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PERFORMANCE 

 

Kyriaki Sapouna 

Magnetorheological elastomers (MRE) are a category of smart materials that can adjust their 

mechanical properties according to the intensity of an external magnetic field. The aim of this 

project is to develop new magnetorheological elastomers with improved isolation efficiency for 

applications in the marine industry. For this reason, novel silicon isotropic/anisotropic and 

anisotropic/anisotropic, with particles aligned at different directions, composite MR elastomers 

were manufactured. The samples were tested under pure compression and combined 

shear/compression loading mode, using an inclined prototype isolator device, to examine the 

principal elastic axis stiffness 
𝑘𝑝

𝑘𝑞
 and damping ratio 

𝑐𝑝

𝑐𝑞
 . MR effect of dynamic stiffness is higher in 

pure compression isolator than the inclined isolator while MR effect of tangent of loss angle tan 

is higher in inclined isolator than pure compression. For the inclined test, the highest MR effect of 

48% for K’ and 68% for K’’, is observed for the pure anisotropic sample and the lowest of 26% and 

30% respectively for the isotropic MRE. Anisotropic/anisotropic parallel configuration has the same 

zero field static stiffness, lower dynamic stiffness, higher tanδ and same MR effect with anisotropic 

MRE. For all samples, the principal elastic axis stiffness 
𝑘𝑝

𝑘𝑞
 and damping ratio 

𝑐𝑝

𝑐𝑞
 changes with the 

magnetic field. A nonlinear viscoelastic model was also developed using receptance and mobility 

instead of stiffness and dashpot, to express the moduli of elasticity in respect to the applied force. 

Finally, a single degree of freedom mass-isolator with composite samples was simulated to show 

the enhanced vibration isolation properties of the composite samples. 
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Chapter 1: Introduction 

 The need of smart vibration isolators in marine vessels 

Progress in engineering can only be achieved through constantly increasing speed, efficiency and 

precision of machines. This practically means lighter and more powerful engines that, 

unfortunately, tend to vibrate more or are more sensitive to external vibrations. The solution to 

this problem is the use of complicated isolation systems that reduce the unwanted vibrations 

transferred by the machine to the environment or the other way around. The appropriate materials 

and design of such isolation systems are selected according to the range of frequencies where 

efficient isolation is needed, the natural frequencies of system, the static stiffness to support the 

weight of the machine, general environmental conditions and finally cost.  An ideal isolation system, 

should have a resonance frequency lower than the natural frequencies of the system and low 

transmissibility at resonance that in addition decreases rapidly with frequency.  Therefore, isolators 

with low dynamic stiffness and high damping are required. 

Efficient vibration isolation systems for marine applications are complicated mostly due to the 

different loading conditions and flexible foundations found on a ship or sailing boat and the large 

weight of marine engines. The engine room of a marine vessel is full of rotating, reciprocating and 

forging machines that generate huge amounts of noise and vibration. Except the main engine, a 

typical engine room will contain several generators, compressors, pumps, separators, refrigerators 

and auxiliary engines that vibrate constantly especially when containing unbalanced parts. These 

vibrations are then transmitted through the mounts of the machines to the hull of the ship resulting 

to the degradation of the shell and the surrounding machinery as well as passenger discomfort.  

In addition, the ship hull is considered as a flexible structure that is subjected to random harmonic 

loading conditions while travelling at sea. The movement of the ship will subject the hull to 

multidirectional loads that are finally transmitted to the machines through their mounts. The hull, 

in most cases, vibrates in relatively low frequencies compared to engine generated vibrations that 

are mainly caused by the rotating parts. It is crucial, therefore, to mount all machines to efficient 

isolators to reduce the vibration levels transmitted to the hull and the surrounding equipment and 

in the same time protect the machines from shock and vibration generated by the surrounding 

environment. In addition, any isolation system used must survive the rough marine environment. 

The simplest isolation system is the modest passive rubber resilient mount or metal spring mounts 

present in most machines today. Passive isolators do not have the ability to vary their stiffness or 

damping and therefore their natural frequency.  They are simply designed to have a low natural 
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frequency that does not lie within the operating frequency range of the machine and can support 

its weight. However, most machines do not start running immediately to their full speed but are 

driven slowly passing through their critical speeds, while most of the time they have more than one 

natural frequency. Passive isolation systems cannot provide efficient isolation in a wide frequency 

range and are designed having in mind only the dominant natural frequency. Thus, they can provide 

efficient isolation only at high frequencies. In applications where isolation is required in a wide 

frequency range, especially at low frequencies, active vibration isolation systems are used. Most of 

these systems work by shifting their natural frequency according to an input signal to avoid 

resonance.  

 Aim and Objectives 

The aim of this project is to: 

Examine practical ways of improving the isolation efficiency of MRE isolators so that they can be 

used in the marine industry. 

 

The project can be divided in an experimental and a theoretical part with the following objectives: 

a) Experimental part 

• Setting up a reliable measuring system that includes an appropriate magnetic circuit and 

fixtures for pure compression loading tests. 

• Perform dynamic mechanical characterization tests of isotropic and anisotropic MREs with 

small (4-6μm) and large particles (<220μm) under varying pure compression load 

amplitude, frequency, static load and magnetic field. 

• Manufacture and test composite isotropic/anisotropic and anisotropic/anisotropic MREs. 

• Setting up a reliable measuring system that includes an appropriate magnetic circuit and 

fixtures for shear/compression loading tests. 

• Test the simple and composite MREs under shear/compression loading conditions. 

• Build and test a vibration isolator prototype device. 

 

b) Theoretical part 

• Produce a nonlinear model of MRE. 

• Validate the model with the experimental data using MATLAB. 

• Simulate a single degree of freedom mass-MRE isolator system in MATLAB and Simulink. 

• Propose the control system.   
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Available resources: 

• Dynamic mechanical tester (DMA) INSTRON Electropuls E1000 machine in TSRL laboratory. 

• Silicon rubber and iron particles. 

• Very limited budget. 

 Novelty  

To the authors knowledge, the novel pieces of this work are: 

a) Experimental part: 

✓ Examine the mechanical properties of silicon MREs made with very large particles (diameter 

<220μm) compared to the most traditional silicon MREs with small particles (4-6 μm). 

✓ Examine the effect of size and shape of isotropic MRE samples on zero field dynamic 

mechanical properties (scaling effect) and magnetorheological effect.  

✓ Manufacture and test composite isotropic/anisotropic MREs with iron particles of different 

sizes in parallel and series configurations. 

✓ Examine the dynamic mechanical properties of composite isotropic/anisotropic and 

anisotropic/anisotropic (with particles aligned in different directions) MREs in axial, lateral 

and longitudinal directions. 

✓ Test the pure isotropic, pure anisotropic and the above mentioned composite MREs under 

shear/compression loading mode in a 450 inclined isolator device and under pure 

compression mode in a compression isolator device. Define how principal stiffness and 

damping ratios changes with magnetic field. 

 

a) Theoretical part: 

✓ Make a force dependent viscoelastic model of MREs to simulate the force transmissibility 

of a single degree of freedom mass- MRE isolator system working in pure compression and 

shear/compression mode. 

✓ Examine the principal stiffness ratio of combined isotropic/anisotropic and 

anisotropic/anisotropic MREs 
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Chapter 2: Literature review 

 Smart materials 

Smart materials are a new type of material that responds to the environment changes by adjusting 

their physical or chemical properties. Material properties can be controlled by many external 

factors, including stress, temperature, pH level, moisture content, electric fields or magnetic fields. 

They are mostly used as actuators and sensors in civil engineering, industrial and household 

appliances, medical appliances and automotive industry. Common examples of smart materials are 

presented in Table 1. 

Table 1: Summary of smart materials  

Stimulus 

Change in 

Shape/Deformation Colour Electric charge Rheological Properties 

Stress - Piezocromic Piezoelectric - 

Temperature Shape memory 

materials (SMA) 

Thermochromic Thermoelectric 

(TE) 

- 

Electric field Electrostrictive 

(ES) 

 

Electrochromic - Electrorheological 

fluids (ERF) 

elastomers (ERE) 

Magnetic field Magnetostrictive 

(MS) 

- - Magnetorheological 

fluids (MRF) 

gels (MRG) 

elastomers (MRE) 

Light level - Photocromic - - 

pH level pH sensitive pH sensitive - - 

 

MRE and MRF belong in the same category of smart materials with Electrorheological elastomers 

(ERM) and fluids (ERF). Unlike Electrorheological materials that require a strong electrical voltage 

in order to adjust their mechanical properties, magnetorheological materials are controlled by an 

external magnetic field that is supplied by an electromagnet fed by a moderate electrical current 

that require low voltage. Thus, they are less power consuming and much safer to use in real 
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vibration control systems. MR fluids were developed first and have been used in many commercial 

applications. Although MR fluids require a smaller magnetic field to operate than MR elastomers, 

the metal particles in the fluid tend to settle down with time and the appropriate seals are 

necessary . Designing therefore, practical isolation devices with MR fluids become complicated and 

MR elastomers seem a more attractive solution for long term applications in tough environments 

like the ones found in the marine industry.  

 

 Working principle of magnetorheological elastomers  

Magnetorheological elastomers (MREs) consist of ferromagnetic particles suspended in a low 

permeability elastomer matrix with medium values of hardness and viscosity before curing, to allow 

for the particles to dispense in the matrix. When an external field is applied to the MR elastomer 

during curing, the filler particles tend to align parallel to the direction of the magnetic field forming 

3D chains and the material is called anisotropic or aligned MRE. On the other hand, when the 

elastomer is cured without the presence of the field, the particles are randomly dispensed inside 

the matrix and the elastomer is called isotropic MRE.  

 

Figure 1: Illustration of isotropic and anisotropic MREs 

The original mechanical properties of MREs, under zero magnetic field, are determined mostly by 

the properties of the matrix elastomer as well as the concentration and size of magnetic filler 

particles. The performance of MREs is usually evaluated by the MR effect which is the relative 

change of the modulus of elasticity when the field increases from 0T to a certain value. MR effect 

decrease or remain constant for field strengths greater than a value due to the magnetic saturation 

of the iron particles. This value depends mostly on the type of the particles while for iron particles 

it is around 0.6T. The strength of the magnetic field where the filler particles saturate is a limiting 

factor for all MR materials. However, generating magnetic fields greater than 0.6T is very difficult 

and thus any device using MREs should be designed to work below that value. 

 MR effect =
𝑀0 − 𝑀𝐵

𝑀0
 x 100  (%) (2.2.1) 

Where:𝑀0= absolute modulus at zero field and 𝑀𝐵 = absolute modulus at a certain field value. 
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The working principle of MR elastomers is simple (Figure 2), although the exact mechanism is not 

fully understood. When an external magnetic field is applied to a MRE the ferromagnetic filler 

particles get magnetized and interact with surrounding particles. Forced by the magnetic moments, 

the particles start to move inside the matrix elastomer to align parallel to the direction of the 

applied field, pushing or destroying the polymer molecule chains on the process. As the magnetic 

field increases, so are the magnetic moments that forces the particles to overcome any obstacles 

placed by the matrix elastomer. The result is a change of shape and an elongation in the direction 

of the applied magnetic field occurs. When the external magnetic field is removed, the particles are 

pushed back to their original positions as the elastomer molecule chains return to their original 

form.  Therefore, the process is fully reversible. Since the exact particle distribution is not known it 

is expected that there are areas inside the material where the local magnetic forces are higher than 

the rest and thus, even isotropic MRE are anisotropic materials. 

 

Figure 2: Working principle of MRE 

The alignment of filler particles parallel to the magnetic field increases significantly the static and 

dynamic modulus of the material in that direction. The increase (or MR effect) is therefore 

proportional to the magnetic field. However, the modulus in the direction perpendicular to the 

applied magnetic field is not influenced greatly, as illustrated in Figure 2. The same principle applies 

for the zero-field modulus of anisotropic MREs, that it is higher at the direction of the aligned 

particle chains.  

The actual structural composition of MR elastomers is not even fully understood and cannot be 

controlled easily. In most MREs, the filler particles are not chemically bonded with the elastomer 

but are trapped between the long crosslinked molecule chain structures during the polymerization 

process and their exact position cannot be determined. For isotropic samples the particles are 

considered to be randomly dispensed inside the matrix, while for anisotropic samples the classical 

theory considers that the particles form identical columns separated by the same distance between 

each other, depending on the applied magnetic field and particle distribution. 
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However, recent studies showed that this is not true. Gunther et al (Gunther D 2012), used electron 

microscopy methods to study the microstructure of the anisotropic samples and found that the 

column diameter was larger in the lower part of the samples due to gravity forces, while the number 

of columns increased at the bottom of the sample. In addition, Bombarth et al (Borbath T 2012), 

used X-ray micro-computer tomography to study the size and distance between the columns of 

anisotropic MREs at different magnetic fields during curing process. They found that strong 

magnetic fields result in higher repulsing forces between particles and thus to closely packed 

columns at greater distances between them. At lower magnetic fields, the number of columns 

increases while they become thinner. However, significant gravitational sedimentation and the 

formation of agglomerates at the bottom of the sample was also observed. Thus, it is not necessary 

to apply a very high magnetic field up to the saturation value during the curing process to achieve 

the best result regarding column structure. 

 Magnetorheological effect 

When an external magnetic field is applied to MREs, static and dynamic stiffness of all MREs 

increase by an amount that depends on matrix material, particle concentration, particle size and 

for anisotropic MREs particle alignment and magnetic field while curing. Danas et all (Danas K 2012), 

proposed a theory of how particles interact inside the matrix when the external field is applied, in 

order to explain the different deformation mechanism when the field is in parallel or perpendicular 

to the chains of anisotropic MREs. They claimed that a larger magnetostriction is obtained for MREs 

with particle columns perpendicular to the external magnetic field and not for the ones with 

particles aligned in parallel. This leads to a greater extension in the perpendicular sample and thus 

to a smaller change in stiffness measured in the same direction of the applied magnetic field which 

is the parallel one. This is in agreement with other older studies (Abramchuck S 2007) and the 

general accepted fact that the strongest magnetic reinforcement effect is when the applied field is 

parallel to the particle aligned columns and the applied load. 

The strong dependence of MR effect on loading conditions as well as sample size and different 

magnetic field intensity during testing and curing, makes it impossible to compare the data 

published in literature. Therefore, the MR effect numbers mentioned later are just an indication 

and more emphasis is given on general trends. Blom et al (Blom P 2011), performed dynamic shear 

tests at high frequencies to natural rubber MREs to find that dynamic stiffness increases while 

damping factor decreases with increasing magnetic field. Zhu et al (Zhu J T 2012), however, 

reported also an increase of dynamic stiffness but a small increase of damping factor in natural 

rubber MREs. Wei et al (Wei B 2010), reported a huge increase of the dynamic stiffness by 120% 

when the field was increased from zero to 0.8T but a small decrease of damping factor in 
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polyurethane anisotropic MREs. Xu et al (Xu Y 2011), reported a much higher MR effect for the 

shear modulus of polyurethane MREs of 532% for the anisotropic samples and 1225% for the 

isotropic ones, although it has to be noted that the samples were only 1 mm thick.  Damping factor 

of both samples decreased significantly with increasing magnetic field. Lokander et al (Lokander M 

2003), reported a 25% maximum MR effect for nitrile rubber MREs.  

Kallio et al (Kallio M 2007), reported that stiffness and damping factor of anisotropic silicone rubber 

MREs increased by 11% and 18.5% respectively with increasing magnetic field (0.35T). When silicon 

oil was used, Gong et al (Gong X L 2005), reported a 60% increase in stiffness for isotropic silicon 

MREs while Schubert and Harrison (Schubert G 2015), a 284% increase on static stiffness of 

anisotropic silicon MREs. Ju et al (Ju B X 2012), experimented with porous silicone MREs to achieve 

an increase of 170% of the stiffness with an increasing magnetic field up to 0.6T while damping 

factor stayed almost unaffected. The latter was also reported by Behrooz et al (S. J. Behrooz M 

2015), while the maximum stiffness increase was 16%. Hu et al (Hu Y 2005), reported a higher MR 

effect for silicon MREs (33%) than polyurethane although, their blend MRE gave a slightly higher 

MR effect (35%). From the available published data, it can be concluded that both static and 

dynamic stiffness increase significantly with the application of the magnetic field but the case for 

damping is different. Damping appears to increase or decrease slightly depending on matrix 

material and the type of dynamic test performed. It can be assumed therefore that damping is not 

affected significantly by the magnetic field.  

In addition, the type of applied load influences greatly MR effect. Schubert and Harrison (Schubert 

G 2015), reported that MR effect of isotropic and anisotropic silicon MREs is higher under static 

compression that static shear, while for anisotropic MREs with particles aligned perpendicular to 

the applied load MR effect was higher under static shear. Their experiments also presented that 

MR effect decreases with increasing static strain. A similar finding was also reported by Li and Sun 

(Li R 2013), where MR effect of dynamic stiffness and tangent of the loss angle decreased with 

increasing load amplitude and frequency for both shear and compression tests. They also reported 

that MR effect was slightly higher under compression than shear dynamic load which also agrees 

with the findings of Gordaninejab et al (Gordaninejad F 2012). 
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 Materials and manufacturing methods   

Type of matrix elastomer 

The type of matrix material defines the mechanical and physical properties of magnetorheological 

elastomers. In general, natural rubber (NR) is considered the best choice for isolation applications 

due to its superior mechanical properties. It is reported that natural rubber MREs, have higher 

moduli of elasticity and MR effect than butadiene rubber MREs (G. X. Zhang W 2010) and better 

physical properties, similar MR effect but much lower damping capability that bromobutyl rubber 

(BIIR) MREs  (Zhu J T 2013). MREs made of a soft matrix elastomer like polyurethane (PU) rubber, 

have higher MR effect than natural rubber MREs (Wei B 2010) (Mitsumata T 2011) (Xu Y 2011), 

mostly due to the lower friction between matrix and particles that allows the particles to move 

easier inside the matrix molecules under the influence of the magnetic field.  

Another soft polymer that is widely used in MREs is silicon (Si) rubber. Silicon MREs have excellent 

insulating properties, excellent chemical resistance and excellent stability over large temperature 

range but have low room temperature strength and are sensitive to oil.  In general, they do not 

have the mechanical stability of polyurethanes or the advanced mechanical properties of natural 

rubber but are very simple and safe to manufacture and do not require a specific temperature or 

pressure to be applied to the samples while curing. Li and Sun (Li W 2013)  used 

Polydimethylsiloxane (PDMS) MREs as another type of silicon rubber with better mechanical 

properties, but a low MR effect was observed. In order to improve the properties of MREs, some 

researchers experimented with blends of two different matrix rubbers like polyurethane 

(PU)/silicone (Hu Y 2005)  and polystyrene/silicone (Wang Y 2007) blend MREs, which had an 

increased MR effect when compared to pure silicon MREs but a much more complicated 

manufacturing process.  

Type of particles 

In recent years, much attention has been given on investigating possible combinations of particle 

and matrix materials that can enhance the zero field mechanical properties of MREs and MR effect. 

Padalka et al (Padalka O 2010), reported that the MR effect (dynamic stiffness) is higher for MREs 

with carbonyl iron particles than for those with Nickel and Cobalt. Yang et al (G. X. Yang J 2013) and 

Anderspn et al (Anderson K 2015), used MREs with nano strontium ferrite and hard M-type barium 

Hexaferrite (BaM) particles respectively to conclude that carbonyl iron is a better choice for MREs. 

Khimi et al (P. K. Khimi S R 2015), used the much cheaper iron sand in natural rubber MREs and the 

Taguchi method to optimize the concentration, size and magnetic field during curing in order to 

achieve the highest possible damping in different loading conditions. They also concluded that the 
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particle size itself is not of great importance but the optimal conditions mostly depend on the 

loading frequency, amplitude and temperature. 

Yu et al (J. B. Yu M 2012), reported that the carbon content of carbonyl iron particles does not 

influence the stiffness of MREs but both damping and MR effect are higher for samples with low 

carbon content particles. Yang et al (G. X. Yang J 2013), used a small amount of Silicon Carbide (SiC) 

particles, with the common carbonyl iron particles, to increase stiffness and damping of the MRE 

and improve the MR effect. The improved performance however, is observed only for an optimum 

concentration of 3.2 wt % and 6mm size particles which is the same size with the carbonyl iron 

particles.   

Size and density of particles 

Other important parameters that influence the mechanical properties and MR effect of MREs are 

the size and density of magnetic particles. It has been well established that the maximum MR effect 

in silicon MREs is achieved when the particle/matrix material ratio is about 30% per volume or 70% 

per weight (Kallio M 2007), (Popp KM 2010), (Schubert G 2015). Bose and Roder (Bose H 2009), 

performed dynamic tests on silicon rubber MRE with large diameter (40 μm) and small diameter (5 

μm) particles at different particle densities, to report that both stiffness and damping increase with 

increasing density while the MR effect is higher for samples with large particles. Li and Zhang (Li W 

H 2010), experimented with silicon MREs containing large (50 μm) and small diameter (5μm) iron 

particles to conclude that the samples that combined the two kinds of particles had a low zero field 

modulus but a much higher MR effect than the samples with one type. However, Chertovich et al 

(Chertovich A V 2010), performed similar tests to conclude to the opposite result.  

In addition, Aloui and Kluppel (Aloui S 2015), used nanosized Magsilica and microsized CIP particles, 

alone and together at a total fixed concentration. They reported an increase of the tensile strength 

with increasing nanoscale particle concentration due to formation of a physically bonded filler 

network and to strong polymer-filling coupling. However, the MR effect also decreased significantly 

because the magnetic moment for the nanosized particles is too small for delivering sufficient 

attraction when an external field is applied. Kashima et al (Kashima S 2012), also experimented with 

silicon MREs made out of large (30 μm) or small diameter (6μm) iron particles at different 

concentrations, to find that increasing particle density improves the saturation magnetization while 

increasing particle size improves the relative permeability bus does not influence the saturation 

magnetization. Yang et al (G. X. Yang J 2012), investigated in detail the damping mechanism of MREs 

to found that the damping capability increases significantly with increasing particle density.  
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Additives 

Another aspect to be considered is the effect of other additive materials found in most of 

conventional rubbers used in isolators. Carbon black is the most common filler material which gives 

a black colour to the original translucent elastomers. Its main purpose is to increase the mechanical 

strength and stiffness of the material, while it also absorbs UV radiation protecting the material 

from degradation when exposed to sunlight.  Adding carbon black to MREs, along with the iron 

particles, increases stiffness, damping and thermal stability (Nayak B 2004). However, carbon black 

constrain the iron particles from moving freely inside the matrix when the external field is applied. 

In the case of anisotropic MREs, this leads to shorter and less aligned chain-like columnar structures 

(a. P. Khimi S R 2015). 

Other types of additives used are plasticizers that help the dispersion of fillers in the chains while 

improving flow in moulding and antioxidants that improve the aging properties of the elastomer. 

Fan et al (Fan Y C 2010), used maleic anhydrite to improve the bonding between particles and matrix 

and thus, decrease damping. Chung et al (Chung K 2015), reported that MR effect on Natural rubber 

MREs could be increased with the addition of peptisizer to control viscosity of matrix natural 

rubber. Other researchers used silicon oil to silicon rubber MREs in order to improve particle-matrix 

interaction and increase the MR effect (Gong X L 2005). 

Patterned elastomers 

In another approach, some researches tried to increase the MR effect by patterning the particles 

inside the matrix in order to create more complicated structures than simple anisotropic or 

isotropic MREs. Zhang et al, (Zhang X 2008) fabricated patterned MREs with PDMS as matrix 

material and positioned the iron particles using micro technology techniques to form two different 

types of MRE, one with a lattice structure and one with a body cantered tetragonal (BCT) structure. 

The BCT structure was found to decrease its field-induced modulus while none of the samples 

showed significant results. The same research group, also manufactured hybrid natural rubber MR 

elastomers with MR gel filled columns through the matrix material (G. X. Zhang W 2010). They 

claimed that the new samples offered significantly improved mechanical properties than 

conventional MREs especially regarding the damping capability of the material. However, this 

combined material is difficult to manufacture with relative small stiffness that limits its uses in real 

practical applications. 

Ju et al (Ju B X 2012), manufactured porous MREs by immersing ammonium bicarbonate (NH4HCO3) 

to silicon rubber and then mix it with the iron particles, following the findings of Choi(Choi 2009) 

that reported that MRE with holes in them have higher MR effect. By this way, they were able to 
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control the amount of pores created inside the material. The experimental shear tests, showed a 

decrease of the stiffness of the samples with increasing NH4HCO3 but an increase of the damping 

factor and the MR effect. Yu et al, (X. Z. Yu M 2015) showed that a simple method of punching 

circular honeycomb holes in anisotropic MREs, at an optimum porosity of 13%, increases 

significantly the MR effect and zero field damping while decreases zero field stiffness. 

Forster and al (Forster E 2012), used a new wax cast moulding pattering method, similar to 

lithography technique, to create columns of MREs on top of a substrate. The samples produced 

were extremely soft, when PDMS was used as a matrix, and agglutinative in the case of silicone 

rubber. However, no full mechanical characterization was performed and no definite results could 

be drawn regarding the advantages of this method. Lian et al (Lian C 2015), suggested a new 

structured MRE where a silicon MRE is wraped with a polyurethane MRE in order to improve wear 

resisting properties while maintaining high MR effect. The new elastomer was shown to have the 

best durability when compared to pure silicone and polyurethane MREs. Finally, Boczkowska et al 

(Boczkowska A 2012), manufactured anisotropic polyurethane MREs where the iron particles were 

not aligned parallel to the applied external magnetic field and load but in an angle. The highest yield 

stress was observed for samples with particles at an angle of 30 degrees to the direction of the 

magnetic field, but this could be also attributed to the coupling effects between the applied load, 

direction of the applied load and particle orientation.  

 

 Factors influencing the dynamic mechanical properties of MREs 

Load amplitude and frequency  

Magnetorheological elastomers show a similar dependence on frequency with all filled rubbers. 

When load frequency increases, dynamic stiffness increases slightly while damping factor passes 

through a maximum at a frequency depending on the matrix material to decrease for higher values 

(Kallio M 2007), (Opie S 2011), (Gong X 2012). Similar to all filled rubbers, dynamic stiffness of all 

types of MREs decreases with increasing load amplitude while this trend is more pronounced for 

anisotropic MREs under both compression and shear loading tests (Kallio M 2007) (Opie S 2011). 

This is the well-known Payne effect defined as:  

Payne Effect: Payne effect is the decrease of modulus with increasing strain amplitude that occurs 

only in filled rubbers. It is believed to be caused by the breaking and rearranging of the molecule 

chains with the increasing load. The material usually needs 30 min to recover to its original state. 
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Again like all filled rubbers, stiffness of MR elastomers decreases during the first loading cycles until 

it reaches a stable point. This is the well-known Mullins effect defined as:  

Mullins effect: Mullins effect is the phenomenon where stiffness decreases with loading cycles until 

the material comes to a stable point after some cycles (usually 3-5).  This means a lower resulting 

stress for the same applied strain during the first loading cycles. There are a lot of theories trying to 

explain the origins of Mullins effect but none has been proven or is valid for all rubbers. It is believed 

in general that it is due to the breakdown of the original firm binding structure between the filler 

particles and the rubber molecules when a load is applied. If the material is left unloaded for a long 

period of time this firm binding will start forming again and the material will recover partly its 

original stiffness. The recovery procedure can be speeded up if the material is heated for a certain 

time. The recovery time is usually more than 24 hours and some materials never recover totally to 

their original state depending on the strain they are loaded to. 

The situation is not so straight forward for damping. Opie and Yim (Opie S 2011), performed 

dynamic tests on silicon rubber MRE to report that damping factor increases slightly with increasing 

amplitude that came in agreement with the data published (Gong X 2012) regarding polybutadiene 

(BR) rubber MREs. On the other hand, Zhu et al (Zhu J T 2012), reported that damping factor 

decreases with increasing amplitude for natural rubber MREs while Kallio et al (Kallio M 2007), 

showed that it remains practically constant for silicone rubber MREs.  

Temperature  

The effects of temperature to the material have has very little been studied. Lejon jonas (Lejon 

Jonas 2012) showed that MRE was still in the rubbery region at 00 C =, but both shear modulus and 

tangent of the loss angle increased with further temperature decrease indicating that the transition 

region is reached. However, shear modulus and tangent of the loss angle did not seem to increase 

greatly for temperatures up to 450 C. Nayak et al (Nayak B 2004), reported that storage modulus 

increases slightly with temperature while tangent of the loss angle drops for silicone rubber MREs 

while the addition of carbon black improves thermal stability. Zhang et al (G. X. Zhang W 2011), 

investigated the effect of temperature on natural rubber and polybutadiene (BR) rubber MR 

elastomers. The results showed that tangent of the loss angle decreases with temperature for both 

types of MREs while storage modulus behave differently for each type. Dynamic modulus of 

elasticity decreased with temperature for Natural rubber MREs, while for BR MREs it decreased up 

to 500 C to slightly increase for higher values.  
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Static preload 

An important factor determining the dynamic mechanical properties of all filled elastomers is the 

prestrain (or prestress) applied to the elastomer, usually due to the weight of the machine it 

supports.  It is well established that both storage and loss moduli increase with increasing prestrain 

especially for high filler content (Thorin A 2012) . The same results are expected for MREs, although 

not many researchers dealt with this matter. Lejon Jonas (Lejon Jonas 2012) studied the influence 

of the prestrain to the dynamic mechanical properties of isotropic elastomers to conclude that as 

the prestrain increases the material becomes softer before it starts to get stiffer after a certain 

value, while damping factor also increases slightly. Feng et al (Feng J 2015), studied the effect of 

the applied prestress on dynamic stiffness and MR effect of anisotropic MREs, to report that both 

increase at small prestress valued while they present a decreasing trend at large prestress values. 

They attributed this behaviour to the altering of spacing between the particles when they are 

overstressed that after some point start to touch each other. The particle concentration affects the 

point when this starts to happen. However, they did not report the effects of prestress on damping. 

Fatigue, wear and ageing 

Another aspect of MRE behaviour that only recently has been studied is their ageing, wear and 

fatigue properties under constant dynamic load. It is expected than these properties will be similar 

to the properties of the pure matrix rubber used, for example natural rubber MREs, have better 

ageing but worst fatigue properties than butadiene rubber MREs (G. X. Zhang W 2010). However, 

it was reported that polyurethane MREs showed lower wear resistance and thermal conductivity 

than pure polyurethane rubber due to the presence of magnetic fillers (Lian C 2015). The same 

study also suggested that both silicon and polyurethane MREs improve their wear resistance when 

the field is applied, due to higher hardness values.  

Absolute modulus 𝐸∗of silicon MREs decreases with increasing number of loading cycles, until a 

limiting value independent of the applied strain amplitude (Zhou Y 2015). However, while moduli 

of elasticity decreased MR effect increased with increasing number of loading cycles (G. X. Zhang 

W 2010). The latter was attributed to the lower value of moduli at zero field since the magnetic 

field caused absolute moduli increase remained the same. In addition, anisotropic silicon MREs 

showed higher fatigue resistance than isotropic silicon MREs at zero field (Zhou Y 2015). The effect 

of oxidation on the mechanical properties of silicon MREs was studied by Brhrooz et al (S. J. Behrooz 

M 2015). It was found that oxidation reduces significantly the shear modulus of MREs while MR 

effect is higher, due again to the lower zero field modulus. The same study reported that polymer 

coating particles preserves stiffness in oxidative environments. 
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Size and shape of MRE 

One of the great challenges when designing isolators with rubber is the prediction of static and 

dynamic properties when scaling up the rubber component. In theory, the dynamic stiffness for any 

elastomer can be estimated using equation (2.5.1). For relatively small sized elastomers this can 

provide a good estimation when the elastomer is subjected to shear loads (|𝑀∗|  = |𝐺∗|  ).  In case 

of compression load however, the size and shape of elastomer becomes of importance and 

equation (2.5.2) should be used instead. An experimentally defined shape correction parameter SC 

is introduced to minimize the error between the predicted stiffness form equation (2.5.1) and the 

actual one. The shape correction parameter SC is a different parameter than the shape factor S 

defined by equation (2.5.3). 

 𝐾∗ =
𝐴𝑟𝑒𝑎

𝐿
𝑀∗   (2.5.1) 

 𝐾∗ = 𝑆𝐶  
𝐴𝑟𝑒𝑎

𝐿
𝐸∗  (2.5.2) 

 𝑆 =
𝐴𝑟𝑒𝑎 𝑡𝑜 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝑓𝑜𝑟𝑐𝑒 𝑖𝑠 𝑎𝑝𝑝𝑙𝑖𝑒𝑑

𝑓𝑜𝑟𝑐𝑒 − 𝑓𝑟𝑒𝑒 𝑎𝑟𝑒𝑎
 (2.5.3) 

 Where Area=effective area of the elastomer the force is applied to, L=length of the elastomer, SC 

is the shape correction parameter and S= shape factor. The parameters of the shape function 

depend on the shape, type and hardness of elastomer of interest and are available on the published 

literature (Davey A B 1965).  

In the case of MREs, the effect of size and shape has barely been studied. Gordaninejab et al 

(Gordaninejad F 2012), used anisotropic silicon MREs of different heights under quasi-static shear 

and compression loads, to report that the MR effect of both moduli is independent of size. Oguro 

et al (Oguro T 2017), performed static compression tests on disk isotropic MREs of different 

diameters at no field and when placed on a single permanent magnet. They showed that the zero 

field static stress measured at the same strain and the magnetically induced stress increment 

gradually increases with the sample size but the magnetic field produced from a single magnet is 

non uniform. However, neither investigated the effect of MRE sample size and shape on the 

dynamic mechanical properties. 
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 Models of magnetorheological elastomers 

MR elastomers at zero field, like all filled elastomers, are governed by a nonlinear stress-strain 

relationship with a complex modulus of elasticity that depends weakly on load frequency and 

strongly on load amplitude and static prestrain. Thus, it is common practice to use the models 

developed for filled elastomers modified to consider magnetorheological effect. In general. there 

are two ways to model the behaviour of an elastomer. The first is to use linear and nonlinear 

rheological elements connected in different configurations, like the modest Kelvin, Maxell and 

Zener models. This modelling approach is practical because model parameters can be extracted 

from curve fitting to experimental values of moduli of elasticity, but often have no physical 

meaning. The second modelling approach is to establish constitutive equations using continuum 

solid mechanics principles, taking under consideration the coupled mechanical and magnetic 

behaviour. This method can produce strain energy functions that are physically meaningful and can 

be used in finite element software. However, these models require equibiaxial tests to determine 

the stiffness coupling coefficients. Such a test is the bubble inflation test that make sense in zero 

field conditions. When the magnetic field is applied, it becomes very difficult to construct a test 

setup that can provide a stable magnetic field around the inflated MRE sample without restricting 

the free movement of the elastomer. 

Viscoelastic models  

A short description of the viscoelastic models developed for MREs is presented next while an 

extended description can be found to a recently published review by Cantera et al (Cantera M A 

2017). Blom and Kari (Blom P 2011) proposed a model where the total stress was decomposed into 

three-time dependent component. An elastic one where stress in linear with strain, a viscoelastic 

part where stress is related to the strain rate history and a friction component where the stress is 

related nonlinearly with strain. The nonlinear friction component is further linearized to work in 

the frequency domain, although its value still depends on the applied strain. The model ignores the 

magnetic field - viscoelastic properties coupling effects as well as the prestrain dependence.  Xin et 

al (Xin F L 2016) proposed a linear viscoelastic model of two kelvin chains in parallel, one 

represented the frequency and amplitude dependent mechanical viscoelasticity and the second the 

frequency, amplitude and magneto-dependent magnetic viscoelasticity. This model too ignores the 

effect of static prestrain on viscoelastic properties. 

Eem et al (Eem S H, Modeling of Magneto-Rheological Elastomers for Harmonic shear Deformation 

2012), used a Ramberg-Osgood model in parallel with a Maxwell chain to describe the nonlinearity 

and viscoelastic behaviour of the MRE respectively. The parameters were extracted using the force-

displacement hysteresis curves for frequencies only up to 3Hz, which does not indicate accurate 
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results. The main disadvantage of this approach is that a wide range of dynamic loading 

experiments are required to define the parameters. Norouzi et al, (Norouzi M 2015) proposed a 

nonlinear model based on Kelvin model where the frequency dependency on MRE stiffness and 

damping as well as the strain dependency on stiffness is represented by power functions, while 

damping does not vary with strain. The magnetic field dependency is represented by a polynomial 

function. The model could predict accurately the variation of stiffness and tangent of the loss angle 

with magnetic field and strain amplitude but was only validated for a short frequency range (up to 

8Hz). 

Yang et al, (D. H. Yang J 2013) proposed a model for a seismic isolator that incorporates a Bouc-

Wen component, which reproduces hysteresis loops, in parallel with a Voigt element, which 

describes solid-material behaviours. They studied in detail, the influence of each magnetic field 

dependent parameter on the shape of hysteresis loop but a different parameter values were used 

for each strain amplitude and frequency. Behrouz et al, (W. X. Behrooz M 2014) used electric 

current dependent Booc-Wen, spring and dashpot elements in parallel to a three-element standard 

solid model to model the magnetorheological effect and zero field viscoelastic behaviour 

respectively. The model could predict the behaviour of a MRE isolator for different magnetic field 

values but a new set of parameters were used for each strain amplitude and did not consider the 

loading frequency. Li Y and Li J (J 2017) used a power law strain stiffening element in parallel to the 

standard three parameter linear viscoelastic model to model the response of a laminated MRE 

seismic isolator. This rate dependent model can describe better the behaviour of the device under 

large strains. 

Chen and Jerrams (a. J. Chen L 2011) used the standard linear solid model parallel to a nonlinear 

spring and a spring-Coulomb friction slider to model the viscoelasticity of the polymer composite, 

the magnetic field induced mechanical properties and the interfacial slippage between the matrix 

and the particles respectively. Although, the model can theoretically describe the general trends of 

the material it was not validated using experimental while it is mentioned that the parameters of 

the friction slider and stiffness can be obtained from macroscopic slippage experiments that cannot 

be performed with standard mechanical testing machines. On another point of view, Yu et al (Yu Y 

2015) used artificial neural network modelling method that did not require the knowledge of any 

physical parameters of the system but is based on the input and output variables. The proposed 

model could forecast the hysteric responses of MRE base isolator under various loading conditions, 

while it was faster than other MRE device models like the Bouc-Wen and strain stiffening model.  

Zhu et al (Zhu J T 2012) proposed a viscoelastic model that combined a spring and a fractional 

dashpot element to represent the frequency response of the matrix parallel to a nonlinear spring 
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and dashpot to represent the magnetic field induced effect. The model could predict the general 

trends of the moduli of elasticity in a restricted frequency range (up to 10Hz) and magnetic field 

but does not deal with the amplitude nonlinearity or the coupling effects between amplitude, 

frequency and magnetic field. Agirre-Olabide et al, (Agirre-Olabide I 2017) developed a four-

parameter fractional derivative viscoelastic model to describe the dynamic shear behaviour of 

isotropic magnetorheological elastomers (MREs) as a function of the matrix, particle content and 

magnetic field. However, they too did not consider the magnetic field-amplitude coupling effects. 

