
Domain-Specific Scenarios for Refinement-based
Methods

Colin Snook�https://orcid.org/0000-0002-0210-0983, Thai Son
Hoanghttps://orcid.org/0000-0003-4095-0732, Dana

Dghaymhttps://orcid.org/0000-0002-2196-2749, and Michael
Butlerhttps://orcid.org/0000-0003-4642-5373

ECS, University of Southampton, Southampton, U.K.,
{cfs, t.s.hoang, d.dghaym, mjb}@ecs.soton.ac.uk

Abstract. Formal methods use abstraction and rigorously verified re-
finement to manage the design of complex systems, ensuring that they
satisfy important invariant properties. However, formal verification is not
sufficient: models must also be tested to ensure that they behave accord-
ing to the informal requirements and validated by domain experts who
may not be expert in formal modelling. This can be satisfied by scenar-
ios that complement the requirements specification. The model can be
animated to check that the scenario is feasible in the model and that the
model reaches states expected in the scenario. However, there are two
problems with this approach. 1) The provided scenarios are at the most
concrete level corresponding to the full requirements and cannot be used
until all the refinements have been completed in the model. 2) The nat-
ural language used to describe the scenarios is often verbose, ambiguous
and therefore difficult to understand; especially if the modeller is not a
domain expert. In this paper we propose a method of abstracting scenar-
ios from concrete ones so that they can be used to test early refinements
of the model. We also show by example how a precise and concise domain
specific language can be used for writing these abstract scenarios in a
style that can be easily understood by the domain expert (for validation
purposes) as well as the modeller (for behavioural verification). We base
our approach on the Cucumber framework for scenarios and the Event-B
modelling language and tool set. We illustrate the proposed methods on
the ERTMS/ETCS Hybrid Level 3 specification for railway controls.

keywords:Event-B; Cucumber; Validation; Domain Specific Language

1 Introduction

Abstraction and refinement play a vital role in analysing the complexity of criti-
cal systems via formal modelling. Abstraction allows key properties to be estab-
lished which are then proven to be maintained as system details are gradually
introduced in a series of refinements. However, domain requirements are often
written in natural language [3] which can be verbose and ambiguous leading

2 Snook et al.

to potential misinterpretation by formal modelling engineers. Hence, model ver-
ification is insufficient; validation of the model by domain experts is equally
important to ensure that it is a true representation of the system in mind. In
previous work [9] we proposed a behaviour driven approach to formal modelling
that allows domain experts to drive the formal modelling using scenarios. The
model is animated to check that the scenario is feasible and reaches the states
expected in the scenario. In this paper we propose the use of a Domain Specific
Language (DSL) that can be understood both by domain expert and model en-
gineer and is precise enough to provide a repeatable validation/acceptance test
of the formal systems model. Furthermore, we propose a technique of synthesis-
ing abstract scenarios from more concrete ones, so that the abstract refinements
of the model can be checked at an intermediate stage rather than waiting un-
til the final details have been incorporated. We illustrate the approach using
the European Rail Traffic Management System (ERTMS)/European Train Con-
trol System (ETCS), Hybrid Level 3 (HL3) specification [7] for which we have
previously developed a formal model presented in [4].

The paper is structured as follows: Section 2 provides background on the
Event-B formal modelling language, Cucumber framework for scenarios and the
HL3 case study. Section 3 introduces the example scenario (from [7]) that we
use for illustrating our proposed method. Section 4 illustrates a possible DSL for
scenarios of the HL3 model. Section 5 shows how we would describe the example
scenario in our DSL. Section 6 presents abstract versions of the concrete scenario
to illustrate how these can be systematically deduced to match the refinements
in the model. Section 8 describes future work and Section 9 concludes.

