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We calculate the Casimir forces in two configurations, namely, three parallel dielectric slabs and a
dielectric slab between two perfectly conducting plates, where the dielectric materials are dispersive and
inhomogeneous in the direction perpendicular to the interfaces. A renormalization scheme is proposed
consisting of subtracting the effect of one interface separating two inhomogeneous media. Some examples
are worked out to illustrate this scheme. Our method always gives finite results and is consistent with the
principle of virtual work; it extends the Dzyaloshinskii-Lifshitz-Pitaeveskii force to inhomogeneous media.
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I. INTRODUCTION

Casimir demonstrated in 1948 [1] that zero-point energy
could have measurable effects. The Casimir effect refers to
phenomena resulting from the nontrivial vacuum state of
quantum fields in the presence of external conditions, such
as boundaries, nontrivial topology, varying background
potentials, and spacetime curvature. Such have been
intensively investigated, both theoretically [2–6] and exper-
imentally [7–18]. There are many potentially important
applications in various areas [19–23].
In Casimir’s original configuration, two infinitely large

parallel perfectly conducting plates are separated by a
distance a in the vacuum, which gives rise to a finite force
per unit area on the plates,1 namely the famousCasimir force

F ¼ −
π2

240a4
; ð1Þ

where the negative sign signifies its attractiveness. Lifshitz
[2] then generalized this model to the more physical one of
two parallel homogeneous dielectric media separated by
vacuum. Later, Dzyaloshinskii et al. [3,24] (DLP) intro-
duced another homogeneous medium as the intervening
material replacing the vacuum; their results have been
demonstrated experimentally [9,10]. A natural next gener-
alization is the evaluation ofCasimir forces in configurations
where the media are inhomogeneous [25–29]. However,
progress in that direction has been extremely slow in the past
sixty years for various reasons, of which the following two
are the most significant.
First, it is not trivial to justify the statement that Casimir

forces in inhomogeneous media are well defined. It is
generally known that a force F acting on a body could be
expressed in terms of the energy variation δE due to the
variation δa in the body’s configuration as F ¼ −δE=δa.
This is known as the energy-force balance relation or the
principle of virtual work (PVW). Any physically accept-
able scheme to calculate a conservative force should satisfy
this relation. However, as shown in Refs. [30,31], an
ultraviolet cutoff yields an inconsistent energy-pressure
relation, which those authors termed the “pressure
anomaly,” while point-splitting regularization in a neutral
direction leads to plausible results [32]. The hope of
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resolving this paradox motivated the replacement of sharp
boundaries by steeply rising potential barriers [33–37], and
hence the consideration of inhomogeneous dielectric media
as in our current project [38]. After renormalization, the
PVW is always satisfied in the Casimir configuration and
those considered by Lifshitz and Dzyaloshinskii et al. But
there is no obvious proof, or even statement, of the PVW in
inhomogeneous cases. For instance, because of the inho-
mogeneity, it is not clear how to define the energy variation
induced by the virtual displacement of the boundary
between two media. Any acceptable method of calculating
the Casimir force in inhomogeneous media must be
consistent with the PVW.
Second, even if the Casimir force in inhomogeneous

media is well defined, there remains the problem of how to
extract finite terms, whose physical meanings are unam-
biguous, from the energy and stress tensor. Casimir had
already clearly realized that some sort of subtraction or
regularization is required to obtain finite results, which are
not “divergent and devoid of physical meanings” [1], from
the summation of the zero-point energies of all the modes,
1
2

P
ℏω. Since then, several approaches have been adopted

to regularize the vacuum energy or stress tensor, such as the
ultraviolet cutoff method [5,32], zeta-function regulariza-
tion [5,39,40], Laurent regularization [26], the point-
splitting method [33,41] and dimensional continuation
[4,42]. Although these techniques control the divergences,
in general a divergent part must be removed. Typically, one
will subtract a Green’s function for the case where one
homogeneous medium fills the whole space, which is
sometimes named the “bulk contribution” [38,43,44], from
the total Green’s function to obtain a subtracted Green’s
function, a procedure occasionally called “Lifshitz regu-
larization” [27,28]. However, when trying to calculate
Casimir forces in the DLP configuration with the interven-
ing medium being inhomogeneous, the authors of
Refs. [25,27] ruled out the feasibility of the Lifshitz
regularization and introduced another one, which resulted
in divergences on the boundaries with the homogeneous
media, an outcome they considered to fall “outside the
current understanding of the Casimir effect.” Another
attempt to regularize the inhomogeneous medium was
carried out by Simpson et al. in Ref. [28], using a modified
Lifshitz regularization based on a piecewise homogeneity
approximation. They concluded that their piecewise
method is not likely to give the correct solution. Though
there have been many illuminating endeavors, more effort
is still needed to find proper renormalization methods for
the inhomogeneous cases.
In Sec. II, we demonstrate the validity of calculations for

Casimir forces in the DLP configuration with the media
being inhomogeneous [generalized Lifshitz configuration,
(GLC)] and in the Casimir configuration with the interven-
ing medium being inhomogeneous [generalized Casimir
configuration, (GCC)]. A renormalization scheme based on

subtraction of the force or energy of a reference configu-
ration is also described. This method always gives Casimir
forces that are finite, as shown generally with the WKB
approximation, and satisfy the PVW. Our method is
consistent with the well-known homogeneous results. In
Sec. III, some exactly solvable examples are provided. In
Sec. IV, we offer concluding remarks and point out possible
directions for further study. In Appendices A–F, we provide
mathematical details of our theoretical calculations.
In A, we demonstrate the PVW in flat spacetime with a
plane boundary. In B, we use the Green’s function method
to calculate the vacuum expectation values of the energy
and stress tensor; explicit formulas in planar geometry are
given in C. A full presentation of the renormalization
scheme can be found in D. The WKB argument that shows
the results are finite is provided in E. Finally, F contains
details of the exactly solvable examples discussed in
Sec. III.