 

Constitutive equation models  

Hyperelastic constitutive models are basically mathematical equations of a strain energy density 

function W. The strain energy W is expressed as a function of strain invariants (𝐼1, 𝐼2, 𝐼3) or principal 

stretch ratios (𝜆1, 𝜆2, 𝜆3). These models are widely used in commercial finite element analysis (FEA) 

software application ( like ANSYS and ABAQUS) which also provide the option of user defined strain 

energy equations that are scalar functions of one of the strain or deformation tensors. Hyperelastic 

models can predict the strain dependence of elastomers for most cases in the quasi-static case but 

the situation is more complicated when it comes to the response under dynamic loads. Ansys FEA 

software has a curve fitting option that can find the parameters of the equations when 

experimental data from pure shear and equibiaxial extension/compression tests or 

creep/relaxation tests for the dynamic case are provided. However, passing from the time domain 

to the frequency response and vice versa means a loss of accuracy. Moreover, these data are not 

easily available due to the complexity of the tests and in most cases approximate values are used.  

A key point in modelling MR elastomers is defining the filler particle distribution pattern and thus 

understanding of how the magnetic flux density distributes itself inside the material. In a simplified 

approach, only the effect of magnetic field is considered and a constitutive equation model that 

can predict only the MR effect is of interest. These models are based on dipole magnetic particle 

interactions and require the particle distribution to be known. One of the most popular models 

concerning the prediction of the stress induced by the magnetic field was presented by Jolly et al 

(Jolly M R 1996). The proposed quasi-static model was based on the assumption that the particle 

sizes are uniform, homogenous spheres that could be magnetically modelled as identical induced 

dipole moments and that the particles are aligned in perfect chains. The model did not take under 

consideration of the particle size but the distance between each other. Some years later, Davis  (D. 

L. C 1999) used the Ogden Hyper elastic model of elastomers and the magnetic dipole moment of 

each particle to model the material in FEA software by fitting the parameters to experimental data. 

The same assumptions were made again were the particles were considered as perfect spheres 
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spaced at equal distances between each other. The main disadvantage of the above-mentioned 

models is that they assume the particles to be perfect spheres aligned in perfect chains inside the 

matrix. However, this is not the case for most MREs. 

Zhang et al (G. X. Zhang W 2010), proposed a Gaussian distribution model where the filler particles 

form body centred tetragonal BCT structures in the matrix of the same direction and width but 

different length that obeys the Gaussian distribution law. The simulated results were compared 

with shear static loading while the dynamic loading conditions were not examined. The same 

authors improved the previous model to account for the temperature influence on the 

magnetorheological effect but they were unable to produce a model that could describe the effect 

of temperature to the dynamic properties of the MR elastomers under study. Castaneda and 

Calipeau (E 2011) proposed a homogenization-based constitutive model for MRE with elliptical 

particles, under the assumption that the material behaves linear for small strains, capable of 

predicting the nonlinear ferromagnetic particle response of the MR elastomers.  The same 

researches expanded their theory to account for the torques generated by nonaligned loadings in 

MREs composed of aligned fibres with elliptical cross section instead of spherical particles (P 2012). 

However, the above work was purely theoretical and no validation with experimental data was 

conducted.  

Danas et al (Danas K 2012) suggested an anisotropic energy density function containing seven 

invariants, two purely mechanical and five magneto-mechanical that are adding up based on the 

experimental results that showed that stress does not affect the magnetization response. The 

energy function depends nonlinearly on the two mechanical invariants to explain the nonlinear 

tension-compression asymmetry. The model parameters where extracted from the experimentally 

measured magnetization slopes and magnetostriction curvatures in uniaxial static compression-

tension and simple shear tests. The model could theoretically be implemented in FEA modelling 

software but there is still the issue of validating the model under dynamic loads and examine the 

magnetic field-dynamic mechanical response coupling effects. 
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 Vibration absorbers and isolators with MRE 

MRE absorbers 

MR elastomers, find broad applications on vibration absorbers and isolators mostly as frequency 

shifting semi active devices. Deng and Gong, developed an adaptive tuned vibration absorber in 

shear mode and tested the device using silicone rubber MRE (Deng H X 2008) and natural rubber 

MRE (Deng H X, Adaptive Tuned Vibration Absorber based on Magnetorheological Elastomer 2007). 

The results showed a resonance frequency shift from 27.5 Hz to 40Hz for silicon rubber and from 

40 Hz to 60Hz for the natural rubber MRE. Xu et al (Xu Z 2010), used the same shear mode absorber 

device to develop an active damping compensated absorber that behaved like a conventional ATVA 

with smaller damping. In their results the average damping ratio reduced from 0.16 to 0.06 by the 

active force. Hoang et all, (Hoang N 2011) proposed a shear mode MRE active tuned vibrations 

absorber for powertrain vibration suppression. The proposed device could shift the frequency to 

deal with the resonant phenomena during starting up and accelerating of a vehicle. Kim et all (Kim 

Y K 2011), developed a shear mode active tuned vibrations absorber based on MRE for a cryogenic 

cooler compressor used in space applications, capable of tuning the notch frequencies from 32 to 

60 Hz in maximum magnetic flux density of 240 mT.  

In a theoretical study, Collette et all (Collette C 2010), showed that a MRE vibration absorber can 

reduce the stress in a n-story mass varying structure 50% better than a classical absorber. In order 

to increase the maximum load capacity of the device Sun et al, (D. H. Sun S 2015) developed a 

laminated absorber composed of 16 layers of MRE and 16 layers of steel that was used to suppress 

lateral vibration. The laminated structure was bonded to two permanent magnets before placed 

into the magnetic circuit, which provided a stable magnetic field which further increased of 

decreases according to the direction of the electric current fed in the electromagnet. As a 

consequence, the MRE absorber could shift its natural frequency down to 3.2Hz and deal with 

vibrations of much larger amplitude.   

Adaptive vibration absorbers working in shear mode have well been studied, but the situation is 

not the same for their compression mode equivalent. Lerner and Cunefare (Lerner A A 2008), 

studied the frequency shift capability of an anisotropic MRE absorber working in shear and 

compression mode. They concluded that the absorber in compression mode had a larger zero field 

natural frequency but a much higher tuneable frequency ranges due to a higher MR effect, than 

the shear mode absorber. The same conclusion was validated by Sun et al (D. H. Sun S 2015) where 

the compression mode absorber could shift its natural frequency two times more that the shear 

mode device. The same group also examined the application of a compression working model 
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absorber on beam vibration absorption (Sun S S 2014). The tests showed that the device could shift 

its natural frequency from 37Hz to 67Hz. 

MRE isolators 

One of the first practical MRE isolators was a suspension bushing developed by Ginder at Ford 

Technologies (Steward, Ginder et al. 1998).  Opie and Yim (Opie S 2011), tested a shear mode MRE 

isolator and the possible semi active or active control methods. The experimental results showed 

that the on-off controlled device can offer improved resonance control and velocity isolation when 

compared to the considered passive systems. Alberdi-Muniain et al (Alberdi-Muniain A 2012), 

examined the isolation efficiency of a shear mode natural rubber MRE isolator-mass system using 

energy flow as an indication. Their experiments showed that the energy flow into the foundation 

was reduced by 50% at the zero field resonance frequency by adaptively controlling the magnetic 

field.   

Gu et al (Gu X 2015), developed an adaptive laminated base isolator system, suitable for seismic 

isolation, capable of increasing its stiffness and damping by six times. Eem at al (Eem S H 2011), 

examined the seismic performance of a smart MRE base isolation system that could reduce the 

structural responses by 60% compared to a passive isolation system. Yang et al (S. S. Yang J 2014), 

used a 16 layers MRE-steel thin plate device like the one examined before in a mass-absorber 

system. The laminated structure was bonded to two permanent magnets, before placed into the 

magnetic circuit that provided a stable magnetic field which further increased of decreases 

according to the direction of the electric current fed in the electromagnet. The mass-MRE isolator 

system could increase stiffness and damping by 180% under shear loading conditions. 

MRE devices working in both compression-shear mode 

Very few researchers have examined designs where the MRE isolator works in both shear and 

compression loading modes. Yang et al (Yang CY 2015) examined an isolator with a closed magnetic 

circuit where two MREs were embedded in the device, one operating in shear mode and the second 

in compression. They claimed that this mixed mode type of design increases its stiffness 18 times 

and damping 8 times more than a similar isolator working only in shear mode, while the device 

could shift its natural frequency by 100%. In another approach, Du et al (Du H 2011), studied a 

vehicle seat suspension that followed the design principle of an inclined isolator, although the 

inclination angle was small.  When the magnetic field was applied, the dynamic stiffness of the 

isolator increased by three times while damping by two.  
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 Challenges and opportunities 

The static and dynamic properties of MREs have been extensively studied in the past, but the wide 

variation of sample size, materials used, manufacturing method and experimental methods often 

result to contradicting outcomes especially regarding particle size. Therefore, the effect of particle 

size on dynamic properties and MR effect and the use of particles larger than 60μm, which are 

much cheaper, should also be considered. In addition, the following topics have not yet been 

addressed and offer opportunities for further research: 

• Variation of dynamic mechanical properties in respect to MRE size and shape (scaling 

effect) since the studies published in the literature deal with static mechanical properties.  

• Some researchers used MRE-metal laminated structures (Li Y 2013) to increase the static 

stiffness of MRE isolators while Allajyarov et al (Allahyarov E 2015) considered the 

theoretical magnetomechanical coupling of two magnetic elastomers into a bilayered 

composite material. However, none examined the possibility of combining isotropic and 

anisotropic MREs in one elastomer to adjust the mechanical properties. 

• Several isolators have been presented in the literature that work in either shear or 

compression mode but very few working in mixed shear/compression modes. More 

research is therefore needed in such devices, like an inclined isolator. 

• Many researchers have produced linear and nonlinear models of MREs that can predict the 

material properties under varying strain amplitude while displacement transmissibility is 

examined. However, in many practical applications force transmissibility is of interest and 

a force depended model would be useful. 

 

 Thesis organization 

The thesis is organized in eight chapters three of which (chapter 4, 5 and 6) present the 

experimental results while chapter 7 the theoretical work. In more details:     

Chapter 1: The aim of this chapter is to explain why the author spend six years of her life doing this 

work. 

Chapter 2:  This chapter presents the main characteristics of magnetorheological elastomers and 

their working principle. In addition, the current state of research regarding materials and 

manufacturing methods, viscoelastic and constitutive equation models and practical applications 

(vibration absorbers and isolators) with MREs is presented. Finally, the areas not yet studied are 

identified and discussed under the challenges and opportunities section. 
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Chapter 3: The first section of this chapter presents the methodology approach of this work and 

the reasons why this approach was followed. The rest of the chapter explains in detail the 

manufacturing method of MRE samples, the general experimental system setup, how the magnetic 

field produced and the method the experimental data were analysed. In addition, the advantages 

and limits of the experimental system are presented.  In this chapter only the general experimental 

system is presented while additional information on MRE samples and test sequence are given in 

each chapter.

Results of experimental tests 

Chapter 4: This chapter presents the experimental results of the dynamic compression tests 

performed in isotropic and anisotropic MREs with large (diameter <220 μm) and small (diameter=4-

6 μm) particles under varying load amplitude, frequency, static prestrain and magnetic field. The 

coupling effects between load amplitude, frequency, static prestrain and magnetic field are 

examined in detail for all samples. In addition, the influence of size and shape of MRE sample on 

zero field dynamic mechanical properties and magnetorheological effect is examined for isotropic 

MRE with small particles. 

Chapter 5: This chapter is broken in two parts. The first examines the principle of combining 

isotropic and anisotropic MR elastomers with small and large particles in one composite, to adjust 

the zero-field dynamic properties of silicon MREs without compromising MR effect. The second 

examines the dynamic mechanical properties of isotropic/anisotropic and anisotropic/anisotropic 

(with particles aligned in different directions) composite MREs in three directions.  

Chapter 6: In this chapter, the composite isotropic/anisotropic and anisotropic/anisotropic MREs 

are tested in practice by examining the mechanical properties of a MRE prototype isolator working 

in pure compression and compression/shear (inclined) mode. The experimental data are then used 

to determine the principal elastic axis stiffness ratio 
𝑘𝑝

𝑘𝑞
 and how this is influenced by the magnetic 

field. 

Theoretical part 

Chapter 7: In this chapter, the experimental results presented in the previous chapters are used to 

make a parametric phenomenological viscoelastic model of MREs. The model is then used to 

simulate the force transmissibility of a single degree of freedom mass MRE isolator system under 

different harmonic loading conditions. 

Chapter 8: The general conclusions and the major breakthroughs of this work are presented.  
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Chapter 3: Methodology and experimental system setup 

 Methodology approach 

The project was broken down to an experimental and a theoretical part.  The experimental part 

involved the mechanical characterization of pure and composite MREs under dynamic pure 

compression and compression/shear loading conditions. The results of these tests were then used 

to make a nonlinear model of MREs and finally simulate a single degree of freedom mass-MRE 

isolator system.  

Experimental part 

The experimental part itself involved three steps. The first step was to determine how loading 

conditions, magnetic field, iron particle size and size/shape of samples influence stiffness and 

damping capability of pure isotropic and anisotropic MREs. Thus, dynamic compression tests of 

varying load amplitude, frequency and static prestrain were performed in isotropic and anisotropic 

MREs with large (diameter <220 μm) and small (diameter=4-6 μm) particles. The effect of size and 

shape on zero field dynamic mechanical properties was examined only for isotropic MREs with small 

particles because it was impossible to ensure that anisotropic MREs with different heights would 

be cured under the same magnetic field.  

The second step was to examine the possibility of combining isotropic and anisotropic MREs in one 

composite elastomer to adjust the zero field mechanical properties without compromising MR 

effect. To improve the isolation characteristics of high tangent of the loss angle rubbers at high 

frequencies, a second rubber with lower damping factor and stiffness can be placed in parallel. The 

dynamic modulus of the combined isolator can be tailored by selecting the dimensions of each 

rubber. Since the combined elastomer will have lower stiffness but similar damping capability than 

the high damping rubber itself, the transmissibility of the combined isolator will increase slower 

with frequency than the transmissibility of the high tangent of the loss angle rubber alone before 

the natural frequency and decrease faster than the high tangent of the loss angle rubber at 

frequencies higher than the natural frequency (S. J. C 1968).  

Under the same logic, the isolation efficiency of anisotropic MREs at high frequencies can be 

improved by placing an isotropic MRE in parallel. The new composite elastomer should have a lower 

dynamic stiffness than anisotropic MRE and higher tangent of the loss angle than isotropic MRE 

without a great compromise of the MR effect. However, the mechanical properties of anisotropic 

MREs depend on the alignment of particle chains and therefore, have different axial (y axis), 

transverse (x axis) and longitudinal (z axis) stiffness. For this reason, the possibility of combining 
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two types of anisotropic MREs with different particle directions is also examined to create a 

composite elastomer that will have a similar axial, transverse or longitudinal dynamic stiffness. 

The third step was to test the behaviour of the pure isotropic, pure anisotropic and composite 

isotropic/anisotropic and anisotropic/anisotropic MREs in a real application scenario by examining 

the mechanical properties of a small MRE prototype isolator working in pure compression and 

compression/shear (inclined by 450 degrees) mode. The experimental data are then used to 

determine the principal elastic axis stiffness ratio 
𝑘𝑝

𝑘𝑞
 and how this is influenced by the magnetic 

field.  

Theoretical part 

The aim of the theoretical part of this project was to simulate a MRE isolator under loading 

conditions that can be found on the engine room of a ship and examine its isolation efficiency. For 

this reason, the case of a single degree of mass-isolator system excited by an harmonic disturbing 

force resulting from rotating unbalance is considered. The purpose of the isolator is to decrease the 

vibrations generated by the unbalanced mass to the hull of the ship, therefore the force 

transmissibility is of interest and a nonlinear model that depends on force rather than displacement 

is preferred.  

The phenomenological parametric viscoelastic modelling approach is selected because accurate 

constitutive equations models require tests (to extract the parameters) that could not be 

performed in our laboratory like equibiaxial loading test. Since the magnetorheological effect of 

MRE devices is usually higher than the one reported under material characterization, the 

parameters of the viscoelastic model of the MRE material are extracted from both the material and 

isolator device characterization steps to get more realistic results. The force transmissibility of a 

general single degree of freedom mass-isolator is then simulated under varying magnetic fields. 

Finally, the possible control strategies are briefly discussed, and the isolation efficiency of a semi 

active system is examined.  
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 Manufacturing process of MRE samples 

Selection of rubber matrix material  

For this work, a two-component room-temperature vulcanization silicon rubber was selected 

mostly because it is easy to get and make. The typical rubbers used in large scale isolators like 

natural rubber or Neoprene have much better mechanical properties but require special mixers and 

controlled pressure and temperature curing devices that were too expensive for the budget of this 

project. Therefore, the (RTV) 4644 Elastosil mould making silicon rubber from Wacker Silicones was 

chosen due to its viscosity that could allow the particles to be mixed inside.  

Selection of filler particles  

For the filler particles, we selected two types of iron particles, one with an average diameter lower 

than 220 μm (Sigma-Aldrich) and the other with average diameter of 6 μm (Sigma-Aldrich), from 

now on referred as large and small particles respectively. Although most researches prefer particles 

of smaller diameter to avoid agglomeration, we examined the use of particles with much larger 

diameter mostly because they are much cheaper and therefore a more attractive solution for 

commercial applications.  The 70% to 30% per volume matrix-particle ratio was used for all samples, 

since it is proven to give the highest magnetorheological effect (Li W H 2010) (Kallio M 2007) for 

this type of MREs. 

Manufacturing process-isotropic MREs  

The samples were composed of 30% per volume iron particles and 70% per volume two component 

silicon rubber (4644 Elastosil). The silicon rubber components were first mixed together on a 10:1 

component A to component B ratio and then the iron particles were added. Two types of iron 

particles were used, one with an average diameter lower than 220 μm (large particles) and the 

other with average diameter of 6 μm (small particles). The mixture was placed in a vacuum chamber 

for about 10 min to remove the air bubbles trapped inside the material during mixing and was finally 

placed in aluminium moulds and left to cure for 24 hours at room temperature. The manufacturing 

procedure is illustrated in Figure 3. All isotropic samples manufactured are presented in Table 2 and 

Table 3.  

MR elastomers, like all elastomers, show a relative high variability of their mechanical properties 

even on items of the same batch. Thus, the directions of the ISO 7743:2011 standard were followed 

and three different samples of each MRE type were tested while the values reported on chapters 

4, 5 and 6 are the average of these values. The three different samples were manufactured from 

three different batches made on different days.  
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Figure 3: Isotropic MRE manufacture diagram 

 

Table 2: Summary of isotropic MRE samples 

Particles Name Dimensions 
Number of 

samples 
Sample was used for 

Large Isotropic a-l 

 

5* 

Examine the effect of 

iron particle size 

Examine the properties 

of isotropic/anisotropic 

combined samples 
Small Isotropic a-s 5* 

Small Isotropic b 

 

3 

Examine properties in 

axial, transverse and 

longitudinal direction 

Small Isotropic c 

 

3 MRE isolator 

* Five samples from different batches were manufactured and the average values of three set of 
samples are reported disregarding the samples with the highest and lowest MR effect.  
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Table 3: Summary of isotropic MRE samples used to examine the effect of size and shape on 
dynamic properties 

Particles Name Dimensions 
Number of 

samples 
 

 Disk d (mm) h (mm)   

Small a_1 28.5 6.25 3 

 

 

Small a_2 28.5 12.5 3 

Small a_3 28.5 21 3 

Small a_4 56.5 12.5 3 

Small a_5 15.5 10.5 3 

Small a_6 41.5 14.5 3 

 rectangular h1 (mm) h2 (mm) h (mm)   

Small c_1 20 34 5.25 3 

 

Small c_2 30 60.5 6.25 3 

Small c_3 41 59.5 10.5 3 

 Square h1 (mm) h1 (mm) h (mm)   

Small b_1 22 22 6.25 3 

 

Small b_2 22 22 10.5 3 

Small b_3 22 22 22 3 

Small b_4 34 34 5.5 3 

 Ring Din (mm) Dout(mm) h (mm)   

Small r_1 19.5 32.5 10.5 3 

 
Small r_2 54.5 23.5 16.5 3 

Important note: 

A set of all isotropic samples mentioned in Table 3 were manufactured simultaneously from the 

same batch. In total, three different sets of samples were manufactured from three different 

batches on different days. The values reported are the average of these.  
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Manufacturing process-anisotropic MREs  

For the anisotropic material, the moulds were placed between two strong cylindrical grade N42 

neodymium permanent magnets of diameter 40mm and thickness 5mm that produced a stable 

magnetic field. Two magnets were stacked together to increase the magnetic field thus, the final 

length of each magnet pole is 10mm.   

 

Figure 4: Magnetic field while curing 

𝐵𝑥 = 𝐵𝑟 (
𝐿 + 𝑋

√𝑅2 + (𝐿 + 𝑋)2
−

𝑋

√𝑅2 + 𝑋2
)  (3.2.1) 

Table 4 provides the calculated and measured values of the magnetic flux density 𝐵𝐴 at point A in 

the middle of the distance between permanent magnets (X=6.25 mm and X=11 mm for disk and 

square samples respectively), as illustrated in Figure 4. These values where calculated using 

formulae (3.2.1) that gives the magnetic flux at a distance X of a disk magnet where, L=length of 

the magnet, X= distance from the surface of the magnet, R=radius of the disk magnet (20mm), 𝐵𝑟= 

material constant (𝐵𝑟 = 12800 for the N42 grade neodymium magnets). The total magnetic flux 

𝐵𝐴 will be double the calculated value. Flux density was measured by placing a magnetic probe in 

the middle of the 12.5mm and 22mm gap using aluminium blocks on the sides to hold the 

permanent magnets apart. These values are measured and calculated assuming air as the 

intermediate medium between magnets. All anisotropic samples manufactured are presented in  

Table 5. Three set of samples of all sizes and shapes were manufactured from three different 

batches. The experimental values presented in later chapters are the average values of these for 

each sample. 

Table 4: Values of magnetic flux produced from permanent magnets during curing process. 

 Gap height 

 12.5 mm 22 mm 

 Calculated Measured Calculated Measured 

𝑩𝑨 0.43 T 0.48 T 0.31 T 0.33T 
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Figure 5: Manufacturing process of anisotropic MREs 

 

Table 5: Summary of anisotropic MRE samples 

Particles Name Dimensions 
Number of 

samples 
Sample was used for 

Large Anisotropic a-l 

 

5* Examine the effect of 

particle size 

Examine the properties of 

isotropic/anisotropic 

combined samples  

Small Anisotropic a-s 5* 

Small Anisotropic b 

 

3 

Examine the properties in 

axial, transverse and 

longitudinal direction 

Small Anisotropic c 

 

3 MRE isolator 

* Five samples were manufactured and the average values of three set of samples are reported 

disregarding the samples with the highest and lowest MR effect. 
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Manufacturing process-isotropic/anisotropic series combination MREs  

The manufacturing process of the isotropic/anisotropic series combination composite MR 

elastomers involves two stages. Sample 2a was manufactured by cutting a pure anisotropic a 

sample in the middle, place one half in the bottom of another aluminium mould and pure the 

isotropic MRE on top of it. All anisotropic parts of these disk samples are of the same height and 

thus, they were all cured under 0.5T magnetic flux density. The magnetic flux was produced using 

a set of cylindrical grades N42 neodymium permanent magnets of diameter 40mm and thickness 

10mm. For sample 2c, the isotropic half was first made and after it had cured it was placed back to 

the mould and the anisotropic part was poured on top. The sample was then left to cure under a 

double set of magnets. 

Table 6: Summary of isotropic/anisotropic series combination MRE samples 

Particles Name Dimensions 
Number of 

samples 
Sample was used for 

Small Sample 2a 

 

3 

Examine the properties 

of isotropic/anisotropic 

combined samples 

Small Sample 2b 

 

3 

Examine the properties 

in axial, transverse and 

longitudinal direction 

Small Sample 2c 

 

3 MRE isolator 

 

Manufacturing process-isotropic/anisotropic parallel combination MREs  

The manufacturing process of the composite MR elastomers involves two stages. For sample 1a, 

anisotropic discs were first made in the appropriate aluminium moulds and were left to cure under 

a double pair of permanent magnets for 24 Hours. After they had cured they were placed inside 

another aluminium mould and the isotropic MRE was poured to fill the gaps and left to cure again 

at room temperature, to achieve perfect adhesion.  For sample 1c, a cured anisotropic c sample 

was cut in 4 pieces of 8.5 mm x20mm each. Two of these parts when then placed back to the 

aluminium mould and the isotropic MRE was poured to fill the gaps. 
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Table 7: Summary of isotropic/anisotropic parallel combination MRE samples 

Particles Name Dimensions 

Number 

of 

samples 

Sample was used for 

large Sample 1a-1 

 

3 

Examine the 

properties of 

isotropic/anisotropic 

combined samples of 

different particle sizes 

Large 

small 
Sample 1a-2 

 

3 

large Sample 1a-3 

 

3 

small Sample 1a-4 

 

3 

Small Sample 1b 

 

3 

Examine the 

properties in axial, 

transverse and 

longitudinal direction 

Small Sample 1c 

 

3 MRE isolator 

 

Manufacturing process- anisotropic/anisotropic parallel combination MREs  

Anisotropic/anisotropic parallel combination samples were manufactured in two steps. Samples 3b 

and 4 were manufactured by again cutting an anisotropic b sample in the middle, place one half in 

one side of the mould, pure MRE to fill the gap of the other side and then place the mould between 

the permanent magnets to cure the other anisotropic part. In this way, all anisotropic parts were 
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cured under the same magnetic flux of 0.35T.   For sample 3c, a cured anisotropic c sample was cut 

in 4 pieces of 5mm x 34mm each. Two of these pieces were then rotated by 900 (so that the particles 

were aligned in the longitudinal direction) and placed back to the mould. New anisotropic MRE was 

poured to fill in the gaps and the mould was left to cure again under a double set of permanent 

magnets. Three set of samples of all sizes and shapes were manufactured from three different 

batches. The experimental values presented in later chapters are the average values of these for 

each sample. 

Table 8: Summary of anisotropic/anisotropic parallel combination MRE samples 

Particles Name Dimensions 
Number of 

samples 
Sample was used for 

Small Sample 3b 

 

3 

Examine the properties 

in axial, transverse and 

longitudinal direction 

Small Sample 4 

 

3 

Small Sample 3c 

 

3 MRE isolator 

 

Important note 

A set of square anisotropic b, isotropic c, samples 1b, 2b, 3b and 4 were manufactured together 

from the same MRE batches. The vertically aligned (as shown in the figure) anisotropic part of 

sample 3b and sample 4 came from the same anisotropic b sample cut in the middle while the 

anisotropic parts of sample 1b and 2b were also from the same batch. The other isotropic and 

anisotropic parts in the second manufacturing stage also came from the same batch of MRE. The 

same procedure was also followed for samples 1c, 2c, 3c and disk samples 1a-1, 1a-2, 1a-3 and 1a-

4. In total three different sets of samples were manufactured and the values reported in later 

chapters are the average of these.  
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 Test system for material characterisation 

General test setup with INSTRON PULS E1000 

The static and dynamic compression tests were performed according to BS ISO 7743-1:2011 

standard (Rubber, vulcanized of thermoplastic-Determination of compression stress-strain 

properties) and BS ISO 4664-1:2011 standard (Rubber, vulcanized of thermoplastic-Determination 

of dynamic properties) respectively, using INSTRON PULS E1000 electromechanical dynamic tester 

and custom made aluminium compression plates. The compression plates were thick enough 

(15mm height) to have a much higher stiffness than the MRE samples under test and isolate the 

load cell of the magnetic field generated by the permanent magnets. They were fixed to the bottom 

frame and load cell using aluminium screws.  

The samples where first preloaded under static load for four cycles in order to avoid the Mullins 

effect and then the strain amplitude (0.25% to 2%) and load frequency (0.5Hz to 70Hz) dynamic 

loading cycles where performed under a static prestrain. Figure 6 presents the test setup used for 

the compression tests. The machine had to be tuned each time that the stiffness changed, which 

was for every time the amplitude, magnetic field and prestrain values changed. However, it was 

found in practice that increasing the strain amplitude (at the range of interest) did not change the 

tuned string stiffness value significantly, so tuning was performed only at the amplitude of 0.5% 

strain at each value of magnetic field.  

 

Figure 6: Test setup for pure compression tests 

Generation of magnetic field while testing 

The magnetic field during testing was produced using the same set of disk grade N42 neodymium 

permanent magnets of diameter 40mm and thickness 5mm, in a pair of single (L=5mm) and double 

(L=10mm) disk magnets configuration where two magnets are stacked together (Figure 7). The 
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magnetic flux 𝐵𝑥 between the magnets in respect to distance h is shown in Figure 8. The flux values 

were calculated using equation (3.1.1) assuming air at the intermediate gap and X=h/2, 𝐵𝑟 =

12800, R=20mm and L=5mm for single pair while L=10mm for double pair. Thus, the magnetic flux 

values reduces significantly with increasing height of the MRE sample 

 

Figure 7: Configuration of magnets while testing. 

The magnetic flux values at the middle of the 12.5mm (for disk samples) and 22mm (for cube 

samples) air gap are presented in Table 11. However, MREs have a higher relative permeability 𝜇𝑟 

than air of 𝜇𝑟=3.7 for isotropic and 𝜇𝑟=4.45 for anisotropic MREs with particles aligned parallel to 

the direction of the magnetic field (Harrison, Equi-biaxial tension tests on magnetorheological 

elastomers 2016). Therefore, the actual magnetic field inside the MREs should be higher than the 

one calculated assuming air as medium and will have slightly higher values for anisotropic MREs. 

For simplicity reasons and since the aim of this work is to compare the performance of different 

types of MREs, one value of magnetic field is chosen for all MRE samples that is approximated to 

be slightly higher than the measured value.  

 

Figure 8: Magnetic flux between permanent magnets in respect the distance between them. 

In this testing configuration, the magnets come in direct contact with the MRE under test in contrast 

to the curing process where the magnets were held apart from the aluminium mould. The attraction 
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force between the permanent magnets themselves causes an original prestress to the MRE under 

test and a resulting axial compressive extension that limits the axial positive elongation caused by 

the magnetic field due to the rearrangement of iron particles. The attraction force between two 

identical disk shaped permanent magnets at a distance x between each other can be estimated 

using equation (3.3.1) (Vokoun D 2009, Jolly M R 1996), where R=radius and L=height of disk 

magnets, 𝜇0=permeability of vacuum (4π 10-7) and M= saturation magnetization and are presented 

in Table 11. Saturation magnetization M is related to the maximum value of magnetic flux at the 

surface of each magnet 𝐵0 by equation (3.3.2) where 𝐵0 can be estimated by substituting X=0 to 

equation (3.3.1).  

𝐹 = −
1

4
𝜋𝜇0𝑀

2𝑅4 (
1

𝑥2
+

1

(𝑥 + 2𝐿)2
−

2

(𝑥 + 𝐿)2
) 

(3.3.1) 

𝐵0 = 𝑀 𝜇0 (3.3.2) 

The attraction forces between the two magnets when the gap is 22mm (cube samples) are not 

strong enough to create a significant precompression to the MREs under test. The situation is 

different for disk samples with 12.5mm height (gap) when a pair of double disk magnets are used. 

The result is a 30N static load applied to all MREs under test causing a static deformation according 

to each sample’s stiffness by also influencing its dynamic stiffness. Since this static force will be the 

same for all samples and there is not much that can be done about it, it was considered as a 

characteristic of the measurement setup system. 

Table 9: Magnetic flux and attraction forces produced by permanent magnets while testing. 

Gap height 12.5 mm 22 mm   

 Magnetic 

Flux 𝐵𝐴 

Attraction 

Force F 

Magnetic 

Flux 𝐵𝐴 

Attraction 

Force F 

𝐵0  

Pair of single 

disk magnets 

(L=5mm) 

 

0.246 T 4.72 N T 0.76 N 0.1552 T Calculated 

0.28 T - 0.19 T - 0.16 T Measured 

0.3 T 5 N 0.2 T 1 N - Approximated 

Pair of double 

disk magnets 

(L=10mm) 

 

0.426 T 28.56 N T 5.71 N 0.2862 T Calculated 

0.48 T - 0.33 T - 0.29 T Measured 

0.5 T 30 N 0.35 T 6 N - Approximated 
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Lubrication of compression plates 

According to BS ISO 7743-1:2011 standard (Rubber, vulcanized of thermoplastic-Determination of 

compression stress-strain properties) and BS ISO 4664-1:2011 standard (Rubber, vulcanized of 

thermoplastic-Determination of dynamic properties), the compression plates should be lubricated 

during testing to allow perfect slip and ensure uniform distribution of shear strain. In the case of 

MREs, this can be achievable only for the zero field tests. When the magnetic field is applied the 

MRE sample is stuck to the magnets similar to the bonded test condition where non-uniform 

distribution of shear strain arises from the constraints at the end surfaces, while the compression 

behaviour becomes dependent on the shape and hardness of the MRE. In order to be precise a 

shape factor correction equation for compression modulus should be used. However, this has not 

been dealt with or reported in any other previous published work on compression tests on MREs 

and the parameters of the shape factor equation are unknown. For this reason, no lubrication was 

used for all tests since the aim of this work is to compare the different types of MREs and study the 

influence of loading conditions and magnetic field on the dynamic mechanical properties. In 

addition, a phenomenological viscoelastic model is used to predict the behaviour of the material 

for practical applications where pure compression or pure shear are not of interest unlike hyper 

elastic constitutive equation models. 

 

 

Dealing with inertia forces 

One of the challenges to overcome regarding the measuring setup system was dealing with the 

inertia forces imposed by the measuring system especially in frequencies above 30 Hz. In the 

standard INSTRON machine setup the load cell is placed directly on the moving actuator of the 

machine, and since it has a mass it introduces inertia moments that result to harmonics in the 

recorded signal as the frequency and amplitude increases. To solve this problem, I used 

compression plates made from aluminium that are much lighter and in addition do not let the 

magnetic field pass to the load cell and affect its readings. The thickness of the plates is 15mm to 

ensure that the stiffness of the plates is much higher than the stiffness of the elastomer under test.  

Figure 9 shows the load-displacement curves of the actuator mounted with the load cell moving on 

its own at displacement amplitude of 0.06mm. At 10 Hz, the load cell does not record any signal 

and the curve is flat corresponding only to the movement of the actuator that records the 

displacement. With increasing frequency, the recorded signal of the load cell increases resulting to 

the observed hysteresis curve. This feature must be taken under consideration when analysing the 
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data because it can lead to the wrong estimation of damping of the material under testing. After 

discussing with other more experienced users of the INSTRON machines it was suggested to place 

the load cell on the bottom frame of the machine and perform the test again to check the 

differences. It becomes obvious that inertia does not influence the signals when the load cell is 

positioned on the base of the machine and therefore, this configuration was selected for 

frequencies above 10 Hz. 

 

Figure 9: Load-displacement curves of the actuator and the load cell alone at different frequencies 
for the same displacement amplitude of 0.06 mm with the load cell positioned on top (left) and 

with the load cell positioned on the bottom (right). 
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 Test system for compression and inclined isolator 

Magnetic circuit  

To examine the behaviour of the material under combined shear and compression loading 

conditions, a small-scale test device was manufactured using an old EI shaped laminated core 

transformer. The original E shaped core consisted of 100 laminations of 0.4mm thickness each 

giving a total 40mm thickness of the complete assembly. After being stripped out of its coil and coil 

former the old core was modified to create a C shaped electromagnet core by hand cutting the 

middle left of each lamination separately as shown in Figure 11. The top I shaped part of the 

transformer had then to be hand cut to create the desired 45 degrees of inclination angle. Then 

two new coils were hand wounded around new coil formers and placed in each leg of the new core. 

The two separate top parts were fixed to the main C core using the existing holes of the old core 

and a thin aluminium sheet of 0.5mm thickness. For the middle top part, a new hole had to be 

punched for each lamination separately. 

Each of the two coils had 500 turns of enamelled 0.71mm diameter copper wire (SWG22). Both 

coils were connected to a power source providing a stable electric current up to 3Amps. The 

magnetic circuit was simulated using MagNet 2D software and the path the magnetic flux follows 

is illustrated in : , assuming air gap in the place of MREs. Table 10 presents the values of the 

produced magnetic field at 1, 2 and 3 Amps electric current. The magnetic field values were 

measured using a magnetic probe in the middle of the 5mm gap without the MRE samples. The 

measured magnetic flux values are in agreement with the simulated values. 

 

Figure 10: Simulated magnetic circuit 
 

 

Table 10: Characteristics of magnetic circuit 

Electric current I (Amp) 1 2 3 

Voltage V (V) 4.46 8.93 13.4 

Magnetic field B (mT) 60 120 190 

Power (Watt) 4.46 17.86 40.2 
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Figure 11: Electromagnet test device manufacturing procedure (dimensions are in mm). 

However, the field is expected to be slightly higher since MREs have higher permeability than air. 

The magnetic circuit does not require high voltages and therefore is a low power consumption 

device. The dimensions of the electromagnet were based on the original dimensions of the old 

transformer that was big enough to create an adequate magnetic field but at the same time small 

enough to fit in INSTRON PULS tester.  The values of the magnetic flux mentioned consider air in 

the gap between the magnetic circuit but MREs have a higher magnetic relative permeability 𝜇𝑟 

than air. It has been reported that isotropic and anisotropic with particles aligned perpendicular to 

the magnetic field have a similar relative permeability, while for anisotropic MREs with particles 

aligned parallel to the direction of the magnetic field it becomes higher (Harrison, Equi-biaxial 

tension tests on magnetorheological elastomers 2016). Thus, the actual magnetic flux will be higher 

than the one mentioned and even different for each type of MRE under test. However, this will be 

the case for every MRE isolator device working in compression or compression/shear (inclined) 

loading mode. 

System setup 

The test setup diagram for the combined shear and compression tests is shown in Figure 12. The 

electromagnet was placed between two aluminium compression plates that were fixed on the 

frame of Instron Puls mechanical tester. Electric current up to 3 Amps was provided to each coil of 

the electromagnet by a constant current power source. It was observed however, that the 
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electromagnet was getting really hot when it was fed with 3 Amps although the 0.71mm copper 

wire could cope with this current value. For this reason, some of the experiments were restricted 

to maximum 2 Amps electric current to make sure that the measurement system remained stable.  

 

Figure 12:Test setup for inclined tests 

For comparison reasons, pure compression tests were also performed using the same test setup. 

The same rectangular MRE samples were placed on top of each leg of the electromagnet and the 

top part was replaced by a solid low carbon iron rectangular bar thus, providing similar magnetic 

flux values. An extra aluminium rectangular bar was also placed on top of the iron bar before the 

compression plate, to provide extra isolation of the produced magnetic field and assure 

homogeneous load distribution. Instron Wavematrix control software offers the ability to measure 

transmissibility using the force and displacement readings of the sensors on the load cell and 

actuator. This works by defining a required displacement amplitude and frequency range and the 

machine runs several loading cycles until the amplitude value is reached for each frequency. The 

software then finds the dynamic stiffness and tangent of the loss angle of the system under test to 

finally calculate natural frequency 𝜔𝑛 and transmissibility using these values and equations (3.3.1) 

and (3.3.2).  
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 Analysis of experimental data 

Methods of extracting the dynamic moduli of elasticity 

INSTRON Puls mechanical tester only records the applied force 𝐹̃ = 𝐹0sin (𝜔𝑡) and position 𝑥̃ =

𝑥0sin (𝜔𝑡 + 𝜑) signals from the load cell and actuator position sensor. Thus, the moduli of elasticity 

are calculated using the INSTRON Wavematrix software and its DMA calculations toolbox, following 

the directions of the ISO 4664-1:2011 standard. According to the Wavematrix DMA manual the 

dynamic stiffness (or else the value of absolute modulus|M∗| ) can be easily calculated by dividing 

the stress range |𝜎̃| (peak to peak amplitude) to the strain range |𝜀̃|. In order to determine the 

moduli of elasticity the phase difference (loss angle)  between the input and output signal is also 

needed. For linear specimens where the output signal is a pure sine wave this can be fairly simple, 

but the situation is much more complicated for distorted nonlinear signals. According to the 

Wavematrix DMA manual there are three ways to calculate the phase difference . 

 |M∗| =
|𝑠𝑡𝑟𝑒𝑠𝑠 𝑟𝑎𝑛𝑔𝑒|

|𝑠𝑡𝑟𝑎𝑖𝑛 𝑟𝑎𝑛𝑔𝑒|
=

|𝜎̃|

|𝜀̃|
=

|
𝐹
𝐴|

|
𝑥
𝐿|

 (3.5.1) 

Where A=area of the sample the force is applied too and L=length of the sample. 

