Inner-surface finish N7 for the nozzle section
NOTE:
"elbow_300u.SLDPRT" has same dimensions but a bigger wall thickness marked in curly brackets { }
SECTION A-A
SCALE 10 : 1

Inner-surface finish N7
<table>
<thead>
<tr>
<th>Item #</th>
<th>Name</th>
<th>Material</th>
<th>Manufacturer</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Heat Exchanger</td>
<td>316L</td>
<td>EDMC</td>
<td>AM Metal Printer + lathe post manufacturing</td>
</tr>
<tr>
<td>2</td>
<td>Thruster Inflow</td>
<td>316L</td>
<td>EDMC</td>
<td>AM Metal Printer + lathe post manufacturing</td>
</tr>
<tr>
<td>3</td>
<td>Thruster Casing</td>
<td>316L</td>
<td>EDMC</td>
<td>CNC machining</td>
</tr>
<tr>
<td>4</td>
<td>Thruster Support</td>
<td>316L</td>
<td>EDMC</td>
<td>CNC machining</td>
</tr>
<tr>
<td>5</td>
<td>Collar</td>
<td>Alumina</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Nozzle Spacer</td>
<td>Shapal</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Radiation Shielding Assembly</td>
<td>Shapal</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Insulation Package</td>
<td>Porous Ceramic</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Thruster Casing</td>
<td>Metal Foil</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
NOTE: EDM wire cut to be performed at 1mm from print base plate.
NOTE: EDM wire cut to be performed at 1mm from print base plate.
Alumina 99.7%

If in doubt please ask.

Do not scale.

All dimensions in mm unless otherwise stated.

Tolerances unless otherwise stated:
- Linear: ±0.20
- ±0.10
- ±0.05
- Angular: ±0.50

The information contained in this document is the property of the University of Southampton. Do not copy without written permission.

Title: Washer

Date: 07/11/2017

Supervisor: AN Grubisic

Design: VHTR

Drawing No: 1 of 11

Job No: 16

Assembly Number: 1 of 1

Revision: 4

SURFACE FINISH

TEXTURE

MATERIAL

SUPERVISOR

PROJECT

DEPARTMENT

DRAWN AND DESIGNED BY

THE INFORMATION CONTAINED IN THIS DOCUMENT IS THE PROPERTY OF THE UNIVERSITY OF SOUTHAMPTON. DO NOT COPY WITHOUT WRITTEN PERMISSION.
6 holes equi-spaced on a Ø9mm PCD
Ø1.50

DO NOT SCALE

THE INFORMATION CONTAINED IN THIS DOCUMENT IS THE PROPERTY OF THE UNIVERSITY OF SOUTHAMPTON DO NOT COPY WITHOUT WRITTEN PERMISSION.

1 of 1

2 of 11

A3

UNIVERSITY OF Southampton
Faculty of Engineering and the Environment

Astronautics

A3

DO NOT SCALE

Book Bottom Insulator

DRAWN AND DESIGNED BY
F Romei

TOLERANCES UNLESS OTHERWISE STATED

2 of 11

DO NOT SCALE

IF IN DOUBT PLEASE ASK

F Romei

AN Grubisic

07/11/2017

5:1

All Overunless otherwise stated

All dimensions in mm unless otherwise stated

Linear

.X = +/- 0.20

.XX = +/- 0.10

.XXX = +/- 0.05

Angular

+/- 0.50

VHTR

AN Grubisic

SHAPAL

MATERIAL

TEXTURE

SURFACE FINISH

REMOV E ALL SHARP EDGES

THE INFORMATION CONTAINED IN THIS DOCUMENT IS THE PROPERTY OF THE UNIVERSITY OF SOUTHAMPTON DO NOT COPY WITHOUT WRITTEN PERMISSION.
Disk Pipe Insulator

Shapal

DO NOT SCALE

DRAWN AND DESIGNED BY
F Romei

F Roman

DISCLAIMER OF LIABILITY
THE INFORMATION CONTAINED IN THIS DOCUMENT IS THE PROPERTY OF THE UNIVERSITY OF SOUTHAMPTON, AND IS NOT TO BE USED OR DISTRIBUTED WITHOUT WRITTEN PERMISSION.