II. RESULTS AND ANALYSES

In this paper, we calculate the Casimir force in the
configuration shown in Fig. 1(a), where three parallel slabs
are all isotropic, dispersive, and inhomogeneous in the
z-direction, with the permittivity and permeability of the
system ε and μ being of the forms (ζ is the Euclidean
frequency)

εðζ; zÞ ¼

8>><
>>:

ε3ðζ; zÞ; z > b;

ε2ðζ; zÞ; a < z < b;

ε1ðζ; zÞ; z < a;

μðζ; zÞ ¼

8>><
>>:

μ3ðζ; zÞ; z > b;

μ2ðζ; zÞ; a < z < b;

μ1ðζ; zÞ; z < a:

ð2Þ

The differential equations,

�
∂z

1

ðμi;εiÞ
∂z− ðεi;μiÞζ2−

k2

ðμi;εiÞ
�
ðêi�; ĥi�Þðζ;k;zÞ¼ 0;

ð3Þ

have solutions êi� and ĥi� satisfying appropriate boundary
conditions, typically limz→�∞êi�ðzÞ¼ limz→�∞ĥi�ðzÞ¼0.
We find, according to Appendix C, the transverse electric
(TE) contribution to the total energy depending on the
interfaces of the media is

ΔUE ¼ 1

2

Z
dζd2k
ð2πÞ3 lnΔ

Eða; bÞ; ð4Þ

with ΔEða; bÞ being
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ΔEða; bÞ ¼ ½ê1−; ê2þ�μðaÞ½ê2−; ê3þ�μðbÞ
− ½ê1−; ê2−�μðaÞ½ê2þ; ê3þ�μðbÞ; ð5Þ

where the expression ½ei; ej�μðxÞ is defined as

½ei; ej�μðxÞ≡ e0iðxÞ
μiðxÞ

ejðxÞ − eiðxÞ
e0jðxÞ
μjðxÞ

; ð6Þ

while the TE contribution to the discontinuity of the
normal-normal stress tensor across the two sides of the
interface z ¼ b, i.e., TE

zzðb�Þ, in which b� ¼ b� ϵ and
0 < ϵ → 0, satisfies the relation

TE
zzðb−Þ − TE

zzðbþÞ ¼ −
1

2

Z
dζd2k
ð2πÞ3

∂ lnΔEða; bÞ
∂b

¼ −
∂
∂bΔU

E: ð7Þ

The corresponding transverse magnetic (TM) contributions
are obtained by making the substitution E → H, ε ↔ μ and
ê → ĥ. In light of Eq. (7), we see that the principle of virtual
work is true in this system, which means that the Casimir
forces in this kind of system are properly defined. However,
these expressions are divergent.
In order to extract physical results, we propose a

renormalization scheme based on a reference configuration
for this inhomogeneous media system. Since the interaction
part of the Casimir force is related to the interaction energy
between the media on the upper and lower sides, when
calculating the force on the z ¼ b interface (analogous
arguments apply to the z ¼ a interface), we analytically
extend the intervening medium II all the way down to
z → −∞, that is, material II fills the whole region z ≤ b
[shown in Fig. 1(b)]. The reference configuration elimi-
nates the interaction between medium I and medium III.
This subtraction follows the same philosophy used in
deriving the multiple scattering formula [45] for two bodies
in homogeneous media. For further discussion of the

uniqueness and limitations of the reference subtraction
method, see Refs. [43,44,46].
For the reference configuration, the TE contributions to

ΔUE and TE
zz above are written as

ΔŨE ¼ 1

2

Z
dζd2k
ð2πÞ3 ln Δ̃

EðbÞ;

T̃E
zzðb−Þ − T̃E

zzðbþÞ ¼ −
∂
∂bΔŨ

E; ð8Þ

where Δ̃EðbÞ ¼ ½ê3þ; ê2−�μðbÞ. To obtain the renormalized
energy and normal-normal stress tensor, we subtract the
reference energy and stress tensor from those of the
original configuration, i.e., ΔUE

r ¼ΔUE−ΔŨE and TE
r;zz ¼

TE
zz − T̃E

zz. The force per unit area on the interface z ¼ b is
thus consistent with the PVW,

FE ¼ −
∂
∂bΔU

E
r ¼ −

1

2

Z
dζd2k
ð2πÞ3

∂ lnΔE
r ða; bÞ
∂b ;

ΔE
r ða; bÞ ¼ 1 −

½ê1−; ê2−�μðaÞ½ê2þ; ê3þ�μðbÞ
½ê1−; ê2þ�μðaÞ½ê2−; ê3þ�μðbÞ

: ð9Þ

The TM contribution to the corresponding force is derived
with the substitution ε ↔ μ; E → H and ê → ĥ. This is all
discussed in more detail in Appendix D.
As a specific illustration of our renormalization method,

we have considered the case where the three slabs are all
homogeneous, which gives the TE contribution to the force
per unit area as follows:

FE ¼ −
Z

dζd2k
ð2πÞ3

κ2
dE

;

dE ¼ ðμ1κ2 þ μ2κ1Þðμ3κ2 þ μ2κ3Þ
ðμ1κ2 − μ2κ1Þðμ3κ2 − μ2κ3Þ

e2κ2ðb−aÞ − 1; ð10Þ

where κi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εiμiζ

2 þ k2
p

, and its counterpart from TM
modes is derived with the substitution μ → ε; E → H. This
result exactly agrees with those in Refs. [2–4].

FIG. 1. (a) The generalized Lifshitz configuration, where the permittivities and permeabilities of the three parallel dielectric slabs are
εi;μi; i ¼ 1, 2, 3. (b) The reference configuration of (a) for the z ¼ b interface.
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We have also applied our method to the generalized
Casimir configuration, where two parallel perfectly con-
ducting slabs are separated by an inhomogeneous medium,
and found the forces per unit area at the z ¼ b interface,
when the intervening medium is homogeneous, are

FE ¼ FH ¼ −
π2

480
ffiffiffiffiffiffiffiffiffi
ε2μ2

p 1

ðb − aÞ4 ; ð11Þ

which is just the result in Eq. (1) as long as ε2 ¼ μ2 ¼ 1.
Equation (11) could also be derived by taking the limit
μ1 ¼ μ3 ¼ 1 and ε1, ε3 → ∞ in Eq. (10). Therefore, our
method is consistent with previous results derived in the
homogeneous cases.
To show that our renormalized results are finite, we

utilized the WKB approximation to illustrate the leading
behaviors of both GLC and GCC in Eqs. (E3) and (E4). As
usually expected, in the high frequency region ζ → ∞, no
material could respond to the electromagnetic oscillation so
rapidly as to modify the field significantly, which implies
the relation limζ→∞εðζÞ; μðζÞ ¼ 1. Consequently, the lead-
ing terms of the total energy in the GLC and GCC from TE
modes in the high frequency region are

ΔUE
r;GLCðGCCÞðjζj ≈∞Þ

¼ 1

2

Z
jζj≈∞

dζd2k
ð2πÞ3 ln½1 − ηGLCðGCCÞðζÞe−2κðb−aÞ�; ð12Þ

where κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 þ k2

p
and the coefficients for GLC and

GCC satisfy limζ→∞ηGLCðζÞ ¼ 0 and limζ→∞ηGCCðζÞ ¼ 1

according to Eqs. (E3) and (E4). So in the high frequency
region, the GLC behaves like the vacuum everywhere,
which is just as expected; while for the GCC, ΔUE

r;GCC is
always finite, which implies a finite Casimir force. As for
the integral over k, similar convergence can be seen from
Eqs. (E3) and (E4). This demonstrates that our method
yields finite results.
The consistency and the effectiveness of our method

give us some confidence to claim that we have found a
reasonable approach to evaluate the Casimir forces in
the GLC and GCC, although full confirmation from
solid experimental results is still required. Perhaps a
differential scheme along the lines of Ref. [47] could be
used to observe our results. The following examples
demonstrate the behaviors of the Casimir forces in inho-
mogeneous media.