• Loop width method 

This method uses the formula (3.4.2) to calculate the loss angle. It is susceptible to measurement 

noise and requires sinusoidal waveforms. 

Loss angle=Arcsine (
width of loop at mean force

displacement range
) (3.5.2) 

• Energy method 

This method uses the formulae (3.4.3) to calculate the loss angle. This method can deal with 

distorted signals since it calculates the area of the loop and it is more suitable for nonlinear 

specimens. 

• Correlation method 

This method is based on finding the best fit sinusoidal waveform of the measured input and output 

signals. Once the individual phase angles are found the loss angle is the difference between them. 

Loss angle=Arcsine(
area enclosed by the hysteresis loop (energy)

π
displacement range

2
force range

2

) (3.5.3) 
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The correlation method is ideal for linear specimens but it cannot give relatively good results for 

slightly distorted waveforms. 

Loss angle=Force phase angle-displacement phase angle (3.5.4) 

The calculated moduli of elasticity using the three different methods in Matlab are shown in Table 

11. The three methods give similar results for storage modulus but different ones for loss modulus 

and tangent of the loss angle depending on the applied strain amplitude and thus, the nonlinearity 

of the signals.  In the case of MREs, the energy method was selected because it can cope with the 

nonlinearity of the hysteresis curves although it should be noted that the moduli of elasticity make 

sense only if the first harmonic of the output signal is considered and the harmonic balance method 

is followed.  

Table 11: Calculated values of moduli of elasticity using the different methods. 

Method: Loop width Energy Correlation  

Loss angle δ 4.057 0 4.5532 0 2.23 0 0.5 % 

5 Hz 

0T 

Storage modulus E’ 8.972 MPa 8.966 MPa 8.9878 MPa 

Loss modulus  E’’ 0.6363 MPa 0.714 MPa 0.35 MPa 

Tangent of the loss angle tanδ 0.071 0.079 0.039 

Loss angle δ 5.075 0 4.7035 0 5.92 0 2 % 

5 Hz 

0T 

Storage modulus E’ 7.9585 MPa 7.9628 MPa 7.9471 MPa 

Loss modulus  E’’ 0.7067 MPa 0.655167 MPa 0.824 MPa 

Tangent of the loss angle tanδ 0.089 0.082 0.103 

 

Variability of measured values 

MR elastomers, like all elastomers, show a relative high variability of their mechanical properties 

even on items of the same batch. Unfortunately, the silicon MRE samples produced were left to 

cure at room temperature in a laboratory with no temperature and humidity control. Due to this, 

the zero field values of the mechanical properties, especially stiffness, were found to vary between 

samples of the same type manufactured at different days using the same procedure. However, all 

samples of the same type behaved the same way showing the same general trends, except the MR 

effect that showed great variation depending on the batch. For example, MR effect of isotropic 

samples, manufactured at different days, varied from 15% to 70%. It should be noted here that 

great effort was put on finding a way to achieve constant high MR effect but could not succeed. It 

is believed though, that if a different rubber elastomer was used under a controlled manufacturing 
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process the variability of MR effect could be less. In order to make safe conclusions when comparing 

the different types of MRE samples between each other, again the instructions of the ISO 4664-

1:2011 standard was followed, since this is common to all filled rubbers. Therefore, when 

comparing the different types of MREs between each other, three different set of MRE samples 

manufactured at different days and for each type of material of interest were selected. The average 

values of three set of samples are then reported disregarding the samples with the highest and 

lowest MR effect.  

Considering higher harmonics 

As mentioned earlier, for high values of strain amplitude the recorded waveforms are not perfect 

sinusoidal signals with one frequency but include higher harmonics. Figure 13 illustrates the Fast 

Fourier Transform (FFT) spectrum of the magnitude of displacement channel for 0.5% and 2% strain 

amplitude for both isotropic and anisotropic samples with small particles. It can be noticed that the 

second harmonic is present for both samples at the high amplitude value while the anisotropic 

sample shows a third harmonic as well. For the low amplitude value, only the first harmonic is of 

importance. This can be explained by the fact that anisotropic samples are stiffer than isotropic and 

therefore generate more harmonics although, their magnitude are less than 5% of the first 

harmonic for all samples. 

 

Figure 13: FFT spectrum of displacement signal for isotropic and anisotropic MRE with small 
particles at 0.5% and 2% strain amplitudes. 

However, before arriving to any results regarding the harmonics it is essential to investigate which 

of these harmonics are due to measurement error and which are generated by the material itself. 

The improved measurement setup reduced significantly the harmonics caused by inertial forces at 

high frequencies but as the load or strain amplitude increases it becomes impossible for INSTRON 

machine to keep the input signal a pure sine wave. The observed harmonics to the output signal 

can therefore be the result of the harmonics of the input signal rather than the response of the 

material itself. This is mostly due to the fact that INSTRON prefers to be controlled in displacement 
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mode since the movement of the actuator can be controlled more accurately than the load cell. 

This practically means that the force signal cannot be the input as assumed in theory, which is not 

a problem for linear materials where only the phase difference between the two signals is of 

interest. In the case of nonlinear elastomers considering a displacement signal as an input to find 

the corresponding force signal with higher harmonics is not a straight forward procedure. 

Figure 14 present the absolute values of the three first harmonics of the magnitude of displacement 

and force signals for anisotropic MRE at different strain amplitudes calculated using the FFT 

transform. Both signals contain higher harmonics that grow with increasing strain amplitude. At low 

strain amplitudes, the magnitude of the second and third harmonic are almost equal but as the 

strain amplitude increases the second harmonic grows to become bigger.  Figure 15 presents the 

hysteresis curves of the recorded signals and the curves when the first, second and third harmonics 

are taken under consideration for both displacement and force channels. It becomes obvious that 

in order to get a good fit all three harmonics for both channels have to be taken under 

consideration. However, neither stiffness nor the area of the hysteresis curve, and thus the 

resulting damping capability of the material, are affected significantly by the increasing number of 

harmonics, as  

 

Table 12 indicates.  

 

Figure 14: Absolute values of the three first harmonics of the magnitude of displacement and 
force signals for anisotropic MRE at different strain amplitudes. 
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Table 12: Calculated area of the hysteresis loop considering higher harmonics 

 Recorded data 1 harmonic 2 harmonics 3 harmonics 

Area 25.1418 23.5772 24.6825 25.1147 

Dynamic stiffness 648.6038 670.9848 632.2282 642.4307 

 

Figure 15: Force-displacement hysteresis curves when taking under consideration the 1, 2 and 3 
harmonics for both channels. 

Figure 16 illustrates the hysteresis curves when taking under consideration all three harmonics of 

the force channel and one, two and three harmonics of the displacement channel under the logic 

that the displacement channel is the input. Again, it can be seen that at least the second harmonic 

for the displacement channel should be taken under consideration to be able to simulate accurately 

the recorded data. This means that not even the displacement channel is a pure sine signal and 

therefore the higher harmonics cannot be experimentally defined. 

 

Figure 16: Force-displacement hysteresis curves when taking under consideration 1, 2 and 3 
harmonics for displacement channel and the all 3 harmonics for the force channel.  
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 Chapter summary 

The basic characteristics of the experimental system used in this work can be summarized as: 

• A two-component room-temperature vulcanization silicon rubber was used as the rubber 

matrix. For the filler particles, I selected two types of iron particles, one with an average 

diameter lower than 220 μm (Sigma-Aldrich) and the other with average diameter of 4-6 μm 

(Sigma-Aldrich), referred as large and small particles respectively.  

• Anisotropic MRE samples were cured under a stable magnetic field of 0.5T for samples with 

12.5mm height and 0.35T for samples with 22 mm height. The magnetic field was produced 

using permanent magnets. 

• The static and dynamic compression tests were performed according to BS ISO 7743-1:2011 

and BS ISO 4664-1:2011 standards, using INSTRON PULS E1000 electromechanical dynamic 

tester and custom made aluminium compression plates. 

• The magnetic field for material characterization tests was produced using permanent magnets. 

The tests were performed for two values of magnetic flux densities. Those are 0.3T and 0.5T for 

samples with 12.5mm height and 0.2T and 0.35T for samples with 22 mm height. 

• The magnetic circuit used for both pure compression and 450 inclined tests was manufactured 

using an old EI shaped laminated core transformer and two coils of 500 turns each resulting a 

maximum magnetic flux of 0.2T with a 5mm air gap. 

• Five different batches of each type of MRE samples were made and the average values of three 

set of samples are reported, disregarding the samples with the highest and lowest MR effect. 

• The energy method was used to calculate the loss angle and thus the complex stiffness and 

moduli of elasticity. 
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Chapter 4: Dynamic mechanical properties of isotropic 

and anisotropic MREs under pure compression   

 Introduction  

The static and dynamic properties of MREs have been widely studied in the past, but the wide 

variation of sample size, materials used and measuring methods often results to contradicting 

results. Thus, the first step was to understand how the material behaves under varying loading 

conditions following the directions of the relevant ISO standards. The results of these tests will be 

used in later to compare their behaviour with the composite isotropic/anisotropic MREs and make 

a phenomenological parametric viscoelastic model of anisotropic and isotropic MREs. This chapter 

presents the experimental results of the dynamic compression tests performed in isotropic and 

anisotropic MREs with large (diameter <220 μm) and small (diameter=4-6 μm) particles under 

varying load amplitude, frequency, static prestrain and magnetic field. In more detail the purpose 

of this chapter is to:  

• Examine the performance of MREs with very large particles compared to conventional MREs 

with small particles. 

• Examine the effect of strain amplitude and frequency on zero field dynamic mechanical 

properties and their coupling effects. 

• Examine the effect of static load on zero field dynamic mechanical properties at different strain 

amplitudes and frequencies. 

• Examine the effect of the external magnetic field (MR effect) on dynamic mechanical 

properties and how this varies with strain amplitude, frequency and static prestrain. 

• Examine the effect of size and shape of MRE samples on mechanical properties (scaling effect) 

and MR effect. 
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 Details of experiment  

MRE samples 

The first test performed was the mechanical characterization of the traditional isotropic and 

anisotropic MR elastomers. For this type of tests, disk samples of 29 ± 0.5 mm diameter and 12.5 ± 

0.5 mm height (standard test piece A) were used, following the directions of the BS ISO 4664-1:2011 

standard for compression loads on rubber. In total four types of silicon MRE samples are examined 

as presented in Table 13. Two isotropic MREs made with small (diameter=4-6 μm) and large 

(diameter<220 μm) iron particles and two equivalent anisotropic MREs. All samples were 

manufactured using the procedure explained in details in section 3.1, while all anisotropic MREs 

were cured under 0.5T magnetic field. 

Table 13: Names and characteristics of MRE samples used for material characterization 

Type Particles Name 

 

Diameter: 29 ± 0.5 mm 

Height:  12.5 ± 0.5 mm 

Isotropic Large (<220 μm) Isotropic a-l 

Isotropic Small (4-6 μm) Isotropic a-s 

Anisotropic Large (<220 μm) Anisotropic a-l 

Anisotropic Small (4-6 μm) Anisotropic a-s 

In order to examine the scaling effect, sixteen additional isotropic disc, square, rectangular and ring 

shaped MRE samples with small particles of different sizes were manufactured, as illustrated in 

Figure 17, Figure 18, Figure 19 and Figure 20 respectively. All samples were manufactured using the 

procedure explained in detail in section 3.1. 

 

Figure 17: Names and dimensions of disk shaped isotropic MRE samples 
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Figure 18: Names and dimensions of rectangular shaped isotropic MRE samples. 

 

Figure 19: Names and dimensions of square shaped isotropic MRE samples. 

 

Figure 20: Names and dimensions of ring shaped isotropic MRE samples 

 

Test details  

The dynamic tests were performed according to BS ISO 7743-1:2011 and BS ISO 4664-1:2011 

standards respectively, using INSTRON PULS E1000 electromechanical dynamic tester and the 

experimental setup described in detail in section 4.2. For most samples only two types of dynamic 

loading cycles were performed at 0, 0.3T and 0.5T magnetic field values. One amplitude sweep 

cycle, where the strain amplitude was increased from 0.25% to 2% at a constant frequency of 5 Hz, 

and a second frequency sweep cycle where the frequency was increased from 0.5Hz to 70 Hz at 

constant strain amplitude of 0.5%. For three samples of each MRE category the amplitude sweep 

cycle was repeated at each frequency and magnetic field, to examine the coupling effects. This type 

of test is referred as compete test on the following table. The values reported are the average of 

the values of three different samples manufactured at different time. 
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Table 14: Summary of test loading cycles for dynamic compression tests  

Amplitude 

sweep 

test 

Strain Amplitude 

 (%) 

0.25,0.5,0.75,1,1.25,1.5,1.75,2 

(50 loading cycles for each amplitude) 

Magnetic 

field 

0 

0.3T  

0.5 T 

For standard 

disk samples 

 

 

Loading frequency 5 Hz 

(at 5KHz sampling rate) 

Prestrain 10 % 

Frequency sweep 

test 

Strain Amplitude 0.5 % 

Loading frequency 

(Hz) 

0.5,1,5,10,20,30,40,50,60,70 

(20,30,50,100,150,250,300,350,400,450 

loading cycles for each corresponding 

frequency at 5KHz sampling rate) * 

Prestrain 10 (%) 

Prestrain effect 

test 

Strain Amplitude 

(%) 

0.25,0.5,0.75,1,1.25,1.5,1.75,2 

(50 loading cycles for each amplitude) 

Loading frequency 5 Hz 

(at 5KHz sampling rate) 

Prestrain (%) 2,3,4,6,8,10 

Complete test 

Strain Amplitude 

 (%) 

0.25,0.5,0.75,1,1.25,1.5,1.75,2 

(50 loading cycles for each amplitude) 

Loading frequency 

(Hz) 

0.5,1,5,10,20,30,40,50,60,70 

(20,30,50,100,150,250,300,350,400,450 

loading cycles for each corresponding 

frequency at 5KHz sampling rate) * 

Prestrain  10% 

*The number of cycles was increased for each frequency to allow for the amplitude control feature of the 

wavematrix software to reach the desired amplitude with increasing frequency. 
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 Influence of load amplitude and frequency 

Figure 21 illustrates the zero field absolute modulus|𝐸∗|, tangent of the loss angle tan  and storage 

modulus E’ and loss modulus E’’ of isotropic and anisotropic samples with large (<220µm) and small 

(6µm) particles. The samples with large particles have higher values of absolute |𝐸∗| and storage 

modulus E’, which means they are slightly stiffer than the samples with small particles for both 

isotropic and anisotropic cases. As load amplitude increases, absolute modulus |𝐸∗|, storage 

modulus E’ and loss modulus E’’ decrease for all samples, which is nothing more than the Payne 

effect observed for all filled rubbers. This trend is more pronounced in anisotropic samples due to 

the destruction-deformation mechanism of the filler chain structure inside the matrix when the 

material is overstressed, that makes it softer (Sorokin V V 2014). 

 

Figure 21: Variation of absolute modulus |𝐸∗|, tangent of the loss angle tan storage modulus E’ 

and loss modulus E’’ in respect to strain amplitude (at 0T, 10% prestrain and 5Hz frequency). Force 

applied in the axial direction parallel to particle alignment for anisotropic MREs.  

Both isotropic MREs have similar loss modulus E’’ and tangent of the loss angle tan and therefore, 

have similar damping capability that increases slightly with increasing strain amplitude. This agrees 

with the data published in the literature (G. X. Yang J 2012). On the other hand, anisotropic samples 

with large particles have much higher loss modulus E’’ and tangent of the loss angle than anisotropic 

samples with small particles. Both anisotropic samples decrease their loss modulus E’’ with 
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increasing strain amplitude but this drop is higher for anisotropic MREs with large particles causing 

tanδ to increase until  0.75% strain amplitude and to decrease later. This behaviour can be 

attributed to the larger size of filler particles that tend to cause more destruction to the matrix-filler 

structure with increasing load, making the material softer and allowing the large particles to move 

easier inside the matrix. As a result, less energy is dissipated and damping capability is decreased.   

 

 

Figure 22: Absolute modulus |𝐸∗|, tan storage E’ and loss modulus E’’ in respect to load frequency 

(at 0T,10% prestrain and 0.5% strain amplitude). Force applied in the axial direction parallel to 

particle alignment for anisotropic MREs. 

Figure 22 illustrates the influence of load frequency on the absolute modulus |𝐸∗|, tangent of the 

loss angle tan storage modulus E’ and loss modulus E’’ of anisotropic and isotropic MREs with 

large and small particles. All samples become stiffer with increasing frequency while loss factor E’’ 

and tanδ increases until about 10 Hz after which they decrease rapidly. These results differ from 

previous published work on compressive loading tests on silicone MREs (Li R 2013), where tangent 

of the loss angle tanδ is shown to increase slightly with frequency. We assume that the deviation is 

due to the smaller samples used in those experiments as well as the method used to calculate the 

area of the hysteresis loop during DMA calculations. In each case the variation of tangent of the 

loss angle is not significant enough when it comes to designing isolators for real applications. 
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Load amplitude-frequency interaction 

Figure 23  and Figure 24 illustrate the three-dimensional curves of absolute modulus |𝐸∗| and 

tangent of the loss angle tan of isotropic and anisotropic MRE with small particles respectively, in 

respect to loading amplitude and frequency at zero field and 10% prestrain value. The general 

trends observed before also apply in this case, while no strong amplitude-frequency coupling 

effects are observed for either sample. 

 

Figure 23: 3D representation of absolute modulus  |𝐸∗|  and tangent of the loss angle tan of 
isotropic MRE with small particles (at 0 Tand 10% static prestrain). Force applied in the axial 

direction. 

 

Figure 24: 3D representation of absolute modulus  |𝐸∗|  and tangent of the loss angle tan of 
anisotropic MRE with small particles (at 0 T and 10% static prestrain). Force applied in the axial 

direction parallel to particle alignment for anisotropic MREs. 

Figure 25 and Figure 26  provide a better insight to the possible amplitude-frequency coupling 

effects for isotropic and anisotropic samples with small particles. It becomes obvious that the shape 

of the curves does not vary with increasing amplitude but only the absolute values are different. If 

the curves were brought to the same starting point they would be very close to each other.  Tangent 

of the loss angle is considered to behave similarly since the small variation between the curves lies 

in the range of measurement errors. The same principle applies for MREs with large particles as it 

can be seen in Figure 27 and Figure 28. Again, if the curves of moduli of elasticity E’ and E’’ were 
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brought to the same starting point they would be very close to each other and therefore, no great 

strain amplitude-frequency coupling effect is observed. 

 

Figure 25: Dynamic mechanical characteristics of isotropic MRE with small particles in respect to 
frequency at different strain amplitudes (at 0T and 10% static prestrain) 

 

Figure 26: Dynamic mechanical characteristics of anisotropic MRE with small particles in respect 
to frequency at different strain amplitudes (at 0T and 10% static prestrain). 
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Figure 27: Dynamic mechanical properties of isotropic MRE with large particles in respect to strain 
amplitude at different load frequencies (at 0T and 10% static prestrain). 

 

Figure 28: Dynamic mechanical characteristics of anisotropic MRE with large particles in respect to 
strain amplitude at different load frequencies (at 0T and 10% static prestrain). 
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 Influence of static prestrain  

All MREs used in practical vibration isolators, will be subjected to an amount of prestrain due to the 

weight of the machine they support. The dynamic load is then superimposed on the static prestrain 

and cannot have a higher amplitude than the prestrain value itself. In this section, the influence of 

the prestrain on the zero-field dynamic mechanical properties of MREs is examined. Figure 29 

presents the variation of zero field absolute modulus  |𝐸∗|, tan  and moduli of elasticity for all four 

types of MRE samples, in respect to static prestrain value (measured at 0.5% dynamic strain 

amplitude and 5Hz load frequency). All MRE samples increase steadily their storage 𝐸′ and absolute  

|𝐸∗| modulus with increasing prestrain values, common characteristic of all filled rubbers. However, 

loss modulus 𝐸′′ of anisotropic samples increases fast for small prestrain values up to 4% to remain 

constant for greater values of prestrain. As a result, tan also increases for prestrain values up to 

3% to later decrease with increasing static prestrain values.   

 

Figure 29: Variations of absolute modulus |𝐸∗|, tan storage modulus E’ and loss modulus E’’ in 
respect to static prestrain (at 0 T, 0.5% amplitude and 5 Hz loading frequency). 

The effect of prestrain on dynamic mechanical properties of anisotropic MREs is much stronger 

than the one observed for isotopic elastomers. Anisotropic MREs increase their absolute modulus 

by 50% while isotropic MREs by 25% when the applied prestrain varies from 2% to 10%. This 

behaviour is attributed to the matrix-particles structure and the gaps between the particles 

themselves that vary with increasing prestrain. In anisotropic MREs the particles are already aligned 
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inside the elastomer and the application of a static force in the same direction with the aligned 

particles will bring them even closer together. Therefore, the movement of particles inside the 

elastomer matrix under a dynamic load is limited causing a higher increase of stiffness in anisotropic 

MREs than it would do in the case of isotropic MREs. 

Under the same logic, the energy dissipated (indicated by loss modulus E’’) in anisotropic MREs is 

lower at low prestrain values where the particles can still move freely inside the matrix. These 

results come in agreement with previous work published in the literature about the influence of 

prestrain on mechanical properties of highly filled elastomers (Thorin A 2012). The fact that Storage 

modulus E’ increases faster that loss modulus E’’ for prestrain values above 4%, causes tanδ to 

decrease at higher prestrain values especially for anisotropic MREs. In practical applications, this 

would suggest that the material loses energy less efficient at high prestrain values. Therefore, the 

general rule all elastomer isolators should be designed not to operate above 5% static prestrain 

should be followed for MREs as well to avoid poor isolation efficiency. 

Prestrain-dynamic load amplitude interaction 

The dynamic strain amplitude-static prestrain coupling effect for isotropic and anisotropic MREs 

with small and large particles is illustrated in Figure 30, Figure 31, Figure 32 and Figure 33 

respectively.  As strain amplitude increases and becomes comparable to the prestrain value (e.g. 

the 1.5% strain amplitude values correspond to 3% peak to peak amplitude that is very close to the 

4% prestrain value), measurement errors occur. This is the reason why the high strain amplitude 

values at small restrains are omitted. It is shown again that absolute modulus |𝐸∗| and storage 

modulus E’ (that indicate stiffness) both increase with increasing applied static load for all strain 

amplitudes at the same manner. Thus, regarding stiffness there are no great prestrain-dynamic load 

amplitude coupling effects for MREs. 

Loss modulus E’’ follows the same pattern and increases slightly with increasing static prestrain for 

isotropic MREs. In the case of anisotropic MREs loss modulus E’’ again increases for low values of 

prestrain while it remains content or even decreases slightly for higher values of prestrain. As the 

static load applied to the elastomer increases, the movement of the particles inside the matrix 

becomes limited. Therefore, with increasing applied static load the particles need more energy to 

move inside the matrix under the same dynamic load, leading to an increase of loss modulus E’’. 

This trend is again more pronounced for anisotropic MREs due to the pre-structure of particles 

inside the matrix. Thus, there are no great prestrain-dynamic load amplitude coupling effects 

regarding damping either.  
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Figure 30: Absolute modulus |𝐸∗|, tan storage E’ and loss E’’ modulus in respect to prestrain at 
different load amplitudes for isotropic MRE with small particles ( at 0 T and 5 Hz). 

 

Figure 31: Absolute modulus |𝐸∗|, tan storage E’ and loss E’’ modulus in respect to prestrain at 
different load amplitudes for isotropic MRE with large particles (at 0 T and 5 Hz). 



Chapter 4 

61 

 

Figure 32: Absolute modulus |𝐸∗|, tan storage E’ and loss E’’ modulus in respect to prestrain at 
different load amplitudes for anisotropic MRE with small particles (at 0 T and 5 Hz). 

 

Figure 33: Absolute modulus |𝐸∗|, tan storage E’ and loss E’’ modulus in respect to prestrain at 
different load amplitudes for anisotropic MRE with large particles (at 0 T and 5 Hz). 
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 Influence of magnetic field  

Relative MR effect  

When an external magnetic field is applied to the MREs, the particles get magnetised and start to 

interact with each other. The developed magnetic forces cause the particles to move inside the 

matrix in order to align parallel to the direction of the magnetic field. This phenomenon leads to a 

significant increase of dynamic stiffness (expressed by storage E’ and absolute modulus |𝐸∗|) of all 

samples, as it can be seen in Table 15.  The highest MR effect of 32% is observed for the anisotropic 

MRE with small particles (sample anisotropic a-s), while the lowest of 17% for the isotropic MRE 

with large particles (sample isotropic a-l), when the field is increased from 0 to 0.5T. Isotropic MRE 

with small particles and anisotropic MRE with large particles have similar MR effects of about 22%. 

Anisotropic MREs have higher MR effect than their equivalent isotropic samples, due to the original 

particle chain structure that allows for the formation of greater particle to particle magnetic 

coupling forces when an external magnetic field is applied (Sorokin V V 2014).  In another 

perspective, anisotropic MREs have higher relative permeability μ than isotropic MRE (Harrison, 

Equi-biaxial tension tests on magnetorheological elastomers 2016) and thus, a stronger magnetic 

field is created inside the material when the same external field is applied. 

 

Table 15: Absolute increase/decrease and relative MR effect of isotropic and anisotropic MREs 
with small and large particles. 

Sample 

Absolute difference MR effect 

Increase in 

magnetic field 
|𝐸∗| 

(MPa) 

tanδ 𝐸′ 

(MPa) 

𝐸′′ 

(MPa) 

|𝐸∗| 

(%) 

Tanδ 

(%) 

𝐸′ 

(%) 

𝐸′′ 

(%) 

Isotropic a-l 
0.42 0.03 0.42 0.307 6.2 5.1 6.2 7.3 0.3 T 

1.18 -0.03 1.18 0.47 17.4 -5.0 17.4 11.2 0.5 T 

Anisotropic a-l 
2.30 0.002 2.22 0.63 13.2 1.0 13.0 18.8 0.3 T 

3.83 -0.01 3.76 0.54 22.0 -5.3 22.1 16.0 0.5 T 

Isotropic a-s 
0.35 0 0.35 0.02 5.7 0 5.7 5.0 0.3 T 

1.31 -0.003 1.31 0.06 21.2 -5.0 21.3 15.0 0.5 T 

Anisotropic a-s 
1.6 0.003 1.57 0.185 9.7 1.6 9.7 8.0 0.3 T 

5.19 -0.026 5.19 0.267 31.6 -17.2 32.0 11.5 0.5 T 
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The magnetic field-dynamic stiffness relationship is not linear for all four samples thus, both 

isotropic and anisotropic samples with large particles have higher MR effect than the equivalent 

samples with small particles when measured from 0T to 0.3T magnetic field. large particles develop 

greater magnetic forces between each other and therefore have more energy to move inside the 

matrix elastomer to align themselves parallel to the external field, which also explains the higher 

values of loss modulus E’’ (indicates how much energy is consumed). As the external magnetic field 

increases, the magnetic forces between particles increase but large particles cannot overcome the 

resistance of the elastomer matrix structure as they cannot push over the long molecules of the 

polymer. However, small particles do not face such problems and can pass through the molecules 

much easier. As they approach each other, their magnetic coupling moments grow resulting to a 

greater increase in dynamic stiffness (storage modulus E’) when the field is increased from 0.3T to 

0.5T than from 0T to 0.3T.  

Storage E’ and loss E’’ moduli both increase with the application of the magnetic field but in 

different rates, causing tangent of loss angle tanδ to slightly increase for low values of magnetic 

fields while it decreases for higher values. The latter indicates that as the magnetic field increases 

the energy is stored than lost and thus, damping efficiency decreases. For anisotropic MRE sample 

with small particles storage modulus E’ increases almost 3 times more than loss modulus E’’, when 

the field goes from 0T to 0.5T, causing tangent of loss angle tanδ to decrease by 18%. However, 

when it comes to absolute increase/decrease values this variation is not important and it can be 

generally assumed that the damping capability of MREs is not greatly influenced by the magnetic 

field. 
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Magnetic field-load amplitude and frequency interaction 

To provide a better understanding on how the dynamic properties of MREs are influenced by the 

magnetic field, the magnetic field-strain amplitude interaction is examined. Figure 34 illustrates the 

MR effect of absolute  |𝐸∗|, storage E’ and loss E’’ moduli of elasticity with the tangent of loss angle 

tanδ in respect to strain amplitude. Regarding storage modulus E’ and absolute modulus |𝐸∗|, a 

weak field-amplitude coupling effect is observed for both isotropic samples and the anisotropic 

sample with large particles. For these samples, MR effect of storage modulus E’ decreases by 4% 

when strain amplitude increases from 0.25% to 2% for both values of the magnetic field. However, 

a strong strain amplitude – MR effect of storage modulus E’ is observed for the anisotropic a-l MRE 

with large particles.  

This is attributed to the destruction of matrix structure mechanism occurring with increasing 

amplitude (Payne effect) that also affects the position of the iron particles. The result of Payne 

effect on matrix-particles structure could explain the increase of loss modulus E’’ MR effect with 

increasing amplitude, since more energy must get dissipated for the particles to overcome the 

matrix elastomer resistance and align themselves parallel to the magnetic field. However, MR effect 

of loss E’’ and storage E’ modulus of anisotropic MRE with large particles is not influenced by 

increasing strain amplitude in contrast to the anisotropic MRE with small particles. In this case, as 

amplitude increases the realigned large iron particles could start getting even closer to each other 

that leads to stronger magnetic forces between larger iron particles that keep them in place. For 

the anisotropic sample with small particles, Payne effect could destroy the original chain like 

structure of the particles inside the matrix making the MRE more isotropic like and thus decreasing 

the MR effect.  

Figure 35 present the MR effect of absolute  |𝐸∗|, storage E’ and loss E’’ moduli of elasticity with 

the tangent of loss angle tanδ in respect to load frequency for isotropic and anisotropic MRE with 

small and large particles. MR effect of both storage E’ and loss E’’ moduli does not appear to vary 

greatly with increasing load frequency for all MRE samples. The slight variation of loss modulus E’’ 

observed at low frequencies is neglected since the absolute value of E’’ corresponding to 5% MR 

effect is very small and lie between the limits of measurement error. Therefore, it is considered 

that magnetorheological effect is not influenced by loading frequency for all MREs that agrees with 

the results already published at the literature (Xin F L 2016), (Sorokin V V 2014).  
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Figure 34: Relative MR effect of |𝐸∗|, tanδ, E’ and E’’ in respect to strain amplitude (at 5Hz 
frequency and 10% prestrain). 
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Figure 35: Relative MR effect of |𝐸∗|, tanδ, E’ and E’’ in respect to frequency of all MRE samples 

(at 0.5% strain amplitude and 10% prestrain). 
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Magnetic field-static prestrain interaction 

The static prestrain-magnetic field coupling effect (MR effect from 0T to 0.5T) is illustrated at Figure 

36 for all MRE samples. For isotropic samples, MR effect of storage E’ and loss E’’ moduli increase 

both by 10% from 3% to 10% prestrain values so MR effect of tanδ is not influenced. For anisotropic 

MRE with large particles storage E’ and loss E’’ modulus MR effect decrease by 5% and 10 % 

respectively with increasing prestrain causing MR effect of tangent of the loss angle to decrease by 

8%. On the other hand, MR effect of anisotropic MRE sample with small particles increases at small 

prestrain values to decrease later which agrees with the data published by Feng et al (Feng J 2015) 

for the same type of samples.  

According to Feng et al (Feng J 2015), the variation of MR effect with increasing prestrain is due to 

movement of particles inside the matrix that alter the gap between them. As amplitude increases, 

particles come closer together and MR effect increases due to stronger magnetic forces between 

particles. After a point the particles start touching each other and MR effect decreases. A similar 

approach could explain the behaviour of isotropic MREs where it can be assumed that due to the 

original random position of particles they do reach the point of touching each other for the 3% to 

10% prestrain range. In the case of the anisotropic a-l MRE, the large particles could start touching 

each other at lower prestrain values than anisotropic MRE with small particles thus, MR effect 

decreases during the prestrain range.   

   

Figure 36: MR effect (from 0T to 0.5T) of |𝐸∗|,  tan  E’ and E’’ for all samples in respect to 
prestrain (at 0.5% strain amplitude and 5Hz frequency). 



Chapter 4 

68 

 Influence of size and shape  

Zero field dynamic mechanical properties 

Disk, square, rectangular and ring shaped isotropic MR elastomers with different dimensions were 

manufactured to examine the influence of size and shape on dynamic stiffness and damping. 

Isotropic MREs with small particles (diameter 4-6 μm) were only considered in this study. 

Anisotropic MREs were not considered because it was impossible to ensure that all samples would 

cure under the same magnetic field and therefore, have comparable dynamic mechanical 

properties. It must be noted that all MRE isotropic samples mentioned in this section are of the 

same batch to avoid variability of measured stiffness mentioned in section (3.2.3). The results of 

the dynamic tests on disk and ring shaped MREs, under a compressive load of 5 Hz frequency, 0.5% 

strain amplitude and 10% prestrain are presented in Table 16.  

Table 16: Characteristics of disk and ring MRE samples of height h, diameter D and inner diameter 
din (ring samples). 

sample 
h 

(mm) 

D 

(mm) 

S |𝑬∗| 

(MPa) 

𝒕𝒂𝒏𝜹 |𝑲∗| Error of |𝑲∗| 

predicted measured absolute % 

a_1 6.25 29 1.17 11.93 0.076 623 1271 648 104% 

a_2 12.5 29 0.56 6.1 0.068 311 310 0 0% 

a_3 21 29 0.34 4.01 0.066 185 124 -61 -33% 

a_4 12.5 56.5 1.14 6.6 0.064 1223 1343 120 10% 

a_5 10.5 15.5 0.37 6.35 0.1 109 118 -8 -7% 

a_6 14.5 41.5 0.7 5.82 0.074 569 534 -35 -6% 

a_7 12.5 18.5 0.37 6.34 0.095 131 136 5 4% 

r_1 16.5 
Din= 23.5 

D=54.5 
0.5 6.21 0.073 702 720 -18 -3% 

r_2 10.5 
Din= 19.5 

D=32.5 
0.3 6.35 0.076 308 331 23 7% 

The predicted dynamic stiffness refers to the stiffness calculated using the moduli of elasticity and 

tangent of the loss angle (E*=6.1MPa and tanδ=0,068) of the sample a_2 with the dimensions 

indicated by the BS ISO 4664:2011 standard, while the measured stiffness refers to the one really 

measured in the laboratory. It becomes obvious that the error between predicted and measured 
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stiffness is greater for relative thin samples. Keeping sample a_2 as a reference, dynamic stiffness 

is underestimated when height decreases (sample a_1) and is overestimated when it increases 

(sample a_3). When the height Η remains the same but the diameter varies (samples a_2, a_4 and 

a_7), the measured dynamic stiffness is close to the predicted values. However, the same does not 

apply for tangent of loss angle tanδ since samples a_5 and a_7 that have a higher tanδ than the rest 

samples. For ring shaped MREs, the measured values of stiffness are very close to the calculated 

values because the shape factor is close to the one of reference sample a_2.  

The storage E’ and loss E’’ moduli of elasticity (at 5 Hz frequency, 0.5% strain amplitude and 10% 

prestrain) in respect to shape factor S of all disk and ring MREs are illustrated in Figure 37. Both 

moduli of elasticity E’ and E’’ of samples a_1, a_2 and a_3 (that have same diameter) increase 

linearly with sample height. Samples a_2, a_4 and a_7 with the same height but different diameters 

have similar storage modulus E’ like the rest of thick samples a_5 and a_6. However, samples a_7 

and a_5, with the same shape factor S, have a higher loss modulus E’’ that explains the higher values 

of tanδ mentioned in Table 16.  Storage modulus E’ and loss modulus E’’ of ring samples r_1 and 

r_2 are very close to reference sample a_2. 

 

Figure 37: Dynamic moduli of elasticity E’ and E’’ of disk and ring isotropic MREs in respect to Shape 
Factor   S (measured at 0.5% strain amplitude, 5Hz frequency and 10% static prestrain) 

Similar results were observed for the square and rectangular MRE samples mentioned in Table 17. 

Again, the calculated dynamic stiffness of thin samples is underestimated (samples b_1, b_4, c_1 

and c_2) while it is overestimated for long samples (sample b_3). The predicted dynamic stiffness 

of sample b_2 is very close to the measured one since it has similar shape factor S with reference 

sample a_2.  Storage E’ and loss E’’ moduli of elasticity (at 5 Hz frequency, 0.5% strain amplitude 

and 10% prestrain) in respect to shape factor S are illustrated in Figure 38.  Like disk samples, 

storage E’ and loss modulus E’’ values of square samples b_1, b_2 and b_3 (that have same side but 
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different heights) increase linearly with height while thin sample b_4 behaves differently. For 

rectangular samples, storage E’ and loss modulus E’’ values seem to increase linearly with shape 

factor while again, dynamic stiffness is underestimated for thin long samples. 

Table 17: Characteristics of square and rectangular MRE samples of height h and sides H1 and H2. 

sample 
h 

(mm) 

H1 

(mm) 

H2 

(mm) 

S |𝑬∗| 

(MPa) 

𝒕𝒂𝒏𝜹 |𝑲∗| Error of |𝑲∗| 

predicted measured absolute % 

b_1 6.25 22 22 0.8 9.23 0.079 472 666 194 41% 

b_2 10.5 22 22 0.5 6.66 0.074 284 299 18 6% 

b_3 22 22 22 0.25 5.04 0.075 134 109 -25 -18% 

b_4 5.5 34 34 1.6 14.5 0.08 1282 3070 1788 140% 

c_1 5.5 34 20 1.2 7.33 0.075 790 950 160 20% 

c_2 6.25 30 60.5 1.6 16.38 0.076 1771 4782 3011 170% 

c_3 10.5 41 59.5 1.15 6.7 0.077 1417 1557 140 10% 

 

Figure 38: Dynamic moduli of elasticity E’ and E’’ of square and rectangular isotropic MREs in 
respect to shape factor S (measured at 0.5% strain amplitude, 5Hz frequency and 10% static 

prestrain).  

All samples of same height disk a_5, ring r_2, square b_2 and rectangular c_3 have a low error 

percentage of dynamic stiffness although their shape factor is different. Therefore, their dynamic 

stiffness could be predicted by using the value of reference sample a_2 without needing a 

correction function. However, the same does not apply for thin samples disk a_1, square b_1 and 

rectangular c_2 where the error percentage of dynamic stiffness increases significantly with shape 
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factor. A correction function that depends on shape and shape factor should be considered for thin 

samples especially since for most practical application MREs would have a low height to ensure that 

the gap of the magnetic circuit would be as small as possible to be able to generate high magnetic 

flux values.  

