.44 4.41

1000 RMSD – 4.46e−3 1.25e−1 – 5.81e−2 6.59e−3

rRMSD – 4.15e−3 7.34e−3 – 6.53e−3 4.59e−3

rTime – 3.51 83.96 – 68.06 9.75

Time – 23.05 103.29 – 71.52 10.85

2000 RMSD – 3.30e−3 1.20e−1 – 5.92e−2 4.57e−3

rRMSD – 3.10e−3 7.82e−3 – 1.24e−2 3.37e−3

rTime – 12.74 282.88 – 258.97 13.04

Time – 143.41 398.87 – 271.91 18.49

R = 0.2 300 RMSD 3.48e−1 4.42e−1 1.93e−1 4.02e−2 6.81e+1 1.88e−2

rRMSD 3.33e−1 3.12e−1 1.73e−1 6.83e−3 1.72e−1 6.84e−3

rTime 0.50 0.44 0.41 0.36 0.48 0.36

Time 84.19 2.37 3.45 24.11 0.56 0.47

500 RMSD 3.53e−1 4.30e−1 2.02e−1 1.95e−2 1.52e−1 1.77e−2

rRMSD 3.35e−1 3.11e−1 1.80e−1 5.57e−3 5.59e−2 5.51e−3

rTime 1.11 1.15 1.06 0.80 1.11 0.92

Time 156.76 5.50 6.90 161.04 1.30 1.23

1000 RMSD 3.62e−1 4.54e−1 1.79e−1 9.96e−3 7.21e−2 1.46e−2

rRMSD 3.44e−1 3.16e−1 1.28e−1 3.57e−3 4.06e−3 3.83e−3

rTime 5.58 5.58 5.25 1.69 5.16 3.76

Time 450.03 24.82 19.90 2833.5 6.00 5.86

2000 RMSD 3.71e−1 4.35e−1 1.80e−1 – 5.92e−2 1.37e−2

rRMSD 3.51e−1 3.63e−1 8.29e−2 – 3.53e−3 3.29e−3

rTime 40.40 40.65 37.94 – 24.72 4.58

Time 1255.1 171.01 77.03 – 32.31 17.51

Now we test those methods for the irregular network in Example 3. The average
results were recorded in Table 2. We note that this example was generated in the
region [0, 1] × [0, 0.5] as presented in Fig. 2. It implies that no dissimilarities in Δ

were missing when R = √
1.25 while a large number of dissimilarities in Δ were

missing when R = 0.1. When R = √
1.25, it can be clearly seen that SFSDP and

EVEDM failed to localize before the refinement step due to their large RMSD (in the
order of 10−1), whilst the rest four methods succeeded. However, they all achieved a
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Table 2 Comparisons of six methods for Example 3 with m = 10,nf = 0.1

n ADMMSNL PC SFSDP ARAP EVEDM PREEEDM

R = √
1.25 300 RMSD 4.02e−2 5.33e−3 1.45e−1 1.27e−2 1.62e−1 9.26e−3

rRMSD 5.12e−3 5.14e−3 5.11e−3 5.12e−3 5.09e−3 5.15e−3

rTime 3.28 0.66 3.71 1.69 3.94 1.44

Time 346.98 2.00 6.74 553.87 4.42 1.87

500 RMSD – 4.09e−3 1.07e−1 8.50e−3 1.63e−1 7.15e−3

rRMSD – 4.03e−3 4.04e−3 4.05e−3 1.02e−1 4.15e−3

rTime – 2.68 17.28 7.07 17.39 3.12

Time – 7.24 23.44 2556.3 18.89 5.13

1000 RMSD – 3.07e−3 1.12e−1 – 1.28e−1 5.05e−3

rRMSD – 2.98e−3 3.50e−3 – 4.15e−3 3.15e−3

rTime – 10.35 119.79 – 122.12 15.73

Time – 43.69 140.66 – 125.46 20.11

2000 RMSD – 2.36e−3 1.15e−1 – 1.03e−1 3.75e−3

rRMSD – 2.28e−3 7.34e−3 – 7.78e−3 2.26e−3

rTime – 13.43 537.70 – 489.30 10.59

Time – 238.31 659.71 – 500.72 20.25

R = 0.1 300 RMSD 1.81e−1 3.77e−1 8.64e−2 8.19e−2 4.06e−1 3.97e−2

rRMSD 1.43e−1 1.24e−1 6.69e−2 5.38e−2 1.17e−1 8.21e−3

rTime 0.27 0.22 0.21 0.21 0.22 0.21

Time 76.57 1.21 3.24 7.24 3.41 0.32

500 RMSD 9.73e−2 3.30e−1 5.08e−2 5.77e−2 2.16e−1 3.63e−2

rRMSD 7.82e−2 1.15e−1 3.48e−2 3.08e−2 9.78e−2 3.63e−3

rTime 0.67 0.63 0.60 0.58 0.61 0.50

Time 148.06 3.63 6.41 50.81 2.07 1.85

1000 RMSD 2.26e−1 3.29e−1 4.80e−2 8.75e−2 2.22e−1 5.01e−2

rRMSD 1.01e−1 1.21e−1 9.15e−3 4.55e−2 1.02e−1 2.95e−3

rTime 2.74 2.66 2.67 2.58 2.61 2.60

Time 353.07 18.01 17.10 842.43 3.22 4.24

2000 RMSD 1.66e−1 3.29e−1 8.21e−2 – 1.02e−1 5.73e−2

rRMSD 1.22e−1 1.53e−1 7.10e−2 – 3.64e−2 4.97e−3

rTime 23.22 23.30 23.06 – 23.12 17.99

Time 887.30 108.81 62.65 – 26.12 29.89

similar rRMSD after the refinement except for EVEDM under the case n = 500. Still,
PREEEDM ran the fastest and ARAP came the last, (5.13s vs. 2556.3s when n = 500).
Their performances for the case R = 0.1 are quite contrasting. PREEEDM generated
the most accurate RMSD and rRMSD (in the order of 10−3) whilst the results of the
rest methods were only in the order of 10−2. Obviously, ADMMSNL, PC and EVEDM
failed to localize. Compared with the other methods, EVEDM and PREEEDMwere joint
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Fig. 4 Average results for Example 2 with n = 200, R = 0.2, nf= 0.1

winners in terms of the computational speed, only using 30s when n = 2000 (a larger
scale network). But we should mention that EVEDM failed to localize.