2 Background

2.1 Event-B

Event-B [1] is a formal method for system development. An Event-B model con-
tains two parts: contexts and machines. Contexts contain carrier sets s, constants
c, and axioms A(c) that constrain the carrier sets and constants. Note that the
model may be underspecified, e.g., the value of the sets and constants can be
any value satisfying the axioms. Machines contain variables v, invariants I(v)
that constrain the variables, and events. An event comprises a guard denoting
its enabling-condition and an action describing how the variables are modified
when the event is executed. In general, an event e has the following form, where
t are the event parameters, G(t, v) is the guard of the event, and v := E(t, v) is
the action of the event.

any t where G(t,v) then v := E(t,v) end

Actions in Event-B are, in the most general cases, non-deterministic [8], e.g., of
the form v :∈ E(v) (v is assigned any element from the set E(v)) or v :| P(v,v’)
(v is assigned any value satisfying the before-after predicate P(v,v’)). A special
event called INITIALISATION without parameters and guards is used to put the
system into the initial state.

A Domain-Specific Scenario Language 3

A machine in Event-B corresponds to a transition system where variables
represent the state and events specify the transitions. Event-B uses a mathe-
matical language that is based on set theory and predicate logic.

Contexts can be extended by adding new carrier sets, constants, axioms, and
theorems. Machines can be refined by adding and modifying variables, invari-
ants, events. In this paper, we do not focus on context extension and machine
refinement.

Event-B is supported by the Rodin Platform (Rodin) [2], an extensible open
source toolkit which includes facilities for modelling, verifying the consistency
of models using theorem proving and model checking techniques, and validating
models with simulation-based approaches.

2.2 Cucumber for Event-B

The Behaviour-Driven Development (BDD) principle aims for pure domain ori-
ented feature description without any technical knowledge. In particular, BDD
aims for understandable tests which can be executed on the specifications of a
system. BDD is important for communication between the business stakehold-
ers and the software developers. Gherkin/Cucumber [10] is one of the various
frameworks supporting BDD.

Gherkin [10, Chapter 3] is a language that defines lightweight structures for
describing the expected behaviour in a plain text, readable by both stakeholders
and developers, which is still automatically executable.

Each Gherkin scenario consists of steps starting with one of the keywords:
Given, When, Then, And or But.

– Keyword Given is used for writing test preconditions that describe how to
put the system under test in a known state. This should happen without any
user interaction. It is good practice to check whether the system reached the
specified state.

– Keyword When is used to describe the tested interaction including the pro-
vided input. This is the stimulus triggering the execution.

– Keyword Then is used to test postconditions that describe the expected
output. Only the observable outcome should be compared, not the internal
system state. The test fails if the real observation differs from the expected
results.

– Keywords And and But can be used for additional test constructs.

In [9], we described our specialisation of Cucumber for Event-B with the pur-
pose of automatically executing of scenarios for Event-B models. Cucumber [10]
is a framework for executing acceptance tests written in Gherkin language and
provides Gherkin language parser, test automation as well as report generation.
We provide Cucumber step definitions for Event-B in [5] allowing us to exe-
cute the Gherkin scenarios directly on the Event-B models. The Cucumber step
definitions for Event-B allow to execute an event with some contraints on the
parameters, or to check if an event is enabled/disabled in the current state, or
to check if the current state satisfies some constraint.

4 Snook et al.

on-board
view

trackside
view

estimated
front end

max safe
front endsafe train length

min safe rear end at
integrity confirmation

VSS11 VSS21 VSS22 VSS23

TTD10 TTD20

confirmed rear end
of the train location

front end of the
train location

trackside train location

VSS limit

TTD limit

track
VSS status

TTD status

free

occupied

Fig. 1. Hybrid ERTMS/ETCS Level 3 System Conventions [7]

2.3 Hybrid ERTMS/ETCS Level 3 Basics

The train separation function of ERTMS/ETCS Level 3 relies entirely on the
condition that the system knows at all times the position, length, and integrity
status of the train [7]. Each train needs to be fitted with a Train Integrity
Monitoring System (TIMS) to report its position and integrity status to the
system. Due to the limitation of GSM-R communication, these pre-conditions for
Level 3 operation are not satisfied as the train may disconnect from the system
because of poor communication. The HL3 concept is brought up to solve the
disconnect issue by using a limited implementation of track-side train detection.
Trains that are disconnected from the HL3 are still visible using track-side train
detection. Thus trains which are not confirming integrity can still be authorized
to run on the line.