The variation of real K’ and imaginary K’’ components of dynamic stiffness in respect to strain 

amplitude and frequency for samples disk a-5, rectangular b-2, ring r-2, disk a-7 and reference 

sample a-2 are presented in Figure 39. Real K’ and imaginary K’’ components of dynamic stiffness 

in respect to strain amplitude and frequency of much stiffer samples disk a-1, disk a_4, rectangular 

c-3, square b-1 and ring r-1 is presented in Figure 40. All samples drop their real dynamic stiffness 

K’ with increasing strain amplitude while the imaginary part K’’ does not change like reference 

sample a-2. In a similar manner, all samples increase slightly their real dynamic stiffness K’ with 

increasing frequency while, imaginary part of dynamic stiffness K’’ increases for values up to 10Hz 

to decrease for later values. Therefore, the shape and size of the MRE does not influence the 

variation of dynamic stiffness with load amplitude and frequency.  

 

Figure 39: Zero field real K’ and imaginary K’’ components of dynamic stiffness for disc, 
rectangular and ring isotropic MRE samples with similar height in respect to strain amplitude (at 

5Hz frequency and 10% static prestrain) and frequency (at 0.5%   
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Figure 40: Zero field real K’ and imaginary K’’ components of dynamic stiffness for a-4, b-1, a-1, c-
3 and r-1 samples in respect to strain amplitude (at 5Hz frequency and 10% static prestrain) and 

frequency (at 0.5% amplitude and 10% static prestrain). 

 

Magnetorheological effect 

The measured real K’ and imaginary K’’ dynamic compression stiffness of disk samples a-1,a-2, a3, 

square samples b-1,b-2, b3, ring sample r-2 and rectangular sample c-1 at zero field 𝐾(0) as well as 

the absolute 𝐾(𝐵𝑥) − 𝐾(0) and relative 
𝐾(𝐵𝑥)−𝐾(0)

𝐾(0)
  percentange increase (MR effect)  when the 

samples are placed between a double pair of magnets are reported at Table 18. Since the samples 

are of different heights, the magnetic flux 𝐵𝑥 created from the permanent magnets will be different 

for each sample resulting to a different MR effect. To be able to make safe conclusion on how the 

MRE sample size and shape influences MR effect, the term relative MR effect per 0.1T is used 

instead, assuming linear magnetic flux-MR effect behaviour.  

Disk shaped MREs a_2, square sample b_2 and ring sample r_2 have the same real dynamic stiffness 

K’ relative MR effect of 5% per 0.1T. However, thin samples disk a_1, square b_1 and ring r_1 have 

a 0.5% higher MR effect/0.1T while long samples a_3 and b_3 show a lower MR effect/0.1T due to 

the prestrain – MR effect coupling effect. The attraction force developed between the pair of 

permanent magnets is equivalent to an additional static compression force given by equation 

(3.2.1). The attraction forces are stronger when the magnets are close together thus, thin samples 
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are pre-compressed under a higher static force than the rest. Since isotropic MREs increase their 

MR effect with increasing static prestrain (section 5.5), the MR effect/ 0.1T for these samples also 

increases. The small variations recorded for the imaginary dynamic stiffness K’’ are attributed to 

measurement error since the absolute increase is very low.  

Table 18: Absolute and relative MR effect of isotropic MREs under a double pair of magnets. 

Samples 

Zero field 
MR effect 

𝑩𝒙 

(T) 

Relative MR effect per 

0.1T Absolute Relative 

𝑲(𝟎) 

(KN/m) 

𝑲(𝑩𝒙) − 𝑲(𝟎) 

(KN/m) 

𝑲(𝑩𝒙) − 𝑲(𝟎)

𝑲(𝟎)
 

𝑲(𝑩𝒙) − 𝑲(𝟎)

𝑲(𝟎)
 / 𝟎. 𝟏𝑻 

 K’ K’’ K’ K’’ K’ (%) K’’ (%) T K’ (%) K’’ (%) 

a_1 1267 97 348 17 28 17 0.5 5.5% 3.5% 

a_2 309 21 68 3 22 14 0.42 5% 3.5% 

a_3 123 8.1 19 1.1 15 14 0.33 4.5% 4% 

b_1 665 53 179 9.5 27 18 0.5 5.5% 3.6% 

b_2 298 22 66 4 22 18 0.44 5% 4% 

b_3 108 7 14 0.85 13 12 0.31 4% 4% 

r_2 330 25 70 4 21 16 0.44 5% 4% 

c_1 946 68 255 15 27 20 0.51 5.5% 4% 

 

The relative MR effect of real K’ and imaginary K’’ dynamic stiffness in respect to strain amplitude 

of disk samples a-1, a-2, a3, square samples b-1, b-2, b3, ring sample r-2 and rectangular sample c-

1 are presented in Figure 41. The relative MR effect of real dynamic stiffness K’ decreases with 

increasing strain amplitude in contrast to the relative MR effect of imaginary dynamic stiffness K’’ 

that increases for all samples. Samples a-2, b-2 and r-2 have similar values of MR effect because 

they are of approximately the same height and thus, they are under a similar magnetic field. 

Therefore, shape and size does not influence the magnetic field- strain amplitude coupling effect. 

However, it should be noted that for most practical applications MRE samples would not be higher 

than 6mm for any magnetic circuit to be able to provide magnetic fields up to 0.5T.  
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Figure 41: Relative MR effect of real K’ and imaginary K’’ dynamic stiffness of disk, square, 
rectangular and ring MRE samples under a double pair of permanent magnets (at 0.5% strain 

amplitude, 5Hz frequency and 10% static load). 
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 Chapter summary 

The main purpose of this chapter was to understand how the dynamic mechanical properties of 

isotropic and anisotropic MREs with small and large particles vary with strain amplitude, frequency, 

static prestrain and magnetic field intensity. In summary, the following conclusions are made: 

Zero field dynamic mechanical properties 

• Anisotropic MREs are three times stiffer and have two times higher damping capability than 

isotropic MREs. Dynamic compression modulus and tanδ of Isotropic sample with large particles 

are 10% higher than those of the isotropic sample with small particles, while for the anisotropic 

equivalents these number are 7% and 30% respectively.  

• Storage E’ and loss E’’ moduli of all samples decrease with increasing strain amplitude. Storage 

modulus E’ increases with increasing frequency while loss modulus E’’ increases until about 10 

Hz after which it decreases rapidly. No strain amplitude-frequency coupling effects were 

observed. 

• Anisotropic MREs increase their storage E’ and loss modulus E’’ by 50% and 30% while isotropic 

MREs by 25% and 5% respectively when the applied prestrain varies from 2% to 10%. Thus, 

damping capability decreases with increasing prestrain. 

• No static prestrain-dynamic amplitude coupling effects are observed. 

• Dynamic stiffness of isotropic MREs depends greatly on the size and thickness of the elastomer 

but not on shape. 

 

Magnetorheological effect 

• The storage E’ and loss E’’ modulus MR effect are 21% and 15% for isotropic with small particles, 

32% and 11 % for anisotropic with small particles, 17% and 11% for isotropic with large particles 

and 22% and 16% for anisotropic with large particles respectively. 

• A strong MR effect-strain amplitude coupling effect is observed. MR effect of storage modulus 

E’ decreases with increasing strain amplitude while MR effect of loss modulus E’’ increases but 

at a different rate for each sample. 

• MR effect does not vary with load frequency. 

• For isotropic MREs, MR effect of both moduli increases linearly by 100% in the 3% to 10% static 

prestrain range. For anisotropic MRE with large particles MR effect of storage E’ and loss E’’ 

modulus decreases nonlinearly from 29% to 22% and from 30% to 18% respectively. For 

anisotropic MRE with small particles MR effect of storage E’ and loss E’’ modulus increase for 

prestrains up to 4% and then drop from 48% to 32% and 42% to 12% respectively. 

• For isotropic MRE, MR effect is not influenced by the sample size and shape. 
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Chapter 5: Mechanical properties of composite MREs 

 Introduction 

In practice, dynamic stiffness and damping of any elastomer can be increased by adding an amount 

of carbon black, varying from 10 to 50% per volume fraction, before curing. The same principle, 

regarding particle concentration, applies generally for MREs but with again another restriction. It 

has been well established that the maximum MR effect in silicon MREs is achieved when the 

particle/matrix material ratio is about 30% per volume or 70% per weight. Therefore, the optimum 

particle concentration for silicon MREs is fixed and the zero-field dynamic stiffness and damping 

cannot be adjusted without compromising MR effect. Another way to improve the isolation 

characteristics of isolators with high damping rubbers at high frequencies, is to place a second 

rubber with lower damping factor and stiffness in parallel. The combined elastomer will have lower 

stiffness but similar damping capability than the high damping rubber itself. This chapter examines 

the principle of combining isotropic and anisotropic MR elastomers in one composite, to adjust the 

zero-field dynamic properties of silicon MREs without compromising MR effect and make a 

composite anisotropic MRE (with particles aligned in different directions) with similar mechanical 

properties in those directions. 

 The experimental results of the static and dynamic compression tests in pure and composite MRE 

samples are presented in two parts. In the first part, disk-shaped isotropic/anisotropic composite 

MREs connected in parallel and series configurations were used to examine and compare the 

mechanical properties of isotropic/anisotropic composite MREs combined in parallel and series 

configurations. In addition, the possibility of using two MREs made of particles of small (4-6μm) and 

large (<220 μm) diameter connected in parallel to increase damping capability and how the 

mechanical properties can be tailored by changing the dimensions of each part is examined. In the 

second part cube shaped isotropic-anisotropic and anisotropic-anisotropic composite MRE samples 

were used to study the axial, transverse and longitudinal zero field static stiffness and dynamic 

stiffness K* of composite samples and verify that the mechanical properties can be estimated using 

the theoretical equations. Finally, the axial, transverse and longitudinal MR effect of isotropic-

anisotropic and anisotropic-anisotropic composite MREs was examined in respect to strain 

amplitude.  
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 Background theory 

In general, when two different elastomers with complex moduli 𝐸1
∗  and 𝐸2

∗ respectively are 

connected in parallel or series configuration, as illustrated in Figure 42, the resulting elastomer will 

have a complex modulus 𝐸∗ between 𝐸1
∗  and 𝐸2

∗  depending on the dimension of each part (Davey 

A B 1965) (similar to the rules of mixtures for composites).  

 

Figure 42: Two elastomers connected in parallel and series configurations 

Parallel configuration 

When a static compressive stress σ is applied on the composite rubber it will be distributed across 

the cross-sectional area  𝐴1 and 𝐴2 of each individual rubber. 

 
𝜎 = 𝜎1 + 𝜎2 =

𝐹

𝐴1 + 𝐴2
=

𝐹1 + 𝐹2

𝐴1 + 𝐴2
 (5.2.1) 

The individual stress and force applied in each component is: 

 
𝜎1 = 𝛦1 𝜀 ⇒

𝐹1

𝐴1
= 𝛦1

𝑥

𝐿1
⇒ 𝐹1 = 𝛦1

𝐴1 𝑥

𝐿1
 (5.2.2) 

 
𝜎2 = 𝛦2𝜀 ⇒

𝐹2

𝐴2
= 𝛦2

𝑥

𝐿2
⇒ 𝐹2 = 𝛦2

𝐴2𝑥

𝐿2
 

(5.2.3) 

Where 𝛦1 𝑎𝑛𝑑 𝛦2 are the static compressesion moduli of elasticity of the low loss and high tangent 

of the loss angle rubbers respectively. The compressive modulus of elasticity E of the composite 

rubber will be: 

 

𝐸 =
𝜎

𝜀
=

𝐹1 + 𝐹1
(𝐴1 + 𝐴2)

𝑥
𝐿

=

𝐴1𝛦1𝑥
𝐿 (𝐴1 + 𝐴2)

+
𝐴2𝛦2𝑥

𝐿 (𝐴1 + 𝐴2)
𝑥
𝐿

=
𝐴1𝛦1 + 𝐴2𝛦2

(𝐴1 + 𝐴2)
=

𝛦1 + 𝑎𝛦2

1 + 𝑎
 (5.2.4) 

Where  𝑎 =
𝐴2

𝐴1
 is the area ratio. When a dynamic stress is applied to the composite rubber the 

material will have a complex modulus of elasticity 𝐸∗. Setting 𝐸1
∗ = 𝐸′

1 + 𝑗 𝐸′′
1 and 𝐸2

∗ = 𝐸′
2 +

𝑗 𝐸′′
2 as the complex moduli of elasticity of the low damping and the high damping rubber 

respectively and substituting to equation (A.4) the total modulus 𝐸∗ becomes:   
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𝐸∗ =

𝐸1
∗ + 𝑎𝐸2

∗

1 + 𝑎
=

(𝐸′
1 + 𝑗 𝐸′′

1) + 𝛼(𝐸′
2 + 𝑗 𝐸′′

2)

1 + 𝛼
=

𝐸′
1 + 𝑎𝐸′

2

1 + 𝑎
+ 𝑗

𝐸′′1 + 𝑎 𝐸′′2
1 + 𝑎

 (5.2.5) 

 The storage modulus 𝐸′ of the combined rubber is the real part of the complex modulus 𝐸∗. 

 
𝐸′ =

𝐸′
1 + 𝑎𝐸′

2

1 + 𝑎
 (5.2.6) 

While the loss modulus 𝐸′′ is the imaginary part. 

 
𝐸′′ =

𝐸′′1 + 𝑎 𝐸′′2
1 + 𝑎

 (5.2.7) 

The tangent of the loss angle of the combined rubber will be: 

 
𝑡𝑎𝑛𝜑 =

𝐸′′

𝐸′
=

𝐸′′1 + 𝑎 𝐸′′2
𝐸′1 + 𝑎 𝐸′2

 (5.2.8) 

Series configuration 

In the case where the two rubbers are combined in series the resulting static compression 

modulus is calculated as follows. When a stress σ is applied on the combined rubber the 

resulting strain 𝜀 will be the sum of the individual strains 𝜀1, 𝜀2 of each rubber component. 

 
𝜀 = 𝜀1 + 𝜀2 =

𝑥

𝐿1 + 𝐿2
=

𝑥1 + 𝑥2

𝐿1 + 𝐿2
 (5.2.9) 

The individual strains 𝜀1, 𝜀2 and displacements 𝑥1, 𝑥2 in each component are: 

 
𝜎 = 𝛦1𝜀1 ⇒

𝐹

𝐴
= 𝛦1

𝑥1

𝐿1
⇒ 𝑥1 =

𝐹

𝐴

𝐿1

𝛦1
 (5.2.10) 

 
𝜀2 = 𝛦2𝜎 ⇒

𝐹

𝐴
= 𝛦2

𝑥2

𝐿2
⇒ 𝑥2 =

𝐹

𝐴

𝐿2

𝛦2
 

(5.2.11) 

Where 𝛦1 𝑎𝑛𝑑 𝛦2 are the static compression moduli of elasticity of the low and high damping 

rubbers and 𝐿1 𝑎𝑛𝑑 𝐿2 the individual lengths respectively. The static compression modulus of 

elasticity 𝐸 of the combined rubber will be: 

𝐸 =
𝜎

𝜀
=

𝐹
𝐴

𝑥1 + 𝑥2
𝐿1 + 𝐿2

=

𝐹
𝐴

𝐹
𝐴

𝐿1
𝛦1

+
𝐹
𝐴

𝐿2
𝛦2

𝐿1 + 𝐿2

=
𝐿1 + 𝐿2

𝐿1
𝛦1

+
𝐿2
𝛦2

=
(𝐿1 + 𝐿2)𝛦1𝛦2

𝐿1𝛦2 + 𝐿2𝛦1
=

(𝑏 + 1)𝛦1𝛦2

𝑏𝛦2 + 𝛦1
 

(5.2.12) 

Where 𝑏 =
𝑙1

𝑙2
 is the ratio of the length of each rubber. When a dynamic stress is applied to the 

composite rubber the material will have a complex modulus of elasticity 𝐸∗. Setting 𝐸1
∗ = 𝐸′

1 +
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𝑗 𝐸′′
1 and 𝐸2

∗ = 𝐸′
2 + 𝑗 𝐸′′

2 as the complex moduli of elasticity of the low and high damping 

rubber respectively and substituting to equation (5.2.12) the total complex modulus 𝐸∗ becomes:   
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Where 𝑏 =
𝑙1

𝑙2
  is the ratio of the length of each rubber and  𝑅 =

𝐸′′
1+𝑏𝐸′′

2

 𝐸′
1+𝑏𝐸′

2
. 

The storage modulus 𝐸′ of the combined rubber is the real part of the complex modulus. 

 
𝐸′ =
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While the loss modulus 𝛦′′ is the imaginary part: 
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 (5.2.15) 

The tangent of the loss angle 𝑡𝑎𝑛𝜑 of the combined rubber now becomes: 

 
𝑡𝑎𝑛𝜑 =
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 (5.2.16) 

With the storage modulus E’ and loss modulus E’’ known, the absolute value of compression 

modulus |𝛦∗| can be calculated using equation (5.2.17) 

 |𝛦∗| = √𝐸′2 + 𝐸′′2 (5.2.17) 
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 Details of experiment 

MRE samples 

For the first part of this chapter, we manufactured isotropic-anisotropic composite MRE disk 

samples with small particles in parallel and series configuration, as illustrated in Figure 43 under 

the name sample 2a and sample 1a respectively. For the series combination sample 2a, the length 

of each individual part is 6.25 mm half of the total 12.5 mm height. In the case of the parallel 

combination disk sample 1a, the inner diameter of the core was varied to give an anisotropic to 

isotropic part area ratio of 1/3, 2/3, 1 and 3 using both small and large particles, as shown in  

Table 19. The outer diameter (d=29mm) and height (H=12.5mm) of all round samples were the 

same indicated by the BS:ISO 4664:2011 standard.  

 

Figure 43: Pure isotropic and anisotropic MREs and isotropic-anisotropic parallel and series 
configuration composite MREs. The blank discs represent isotropic MREs while the grey 

anisotropic MREs. 

 

The manufacturing process of the composite MR elastomers involves two stages. For sample 1a, 

anisotropic discs were first made in the appropriate aluminium moulds following the same process 

described in section 3.2. After they had cured they were placed inside of another aluminium mould 

and the isotropic MRE was poured to fill the gaps and left to cure again at room temperature, to 

achieve perfect adhesion.  In a similar way, sample 2a was manufactured by cutting a pure 

anisotropic sample in the middle, place one half in the bottom of another aluminium mould and 

pure the isotropic MRE on top of it. All anisotropic parts of these disk samples are of the same 

height and thus, they were all cured under 0.5T magnetic flux density. The magnetic flux was 

produced using a set of cylindrical grades N42 neodymium permanent magnets of diameter 40mm 

and thickness 10mm (explained in detail in section 3.2).  

In addition, cube samples of 22mm side combining isotropic and anisotropic MREs in parallel 

(sample 1b) and series (sample 2b) configurations and two anisotropic halves with particles aligned 

in different directions (sample 3 and sample 4) were manufactured, as shown in Figure 44. All 

samples were made using small particles. The cube shape allows for the axial, transverse and 
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longitudinal static K and dynamic stiffness K* of the composite MREs to be defined by simply 

rotating the sample. For example, the axial, transverse and longitudinal stiffness of square samples 

3 and 4 can be defined as illustrated in Figure 45 and Figure 46. 

Table 19: Physical characteristics of isotropic-anisotropic composite dikes. 

 Name a MRE core MRE outer ring 

   MRE type particles MRE type particles 

 

Sample 1a-1 
1/3 

Anisotropic 
large  

Isotropic 
large  

 

Sample 1a-2 
2/3 

Anisotropic 
large  

Isotropic 
small  

 

Sample 1a-3 
3 

Isotropic 
large  

Anisotropic 
large  

 

Sample 1a-4 
1 

Anisotropic 
small  

Isotropic 
small  

  b Top part Bottom part 

 

Sample 2a 
1 

Isotropic 
small  

Anisotropic 
small  

 

 

Figure 44: Square samples combining isotropic and anisotropic MREs. The blank blocks represent 
isotropic MREs while the arrows in the boxes represent the direction of the aligned chains in 

anisotropic MREs. 
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Figure 45: Definition of axial, longitudinal and transverse stiffness of square samples. 

 

Figure 46: Defining axial, transverse and longitudinal mechanical characteristics of sample 3 and 4. 

 

The manufacturing process of the composite MR elastomers involves two stages. First, pure 

isotropic and anisotropic cube samples were made.  Samples 1b and 2b were manufactured by 

cutting a pure anisotropic sample in the middle, place one half in the bottom of the mould, pure 

MRE on top of it and let it cure at room temperature to form the isotropic part. Samples 3 and 4 

were manufactured by again cutting an anisotropic sample in the middle, place one half in one side 

of the mould, pure MRE to fill the gap of the other side and then place the mould between the 

permanent magnets to cure the other anisotropic part. In this way, all anisotropic parts were cured 

under the same magnetic flux of 0.35T. The magnetic field during curing was produced using sets 

of cylindrical grade N42 neodymium permanent magnets of diameter 40mm and thickness 10 mm, 

as explained in detail in section 3.2.  

 

Test setup 

The static and dynamic tests were performed according to BS ISO 7743-1:2011 and BS ISO 4664-

1:2011 standards respectively, using INSTRON PULS E1000 electromechanical dynamic tester and 

the experimental setup described in detail in section 4.2. Although, the BS ISO 7743-1:2011 

standard requires the samples to be compressed up to 20% strain, this was not possible for 

anisotropic samples due to the load capacity of INSTRON E1000 machine. For this reason, the 

samples were compressed up to 15% strain and the compression modulus 𝑆𝑀 (Secant modulus) is 
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measured at 5% and 15% strain instead of those at 10% and 20% indicated on the ISO standard. 

Young modulus E is then calculated  𝐸 = 𝑆𝑀(1 − 𝜀) for 5% and 15% strain and the median value is 

reported. The magnetic field during testing was produced using permanent magnets as explained 

earlier in details in section 4.2. 

Two types of dynamic loading cycles were performed at 0, 0.3 and 0.5T magnetic flux values for 

disk samples and 0, 0.2 and 0.35T for square samples. One amplitude sweep cycle, where the strain 

amplitude was increased from 0.25% to 1.5% at a constant frequency of 5 Hz, and a second 

frequency sweep cycle where the frequency was increased from 0.5Hz to 70 Hz at constant strain 

amplitude of 0.5%. The details of the compression test are mentioned in Table 20. 

Table 20: Summary of test loading cycles for dynamic compression tests on composite MREs 

Test  Magnetic field 

Amplitude sweep Strain Amplitude 

 (%) 

0.25,0.5,0.75,1,1.25,1.5 

(50 loading cycles for each amplitude) 

0,0.3,0.5 T 

for disk 

samples 

 

0,0.2,0.35 T 

for square 

samples 

 

Loading frequency 5 Hz 

(at 5KHz sampling rate) 

Prestrain 10 % 

Frequency sweep Strain Amplitude 0.5 % 

Loading frequency 

(Hz) 

0.5,1,5,10,20,30,40,50,60,70 

(20,30,50,100,150,250,300,350,400,450 

loading cycles for each corresponding 

frequency at 5KHz sampling rate) * 

Prestrain  10 % 

*The number of cycles was increased for each frequency in order to allow for the amplitude control feature 

of the wavematrix software to reach the desired amplitude with increasing frequency. 
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 Isotropic and anisotropic MREs in parallel and series configurations 

Zero field static mechanical properties 

The results of the static compression test on the composite parallel and series combination samples 

are shown in Figure 47 along with the conventional pure isotropic a and anisotropic a MRE samples. 

The anisotropic a MRE is the stiffest while the isotropic a sample the softest of all. Samples 1a-4 

and 2a lie between these two as expected, with the parallel combination sample 1a-4 being slightly 

stiffer than the series combination sample 2a. The static Young Modulus E of the composite samples 

can be estimated using equations 6.2.4 and 6.2.12 from the previous section, taking under 

consideration that 𝐸1= compression modulus (Young modulus) of isotropic MRE, 𝐸2= compression 

modulus (Young modulus) of anisotropic MRE.  Table 21 presents the measured values of Young 

Modulus E, as well as the calculated values using the values of isotropic and anisotropic samples 

mentioned on Table 42. It can be seen that the theoretical equations can produce a good estimation 

of the static stiffness for some samples. This is mostly attributed to the variability of the stiffness 

values between sample batches. However, it becomes clear that the stiffness of each sample can 

by further tailored by selecting appropriate dimensions and particle size of each part. 

  

Figure 47: Static stress-strain curves for anisotropic a, isotropic a, composite sample 1a-4 and 
sample 2a MREs with small particles at zero field. 
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Table 21: Calculated and measured static Young Modulus E of disk pure and combined MREs.  

Applied force 

(Parallel to particle 

alignment for 

anisotropic) 

Measured Calculated  

E (MPa) E (MPa) 

a MRE core MRE outside 

 

Sample 1a-1 4.72 4.67 1/3 
Anisotropic large 

particles 

Isotropic large 

particles 

 

Sample 1a-2 3.3 4.8 2/3 
Anisotropic large 

particles 

Isotropic small 

particles 

 

Sample 1a-3 6.2 5.9 3 
Isotropic large 

particles 

Anisotropic large 

particles 

 

Sample 1a-4 5.2 4.7 1 
Anisotropic small 

particles 

Isotropic small 

particles 

  E (MPa) E (MPa) b Bottom part Top part 

 
Sample 2a 4.7 4.3 1 

Anisotropic small 

particles 

Isotropic small 

particles 

 

Zero field dynamic mechanical properties 

The absolute modulus |𝐸∗|, tangnent of loss factor tanδ, storage E’ and loss E’’ moduli of composite 

disk parallel (sample 1a-4) and series (sample 2a) configuration samples and the equivalent pure 

MREs in respect to strain amplitude, are shown in Figure 48. Pure anisotropic MRE is the stiffest 

elastomer with the highest tangent of the loss angle, isotropic MRE is the softest with the lower 

tangent of the loss angle, while absolute modulus |𝐸∗| and tangent of the loss angle 𝑡𝑎𝑛𝛿 of 

samples 1a and 2a are between the pure samples as expected. All samples decrease their storage 

E’ and loss E’’ modulus with increasing strain amplitude, but at a different rate that causes tangent 

of loss angle tanδ to increase slightly with strain amplitude. The decrease rate of both composite 

samples is between the ones of pure anisotropic and isotropic MREs. Combining anisotropic and 

isotropic MREs produces a new elastomer with higher damping capability than isotropic MRE and 

lower stiffness than anisotropic MRE without changing the general behaviour of the material.  
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Figure 48: Zero field absolute modulus |𝐸∗| and tangent of the loss angle 𝑡𝑎𝑛𝛿 of pure isotropic, 
anisotropic, sample 1a-4 and sample 2a, at 5Hz frequency and 10% prestrain. 

Figure 49 illustrates The absolute modulus |𝐸∗|, tangnent of loss factor tanδ, storage E’ and loss E’’ 

moduli of all disk sample 1a MREs with an anisotropic core made of small or large particles. All 

samples decrease their storage E’ and loss modulus E’’ with increasing strain amplitude, like all 

MREs, but at a different rate. Composite samples 1a-1 and 1a-3, which are made of large particles, 

have higher absolute modulus |𝐸∗| than pure isotropic a-l sample but lower than pure anisotropic 

a-l MRE. Tangent of the loss angle tanδ of samples 1a-1 and 1a-3 increase for small strain 

amplitudes to decrease later for larger values similar to the pure anisotropic MRE with large 

particles. Sample 1a-2 has similar absolute modulus |𝐸∗| with 1a-4 but higher tanδ at small 

amplitudes because the core is made with anisotropic MRE with large particles that have a higher 

tanδ than the one with small particles. Tangent of the loss angle tanδ of sample 1a-2, which has 

one part with small particles and one with large, decrease with strain amplitude as a result of the 

contribution of each part.  

The zero-field damping capability of a composite sample can be improved by using MREs with iron 

particles of different sizes. For example, consider samples 1a-2 and 1a-4 where the anisotropic to 

isotropic area ratio ‘α’ of sample 1a-2 was selected so to have similar dynamic stiffness to sample 

1a-4 with unit area ratio. Using an anisotropic MRE core made of large particles to a cylinder 
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isotropic MRE made of small particles (sample 1a-2), increases tangent of the loss angle for small 

strains by 25% while keeping stiffness similar to the case where the anisotropic core was made of 

small particles (sample 1a-4). Therefore, it is possible to tailor the dynamic mechanical properties 

of composite MREs by selecting appropriate MRE material, iron particle size and dimensions of each 

part. 

 

Figure 49: Zero field absolute modulus |𝐸∗| and tangent of the loss angle 𝑡𝑎𝑛𝛿 of all four parallel 
combination samples, at 5Hz frequency and 10% prestrain. 

Dynamic compression absolute modulus |𝐸∗| and tangent of the loss angle 𝑡𝑎𝑛𝛿 of the composite 

samples can be estimated using equations (6.2.6) and (6.2.7) for the parallel configuration sample 

and (6.2.14) and (6.2.15) for the series configuration sample. Assuming, 𝐸′1= storage modulus and 

𝐸′′1= loss modulus of isotropic MRE, 𝐸′2= storage modulus and 𝐸′′2 =loss modulus of anisotropic 

MRE and using the values mentioned in Table 22 (at 0.5% strain amplitude, 5Hz loading frequency 

and 10% prestrain), while  

Table 23 presents the measured and calculated values of composite samples. The theoretical 

equations can thus, provide a good estimation for the actual measured data.  
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Table 22: Measured values of absolute modulus |𝐸∗| and tangent of the loss angle 𝑡𝑎𝑛𝛿 of pure 
disk MREs.  

Sample 

Measured (0.5%, 5Hz)  

|𝑬∗| (MPa) tan 𝑬′ (MPa) 𝑬′′(MPa) Particles 

Applied force 

(Parallel to 

particle 

alignment for 

anisotropic) 

 

17.4 0.196 17.11 3.36 Large 

16.4 0.143 16.22 2.32 Small 

 

6.76 0.062 6.74 0.42 Large 

6.17 0.068 6.16 0.42 Small 

 

Table 23: Measured and calculated values of absolute modulus |𝐸∗| and tangent of the loss angle 
𝑡𝑎𝑛𝛿 of composite sample 1a and 2b MREs.  

Applied force 

(parallel to particle 

alignment for 

anisotropic)  

Measured 

(0.5%,5Hz) 
Calculated 

 

|𝑬∗| tan |𝑬∗| tan 
a MRE core MRE outside 

 

Sample 1a-1 9.1 0.12 9.5 0.13 1/3 
Anisotropic large 

particles 

Isotropic large 

particles 

 

Sample 1a-2 11.3 0.15 10.8 0.15 2/3 
Anisotropic large 

particles 

Isotropic small 

particles 

 

Sample 1a-3 14.8 0.19 14.96 0.17 3 
Isotropic large 

particles 

Anisotropic large 

particles 

 

Sample 1a-4 11.2 0.12 11.38 0.12 1 
Anisotropic small 

particles 

Isotropic small 

particles 

  |𝑬∗| tan |𝑬∗| tan b Bottom part Top part 

 

Sample 2a 8.9 0.1 9.04 0.09 1 
Anisotropic small 

particles 

Isotropic small 

particles 
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Magnetorheological effect 

Figure 50 presents the relative MR effect (0T to 0.5T) of absolute modulus |𝐸∗|, tangnent of loss 

angle tanδ, storage E’ and loss E’’ modulus of pure isotropic a-s, pure anisotropic a-s, parallel sample 

1a-4 and series sample 2a composite MREs in respect to strain amplitude. Under a 0.5T magnetic 

field, parallel combination sample 1a-4 increases its storage modulus E’ by 28% while series 

combination sample 2a by 27%. These values are very close to the 31% MR effect of pure 

anisotropic a-s sample and higher than the 21% MR effect of pure isotropic a-s sample. Loss 

modulus E’’ and thus, the energy dissipated in each cycle increases with the application of the 

magnetic field but almost half the percentage of storage modulus E’. The mismatch of storage E’ 

and loss E’’ modulus MR effects results to a negative MR effect of tanδ for all samples that strongly 

depends on strain amplitude. Therefore, damping capability of all samples decreases slightly with 

increasing magnetic field and strain amplitude. However, the zero field values of loss modulus E’’ 

are small and a 10% increase corresponds to a very small absolute value that could easily be 

considered a measurement error when calculating the area of the hysteresis loop to find loss angle 

δ. 

 

Figure 50: Relative MR effect (0T to 0.5T) of isotropic a-s, anisotropic a-s, sample 1a-4 and sample 
2a in respect to strain amplitude (measured at 5Hz frequency and 10% prestrain). 
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Figure 51 presents the MR effect (0T to 0.5T) of absolute modulus |𝐸∗|, tangnent of loss angle tanδ, 

storage E’ and loss E’’ of parallel configuration composite MRE samples 1a-1, 1a-2, 1a-3 and 1a-4 in 

respect to strain amplitude. When an external magnetic field of 0.5T is applied, the magnetic forces 

are developed between iron particles that force them to move inside the silicon matrix. Large 

particles need greater magnetic forces than small particles to move inside the matrix and align 

themselves parallel to the magnetic field. Therefore, MREs with large particles have a lower MR 

effect of storage modulus E’ (measure of stiffness) but higher MR effect of loss modulus E’’ since 

they need more energy to move. Under the same logic, sample 1a-4 has the highest MRE effect of 

storage modulus E’ while, loss modulus E’’ of samples 1a-1, 1a-2 and 1a-3, that have one part 

anisotropic MRE with large particles, increases two times more than sample 1a-4. The tangent of 

loss angle tanδ of samples 1a-1, 1a-2 and 1a-3 is not greatly influenced by the magnetic field since 

a 5% increase of the zero field value is negligible for real applications. The MR effect of samples 1a-

1, 1a-2 and 1a-3 do not vary with strain amplitude in contrast to sample 1a-4, because MREs with 

large particles form more stable particle-elastomer structures. Thus, composite 

isotropic/anisotropic MREs behave like the equivalent anisotropic MRE they are made of. 

 

Figure 51: Relative MR effect (0T to 0.5T) of sample 1a-1, 1a-2, 1a-3 and 1a-4 in respect to strain 
amplitude (measured at 5Hz frequency and 10% prestrain). 
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 Axial, transverse and longitudinal mechanical characteristics of 

composite samples 

Zero field static mechanical properties  

Figure 52 illustrates the axial load-displacement curves of the pure MRE square samples anisotropic 

b, isotropic b, and composite samples sample 1b, sample 2b and sample 3 with small particles. Since 

the square samples are of nonstandard dimensions, the results will be drawn regarding the 

compressive static stiffness rather than the Young modulus. Again, anisotropic MRE is much stiffer 

than isotropic MRE while their series (sample 2b) and parallel (sample 1b) combination samples 

have a similar axial stiffness that lies between the isotropic and anisotropic samples. Samples 3 and 

4 also have a similar stiffness, although they consist of two anisotropic halves with their particles 

aligned in different directions. This is because when the particles are aligned perpendicular to the 

applied force in an anisotropic sample the elastomer has a similar stiffness with the isotropic one 

(Schubert G 2015), as can also be seen in Table 24.  

 

Figure 52: Static axial force-displacement curves for anisotropic b, isotropic b, composite sample 
1b, sample 2b, sample 3 and sample 4 MREs with small particles at zero field. 

The static compressive stiffness of the square composite samples can be estimated using equations 

(6.2.4) and (6.2.12), taking under consideration that: 

𝐸1 = 𝐾𝑖𝑠𝑜

𝐿𝑖𝑠𝑜

𝐴𝑖𝑠𝑜
, 𝐸2 = 𝐾𝑎𝑛

𝐿𝑎𝑛

𝐴𝑎𝑛
, 𝑎 = 𝑏 = 1 
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Where  𝐸1= compression modulus (Young modulus), 𝐾𝑖𝑠𝑜 =static stiffness, 𝐿𝑖𝑠𝑜=length,  𝐴𝑖𝑠𝑜=area 

of the isotropic sample, while 𝐸2= compression modulus (Young modulus), 𝐾𝑎𝑛 =static stiffness, 

𝐿𝑎𝑛=length,  𝐴𝑎𝑛=area of the anisotropic sample and 𝐸= compression modulus, 𝐾= static stiffness, 

𝐿=length,  𝐴=area of the combined sample. In this case since all samples have the same dimensions 

the moduli of elasticity in equations can be directly replaced by the equivalent stiffness.  

Table 24: Measured and calculated static compression stiffness of square composite MREs with 
small particles at 2.2mm displacement (equivalent 10% strain). 

Sample 

K (10%) 

Measured 

(KN/m) 

Sample 

K (10%) 

Measured 

(KN/m) 

Sample 

K (10%) 

Measured 

(KN/m) 

Applied 

force 

 

76.72 

 

152.50 

 

75.01 

K (10%) axial -p1 

(KN/m) 

K (10%) transverse -p2 

(KN/m) 

K (10%) longitudinal- p3 

(KN/m) 

 

102.08  

 

75.86 

 

75.86 Calculated  

106.12 76.80 74.5 
measured 

 

114.61 

 

75.85 

 

75.86 Calculated  

112.94 70.21 73.6 measured 

 

113.75 

 

100.56 

 

75.01 Calculated  

108.58 99.55 77.05 measured 

 

113.75 

 

75.01 

 

113.75 Calculated  

100.2 72.2 105.5 measured 

Table 24 presents the measured and calculated values of the composite samples using the 

measured values of the square isotropic and anisotropic samples. It can be seen again, that the 

theoretical equations can produce a good estimation of static stiffness. When the particles of the 

anisotropic part are aligned perpendicular to the applied force, stiffness is similar to the pure 

isotropic sample. However, Sample 3 has almost similar axial and transverse stiffness while sample4 

has the same axial and longitudinal stiffness. Therefore, it is possible to produce a composite MRE 
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with same zero field axial and transverse or axial and longitudinal stiffness depending on the actual 

loading conditions the rubber is subjected to.  

Zero field dynamic mechanical properties  

The zero field dynamic stiffness |𝐾∗| and tangent of the loss angle 𝑡𝑎𝑛𝛿 of pure isotropic b, 

anisotropic b MREs and their combinations cube samples 1b and 2b, in respect to the strain 

amplitude, are shown in Figure 53, while Figure 54 illustrates the influence of load frequency at 

0.5% strain amplitude. The cube samples behave exactly like disk anisotropic a-s, isotropic a-s, 

sample 1a-4 and samples 2a MRE discussed in section 6.4. The pure anisotropic sample has the 

highest stiffness K* and tangent of the loss angle tanδ while pure isotropic the lowest, as expected. 

The parallel and series combination (sample 1b and 2b) have both similar stiffness values that lay 

between the different pure samples. The tangent of the loss angle tanδ of parallel combination 

(sample 1b) is much higher than the one of isotropic sample, almost approaching the value of the 

anisotropic MRE. The series combination (sample 2b) has a lower tangent of the loss angle tanδ but 

still higher than the isotropic sample itself. All samples drop their stiffness K* value while increasing 

their tangent of the loss angle tanδ with increasing strain amplitude. Increasing loading frequency, 

results to a slight increase of dynamic stiffness K* while tangent of the loss angle tanδ drops slightly 

for all samples.  

 

Figure 53: Zero field dynamic stiffness |𝐾∗| and tangent of the loss angle 𝑡𝑎𝑛𝛿 in respect to strain 
amplitude of pure isotropic b, anisotropic b, sample 1b and sample 2b (with small particles) at 5Hz 

frequency and 10% prestrain. 
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Figure 54: Zero field dynamic absolute stiffness |𝐾∗| and tangent of the loss angle 𝑡𝑎𝑛𝛿 in respect 
to frequency of pure isotropic b, anisotropic b, sample 1b and sample 2b (with small particles) at 

0.5% strain amplitude and 10% prestrain. 