(b) Effect of the number of anchors m As one would expect, more anchors would
lead to more information available, and hence lead to easier localization. In this part,
we demonstrate the degree of the effect of the varying anchors’ numbers on the 6
methods. For Example 2, we fix n = 200, R = 0.2, nf= 0.1 with choosing m from
{5, 10, . . . , 40}. As illustrated in Fig. 4,ARAP and PREEEDMwere again joint winners
in terms of RMSD and rRMSD. And rRMSD produced by the rest methods declined
rapidly as more anchors being used. Moreover, PREEEDM was the fastest, followed
by EVEDM, PC and SFSDP, whilst ADMMSNL and ARAP were quite slow.

For Example 3 with fixed n = 500, R = 0.1, nf= 0.1, we test it under m ∈
{10, 30, 50}. As depicted in Fig. 5, ARAP and PREEEDM were always capable of
capturing the shape of letters ‘E’, ‘D’ and ‘M’ that was similar to Fig. 2. By contrast,
SFSDP and EVEDM derived desirable outline of three letters only when m = 50, and
the localization quality of both ADMMSNL and PC improved along with the increasing
m but still with a deformed shape of letter ‘M’.

Finally we test a number of instances of Example 2 with choosing n ∈ {300, 500,
1000, 2000} and m ∈ {10, 50}. The average results were recorded in Table 3. When
m = 10, ADMMSNL and PC produced undesirable RMSD and rRMSD (both in the order
of 10−1). SFSDP benefited greatly from the refinement because it generated relatively
inaccurateRMSD. By contrast the rest threemethods enjoyed the successful localization
except for EVEDM under the case n = 300. With regard to the computational speed,
EVEDM and PREEEDM were the fastest, followed by SFSDP, PC, ADMMSNL and
ARAP. When m = 50, more information was known, the results were better than
before, especially for the methods ADMMSNL and PC. But PC still heavily relied on
the refinement step to get the satisfactory localization. The rest five methods produced
a satisfactory localization with varying degree of accuracy. It is encouraging to see
that PREEEDM produced the most accurate rRMSD for all cases. The comparison of
the computational speed is similar to the case of m = 10. We repeated the test for
Example 3 and the average results were recorded in Table 4, where we observed a
similar performance of the six methods as for Example 2. We omit the details.

(c) Effect of the noise factor nf To see the dependence of the performance of each
method on the noise factor, we first test Example 3 with fixing n = 200,m = 10, R =
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Fig. 5 Localization for Example 3 with n = 500, R = 0.1, nf= 0.1

0.3 and varying the noise factor nf ∈ {0.1, 0.2, . . . , 0.7}. As shown in Fig. 6, in
terms of RMSD it can be seen that ARAP got the smallest ones, whilst EVEDM and PC
obtained the worst ones. The line of ADMMSNL dropped down from 0.1 ≤ nf ≤ 0.3
and then ascended. By contrast the line of PREEEDM reached the peak at nf = 0.3 but
declined afterwards and gradually approached to RMSD of ARAP. However, after the
refinement step, ARAP, SFSDP and PREEEDM all derived a similar rRMSD while the
other three methods produced undesirable ones. Apparently, EVEDM was indeed the
fastest (yet with the worst rRMSD), followed by PC, SFSDP and PREEEDM. Again,
ARAP and ADMMSNL were quite slow.
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Table 3 Comparisons of six methods for Example 2 with R = 0.2,nf = 0.1

n ADMMSNL PC SFSDP ARAP EVEDM PREEEDM

m = 10 300 RMSD 2.56e−1 4.59e−1 1.34e−1 2.60e−2 2.72e−1 3.99e−2

rRMSD 2.49e−1 2.43e−1 7.19e−2 6.71e−3 1.44e−1 6.69e−3

rTime 0.40 0.43 0.36 0.26 0.39 0.28

Time 81.62 2.02 3.18 24.92 0.47 0.40

500 RMSD 1.86e−1 4.41e−1 9.70e−2 2.42e−2 8.62e−2 3.29e−2

rRMSD 1.82e−1 2.07e−1 4.99e−2 5.07e−3 5.05e−3 5.07e−3

rTime 0.81 1.30 0.93 0.69 0.84 0.64

Time 163.55 4.70 6.67 170.82 1.04 1.02

1000 RMSD 1.82e−1 4.39e−1 9.93e−2 2.71e−2 6.88e−2 3.95e−2

rRMSD 1.60e−1 1.96e−1 2.92e−2 3.21e−3 3.20e−3 3.63e−3

rTime 4.79 5.53 4.38 3.90 4.66 3.71

Time 441.08 24.70 18.64 2861.9 5.47 5.88

2000 RMSD 2.17e−1 4.39e−1 1.30e−1 – 6.08e−2 5.03e−2

rRMSD 1.87e−1 2.54e−1 6.88e−2 – 2.64e−3 2.82e−3

rTime 39.22 39.32 36.29 – 33.85 14.43

Time 1251.07 170.55 75.29 – 37.33 28.95

m = 50 300 RMSD 3.19e−2 4.49e−1 3.09e−2 5.30e−2 1.09e−1 5.07e−2

rRMSD 3.10e−2 4.39e−2 1.13e−2 1.26e−2 1.84e−2 5.78e−3

rTime 0.12 0.20 0.09 0.09 0.11 0.09

Time 74.71 1.44 2.41 48.83 0.22 0.25

500 RMSD 2.80e−2 4.60e−1 3.54e−2 4.39e−2 5.10e−2 6.09e−2

rRMSD 2.68e−2 4.93e−2 6.77e−3 4.42e−3 5.61e−3 4.42e−3

rTime 0.24 0.50 0.21 0.21 0.19 0.19

Time 144.93 4.25 4.67 232.14 0.46 0.72

1000 RMSD 1.91e−2 4.57e−1 3.21e−2 2.27e−2 5.06e−2 5.99e−2

rRMSD 1.27e−2 3.75e−2 4.76e−3 2.94e−3 2.94e−3 2.94e−3

rTime 1.05 2.52 1.10 1.05 1.01 1.12

Time 406.88 20.29 12.48 3150.6 1.86 4.02

2000 RMSD 2.17e−2 4.47e−1 3.63e−2 – 5.16e−2 4.72e−2

rRMSD 6.13e−3 2.78e−2 3.52e−3 – 2.06e−3 2.06e−3

rTime 11.89 25.95 10.43 – 8.80 7.71

Time 1171.22 156.45 40.45 – 11.15 22.53

Next, we test Example 2 with a moderate size (for the visualization purpose in
Fig. 7) n = 200,m = 4 and R = 0.3 and varying nf ∈ {0.1, 0.3, 0.5}. The actual
embedding by each method was shown in Fig. 7, where the four anchors were plotted
in green square and x̂i in pink points were jointed to its ground truth location (blue
circle). It can be clearly seen that ARAP and PREEEDM were quite robust to the noise
factor since their localization matched the ground truth well. EVEDM failed to locate
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Table 4 Comparisons of six methods for Example 3 with R = 0.1,nf = 0.1