Figure 1 shows the HL3 system conventions. The track line is divided into
Trackside Train Detection (TTD) sections according to the track-side equip-
ment. If no train is shown on the TTD section, the TTD section is considered
as free. Otherwise, it is considered as occupied. This large physical section is
then split into as many Virtual Sub-Section (VSS) as required for the intended
performance. These VSS are fixed virtual blocks to avoid train collision. The
occupation status of the VSS is determined using both TTD status informa-
tion and position reports of the train. The VSS is considered as free when the
track-side is certain that no train is located on the VSS while it is considered as
occupied when some integer train is located on this VSS while the track-side is
certain that no other vehicle is located on the same VSS. Status unknown and
ambiguous are used to indicate the states under the scenario with disconnected
trains. A VSS is considered as unknown when there is no certainty if it is free.
And a VSS is considered as ambiguous when it is known to be occupied but it is
unsure whether there is another train on the same VSS. The track-side detection
equipment can improve the system performance by providing a faster release of
VSS when the TTD is free on the basis of train position reports. A train on a
track with an established safe radio connection to the track-side is considered as
a connected train. The train location defines the track-side view of the VSS that

A Domain-Specific Scenario Language 5

is currently occupied by a connecting train, whose granularity is one VSS. The
front and rear end of the train location is considered independently from each
other. Each train has an estimated front end, while the rear end is derived from
the estimated front end and the safe train length through train integrity confir-
mation. It takes time for a train to stop after it applies brakes. The estimated
front end and rear end are extended to the max safe front end and min safe rear
end with an additional safety margin to guarantee the safety properties of the
system. When the track-side receives the report that the max safe front end of
the train has entered a VSS, it considers the train to be located on this VSS. A
train that allows the track-side to release VSS in the rear of the train based on
its position reports is defined as integer train [7]. However, when modelling the
HL3 system in Event-B is complicated as the events in Event-B models can be
difficult to validate due to the complexity of conditions that are challenging to
explain to domain experts. Fischer and Dghaym propose to create test cases on
Event-B models using a Cucumber framework, which defines lightweight struc-
tures for describing the expected behaviour readable by both domain experts
and modelers [6]. Based on their definition for the concrete scenarios, we de-
fine approaches to map concrete scenarios to abstract scenarios and refine the
abstract scenarios to concrete scenarios.

3 Example Scenario

In this section, we use Scenario 4: Start of Mission / End of Mission in [7]
to illustrate our approach to generation of abstract scenarios. In this scenario,
there are eight numbered steps. However, since most steps contain a sequence
of actions and consequent state changes, we break the steps down further into
sub-steps 1. We also note that the associated diagram (Figure 2) shows, for each
step, more details about the expected state, than is given in the text. We have
included some (but for brevity, not all) of this state in the scenario. Hence, the
sub-steps given in italic are derived from the diagram rather than the original
text of [7].

1. (a) Train 1 is standing on VSS 11
(b) with desk closed and no communication session.
(c) All VSS in TTD 10 are “unknown”.
(d) TTD 10 is occupied and TTD20 is free.

2. (a) Train 1 performs the Start of Mission procedure.
(b) Integrity is confirmed.
(c) Because train 1 reports its position on VSS 11,
(d) this VSS becomes ”ambiguous”.

3. (a) Train 1 receives an OS MA until end of VSS 12
(b) and moves to VSS 12

1 Note that we have adapted step 3 slightly compared to the specification because our
model does not support granting Full Supervision Movement Authority (FS MA)
containing VSS that are not free

6 Snook et al.

Fig. 2. Start of Mission / End of Mission [7]

(c) which becomes ”ambiguous”.

(d) VSS 11 goes to ”unknown”.

(e) Train 1 receives an FS MA until end of VSS 22

4. (a) Train 1 moves to VSS 21

(b) which becomes occupied

(c) and all VSS in TTD 10 become ”free”, VSS 11 and VSS 12.

(d) TTD 10 is free and TTD20 is occupied.

5. (a) Train 1 continues to VSS 22

(b) which becomes “occupied”.

(c) VSS 21 becomes ”free”;

6. Train 1 performs the End of Mission (EOM) procedure.

7. (a) Due to the EoM procedure VSS 22 goes to “unknown”

(b) and the disconnect propagation timer of VSS 22 is started.