III. EXAMPLES

There are only a few cases where the Green’s functions
may be explicitly constructed in terms of known functions.
One of these is the inhomogeneous medium considered in
Refs. [38,44]. First, we investigate the GCC where the
permittivity and permeability of the intervening medium

are ε ¼ λ=ðz − cÞ2 and μ ¼ 1 with λ and c as constant
parameters and b < c. The forces are given in Eq. (F5). As
a special case, for λ=ðc − aÞ2 ¼ 1, we see in Fig. 2 how the
Casimir forces from the TE and TM modes vary with the
separation d ¼ b − a between two perfectly conducting
plates. According to Fig. 2, it is clear that as the distance d
increases, this GCC model differs significantly from the
homogeneous case due to its inhomogeneity; while the
GCC model converges to the homogeneous case when
d → 0, which is intuitively reasonable since the inhomo-
geneity is not significant at short distances.
We further extend the inverse square permittivity model

to the GLC case, where the dielectric slabs for the z < a
and z > b regions are both homogeneous and the interven-
ing medium has the permittivity and permeability as above.
For the case ε1 ¼ 2, ε3 ¼ 3, μ1 ¼ μ2 ¼ μ3 ¼ 1 and
λ=ðc − aÞ2 ¼ 1, Fig. 3(a) shows the TE and TM inhomo-
geneous Casimir forces. Figure 3(b) shows that the sepa-
ration dependence of the Casimir forces in this GLC model
is distinct from that of their homogeneous counterparts in
Eq. (10) with ε2 ¼ εðaÞ; μ2 ¼ 1, and that the influence of
the inhomogeneity decreases as the separation between the
two interfaces gets smaller. Moreover, as the interface
z ¼ b is sufficiently close to c the Casimir forces in this
GLC will turn from attractive to repulsive. Repulsion
occurs when in some region ε1 < hε2i < ε3, where hε2i
is an average of ε2 in some sense, as is known for the DLP
configuration. Therefore, for a given separation b − a and
singularity position c, a region of λ can be found for which
the Casimir force is repulsive. For fixed λ, the TE Casimir

FIG. 2. The TE and TM contributions to Casimir force ratios,
denoted as σE and σH , in the GCC, where the permittivity and
permeability of the intervening medium are εðzÞ¼λ=ðc−zÞ2¼
λ̃=ð1−dzÞ2;λ̃¼λ=ðc−aÞ2;dz¼ðz−aÞ=ðc−aÞ and μ ¼ 1 respec-
tively, with λ̃ ¼ 1. Those Casimir force ratios are defined as
σE ¼ FE=FHE and σH ¼ FH=FHE, where FE and FH are TE
and TM contributions to the Casimir forces in Eq. (F5) andFHE is
the homogeneous Casimir force as shown in Eq. (11) with
permittivity and permeability being εðaÞ and 1 respectively.

LI, MILTON, GUO, KENNEDY, and FULLING PHYS. REV. D 99, 125004 (2019)

125004-4



forces do not behave monotonically in the repulsive region,
see Fig. 3(a). Repulsion can occur near the z ¼ a plate
when ε1 < λ=ðc − aÞ2 < ε2. For example see the dotted
lines in Fig. 4, where the positive force signifies repulsion
of the plate at z ¼ b.
To further explore the inhomogeneous effect, we calcu-

lated the Casimir forces in a GCC with a diaphanous
intervening medium, meaning one whose permittivity ε

and permeability μ satisfy εμ ¼ 1. A diaphanous dielectric
ball [48] or cylinder [49] has unambiguous finite Casimir
stress and energy, which without such condition would be
plaguedwith divergences. (In the electromagnetic δ-function
sphere, analogous behavior was expected to be found
[50], but more work is apparently needed.) Here we let
the permittivity of the diaphanous medium be εðzÞ ¼
exp½λðz − cÞ2� and find the Casimir forces in Eq. (F9). We
note that FE ¼ FM is always true for this case, which is a
property in commonwith the homogeneous cases inEq. (11).

FIG. 3. The Casimir forces in the GLC, where the permittivity and permeability of the intervening medium are the same as those
defined in Fig. 2, and for the lower and upper dielectric slabs ε1 ¼ 2, μ1 ¼ 1 and ε3 ¼ 3, μ3 ¼ 1. (a) The TE and TM contributions to the
scaled Casimir forces, defined as ηE ¼ 103ðc − aÞ4FE and ηH ¼ 102ðc − aÞ4FH respectively, in which FE and FH are given in
Eq. (F4). (b) The Casimir force ratios, defined as σE ¼ FE=FHE and σH ¼ FH=FHM, where the homogeneous Casimir forces FHE and
FHM are given in Eq. (10) with permittivity and permeability being εðaÞ and 1 respectively.

FIG. 4. Consider the same GLC configuration in Fig. 3 with the
same parameters, except for λ and b. The TE and TM contributions
to the scaled Casimir forces, ηE and ηH as defined in Fig. 3 and
ρE ¼ ðc − aÞ4FE and ρH ¼ 10−1ðc − aÞ4FH, as functions of λ are
shown with their dependence on λ̃ ¼ λ=ðc − aÞ2. Here the d ¼
ðb − aÞ=ðc − aÞ ¼ 0.5 case is plotted with solid lines (ηE and ηH)
and the d ¼ ðb − aÞ=ðc − aÞ ¼ 0.05 case is plotted with dotted
lines (ρE and ρH).