n ADMMSNL PC SFSDP ARAP EVEDM PREEEDM

m = 10 300 RMSD 1.80e−1 3.77e−1 8.86e−2 7.97e−2 3.88e−1 4.05e−2

rRMSD 1.48e−1 1.24e−1 6.24e−2 4.51e−2 1.19e−1 6.25e−3

rTime 0.28 0.22 0.21 0.22 0.23 0.21

Time 76.83 1.12 3.00 7.22 5.92 0.41

500 RMSD 9.71e−2 3.30e−1 4.97e−2 5.97e−2 2.10e−1 3.81e−2

rRMSD 8.07e−2 9.98e−2 3.21e−2 3.38e−2 1.04e−1 3.91e−3

rTime 0.68 0.59 0.60 0.59 0.59 0.47

Time 142.20 3.37 6.35 48.98 2.10 0.98

1000 RMSD 2.30e−1 3.29e−1 4.98e−2 8.86e−2 2.24e−1 4.93e−2

rRMSD 1.02e−1 1.18e−1 2.33e−2 4.53e−2 1.07e−1 2.37e−3

rTime 2.92 2.84 2.82 2.80 2.85 2.84

Time 354.77 18.59 17.43 838.48 3.85 4.55

2000 RMSD 1.66e−1 3.29e−1 7.96e−2 – 1.03e−1 5.72e−2

rRMSD 1.22e−1 1.52e−1 6.92e−2 – 4.25e−2 4.89e−3

rTime 23.24 23.17 23.08 – 23.05 13.07

Time 882.40 98.20 66.58 – 26.21 24.17

m = 50 300 RMSD 2.24e−2 3.34e−1 1.72e−2 4.04e−2 2.22e−1 3.35e−2

rRMSD 2.13e−2 2.44e−2 8.36e−3 1.19e−2 2.11e−2 4.34e−3

rTime 0.22 0.21 0.11 0.13 0.22 0.14

Time 69.59 0.55 2.30 26.37 0.30 0.29

500 RMSD 2.53e−2 3.41e−1 2.50e−2 4.95e−2 6.14e−2 4.18e−2

rRMSD 2.46e−2 3.67e−2 6.64e−3 4.89e−3 2.97e−3 2.96e−3

rTime 0.34 0.58 0.42 0.38 0.43 0.37

Time 130.58 2.96 5.07 83.65 0.60 0.79

1000 RMSD 1.97e−2 3.30e−1 1.94e−2 4.82e−2 5.60e−2 4.90e−2

rRMSD 1.89e−2 3.07e−2 1.95e−3 3.50e−3 1.96e−3 1.96e−3

rTime 1.02 2.78 1.04 1.49 1.36 1.23

Time 314.30 14.31 12.87 947.29 1.97 3.48

2000 RMSD 4.64e−3 3.28e−1 2.10e−2 – 6.30e−2 5.72e−2

rRMSD 1.32e−3 3.01e−2 1.32e−3 – 1.32e−3 1.32e−3

rTime 14.59 23.23 13.03 – 13.87 8.28

Time 811.23 99.02 44.12 – 15.99 19.45

when nf = 0.5. By contrast, SFSDP generated worse results when nf got bigger,
and ADMMSNL and PC failed to localize for all cases.

Finally, we test Example 1 with larger sizes n ∈ {300, 500, 1000, 2000} and fixed
m = 4, R = 0.3. The average results were recorded in Table 5. When nf = 0.1,
ADMMSNL and PC failed to render accurate embedding. Compared with ARAP,
EVEDM and PREEEDM, SFSDP generated lager RMSD and rRMSD. Again, EVEDM
and PREEEDM ran faster than ARAP.Whennf = 0.7, the results were different.ARAP
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Fig. 6 Average results for Example 3 with n = 200,m = 10, R = 0.3

and PREEEDM were still able to produce high-quality RMSD and rRMSD. However,
the former took extremely long time (16617 vs. 83 s). By contrast, ADMMSNL and
PC again failed to reconstruct the network. Furthermore, EVEDM got large RMSD but
comparable rRMSD when n ≤ 1000, but it failed when n = 2000.

6.3.2 Comparison onMC

MC has long been an important application of EDM optimization [2,21,33]. We will
test two types of MCs respectively from an artificial data set and a real data set in
Protein Data Bank (PDB) [4]. For the former, we adopt the rule of generating data from
[2,33]. For the latter, we used the real data of 12 molecules derived from 12 structures
of proteins from PDB. They are 1GM2, 304D, 1PBM, 2MSJ, 1AU6, 1LFB,
104D, 1PHT, 1POA, 1AX8, 1RGS, 2CLJ. They provide a good set of test
problems in terms of the size n, which ranges from a few hundreds to a few thousands
(the smallest n = 166 for 1GM and the largest n = 4189 for 2CLJ). The distance
information was obtained in a realistic way as done in [24].

Example 4 (Artificial data) As described in [2,33], the artificial molecule has n = s3

atoms (x1, . . . , xn) located in the three-dimensional lattice

{(i1, i2, i3) : i1, i2, i3 = 0, 1, . . . , s − 1}

for some integer s ≥ 1, i.e., xi = (i1, i2, i3)T . We defineNx for the index set on which
δi j are available as:

Nx := {(i, j) : |p(xi ) − p(x j )| ≤ R} (58)

where p(xi ) := 1 + (1, s, s2)T xi = 1 + i1 + si2 + s2i3 and R is a given constant
(e.g., R = s2). The corresponding dissimilarity matrix Δ, weight matrix W and the
lower and upper bound matrices L and U are given as in the table below. Here the
generation of δi j is the same as Example 1.