 

Figure 55: Zero field dynamic stiffness |𝐾∗| and tangent of the loss angle 𝑡𝑎𝑛𝛿 in respect of strain 
amplitude of sample 1b, sample 2b, sample 3-p1 (axial), sample 3-p2 (transverse) and sample 4-

p1(axial) with small particles, at 5Hz frequency and 10% prestrain. 

The variation of the axial dynamic mechanical properties of composite sample 3(p1), sample 4(p1), 

sample 2b and sample 1b along with the transverse dynamic mechanical properties of composite 

sample 3 (p2), in respect to strain amplitude and frequency, is illustrated in Figure 55 and Figure 56 

respectively. Composite samples 3(p1), 4(p1) and 1b have similar axial dynamic stiffness and 
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tangent of loss angle tanδ while composite samples 3(p2) has similar transverse dynamic stiffness 

and tanδ to the axial dynamic stiffness and tanδ of sample 2b.  

 

Figure 56: Zero field dynamic stiffness |𝐾∗| and tangent of the loss angle 𝑡𝑎𝑛𝛿 in respect of 
frequency of sample 1b, sample 2b and sample 3 (with small particles) at 0.5% strain amplitude 

and 10% prestrain. 

 

The dynamic absolute stiffness |𝐾∗| of the square composite samples can be estimated using 

equations (6.2.6), (6.2.7), (6.2.14) and (6.2.15) taking under consideration that: 

𝐸′
1 = 𝐾′

𝑖𝑠𝑜

𝐿𝑖𝑠𝑜

𝐴𝑖𝑠𝑜
,  𝐸′′

1 = 𝐾′′
𝑖𝑠𝑜

𝐿𝑖𝑠𝑜

𝐴𝑖𝑠𝑜
, 𝐸′

2 = 𝐾′
𝑎𝑛

𝐿𝑎𝑛

𝐴𝑎𝑛
, 𝐸′′

2 = 𝐾′′
𝑎𝑛

𝐿𝑎𝑛

𝐴𝑎𝑛
  

 𝐾′ = 𝐸′  
𝐴

𝐿
,       𝐾′′ = 𝐸′′   

𝐴

𝐿
,       | 𝐾∗| = √𝐾′2 + 𝐾′′2, tan 𝛿 =

𝐾′′

𝐾′
    𝑎𝑛𝑑   𝑎 = 𝑏 = 1 

 Where  𝐸′1= storage modulus, 𝐸′′1=loss modulus, 𝐾′𝑖𝑠𝑜 =real part of dynamic stiffness,  𝐾′′𝑖𝑠𝑜 

=imaginary part of dynamic stiffness, 𝐿𝑖𝑠𝑜=length,  𝐴𝑖𝑠𝑜=area of the isotropic sample, while 𝐸′2= 

storage modulus, 𝐸′′2=loss modulus, 𝐾′𝑎𝑛 =real part of dynamic stiffness, 𝐾′′𝑎𝑛 =imaginary part of 

dynamic stiffness,  𝐿𝑎𝑛=length,  𝐴𝑎𝑛=area of the anisotropic sample and 𝐸′= storage modulus, 𝐸′′= 

loss modulus, 𝐾′= real part of dynamic stiffness,  𝐾′′= imaginary part of dynamic stiffness, 𝐿=length, 

 𝐴=area of the combined sample. Table 26 presents the measured and calculated axial, transverse 

and longitudinal dynamic stiffness |𝐾∗| and tangent of the loss angle 𝑡𝑎𝑛𝛿 of all cube composite 

samples, using the values of pure anisotropic and isotropic samples of Table 25.  
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Table 25: Zero field measured dynamic stiffness |𝐾∗| and tangent of the loss angle 𝑡𝑎𝑛𝛿 of 
isotropic and anisotropic MREs with small particles at 0.5% strain amplitude, 5Hz frequency and 

10% prestrain. 

Applied 

force 

 

Measured 

(0.5%, 5Hz) 

Sample 

Measured 

(0.5%, 5Hz) 

Sample 

Measured 

(0.5%, 5Hz) 

|𝑲∗ | 

(KN/m) 

tan |𝑲∗ | 

(KN/m) 

tan |𝑲∗ | 

(KN/m) 

tan 

 

112 0.06 

 

323 0.15 

 

122 0.07 

Table 26: Zero field measured and calculated |𝐾∗| and 𝑡𝑎𝑛𝛿 of composite MREs (at 0.5% strain 
amplitude, 5Hz frequency and 10% prestrain). 

p1 

Axial 

(0.5%, 5Hz) 
p2 

Transverse 

(0.5%, 5Hz) 
p3 

Longitudinal 

(0.5%, 5Hz) Applied 

force |𝑲∗ | 

(KN/m) 
tan 

|𝑲∗ | 

(KN/m) 
tan 

|𝑲∗ | 

(KN/m) 
tan 

 

170 0.08 

 

117 0.06 

 

117 0.06 Calculated 

191 0.08 119 0.06 120 0.06 Measured 

 

228 0.13 

 

118 0.06 

 

117 0.06 Calculated 

227 0.13 122 0.06 115 0.06 Measured 

 

223 0.13 

 

180 0.09 

 

122 0.07 Calculated 

213 0.125 208 0.087 118 0.07 Measured 

 

223 0.13 

 

122 0.07 

 

223 0.13 Calculated 

224 0.134 130 0.07 210 0.12 Measured 

The two different MRE parts are combined in series or parallel configurations depending the 

direction of interest. For example, for the axial stiffness of sample 2b an isotropic part is considered 

in parallel to an anisotropic part with particles aligned in the same direction of the applied force. 

Axial stiffness of sample 2b can therefore be estimated by using the stiffness of isotropic b sample 

and the axial stiffness of anisotropic b sample in equation (6.2.6) setting area ratio α=1. However, 

for calculating the transverse stiffness the isotropic part is in series with the anisotropic part with 

particles aligned perpendicular to the applied force. In this case transverse stiffness of sample 2b is 
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estimated by using the stiffness of isotropic sample and the transverse stiffness of anisotropic 

sample, in equation (6.2.14) setting length ratio b=1. In a similar way, the longitudinal stiffness of 

sample 2b is estimated by using the stiffness of isotropic sample and the longitudinal stiffness of 

anisotropic sample, in equation (6.2.6) setting area ratio α=1. When the particles of anisotropic 

samples are not aligned in the same direction with the applied load, the stiffness and tangent of 

the loss angle of the MRE is similar to the isotropic sample like the transverse stiffness and tangent 

of the loss angle of samples 1b and 2b.  

 

Magnetorheological effect 

 In order to evaluate the performance of the novel combined isotropic and anisotropic MREs, the 

effect of the magnetic field on the dynamic properties is examined. Figure 57 illustrates the axial 

and transverse dynamic stiffness |𝐾∗| and tangent of the loss angle 𝑡𝑎𝑛𝛿 of all MREs at 0T and 

0.35T magnetic field. All samples increase their stiffness when the field is applied but tangent of 

the loss angle is not greatly influenced. Isotropic MRE has the lowest stiffness MR effect, similar to 

the one of the transverse stiffness of parallel configuration sample 1b and series configuration 

sample 2b. When the particles of the anisotropic part are aligned perpendicular to the applied force 

and magnetic field, the MRE behaves like an isotropic sample but has a slightly higher MR effect. 

Anisotropic MRE has the highest MR effect, like the one of the axial stiffness of parallel 

configuration sample 1b and series configuration sample 2b.  Combining anisotropic and isotropic 

MREs in parallel and series configurations does not compromise the MR effect when the particles 

are aligned parallel to the applied magnetic field like pure anisotropic MRE. 
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Figure 57: MR effect of axial and transverse dynamic stiffness |𝐾∗| and tangent of the loss angle 
𝑡𝑎𝑛𝛿 of simple and composite square MREs at 0T and 0.35T measured at 0.5% strain amplitude, 

5Hz frequency and 10% prestrain. 

However, this is not the case for sample 3 and sample 4 that combine two anisotropic MREs with 

different particle alignment. In this case, the axial and transverse stiffness, along with the 

equivalent MR effect is similar and higher than even the anisotropic sample itself, which is 

attributed to the higher than isotropic MREs MR effect of anisotropic MREs with particles aligned 

perpendicular to the magnetic field. The tangent of the loss angle of the transverse position and 

equivalent MR effect is less than the one of the axial position, but the difference is not great. 

Combining two anisotropic MREs with different particle alignments produces a MRE with similar 

axial and transverse MR effect. This is highly desirable in applications where the elastomer is under 

multidirectional loading conditions. It also should be noted that MR effect of all square samples is 

higher than the one of disk samples when compared at the same magnetic field. 

Magnetic field amplitude interaction 

Figure 58 illustrates the MR effect of axial (p1), transverse (p2) and longitudinal (p3) dynamic 

stiffness |𝐾∗| and tangent of the loss angle 𝑡𝑎𝑛𝛿 of samples 1b, 2b, 3 and 4 in respect to strain 

amplitude, at 5Hz frequency and 10% prestrain. A strong magnetic field-strain amplitude coupling 

effect is observed when the particles of the anisotropic part are aligned parallel to the applied load 

and magnetic field. For these cases, MR effect of dynamic stiffness and tangent of the loss angle 

decreases with increasing strain amplitude. However, when the particle chains of the anisotropic 

part are aligned perpendicular to the applied load and magnetic field (sample1b-p2 and sample 2b-

p2), the magnetic field-strain amplitude interaction is much weaker and the composite samples 

behave like a pure isotropic MRE (chapter 5). This behaviour is attributed to the destruction-

reconstruction mechanism of the particle-matrix structure that occurs with increasing strain 

amplitude. This causes a disruption of the particle chain structure in anisotropic MREs that makes 

it more difficult for the particles to align under the influence of the magnetic field and thus dropping 

the MR effect.  
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Figure 58: MR effect (0T to 0.35T) of dynamic stiffness |𝐾∗| and tangent of the loss angle 𝑡𝑎𝑛𝛿 of 
composite square samples in respect to strain amplitude (measured at 5Hz frequency and 10% 

prestrain). 
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 Chapter summary  

In this chapter, the principle of combining isotropic and anisotropic MREs in parallel and series 

configurations to improve the zero field mechanical properties of the material was examined. For 

this purpose, static and dynamic loading tests were performed under varying loading amplitude, 

frequency and magnetic field to determine the axial, transverse and longitudinal stiffness and 

damping of the new composite materials. The general behaviour of the new composite samples 

can be summarized by the following key points. 

• Combining anisotropic and isotropic MREs in parallel and series, result to a new MRE with 

higher tangent of the loss angle than isotropic MRE by keeping stiffness lower than 

anisotropic MRE without compromising the MR effect. The isotropic-anisotropic disk MREs 

increased their dynamic stiffness by 29% compared to 32% and 21% for pure disk anisotropic 

and isotropic MREs respectively. 

• The exact zero field stiffness and damping of the new composite samples can be tailored by 

selecting the dimensions of each part. 

• Zero field stiffness and tangent of the loss angle can be further adjusted by selecting the 

particle size that each MRE part is made of. 

• Combining two anisotropic MREs in parallel, one with particle chains aligned parallel to the 

applied load and field and the other perpendicular (along x axis), result to a new MRE with 

same axial and transverse stiffness and MR effect. 

• Combining two anisotropic MREs in parallel, one with particle chains aligned parallel to the 

applied load and field and the other perpendicular (along z axis), result to a new MRE with 

same axial and longitudinal stiffness, tangent of the loss angle and MR effect. 

• The cube composite samples with two anisotropic halves aligned in different directions, 

increase their dynamic stiffness by 30% while pure anisotropic by 22% and isotropic by 13%.  

• The MR effect of tangent of loss angle tan of pure anisotropic and anisotropic-anisotropic 

composite MREs is two times higher than the one of pure isotropic and composite isotropic-

anisotropic MREs. 

• A strong MR effect-strain amplitude coupling effect was observed especially for composite 

anisotropic-anisotropic MREs. 
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Chapter 6: Characterization of pure compression and 

inclined MRE isolator  

  Introduction  

The engine room of a marine vessel is full of rotating, reciprocating and forging machines that 

generate huge amounts of noise and vibration. Except the main engine, a typical engine room will 

contain several generators, compressors, pumps, separators, refrigerators and auxiliary engines 

that vibrate constantly at different frequencies. In addition, the ship is a flexible structure subjected 

to random multidirectional loading conditions while travelling at sea. Therefore, it is important to 

mount all machines to efficient isolators that are responsible for two tasks. The first is to reduce 

the vibration and noise transmitted from the machine to the substrate (at high frequencies) and 

the second to ensure that the six modes of vibration system remains stable under sea movement 

(at low frequencies but high displacements). For this reason, the main engine is usually mounted 

on several isolators inclined by an angle to cope for the multidirectional loading conditions. 

In a general mass-isolator system the equipment or machine is considered as a rigid body supported 

by isolators that has six modes of vibration and six natural frequencies one in each direction, as 

shown in Figure 59. In such arrangement, any random motion of the body maybe be resolved into 

three translations parallel to the OY, OX and OZ axis through the centre of gravity O and three 

rotations about these axis (Davey A B 1965) that are coupled to each other. These motions become 

uncoupled when the direction of the force causing them passes through the centre of gravity of the 

supporting isolators. 

 

Figure 59: Diagram of a mass mounted on isolators in vertical and inclined positions. 
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Depending on the level of vibrations generated in each direction, the isolators can be placed, ideally 

symmetrically, to the vertical axial direction (under the body) or the horizontal longitudinal and   

lateral directions (against a wall or other fixed element) to achieve the desired reduction of 

vibrations. For large and heavy machines, like the ones found in marine industry, isolators are 

usually placed under the body in the axial direction to avoid stability problems. That means that the 

weight of the machine acts as a pure static compression load that will cause only a static deflection 

along the axial OY axis. The isolators will be always precompressed under the load of the machine, 

while the superimposed dynamic forces can be in any direction depending on loading conditions. 

The natural frequencies of the system depend on the principal elastic axis stiffness ratios 
𝑘𝑝

𝑘𝑞
 and 

𝑘𝑟

𝑘𝑞
 

of the mount and thus, the geometry of the elastomer and shape factor. The choice of mounting 

arrangement depends on the type of machine and loading conditions. When vertical exciting forces 

are of importance, like in reciprocating machines with vertical line of stroke, isolators working in 

pure compression mode are more effective. However, when dealing with horizontal exciting forces 

like in the case of reciprocating machines with horizontal line of stroke or rotating machines, 

isolators working in pure shear in the horizontal plane or the inclined arrangement should be 

preferred. For most common rubbers used in isolators, stiffness 𝑘𝑝 and 𝑘𝑟 can be estimated using 

shear modulus G and 𝑘𝑞 by compression modulus E, taking under consideration the geometry of 

rubber mount and the appropriate shape correction function according to the shape factor and 

hardness of rubber.  

However, for MREs this is not so simple due to the change in stiffness when the magnetic field is 

applied. The absolute increase will be different for each stiffness  𝑘𝑝, 𝑘𝑞 and 𝑘𝑟 and thus, modes 

that are uncoupled at zero field could become coupled when the magnetic field is applied. In this 

chapter, the composite isotropic/anisotropic and anisotropic/anisotropic MREs are tested in 

practice by examining the mechanical properties of a MRE prototype isolator working in pure 

compression and compression/shear (inclined) mode. The experimental data are then used to 

determine the principal elastic axis stiffness ratio 
𝑘𝑝

𝑘𝑞
 and how this is influenced by the magnetic 

field.  
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 Background theory 

The general theory suggests that an unconstrained rigid body is free to move in six possible 

directions. Assuming an orthogonal OXYZ reference system where the origin O is the centre of 

gravity (as illustrate in Figure 60) these directions are lateral horizontal parallel to axis OX, 

longitudinal horizontal parallel to axis OZ, axial vertical parallel to axis OY and three rotations about 

these axis called here roll, pitch and yaw respectively.  

Figure 60:  Diagram illustrating the six degrees of freedom of a rigid body. 

 

Figure 61: Diagram of a mass mounted in four isolators, where w=width, h=height, l=length of mass 

and 𝛼𝑥, 𝛼𝑦 and 𝛼𝑧 are the distances between the centre of gravity of body and isolator.  

In a general mass-isolator system (illustrated in Figure 61) a rectangular block is mounted on four 

identical isolators with no motion restrictions and two planes of symmetry. The principal elastic axis 

Q, P, R of all isolators are orthogonal with reference axis X, Y, Z that coincide with the principal 

inertial axis of body. Therefore, a force applied on the OY axis will only cause a displacement on the 

same direction and therefore axial and yaw motion are considered uncoupled. However, the centre 

of gravity of the body O is much higher than the centre of gravity of the isolators (the direction of 

force does not pass through the centre of gravity of the isolators) and thus, any force applied along 

OX or OZ direction will cause translation along OX and OZ axis but also rotation about OZ and OX 
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axis respectively. Therefore, lateral translation and pitch motion are coupled motions like 

longitudinal translation and roll. Assuming 𝑥𝑥, 𝑥𝑦, 𝑥𝑧 as the translational displacements of the 

centre of gravity of the body in the X,Y,Z directions, 𝛽𝑥, 𝛽𝑦 , 𝛽𝑧 the rotations of the body about 

those axis, u, v, w the translational displacements of the foundation and 𝛾𝑥, 𝛾𝑦 , 𝛾𝑧 the rotations of 

the foundation, general equations of motion are: 

[𝑀]

[
 
 
 
 
 
 
𝑥𝑥̈

𝑥𝑦̈

𝑥𝑧̈

𝛽𝑥̈

𝛽𝑦̈

𝛽𝑧̈]
 
 
 
 
 
 

+ [𝐾]

[
 
 
 
 
 
𝑥𝑥 − 𝑢
𝑥𝑦 − 𝑣
𝑥𝑧 − 𝑤
𝛽𝑥 − 𝛾𝑥

𝛽𝑦 − 𝛾𝑦

𝛽𝑧 − 𝛾𝑧 ]
 
 
 
 
 

+ [𝐶]

[
 
 
 
 
 
 
𝑥𝑥̇ − 𝑢̇
𝑥𝑦̇ − 𝑣̇

𝑥𝑧̇ − 𝑤̇

𝛽𝑥̇ − 𝛾𝑥̇

𝛽𝑦̇ − 𝛾𝑦̇

𝛽𝑧̇ − 𝛾𝑧̇ ]
 
 
 
 
 
 

 =

[
 
 
 
 
 
𝐹𝑥

𝐹𝑦

𝐹𝑧

𝑀𝑥

𝑀𝑦

𝑀𝑧]
 
 
 
 
 

 (6.2.1) 

where:     [𝑀] =

[
 
 
 
 
 
𝑚  
0
0
0
0
0

0 
𝑚 
0
0
0
0

0 
0
𝑚 
0
0
0

0
0
0
𝐼𝑥𝑥

−𝐼𝑦𝑥

−𝐼𝑧𝑥

0
0
0

−𝐼𝑥𝑦

𝐼𝑦𝑦

−𝐼𝑧𝑦

0
0
0

−𝐼𝑥𝑧

−𝐼𝑦𝑧

𝐼𝑧𝑧 ]
 
 
 
 
 

   is the mass matrix 

The moments and products of inertia are defined as: 

𝐼𝑥𝑥 = ∫ (𝑌2 + 𝑍2)𝑑𝑚
𝑚

 , 𝐼𝑦𝑦 = ∫ (𝑋2 + 𝑍2)𝑑𝑚
𝑚

  , 𝐼𝑧𝑧 = ∫ (𝑌2 + 𝑋2)𝑑𝑚
𝑚

   

𝐼𝑥𝑦 = 𝐼𝑦𝑥 = ∫ 𝑋𝑌𝑑𝑚
𝑚

 , 𝐼𝑥𝑧 = 𝐼𝑧𝑥 = ∫ 𝑋𝑍𝑑𝑚
𝑚

  , 𝐼𝑦𝑧 = 𝐼𝑧𝑦 = ∫ 𝑌𝑍𝑑𝑚
𝑚

   

[𝐾] =

[
 
 
 
 
 
𝑘11   
𝑘21 

𝑘31 

𝑘41 

𝑘51 

𝑘61 

𝑘12  
𝑘22  
𝑘32 

𝑘42 

𝑘52 

𝑘62 

𝑘13 
𝑘23 

𝑘33  
𝑘43 

𝑘53 

𝑘63 

𝑘14 

𝑘24 

𝑘34 

𝑘44 

𝑘54 

𝑘64 

𝑘15 

𝑘25 

𝑘35 

𝑘45 

𝑘55 

𝑘65 

𝑘16 

𝑘26 

𝑘36 

𝑘46 

𝑘56 

𝑘66 ]
 
 
 
 
 

 is the stiffness matrix 

Where the terms of stiffness matrix are defined as: 

𝑘11 = ∑𝑘𝑥𝑥  𝑘24 = 𝑘42 = ∑(𝑘𝑦𝑧𝑎𝑦 − 𝑘𝑦𝑦𝑎𝑧) 

𝑘12 = 𝑘21 = ∑𝑘𝑥𝑦 𝑘25 = 𝑘52 = ∑(𝑘𝑥𝑦𝑎𝑧 − 𝑘𝑦𝑧𝑎𝑥) 

𝑘13 = 𝑘31 = ∑𝑘𝑥𝑧 𝑘26 = 𝑘62 = ∑(𝑘𝑦𝑦𝑎𝑥 − 𝑘𝑥𝑦𝑎𝑦) 

𝑘14 = 𝑘41 = ∑(𝑘𝑥𝑧𝑎𝑦 − 𝑘𝑥𝑦𝑎𝑧) 𝑘33 = ∑𝑘𝑧𝑧  

𝑘15 = 𝑘51 = ∑(𝑘𝑥𝑥𝑎𝑧 − 𝑘𝑥𝑧𝑎𝑥) 𝑘34 = 𝑘43 = ∑(𝑘𝑦𝑦𝑎𝑧
2 + 𝑘𝑧𝑧𝑎𝑦

2 − 2𝑘𝑦𝑧𝑎𝑦𝑎𝑧) 

𝑘16 = 𝑘61 = ∑(𝑘𝑥𝑦𝑎𝑥 − 𝑘𝑥𝑥𝑎𝑦) 𝑘35 = 𝑘53 = ∑(𝑘𝑥𝑧𝑎𝑦𝑎𝑧 + 𝑘𝑦𝑧𝑎𝑥𝑎𝑧 − 𝑘𝑧𝑧𝑎𝑦𝑎𝑥 − 𝑘𝑥𝑦𝑎𝑧
2) 
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𝑘22 = ∑𝑘𝑦𝑦 𝑘36 = 𝑘63 = ∑(𝑘𝑥𝑦𝑎𝑦𝑎𝑧 + 𝑘𝑦𝑧𝑎𝑥𝑎𝑦 − 𝑘𝑦𝑦𝑎𝑧𝑎𝑥 − 𝑘𝑥𝑧𝑎𝑦
2) 

𝑘23 = 𝑘32 = ∑𝑘𝑦𝑧 𝑘45 = 𝑘54 = ∑(𝑘𝑥𝑦𝑎𝑥𝑎𝑧 + 𝑘𝑥𝑧𝑎𝑥𝑎𝑦 − 𝑘𝑥𝑥𝑎𝑦𝑎𝑧 − 𝑘𝑦𝑧𝑎𝑥
2) 

𝑘44 = ∑(𝑘𝑧𝑧𝑎𝑦 − 𝑘𝑦𝑧𝑎𝑧) 𝑘46 = 𝑘64 = ∑(𝑘𝑥𝑥𝑎𝑦
2 + 𝑘𝑦𝑦𝑎𝑥

2 − 2𝑘𝑥𝑦𝑎𝑥𝑎𝑦) 

𝑘55 = ∑(𝑘𝑥𝑧𝑎𝑧 − 𝑘𝑧𝑧𝑎𝑥) 𝑘56 = 𝑘65 = ∑(𝑘𝑥𝑦𝑎𝑦𝑎𝑧 + 𝑘𝑦𝑧𝑎𝑥𝑎𝑦 − 𝑘𝑦𝑦𝑎𝑧𝑎𝑥 − 𝑘𝑥𝑧𝑎𝑦
2) 

𝑘66 = ∑(𝑘𝑦𝑧𝑎𝑥 − 𝑘𝑥𝑧𝑎𝑦)  

And the stiffness coefficients are defined: 

𝑘𝑥𝑥 = 𝑘𝑝𝑐𝑜𝑠2𝜑𝑥𝑝 + 𝑘𝑞𝑐𝑜𝑠2𝜑𝑥𝑞 + 𝑘𝑟𝑐𝑜𝑠2𝜑𝑥𝑟 

𝑘𝑦𝑦 = 𝑘𝑝𝑐𝑜𝑠2𝜑𝑦𝑝 + 𝑘𝑞𝑐𝑜𝑠2𝜑𝑦𝑞 + 𝑘𝑟𝑐𝑜𝑠2𝜑𝑦𝑟 

𝑘𝑧𝑧 = 𝑘𝑝𝑐𝑜𝑠2𝜑𝑧𝑝 + 𝑘𝑞𝑐𝑜𝑠2𝜑𝑧𝑞 + 𝑘𝑟𝑐𝑜𝑠2𝜑𝑧𝑟  

𝑘𝑥𝑦 = 𝑘𝑝𝑐𝑜𝑠𝜑𝑥𝑝𝑐𝑜𝑠𝜑𝑦𝑝 + 𝑘𝑞𝑐𝑜𝑠𝜑𝑥𝑞𝑐𝑜𝑠𝜑𝑦𝑞 + 𝑘𝑟𝑐𝑜𝑠𝜑𝑥𝑟𝑐𝑜𝑠𝜑𝑦𝑟  

𝑘𝑥𝑧 = 𝑘𝑝𝑐𝑜𝑠𝜑𝑥𝑝𝑐𝑜𝑠𝜑𝑧𝑝 + 𝑘𝑞𝑐𝑜𝑠𝜑𝑥𝑞𝑐𝑜𝑠𝜑𝑧𝑞 + 𝑘𝑟𝑐𝑜𝑠𝜑𝑥𝑟𝑐𝑜𝑠𝜑𝑧𝑟  

𝑘𝑦𝑧 = 𝑘𝑝𝑐𝑜𝑠𝜑𝑦𝑝𝑐𝑜𝑠𝜑𝑧𝑝 + 𝑘𝑞𝑐𝑜𝑠𝜑𝑦𝑞𝑐𝑜𝑠𝜑𝑧𝑞 + 𝑘𝑟𝑐𝑜𝑠𝜑𝑦𝑟𝑐𝑜𝑠𝜑𝑧𝑟  

(6.2.2) 

Where 𝜑𝑥𝑝, 𝜑𝑥𝑞, 𝜑𝑥𝑟 are the angles between principal axis of the resilient supporting element and 

X coordinate axis, 𝜑𝑦𝑝, 𝜑𝑦𝑞, 𝜑𝑦𝑟  are the angles between principal axis of the resilient supporting 

element and Y coordinate axis and 𝜑𝑧𝑝, 𝜑𝑧𝑞, 𝜑𝑧𝑟  are the angles between principal axis of the 

resilient supporting element and Z coordinate axis.  

[𝐶] =

[
 
 
 
 
 
𝑐11   
𝑐21 

𝑐31 

𝑐41 

𝑐51 

𝑐61 

𝑐11  
𝑐22  
𝑐32 

𝑐42 

𝑐52 

𝑐62 

𝑐13 
𝑐23 

𝑐33  
𝑐43 

𝑐53 

𝑐63 

𝑐14 

𝑐24 

𝑐34 

𝑐44 

𝑐54 

𝑐64 

𝑐15 

𝑐25 

𝑐35 

𝑐45 

𝑐55 

𝑐65 

𝑐16 

𝑐26 

𝑐36 

𝑐46 

𝑐56 

𝑐66 ]
 
 
 
 
 

 is the damping matrix 

Where the terms of damping matrix are defined as: 

𝑐11 = ∑𝑐𝑥𝑥  𝑐24 = 𝑐42 = ∑(𝑐𝑦𝑧𝑎𝑦 − 𝑐𝑦𝑦𝑎𝑧) 

𝑐12 = 𝑐21 = ∑𝑐𝑥𝑦 𝑐25 = 𝑐52 = ∑(𝑐𝑥𝑦𝑎𝑧 − 𝑐𝑦𝑧𝑎𝑥) 

𝑐13 = 𝑐31 = ∑𝑐𝑥𝑧 𝑐26 = 𝑐62 = ∑(𝑐𝑦𝑦𝑎𝑥 − 𝑐𝑥𝑦𝑎𝑦) 

𝑐14 = 𝑐41 = ∑(𝑐𝑥𝑧𝑎𝑦 − 𝑐𝑥𝑦𝑎𝑧) 𝑐33 = ∑𝑐𝑧𝑧  

𝑐15 = 𝑐51 = ∑(𝑐𝑥𝑥𝑎𝑧 − 𝑐𝑥𝑧𝑎𝑥) 𝑐34 = 𝑐43 = ∑(𝑐𝑦𝑦𝑎𝑧
2 + 𝑐𝑧𝑧𝑎𝑦

2 − 2𝑐𝑦𝑧𝑎𝑦𝑎𝑧) 

𝑐16 = 𝑐61 = ∑(𝑐𝑥𝑦𝑎𝑥 − 𝑐𝑥𝑥𝑎𝑦) 𝑐35 = 𝑐53 = ∑(𝑐𝑥𝑧𝑎𝑦𝑎𝑧 + 𝑐𝑦𝑧𝑎𝑥𝑎𝑧 − 𝑐𝑧𝑧𝑎𝑦𝑎𝑥 − 𝑐𝑥𝑦𝑎𝑧
2) 

𝑐22 = ∑𝑐𝑦𝑦 𝑐36 = 𝑐63 = ∑(𝑐𝑥𝑦𝑎𝑦𝑎𝑧 + 𝑐𝑦𝑧𝑎𝑥𝑎𝑦 − 𝑐𝑦𝑦𝑎𝑧𝑎𝑥 − 𝑐𝑥𝑧𝑎𝑦
2) 
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𝑐23 = 𝑐32 = ∑𝑐𝑦𝑧 𝑐45 = 𝑐54 = ∑(𝑐𝑥𝑦𝑎𝑥𝑎𝑧 + 𝑐𝑥𝑧𝑎𝑥𝑎𝑦 − 𝑐𝑥𝑥𝑎𝑦𝑎𝑧 − 𝑐𝑦𝑧𝑎𝑥
2) 

𝑐44 = ∑(𝑐𝑧𝑧𝑎𝑦 − 𝑐𝑦𝑧𝑎𝑧) 𝑐46 = 𝑐64 = ∑(𝑐𝑥𝑥𝑎𝑦
2 + 𝑐𝑦𝑦𝑎𝑥

2 − 2𝑐𝑥𝑦𝑎𝑥𝑎𝑦) 

𝑐55 = ∑(𝑐𝑥𝑧𝑎𝑧 − 𝑐𝑧𝑧𝑎𝑥) 𝑐56 = 𝑐65 = ∑(𝑐𝑥𝑦𝑎𝑦𝑎𝑧 + 𝑐𝑦𝑧𝑎𝑥𝑎𝑦 − 𝑐𝑦𝑦𝑎𝑧𝑎𝑥 − 𝑐𝑥𝑧𝑎𝑦
2) 

𝑐66 = ∑(𝑐𝑦𝑧𝑎𝑥 − 𝑐𝑥𝑧𝑎𝑦)  

And the damping coefficients are defined: 

𝑐𝑥𝑥 = 𝑐𝑝𝑐𝑜𝑠2𝜑𝑥𝑝 + 𝑐𝑞𝑐𝑜𝑠2𝜑𝑥𝑞 + 𝑐𝑟𝑐𝑜𝑠2𝜑𝑥𝑟 

𝑐𝑦𝑦 = 𝑐𝑝𝑐𝑜𝑠2𝜑𝑦𝑝 + 𝑐𝑞𝑐𝑜𝑠2𝜑𝑦𝑞 + 𝑐𝑟𝑐𝑜𝑠2𝜑𝑦𝑟 

𝑐𝑧𝑧 = 𝑐𝑝𝑐𝑜𝑠2𝜑𝑧𝑝 + 𝑐𝑞𝑐𝑜𝑠2𝜑𝑧𝑞 + 𝑐𝑟𝑐𝑜𝑠2𝜑𝑧𝑟 

𝑐𝑥𝑦 = 𝑐𝑝𝑐𝑜𝑠𝜑𝑥𝑝𝑐𝑜𝑠𝜑𝑦𝑝 + 𝑐𝑞𝑐𝑜𝑠𝜑𝑥𝑞𝑐𝑜𝑠𝜑𝑦𝑞 + 𝑐𝑟𝑐𝑜𝑠𝜑𝑥𝑟𝑐𝑜𝑠𝜑𝑦𝑟  

𝑐𝑥𝑧 = 𝑐𝑝𝑐𝑜𝑠𝜑𝑥𝑝𝑐𝑜𝑠𝜑𝑧𝑝 + 𝑐𝑞𝑐𝑜𝑠𝜑𝑥𝑞𝑐𝑜𝑠𝜑𝑧𝑞 + 𝑐𝑟𝑐𝑜𝑠𝜑𝑥𝑟𝑐𝑜𝑠𝜑𝑧𝑟  

𝑐𝑦𝑧 = 𝑐𝑝𝑐𝑜𝑠𝜑𝑦𝑝𝑐𝑜𝑠𝜑𝑧𝑝 + 𝑐𝑞𝑐𝑜𝑠𝜑𝑦𝑞𝑐𝑜𝑠𝜑𝑧𝑞 + 𝑐𝑟𝑐𝑜𝑠𝜑𝑦𝑟𝑐𝑜𝑠𝜑𝑧𝑟  

(6.2.3) 

when the reference axis X, Y, Z are selected to coincide with the principal inertial axis of the body 

then 𝐼𝑥𝑦 = 𝐼𝑥𝑧 = 𝐼𝑧𝑦 = 0. When the principal elastic axis P, Q, R or all resilient support elements 

are orthogonal with reference axis X, Y, Z then: 

𝑘𝑥𝑥 = 𝑘𝑝, 𝑘𝑦𝑦 = 𝑘𝑞, 𝑘𝑧𝑧 = 𝑘𝑟 and  𝑘𝑥𝑦 = 𝑘𝑥𝑧 = 𝑘𝑦𝑧 = 0 

𝑐𝑥𝑥 = 𝑐𝑝, 𝑐𝑦𝑦 = 𝑐𝑞, 𝑘𝑧𝑧 = 𝑐𝑟 and  𝑐𝑥𝑦 = 𝑐𝑥𝑧 = 𝑐𝑦𝑧 = 0 

The translational natural frequency in the Y axis 𝑓𝑌 and the rotational natural frequency about the 

Y axis 𝑓𝑛𝛽𝑦
, assuming linear behaviour are given by equations (6.2.4) (Harris C M 2002). 

𝑓𝑌 =
1

2𝜋
√

4𝑘𝑞

𝑚
       𝑎𝑛𝑑  𝑓𝛽𝑦

=
1

2𝜋
√

4𝑘𝑝

𝑚
(
𝛼𝑧

𝜌𝑦
)

2

+
4𝑘𝑟

𝑚
(
𝛼𝑥

𝜌𝑦
)

2

 (6.2.4) 

Where 𝜌𝑦 = √𝐼𝑦/𝑚 is the radius of gyration around the Y axis. The natural frequencies in the 

coupled modes 𝑓𝑋𝛽𝑧
 (lateral translation and pitch) and 𝑓𝑍𝛽𝑥

 (Longitudinal translation and roll) are: 

(
𝑓𝑋𝛽𝑧

𝑓𝑌
)

2

=
1

2
(𝐴 ± √𝐴2 − 4

𝑘𝑝

𝑘𝑞

𝛼𝑥
2

𝜌𝑧
2
)     𝑎𝑛𝑑   𝐴 =

𝑘𝑝

𝑘𝑞
(1 +

𝛼𝑦
2

𝜌𝑧
2) +

𝛼𝑥
2

𝜌𝑧
2

 

   

(
𝑓𝑧𝛽𝑥

𝑓𝑌
)

2

=
1

2
{𝐵 ± √𝐵2 − 4

𝑘𝑟

𝑘𝑞

𝛼𝑧
2

𝜌𝑥
2}   𝑎𝑛𝑑  𝐵 =

𝑘𝑟

𝑘𝑞
(1 +

𝛼𝑦
2

𝜌𝑥
2) +

𝛼𝑧
2

𝜌𝑥
2
   

(6.2.5) 
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Where 𝜌𝑥 = √𝐼𝑥/𝑚, 𝜌𝑧 = √𝐼𝑧/𝑚 is the radius of gyration around the X and Z axis respectively 

while 𝐼𝑥 and 𝐼𝑧 are the relevant moments of inertia. Stiffness elements 𝑘𝑝, 𝑘𝑞 and 𝑘𝑟 are defined 

as the equivalent stiffness corresponding to the principal elastic axis P, Q, R and in this case 𝑘𝑝 =

𝑘𝑥, 𝑘𝑞 = 𝑘𝑦 and 𝑘𝑟 = 𝑘𝑧. 

For these motions to become uncoupled, more isolators must be placed horizontally along the 

longitudinal and lateral directions between the body and a wall. When this is not possible, inclined 

isolators can be used to decouple the vibration modes (Jerome 2002). A mass mounted on inclined 

isolators system is illustrated in Figure 62. By arranging the supports in an inclined position, it is 

possible to make all the natural modes of vibration independent or decoupled. If the isolators are 

inclined in one plane then only the modes of vibration on that plane are decoupled. For example, 

the isolators shown in Figure 62 are inclined in the XY plane to decouple lateral translation and pitch 

motion. This is achieved when the line of action OOi converge on the centre of gravity or on the 

horizontal line passing through it.  

 

Figure 62: Diagram of a mass mounted in four inclined isolators, where w=width, h=height, l=length 

of mass, φ is the inclination angle and 𝛼𝑥, 𝛼𝑦 and 𝛼𝑧 are the distances between the centre of gravity 

of body and isolator. 

 For the system shown in Figure 62 the mass is supported by four identical isolators located 

symmetrically about the Y axis while the principal elastic axis Q, P, R are at an angle φ with the 

coordinate axis X, Y, Z. Planes XY and ZY are both planes of symmetry thus, axial translation and 

yaw rotation are decoupled from other modes. Assuming the principal elastic axis Q, P, R to be the 

main coordinate system and linear behaviour the natural frequencies in the axial translation 𝑓𝑌 (Y 

direction) and yaw rotation 𝑓𝛽𝑦
 are given by equations (6.2.6) (Harris C M 2002). 
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𝑓𝑌 =
1

2𝜋
√

4(𝑘𝑝 sin2 𝜑 + 𝑘𝑞cos
2 𝜑)

𝑚
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2

 

(6.2.6) 

Where, 𝜌𝑦 = √𝐼𝑦/𝑚 is the radius of gyration around the Y axis. The natural frequencies in the 

coupled modes 𝑓𝑋𝛽𝑧
 (lateral translation and pitch) and 𝑓𝑍𝛽𝑥

 (Longitudinal translation and roll) are: 

(
𝑓𝑋𝛽𝑧

𝑓𝑞
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(6.2.7) 

Where 𝑓𝑞 =
1

2𝜋
√

4𝑘𝑞

𝑚
 is a mathematical term used for convenience. The conditions of decoupling 

the lateral (X direction) and pitch modes are defined by equation (6.2.8) (Harris C M 2002). If 

longitudinal translation and roll motion were to be uncoupled, the isolators should be inclined in 

the YZ plane. 