FIG. 5. The separation dependence of the relative Casimir force
σE ¼ σH ¼ FE=FHE in the GCCwith permittivity and permeabil-
ity ε ¼ eλðz−cÞ2 andμ ¼ e−λðz−cÞ2 , where

ffiffiffi
λ

p ðc − aÞ ¼ 2−3=2.FE is
given in Eq. (F9) and FHE is the TE Casimir force of a
homogeneous GCC satisfying εμ ¼ 1.
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The ratio between the Casimir force in this GCC and its
counterpart in the homogeneous GCC is shown in Fig. 5.We
see that even though the speed of light is the same as that in
the vacuum, the Casimir force in this GCC is considerably
different from that in thevacuumand the larger the separation
the larger is the discrepancy. Of course, it reduces to the
homogeneous case as the separation goes to zero.

IV. CONCLUSIONS

To attain a reliable procedure for Casimir force calcu-
lations in inhomogeneous media, we have taken the first step
by investigating the generalized Lifshitz configuration and
the generalized Casimir configuration where the intervening
media are inhomogeneous in one direction. We have pro-
posed a renormalization scheme based on a reference
configuration. This scheme is consistent with the principle
of virtual work and renders the Casimir force finite for
inhomogeneous and dispersive media. We have also applied
our approach to a few analytically solvable examples, in
which we justified the effectiveness and consistency of our
method and illustrated the possibility of Casimir repulsion
and nonmonotonicity in the inhomogeneous case.
Although our scheme always gives plausible results to

date, there are still some knotty points that should be
considered seriously. In particular, we have not included the
interaction of one interface with the inhomogeneous
medium itself. Doing so may entail understanding and
modeling how realistic media behave under deformation.
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APPENDIX A: PRINCIPLE OF VIRTUAL
WORK IN FLAT SPACETIME WITH

A PLANE BOUNDARY

Consider a quantized field in a static spacetime with line
element ds2 ¼ g00dt2 þ dx2 þ dy2 þ gzzdz2. Under the
combined coordinate scaling t → α−1t ¼ t0 and dual metric
scaling g00 → α2g00 ¼ g000, where α > 0 is a constant scale
factor, the line element, and therefore the physics, is
unchanged. The corresponding invariance of the one-loop
effective action, W ¼ R

Ldt, and the time independence of
the one-loop effective Lagrangian, L, together imply that L
scales as LðαÞ ¼ αLð1Þ ¼ αL, and therefore that dLðαÞdα ¼ L.
On the other hand, a small change in the scale factor results in
the functional variation δLðαÞ ¼ R

d3x δL
δg0

00

δðα2g00Þ, which
implies

dLðαÞ
dα

����
α¼1

¼
Z

d3x
ffiffiffiffiffi
jgj

p
g00T00 ¼ −E; ðA1Þ

where g ¼ det½gμν�, and E is the vacuum energy. Thus,
L ¼ −E. This derivation is a simplified version of that
in Ref. [51].
Consider now the bounded domain z ≤ b. A virtual

normal displacement of the plane boundary z ¼ b may be
effected by applying the following contraction to the z
boundary layer (b − h, b], where h > 0 is arbitrarily small
and β ≥ 1 is a constant scale factor:

∀ z ∈ ðb − h; b�;
z → z0 ¼ b − hþ β−1ðz − bþ hÞ ∈ ðb − h; b0�; ðA2Þ

where the boundary z ¼ b maps to z ¼ b0 ∈ ðb − h; b�
for β ¼ h

b0−bþh.
On (b − h, b], under the combined coordinate contraction

z → z0 in (A2) anddualmetric scaling gzz → β2gzz ¼ g0zz, the
line element, and therefore the physics, is again unchanged.
The corresponding invariance of the one-loop effective
Lagrangian, Lðβ; βÞ ¼ Lð1; 1Þ ¼ L, where the first argu-
ment denotes the coordinate contraction scale factor and the
second argument the metric scale factor, implies that

dLðβ; 1Þ
dβ

����
β¼1þ

þ dLð1; βÞ
dβ

����
β¼1þ

¼ 0: ðA3Þ

In effect, the combined coordinate contraction and
dual metric scaling create a compound passive transforma-
tion that leaves the action form invariant. The components of
that transformation may be reinterpreted as active trans-
formations, and the invariance may be used to relate their
offsetting first-order effects. This, in essence, is the content
of (A3).
From (A2),

dLðβ; 1Þ
dβ

����
β¼1þ

¼ −h
dLðβ; 1Þ

db0

����
b0¼b−

¼ h
dE
db−

; ðA4Þ

while, from the functional variation δLð1; βÞ ¼R
d3x δL

δg0zz
δðβ2gzzÞ,

dLð1; βÞ
dβ

����
β¼1þ

¼
Z

z¼b

z¼b−h
d3x

ffiffiffiffiffi
jgj

p
gzzTzz: ðA5Þ

Thus, (A3) may be restated as

−
d

db−
E ¼ 1

h

Z
z¼b

z¼b−h
d3x

ffiffiffiffiffi
jgj

p
gzzTzz; ðA6Þ

which, in the limit h → 0þ, becomes

−
d

db−
E¼

Z
z¼b−

dxdy
ffiffiffiffiffi
jgj

p
gzzTzz: ðA7Þ
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Reduced to the Minkowski metric, this is a statement of the
PVW for a quantized field in flat spacetime, under virtual
normal displacement of a plane boundary.

APPENDIX B: FORMALISM

The fundamental object in quantum field theory is the
Green’s function. In this Appendix, we will use the Green’s
function to calculate energies and stress tensors. In
Euclidean spacetime, the vacuum expectation values of
the dyadics of the electric and magnetic fields E andH are
expressed in terms of the Green’s dyadics as [4]

hEðxÞEðx0Þi¼−
Z

dζ
2π

eiζðτ−τ0ÞΓζðr;r0Þ;

hHðxÞHðx0Þi¼−
Z

dζ
2π

eiζðτ−τ0Þ½Φζðr;r0Þ−μ−1ðζ;rÞ�; ðB1Þ

where τ is the Euclidean time, x ¼ ðτ; rÞ, and the equations
for the reduced Green’s dyadics for each Euclidean
frequency Γζðr; r0Þ and Φζðr; r0Þ are

½ζ2εðζ;rÞþ∇×μ−1ðζ;rÞ ·∇×1� ·Γζðr;r0Þ ¼ ζ21δðr− r0Þ;
ðB2aÞ

½ζ2μðζ;rÞþ∇×ε−1ðζ;rÞ ·∇×1� ·Φζðr;r0Þ ¼ ζ21δðr−r0Þ;
ðB2bÞ

in which ε and μ are the permittivity and permeability of the
medium.
Suppose the medium is isotropic, dispersive, and inho-

mogeneous only in the z-direction. Then in this planar
geometry the reduced Green’s functions have the following
forms:

ðΓζ;ΦζÞðr;r0Þ ¼
Z

d2k
ð2πÞ2 e

ik·ðrk−r0kÞðgζ;k;hζ;kÞðz;z0Þ;

rk ¼ ðx;yÞ: ðB3Þ

Without loss of generality, choose k along the x-axis. Then
gE and gH, which satisfy the equation

�
∂z

1

ðμ; εÞ ∂z − ðε; μÞζ2 − k2

ðμ; εÞ
�
gðE;HÞ
ζ;k ðz; z0Þ ¼ δðz − z0Þ;

k ¼ jkj; ðB4Þ

are employed to express gζ;k as

gζ;kðz; z0Þ ¼

2
6664

1
εε0 ∂z∂z0gHζ;k þ 1

ε δðz − z0Þ 0 ik
εε0 ∂zgHζ;k

0 −ζ2gEζ;k 0

− ik
εε0 ∂z0gHζ;k 0 k2

εε0 g
H
ζ;k þ 1

ε δðz − z0Þ

3
7775; ðB5Þ

and hζ;kðz; z0Þ is obtained with the substitution ε ↔ μ
and E ↔ H.
Define functions ðe�; h�Þðζ;k; zÞ as the solutions of the

corresponding homogeneous differential equations,

�
∂z

1

ðμ; εÞ ∂z − ðε; μÞζ2 − k2

ðμ; εÞ
�
ðe�; h�Þðζ;k; zÞ ¼ 0;

ðB6Þ

which satisfy the continuity conditions

∀ z ∈ R;

lim
y→zþ

ðe�; h�Þðζ;k; yÞ ¼ lim
y→z−

ðe�; h�Þðζ;k; yÞ;

lim
y→zþ

�
e0�
μ
;
h0�
ε

�
ðζ;k; yÞ ¼ lim

y→z−

�
e0�
μ
;
h0�
ε

�
ðζ;k; yÞ; ðB7Þ

and the relevant boundary conditions, for instance
limz→�∞ðe�; h�Þðζ;k; zÞ ¼ 0. We can then write

gðE;HÞ
ζ;k ðz; z0Þ as

gEζ;kðz; z0Þ ¼
eþðζ;k; z>Þe−ðζ;k; z<Þ

WE
ζ;k

;

gHζ;kðz; z0Þ ¼
hþðζ;k; z>Þh−ðζ;k; z<Þ

WH
ζ;k

; ðB8Þ

where the generalized Wronskians

WE
ζ;k ¼ e0þe− − eþe0−

μ
; WH

ζ;k ¼ h0þh− − hþh0−
ε

; ðB9Þ

are constant in z.
If the material has no energy and momentum dissipation,

then the vacuum expectation values of the energy densityU
and stress tensor T are,2 respectively,

U ¼ −
1

2

Z
dζ
2π

�
dðζεÞ
dζ

trΓζðr; rÞ þ
dðζμÞ
dζ

trΦζðr; rÞ
�
;

ðB10aÞ

2In the nondissipative cases, ε and μ are real.
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and

T ¼ −
Z

dζ
2π

�
1
2
tr½εðζ; rÞΓζðr; rÞ þ μðζ; rÞΦζðr; rÞ� − εðζ; rÞΓζðr; rÞ − μðζ; rÞΦζðr; rÞ

	
: ðB10bÞ

Ignoring the unphysical divergences coming from δ-functions, we may separate these into the transverse electric (TE) and
transverse magnetic (TM) modes as U ¼ UE þ UH;T ¼ TE þ TH, where

UðE;HÞ ¼
Z

dζd2k
ð2πÞ3 u

ðE;HÞðζ;k; zÞ; TðE;HÞ ¼
Z

dζd2k
ð2πÞ3 t

ðE;HÞðζ;k; zÞ; ðB11Þ

the reduced terms being

uEðζ;k; zÞ ¼ −1
2μWE

ζ;k

�
dðζμÞ
dζ

e0þe0−
μ

−
dðζεÞ
dζ

μζ2eþe− þ dðζμÞ
dζ

k2

μ
eþe−

�
; ðB12aÞ

and

tEðζ;k;zÞ¼ −1
2μWE

ζ;k

2
6664
−e0þe0− − εμζ2eþe−þk2eþe− 0 −2 ike0þe−

0 e0þe0−þ εμζ2eþe−þk2eþe− 0

2 ikeþe0− 0 e0þe0− − εμζ2eþe− −k2eþe−

3
7775: ðB12bÞ

Correspondingly, uH, tH are obtained by the substitution ε ↔ μ; e ↔ h; E ↔ H.

APPENDIX C: PLANAR GEOMETRY

In this paper, we mainly study the system in which there are three inhomogeneous dielectric slabs at z ≤ a, a < z < b
and z ≥ b with media whose permittivities and permeabilities, denoted ðεi; μiÞ; i ¼ 1, 2, 3 respectively, are isotropic.
The solutions to Eq. (B6) are given in terms of the well-defined solution in each region, i.e., êi� and ĥi�, as

eþðzÞ ¼

8>><
>>:

ê3þðzÞ; z > b;

Aþê2þðzÞ þ Bþê2−ðzÞ; a < z < b;

Cþê1þðzÞ þDþê1−ðzÞ; z < a;

e−ðzÞ ¼

8>><
>>:

C−ê3þðzÞ þD−ê3−ðzÞ; z > b;

A−ê2þðzÞ þ B−ê2−ðzÞ; a < z < b;

ê1−ðzÞ; z < a;

ðC1aÞ

where the coefficients are determined by the continuity conditions,

Aþ ¼ ½ê3þ; ê2−�μðbÞ
ŴE

2

; Bþ ¼ ½ê2þ; ê3þ�μðbÞ
ŴE

2

; A− ¼ ½ê1−; ê2−�μðaÞ
ŴE

2

; B− ¼ ½ê2þ; ê1−�μðaÞ
ŴE

2

; ðC1bÞ

Cþ ¼ Aþ½ê2þ; ê1−�μðaÞ þ Bþ½ê2−; ê1−�μðaÞ
ŴE

1

; Dþ ¼ Aþ½ê1þ; ê2þ�μðaÞ þ Bþ½ê1þ; ê2−�μðaÞ
ŴE

1

; ðC1cÞ

C− ¼ A−½ê2þ; ê3−�μðbÞ þ B−½ê2−; ê3−�μðbÞ
ŴE

3

; D− ¼ A−½ê3þ; ê2þ�μðbÞ þ B−½ê3þ; ê2−�μðbÞ
ŴE

3

: ðC1dÞ

The boundary conditions are typically ê3þ → 0; ê1− → 0 as z → ∞; z → −∞ respectively. Here ½ei; ej�μ ¼ e0iej=μi −
eie0j=μj and the generalized Wronskians are ŴE

i ¼ ½êiþ; êi−�μ. The corresponding TM terms are obtained by making the
substitutions e → h; E → H and μ → ε.
The TE contribution to the reduced energy per unit area, with the boundary condition eþð∞Þ ¼ e−ð−∞Þ ¼ 0, isZ