Example 5 (Real PDB data) Each molecule comprises n atoms {x1, . . . xn} in �3 and
its distance information is collected as follows. If the Euclidean distance between two
of the atoms is less than R, the distance is chosen; otherwise no distance information
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Fig. 7 Localization for Example 2 with n = 200,m = 4, R = 0.3

about this pair is known. For example, R = 6Å (1Å = 10−8cm) is nearly the maximal
distance that the nuclear magnetic resonance (NMR) experiment canmeasure between
two atoms. For realistic molecular conformation problems, not all the distances below
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(i, j) Wi j Δi j Li j Ui j

i = j 0 0 0 0
(i, j) ∈ Nx 1 δi j 1 max(i, j)∈Nx ||xi − x j ||2
otherwise 0 0 1 3(s − 1)2

R are known from NMR experiments, so one may obtain c% (e.g., c = 50%) of
all the distances below R. Denote Nx the set formed by indices of those measured
distances. Moreover, the distances in Nx can not be exactly measured. Instead, only
lower bounds �i j and upper bounds ui j are provided, that is for (i, j) ∈ Nx ,

�i j = max
{
1, (1 − |εi j |)‖xi − x j‖

}
, ui j = (1 + |εi j |)‖xi − x j‖.

where εi j , εi j ∼ N (0,nf2 × π/2) are independent normal random variables. In our
test, we set the noise factor nf = 0.1 and the parameters W ,Δ, L,U ∈ Sn are given
as in the table below, where M > 0 is the upper bound (e.g., M := nmaxi j Δi j ).

(i, j) Wi j Δi j Li j Ui j

i = j 0 0 0 0
(i, j) ∈ Nx 1 (�i j + ui j )/2 �2i j u2i j
otherwise 0 0 0 M2

As we mentioned before, the current implementations of ADMMSNL, ARAP do not
support the embedding for r ≥ 3 and thus are removed in the following comparison,
where the method PPAS will be added. The main reason for adding PPAS is that it is
particularly suitable and credible for the MC problems [24,25].

(d) Test on Example 4. To see the performance of eachmethod on this problem, we first
test it with fixing s = 6 (n = 63), nf = 0.1 but varying R ∈ {36, 38, . . . , 48}. We
note that the percentage of available dissimilarities increased from 32.47 to 39.87%
with R increasing from 36 to 48, making the problem become ‘easier’ for confor-
mation. The Average results were recorded in Fig. 8. Clearly, PREEEDM and PPAS
outperformed the other three methods in terms of RMSD and rRMSD. The former gen-
erated the best RMSD when R ≥ 42 while the latter got the best RMSD when R ≤ 42,
but they both obtained similar rRMSD. As for the computational speed, PREEEDM
ran much faster than PPAS. By contrast, the other three methods failed to produce
accurate embeddings due to the worse RMSD and rRMSD. Notice that the refinement
would not alwaysmake the final results better. For instance,rRMSD yielded bySFSDP
was bigger than RMSD for each s.

We then test the example with fixing s = 6 (n = 63), R = s2 and varying
nf ∈ {0.1, 0.2, . . . , 0.5}. As illustrated in Fig. 9, in terms of RMSD and rRMSD, it
can be clearly seen that PREEEDM and PPASwere the joint winners. In particular, our
method rendered the best RMSD when nf ≥ 0.2 and also ran much faster than PPAS.
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Table 5 Comparisons of six methods for Example 1 with m = 4, R = 0.3

n ADMMSNL PC SFSDP ARAP EVEDM PREEEDM

nf = 0.1 300 RMSD 3.16e−1 4.46e−1 1.74e−1 1.03e−2 6.58e−2 1.64e−2

rRMSD 2.84e−1 3.10e−1 9.63e−2 6.62e−3 6.55e−3 6.57e−3

rTime 0.75 0.71 0.62 0.31 0.43 0.34

Time 101.07 3.09 4.39 117.33 0.55 0.57

500 RMSD 2.96e−1 4.02e−1 1.59e−1 6.73e−3 5.25e−2 1.25e−2

rRMSD 2.14e−1 2.81e−1 6.05e−2 4.59e−3 4.64e−3 4.73e−3

rTime 1.68 1.74 1.50 0.50 1.03 0.81

Time 182.09 9.10 6.16 769.39 1.32 1.48

1000 RMSD 3.47e−1 4.77e−1 1.83e−1 5.35e−3 5.57e−2 1.13e−2

rRMSD 2.71e−1 2.52e−1 5.52e−2 3.63e−3 3.65e−3 3.49e−3

rTime 14.89 15.11 12.00 1.97 10.32 5.22

Time 601.92 56.65 24.49 15686.4 11.63 10.03

2000 RMSD – 4.47e−1 1.81e−1 – 5.53e−2 1.16e−2

rRMSD – 4.25e−1 2.21e−2 – 3.32e−3 3.12e−3

rTime – 82.17 82.35 – 45.12 5.85

Time – 470.32 122.45 – 49.18 34.68

nf = 0.7 300 RMSD 2.80e−1 4.36e−1 3.27e−1 6.70e−2 2.08e−1 5.04e−2

rRMSD 2.31e−1 3.60e−1 2.47e−1 5.48e−2 6.10e−2 4.92e−2

rTime 0.75 0.83 0.83 0.29 0.47 0.38

Time 107.48 1.74 83.73 123.18 0.59 7.49

500 RMSD 2.64e−1 4.53e−1 – 4.24e−2 1.76e−1 3.73e−2

rRMSD 1.94e−1 3.59e−1 – 3.52e−2 3.47e−2 3.23e−2

rTime 1.66 1.88 – 0.47 0.87 0.67

Time 177.24 5.13 – 844.74 1.31 20.15

1000 RMSD 2.21e−1 4.52e−1 – 2.84e−2 1.45e−1 2.79e−2

rRMSD 9.69e−2 3.26e−1 – 2.47e−2 2.93e−2 2.40e−2

rTime 9.83 15.69 – 1.41 7.78 2.54

Time 599.30 41.55 – 16617.1 9.16 83.64

2000 RMSD – 4.51e−1 – – 2.26e−1 2.13e−2

rRMSD – 3.35e−1 – – 1.23e−1 1.52e−2

rTime – 92.45 – – 58.25 3.79

Time – 274.90 – – 62.52 303.43

Obviously, the other three methods again failed to obtain desirable RMSD and rRMSD
irrelevant of the time they used.

Finally, for larger size problems with n = s3 and s ∈ {7, 8, . . . , 13}, the average
results were presented in Fig. 10, where we omitted the results by PPAS for s > 10
because it took toomuch time to terminate. It isworthmentioning that the percentage of
the available dissimilarities over all elements of Δ decreases from 26.78% to 14.83%
when s increasing from 7 to 13, making the problems more and more challenging.