8. (a) The disconnect propagation timer of VSS 22 expires.

(b) All remaining VSS in TTD 20 go to “unknown”

This example scenario is useful for understanding the specification but it
still contains ambiguities that are revealed when considering a formally precise
model. For example trains do not usually move to a new section in one atomic
step; it is not stated when position reports are sent or what information they
contain. In addition, the use of natural language is not always consistent; in
order to animate the scenario in a repeatable way with tool support, we need a
more consistent syntax. We also need more abstract versions of the scenario if
we wish to validate the initial stages of our model.

A Domain-Specific Scenario Language 7

4 Domain Specific Language

To improve clarity and precision, we suggest a DSL for HL3 scenarios that aims
to retain understandability for domain experts of the natural language version.
We select nouns that are used in the natural language version of the scenario
to describe domain objects and their state. These will be used to describe the
expected state of the model. We select a set of adjectives to provide a consistent
way to link the nouns when describing state. Finally we select a set of verbs
to describe transitions that change the state of objects The DSL is generic in
the sense that it is agnostic of the target modelling language, although very
specific to the HL3 problem domain. In order to adapt the DSL for use with a
particular modelling notation (in our case Event-B) cucumber step definitions
must be written. Examples of these are shown in Section 7.

The kind of formal refinement modelling that we wish to support is based
on abstract representation of state. In each refinement further distinction of the
state values are added, either by replacing a state variable with an alternative
one that gives finer detail, or by adding a completely new variable. As state
details are added, the transition events that change state are elaborated to deal
with the new values. In many cases completely new transitions are revealed.
As the model refinement process is state driven, so is our DSL for scenario
abstraction/refinement. Therefore in the DSL we add alternative names for state
values so that the scenario can be adapted to abstract levels by re-phrasing
clauses when the state is modelled more abstractly.

Nouns

1 <train> = <label>

2 <section> = TTDx

3 <sub-section> = <section>.VSSy

4 <ma> = <abstract ma> | <concrete ma>

5 <abstract ma> = MA until <sub-section>

6 <concrete ma> = FSMA until <sub-section> | OSMA until <sub-section>

7 <timer> = <sub-section>.DisconnectTimer | <sub-section>.

ShadowTimer | <sub-section>.GhostTimer

8 <section state> = FREE | OCCUPIED

9 <sub-section sate> = <abstract sub-section state> | <concrete sub-

section state>

10 <abstract sub-section state> = AVAILABLE | UNAVAILABLE

11 <concrete sub-section state> = FREE| OCCUPIED | AMBIGUOUS | UNKNOWN

Adjectives

1 <train> stood at <sub-section>

2 <train> connected | disconnected

3 <train> in mission | no mission

4 <train> is integral | is split

8 Snook et al.

5 <train> has <ma>

6 <section> is <section state>

7 <sub-section> is <sub-section state>

Verbs

1 <train> enters | leaves <sub-section>

2 <train> connects | disconnects

3 <train> starts mission | ends mission

4 <train> splits | couples

5 <train> receives <ma>

6 <timer> starts

7 <timer> expires

8 <train> reports position

9 <train> reports position as integral

10 <train> reports position as split

5 Concrete Scenario using DSL

With reference to the scenario steps listed in Section 3, we first illustrate how the
natural language scenario of the specification can be expressed in our domain
specific language. In the Section 6 we will show how to extract abstract scenarios
that fit with our refinement levels.