TOLERANCES UNLESS OTHERWISE STATED
LINEAR
.X = +/- 0.20
.XX = +/- 0.10
.XXX = +/- 0.05

ANGULAR
+/- 0.50

UNIVERSITY OF
Southampton
Faculty of Engineering and the Environment

REMOVE ALL SHARP EDGES
IF IN DOUBT PLEASE ASK.
Insulating Sleeve
6 holes equi-spaced on a 0.35mm PCD
NOTES:
- the as-printed Heat Exchangers are manufactured in job 772270
- use suggested jig for performing this job
- all cuts are performed on the nozzle end

Suggested machining steps:
1. Polish down the bottom cylindrical surface;
2. CUT 1 (with the datum provided and up to the CUT 1 dia.);
3. Radius R1;
4. CUT 2 to obtain the required close running fit with a ceramic component.
5. CUT 3 up to the specified dia. to avoid contact with the internal nozzle;
6. CUT 4 and CUT 5 to obtain the specified tolerance to couple the nozzle with the Thruster Casing component;
7. CUT 6 to obtain the nominal Heat Exchanger length;
8. Manual nozzle surface polishing on lathe (using jig for CUT 3), details to be further discussed with technician;
9. Nozzle throat drilling with 0.42mm drill bit (using jig for CUT 3)
CUT 1 + radius R1 (section view)

CUT 2

CUT 3 + CUT 4 + nozzle polishing + throat drilling

Suggested jig for HE post-man

DO NOT SCALE

THE INFORMATION CONTAINED IN THIS DOCUMENT IS THE PROPERTY OF THE UNIVERSITY OF SOUTHAMPTON.
DO NOT COPY WITHOUT WRITTEN PERMISSION.
Suggested jig dimensions

- **SECTION B-B**: B = 1.75

- **SECTION C-C**: C = 2

- **R6.25**

- **R5.08**

Notes: DO NOT SCALE. ALL DIMENSIONS IN mm UNLESS OTHERWISE STATED. TOLERANCES: UNLESS OTHERWISE STATED, LINEAR ±0.20, ±0.10, ±0.05; ANGULAR ±0.50. REMOVE ALL SHARP EDGES. IF IN DOUBT PLEASE ASK.
NOTES:
- the as-printed Thruster Inflows are manufactured in job 772270
- all cuts are performed on the top end

Suggested machining steps:
1. 6 holes machining
2. CUT 1 (with the datum provided and up to the CUT 1 radius)
3. 10° chamfer up to 8.85mm radius at top face of disk
4. CUT 2
5. CUT 3 to obtain the nominal Thruster Inflow length

6 holes equi-spaced on a \(\varnothing 35 \text{mm PCD} \)
6 holes equi-spaced on a $\phi 35$mm PC $\phi 6$

DETAIL D
SCALE 4 : 1

SECTION C-C

Thrust Casing

UNIVERSITY OF
Southampton
Faculty of Engineering and the Environment

THE INFORMATION CONTAINED IN THIS DOCUMENT IS THE PROPERTY OF THE UNIVERSITY OF SOUTHAMPTON. DO NOT COPY WITHOUT WRITTEN PERMISSION.

DO NOT SCALE

R6 TYP
R15.80

DO NOT SCALE

ALL DIMENSIONS IN mm UNLESS OTHERWISE STATED

TOLERANCES UNLESS OTHERWISE STATED

ASTRONAUTICS

DRAWN AND DESIGNED BY
F Romei
AN Grubisic

07/11/2017
2:1

A3

VHTR

316L

TEXTURE

UNIVERSITY

PROJECT

2 of 3

REV.

ASSEMBLY NUM.

1 of 1

1

Sheet

4
3 holes equi-spaced on a \(\phi 27\text{mm} \) PCD

\(\phi 5.20 \)

E

R5

\(\phi 3 \)

60°

R6

E

R6

\(\phi 6.90 \)

\(\phi 4.90 \)

\(\phi 1.50 \)

\(6.00 \)

\(\phi 36 \)

\(3 \)

\(5.20 \)

\(1.50 \)

\(8 \)

\(6 \)

\(3 \)

SECTION E-E
Thickness required = 3mm

Holes summary:
- M6 full thread x6
- 6mm x 22
- 4mm x 10
- 3.2mm x 4

Rack plate