123



Robust Euclidean embedding via EDM optimization

36 38 40 42 44 46 48
R

0

1

2

3
R

M
SD

36 38 40 42 44 46 48
R

0

1

2

3

4

rR
M

SD PC
SFSDP
PPAS
EVEDM
PREEEDM

36 38 40 42 44 46 48
R

100

101

Ti
m

e

Fig. 8 Average results for Example 4 with s = 6,nf = 0.1
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Fig. 9 Average results for Example 4 with s = 6, R = s2
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Fig. 10 Average results for Example 4 with n = s3, R = s2,nf = 0.1

Clearly PC, SFSDP and EVEDM failed to locate all atoms in �3. PPAS rendered
the most accurate RMSD when s ≤ 10 whilst PREEEDM achieved the most accurate
RMSD when s > 10 and the most accurate rRMSD for all cases. Equally important for
PREEEDM is that it spent less than 50s for all tested cases, while PPAS took much
more time to terminate (e.g., consuming over 2000s when s ≥ 10).

(e) Test on Example 5 For the 12 collected real data, we fixed R = 6, c = 50%
and nf = 0.1. The generated embeddings by the five methods for the three molecules
1GM2, 1AU6 and 1LFBwere shown in Fig. 11, where the true and estimated positions
of the atomswere plotted by blue circles and pink stars respectively. Each pink star was
linked to its corresponding blue circle by a pink line. For these three data, PREEEDM
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(a) PC:rRMSD=8.39 (b) PC:rRMSD=10.7 (c) PC:rRMSD=13.7

(d) SFSDP:rRMSD=7.86 (e) SFSDP:rRMSD=9.55 (f) SFSDP:rRMSD=14.2

(g) PPAS:rRMSD=0.267 (h) PPAS:rRMSD=0.173 (i) PPAS:rRMSD=0.680

(j) EVEDM:rRMSD=9.75 (k) EVEDM:rRMSD=10.0 (l) EVEDM:rRMSD=14.2

(m) PREEEDM:rRMSD=0.322 (n) PREEEDM:rRMSD=0.160 (o) PREEEDM:rRMSD=0.727

Fig. 11 Molecular conformation by PC, SFSDP, PPAS, EVEDM and PREEEDM. Left 1GM2 (n = 166);
middle: 1AU6 (n = 506); right 1LFB (n = 641)
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and PPAS almost conformed the shape of the original data. Clearly, the other three
methods failed to conform. The complete numerical results for the 12 problems were
reported in Table 6. It can be clearly seen that PREEEDM and PPAS performed signif-
icantly better in terms of the RMSD and rRMSD than the other methods. What is more
impressive is that PREEEDM only used a small fraction of the time by PPAS, which
in general took relatively long time to terminate. For example, PREEEDM only used
22.64 s for 2CLJ, which is a very large data set with n = 4189. In contrast, we had to
omit the result of PPAS for this instance (as well as to omit for other tested instances,
and the missed results were indicated as “–” in Table 6) because it took too long to
terminate.

6.4 Robustness of PREEEDM

The excellent performance of PREEEDM reported above was actually due to its robust-
ness to noise. Previous examples all had Gaussian noise. We now demonstrate below
that PREEEDM works much better than the other methods when the noise is from a
heavy-tailed distribution, for instance, t-distribution with a small degree of freedom.
We also take this opportunity to test SQREDM solver of our own [56], which also made
use of penalty, majorization and minimization techniques, yet for the least squares
problem (5). We will see that PREEEDM outperforms SQREDM for both types of noise
(Gaussian and t distributions).

To shorten the presentation, we restrict our numerical tests on two representative
examples: Example 1 with n = 100, R = 0.3 and Example 4 with s = 5, R = s2.
For each example, we generate 20 instances under two types of noise from standard
normal distribution and Student-t distribution with the degree of freedom being 1. We
alter nf from {0.1, 0.2, . . . , 0.9} and from {0.01, 0.02, . . . , 0.09} for the Gaussian
and the Student-t noises respectively. Average RMSD were recorded in Fig. 12. We
have the following observations.

(i) PREEEDM is competitive under Gaussian noise. For Example 1, Fig. 12a showed
ARAP yielded the best RMSD followed byPREEEDM andSQREDM. For Example 4,
Fig. 12c showed that PREEEDM rendered the smallest RMSD for most cases,
followed by PPAS and SQREDM (note that the current implementation of ARAP
is only for r = 2 and hence is not applicable to this example).
In particular, when the nf is over 50%, PPAS and PREEEDM closely follow
each other. The behaviour of those methods under Gaussian noise is expected as
the least-squares formulation is equivalent to the maximum-likelihood criterion.
On the one hand, least squares favour large distances. On the other hand, under
Gaussian (thin-tailed), the number of large distance errors is relatively small and
hence would not cause significant distortion in locating the unknown sensors.

(ii) PREEEDM performs the best under heavy-tailed noise (from Student t1 distribu-
tion). For Example 1, both PREEEDM and SQREDM behaved much better than
the other methods, see Fig. 12b. For Example 4, PREEEDM stood out as the
best method when nf is bigger than 0.02 and is much better than SQREDM, see
Fig. 12d. The test data now has more numbers of large distance errors than under
the Gaussian distribution and the absolute value criterion alleviates the tendency
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Table 6 Comparisons of the five methods for Example 5