Steps 1a,1b,1c and 1d give the initial starting state which becomes a Given

clause in our language (Lines 1–6). Note that the track state is included as Given
rather than checked by a Then clause because it does not necessarily follow from
the train state. Step 2a is an action that, in our model, requires two distinct
events which we conjoin in a When clause (Line 7) where Train1 starts mission
and connects. Steps 2b and 2c, are performed in a single atomic reporting event
in our model, giving another When clause (Line 8). Step 2d gives an expected
consequence concerning the state of a VSS, which we check with a Then clause
(Line 9). Step 3a grants an On Sight Movement Authority (OS MA) up to VSS
12, to the train (Line 10). Step 3b is somewhat ambiguous since trains can span
more than one sub-section and therefore enter and leave them in distinct events
which are not normally simultaneous. We interpret Step 3b as two consecutive
steps; enter the new VSS 12 (Line 11) and then leave the previous VSS 11 (Line
12). Also, we assume that the train then reports its new position as VSS 12
(Line 13), since otherwise the Virtual Block Detector (VBD) would not know
to update the VSS states as indicated in Steps 3c and 3d. Step 3 is a good
example of why a more precise domain specific language is needed for describing
scenarios. A similar process of interpretation is followed in the remaining steps.

1 Given Train1 stood at VSS11

A Domain-Specific Scenario Language 9

2 And Train1 disconnected

3 And TTD10.VSS11 is UNKNOWN

4 And TTD10.VSS12 is UNKNOWN

5 And TTD10 is OCCUPIED

6 And TTD20 is FREE

7 When Train1 starts mission and Train1 connects

8 When Train1 reports position as integral

9 Then VSS11 is AMBIGUOUS

10 When Train1 receives OSMA until VSS12

11 When Train1 enters VSS12

12 When Train1 leaves VSS11

13 When Train1 reports position as integral

14 Then VSS12 is AMBIGUOUS

15 And VSS11 is UNKNOWN

16 When Train1 receives FSMA until VSS22

17 When Train1 enters VSS21

18 When Train1 leaves VSS12

19 When Train1 reports position as integral

20 Then TTD10.VSS11 is FREE

21 And TTD10.VSS12 is FREE

22 And TTD10.VSS21 is OCCUPIED

23 And TTD10 is OCCUPIED

24 And TTD20 is FREE

25 When Train1 enters VSS22

26 When Train1 leaves VSS21

27 When Train1 reports position as integral

28 Then TTD20.VSS21 is FREE

29 And TTD20.VSS22 is OCCUPIED

30 When Train1 disconnects and Train1 ends mission

31 Then TTD20.VSS22 is UNKNOWN

32 Then VSS22.disconnect_propagation_timer starts

33 When VSS22.disconnect_propagation_timer expires

34 Then VSS21 is UNKNOWN

35 And VSS23 is UNKNOWN

6 Abstract Scenarios

In order to obtain scenarios that can be used to validate our abstract models,
we deduce correspondingly abstract scenarios from the concrete one that has
been translated into our DSL in Section 5. To do this, we consider the data
refinement of the model including superposition of new data. The process sys-
tematically reduces the concrete scenario by omitting any irrelevant details and
only retaining clauses that relate to the data representations used in that refine-
ment level. Note that data representation may vary in refinement levels which

10 Snook et al.

affects the Cucumber step definition used to convert the scenarios into a form
that can be used to animate the model.

Once a state has been checked at a particular refinement level it does not
need to be checked at subsequent levels because the proof of refinement ensure
this. Any Then clauses of the previous level are omitted and only if the state
data representation is refined to add more detail is it necessary to add new Then

clauses. In our case the concrete scenario derived from the specification has
the correct final Then clauses to match our most concrete model refinement. In
general the starting specification scenario could contain excess state checks that
are already dealt with in earlier refinement levels. The number of Then clauses
to add, is somewhat subjective; one could for example check that nothing else
has changed state after each When clause. In the examples we have avoided this
and adopt the same policy as the given scenario of the specification which is to
only check for expected changes in state. In the rest of this section, we present
how the specification scenario is abstracted at the different level of refinement
according to our development.

Movement on VSS. Our most abstract model contains no other state except for
the position of trains on VSS and hence, for its scenario, we pick only the clauses
that are related to train movement and add Then clauses that check the train’s
position after each movement.

1 Given Train1 stood at VSS11

2 When Train1 enters VSS12

3 Then Train1 stood at VSS11,VSS12

4 When Train1 leaves VSS11

5 Then Train1 stood at VSS12

6 When Train1 enters VSS21

7 Then Train1 stood at VSS12,VSS21

8 When Train1 leaves VSS12

9 Then Train1 stood at VSS21

10 When Train1 enters VSS22

11 Then Train1 stood at VSS21,VSS22

12 When Train1 leaves VSS21

13 Then Train1 stood at VSS22

Radio communication and TTD. In our first and second refinements we add
radio communication and status of TTD. Here we have combined them into one
scenario for brevity. We add Then clauses to check train connection and TTD
state after any When clause that should affect this.