∞

−∞
dzuE ¼ −1

2WE
ζ;k

e0þe−
μ

����∞
−∞

þ −ζ
2WE

ζ;k

�
e0þðζ;k; zÞ
μðζ; zÞ

∂
∂ζ e−ðζ;k; zÞ − eþðζ;k; zÞ

∂
∂ζ

e0−ðζ;k; zÞ
μðζ; zÞ

�
∞

−∞
; ðC2Þ

where the identity

∂
∂z

�
e0þðζ;k; zÞ
μðζ; zÞ

∂
∂ζ e−ðζ;k; zÞ − eþðζ;k; zÞ

∂
∂ζ

e0−ðζ;k; zÞ
μðζ; zÞ

�
¼ −

1

μ

∂ðεμζ2Þ
∂ζ eþe− þ ∂ ln μ

∂ζ
∂
∂z

�
e0þe−
μ

�
ðC3Þ
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has been used. The zz-component of the reduced stress
tensor at any z is

tEzzðzÞ ¼
−1

2μWE
ζ;k

½e0þe0− − εμζ2eþe− − k2eþe−�ðzÞ

¼ ∂
∂zþ

½eþ; e−�μðzÞ
2WE ¼ −

∂
∂z−

½eþ; e−�μðzÞ
2WE ; ðC4Þ

where the derivatives with respect to z� act on the e�
related terms, respectively. If we consider only the part
depending on the position of the interfaces z ¼ a and
z ¼ b, we haveZ

∞

−∞
dzΔuE ¼ −ζ

2

∂
∂ζ lnΔ

Eða; bÞ;

ΔEða; bÞ ¼ ½ê1−; ê2þ�μðaÞ½ê2−; ê3þ�μðbÞ
− ½ê1−; ê2−�μðaÞ½ê2þ; ê3þ�μðbÞ; ðC5Þ

and the zz-components of the reduced stress tensor at
z ¼ b− and z ¼ bþ satisfy

tEzzðbþÞ ¼
1

2

∂ lnΔEða; bÞ
∂b3 ;

tEzzðb−Þ ¼ −
1

2

∂ lnΔEða; bÞ
∂b2

⇒ tEzzðb−Þ − tEzzðbþÞ ¼ −
1

2

∂ lnΔEða; bÞ
∂b : ðC6Þ

The integral over frequency and wave numbers of this
result demonstrates that the principle of virtual work is
satisfied. Corresponding contributions from the TM mode
are obtained by the substitutions ε ↔ μ and êi� → ĥi�.

APPENDIX D: RENORMALIZATION SCHEME

It is well known that divergences (bulk, surface, etc.)
plague all kinds of Casimir problems. A finite Casimir
force could hardly be obtained without proper subtraction
of some unphysical divergences from the stress tensor and
energy density of the electromagnetic field, subtraction of
which are sometimes referred to as Lifshitz regularization
for the homogeneous cases.
For the Casimir force in inhomogeneous media, we

propose a renormalization scheme. To extract the inter-
action parts, we analytically extend the material in region II
to region I as shown in Fig. 1(b), as the reference
configuration, subtraction of which would render the
pressure finite.
For the z ¼ b interface, its reference structure consists

of media in z < b and z > b, whose permittivities and
permeabilities are respectively ðε2; μ2Þ and ðε3; μ3Þ. By
setting ðε1; μ1Þ → ðε2; μ2Þ, we obtain the TE contributions
to the reduced energy per unit area and stress tensor for this
reference structure as

Z
∞

−∞
dzũE¼−ζ

2

∂
∂ζ lnΔ̃

EðbÞ; ðD1aÞ

t̃Ezzðb−Þ¼−
1

2

∂ lnΔ̃EðbÞ
∂b2 ; t̃EzzðbþÞ¼

1

2

∂ lnΔ̃EðbÞ
∂b3 ; ðD1bÞ

where Δ̃EðbÞ ¼ ½ê3þ; ê2−�μðbÞ and the boundary conditions
are typically ê3þ → 0; ê2− → 0 as z → ∞; z → −∞ respec-
tively. We propose that the renormalized stress tensors and
energy densities be tr ¼ t − t̃ and ur ¼ u − ũ, so that

tEr;zzðb−Þ ¼ −
1

2

∂ lnΔE
r ða; bÞ

∂b2 ;

tEr;zzðbþÞ ¼
1

2

∂ lnΔE
r ða; bÞ

∂b3 ;

ΔE
r ða; bÞ ¼ 1 −

½ê1−; ê2−�μðaÞ½ê2þ; ê3þ�μðbÞ
½ê1−; ê2þ�μðaÞ½ê2−; ê3þ�μðbÞ

: ðD2Þ

Corresponding terms for the TM mode are obtained by
making the substitutions ε ↔ μ; E → H and ê → ĥ.

1. Homogeneous cases

As a test of our renormalization scheme, we consider the
case where each of the three slabs is homogeneous, which
means the equations and solutions for each region are

ð∂2
z − εiμiζ

2 − k2Þðêi�; ĥi�Þðζ;k; zÞ ¼ 0;

ðêi�; ĥi�Þðζ;k; zÞ ¼ e∓κiz; ðD3Þ
where κi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εiμiζ

2 þ k2
p

. Then ΔE
r ða; bÞ is written as

ΔE
r ða; bÞ ¼ 1 −

ðμ1κ2 − μ2κ1Þðμ3κ2 − μ2κ3Þ
ðμ1κ2 þ μ2κ1Þðμ3κ2 þ μ2κ3Þ

e−2κ2ðb−aÞ;

ΔH
r ða; bÞ ¼ 1 −

ðε1κ2 − ε2κ1Þðε3κ2 − ε2κ3Þ
ðε1κ2 þ ε2κ1Þðε3κ2 þ ε2κ3Þ

e−2κ2ðb−aÞ:

ðD4Þ
Therefore, the TE contribution to the force per unit area is

FTE ¼ −
Z

dζd2k
ð2πÞ3

κ2
dE

;

dE ¼ ðμ1κ2 þ μ2κ1Þðμ3κ2 þ μ2κ3Þ
ðμ1κ2 − μ2κ1Þðμ3κ2 − μ2κ3Þ

e2κ2ðb−aÞ − 1; ðD5Þ

and its counterpart for TM is obtained with the substitution
μ → ε; E → H. This is the DLP formula [3].