PC SFSDP PPAS EVEDM PREEEDM

1GM2 RMSD 6.60e+0 6.65e+0 4.07e−1 6.51e+0 9.09e−1

n = 166 rRMSD 7.07e+0 6.92e+0 2.65e−1 7.41e+0 3.51e−1

rTime 0.17 0.18 0.22 0.18 0.16

Time 0.98 4.84 15.43 0.98 0.27

304D RMSD 1.03e+1 1.03e+1 2.89e+0 1.02e+1 3.61e+0

n = 237 rRMSD 1.07e+1 1.08e+1 1.43e+0 1.08e+1 2.50e+0

rTime 0.16 0.16 0.55 0.16 0.15

Time 1.07 7.76 36.44 1.36 0.23

1PBM RMSD 8.45e+0 8.47e+0 5.29e−1 8.35e+0 1.23e+0

n = 388 rRMSD 9.13e+0 8.91e+0 2.01e−1 9.28e+0 2.11e−1

rTime 0.51 0.49 0.53 0.49 0.32

Time 2.84 28.64 112.82 1.45 0.54

2MSJ RMSD 1.06e+1 1.06e+1 5.40e−1 1.05e+1 9.15e−1

n = 480 rRMSD 1.12e+1 1.11e+1 2.99e−1 1.10e+1 3.34e−1

rTime 0.40 0.39 0.54 0.39 0.32

Time 2.32 118.60 196.12 1.47 0.59

1AU6 RMSD 9.30e+0 9.31e+0 4.02e−1 9.20e+0 6.74e−1

n = 506 rRMSD 9.99e+0 9.83e+0 1.68e−1 9.69e+0 1.63e−1

rTime 0.70 0.68 0.30 0.69 0.35

Time 4.12 47.68 262.28 1.47 0.70

1LFB RMSD 1.34e+1 1.34e+1 1.56e+0 1.33e+1 1.57e+0

n = 641 rRMSD 1.39e+1 1.35e+1 5.41e−1 1.37e+1 7.38e−1

rTime 0.49 0.49 1.63 0.48 0.37

Time 2.93 132.96 956.44 1.64 0.79

104D RMSD 1.23e+1 1.23e+1 4.30e+0 1.22e+1 3.27e+0

n = 766 rRMSD 1.27e+1 1.27e+1 2.02e+0 1.26e+1 1.26e+0

rTime 0.89 0.86 3.40 0.87 0.61

Time 5.04 72.16 2024.51 1.47 1.40

1PHT RMSD 1.23e+1 1.23e+1 1.70e+0 1.23e+1 1.58e+0

n = 814 rRMSD 1.29e+1 1.26e+1 9.16e−1 1.26e+1 9.85e−1

rTime 0.74 0.74 2.57 0.74 0.48

Time 4.86 411.14 4726.96 1.71 1.25

1POA RMSD 1.42e+1 1.42e+1 1.39e+0 1.41e+1 1.48e+0

n = 914 rRMSD 1.45e+1 1.46e+1 3.27e−1 1.46e+1 4.51e−1

rTime 0.58 0.55 1.34 0.55 0.52

Time 5.03 587.14 1623.43 1.99 1.45

1AX8 RMSD 1.43e+1 1.43e+1 – 1.43e+1 1.23e+0

n = 1003 rRMSD 1.47e+1 1.45e+1 – 1.44e+1 5.01e−1

rTime 0.62 0.58 – 0.59 0.34

Time 5.78 1404.53 – 1.54 1.49
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Table 6 continued

PC SFSDP PPAS EVEDM PREEEDM

1RGS RMSD 2.02e+1 – – 2.02e+1 1.99e+0

n = 2015 rRMSD 2.05e+1 – – 2.06e+1 6.76e−1

rTime 1.33 – – 1.25 0.94

Time 16.08 – – 3.69 5.71

2CLJ RMSD 2.27e+1 – – 2.27e+1 1.54e+0

n = 4189 rRMSD 2.30e+1 – – 2.29e+1 6.50e−1

rTime 4.46 – – 3.82 2.35

Time 43.10 – – 378.35 22.64

nf
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(b) Example 1 with Student t noise
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(c) Example 4 with standard normal noise
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(d) Example 4 with Student t noise

Fig. 12 Robustness of PREEEDM

of favouring large distances. Therefore, PREEEDM yielded the best performance
in such situations.

We conclude that PREEEDM based on the model (3) is robust to the noise in terms of
these two examples.
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7 Conclusion

The purpose of this paper is to develop an efficientmethod for one of themost challeng-
ing distance embedding problems in a low-dimensional space, which have beenwidely
studied under the framework of multi-dimensional scaling. The problem employs �1
norm to quantify the embedding errors. Hence, the resulting model (3) appears to be
robust to outliers and is referred to as the robust Euclidean embedding (REE) model.

To the best knowledge of the authors, the only viable method, whose matlab code
is also publicly available for REE is the PlaceCenter (PC) algorithm proposed in
[1]. Our extensive numerical results on the SNL and MC test problems convincingly
demonstrated that the proposed PREEEDM method outperform PC in terms of both
the embedding quality and the CPU time. Moreover, PREEEDM is also comparable to
several state-of-the-artmethods for other embeddingmodels in terms of the embedding
quality, but is far more efficient in terms of the CPU time. The advantage becomes
even more superior as the size of the problem gets bigger.

The novelty of the proposed PREEEDM lies with its creative use of the Euclidean
distance matrix and a computationally efficient majorization technique to derive its
subproblem, which has a closed-form solution closely related to the positive root of
the classical depressed cubic equation. Furthermore, a great deal of effort has been
devoted to its convergence analysis, which well justifies the numerical performance of
PREEEDM.We feel that PREEEDMwill become a very competitive embeddingmethod
in the field of SNL and MC and expect its wide use in other visualization problems.
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8 Appendix

8.1 Proof of Lemma 1

Proof We prove it by considering three cases. Case 1: 0 < x < δ2; Case 2: x > δ2 and
Case 3: x = δ2. For simplicity, we use φ(x) for φδ(x) in our proof. Let ζ := η/(2

√
x),

then ζ ∈ ∂φ(x) is equivalent to η ∈ sign(
√
x − δ).

Case 1: 0 < x < δ2. For this case, sign(
√
x − δ) = {−1} and η = −1. We note that

φ(x) = δ − √
x is convex and differentiable at 0 < x < δ2. Thus,

φ(y) ≥ φ(x) − y − x

2
√
x

for any 0 < y < δ2.
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For y ≥ δ2, we have the following chain of inequalities

φ(x) − y − x

2
√
x

≤ δ − √
x − δ2 − x

2
√
x

= δ −
[√

x

2
+ δ2

2
√
x

]

≤ δ − 2

√√
x

2

δ2

2
√
x

= δ − δ = 0

≤ √
y − δ = φ(y),

Hence, we proved the conclusion for this case.