1 Given Train1 stood at TTD10.VSS11

2 And Train1 is disconnected

3 And TTD10 is OCCUPIED

4 And TTD20 is FREE

A Domain-Specific Scenario Language 11

5 When Train1 connects

6 Then Train1 connected

7 When Train1 enters TTD10.VSS12

8 When Train1 leaves TTD10.VSS11

9 When Train1 enters TTD10.VSS21

10 Then TTD20 is OCCUPIED

11 When Train1 leaves TTD10.VSS12

12 Then TTD10 is FREE

13 When Train1 enters TTD10.VSS22

14 When Train1 leaves TTD10.VSS21

15 When Train1 disconnects

16 Then Train1 disconnected

Introduce missions and generic movement authority. Our next model refinement
introduces movement authority but does not distinguish between Full Supervi-
sion Movement Authority (FS MA) and OS MA modes. In the scenario we must
use the generic form of the DSL syntax which was introduced for this purpose.
Note that we still split the granting of Movement Authority (MA) into two When

clauses so that the state check is an abstract version of the order that will later
be enforced in a refinement. The refinement also introduces the start of mission
and end of mission procedures.

1 Given Train1 stood at TTD10.VSS11

2 And Train1 disconnected

3 And TTD10 is OCCUPIED

4 And TTD20 is FREE

5 When Train1 starts mission and Train1 connects

6 Then Train1 in mission

7 When Train1 receives MA until TTD10.VSS12

8 Then Train1 has MA until TTD10.VSS12

9 When Train1 enters TTD10.VSS12

10 When Train1 leaves TTD10.VSS11

11 When Train1 receives MA until TTD20.VSS22

12 Then Train1 has MA until TTD20.VSS12

13 When Train1 enters TTD20.VSS21

14 When Train1 leaves TTD10.VSS12

15 When Train1 enters TTD20.VSS22

16 When Train1 leaves TTD20.VSS21

17 When Train1 disconnects and Train1 ends mission

18 Then Train1 no mission

Introduce position reports, VSS availability, integrity and distinguish between FS
and OS MA. In this refinement, we we refine MA to distinguish between FS

12 Snook et al.

MA and OS MA and introduce position and integrity reporting of trains which,
in conjunction with TTD status, determines abstract VSS status. Notice that
we replace the more abstract MA checks with OS MA and FS MA ones. At
this stage, VSS status is bi-state instead of the final four states of the concrete
scenario.

1 Given Train1 stood at TTD10.VSS11

2 And Train1 disconnected

3 And TTD10.VSS11 is UNAVAILABLE

4 And TTD10.VSS12 is UNAVAILABLE

5 And TTD10 is OCCUPIED

6 And TTD20 is FREE

7 When Train1 starts mission and Train1 connects

8 When Train1 reports position as integral

9 When Train1 receives OSMA until TTD10.VSS12

10 Then Train1 has OSMA until TTD10.VSS12

11 When Train1 enters TTD10.VSS12

12 When Train1 leaves TTD10.VSS11

13 When Train1 receives FSMA until TTD20.VSS22

14 Then Train1 has FSMA until TTD20.VSS22

15 When Train1 enters TTD20.VSS21

16 When Train1 leaves TTD10.VSS12

17 When Train1 reports position as integral

18 Then TTD10.VSS11 is AVAILABLE

19 And TTD10.VSS12 is AVAILABLE

20 And TTD10.VSS21 is UNAVAILABLE

21 When Train1 enters TTD20.VSS22

22 When Train1 leaves TTD20.VSS21

23 When Train1 reports position as integral

24 Then TTD10.VSS21 is AVAILABLE

25 And TTD10.VSS22 is UNAVAILABLE

26 When Train1 disconnects and Train1 ends mission

Introduce timers. This refinement introduces propagation timers that expand
the unavailable area of VSS in case a non-communicative train moves. When
the propagation timer expires, the adjacent VSS in the TTD become unavail-
able. Notice that the scenario is not like a refinement; we can add checks of old
variables when further steps of the scenario should affect this. In the previous
scenario we did not specify the state of these VSS,hence leaving room to add
them now without introducing a contradiction.