 
𝑘𝑞

𝑘𝑝
=

𝛼𝑥
𝛼𝑦

+ 𝑡𝑎𝑛𝜑′

𝛼𝑥
𝛼𝑦

− 𝑐𝑜𝑡𝜑′
 (6.2.8) 

When equation (6.2.8) is satisfied the decoupled natural frequencies for lateral translation 𝑓𝑋 and 

pitch rotation 𝑓𝛽𝑧
 are given from equations: 

𝑓𝑋 =
1

2𝜋
√

4(𝑘𝑝 sin2 𝜑′ + 𝑘𝑞cos2 𝜑′)

𝑚
,    𝑓𝛽𝑧

=
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𝛼𝑥

𝜌𝑧
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 4𝑘𝑞𝑘𝑝

𝑚(𝑘𝑞 sin2 𝜑′ + 𝑘𝑝 cos2 𝜑′)
     (6.2.9) 
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 Details of experiment 

MRE samples 

Following the same procedure with the one mentioned in section (3.2) the simple MRE samples 

isotropic c, anisotropic c, parallel (sample 1c and sample 3c) and series (sample 2c) combination 

configuration were made as shown in Figure 63. Sample 3c consists of four anisotropic parts, two 

with particle alignment parallel to the axial direction and two perpendicular to it.  The dimensions 

of these samples were 20mm length and 34mm depth to fit exactly on the area of each left of the 

electromagnet core. The height was set to 5mm to achieve a small gap in the magnetic circuit and 

thus, a higher magnetic field. All anisotropic MREs were cured under a magnetic flux of 0.51 T that 

was produced by a double pair of permanent magnets. Therefore, these set of anisotropic samples 

were cured under a higher magnetic field than anisotropic a sample and is expected to have 

different mechanical properties. 

Composite samples were manufactured in two steps. For sample 1c, a cured anisotropic c sample 

was cut in 4 pieces of 8.5 mm x20mm each. Two of these parts when then placed back to the 

aluminium mould and the isotropic MRE was poured to fill the gaps.  For sample 3c, a cured 

anisotropic c sample was cut in 4 pieces of 5mm x 34mm each. Two of these pieces were then 

rotated by 900 (so that the particles were aligned in the longitudinal direction) and placed back to 

the mould. New anisotropic MRE was poured to fill in the gaps and the mould was left to cure again 

under a double set of permanent magnets as described in section (3.2). For sample 2c, the isotropic 

half was first made and after it had cured it was placed back to the mould and the anisotropic part 

was poured on top. The sample was then left to cure under a double set of magnets. 

 

Figure 63: MRE samples  

Test setup  

Both static and dynamic loading tests were performed using INSTRON PULS E1000 

electromechanical dynamic tester for a range of frequencies and load amplitudes. The samples 

where first preloaded under static load for four cycles to avoid the Mullins effect and then the 

dynamic loading cycles where performed under a static force. Two types of dynamic loading cycles 

were carried out at 0.06, 0.12 and 0.19 T magnetic flux values corresponding to 1,2 and 3 Amps 

electric current fed to the electromagnet. One amplitude sweep cycle, where the displacement 

amplitude increased from 0.025 to 0.15mm at a constant frequency of 5 Hz, and a second frequency 
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sweep cycle where the frequency was increased from 0.5Hz to 70 Hz at constant displacement 

amplitude of 0.05mm. The details of the dynamic test are mentioned in Table 27. The displacement 

amplitude and frequency sweep cycles for both pure compression and inclined isolators were 

performed under a static load of 80N. Since the pure compression isolator is much stiffer than the 

inclined one, the displacement amplitude was swept from 0.02mm to 0.08mm to get the same 

range of dynamic force values for both cases.   

Table 27: Summary of test loading cycles for dynamic tests. 

Test  Magnetic field 

Amplitude sweep 

Displacement amplitude (mm) 

1Amp=60 mT 

2Amp=120 mT 

3Amp=190 mT 

Pure compression 0.02,0.04,0.06,0.08 

Inclined 0.025,0.05,0.075,0.1,0.125,0.15 

Loading frequency 5 Hz  

Static load 80N 

Frequency sweep 

Displacement 

Amplitude 

0.05 mm 

Loading frequency (Hz) 0.5,1,5,10,20,30,40,50,60,70* 

Static load 80N 

Transmissibility 

Displacement 

Amplitude 

0.05 mm 

Frequency range 1 to 70Hz 

Static load 80N 

*The number of cycles was increased for each frequency in order to allow for the amplitude control feature 

of the wavematrix software to reach the desired amplitude with increasing frequency. 
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 Pure compression MRE isolator  

 Zero field device characterization  

The static load-displacement curves of all samples at zero field are presented in Figure 64. As 

expected anisotropic MRE is the hardest while isotropic the softest. Parallel configuration 

composite samples 1c and 3c have similar static stiffness while series configuration sample 2c is 

slightly softer as theory indicates. The stiffness of parallel sample 3c is slightly higher than sample 

1c due to its half anisotropic part with chains aligned perpendicular to the direction of the applied 

load that is slightly stiffer than pure isotropic MRE. These agree with the results of the compression 

tests on cube samples presented in chapter 5.  

 

Figure 64: Static force-displacement curves of pure compression isolator using anisotropic c, 
isotropic c, sample 1c sample 2c and sample 3c MREs. 

The variation of zero field dynamic stiffness |𝐾∗|, real K’ and K’’ imaginary component of dynamic 

stiffness and tangent of the loss angle 𝑡𝑎𝑛𝛿 with increasing displacement amplitude for all samples 

is illustrated in Figure 65. Dynamic stiffness |𝐾∗| decreases with increasing amplitude while tangent 

of the loss angle tanδ increases. These agree with the results of the compression tests on cube 

samples presented in chapter 5. As expected, the isolator with anisotropic MREs has the highest 

stiffness while composite samples sample 1c and 3c show similar dynamic stiffness values. 

However, the isolator with pure isotropic MRE has a higher dynamic stiffness than the isolator with 

the composite samples. This is because the 80N static load causes different static deformation 

(prestrain) for each type of MRE sample, as shown in Table 28 
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Figure 65: Zero field mechanical properties of compression isolator, in respect to displacement 
amplitude (at 5Hz frequency and 80N static load) 

 

Table 28: Static deflection and prestrain under 80N static force for compression isolator. 

 At 0T and 80N static load 

MRE sample Static deflection prestrain Static K 

Anisotropic c 0.25 mm 5% 320 KN/m 

Isotropic c 0.5 mm 10% 160 KN/m 

Sample 1c 0.34 mm 6.8% 235 KN/m 

Sample 2c 0.39 mm 7.8% 205 KN/m 

Sample 3c 0.33 mm 6.6% 242 KN/m 

Using equations from section (5.2) the static stiffness of composite samples with equal parts of 

isotropic and anisotropic MREs (α=b=1) are: 

Samples 1c and 3c in compression isolator:  𝐾 =
𝐾𝑖𝑠𝑜_𝑐+𝑎𝐾𝑎𝑛_𝑐

1+𝑎
=

320+160

2
= 240 KN/m 

Sample 2c in compression isolator:   𝐾 =
(𝑏+1)𝐾𝑖𝑠𝑜_𝑐𝐾𝑎𝑛_𝑐

𝑏𝐾𝑎𝑛_𝑐+𝐾𝑖𝑠𝑜_𝑐
=

2∗320∗160

320+160
=213 KN/m 
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Where 𝐾𝑖𝑠𝑜_𝑐 and 𝐾𝑎𝑛_𝑐 are the static stiffnesses of isotropic c and anisotropic c samples in pure 

compression isolator, mentioned in Table 28, respectively. As described analytically in section (4.4), 

the dynamic stiffness under pure compression load increases greatly with increasing prestrain 

values. Isotropic MREs are much softer than composite samples and thus, the static deformation 

caused by the 80N load is much higher leading to dynamic stiffness values similar to composite 

samples. Because sample 2c is softer it is pre compressed by 1% more than sample 1c under the 

same 80N static force. Thus, dynamic stiffness of sample 2c becomes as high as the dynamic 

stiffness of samples 1c and 3c. Tangent of loss factor tanδ of composite samples is between the 

ones of isotropic and anisotropic MREs as expected. 

The variation of dynamic stiffness |𝐾∗|, real K’ and K’’ imaginary component of dynamic stiffness 

and tangent of the loss angle tanδ with increasing loading frequency is illustrated in Figure 66. 

Dynamic stiffness |𝐾∗|  and real component of dynamic stiffness K’ rises slightly with increasing 

frequency, while tangent of the loss angle tanδ and imaginary component of dynamic stiffness K’’ 

increases until about 10Hz to decrease slowly for higher frequency values. The results agree with 

the ones presented in chapter 5 regarding pure compression tests in anisotropic, isotropic and their 

combination composite samples.  

 

Figure 66: Zero field mechanical properties of compression isolator, in respect to frequency (at 
0.05mm displacement amplitude and 80N static load). 
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Effect of magnetic field 

The magnetorheological effect of real K’ and imaginary K’’ components of dynamic stiffness of all 

samples in the pure compression isolator at 0.04mm displacement amplitude is shown in Figure 67. 

The MR effect of dynamic stiffness |𝐾∗|, real K’ and K’’ imaginary component of dynamic stiffness 

and tangent of the loss angle tanδ in respect to displacement amplitude Xo and current I fed to the 

electromagnet for isotropic c, anisotropic c and composite samples 1c, 2c and 3c is presented in 

Figure 68, Figure 69, Figure 70, Figure 71 and  Figure 72 respectively. Isotropic MRE showed the 

lowest MR effect of 38% at 3 Amps. The MR effect of isotropic/anisotropic parallel sample 1c is 50% 

that is between the isotropic and anisotropic MREs. Anisotropic, series isotropic/anisotropic sample 

2c and anisotropic/anisotropic sample 3c have all similar MR effect of about 65% for both 

components of dynamic stiffness.  

MR effect of both components of dynamic stiffness decreases as displacement amplitude increases 

for all samples while MR effect of imaginary component of dynamic stiffness K’’ is 5 % higher of MR 

effect of real component of dynamic stiffness K’ for all samples except isotropic MRE. The result is 

a 5% positive MR effect of tanδ for all samples except isotropic MRE where it becomes negative at 

-5 %, which does not vary with increasing magnetic field or strain amplitude. Therefore, damping 

capability of all samples is not affected from the magnetic field.  

 

Figure 67: MR effect of real K’ and K’’ imaginary component of dynamic stiffness (compression) 
for all samples in respect to electric current I (at 0.04mm displacement amplitude, 5Hz frequency 

and 80N static force). 
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Figure 68: MR effect of isotropic c MRE (compression) in respect to displacement amplitude Xo 
and electric current I (at 5Hz and 80N static force). 

 

Figure 69: MR effect of anisotropic c MRE (compression) in respect to displacement amplitude Xo 
and electric current I (at 5Hz and 80N static force). 
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Figure 70: MR effect of parallel configuration composite sample 1c MRE (compression) in respect 
to displacement amplitude Xo and electric current I (at 5Hz and 80N static force). 

 

 

Figure 71: MR effect of series configuration composite sample 2c MRE (compression) in respect to 
displacement amplitude Xo and electric current I (at 5Hz and 80N static force). 
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Figure 72: MR effect of parallel configuration composite sample 3c MRE (compression) in respect 
to displacement amplitude Xo and electric current I (at 5Hz and 80N static force). 
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On-off operation 

Figure 73 illustrates the displacement and load time sequences of pure compression isolator with 

anisotropic c MRE samples under 80N static load, 30N dynamic load and 1Hz frequency. The second 

graph corresponds to the actual displacement data recorded, where the change in the static 

displacement with the applied field is obvious. The last graph illustrates only the dynamic 

displacement when the static component was subtracted. The effect of the magnetic field is instant 

and irreversible in both on and off stages. However, the variation of the static stiffness in such a 

test configuration where there are no movement constrictions in the axial direction is the dominant 

trend.  

 

Figure 73: Displacement and load time sequences of pure compression isolator with anisotropic c 
MRE samples under 30N dynamic load and 1Hz frequency. 
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Figure 74 illustrates a zoomed version of the previous force and displacement time sequences when 

the 3 Amps electric current is switched on and off again. The transition period from zero to three 

amps is smooth and reversible regarding both static and dynamic displacement. Figure 75 illustrates 

the dynamic load amplitude, displacement amplitude and dynamic stiffness amplitude |𝐾∗| when 

the 3 Amps electric current is switched on and off. These values are provided from Instron Puls 

DMA calculation software and are in respect to cycles (one full period) since dynamic stiffness needs 

one full cycle to be calculated. In this test the load frequency was 5Hz thus, one cycle is 0.2sec. The 

anisotropic compression isolator needs 11 cycles or 2.2 seconds to reach a steady state when the 

current is switched on and off again.  

 However, the time response of the MRE isolator depends mostly on the speed and accuracy of the 

power source that provides the current to the electromagnet and the magnetic circuit of the 

electromagnet itself. When the power source cannot provide a stabilized electric current or needs 

more time to reach a stable level the response of the isolator will be slower or even unstable. In 

addition, if the magnetic circuit has high losses it will need more time to produce a stable magnetic 

field especially in the case of AC electric current or when the DC electric current is switched on and 

off very fast.  

 

Figure 74: Dynamic load and displacement of compression anisotropic MRE isolator at the time 
when the electric current is switched on and off (at 30N amplitude and 1Hz frequency). 
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Figure 75: Dynamic force amplitude (5 Hz frequency), displacement amplitude and stiffness of 
compression isolator with anisotropic MREs in an ON-OFF operation. One cycle is 0.2 sec. 
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 Inclined MRE isolator  

Zero field device characterization  

The zero-field static force-displacement curves for all samples in the inclined isolator are presented 

in Figure 76. Isotropic c MRE is the softest followed by isotropic/anisotropic series configuration 

sample 2c and then parallel configuration sample 2c. In the case of inclined isolator composite 

sample 3c has the same static stiffness with anisotropic sample. This is due to the direction of the 

particles in each anisotropic part (part 1 and 2) as illustrated in Figure 77. When a vertical force F is 

applied to the 450 inclined isolator, the MRE is subjected to equal shear and compression load 

components Fs and Fc respectively. Part 1 of MRE sample 3c has its particles aligned perpendicular 

to the shear force Fs and parallel to the compression force Fc, while part 2 the other way around.  

 

Figure 76: Zero field static stiffness-displacement curves of inclined isolator using anisotropic c, 
isotropic c, sample 1c sample 2c and sample 3c MREs. 

 

Figure 77: Diagram of loading modes of composite sample 3c in inclined isolator 

In pure compression, the stiffness of anisotropic MREs with particles perpendicular to the direction 

of the applied compression force is close to the pure isotropic sample (section 5.5). However, this 



Chapter 6 

124 

is not valid under shear loading conditions. It has been reported that the zero-field shear modulus 

G of anisotropic MREs with particles aligned perpendicular to the applied shear force is higher than 

the one with particles aligned parallel to the direction of the shear force (Boczkowska A 2012), 

(Schubert G 2015). For composite MRE sample 3c this means that shear stiffness of part 2 will be 

higher than the stiffness of part 1 as well as the pure anisotropic c sample.  Thus, composite sample 

3c has higher stiffness in shear than pure anisotropic c MRE but lower in compression. Since in 

inclined isolator the MRE is subjected to both shear and compression forces, the total static stiffness 

of sample 3c becomes equal to the pure anisotropic sample. 

The variation of zero field dynamic stiffness |𝐾∗|, real K’ and imaginary K’’ components of dynamic 

stiffness and tangent of the loss angle 𝑡𝑎𝑛𝛿 with increasing displacement amplitude for isotropic c, 

anisotropic c and composite samples 1c, 2c and 3c are illustrated in Figure 78. Dynamic stiffness 

|𝐾∗| decreases with increasing amplitude while tangent of the loss angle tanδ increases. These 

results are expected since MR elastomers under pure shear loading conditions behave in a similar 

manner to pure compression (Opie S 2011). The isolator with anisotropic MREs has the highest 

dynamic stiffness, the one with isotropic the lowest and all composite MREs have a similar dynamic 

stiffness that is between pure isotropic and anisotropic values. This is attributed to the different 

prestrain caused by 80N static force that affects the value of zero field compression dynamic 

stiffness.  

In this case, the static deflections caused by 80N static force are much higher than the pure 

compression isolator. However, dynamic stiffness is not as sensitive to static prestrain because the 

dynamic shear stiffness component is independent of prestrain. The inclined isolator with 

anisotropic MRE is pre compressed by 0.19 mm more than the inclined isolator with isotropic MRE 

while for the pure compression isolator the equivalent difference was 0.25mm.  

For samples 1c and 2c in inclined isolator: 

Sample 1c in inclined isolator:    𝐾 =
𝐾𝑖𝑠𝑜_𝑖𝑛+𝑎𝐾𝑎𝑛_𝑖𝑛

1+𝑎
=

123+95

2
= 109 

Sample 2c in inclined isolator:    𝐾 =
(𝑏+1)𝐾𝑖𝑠𝑜_𝑖𝑛𝐾𝑎𝑛_𝑖𝑛

𝑏𝐾𝑎𝑛_𝑖𝑛+𝐾𝑖𝑠𝑜_𝑖𝑛
=

2∗123∗95

123+95
=107 

Where 𝐾𝑖𝑠𝑜_𝑖𝑛 and 𝐾𝑎𝑛_𝑖𝑛 are the static stiffness’s of isotropic c and anisotropic c samples in inclined 

isolator, mentioned in Table 29. Static stiffness of anisotropic/anisotropic sample 3c cannot be 

predicted form the above equations since it is equal to the stiffness of pure anisotropic sample. 

Thus for the composite samples under combined shear/compression loads the static and dynamic 

stiffness can not be predicted accurately by simple equations (5.2.4),(5.2.5), (5.2.12) and (5.2.13). 
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Figure 78: Zero field mechanical properties of inclined isolator will isotropic c, anisotropic c, 
sample 1c, sample 2c and sample 3c in respect to displacement amplitude (at 5Hz frequency and 

80N static load) 

 

Table 29: Static deflection and prestrain caused to inclined isolator by 80N static force. 

 Inclined isolator 

MRE sample Static deflection prestrain Static K 

Anisotropic c 0.65 mm 13% 123 (KN/mm) 

Isotropic c 0.84 mm 17% 95 (KN/mm) 

Sample 1c 0.75 mm 15% 107 (KN/mm) 

Sample 2c 0.78 mm 16% 103 (KN/mm) 

Sample 3c 0.65 mm 13% 123 (KN/mm) 

Composite anisotropic/anisotropic sample 3c has the same real dynamic stiffness K’ with 

isotropic/anisotropic samples 1c and 2c but the imaginary component of dynamic stiffness K’’ is 

40% higher. As a result, tangent of loss angle tanδ becomes 10% greater than the anisotropic 
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sample itself. Therefore, composite sample 3c has the same zero field static stiffness, same dynamic 

stiffness and higher tangent of loss angle tanδ with anisotropic MRE.  

The variation of dynamic stiffness |𝐾∗|, real K’ and K’’ imaginary component of dynamic stiffness 

and tangent of the loss angle tanδ with increasing load frequency are illustrated in Figure 79. 

Dynamic stiffness |𝐾∗| rises slightly with increasing frequency, while tangent of the loss angle 

increases until about 10Hz to decrease slowly for higher frequency values. The results agree with 

the ones presented in previous section (6.3) regarding pure compression isolator. Therefore, in 

respect to load frequency the inclined isolator behaves in the same manner with the pure 

compression isolator. 

 

Figure 79: Zero field mechanical properties of inclined isolator will isotropic c, anisotropic c, 
sample 1c, sample 2c and sample 3c in respect to frequency (at 0.05mm displacement amplitude 

and 80N static load) 
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Magnetorheological effect 

The increase in static stiffness, measured at 80N static force, for all samples when the 

electromagnet is fed with 1, 2 and 3 Amps Electric current is presented in Table 30. In this case 

where the MREs are under combined shear/compression loading conditions, the highest MR effect 

is observed for the isotropic/anisotropic series composite MRE sample 2c. The isotropic MRE 

follows then while the anisotropic MRE has the lowest MR effect of all. Isotropic/anisotropic sample 

1c has the same MR effect with anisotropic MRE while the MR effect of anisotropic/anisotropic 

composite sample 3c is 11% higher than the one of the anisotropic sample. 

The effect of the magnetic field on dynamic stiffness |𝐾∗|, real K’ and imaginary K’’ components of 

dynamic stiffness and tangent of the loss angle 𝑡𝑎𝑛𝛿 is presented in Figure 80. Dynamic stiffness of 

all samples increases significantly with increasing magnetic field while imaginary component of 

dynamic stiffness K’’ has a higher MR effect than the real component K’.  The highest MR effect, of 

48% for K’ and 68% for K’’, is observed for the pure anisotropic c sample and the lowest of 26% and 

30% respectively for the isotropic MRE. Anisotropic-isotropic series configuration composite 

sample 2c has the same MR effect of real component of dynamic stiffness K’ with anisotropic MRE 

but a 10% lower MR effect of imaginary K’’ dynamic stiffness. Anisotropic/anisotropic parallel 

configuration sample 3c has the same MR effect with anisotropic MRE for both components of 

dynamic stiffness. 

Table 30: Static stiffness MR effect of pure compression and inclined MRE isolator device. 

 Static stiffness at 80 N 

(KN/mm) 

MR effect (%) 

Current I (A) 0 1 A 2 A 3 A 1 A 2 A 3 A 

Anisotropic c 123 136 170 206 11 38 68 

Isotropic c 95 132 165 195 39 74 105 

Sample 1c 107 120 150 182 12 41 70 

Sample 2c 103 121 173 227 17 68 120 

Sample 3c 123 145 175 223 18 49 81 

The variation of MR effect in respect to displacement amplitude Xo and electric current I for 

anisotropic, isotropic, sample 1c, sample 2c and sample 3c is presented in Figure 81, Figure 82, 

Figure 83, Figure 84 and Figure 85 respectively. The MR effect of dynamic stiffness increases with 

increasing displacement amplitude while there is a strong MR effect of tan− displacement 
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amplitude coupling effect. For all samples, MR effect of the dynamic stiffness is lower than the one 

for the pure compression isolator but the MR effect of tangent of loss angle tan is higher. 

 

Figure 80: MR effect of real K’ and K’’ imaginary component of dynamic stiffness (inclined) for all 
samples in respect to electric current I (at 0.04mm displacement amplitude, 5Hz frequency and 

80N static force). 

 

 

Figure 81: MR effect of anisotropic c MRE (inclined) in respect to displacement amplitude Xo and 
electric current I (at 5Hz and 80N static force). 
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Figure 82: MR effect of isotropic c MRE (inclined) in respect to displacement amplitude Xo and 
electric current I (at 5Hz and 80N static force). 

 

Figure 83: MR effect of parallel configuration composite sample 1c MRE (inclined) in respect to 
displacement amplitude Xo and electric current I (at 5Hz and 80N static force). 
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Figure 84: MR effect of series configuration composite sample 2c MRE (inclined) in respect to 
displacement amplitude Xo and electric current I (at 5Hz and 80N static force). 

 

 

Figure 85: MR effect of composite sample 3c MRE (inclined) with two anisotropic parts in respect 
to displacement amplitude Xo and electric current I (at 5Hz and 80N static force). 
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On-off operation 

Figure 86 illustrates the displacement and load time sequences of pure compression isolator with 

anisotropic c MRE samples under 80N static load, 15N dynamic load amplitude and 5Hz frequency. 

The second graph corresponds to the actual displacement channel recorded, while the third graph 

illustrates only the dynamic displacement when the static component was subtracted. The effect 

of the magnetic field is instant and irreversible in both on and off stages as shown in the last graph. 

However, the variation of the static stiffness is again the dominant trend although the change is 

less than the pure isotropic isolator case. 

 

Figure 86: Displacement and load time sequences of inclined isolator with anisotropic c MRE 
samples under 15N dynamic load and 5Hz frequency. 
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Figure 87Figure 74 illustrates a zoomed version of the previous force and displacement time 

sequences when the 3 Amps electric current is switched on and off again. The transition period 

from zero to three amps is smooth and reversible regarding both static and dynamic displacement. 

Figure 88 illustrates the dynamic load amplitude, displacement amplitude and dynamic stiffness 

amplitude |𝐾∗| of the same signals when the 3Amps electric current is switched on and off. These 

values are provided from Instron Puls DMA calculation software and are in respect to cycles (one 

full period) since dynamic stiffness needs one full cycle to be calculated. In this test load frequency 

was 5Hz thus, one cycle is 0.2sec. The anisotropic inclined isolator needs 7 cycles or 1.4 seconds to 

reach a steady state when the current is switched on and off again.  

Compared to the 11cycles or 2.2 seconds rise time of the anisotropic compression MRE isolator, 

the inclined configuration is much faster. This could be due to the smaller dynamic stiffness or the 

design of the magnetic circuit. In the inclined isolator the top part is made from laminated sheets 

like the rest of core but in the compression isolator the top part is a low carbon solid steel bar that 

has higher losses. The magnetic field produced in the gap where the MRE samples are placed will 

be similar for both isolators, but the magnetic circuit of the compression isolator is slower.   

 

Figure 87: Dynamic load and displacement of inclined anisotropic MRE isolator at the time when 
the electric current is switched on and off. 
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Figure 88: Dynamic force amplitude (5 Hz frequency), displacement amplitude and stiffness of 
inclined isolator with anisotropic MREs in an ON-OFF operation. 
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 Principal elastic dynamic stiffness ratio of inclined isolator  

In the inclined test system used in this study, there are two planes of symmetry around the 

longitudinal Z and the lateral X axis. Thus, translational motion in the axial direction (Y axis) and yaw 

rotation are decoupled from the other modes. Assuming a plane defined by axis X and Y coordinate 

system (as illustrated in Figure 89) where all forces and displacement are restricted (no rotations), 

the components of force and displacement on X and Y axis are defined as 𝐹𝑥, 𝐹𝑦, 𝛿𝑥  and 𝛿𝑦 

respectively. The equations of motion for the MR elastomers can be found by setting in the general 

system equations (6.2.1) all moments, rotations and substrate movements to zero.  

 [
𝐹𝑥

𝐹𝑦
] = [

𝑘11 𝑘12

𝑘21 𝑘22
] [

𝛿𝑥

𝛿𝑦
] + [

𝑐11 𝑐12

𝑐21 𝑐22
] [

𝛿𝑥̇

𝛿𝑦̇

] (6.6.1) 

 

Figure 89: Forces on the inclined isolator 

Where 𝑘11 = 2𝑘𝑥𝑥 , 𝑘12 = 𝑘21 = 2𝑘𝑥𝑦, 𝑘22 = 2𝑘𝑦𝑦 and 𝑐11 = 2𝑐𝑥𝑥 , 𝑐12 = 𝑐21 = 2𝑐𝑥𝑦, 𝑐22 =

2𝑐𝑦𝑦 . For each MRE, principal stiffness  𝑘𝑥𝑥 = 𝐹𝑥𝑥/𝑑𝑥  is defined as the ratio of the applied force 

in the x direction 𝐹𝑥𝑥 to the resulting displacement when the rubber is constrained to deflect only 

in the x direction, and 𝑘𝑦𝑦 = 𝐹𝑦𝑦/𝑑𝑦  as the ratio of the applied force in the Y direction 𝐹𝑦𝑦 to the 

resulting displacement when the rubber is constrained to deflect only in the Y direction. Due to the 

inclined position there are two additional coupling stiffness elements, 𝑘𝑥𝑦 = 𝐹𝑥𝑦/𝑑𝑦 defined as the 

ratio of the force that has to be applied in the x direction 𝐹𝑥𝑦 to cause a unit displacement in the Y 

direction when the isolator is constrained to deflect only in the y direction and 𝑘𝑦𝑥 = 𝐹𝑦𝑥/𝑑𝑥 

defined as the ratio of the force that has to be applied in the Y direction 𝐹𝑦𝑥 to cause a unit 

displacement in the X direction when the isolator is constrained to deflect only in the X direction. 

The principal and coupling damping elements are defined accordingly.  

When the principal elastic axis P, Q are selected as the new coordinate system, the stiffness and 

damping coefficients in the original XY system can be expressed in terms of principal stiffness and 

damping elements 𝑘𝑝, 𝑐𝑝 and 𝑘𝑞  𝑐𝑞  (Harris C M 2002). 
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𝑘𝑥𝑥 = 𝑘𝑞 cos2 𝜃 + 𝑘𝑝 sin2 𝜃 

𝑘𝑦𝑦 = 𝑘𝑞 sin2 𝜃 + 𝑘𝑝 cos2 𝜃 

𝑘𝑥𝑦 = 𝑘𝑦𝑥 = (𝑘𝑞 − 𝑘𝑝) sin𝜃 cos𝜃 

𝑐𝑥𝑥 = 𝑐𝑞 cos2 𝜃 + 𝑐𝑝 sin2 𝜃 

𝑐𝑦𝑦 = 𝑐𝑞 sin2 𝜃 + 𝑐𝑝 cos2 𝜃 

𝑐𝑥𝑦 = 𝑐𝑦𝑥 = (𝑐𝑞 − 𝑐𝑝) sin 𝜃 cos 𝜃 

(6.6.2) 

Where θ is the inclination angle. For θ=450   the forces applied to each principal elastic axis Q and P 

are equal 𝐹𝑞 = 𝐹𝑝
 and the above equations (6.5.2) become: 

 

𝑘𝑥𝑥 = 𝑘𝑦𝑦 =
𝑘𝑞 + 𝑘𝑝

2
    , 𝑘𝑥𝑦 = 𝑘𝑦𝑥 =

(𝑘𝑞 − 𝑘𝑝)

2
 

𝑐𝑥𝑥 = 𝑐𝑦𝑦 =
𝑐𝑞 + 𝑐𝑝

2
   , 𝑐𝑥𝑦 = 𝑐𝑦𝑥 =

(𝑐𝑞 − 𝑐𝑝)

2
 

(6.6.3) 

In this case, the only acting force is a compression force in the axial (Y axis) direction 𝐹𝑦 that causes 

a translational displacement 𝛿𝑦 in the same direction thus,  𝐹𝑥 = 𝛿𝑥 = 0. Substituting equations 

(6.5.3) to force-deflection equations (6.5.1) for two rubber samples and setting 𝐹𝑥 = 𝛿𝑥 = 0 we 

get: 

 𝐹𝑦 = 2𝑘𝑦𝑦𝛿𝑦 + 2𝑐𝑦𝑦𝛿𝑦̇ = (𝑘𝑞 + 𝑘𝑝)𝛿𝑦 + (𝑐𝑞 + 𝑐𝑝)𝛿𝑦̇  (6.6.4) 

And in mass (m)- inclined MRE isolator system the natural frequency would be 𝑓𝑌 =
1

2𝜋
√

(𝑘𝑝+𝑘𝑞)

𝑚
. 

In the case of the pure compression isolator where the MREs are subjected again to a force acting 

in the axial direction (Y) 𝐹′𝑦 that causes a translational displacement 𝛿′𝑦 in the same direction, the 

equation of motion is: 

 𝐹′𝑦 = 2𝑘𝑦𝛿′𝑦 + 2𝑐𝑦𝛿′𝑦̇ = 2 𝑘𝑞′𝛿′𝑦 + 2 𝑐𝑞′𝛿′𝑦̇  (6.6.5) 

And in mass (m)- compression MRE isolator system the natural frequency would be 𝑓′𝑌 =
1

2𝜋
√

2𝑘𝑞

𝑚
. 

The above equations are valid for a linear system where 𝑘𝑞, 𝑐𝑞 and  𝑘𝑝, 𝑐𝑝 are independent of load 

amplitude, frequency and static prestrain. The principal stiffness and damping ratios 𝑘𝑝/𝑘𝑞 and 

𝑐𝑝/𝑐𝑞 could then be easily determined by equations (6.6.5) and (6.6.4) and the experimental data 

presented in sections (6.3) and (6.4) since the MRE samples and electromagnet used in both cases 

were the same.  However, pure compression stiffness coefficient  𝑘𝑞 depends on static prestrain 

and load amplitude. When an 80N static load applied on the inclined isolator the load 
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corresponding to the principal stiffness axis 𝐹𝑞 = 𝐹 𝑠𝑖𝑛45 = 𝐹
√2

2
= 57𝑁. The pure compression 

stiffness and damping coefficients  𝑘𝑞 and  𝑐𝑞 to be used in equation (6.5.4) is the one for 57N static 

force and 𝛿𝑦 = 𝛿𝑦𝑠𝑖𝑛45 = 0.035𝑚𝑚 dynamic displacement. The shear stiffness and damping 

coefficients  𝑘𝑝 and  𝑐𝑝 can then be found by equations 𝐾′ = 𝑘𝑞 + 𝑘𝑝 and 𝐾′′ = 𝜔(𝑐𝑞 + 𝑐𝑝) where 

K’ and K’’ are the real and imaginary components of the inclined isolator and are presented in Table 

31. The principal stiffness and damping ratios 𝑘𝑝/𝑘𝑞 and 𝑐𝑝/𝑐𝑞 for isotropic and composite sample 

1c increase with increasing magnetic field while for sample 2c they decrease. Samples 1c and 3c  

showed the greatest variation of  stiffness ratio with magnetic field while sample 2c the lowest.  

Table 31: Principal stiffness coefficient for all samples  

  Compression 

(57N, 0.035mm) 

Inclined 

(80N,0.05mm) 

    

I (Amps)   𝒌𝒒 𝝎𝒄𝒒 𝑲′ 𝑲′′  𝒌𝒑 𝝎𝒄𝒑  𝒌𝒒

 𝒌𝒑
 

 𝒄𝒒

 𝒄𝒑
 

0 

Isotropic 

231 17.5 342 27.24 111 10.74 2.08 1.63 

1 261 19.7 369.7 30.1 108.7 10.4 2.40 1.89 

2 286.5 21.4 401.2 31.46 114.7 10.06 2.50 2.13 

0 

Anisotropic 

320 40 500 62 180 22 1.78 1.82 

1 400 51 580 81 180 30 2.22 1.70 

2 475 64 693 96 218 32 2.18 2.00 

0 

Sample 1c 

282.8 30.5 423 48 140.2 17.5 2.02 1.74 

1 330.5 37.25 460 55 129.5 17.75 2.55 2.10 

2 410 45.5 514 62.5 104 17 3.94 2.68 

0 

Sample 2c 

225 18.75 409 42.3 184 23.55 1.22 0.80 

1 252.3 22.5 452 51.5 199.7 29 1.26 0.78 

2 271.9 25 524 60 252.1 35 1.08 0.71 

0 

Sample 3c 

285 32 394.2 51.6 109.2 19.6 2.61 1.63 

1 356 42.5 457 56 101 13.5 3.52 3.15 

2 427.5 46.5 521 77 93.5 30.5 4.57 1.52 
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 Discussion 

The load-displacement hysteresis curves of anisotropic MREs in pure compression and inclined 

isolators, under 0.08mm (1.6% strain) and 0.02 (4% strain) mm displacement amplitudes are 

presented in Figure 90. For small displacement values, less than 1% strain amplitude, the hysteresis 

curves are pure ellipses and the MREs are behaving in a linear manner. As displacement amplitude 

increases, the hysteresis curves become distorted and the MRE behaves in a nonlinear manner. In 

the case of the 45 degrees inclined isolator the MRE is subjected to equal compression and shear 

loads but since all rubbers behave more linearly under pure shear than pure compression, the 

hysteresis curves of the inclined isolator are closer to an ellipse compared to those of the pure 

compression isolator at 0.08mm displacement amplitude. Thus, the inclined MRE isolator can 

behave in a linear manner for higher displacements than the pure compression isolator. Isotropic 

and composite MREs show the same behaviour. 

 

Figure 90: Zero field load-displacement hysteresis curves of pure compression and inclined 
isolator with anisotropic c MRE sample at 0.08mm and 0.02mm displacement amplitude (at 5Hz 

frequency and 80N static load) 

Under pure compression the particles of anisotropic MREs are aligned in the same direction of the 

applied force and magnetic field, while for the inclined setup system the particle chains are in the 

same direction with the applied magnetic flux but in 45 degrees angle with the direction of the 

applied force as Figure 91 illustrates. If the principal elastic axis Q, P are chosen as reference, the 

compression component of the applied force 𝐹𝑞 = 𝐹 𝑠𝑖𝑛𝜃 will be parallel to the direction of the 

magnetic flux and particle alignment while the shear component 𝐹𝑝 = 𝐹 𝑐𝑜𝑠𝜃 perpendicular. 

However, if the force is applied in the lateral x direction the MRE in the compression isolator will 

work in pure shear mode with the force being perpendicular to the direction of the magnetic flux 

and particle alignment. In the inclined isolator, the movement of the top part is constrained by the 
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frame of the electromagnet and a force applied in the x direction will only cause a compressive 

force that is in 45 degrees with the particle alignment and magnetic flux. Therefore, the 

magnetorheological effect will be different than the one of pure compression for all samples and 

cannot be defined by this experimental setup system.   

 

Figure 91: Magnetic flux direction of the inclined and compression isolator with anisotropic MRE 
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 Chapter summary

In this chapter, the composite isotropic/anisotropic and anisotropic/anisotropic MREs were tested 

in practice by examining the mechanical properties of a MRE prototype isolator working in pure 

compression and compression/shear (inclined) mode. The experimental data were then used to 

determine the principal elastic axis stiffness ratio 
𝑘𝑝

𝑘𝑞
 and how this is influenced by the magnetic 

field. The general behaviour of the composite samples in pure compression and shear /compression 

mixed mode isolator can be summarized as: 

• MR effect of dynamic stiffness is higher in pure compression isolator than the inclined isolator. 

• MR effect of tangent of loss angle tan is higher in inclined isolator than pure compression. 

• The effect of the magnetic field is instant and irreversible in both on and off stages.  

• For the pure compression isolator, Isotropic MRE showed the lowest MR effect of 38% at 3 

Amps while the MR effect of isotropic/anisotropic parallel sample 1c is 50%. Anisotropic, series 

isotropic/anisotropic sample 2c and anisotropic/anisotropic sample 3c have all similar MR 

effect of about 65% for both components of dynamic stiffness. MR effect of both components 

of dynamic stiffness decreases as displacement amplitude increases while damping capability 

is not affected from the magnetic field. 

• For the inclined isolator, imaginary component of dynamic stiffness K’’ has a higher MR effect 

than the real component K’.  The highest MR effect, of 48% for K’ and 68% for K’’, is observed 

for the pure anisotropic c sample and the lowest of 26% and 30% respectively for the isotropic 

MRE. Anisotropic/isotropic series configuration composite sample 2c has the same MR effect 

of K’ with anisotropic MRE but a 10% lower MR effect K’’. Anisotropic/anisotropic parallel 

configuration sample 3c has the same MR effect with anisotropic MRE for both components 

of dynamic stiffness. 

• In the inclined isolator composite sample 3c has the same zero field static stiffness, lower 

dynamic stiffness, higher tanδ and same MR effect with anisotropic MRE.  

• The principal elastic axis stiffness 
𝑘𝑝

𝑘𝑞
 and damping ratio 

𝑐𝑝

𝑐𝑞
 changes with the magnetic field for 

all samples.  
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Chapter 7: Simulation of a single degree of freedom 

mass – MRE inclined isolator system 

  Introduction  

The last chapter of the theses is focused on examining how the inclined and compression MRE 

isolators can find applications in the marine industry and present the advantages of the combined 

isotropic/anisotropic and anisotropic/anisotropic MREs in practical applications. In more detail the 

purpose of this chapter is to:  

• Produce a dynamic force and electric current dependent viscoelastic model of the inclined and 

compression MRE isolator. Since the model is about the device itself the electric current 

supplied to the electromagnet was used as a variable instead of magnetic field, so the dynamics 

of the power supply are also included. 