Case 2: x > δ2. For this case, sign(
√
x−δ) = {1} and η = 1. By definingΦ(θ, μ) :=

θ(θ2 − μ2)2 − 4δ3(θ + μ)2 + 16θδ4 with θ > δ and 0 < μ < δ, we have

∂Φ(θ, μ)

∂μ
= 2(θ + μ)(2θμ(μ − θ) − 4δ3) ≤ 0,

which indicates Φ(θ, μ) is non-increasing with respect μ and thus

Φ(θ, μ) ≥ Φ(θ, δ) = θ(θ2 − δ2)2 − 4δ3(θ + δ)2 + 16δ4θ

= (θ + δ)2(θ(θ − δ)2 − 4δ3) + 16δ4θ

≥ (δ + δ)2(δ(δ − δ)2 − 4δ3) + 16δ5

= 0. (59)

For 0 < y < δ2, we have

φ(x) − φ(y) = √
x + √

y − 2δ = x − y

2
√
x

+ (
√
x + √

y)2

2
√
x

− 2δ

= x − y

2
√
x

+ (x − y)2

8δ3
−

[
(x − y)2

8δ3
− (

√
x + √

y)2

2
√
x

+ 2δ

]

= x − y

2
√
x

+ (x − y)2

8δ3
− Φ(

√
x,

√
y)

8δ3
√
x

(59)≤ x − y

2
√
x

+ (x − y)2

8δ3

For y ≥ δ2, we have the following chain of inequalities

φ(x) − φ(y) = √
x − √

y = x − y

2
√
x

+ (
√
x − √

y)2

2
√
x

= x − y

2
√
x

+ (x − y)2

2
√
x(

√
x + √

y)2

123



S. Zhou et al.

≤ x − y

2
√
x

+ (x − y)2

2δ(δ + δ)2
(60)

= x − y

2
√
x

+ (x − y)2

8δ3
.

Hence, we proved the claim for this case.

Case 3: x = δ2. For this case, sign(
√
x − δ) = [−1, 1] and −1 ≤ η ≤ 1. For

0 < y < δ2, we have

φ(x) − φ(y) = δ − √
x − (δ − √

y)

= √
y − √

x = y − x√
y + √

x
≤ − x − y

2
√
x

≤ η(x − y)

2
√
x

.

where the first and last inequalities hold due to y < δ2 = x and |η| ≤ 1. For y ≥ δ2,
similar to obtaining (60), we have

φ(x) − φ(y) = √
x − √

y ≤ x − y

2
√
x

+ (x − y)2

8δ3
≤ η(x − y)

2
√
x

+ (x − y)2

8δ3
,

where the last inequality is due to |η| ≤ 1 and x − y ≤ 0
For all three cases, we proved our claim and hence accomplish our proof. ��

8.2 Proof of Proposition 1

Proof Since D∗
ρ is an optimal solution of (16), we have D∗

ρ ∈ B. For any feasible
solution D to (11) (i.e., g(D) = 0, D ∈ B in (15)), it holds the following chain of
inequalities.

f (D) = f (D) + ρg(D) (because g(D) = 0)

= fρ(D)

≥ fρ(D∗
ρ) (because D∗

ρ minimizes (16))

= f (D∗
ρ) + ρg(D∗

ρ)

≥ max{ f (D∗
ρ), ρg(D∗

ρ)}, (because ρ, f , g ≥ 0)

which together with the feasibility of Dr to (11) yields

g(D∗
ρ) ≤ f (Dr )/ρ ≤ f (Dr )/ρε = ε

and the feasibility of D∗ to (11) derives

f (D∗) ≥ f (D∗
ρ).
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It is well known from [42, Theorem 6.12] that a necessary condition for D∗
ρ being

(locally) optimal of (16) is 0 ∈ ∂( f (D∗
ρ)+ρg(D∗

ρ)+ IB(D∗
ρ)), which in turn implies

(37). This together with g(D∗
ρ) ≤ ε completes our proof. ��

8.3 Proof of Proposition 2

Proof For notational simplicity, denote z := x−
ω,β . Let us consider

min q−(x), s.t. x ≥ 0. (61)

By noticing that the second derivative q ′′−(x) = 1 + (β/4)x−2/3 > 1 for all x > 0,
q−(x) is strongly convex over (0,∞). It has been proved in [56, Proposition 3.1] that
z > 0 is the optimal solution of (61). Since q−(x) is a univariate convex function, its
optimal solution over B− is the projection of z onto B−, i.e., x∗− = ΠB−(x−

ω,β).
Note that z is the optimal solution of (61) and z > 0. We must have q ′−(z) =

z−ω−β/(2
√
z) = 0. If z ≤ 1 then

√
z ≥ z, implying

√
z−ω−β/(2

√
z) ≥ q ′−(z) = 0,

which is equivalent to z ≥ γω,β > 0. Thus we must have z ≥ min{1, γω,β} and it
holds x∗− = ΠB−(z) = min{δ2,max{a, z}} ≥ min{δ2, 1, γω,β}, which is the
claimed lower bound for x∗−. ��

8.4 Proof of Proposition 3

Proof The first and the second derivatives of q+(x) are

q ′+(x) = x − ω + β

2
√
x
, q ′′+(x) = 1 − β

4
√
x3

, ∀ x > 0.

It is easy to verify that for x ≥ δ2 and β < 4δ3

q ′′+(x) ≥ 1 − β

4δ3
> 0,

which implies that q(x) is strictly convex on [δ2,∞).
We consider two cases. Case 1: τ ≥ 0. This implies ω ≤ 3u2/3. It follows that for

x > 0

q ′+(x) = x − ω + β

4
√
x

+ β

4
√
x

≥ 3

[
x

β

4
√
x

β

4
√
x

]1/3
− ω = 3

[
β2

42

]1/3
− ω = 3u2/3 − ω ≥ 0.

This implies that q+(x) is non-decreasing and hence x∗+ = δ2.
Case 2: τ < 0, which implies ω > 3u2/3. Consider the problem:

min q+(x) s.t. x ≥ 0. (62)
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We will apply Lemma 3 to the problem (62) and show that exactly one of its two
positive stationary points falls within the interval [δ2,∞). We will further show that
this stationary point is defined by (46) for the case τ < 0. Since q+(x) is convex
over this interval, the optimal solution of the problem (45) is just the projection of this
stationary point onto the interval B+ = [δ2, b]. This would complete the proof.

Comparing the problem (62) with the problem (32), the corresponding quantities
are

ν = 2β, t = ω, x̄ = (ν/8)2/3 = (β/4)2/3 = u2/3 and t̄ = 3x̄ .

It is obvious that t = w > 3u2/3 = 3x̄ (the condition of Lemma 3 is satisfied).
Lemma 3 implies that the problem (62) has two positive stationary points, which must
satisfy the optimality condition q ′+(x̂) = 0, leading to

x̂ − ω + β

2
√
x̂

= 0.

Let ŷ := √
x̂ , we then have

ŷ3 − ω ŷ + β

2
= 0. (63)

This is thewell-knowndepressed cubic equation,whose solution (i.e., Cardan formula)
has a long history [7, Chp. 7].