2. Generalized Casimir configuration

Casimir’s original configuration to demonstrate the
measurable effect of the zero-point energy is two parallel
perfectly conducting plates separated by vacuum. We
generalize the Casimir configuration to the inhomogeneous
case, i.e., two parallel perfectly conducting plates separated
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by an inhomogeneous material, by assuming that the media on the lower and upper sides are homogeneous and satisfy the
relations μ1 ¼ 1; ε1 → ∞ and μ3 ¼ 1; ε3 → ∞. Then we have κ1, κ3 ∼

ffiffiffiffiffi
ε1

p
;

ffiffiffiffiffi
ε3

p
→ ∞ and the renormalized quantities

ΔE
r ;ΔH

r are

ΔE
r ða; bÞ → 1 −

½κ1eκ1aê2−ðaÞ�½ê2þðbÞκ3e−κ3b�
½κ1eκ1aê2þðaÞ�½ê2−ðbÞκ3e−κ3b�

¼ 1 −
ê2−ðaÞê2þðbÞ
ê2þðaÞê2−ðbÞ

; ðD6aÞ

ΔH
r ða; bÞ → 1 −

½−eκ1aĥ02−ðaÞ=ε2ðaÞ�½e−κ3bĥ02þðbÞ=ε2ðbÞ�
½−eκ1aĥ02þðaÞ=ε2ðaÞ�½e−κ3bĥ02−ðbÞ=ε2ðbÞ�

¼ 1 −
ĥ02−ðaÞĥ02þðbÞ
ĥ02þðaÞĥ02−ðbÞ

: ðD6bÞ

When the material in a < z < b region is homogeneous, then the TE and TM contributions to the pressure on the z ¼ b
interface is

FTE ¼ FTM ¼ −
1

2

∂
∂b

Z
dζd2k
ð2πÞ3 ln½1 − e−2κ2ðb−aÞ� ¼ −

π2

480
ffiffiffiffiffiffiffiffiffi
ε2μ2

p 1

ðb − aÞ4 : ðD7Þ

APPENDIX E: WKB ANALYSIS

The point of our renormalization scheme is to achieve a finite stress and energy. To demonstrate that this is so, we employ
the WKB method. For the TE mode, the WKB approximation and corresponding differential equation are [36]

êiðζ;k; zÞ ∼ exp
�
1

ϵ

X∞
n¼0

ϵnŜi;nðζ;k; zÞ
�
; ê0iðζ;k; zÞ ∼

1

ϵ

X∞
n¼0

ϵnŜ0i;nðζ;k; zÞ exp
�
1

ϵ

X∞
n¼0

ϵnŜi;nðζ;k; zÞ
�
; ðE1aÞ

ê00i ðζ;k; zÞ ∼
�
1

ϵ

X∞
n¼0

ϵnŜ00i;nðζ;k; zÞ þ
1

ϵ2

�X∞
n¼0

ϵnŜ0i;nðζ;k; zÞ
�
2
	
exp

�
1

ϵ

X∞
n¼0

ϵnŜi;nðζ;k; zÞ
�
; ðE1bÞ

�
ϵ2∂2

z − ϵ
μ0i
μi
∂z − εiμiζ

2 − k2
�
êiðζ;k; zÞ ¼ 0: ðE1cÞ

The leading WKB term is

Ŝi;0;∓ðζ;k; zÞ ¼
1

2

Z
z

0

dx

�
μ0i
μi

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ02i
μ2i

þ 4εiμiζ
2 þ 4k2

s �
∼�

Z
z

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εiμiζ

2 þ k2
q

; ðE2Þ

because the WKB solution applies for large ζ2 and k2. So the leading behavior of ΔE
r for the GLC from Eq. (D2) is

ΔE;ð0Þ
r ða; bÞ − 1 ∼ −

½Ŝ01;0;−ðaÞ=μ1ðaÞ − Ŝ02;0;−ðaÞ=μ2ðaÞ�½Ŝ02;0;þðbÞ=μ2ðbÞ − Ŝ03;0;þðbÞ=μ3ðbÞ�
½Ŝ01;0;−ðaÞ=μ1ðaÞ − Ŝ02;0;þðaÞ=μ2ðaÞ�½Ŝ02;0;−ðbÞ=μ2ðbÞ − Ŝ03;0;þðbÞ=μ3ðbÞ�

× exp

�
−2

Z
b

a
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2μ2ζ

2 þ k2
q �

; ðE3Þ

while the leading behavior of ΔE
r for the GCC from Eq. (D6a) is

ΔE;ð0Þ
r ða; bÞ ∼ 1 − exp

�
−2

Z
b

a
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2μ2ζ

2 þ k2
q �

: ðE4Þ

Following similar arguments, one could get the general behaviors for the TM mode contributions. It follows that the energy
and hence the stress are finite according to Eq. (9).

APPENDIX F: ANALYTICALLY SOLVABLE EXAMPLES

As first examples for the application of our method, we give two analytically solvable models, which illustrate our
proposals.
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1. Inverse square material

Consider the configuration where the media on the lower and upper sides, z ≤ a and z ≥ b, are homogeneous and are
separated by a medium in a < z < b whose permittivity and permeability are ε2 ¼ λ=ðc − zÞ2 and μ2 ¼ 1, respectively,
with λ and c > b constants. Then on the two sides ðêi�; ĥi�Þðζ;k; zÞ ¼ e∓κiz; i ¼ 1, 3 and the equations to solve for the
case where ε2 and μ2 are extended analytically to the whole space are