• Simulate the force and displacement transmissibility of a single degree of freedom mass-MRE 

isolator system of all the MRE samples to compare their performance.   

• Examine the principle of using the inclined MRE isolator to improve stability of a mass-isolator 

system under loading conditions that represent ship motion by varying the translational and 

rotational static stiffness. 

• Examine the possible performance of MREs as base isolators for a marine oil separator when 

a simple ON-OFF control strategy is used to shift the natural frequency and decrease 

transmitted vibrations during starting up and closing stages. 
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 Force dependent viscoelastic model of MRE isolator 

The aim of this section is to provide a viscoelastic model capable of predicting the static and 

dynamic response of the compression and inclined MRE isolator presented in chapter 6. Thus, 

taking also under consideration the general conclusion of the tests performed in chapter 4 the 

following assumptions were made:  

• Dynamic stiffness and damping depend on: 

➢ Amplitude of dynamic load 

➢ Magnetic field. Since the model is about the isolator device as a system the values of the 

electric current 𝐼 supplied to the electromagnet are used as a variable instead of magnetic 

field B. 

• There is a strong magnetic field-load amplitude coupling effect 

• There is a strong magnetic field-static load coupling effect 

The following were ignored: 

- Effect of frequency on dynamic properties. 

- The weak static load-dynamic load amplitude coupling effect. 

- The weak load amplitude-frequency coupling effect. 

- The weak magnetic field-frequency coupling effect. 

- The effect of static prestrain  

The variation of dynamic stiffness and damping with static strain is modelled only for one applied 

load amplitude value, while it is assumed to follow the same curve for all other amplitudes but with 

different absolute values.  

 

Figure 92: Nonlinear dynamic force dependent model 

The basic idea behind the model is to use a nonlinear spring 𝑘1and dashpot 𝑐1 in the Maxwell chain 

to represent the strong dependence on input force and magnetic field as well as their coupling 

effects. To express dynamic stiffness K* as a function of the applied force 𝑓(𝑡) rather than the 

displacement 𝑥(𝑡) the Maxwell element dashpot 𝑐 and spring 𝑘 are replaced by mobility [𝑐]−1 and 
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receptance  [𝑘]−1 respectively that depend on dynamic force 𝑓𝑑(𝑡)  , electric current I and static 

load 𝑓𝑠𝑡. Assuming the MRE isolator is always prestressed under a static force 𝑓𝑠𝑡 where a general 

dynamic force 𝑓𝑑(𝑡) is superimposed, the total displacement 𝑥(𝑡) will be the sum of the static 

displacement 𝑥𝑠𝑡 caused by the static force and the dynamic one  𝑥𝑑(𝑡) due to the dynamic force. 

 𝑥(𝑡) = 𝑥𝑠𝑡 + 𝑥𝑑(𝑡) (7.2.1) 

Since both MRE isolators exhibit a non-linear static force-displacement behaviour, the static 

displacement can be expressed as two polynomial functions. The first one represents the static 

displacement caused by the static force at zero field and the second represents the change on the 

static displacement when the magnetic field is applied. 

 𝑥𝑠𝑡 = ∑𝑘𝑠𝑡𝑗𝑓𝑠𝑡
𝑗

𝐽𝑠𝑡

𝑗=1

+ ∑ 𝑘𝐼𝑗𝐼
𝑗

𝐽𝐵𝑠𝑡

𝑗=1

𝑓𝑠𝑡 (7.2.2) 

Where 𝑘𝑠𝑡𝑗 and 𝑘𝑠𝑡𝑖𝑗 are parameters to be defined by the experimental data. 

The total dynamic displacement that the MR elastomer undergoes under the applied force will be 

the sum of the dynamic displacements at each branch. 

 𝑥𝑑(𝑡) = 𝑥𝑘 + 𝑥𝑐 (7.2.3) 

where 𝑥𝑘 = 𝑥2 − 𝑥1 and  𝑥𝑐 = 𝑥3 − 𝑥2 are the relative displacements on the spring 𝑘 and dashpot  

𝑐. The use of receptance and mobility allows the nonlinear elements of Kelvin chain to be functions 

of the applied force instead of displacement. Assuming polynomial functions, [𝑘]−1 and [𝑐]−1 can 

be expressed as functions of applied dynamic force and electric current.  

 [𝑘]−1 = 𝑔0𝑓𝑑(𝑓𝑑(𝑡)) + 𝑔𝐵𝑓𝑑(𝑓𝑑(𝑡), 𝐼) (7.2.4) 

 [𝑐]−1 = 𝑧0𝑓𝑑(𝑓𝑑(𝑡)) + 𝑧𝐵𝑓𝑑(𝑓𝑑(𝑡), 𝐼) (7.2.5) 

The first terms of the above equations represent the dependence of dynamic stiffness and 

damping on force amplitude at zero field. Assuming polynomial functions we get: 

𝑔0𝑓𝑑(𝑓𝑑(𝑡)) = ∑ 𝑟𝑎𝑖𝑘𝑓𝑑(𝑡)𝑖𝑘

𝑁𝑘

𝑖𝑘=0

 
 

(7.2.6) 

𝑧0𝑓𝑑(𝑓𝑑(𝑡)) = ∑ 𝑚𝑎𝑖𝑐𝑓𝑑(𝑡)𝑖𝑐

𝑁𝑐

𝑖𝑐=0

 (7.2.7) 

Where 𝑟𝑎𝑖𝑘 and 𝑚𝑎𝑖𝑐 are model parameters that depend on the dynamic force 𝑓𝑑(𝑡) and 𝑁𝑘  and 

 𝑁𝑐 are integers. These parameters can be extracted by curve fitting to the zero field experimental 
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data. The second terms [𝑘]𝐵
−1(𝑓𝑑(𝑡), I)  and [𝑐]𝐵

−1(𝑓𝑑(𝑡), I) represent the influence of the 

magnetic field on dynamic stiffness and damping. Assuming again polynomial functions we get: 

𝑔𝐵𝑓𝑑(𝑓𝑑(𝑡), 𝐼) = ∑ ( ∑ 𝑟𝑖𝑘𝐵𝑗𝑘𝐼𝑗𝑘

𝐽𝑘

𝑗𝑘=1

)𝑓𝑑(𝑡)𝑖𝑘𝐼

𝑁𝑘𝐵

𝑖𝑘𝐵=0

 (7.2.8) 

𝑧𝐵𝑓𝑑(𝑓𝑑(𝑡), 𝐼) = ∑ ( ∑ 𝑚𝑖𝑐𝐵𝑗𝑐𝐼
𝑗𝑐

𝐽𝑐

𝑗𝑐=1

)𝑓𝑑(𝑡)𝑖𝑐𝐼

𝑁𝑐𝐵

𝑖𝑐𝐵=0

 (7.2.9) 

Where 𝑟𝑖𝑘𝐵𝑗𝑘 and 𝑚𝑖𝑐𝐵𝑗𝑐 are model parameters and 𝑁𝑘𝐵, 𝐽𝑘  , 𝑁𝑐𝐵, 𝐽𝑐 are integers. These parameters 

are also extracted by curve fitting to the experimental data. The differential equations of each 

element are: 

 𝑥𝑘(𝑡) = [𝑘]−1 𝑓𝑑(𝑡) = g𝑟(𝑓𝑑(𝑡), I) (7.2.10) 

 𝑥𝑐̇ = [𝑐]−1𝑓𝑑(𝑡) = z𝑚(𝑓𝑑(𝑡), I) (7.2.11) 

Functions g𝑟(𝑓𝑑(𝑡), I) and z𝑚(𝑓𝑑(𝑡), I) are now:  

g𝑟(𝑓𝑑(𝑡), I, 𝑓𝑠𝑡)  = (𝑔0𝑓𝑑(𝑓𝑑(𝑡))  + 𝑔𝐵𝑓𝑑(𝑓𝑑(𝑡), 𝐼)) 𝑓𝑑(𝑡) =

= ∑ 𝑟𝑎𝑖𝑘𝑓𝑑(𝑡)𝑖𝑘+1 + ∑ ( ∑ 𝑟𝑖𝑘𝐵𝑗𝑘𝐼
𝑗𝑘

𝐽𝑘

𝑗𝑘=1

)𝑓𝑑(𝑡)𝑖𝑘𝐵+1

𝑁𝑘𝐵

𝑖𝑘𝐵=0

𝑁𝑘

𝑖𝑘=0

  
(7.2.12) 

z𝑚(𝑓𝑑(𝑡), I, 𝑓𝑠𝑡)  = (𝑧0𝑓𝑑(𝑓𝑑(𝑡)) + 𝑧𝐵𝑓𝑑(𝑓𝑑(𝑡), 𝐼)) 𝑓𝑑(𝑡)

= ∑ 𝑚𝑎𝑖𝑐𝑓𝑑(𝑡)𝑖𝑐+1

𝑁𝑐

𝑖𝑐=0

+ ∑ ( ∑ 𝑟𝑖𝑘𝐵𝑗𝑘𝐼
𝑗𝑘

𝐽𝑘

𝑗𝑘=1

)𝑓𝑑(𝑡)𝑖𝑘𝐵+1

𝑁𝑘𝐵

𝑖𝑘𝐵=0

 
(7.2.13) 

 

To acquire the differential equation of the model, the Laplace transforms of equations (7.2.10), and 

(7.2.11) are used: 

 𝑋𝑘(𝑠) = 𝐺𝑟(𝑠) (7.2.15) 

 𝑋𝑐(𝑠) =
𝑍𝑚(𝑠)

𝑠
 (7.2.16) 

And substituting the above equations to the Laplace transform of equation (7.2.3) we get: 

𝑋𝑑(𝑠) = 𝑋𝑘(𝑠) + 𝑋𝑐(𝑠) = 𝐺𝑟(𝑠) +
𝑍𝑚(𝑠)

𝑠
⇒ 
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𝑠 𝑋𝑑 = 𝑠 𝐺𝑟(𝑠) + 𝑍𝑚(𝑠) (7.2.17) 

Taking the inverse Laplace transform of equation (7.2.17) we get the differential equation. 

𝑥𝑑̇ = g𝑟̇(𝑓𝑑, B) + z𝑚(𝑓𝑑(𝑡), I) (7.2.18) 

Equation (7.2.18) requires the first derivative of function g𝑟(𝑓𝑑(𝑡), I). Differentiating equation 

(7.2.12) we get: 

g𝑟̇(𝑓𝑑, I) = [∑(𝑖𝑘 + 1) 𝑟𝑎𝑖𝑘𝑓𝑑(𝑡)𝑖𝑘𝑓
𝑑̇

𝑁𝑘

𝑖𝑘=1

+ ∑ ( ∑ 𝑟𝑖𝑘𝐵𝑗𝑘𝐼𝑗𝑘

𝐽𝑘

𝑗𝑘=0

)(𝑖𝑘𝐵 + 1) 𝑓𝑑(𝑡)𝑖𝑘𝐵

𝑁𝑘𝐵

𝑖𝑘𝐵=1

𝑓
𝑑̇
] 

(7.2.19) 

 

• Assuming the input signal to be a harmonic force 𝑓𝑑(𝑡) = 𝑓0𝜔
𝑛 sin(𝜔𝑡) 

When the input signal is assumed to be a general harmonic force of 𝑓0𝜔
𝑛 amplitude given by 

equation (7.2.20), the resulting harmonic displacement 𝑥(𝑡) (of amplitude 𝑥0) will be out of phase 

with the input signal by an angle φ called the loss angle. For a nonlinear material it will not be a 

pure sinusoidal signal but contain higher harmonics 𝑥(𝑡) = ∑ 𝑥0 sin(𝑛𝜔𝑡 + 𝜑𝑛)𝐿
𝑛=1 . 

 𝑓𝑑(𝑡) = 𝑓0𝜔
𝑛 sin(𝜔𝑡)  (7.2.20) 

Where n denotes the exponent of input excitation. When n=0, the force input is harmonic with 

constant amplitude while when n=2 it can represent the force excitation from a rotating machine 

with an eccentric mass.  For harmonic inputs with amplitude values corresponding to less than 1% 

strain amplitude the harmonic balance method is valid. Thus, the higher harmonics can be ignored 

and only the fundamental frequency becomes of importance. The resulting dynamic displacement 

becomes:  

 
𝑥𝑑(𝑡) = 𝑥0 sin(𝜔𝑡 + 𝜑) = 𝑥0 sin𝜑 cos(𝜔𝑡) + 𝑥0 cos𝜑 sin(𝜔𝑡)

= 𝑥𝑓 cos(𝜔𝑡) + 𝑥𝑠 sin(𝜔𝑡) 
(7.2.21) 

To solve the system analytically, the Ritz-Galerking (Guo P F 2012) method is used where an 

approximate solution to the differential equation is assumed and the solution is found by 

minimizing the integrated error function over a specified time period 𝑡 ∈ [𝑡1, 𝑡2].  

 𝐽 = ∫ 𝑒(𝑡)2𝑑𝑡
𝑡2

𝑡1

 (7.2.22) 
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The error function  𝑒(𝑡) to be minimized is: 

 𝑥𝑑̇ − g𝑟̇(𝑓𝑑 , I) − z𝑚(𝑓𝑑(𝑡), I) = 𝑒(𝑡) (7.2.23) 

The individual displacement components can then be obtained by solving the following set of 

equations: 

𝜕𝐽

𝜕𝑥𝑓
= ∫ 2 ∗ 𝑒(𝑡)

𝜕𝑒(𝑡)

𝜕𝑥𝑓

𝑡2

𝑡1

= 0 
𝜕𝐽

𝜕𝑥𝑠
= ∫ 2 ∗ 𝑒(𝑡)

𝜕𝑒(𝑡)

𝜕𝑥𝑠

𝑡2

𝑡1

= 0 (7.2.24) 

The partial derivatives
𝜕𝑒(𝑡)

𝜕𝑥𝑓
 and 

𝜕𝑒(𝑡)

𝜕𝑥𝑠
   become: 

𝜕𝑒(𝑡)

𝜕𝑥𝑓
= −𝜔sin(𝜔𝑡) 

𝜕𝑒(𝑡)

𝜕𝑥𝑠
= 𝜔cos(𝜔𝑡) (7.2.25) 

The displacement components are acquired by substituting equations (7.2.23) and (7.2.25) to 

(7.2.24) and integrate for one period (from 𝑡1 = 0 to 𝑡2 = 2𝜋/𝜔). Equations (7.2.13) and (7.2.19) 

are polynomial functions that contain odd number trigonometric power functions that will drop out 

during integration. For this purpose, the integration is broken down in two parts from 𝑡1 = 0 to 

𝑡2 = 𝜋/𝜔  and 𝑡1 = 𝜋/𝜔   to 𝑡2 = 2𝜋/𝜔, one for each semiperiod, making sure that the input signal 

is inversed for the negative semi period.  From experimental data it was found that the behaviour 

of the material could be described accurately for all samples by setting 𝑁𝑘 = 3, 𝑁𝑐 = 2, 𝑁𝑘𝐵 =

1,𝑁𝑐𝐵 = 1, 𝐽𝑘 = 2, 𝐽𝑐 = 3. The equations now become: 

𝑔0𝑓𝑑(𝑓𝑑(𝑡)) = 𝑟𝑎0 + 𝑟𝑎1𝑓𝑑(𝑡)1 + 𝑟𝑎2𝑓𝑑(𝑡)2 + 𝑟𝑎3𝑓𝑑(𝑡)3 (7.2.26) 

𝑔0𝑓𝑠𝑡(𝑓𝑠𝑡) = 𝑟𝑠𝑡1𝑓𝑠𝑡
1 + 𝑟𝑠𝑡2𝑓𝑠𝑡

2 + 𝑟𝑠𝑡3𝑓𝑠𝑡
3 (7.2.27) 

𝑔𝐵𝑓𝑑(𝑓𝑑(𝑡)) = (𝑟01𝐼 + 𝑟02𝐼
2) + (𝑟11𝐼 + 𝑟12𝐼

2)𝑓𝑑(𝑡)1 (7.2.28) 

𝑧𝐵𝑓𝑑(𝑓𝑑(𝑡)) = (𝑚01𝐼 + 𝑚02𝐼
2 + 𝑚03𝐼

3) + (𝑚11𝐼 + 𝑚12𝐼
2 + 𝑚13𝐼

3)𝑓𝑑(𝑡)1 (7.2.29) 

The system of equations was solved in Matlab using the symbolic toolbox and the fsolve function 

(Appendix A). The solution for one period becomes: 

𝑥𝑠 = (𝑟𝑎0 + 𝑟01𝐼 + 𝑟02𝐼
2)𝑓0𝜔

𝑛 +
8

3𝜋
(𝑟𝑎1 + 𝑟11𝐼 + 𝑟12𝐼

2)(𝑓0𝜔
𝑛)2

+
3

4
(𝑟𝑎2)(𝑓0𝜔

𝑛)3 +
32

15𝜋
(𝑟𝑎3)(𝑓0𝜔

𝑛)4 

(7.2.30) 
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𝑥𝑓 = −
1

𝜔
[(𝑚𝑎0 + 𝑚01𝐼 + 𝑚02𝐼

2 + 𝑚03𝐼
3)𝑓0𝜔

𝑛

+
8

3𝜋
(𝑚𝑎1 + 𝑚11𝐼 + 𝑚12𝐼

2 + 𝑚13𝐼
3)(𝑓0𝜔

𝑛)2 +
3

4
(𝑚𝑎2)(𝑓0𝜔

𝑛)3] 

(7.2.31) 

Model linearization 

For harmonic inputs with a certain force amplitude value 𝑓0𝜔
𝑛, that correspond to less than 1% 

strain amplitude, the system can be considered linear. In the linearized system [𝑘]−1 and [𝑐]−1 are 

replaced by the equivalent receptance [𝑘𝑒𝑞]
−1

 and mobility [𝑐𝑒𝑞]
−1

 respectively, that are functions 

of the applied dynamic force amplitude 𝑓0𝜔
𝑛, static load 𝑓𝑠𝑡 and magnetic field B. Τhe equivalent 

stiffness and dashpot are: 

[𝑘𝑒𝑞]
−1

(𝑓0𝜔
𝑛, I) = 𝑔0𝑓0(𝑓0𝜔

𝑛) + 𝑔𝐵𝑓0(𝑓0𝜔
𝑛, 𝐼) (7.2.32) 

[𝑐𝑒𝑞]
−1

(𝑓0𝜔
𝑛, I) = 𝑧0𝑓0(𝑓0𝜔

𝑛) + 𝑧𝐵𝑓0(𝑓0𝜔
𝑛, 𝐼) (7.2.33) 

Where the amplitude dependent equations now become: 

𝑔0𝑓0(𝑓0𝜔
𝑛) = ∑ 𝑟𝑎′𝑖𝑘(𝑓0𝜔

𝑛)𝑖𝑘

𝑁𝑘

𝑖𝑘=0

 𝑧0𝑓0(𝑓𝜔𝑛) = ∑ 𝑚𝑎′𝑖𝑐(𝑓0𝜔
𝑛)𝑖𝑐

𝑁𝑐

𝑖𝑐=0

 
 

(7.2.34) 

And  

𝑔𝐵𝑓0(𝑓0𝜔
𝑛, 𝐼) = ∑ ( ∑ 𝑟′𝑖𝑘𝐵𝑗𝑘𝐼

𝑗𝑘

𝐽𝑘

𝑗𝑘=1

)(𝑓0𝜔
𝑛)𝑖𝑘𝐵

𝑁𝑘𝐵

𝑖𝑘𝐵=0

 (7.2.35) 

𝑧𝐵𝑓0(𝑓0𝜔
𝑛, 𝐼) = ∑ ( ∑ 𝑚′𝑖𝑐𝐵𝑗𝑐𝐼

𝑗𝑐

𝐽𝑐

𝑗𝑐=1

)(𝑓0𝜔
𝑛)𝑖𝑐𝐵

𝑁𝑐𝐵

𝑖𝑐𝐵=0

 (7.2.36) 

In this case the solution to the system becomes: 

𝑥𝑠 = (𝑟𝑎′0 + 𝑟′01𝐼 + 𝑟′02𝐼
2)𝑓0𝜔

𝑛 + (𝑟𝑎′1 + 𝑟′11𝐼 + 𝑟′12𝐼
2)(𝑓0𝜔

𝑛)2

+ (𝑟′𝑎2)(𝑓0𝜔
𝑛)3 + (𝑟′𝑎3)(𝑓0𝜔

𝑛)4 = [𝑘𝑒𝑞]
−1

(𝑓0𝜔
𝑛, B)𝑓0𝜔

𝑛 
(7.2.37) 

𝑥𝑓 = −
1

𝜔
[(𝑚𝑎′0 + 𝑚′01𝐼 + 𝑚′02𝐼

2 + 𝑚′03𝐼
3)𝑓0𝜔

𝑛

+ (𝑚𝑎′1 + 𝑚′11𝐼 + 𝑚′12𝐼
2 + 𝑚′13𝐼

3)(𝑓0𝜔
𝑛)2 + (𝑚𝑎′2)(𝑓0𝜔

𝑛)3]

= −
1

𝜔
[𝑐𝑒𝑞]

−1
(𝑓0𝜔

𝑛, I)𝑓0𝜔
𝑛 

(7.2.38) 

Where 𝑟𝑎′1 =
8

3𝜋
𝑟𝑎1, 𝑟𝑎′2 =

3

4
𝑟𝑎2, 𝑟𝑎′3 =

32

15𝜋
𝑟𝑎1  and 𝑚𝑎′1 =

8

3𝜋
𝑚𝑎1, 𝑚𝑎′2 =

3

4
𝑚𝑎2The same 

principle apply for the magnetic dependent parameters.  
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 Parameter extraction and model validation 

After defining the equations of the model in the previous chapter, the procedure of determining all 

the parameters by curve fitting to the experimental data presented on chapter 6 follows.  The 

parameter extraction method is performed in the following steps: 

1. Parameters of static equation   ∑ 𝑘𝐼𝑗𝐼
𝑗𝐽𝐵𝑠𝑡

𝑗=1 𝑓𝑠𝑡  are defined by setting 𝐽𝐵𝑠𝑡=2  

Isotropic 

Compression: 𝑘𝐼1=0.002, 𝑘𝐼2=0.008 

Inclined: 𝑘𝐼1=0.4826, 𝑘𝐼2=-0.02204 

Anisotropic 

Compression: 𝑘𝐼1=0.03514, 𝑘𝐼2=0 

Inclined: 𝑘𝐼1=0.125, 𝑘𝐼2=0.075 

Sample 1 

Compression: 𝑘𝐼1=0.0105, 𝑘𝐼2=0.0115 

Inclined: 𝑘𝐼1=0.1303, 𝑘𝐼2=0.06184 

Sample 2 

Compression: 𝑘𝐼1=0.066, 𝑘𝐼2=-0.013 

Inclined: 𝑘𝐼1=0.1757, 𝑘𝐼2=0.07961 

Sample 3 

Compression: 𝑘𝐼1=0.01, 𝑘𝐼2=0.013 

Inclined: 𝑘𝐼1=14.05, 𝑘𝐼2=6.368 

 

2. The dynamic amplitude and magnetic field dependent parameters are extracted using 

surface fitting toolbox of matlab in the form of the following arrays (example for anisotropic 

MRE isolator is shown in Appendix A2).  

𝑟𝑒𝑞 = [𝑟𝑎′
0    𝑟

′
01    𝑟

′
02    𝑟𝑎

′
1    𝑟

′
11    𝑟

′
12    𝑟𝑎

′
2   𝑟𝑎′3] 

𝑚𝑒𝑞 = [𝑚𝑎′
0    𝑚01    𝑚

′
02    𝑚𝑎′

1    𝑚
′
11    𝑚

′
12    𝑚𝑎′

2   𝑚𝑎′3] 

Isotropic 
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Compression 

𝑟𝑒𝑞 =[ 0.00103587103058268  1.79825025564022e-06  -2.30466559233385e-09
 4.31347057023736e-13  -7.99907656209759e-05  -9.50858866044892e-06
 8.80720171803219e-08  1.09047589982836e-08 ] 

𝑚𝑒𝑞 =[ -7.07235452317028e-05 -3.85886450709802e-07  4.10389692596989e-10   

 -4.44701334210588e-06  1.43047719063004e-05  -3.09888536772647e-06
 4.82521684338851e-08  -6.78744365861371e-08  1.40780576517799e-08 ] 

Inclined 

𝑟𝑒𝑞 =[ 0.00282239425720900  2.34251679238024e-05  -2.72002682190518e-07
 1.74742740659535e-09  -0.000110241307795260  -3.02535470029390e-05 -
 4.34453622186435e-06  8.11556578060433e-07 ] 

𝑚𝑒𝑞 =[ -0.000207014649801837 -1.79134124775320e-06  2.84840616561721e-09  

 -1.38251183036623e-05  1.32035437019622e-05  -1.52711746490617e-06
 1.12739193244048e-06  -5.24291723241899e-07  7.84071543897332e-08] 

Anisotropic 

Compression 

𝑟𝑒𝑞 =[ 0.000589021817970268 9.83230811378498e-06  -1.09735295893093e-07
 4.89379112490672e-10  -0.000262969685304389  4.61037441263455e-05
 1.67692604992172e-07  -1.07307193544496e-07 ] 

𝑚𝑒𝑞 =[ -7.32735063840740e-05 -8.36702838099236e-07  5.01684455867378e-09 
 1.08470847273274e-05  1.60253566280896e-05  -4.64446393833591e-06 -
 1.71187414177365e-07  8.94928763353093e-08  -1.55463278780071e-08] 

Inclined 

𝑟𝑒𝑞 =[ 0.00168972350678578  4.34663584263923e-05  -4.78266254688414e-07
 2.35128322788845e-09  -0.000337186568964790  2.67714774893017e-05  

 -5.13940415759776e-06  9.40163934087295e-07 ] 

𝑚𝑒𝑞 =[ -0.000193266457799236 -4.81051502626398e-06  3.19126109942259e-08 -
 4.52116948657233e-05  5.46109245990808e-05  -1.00815253146594e-05
 1.59438231880634e-06  -1.03062985241853e-06  1.78416300890113e-07 ] 

Sample 1 

Compression 

𝑟𝑒𝑞 =[ 0.00100771180160571  3.65798312079208e-06  -8.02287808067005e-09
 4.81663854388781e-12  -0.000184438452593717  1.62609405267314e-05
 2.50761040889082e-08  -5.24378218261484e-08 ] 

𝑚𝑒𝑞 =[ -0.000105947527079151 -4.25398712254291e-07  4.82604405368612e-10 
 7.54370423358824e-06  9.49953540621025e-06  -1.94754224264328e-06 -
 3.30585580415542e-08  -1.69911087617543e-08  3.70673602549684e-09] 

Inclined 
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𝑟𝑒𝑞 =[ 0.00214602792990812  3.87331741009252e-05  -4.44809834606600e-07
 2.36286024007953e-09  -0.000257807952334912  -1.27483696394968e-06 -
 4.57579764763075e-06  7.67688658524488e-07 ] 

𝑚𝑒𝑞 =[ -0.000208239900363976 -3.76933856912337e-06  2.12859229726663e-08 -
 6.11470178420710e-05  5.37500645217646e-05  -9.12903737552744e-06
 1.81681385259888e-06  -1.02212043597187e-06  1.70537397964099e-07 ] 

Sample 2 

Compression 

𝑟𝑒𝑞 =[ 0.000891163472410508 6.99619129929362e-06  -1.81690211081701e-08
 1.29073051587080e-11  -0.000312196171665165  6.31180104457131e-05 -
 5.02923915216259e-07  -1.38405572879025e-07 ] 

𝑚𝑒𝑞 =[ -9.83033357371639e-05 -4.30366093490193e-07  5.14068348352131e-10
 2.61045325693091e-05  1.99431482297828e-06  -1.25798397500532e-06 -
 8.54511410753508e-08  3.54057135947273e-09  7.93646305903151e-10] 

Inclined 

𝑟𝑒𝑞 =[ 0.00190207243827528  3.16193522493809e-05  -3.26507528077420e-07
 1.51903462731127e-09  -0.000253471543463312  -5.39543799224320e-06 -
 3.46373641113165e-06  5.84410486525860e-07] 

𝑚𝑒𝑞 =[ -0.000183858433929019 -4.03477425625874e-06  2.27083691231863e-08 -
 2.70773576144433e-05  4.01203397449577e-05  -7.09745729015581e-06
 1.32818257992192e-06  -8.13196109002374e-07  1.42670026148870e-07] 

Sample 3: 

compression 

𝑟𝑒𝑞=[ 0.00101799582503055  2.36531884288672e-06  -4.28450771866724e-09
 2.05372769288458e-12  -0.000311844629163691    4.99339995291308e-05
 1.28580696438005e-07  -5.37246612210750e-08] 

𝑚𝑒𝑞 = [-0.000118963603184620  -3.51506438112479e-07   3.74944159041136e-10  
 3.78370708971371e-05   -7.43886064004629e-06    9.84918919712280e-07   

 -9.60664277437765e-08  2.22162886841789e-08  -3.35071145541844e-09] 

Inclined 

𝑟𝑒𝑞=[ 0.00200255286924732  4.43278396053266e-05   -7.86901217066570e-07   
 3.54028625905949e-09  -0.000603631418696466    5.49879247414060e-05   
 5.14962792327169e-06  -7.02068084948004e-07] 

𝑚𝑒𝑞 = [-0.000248313806071125       -5.78436191567050e-06      5.88020844614220e-08 
 0.000118746595751670       -7.33387146696521e-05       1.73385095313312e-05  

 -2.23898094760982e-07        3.27281179307831e-07     -1.16531508597134e-07] 
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The model was validated using the experimental data from chapter 6 during the compression and 

inclined isolator characterization stage using Instron PULS tester in displacement control. Thus, the 

tests were performed using displacement as an input signal and the input of the model was the 

force amplitude corresponding to the displacement amplitude. To make the results more visually 

attractive five periods of the signals at each displacement amplitude were selected and connected 

to make a single waveform. The figures shown are only for the compression and inclined isolator 

with anisotropic MRE, but the same results apply for the rest of samples.  

 Figure 93 illustrates the simulated and experimental zero field displacement response under a 

dynamic force of 12, 21, 29, 36, 44 and 51N amplitude, that correspond to 0.025, 0.05, 0.075, 0.1, 

0.125 and 0.15mm displacement amplitudes, for the anisotropic MRE inclined isolator. Figure 94 

presents the equivalent response of the anisotropic MRE compression isolator under 26, 46, 64 and 

81 N dynamic force amplitude, that correspond to 0.02, 0.04, 0.06 and 0.08 mm displacement 

amplitudes. As force amplitude increases, the displacement response becomes distorted due the 

MRE nonlinear behaviour. However, the model ignores higher harmonics and produces a pure sine 

wave causing loss of accuracy for higher force amplitude values that correspond to strains higher 

than 1%.  
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Figure 93: Simulated and experimental data of dynamic load and displacement for the anisotropic 
inclined isolator (at 12, 21, 29, 36, 44 and 51N dynamic force amplitude, 5Hz frequency and 80N 
static load). 



Chapter 7 

153 

 

Figure 94: Simulated and experimental data of dynamic load and displacement for the anisotropic 
compression isolator (at 26, 46, 64 and 81 N dynamic force amplitudes, 5Hz frequency and 80N 
static load). 

 

Figure 95 illustrates the stead state dynamic response for 0, 1 and 2 Amps electric current for the 

anisotropic MRE compression isolator under a dynamic displacement of 0.02mm amplitude. All 

characterization tests were performed using displacement as an input signal since Instron PULS is 

more accurate in displacement control. In this case the input of the model was the force amplitude 

corresponding to 0.02mm displacement amplitude when the electromagnet was fed with 0, 1 and 

2 Amps electric current. The model can predict the variation of both dynamic and static 

displacements with the magnetic field. It is shown that static displacement increases by 0.07 mm 

when the electromagnet is fed with 2 Amps while for 3 Amps it increases to 0.1mm corresponding 

to 1.4% and 2% static strain. 
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Figure 95: Simulated and experimental data of dynamic load and displacement for the anisotropic 
compression isolator (at 26, 32 and 41N load amplitude corresponding to 0.02mm displacement 
amplitude at 0 ,1 and 2 Amps electric current, 5Hz frequency and 80N static load). 
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 Transmissibility of a single degree of freedom mass-MRE isolator 

system 

• Direct force excitation (n=0) 

Figure 96  presents a mass damper single degree of freedom system that can be equivalent of an 

engine of mass 𝑚  mounted through an MRE isolator to a rigid foundation. When the input force is 

assumed harmonic with an amplitude causing less than 1% strain in the isolator the linearized 

model can be used instead. In the linearized system [𝑘]−1 and [𝑐]−1 are replaced by the equivalent 

receptance [𝑘𝑒𝑞]
−1

 and mobility [𝑐𝑒𝑞]
−1

 respectively, that are functions of the applied dynamic 

force amplitude 𝑓0static load 𝑓𝑠𝑡 and electric current. 

 

Figure 96: Single degree of freedom mass MRE isolator system where the excitation is a force 
applied on the mass supported by an MRE isolator in a rigid foundation  

 When a force 𝑓𝑖𝑛(𝑡) is applied to the mass the transmitted force to the substrate is 𝑓𝑜𝑢𝑡(𝑡). The 

total displacement of the mass is:   

 𝑥(𝑡) = 𝑥1 − 𝑥3 = 𝑥𝑘(𝑡) + 𝑥𝑐(𝑡) (7.4.1) 

Where 𝑥𝑘(𝑡) = 𝑥1 − 𝑥2and    𝑥𝑐(𝑡) = 𝑥2 − 𝑥3 are the relative displacements on the spring 𝑘, and 

dashpot  𝑐 The differential equations of each branch are: 

 𝑓𝑜𝑢𝑡(𝑡) = 𝑓2(𝑡) = 𝑓1(𝑡) = 𝑓𝑖𝑛(𝑡) − 𝑚x1̈ (7.4.2) 

 𝑥𝑘(𝑡) = [𝑘𝑒𝑞]
−1

 𝑓𝑜𝑢𝑡(𝑡) = [𝑘𝑒𝑞]
−1

(𝑓𝑖𝑛(𝑡) − 𝑚𝑥̈) (7.4.3) 

 𝑥𝑐̇ = [𝑐𝑒𝑞]
−1

𝑓𝑜𝑢𝑡(𝑡) = [𝑐𝑒𝑞]
−1

(𝑓𝑖𝑛(𝑡) − 𝑚𝑥̈) (7.4.4) 



Chapter 7 

156 

When a harmonic force force 𝐹𝑖𝑛(𝑡) = 𝑓0 sin𝜔𝑡 is applied to the mass, the transmitted force to the 

substrate is 𝑓𝑜𝑢𝑡(𝑡) . The displacement response is 𝑥(𝑡) = 𝑥0 sin(𝜔𝑡 + 𝜑) = 𝑥𝑓cos(𝜔𝑡) +

𝑥𝑠 sin(𝜔𝑡) while equation (7.3.2) becomes: 

 
𝐹𝑜𝑢𝑡 = 𝐹𝑖𝑛 − 𝑚𝑥̈ = 𝐹0 sin𝜔𝑡 + 𝑚𝜔2 𝑥𝑓cos(𝜔𝑡) + 𝑚𝜔2𝑥𝑠 sin(𝜔𝑡)

= (𝐹0 + 𝑚𝜔2𝑥𝑠)sin𝜔𝑡 + 𝑚𝜔2 𝑥𝑓cos(𝜔𝑡) 
(7.4.5) 

Therefore, the force transmitted to the substrate 𝐹𝑜𝑢𝑡 = |𝐹𝑜𝑢𝑡| sin(𝜔𝑡 + 𝜃) will have an amplitude 

|𝐹𝑜𝑢𝑡|and be out of phase by an angle θ. 

 |𝐹𝑜𝑢𝑡| = √(𝑓0 + 𝑚𝜔2𝑥𝑠)
2 + (𝑚𝜔2𝑥𝑓)

2
 (7.4.6) 

 𝛩 = tan−1 (
𝑚𝜔2𝑥𝑓

𝐹0 + 𝑚𝜔2𝑥𝑠
) (7.4.7) 

𝑇𝐹𝐹 =
|𝐹𝑜𝑢𝑡|

|𝐹𝑖𝑛|
=

√(𝐹0 + 𝑚𝜔2𝑥𝑠)
2 + (𝑚𝜔2𝑥𝑓)

2

𝐹0
 

(7.4.8) 

To solve the system analytically the Ritz-Galerkin method can be used again to determine the 

components of the displacement 𝑥𝑠 and 𝑥𝑓. The error function, the integral of which must be 

minimized in this case is 

 𝑥̇ − 𝑥𝑘̇ − 𝑥𝑐̇ = 𝑒(𝑡) (7.4.9) 

Where: 

 𝑥𝑘̇(𝑡) = [𝑘𝑒𝑞]
−1

𝜔((𝐹0 + 𝑚𝜔2𝑥𝑠)cos𝜔𝑡 − 𝑚𝜔2 𝑥𝑓sin(𝜔𝑡)) (7.4.10) 

 𝑥𝑐̇ = [𝑐𝑒𝑞]
−1

𝑓𝑜𝑢𝑡(𝑡) = [𝑐𝑒𝑞]
−1

((𝐹0 + 𝑚𝜔2𝑥𝑠)sin𝜔𝑡 + 𝑚𝜔2 𝑥𝑓cos(𝜔𝑡)) (7.4.11) 

 𝑥̇ = 𝜔𝑥𝑠cos(𝜔𝑡) − 𝜔𝑥𝑓sin(𝜔𝑡) (7.2.12) 

The individual displacement components can then be obtained by solving the following set of 

equations: 

𝜕𝐽

𝜕𝑥𝑓
= ∫ 2𝑒(𝑡)

𝜕𝑒(𝑡)

𝜕𝑥𝑓

𝑡2

𝑡1

= 0 
𝜕𝐽

𝜕𝑥𝑠
= ∫ 2𝑒(𝑡)

𝜕𝑒(𝑡)

𝜕𝑥𝑠

𝑡2

𝑡1

= 0 (7.4.13) 

The partial derivatives
𝜕𝑒(𝑡)

𝜕𝑥𝑓
 and 

𝜕𝑒(𝑡)

𝜕𝑥𝑠
   become: 

𝜕𝑒(𝑡)

𝜕𝑥𝑓
= −𝜔 [(1 − 𝑚𝜔2[𝑘𝑒𝑞]

−1
) sin(𝜔𝑡) + 𝑚𝜔2

[𝑐𝑒𝑞]

𝜔

−1

cos(𝜔𝑡)] 
 

(7.4.14) 
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𝜕𝑒(𝑡)

𝜕𝑥𝑠
= (1 − 𝑚𝜔2[𝑘𝑒𝑞]

−1
) cos(𝜔𝑡) − 𝑚𝜔2

[𝑐𝑒𝑞]

𝜔

−1

sin(𝜔𝑡) 
 

The displacement components of the solution are acquired by substituting equations (7.4.11) to 

(7.4.13) to equation (7.2.14) and then the latter along with equations (7.4.16) to (7.4.15) and 

integrating for one period (from 𝑡1 = 0 to 𝑡2 = 2𝜋/𝜔). These calculations were done using 

MATLAB’s symbolic maths toolbox (Appendix A). The resulting components of the displacement 

are: 

 𝑥𝑓 = −

[𝑐𝑒𝑞]
𝜔

−1

(𝑚𝜔2
[𝑐𝑒𝑞]
𝜔

−1

)

2

+ (1 − 𝑚𝜔2[𝑘𝑒𝑞]
−1

)
2

𝐹0 (7.4.15) 

 𝑥𝑠 = 

[𝑘𝑒𝑞]
−1

(1 − 𝑚𝜔2[𝑘𝑒𝑞]
−1

) − 𝑚𝜔2 (
[𝑐𝑒𝑞]
𝜔

−1

)

2

(𝑚𝜔2
[𝑐𝑒𝑞]
𝜔

−1

)

2

+ (1 − 𝑚𝜔2[𝑘𝑒𝑞]
−1

)
2

𝐹0 (7.4.16) 

Substituting equations (7.4.17) and (7.4.18) to equation (7.4.5) the force transmitted to the 

substrate becomes: 

 

𝐹𝑜𝑢𝑡 =

(

 
 
 1 − 𝑚𝜔2[𝑘𝑒𝑞]

−1

(𝑚𝜔2
[𝑐𝑒𝑞]
𝜔

−1

)

2

+ (1 − 𝑚𝜔2[𝑘𝑒𝑞]
−1

)
2

𝐹0

)

 
 
 

sin𝜔𝑡

+

(

 
 
 

−
𝑚𝜔2 [𝑐𝑒𝑞]

𝜔

−1

(𝑚𝜔2
[𝑐𝑒𝑞]
𝜔

−1

)

2

+ (1 − 𝑚𝜔2[𝑘𝑒𝑞]
−1

)
2

𝐹0

)

 
 
 

cos(𝜔𝑡) 

(7.4.17) 

The force transmissibility TFF of the system is: 

𝑇𝐹𝐹 =
|𝐹𝑜𝑢𝑡|

|𝐹𝑖𝑛|
=

1

√(𝑚𝜔2
[𝑐𝑒𝑞]
𝜔

−1

)

2

+ (1 − 𝑚𝜔2[𝑘𝑒𝑞]
−1

)
2

 

(7.4.18) 
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𝛩 = tan−1

(

 
 

[𝑐𝑒𝑞]
𝜔

−1

(𝑚𝜔2)−1 − [𝑘𝑒𝑞]
−1

)

 
 

 (7.4.19) 

While the force-displacement response TDF of the system is: 

𝑇𝐷𝐹 =
|𝑥|

|𝐹𝑖𝑛|
=

√(𝑥𝑠)
2 + (𝑥𝑓)

2

𝐹0
 

(7.4.20) 

 

The force transmissibility curves of anisotropic, isotropic, sample 1, sample 2 and sample 3 

compression and inclined isolators (calculated using equation (7.4.18)) in respect to zero field 

frequency ratio 
𝑓

𝑓𝑛
 are presented in Figure 97, Figure 98, Figure 99, Figure 100 and Figure 101 

respectively. As the electric current I fed to the electromagnet increases, dynamic stiffness 

increases and the natural frequency 𝑓𝑛 increases as well. Damping is relatively low and not greatly 

influenced by the magnetic field. Low damping causes high transmissibility values at resonance 

indicating a damping ratio of about 0.05. The stiffening of the material with the magnetic field 

reduces force transmissibility at higher frequencies especially for the compression isolator that has 

a higher MR effect than inclined isolator. However, the inclined isolator increases its natural 

frequency almost linearly with the electric current for all MRE samples while this is not the case for 

the compression isolator with anisotropic, sample 2 and sample 3 MREs. 