1 Given Train1 stood at TTD10.VSS11

2 And Train1 disconnected

3 And TTD10.VSS11 is UNAVAILABLE

4 And TTD10.VSS12 is UNAVAILABLE

A Domain-Specific Scenario Language 13

5 And TTD10 is OCCUPIED

6 And TTD20 is FREE

7 When Train1 starts mission and Train1 connects

8 When Train1 reports position as integral

9 When Train1 receives OSMA until TTD10.VSS12

10 When Train1 enters TTD10.VSS12

11 When Train1 leaves TTD10.VSS11

12 When Train1 receives FSMA until TTD20.VSS22

13 When Train1 enters TTD20.VSS21

14 When Train1 leaves TTD10.VSS12

15 When Train1 reports position as integral

16 When Train1 enters TTD20.VSS22

17 When Train1 leaves TTD20.VSS21

18 When Train1 reports position as integral

19 When Train1 disconnects

20 When Train1 ends mission

21 Then TTD20.VSS22.disconnect_propagation_timer starts

22 When TTD20.VSS22.disconnect_propagation_timer expires

23 Then TTD20.VSS21 is UNAVAILABLE

24 And TTD20.VSS23 is UNAVAILABLE

Introduce VSS state. In this refinement of the scenario we introduce the full VSS
states of the specification. That is, available is replaced by free and not available
is replaced by ambiguous, occupied or unknown as appropriate This refinement
brings us back to the full concrete scenario that was described in Section 4.

7 Tool Support

In this section, we show examples of specifying step definitions that link the
domain specific scenarios with our model at different levels of refinement. Our
step definitions are built on top of the Cucumber for Event-B.

We start with our most abstract model which has events for trains to enter or
leave a VSS. The signature of the event to move the rear of a train is as follows

1 event ENV rear leave section
2 any
3 tr // The train
4 vss // The VSS from that the train moves
5 where ... then ... end

In order to link the above event with the Gherkin commands, e.g., When Train1

leaves VSS11, we define the following step definition.

1 When(˜/ˆ${id} enters ${id}$/) {

14 Snook et al.

2 String train, String vss−>
3 fireEvent(”ENV rear leave section”, ”tr = ” + train + ” & ” + ”vss = ” + vss

)
4 }

Here fireEvent is a library method from Cucumber for Event-B to fire an event
in the model with possible additional constraints on the event’s parameters. In
the step definition above, the information about the train ID and the VSS is
extracted using pattern matching and subsequently used to build the parameter
constraint accordingly.

In the same model, we have a variable occupiedBy∈ VSS↔→ train to keep track
of information about occupation of VSS by trains. We can use this to specify
the step definition for commands, such as, Then Train1 stood at VSS11,VSS12,
as follows

1 Then(˜/ˆ${id} stood at ${id list}$/) {
2 String train, String vss set−>
3 assert true == isFormula(”occupiedBy ˜[{” + train + ”}]”, ”{” + vss set +

”}”)
4 }

Here isFormula is a library method from Cucumber for Event-B to compare the
evaluation of a formula (e.g., occupiedBy−1[{TRAIN1}]) and the expected result
(e.g., {VSS11, VSS12}).