½y2∂2
y − λζ2 − k2y2�ê2�ðζ;k; yÞ ¼ 0; ½y2∂2

y þ 2y∂y − λζ2 − k2y2�ĥ2�ðζ;k; yÞ ¼ 0; ðF1Þ

where y ¼ c − z. The solutions are (ν2 ¼ λζ2 þ 1=4),

ê2þðζ;k; zÞ ¼
ffiffiffiffiffiffiffiffiffiffi
c − z

p
Iν½kðc − zÞ�; ê2−ðζ;k; zÞ ¼

ffiffiffiffiffiffiffiffiffiffi
c − z

p
Kν½kðc − zÞ�; ðF2aÞ

ĥ2þðζ;k; zÞ ¼
Iν½kðc − zÞ�ffiffiffiffiffiffiffiffiffiffi

c − z
p ; ĥ2−ðζ;k; zÞ ¼

Kν½kðc − zÞ�ffiffiffiffiffiffiffiffiffiffi
c − z

p ; ðF2bÞ

because the þ solutions must be well behaved at z ¼ c, while the − solutions must vanish at −∞. Therefore, ΔE
r satisfies

ΔE
r ða; bÞ − 1 ¼ −

μ1kðc − aÞKνþ1½kðc − aÞ� − ½ðνþ 1=2Þμ1 þ κ1μ2ðaÞðc − aÞ�Kν½kðc − aÞ�
μ1kðc − aÞIνþ1½kðc − aÞ� þ ½ðνþ 1=2Þμ1 þ κ1μ2ðaÞðc − aÞ�Iν½kðc − aÞ�

×
μ3kðc − bÞIνþ1½kðc − bÞ� þ ½ðνþ 1=2Þμ3 − κ3μ2ðbÞðc − bÞ�Iν½kðc − bÞ�
μ3kðc − bÞKνþ1½kðc − bÞ� − ½ðνþ 1=2Þμ3 − κ3μ2ðbÞðc − bÞ�Kν½kðc − bÞ� ; ðF3Þ

which means the forces per unit area at z ¼ b are

FE ¼ 1

4π2ðc − aÞ4
∂
∂δ

Z
∞

0

dκ
Z π

2

0

dθκ2 sin θ ln

�
1 −

K̂ηðkÞ − μ2ðaÞ
μ1

κ1KηðkÞ
ÎηðkÞ þ μ2ðaÞ

μ1
κ1IηðkÞ

ÎηðkδÞ − μ2ðbÞ
μ3

κ3δIηðkδÞ
K̂ηðkδÞ þ μ2ðbÞ

μ3
κ3δKηðkδÞ

	
; ðF4aÞ

FH ¼ 1

4π2ðc − aÞ4
∂
∂δ

Z
∞

0

dκ
Z π

2

0

dθκ2 sin θ ln

�
1 −

KηðkÞ − ε2ðaÞ
ε1

κ1KηðkÞ
IηðkÞ þ ε2ðaÞ

ε1
κ1IηðkÞ

IηðkδÞ − ε2ðaÞ
ε3

κ3
δ IηðkδÞ

KηðkδÞ þ ε2ðaÞ
ε3

κ3
δ KηðkδÞ

	
; ðF4bÞ

where k and κ are rescaled to dimensionless form, ðÎη; IηÞðxÞ ¼ xIηþ1ðxÞ þ ðη� 1=2ÞIηðxÞ; ðK̂η;KηÞðxÞ ¼
xKηþ1ðxÞ − ðη� 1=2ÞKηðxÞ, δ ¼ ðc − bÞ=ðc − aÞ ∈ ð0; 1Þ, k ¼ κ sin θ; ζ ¼ κ cos θ, and η ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2ðaÞζ2 þ 1=4

p
. For the

generalized Casimir configuration limit, i.e., μ1 ¼ μ3 ¼ 1; ε1; ε3 → ∞, we have

FE ¼ −
1

4π2ðc − aÞ4δ
Z

∞

0

dκ
Z π

2

0

dθκ2 sin θ
KηðkÞ=KηðkδÞ

IηðkÞKηðkδÞ − KηðkÞIηðkδÞ
; ðF5aÞ

FH ¼ −
1

4π2ðc − aÞ4δ
Z

∞

0

dκ
Z π

2

0

dθκ2 sin θ
ðk2δ2 þ η2 − 1=4ÞKηðkÞ=KηðkδÞ
IηðkÞKηðkδÞ −KηðkÞIηðkδÞ

: ðF5bÞ

2. Diaphanous material

Rewriting e, h as e�ðζ;k; zÞ ¼ ffiffiffi
μ

p
p�ðζ;k; zÞ and h�ðζ;k; zÞ ¼

ffiffiffi
ε

p
q�ðζ;k; zÞ, we find the equations of motion to be

�
∂2
z − εμζ2 − k2 þ μ00

2μ
−
3μ02

4μ2

�
p�ðζ;k; zÞ ¼ 0;

�
∂2
z − εμζ2 − k2 þ ε00

2ε
−
3ε02

4ε2

�
q�ðζ;k; zÞ ¼ 0: ðF6Þ

Consider the GCC for a diaphanous material, which satisfies εμ ¼ 1. For the particular case ε ¼ eλðz−cÞ2 , where λ is a
nonzero constant, the equations for the TE and TM modes are
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p00
�ðyÞ þ

�
−
κ2

2λ
− 1þ 1

2
−
y2

4

�
p�ðyÞ ¼ 0; q00�ðyÞ þ

�
−
κ2

2λ
þ 1

2
−
y2

4

�
q�ðyÞ ¼ 0; ðF7Þ

where y ¼ ffiffiffiffiffi
2λ

p ðz − cÞ and pðzÞ ¼ pðyÞ; qðzÞ ¼ qðyÞ. So ê and ĥ are exactly solved as

ê�ðzÞ ¼ e−
y2

4 D− κ2

2λ−1
ð�yÞ; ĥ0�ðzÞ ¼

ffiffiffiffiffi
2λ

p d
dy

e
y2

4 D− κ2

2λ
ð�yÞ ¼

ffiffiffiffiffi
2λ

p
e
y2

4

h
yD− κ2

2λ
ð�yÞ ∓ D

1− κ2

2λ
ð�yÞ

i
; ðF8Þ

where DνðxÞ is the parabolic cylinder function. The pressures on the z ¼ b interface are the same for the TE and TMmodes:

FE ¼ FH ¼ −
λ2

π2

Z
∞

0

dκκ2
D−κ2−1ð−yaÞ
D−κ2−1ð−ybÞ ½D−κ2−1ðybÞD−κ2ð−ybÞ þ D−κ2−1ð−ybÞD−κ2ðybÞ�

D−κ2−1ðyaÞD−κ2−1ð−ybÞ − D−κ2−1ð−yaÞD−κ2−1ðybÞ
; ðF9Þ

where κ is rescaled to dimensionless form and yz ¼
ffiffiffiffiffi
2λ

p ðz − cÞ.
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