Since ω > 3u2/3, it follows from the Cardan formula (in terms of the trigonometric
functions, see [51, Sect. 3]) that (63) has three real roots, namely

ŷ1 := 2
√

v cos(θ/3), ŷ2 := 2
√

v cos((4π + θ)/3), ŷ3 := 2
√

v cos((2π + θ)/3)

with cos(θ) = −uv−3/2. Moreover, the three roots satisfy that ŷ1 ≥ ŷ2 ≥ ŷ3. Accord-
ing to Lemma 3, two of them are positive. That is, ŷ1 > 0, ŷ2 > 0 and

ŷ22 < x̄ < ŷ21 .

Since β < 4δ3, we have

x̄ = u2/3 = (β/4)2/3 < δ2.

Therefore, ŷ21 is the only point that falls within the interval [δ2,∞]. Since q+(x) is
strictly convex, the minimum of the problem (45) must be the projection of ŷ21 onto
the interval B+. Hence, for the Case 2, we must have x∗+ = ΠB+(ŷ21 ). The proof is
completed by noting that ŷ21 is just x+

ω,β defined in (46) for the case τ < 0. ��

123



Robust Euclidean embedding via EDM optimization

8.5 Proof of Theorem 1

Proof (i) is a direct consequence of Propositions 2 and 3. We now prove (ii). For any
x, y > 0 and any ξx ∈ ∂q(x), it follows that

ξx = x − ω + βζ with ζ ∈ ∂φδ(x)

and

q(y) − q(x) = 1

2
(y − ω)2 − 1

2
(x − ω)2 + β(|√y − δ| − |√x − δ|)

= (x − ω)(y − x) + 1

2
(x − y)2 + β(|√y − δ| − |√x − δ|)

≥ (x − ω)(y − x) + 1

2
(x − y)2 − βζ(x − y) − β(x − y)2

8δ3

= (x − ω + βζ) (y − x) + 4δ3 − β

8δ3
(x − y)2

> ξx (y − x),

where the first inequality above used Lemma 1 and the last inequality used the fact
4δ3 > β > 0. Swapping the role of x and y above yields

q(x) − q(y) > ξy(x − y) ∀ x, y > 0, ξy ∈ ∂q(y).

Therefore, we have

(ξx − ξy)(x − y) > 0 ∀ x, y > 0, ξx ∈ ∂q(x) and ξy ∈ ∂q(y).

This togetherwithTheorem12.17 of [42] proves thatq(x) is strictly convex over [a, b].
The rest in (ii) is just the first order optimality condition of the convex optimization
problem (41) because we just proved the convexity of q(x) over [a, b]. Finally, we
prove (iii). It follows from (42) that

γω,β =
[

ω + √
ω2 + 2β

2

]2

=
[

β√
ω2 + 2β − ω

]2

≥
[

β√
C2 + 2β + C

]2

:= κ0

and from Propositions 2 and 3 that

x∗− ≥ min{δ2, 1, κ0} and x∗+ ≥ δ2.

Therefore,

dcrootB[ω, β, δ] ≥ min{δ2, 1, κ0} := κ.

We finish our proof. ��
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8.6 Proof of Proposition 4

Proof (i) Let us pick a pair (i, j) such that Wi j > 0, which implies δi j > 0 (Assump-
tion 2). It follows from (50) that

Dk
i j = dcroot[Li j ,Ui j ]

[
(Zk−1

K )i j , Wi j/ρ, δi j

]
,

where Zk−1
K := −ΠKn+(r)(−Dk−1). Since B is bounded (Assumption 1) and Dk ∈ B,

the sequence {Dk} is bounded. Lemma 2 implies

‖ − ΠKn+(r)(−Dk−1)‖ ≤ 2‖Dk−1‖ ≤ 2‖U‖,

which further implies |(Zk−1
K )i j | ≤ 2‖U‖ for all k = 1, . . . . Let βi j := Wi j/ρ. Then

0 < βi j < 4δ3i j

owing to ρ > ρo(W ,Δ). It follows from Theorem 1(iii) that there exists κi j > 0 such
that Dk

i j ≥ κi j for all k = 1, 2, . . . , . The choice of c1 by

c1 := min{κi j : (i, j) such that Wi j > 0} > 0.

satisfies the bound in (i).
(ii) We write f (D) in terms of Di j :

f (D) =
∑

i, j

Wi j |
√
Di j − δi j | =

∑

i, j

Wi jφδi j (Di j ). (64)

We let ∂i j f (D) denote the subdifferential of f with respect to its (i, j)th element
Di j . We consider two cases. Case 1: Wi j = 0. This implies that f (D) is a constant
function (≡ 0) of Di j and hence f (D) is continuously differentiable with respect to
Di j . Consequently, ∂i j f (Dk) = {0}.
Case 2:Wi j > 0, which implies δi j > 0 (Assumption 2). It follows from (i) that there
exists c1 > 0 such that Dk

i j ≥ c1 for all k = 1, 2, . . . , . The Eqs. (64) and (25) yield

∂i j f (D
k) = Wi j sign

[√
Dk
i j − δi j

]/[
2
√
Dk
i j

]
,

which implies that for any ξ ki j ∈ ∂i j f (Dk) there exists ζ k
i j ∈ sign((Dk

i j )
1/2 − δi j ) such

that

|ξ ki j | = Wi j |ζ k
i j |

/[
2
√
Dk
i j

]
≤ Wi j/

√
4c1.
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In other words, ∂i j f (Dk) is bounded by Wi j/
√
c1, which is independent of the index

k. It follows directly from the definition of subdifferential [42, Chp. 8.3] that

∂ f (Dk) ⊆
⊗

∂i j f (D
k)

in the sense that for any Γ k ∈ ∂ f (Dk), there exist ξ ki j ∈ ∂i j f (Dk) such that

Γ k
i j = ξ ki j , i, j = 1, . . . , n.

Consequently, we have for all k = 1, 2, . . . ,

‖Γ k‖ ≤ nmax
i, j

|ξ ki j | ≤ nWi j/(2
√
c1) ≤ nmax

i, j
Wi j/(2

√
c1) =: c2 > 0.

This completes the proof for (ii).
(iii) Since ρ > ρo, for each pair (i, j) we have βi j := Wi j/ρ < 4δ3i j . It then

follows from Theorem 1(ii) that each separable function f ki j (Di j ) is convex and hence

the function f kρ (D) is convex over D ∈ B. Consequently, subproblem (48) is convex.
The first-order necessary and sufficient optimality condition is just (52). ��
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