Step definitions might need to change according to refinements of the model.
For example, when we introduce TTD information, event ENV rear leave section
is split into two events: ENV last train leave ttd (when the TTD will be freed) and
ENV rear leave section otherwise. We introduce an alternative step definition,
which selects whichever case is enabled, to reflect this refinement:

1 When(˜/ˆ${id} leaves ${id}$/) {
2 String train, String vss−>
3 String formula = ”tr = ” + train + ” & ” + ”vss = ” + vss
4 if (isEventEnabled(”ENV rear leave section”, formula))
5 fireEvent(”ENV rear leave section”, formula)
6 else if (isEventEnabled(”ENV last train leave ttd”, formula))
7 fireEvent(”ENV last train leave ttd”, formula)
8 }

8 Future Work

We have previously used natural language descriptions of scenarios manually
converted ad-hoc into cucumber and executed with model animation tools. The

A Domain-Specific Scenario Language 15

use of a DSL and abstract scenarios is a new proposal that requires further inves-
tigation and development. In future work we will continue to develop scenarios
from the HL3 case study and investigate tool automation of the abstractions
based on the refinements from the model. We will employ the scenario-based
modelling techniques in other domains such as aerospace to test its generality.
Our eventual aim is to utilise the scenarios in a ‘kind of’ continuous integration
development environment for formal modelling. Our future project commitments
include model transformation from Event-B systems models to semi-formal com-
ponent models and the use of precise and abstract scenarios could be utilised
to validate and verify this transformation stage by co-simulation of scenarios in
both models.

9 Conclusion

One of the strengths of formal methods lies in efficient, generic verification (using
theorem provers) which obviates the need for test cases and hence instantiation
with objects. However, to leverage this strength we need to convince domain ex-
perts and, of course, ourselves, of the validity of the models. To this end we have
returned to a strategy analogous to testing; animation of models using scenarios.
We envisage a growing reliance on scenarios as we seek to integrate formal sys-
tems level modelling with industrial development processes. An important step
is to make the scenarios more precise so that they are clear and unambiguous
while remaining easily understood by all stakeholders. We have suggested using
an easily derived DSL to achieve this. For early detection of problems, it is im-
portant that we can use the scenarios at stages when our abstract models do not
contain all of the detail involved in the concrete scenario. We therefore propose
a technique of synthesising abstract versions of the scenario that are suitable for
use with the abstract refinement levels of the model. The abstraction technique
uses the data refinement of the model (including superposition of new data as
well as refinement of data representation) to make corresponding abstractions in
scenarios. We propose to develop these techniques in the future as we continue
to build our formal model based development process.

References

1. Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

2. Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang,
Farhad Mehta, and Laurent Voisin. Rodin: an open toolset for modelling and
reasoning in Event-B. STTT, 12(6):447–466, 2010.

3. Jacob L Cybulski. The formal and the informal in requirements engineering. Tech-
nical report, Technical Report 96/7, Department of Information Systems, The
University of . . . , 1996.

4. Dana Dghaym, Michael Poppleton, and Colin Snook. Diagram-led formal mod-
elling using iuml-b for hybrid ertms level 3. In 6th International ABZ Conference
ASM, Alloy, B, TLA, VDM, Z, 2018, Proceedings of, 2018.

16 Snook et al.

5. Tomas Fischer. Cucumber for Event-B and iUML-B. https://github.com/

tofische/cucumber-event-b, 2018.
6. Tomas Fischer and Dana Dghaym. Formal model validation through acceptance

tests. In RSSRail 2019, 2019.
7. EEIG ERTMS Users Group. Hybrid ERTMS/ETCS Level 3:Principles, July 2017.

Ref. 16E042 Version 1A.
8. Thai Son Hoang. An introduction to the Event-B modelling method. In Industrial

Deployment of System Engineering Methods, pages 211–236. Springer-Verlag, 2013.
9. Colin F. Snook, Thai Son Hoang, Dana Dghaym, Michael J. Butler, Tomas Fischer,

Rupert Schlick, and Keming Wang. Behaviour-driven formal model development.
In Jing Sun and Meng Sun, editors, Formal Methods and Software Engineering
- 20th International Conference on Formal Engineering Methods, ICFEM 2018,
Gold Coast, QLD, Australia, November 12-16, 2018, Proceedings, volume 11232 of
Lecture Notes in Computer Science, pages 21–36. Springer, 2018.

10. Matt Wynne and Aslak Hellesøy. The Cucumber Book: Behaviour-Driven Devel-
opment for Testers and Developers. Pragmatic Programmers, LLC, 2012.

https://github.com/tofische/cucumber-event-b
https://github.com/tofische/cucumber-event-b

	Domain-Specific Scenarios for Refinement-based Methods