 

Figure 97: Force transmissibility TFF of anisotropic MRE compression and inclined isolator at 0, 1, 2 
and 3 Amps electric current fed to the electromagnet in respect to zero field frequency ratio f/fn  
(at 30N amplitude force and m=8Kg). 
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Figure 98: Force transmissibility TFF of isotropic MRE compression and inclined isolator at 0, 1, 2 
and 3 Amps electric current fed to the electromagnet in respect to zero field frequency ratio f/fn  
(at 30N amplitude force and m=8Kg). 

 

 

 

Figure 99: Force transmissibility TFF of sample 1c (isotropic/anisotropic parallel combination) MRE 
compression and inclined isolator at 0, 1, 2 and 3 Amps electric current fed to the electromagnet in 
respect to zero field frequency ratio f/fn  (at 30N amplitude force and m=8Kg). 
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Figure 100: Force transmissibility TFF of sample 2c (isotropic/anisotropic series combination) MRE 
compression and inclined isolator at 0, 1, 2 and 3 Amps electric current fed to the electromagnet in 
respect to zero field frequency ratio f/fn (at 30N amplitude force and m=8Kg). 

 

 

 

Figure 101: Force transmissibility TFF of sample 3c (anisotropic/anisotropic parallel combination) 
MRE compression and inclined isolator at 0, 1, 2 and 3 Amps electric current fed to the 
electromagnet in respect to zero field frequency ratio f/fn  (at 30N amplitude force and m=8Kg). 
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• Support acceleration excitation (n=2) 

Figure 102 presents a mass damper single degree of freedom system that can be equivalent of an 

engine of mass 𝑚  mounted through an MRE isolator to a non-rigid foundation. Assuming a 

harmonic base excitation 𝑥3(𝑡) = 𝑥𝑖𝑛 sin𝜔𝑡, then the ground acceleration will be 𝑥3̈(𝑡) =

−𝜔2𝑥𝑖𝑛 sin𝜔𝑡. The force acting on the isolator is the inertial force 𝑓3(𝑡) = −𝑚𝑥3̈(𝑡) =

𝑚𝜔2𝑥𝑖𝑛 sin𝜔𝑡 resisting the ground acceleration, which is a harmonic force of amplitude 𝑚𝜔2𝑥𝑖𝑛. 

For harmonic inputs with displacement amplitude value 𝑥𝑖𝑛, that correspond to less than 1% strain 

amplitude, the system can be considered linear. In the linearized system [𝑘]−1 and [𝑐]−1 are 

replaced by the equivalent receptance [𝑘𝑒𝑞]
−1

 and mobility [𝑐𝑒𝑞]
−1

 respectively, that are functions 

of the force amplitude 𝑚𝜔2𝑥𝑖𝑛 applied to the substrate, static load 𝑓𝑠𝑡 and electric current I.  

 

Figure 102: Single degree of freedom mass MRE isolator system where the excitation is due to a 
movement of the foundation 

The steady state displacement response of the MRE isolator is: 

 𝑥(𝑡) = 𝑥1(𝑡) − 𝑥3(𝑡) = 𝑥𝑓cos(𝜔𝑡) + 𝑥𝑠 sin(𝜔𝑡) (7.4.21) 

 

 

The total displacement the mass undergoes is: 

 𝑥1(𝑡) = 𝑥(𝑡) + 𝑥3(𝑡) = 𝑥𝑓cos(𝜔𝑡) + (𝑥𝑠 + 𝑥𝑖𝑛) sin(𝜔𝑡) (7.4.22) 

The differential equations are: 

 𝑥(𝑡) = 𝑥𝑘(𝑡) + 𝑥𝑐(𝑡)  (7.4.23) 

 𝑥𝑘(𝑡) = [𝑘𝑒𝑞]
−1

 (−𝑚𝑥3̈(𝑡) − 𝑚𝑥1̈(𝑡)) (7.4.24) 

 𝑥𝑐̇(𝑡) = [𝑐𝑒𝑞]
−1

(−𝑚𝑥3̈(𝑡) − 𝑚𝑥1̈(𝑡)) (7.4.25) 
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To solve the system analytically the Ritz-Galerkin method can be used again to determine the 

components of the displacement 𝑥𝑠 and 𝑥𝑓. The error function, the integral of which must be 

minimized in this case is  

 𝑥̇(𝑡) − 𝑥𝑘̇(𝑡) − 𝑥𝑐̇(𝑡) = 𝑒(𝑡) (7.4.26) 

Where: 

 𝑥𝑘̇(𝑡) = [𝑘𝑒𝑞]
−1

 (−𝑚𝑥3⃛(𝑡) − 𝑚𝑥1⃛(𝑡)) (7.4.27) 

 𝑥̇(𝑡) = 𝜔𝑥𝑠cos(𝜔𝑡) − 𝜔𝑥𝑓sin(𝜔𝑡) (7.4.28) 

 𝑥3̈(𝑡) = −𝜔2𝑥𝑖𝑛 sin𝜔𝑡           𝑥3⃛(𝑡) = −𝜔3𝑥𝑖𝑛 cos𝜔𝑡     (7.4.29) 

 𝑥1̈(𝑡) = −𝜔2𝑥𝑓cos(𝜔𝑡) − 𝜔2(𝑥𝑠 + 𝑥𝑖𝑛) sin(𝜔𝑡) (7.4.30) 

 𝑥1⃛(𝑡) = 𝜔3𝑥𝑓sin(𝜔𝑡) − 𝜔3(𝑥𝑠 + 𝑥𝑖𝑛) cos(𝜔𝑡) (7.4.31) 

The individual displacement components can then be obtained by solving the following set of 

equations: 

𝜕𝐽

𝜕𝑥𝑓
= ∫ 2𝑒(𝑡)

𝜕𝑒(𝑡)

𝜕𝑥𝑓

𝑡2

𝑡1

= 0 
𝜕𝐽

𝜕𝑥𝑠
= ∫ 2𝑒(𝑡)

𝜕𝑒(𝑡)

𝜕𝑥𝑠

𝑡2

𝑡1

= 0 (7.4.32) 

The partial derivatives
𝜕𝑒(𝑡)

𝜕𝑥𝑓
 and 

𝜕𝑒(𝑡)

𝜕𝑥𝑠
   become: 

 
𝜕𝑒(𝑡)

𝜕𝑥𝑓
= 𝜔 [−(1 + 𝑚𝜔2[𝑘𝑒𝑞]

−1
) sin(𝜔𝑡) + 𝑚𝜔2

[𝑐𝑒𝑞]

𝜔

−1

cos(𝜔𝑡)] (7.4.33) 

 
𝜕𝑒(𝑡)

𝜕𝑥𝑠
= (1 + 𝑚𝜔2[𝑘𝑒𝑞]

−1
) cos(𝜔𝑡) + 𝑚𝜔2

[𝑐𝑒𝑞]

𝜔

−1

sin(𝜔𝑡) (7.4.34) 

The displacement components of the solution are acquired by substituting equations (7.4.26), 

(7.2.23) and (7.4.27) to equation (7.2.28) and then the latter along with equations (7.4.30) to 

(7.4.29) and integrating for one period (from 𝑡1 = 0 to 𝑡2 = 2𝜋/𝜔). In this case the solution to the 

system becomes: 

 𝑥𝑓 = −

[𝑐𝑒𝑞]
𝜔

−1

(𝑚𝜔2
[𝑐𝑒𝑞]
𝜔

−1

)

2

+ (1 − 𝑚𝜔2[𝑘𝑒𝑞]
−1

)
2

𝑚𝜔2𝑥𝑖𝑛 (7.4.35) 
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 𝑥𝑠 = 

[𝑘𝑒𝑞]
−1

(1 − 𝑚𝜔2[𝑘𝑒𝑞]
−1

) − 𝑚𝜔2 (
[𝑐𝑒𝑞]
𝜔

−1

)

2

(𝑚𝜔2
[𝑐𝑒𝑞]
𝜔

−1

)

2

+ (1 − 𝑚𝜔2[𝑘𝑒𝑞]
−1

)
2

𝑚𝜔2𝑥𝑖𝑛 (7.4.36) 

The absolute displacement transmissibility TDD of the system is: 

𝑇𝐷𝐷 =
|𝑥1|

|𝑥3|
=

√(𝑥𝑠 − 𝑥𝑖𝑛)2 + (𝑥𝑓)
2

𝑥𝑖𝑛

=
1

√(1 − 𝑚𝜔2[𝑘𝑒𝑞]
−1

)
2
+ (𝑚𝜔2

[𝑐𝑒𝑞]
𝜔

−1

)

2

 (7.4.37) 

𝛩 = tan−1

(

 
 

−
𝑚𝜔2 [𝑐𝑒𝑞]

𝜔

−1

1 + 𝑚𝜔2[𝑘𝑒𝑞]
−1

)

 
 

 (7.4.38) 

While the relative displacement transmissibility of the system is: 

𝑇𝐷𝑅 =
|𝑥|

|𝑥3|
=

|𝑥1 − 𝑥3|

|𝑥3|
=

1

√(1 − 𝑚𝜔2[𝑘𝑒𝑞]
−1

)
2
+ (𝑚𝜔2

[𝑐𝑒𝑞]
𝜔

−1

)

2

− 1 

(7.4.39) 

 

The absolute displacement transmissibility curves of anisotropic, isotropic, sample 1, sample 2 and 

sample 3 compression and inclined isolators (calculated using equation (7.4.37)) in respect to zero 

field frequency ratio 
𝑓

𝑓𝑛
 are presented in Figure 103, Figure 104, Figure 105, Figure 106 and Figure 

107 respectively. As the electric current I fed to the electromagnet increases, dynamic stiffness 

increases and the natural frequency 𝑓𝑛 increases as well. Damping is relatively low and not greatly 

influenced by the magnetic field. The displacement transmissibility curves are different at high 

frequencies from force transmissibility curves presented earlier due to the increase of force 

amplitude with frequency and the amplitude-magnetic field coupling effects. This is more 

pronounced for the anisotropic compression MRE isolator because its dynamic stiffness decreases 

faster with increasing amplitude. 
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Figure 103: Displacement transmissibility TFF of isotropic MRE compression and inclined isolator at 
0, 1, 2 and 3 Amps electric current fed to the electromagnet in respect to zero field frequency ratio 
f/fn  (at 30N amplitude force and m=8Kg). 

 

 

 

Figure 104: Displacement transmissibility TFF of anisotropic MRE compression and inclined isolator 
at 0, 1, 2 and 3 Amps electric current fed to the electromagnet in respect to zero field frequency 
ratio f/fn  (at 30N amplitude force and m=8Kg). 
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Figure 105: Displacement transmissibility TFF of sample 1c (isotropic/anisotropic parallel 
combination) MRE compression and inclined isolator at 0, 1, 2 and 3 Amps electric current fed to 
the electromagnet in respect to zero field frequency ratio f/fn  (at 30N amplitude force and m=8Kg). 

 

 

 

Figure 106: Displacement transmissibility TFF of sample 2c (isotropic/anisotropic series 
combination) MRE compression and inclined isolator at 0, 1, 2 and 3 Amps electric current fed to 
the electromagnet in respect to zero field frequency ratio f/fn  (at 30N amplitude force and m=8Kg). 
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Figure 107: Displacement transmissibility TFF of sample 3c (anisotropic/anisotropic parallel 
combination) MRE compression and inclined isolator at 0, 1, 2 and 3 Amps electric current fed to 
the electromagnet in respect to zero field frequency ratio f/fn  (at 30N amplitude force and m=8Kg). 
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 Stability of a mass-inclined MRE isolator system 

In many marine mass-isolator systems, stability is equally important as isolation efficiency. Such a 

system could be the main propulsion engine that is usually connected to the propeller shaft through 

an elastic coupling. During heavy sea, ship motion could cause severe misalignment between the 

engine and the shaft line making the system unstable. Marine propulsion engines are usually 

mounted on inclined isolators with natural frequencies below 15Hz, that provide efficient isolation 

at engine operating frequencies. However, roll, pitch and yaw ship motion have very low 

frequencies that could be in the early amplification area of transmissibility curves. Thus, the 

stiffness of the isolators must be high enough to ensure low displacements under sea motion 

(stability) but still low enough to provide adequate isolation. A solution to this problem is the use 

of active isolation systems where natural frequency is increased when stability becomes an issue 

while sacrificing isolation efficiency at higher frequencies. MRE isolators could be used for this 

purpose.  

This section examines the principle of using the inclined MRE isolator to improve stability of a mass-

isolator system under loading conditions that represent ship motion. The theoretical mass-inclined 

MRE isolator system is presented in Figure 108. The mass represents an engine supported in two 

identical MRE inclined isolators arranged in the Z direction with two planes of symmetry. At 

equilibrium the system is excited only by 𝐹𝑖𝑛(𝑡) = 𝑓𝑜sin (2𝜋𝑓1𝑡) acting in the vertical direction 

when it is rotated by an angle 𝑢𝑖𝑛(𝑡) about the Z axis due to sea motion and the isolators provide 

sufficient isolation. The important part in this section is to present how the configuration of the 

combined MRE samples influences stiffness in more than one direction and if MRE isolator can be 

used to control stability. Thus, only the anisotropic/anisotropic parallel combination sample 3c and 

isotropic/anisotropic series combination sample 2c MREs are considered.  

          

Figure 108: Mass-inclined MRE isolator system a) at equilibrium state under force excitation b) 

under rotation about the Z axis  
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The displacement of each isolator in the y direction is assumed 𝑢(𝑡) = 𝑢1(𝑡) − 𝑢𝑖𝑛(𝑡) =

𝑢𝑓cos(𝜔𝑡) + 𝑢𝑠 sin(𝜔𝑡), where 𝑢1(𝑡) is the displacement of the mass. The force transmitted to 

the substrate and the dynamic displacement components 𝑢𝑓 and 𝑢𝑠 are given by equations (7.4.18), 

(7.4.15) and (7.4.16) for [𝑐𝑒𝑞]
−1

 and [𝑘𝑒𝑞]
−1

 at 𝑓𝑜 amplitude and 0 Amps electric current. The 

rotation motion is equivalent to applying the following forces to the mass centre of gravity [L He et 

al. 2014]: 

 
𝐹𝑥 = 𝑚𝑔 sin (𝑢(𝑡)) 

𝐹𝑦 = 𝑚𝑔 cos (𝑢(𝑡)) 
(7.5.1) 

Where u(t) is the rotation angle. The system has two planes of symmetry thus, the forces applied 

in the Y direction cause displacements y only in the same direction while translational displacement 

x on the X axis and rotational displacement β about the Z axis are coupled motions. Therefore, force 

component 𝐹𝑥 causes a rotational displacement β and the equations of motion for the system with 

two isolators are:  

 𝑚𝑥̈ + 2𝑘𝑥
∗𝑥 − 2𝑘𝑥

∗𝑎𝑦𝛽 = 𝐹𝑥 (7.5.2) 

 𝑚𝑦̈ + 2𝑘𝑦
∗𝑦 = 𝐹𝑦 (7.5.3) 

 𝐼𝑧𝛽̈ + 2𝑘𝛽
∗𝛽 − 2𝑘𝑥

∗𝑎𝑦𝑥 = 0 (7.5.4) 

Where 𝐼𝑧 is the moment of inertia about the z axis, 𝑘𝑥
∗ and 𝑘𝑦

∗ are complex dynamic stiffnesses in 

the X, Y axis, 𝑘𝛽
∗ is complex rotational stiffness about the Z axis and 𝑎𝑦 is defined in Figure 108. 

Rotation angle frequency 𝑓2 is very low and the MRE isolator operates in the zero-isolation region 

where damping is negligible. Thus, the system behaves as a static one and the second order 

differential terms can be ignored. When the principal elastic axis P, Q are selected as the new 

coordinate system, the stiffness in the original OXY system can be expressed in terms of principal 

stiffness elements 𝑘𝑝 and 𝑘𝑞  (Harris C M 2002) (for the specific MRE inclined isolator 𝜃 = 450) 

 
𝑘𝑥 = 𝑘𝑞 cos2 𝜃 + 𝑘𝑝 sin2 𝜃 =

𝑘𝑞 + 𝑘𝑝

2
 

(7.6.5) 

 
𝑘𝑦 = 𝑘𝑞 sin2 𝜃 + 𝑘𝑝 cos2 𝜃 =

𝑘𝑞 + 𝑘𝑝

2
 

(7.6.6) 

 
𝑘𝛽 =

𝑎𝑥
2𝑘𝑞 𝑘𝑝

𝑘𝑞 sin2 𝜃 + 𝑘𝑝 cos2 𝜃
=

2𝑎𝑥
2𝑘𝑞 𝑘𝑝

𝑘𝑞 + 𝑘𝑝
 

(7.6.7) 
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Where,  𝑘𝑥 and 𝑘𝑦 are static stiffnesses in the X, Y axis, 𝑘𝛽 is static rotational stiffness about the Z 

axis and 𝑎𝑥 is defined in Figure 108. Substituting equations (7.6.6) to (7.6.3) and (7.6.5), (7.6.7) to 

(7.6.2) and (7.6.4) we get: 

 𝑦 =
𝐹𝑦

2𝑘𝑦 
, 𝑥 =

𝐹𝑥

2𝑘𝑥  

𝑘𝛽

 𝑘𝛽 − 𝑎𝑦
2𝑘𝑥

, 𝛽 =
𝐹𝑥𝑎𝑦

(2𝑘𝛽 − 𝑎𝑦
22𝑘𝑥) 

 (7.6.8) 

For the inclined MRE isolator  
𝑘𝑞

𝑘𝑝
 ratio varies with the magnetic field due to the change of stiffness 

in the direction of the applied field as explained in detail is (section 6.6). The next step is to define 

principle static stiffness 
𝑘𝑞

𝑘𝑝
 ratio at different magnetic fields. Assuming m=16Kg, each isolator will 

be support 8Kg each (which corresponds to the applied static force during characterization stage at 

chapter 6), the results for sample 2c and sample 3c MREs are presented at Table 32. Vertical 

stiffness  𝑘𝑦 is found from the model of the inclined isolator for Fst=80N while stiffness Kq is found 

from the model of the compression isolator for 𝐹𝑠𝑡 = 80 sin(45) = 57𝑁.  Anisotropic/anisotropic 

parallel combination sample 3 MRE isolator has a much higher stiffness ratio than 

isotropic/anisotropic series combination sample 2 isolator. Stiffness ratio decreases with electric 

current for both types while for the isotropic/anisotropic series combination sample 2c the stiffness 

in shear  𝑘𝑝 becomes greater than stiffness 𝑘𝑞 after 2 Amps. This is because the static MR effect in 

shear, and thus the inclined isolator, is higher than the pure compression one.  

Table 32: Principal Static stiffness ratio for sample 2c and 3c MREs 

 Sample 2c Sample 3c 

I (Amps) Kq (57N) 

(KN/mm) 

𝒌𝒚 (80N) 

(KN/mm) 

Kp 

(KN/mm) 

𝒌𝒒/𝒌𝒑 Kq (57N) 

(KN/mm) 

𝒌𝒚 (80N) 

(KN/mm) 

Kp 

(KN/mm) 

𝒌𝒒/𝒌𝒑 

0 119 103 87 1.37 182 123 64 2.84 

1 140 121 102 1.37 206 145 84 2.45 

2 151 173 195 0.77 237 175 113 2.1 

3 167 227 287 0.58 257 223 189 1.36 

 

The displacements the mass undergoes at 20 degrees inclination angle and assuming 𝑎𝑦 = 0.7𝑎𝑥 is 

presented at Table 33. At zero electric current vertical displacement y is higher for sample 2c 

inclined isolator but horizontal and rotational displacements x and β are smaller. As the electric 

current increases and the isolator becomes stiffer all displacements decrease to similar values at 3 

Amps electric current. Thus, both MRE isolators are effective at decreasing displacements caused 
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by severe sea motion while ensuring that transmitted vibrations remain to an acceptable level. In 

addition, the combined MRE configuration and anisotropic/isotropic or anisotropic/anisotropic 

ratio can be adjusted to control 
𝑘𝑞

𝑘𝑝
 and thus, zero field static stiffness in the X, Y axis 𝑘𝑥, 𝑘𝑦 and 𝑘𝛽 

static rotational stiffness about the Z axis. When the electric current is increased the transmitted 

vibrations to the substrate also increase but if the natural frequency of the isolator is selected 

correctly the increase at high frequencies will not be a problem. 

Table 33: Static x, y and β displacements assuming 𝑎𝑦 = 0.7𝑎𝑥 and 200 inclination angle. 

 Sample 2c Sample 3c 

I (Amps) 𝒌𝜷 

(KN/mm) 

  𝒚 

(mm) 

  𝒙 

(mm) 

𝜷 𝒌𝜷 

(KN/mm) 

  𝒚 

(mm) 

  𝒙 

(mm) 

𝜷 

0 100.4 𝑎𝑥
2 0.73 0.52 0.38/𝑎𝑥 95 𝑎𝑥

2 0.61 0.61 0.55/𝑎𝑥 

1 118 𝑎𝑥
2 0.62 0.45 0.33/𝑎𝑥 119 𝑎𝑥

2 0.52 0.47 0.4/𝑎𝑥 

2 170.6 𝑎𝑥
2 0.43 0.31 0.22/𝑎𝑥 153 𝑎𝑥

2 0.43 0.35 0.28/𝑎𝑥 

3 212 𝑎𝑥
2 0.33 0.25 0.19/𝑎𝑥 218 𝑎𝑥

2 0.34 0.25 0.18/𝑎𝑥 
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 Base isolator for a marine separator  

To examine the possible performance of MREs in a real system, the example of a base isolator for 

an Alfa Laval MAB 104 marine oil separator will be considered. Oil separators are present in all 

modern ships and are responsible for generating a great amount of vibration. Their role is to clean 

the dirty oil of the main engines from water and solid particles and recycle it. The separation 

procedure is achieved by a fast-rotating bowl using the principal of the centrifugal force and the 

difference in the specific weights of oil and water. In the end of every operation cycle the discs 

inside the bowl rises and the clean oil, water and sludge is pushed out through appropriate pipes. 

The bowl is rotated by a vertical driving device which is driven by a horizontal device connected to 

a motor. If the bowl or the vertical and horizontal shafts are misaligned, or the ball bearings of the 

driving devices are damaged, the vibrations generated by the machine will increase significantly. To 

design an isolator for a specific application we must first determine the frequency range that we 

want the isolation to occur, the amount of isolation desired at that frequency and the load 

distribution. 

•  System characteristics 

The MAB 104 machine weights approximately 150 Kg and generates a maximum vibration level of 

9mm/s when fully used. The speeds of rotation for the motor shaft and bowl for 50 Hz electric 

current supply are 1500 rpm and 7500 rpm respectively. The frequencies at which vibrations are 

most likely to occur in this case are the rotating frequencies of the driving devices at 25 Hz and 125 

Hz. The machine has four base isolators and assuming even weight distribution, each one will have 

to support 37.5 Kg.  The detailed load distribution however is not known. In general, the isolator 

will always be compressed by the weight of the machine. Table 34 summarizes the general vibration 

characteristics of the MAB 104 system. 

Part Characteristics 

  

Bowl and vertical driving device 
Speed of rotation: 7500 rpm 

Frequency of rotation: 125 Hz 

Horizontal driving device 
Speed of rotation: 1500 rpm 

Frequency of rotation: 25 Hz 

Vibration level: 9 mm/s   

Corresponding vibration displacement 
At 25 Hz: 0.06 mm 

At 125 Hz: 0.011 mm 

Start-up and closing time: 2-3 min  

Table 34: Vibration characteristics of MAB 104 system 
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The selection of an appropriate isolator in the industry is made based on the following steps: 

1. Determine the load on each mount. 

As mentioned above each isolator will have to support 37.5 Kg or approximately 375 N. 

2. Determine the lower frequency the vibrations are likely to occur. 

The frequencies of the horizontal and vertical rotation systems are: 

 𝑓𝑣𝑖𝑏1 =
𝑅𝑃𝑀

60 𝑠𝑒𝑐/𝑚𝑖𝑛
=

1500

60
= 25 𝐻𝑧,      𝑓𝑣𝑖𝑏2 =

𝑅𝑃𝑀

60 𝑠𝑒𝑐/𝑚𝑖𝑛
=

7500

60
= 125 𝐻𝑧 (7.6.1) 

The selection of the mount should therefore be based on the lower frequency of 25 Hz, however 

the required stiffness and natural frequency will be calculated for both frequencies to gain a better 

understanding of the isolation system. 

3. Calculate the natural frequency for the desired level of isolation. 

Assuming minimum desired isolation of 80%, the corresponding transmissibility value will be 0.2. 

From the general transmissibility equation for the frequencies of interest we have: 

 
𝑇 =

1

(
𝜔
𝜔𝑛

)
2
− 1

=
1

(
𝑓
𝑓𝑛

)
2

− 1

⇒ 𝑓𝑛 =
𝑓

√1
𝑇 + 1

 
(7.6.2) 

 
𝑓𝑛1 =

25

√ 1
0.2

+ 1

= 10  𝐻𝑧,      𝑓𝑛2 =
125

√ 1
0.2

+ 1

= 51  𝐻𝑧 
(7.6.3) 

4. Calculate the static deflection to obtain the desired natural frequency. 

From the general equation of the natural frequency: 

𝑓𝑛 =
1

2𝜋
√

𝐾

𝑚
= 

1

2𝜋

√
𝐹
𝑥𝑠

𝑚
⇒ 𝑓𝑛

2 = (
1

2𝜋
)
2 𝐹

𝑚𝑥𝑠
⇒ 𝑥𝑠 = (

1

2𝜋
)
2 𝑔

𝑓𝑛
2 (7.6.4) 

𝑥𝑠1 =
9.8

(2𝜋10)2
= 2.48 𝑚𝑚, 𝑥𝑠2 =

9.8

(2𝜋51)2
= 0.1 𝑚𝑚 (7.6.5) 

5. Calculate the required stiffness to obtain the desired natural frequency. 

𝐾1 =
𝑙𝑜𝑎𝑑 𝑝𝑒𝑟 𝑚𝑜𝑢𝑛𝑡

𝑠𝑡𝑎𝑡𝑖𝑐 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛
=

375 

𝑥𝑠1
=

375 

2.48 𝑚𝑚
= 151.2  𝐾𝑁/𝑚 (7.6.6) 

𝐾2 =
𝑙𝑜𝑎𝑑 𝑝𝑒𝑟 𝑚𝑜𝑢𝑛𝑡

𝑠𝑡𝑎𝑡𝑖𝑐 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛
=

375 

𝑥𝑠2
=

375 

0.1 𝑚𝑚
= 3750 𝐾𝑁/𝑚 (7.6.7) 

6. Select a mount and recalculate the transmissibility using the stiffness of the actual mount. 
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The mount that can offer an acceptable level of isolation for this case should have a stiffness or 

spring rate less than the calculated one and a maximum load rating greater than the calculated. 

These rules apply when selecting a mount from the ones on offer in the industry, but the situation 

is different when designing the isolator from the beginning. In that case there is another general 

rule to follow. The static strain should not be more than 5% when the isolator works in compression 

while it can be much higher for shear. The design of the dimensions of the rubber as well as 

selection of the rubber itself will have to deal with all the requirements. Figure 109 illustrates one 

out of the total four antivibration mounts of MAB 104 separator. The device consists of a cylindrical 

elastomer (3) made of Neoprene rubber placed inside two iron caps (4, 5). The elastomer has an 

outer and inner diameter of 50 mm and 20 mm respectively and a height of 15 mm.  

 

Figure 109: Anti vibration mount for MAB 104 Alfa Laval separator. 

The forces caused by the misaligned rotating parts of the separator will subject the device in both 

shear and compression load components while the movement of the bowl in the end of every cycle 

induces an additional compression load.  In this example, we focus in reducing the vibrations 

transmitted from the machine to the shell in the vertical direction. The effective area that the load 

is distributed is: 

 𝐴 = 𝜋(𝑟𝑜𝑢𝑡𝑠𝑖𝑑𝑒
2 − 𝑟𝑖𝑛𝑠𝑖𝑑𝑒

2 ) = 𝜋 ((
50

2
)
2

− (
20

2
)
2

) = 1650 𝑚𝑚2 (7.6.8) 

This corresponds to a stress value of: 

 𝜎𝑠𝑡 =
𝐹

𝐴
=

375

1650 𝑚𝑚2
= 0.227  𝑀𝑃𝑎 (7.6.9) 

The next step is to determine the static displacement the load of the machine causes. Figure 110 

presents the static displacement-force curves of the neoprene rubber tested in the laboratory. The 

displacement and calculated strain for 375N compressive load are: 

 𝑥𝑠𝑡 = 0.43 𝑚𝑚 ,             𝜀𝑠𝑡 =
𝑥𝑠𝑡

𝐿
 100 =

0.43𝑚𝑚

15𝑚𝑚
 100 = 2.86% (7.6.10) 
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The strain is therefore much smaller than the maximum 5% static strain rule. The static stiffness for 

that load is: 

 𝐾𝑠𝑡 =
𝐹𝑠𝑡

𝑥𝑠𝑡
 =

375

0.43𝑚𝑚
 = 872.1 103  (7.6.11) 

Using the static displacement to calculate the natural frequency from equation (9.2.6) we get: 

 𝑓𝑛 =
1

2𝜋
√

𝑔

𝑥𝑠
=

1

2𝜋
√

9.8

0.43
= 24 𝐻𝑧 (7.6.12) 

 

Figure 110: Static load-displacement curves for Neoprene rubber isolator 

The above natural frequency will provide efficient isolation at the frequency of 125Hz but for the 

frequency of 25Hz the isolator is in the amplification stage. The specific mount was therefore 

designed to provide isolation at the higher frequency of 125Hz where probably the vibrations are 

more significant due to the movement of the horizontal shaft system. However, for rubber isolator 

the dynamic stiffness is always larger than the static one and thus, the actual natural frequency is 

greater than 24Hz. Thus, dynamic loading tests were performed under 3% static strain and 0.05mm 

dynamic displacement amplitude (0.34% dynamic strain) to find dynamic stiffness and damping. 

The dynamic properties of Neoprene rubber isolator are mentioned in Table 35. The extracted 

stiffness was then used to determine the new natural frequency of the Neoprene rubber. The new 

natural frequency is 7Hz higher than the one calculated using the static stiffness value. 

 𝑓𝑛𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =
1

2𝜋
√

𝐾𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝑚
=

1

2𝜋
√

1414 103

37.5
= 31 𝐻𝑧 (7.6.13) 
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Table 35: Isolation properties of Neoprene rubber isolator 

Isolator characteristics 

Neoprene 

rubber 

Weight supported: 37.5 Kg   or ≈375 N 

Area of rubber isolator: 1650 mm2 

Height: 15 mm 

Static displacement 0.43 mm 

Corresponding static strain: <3 % 

Static stiffness: 872 K 

Natural frequency: 
24 Hz (calculated using the static stiffness value) 

31 Hz (calculated using the dynamic stiffness value) 

Storage modulus: 12.8 MPa At 3% static strain, 

60N* load amplitude 

(0.051* mm displacement, 
0.34% strain) and 5Hz 

Dynamic stiffness: 1414 KN/m 

Damping factor: 0.17  

* Assuming 80% isolation, corresponding displacement input is 0.05mm for 0.01 mm vibration 
displacement at 125Hz (corresponding to 9mm/s). 

 

• Scaling up the MRE isolators 

The possibility of replacing the existing neoprene mounts of the MAB104 marine oil separator with 

an MRE isolator is discussed next. The first step is to examine if the MRE isolator can support the 

weight of the machine assuming maximum 5% static strain at 375 N static force. This load is too 

high for the small-scale test MRE isolators examined in chapter 6 thus, larger isolators are needed 

to cope with the load. However, for the MR effect to be high the gap between the top and base 

parts of the magnetic circuit, where the MREs are placed, must be as small as possible. This 

practically means that the height of the MREs cannot be increased while the dimensions of the 

magnetic circuit must be chosen wisely for the device to be stable.  

Of course, scaling up the MRE isolator means increasing the size of the magnetic circuit and rewiring 

the coil to produce the same magnetic flux for the same values of electric current. This is 

straightforward when the gap between the magnetic circuit (Height of the MREs H) and 
𝐿

𝑤
 ratio 

remain the same. Changing the length and width will increase the effective area (𝐿 ∗ 𝑊) and the 

efficiency of the electromagnet but the height of the electromagnet itself will also have to be 

increased for the coils to be effective. The new coil will need less turns to produce the same 

magnetic flux, but the copper wire will be longer with higher resistance thus, the power dissipated 

by the electromagnet will increase as its size increases. As a conclusion, scaling up the MRE isolator 

means scaling up the whole device while keeping the height of MREs at 5mm. 
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Making the MREs larger by keeping the height stable will increase shape factor S and affect 

significantly the zero-field dynamic modulus E as shown in section 4.6. Table 36 presents the results 

of three rectangular isotropic MREs with 1.15, 1.2 and 1.6 shape factors. The dynamic tests were 

performed under 0.5% dynamic load, 5Hz frequency and 10% static prestrain while static modulus 

E was measured at 5% static strain. Sample c_1 has the similar dimension with the MREs used in 

the isolator device and is used as a reference sample. Both dynamic and static modulus increase 

linearly with shape factor according to the shape function correction equations (7.6.14) and (7.6.15) 

respectively. These equations are used later to estimate the actual stiffness of the scaled isolator. 

The compression MRE isolator is much stiffer than the inclined one and can handle greater loads. 

Therefore, the compression MRE isolator case will be examined first for all MRE samples.  

Design parameters 

Thus, it was decided to scale up the MRE isolators assuming: 

• The height of the MREs is set to H=5mm 

• Maximum static strain of 5% for the compression isolator and 15% for the inclined. 

• Maximum natural frequency of 51 Hz. 

• The length to width ratio is set to 1.7  (same with the test isolator 
𝐿

𝑤
=

34𝑚𝑚

20𝑚𝑚
= 1.7). 

• The magnetic flux (and MR effect) remains the same for the same values of the electric 

current. 

• The static and dynamic moduli of elasticity increase as size increases according to equations 

(7.6.14) and (7.6.15) for all MRE samples where 𝐸𝑟𝑒𝑓 , 𝐸
∗
𝑟𝑒𝑓 and 𝑆𝑟𝑒𝑓 refer to the original 

small-scale MRE isolator tested in the laboratory. 

Table 36: Dynamic |E∗| and static E modulus of rectangular isotropic MREs used for scaling up 

sample 
h 

(mm) 

W 

(mm) 

L 

(mm) 

S |𝑬∗| 

(MPa) 

𝒕𝒂𝒏𝜹 E 

Static  

c_1 5.5 20 34 1.2 7.33 0.075 3.3 

c_2 6.25 30 60.5 1.6 16.38 0.076 5.2 

c_3 10.5 41 59.5 1.15 6.7 0.077 3.1 

Dynamic modulus 𝑬∗ = 𝑬∗
𝒓𝒆𝒇(𝟏 +  𝟑(𝑺 − 𝑺𝒓𝒆𝒇))            (7.6.14) 

Static modulus 𝑬 = 𝑬𝒓𝒆𝒇(𝟏 +  𝟏. 𝟒𝟒(𝑺 − 𝑺𝒓𝒆𝒇))               (7.6.15) 
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Table 37: Static load design properties of compression isolator for 37.5 Kg weight 

 
X 

(mm) 

Strain ε 

(%) 

Static E 

(MPa) 

K 

(KN/m) 

Stress σ 

( MPa) 

Fn 

(Hz) 

Area 

(mm2) 
S 

L w h 

(mm) 

Neoprene 0.43 2.86 7.94 872 0.227 24 1650 0.5 Ring 15 

Isotropic 

Test device 0.89 17 1.61 421 0.275 17 1360 1.3 20 34 5 

Scaled 0.28 5.6 1.61 1340 0.908 30 4130 2.2 35 59 5 

Shape factor 
correction 

0.12 2.45 3.7 3125 0.908 46 4130 2.2 35 59 5 

0.24 4.7 2.77 1562 0.132 32 2842 1.8 29 49 5 

Anisotropic 

Test device 0.57 11.4 3.26 658 0.275 21 1360 1.3 20 34 5 

Scaled 0.23 4.6 3.26 1630 0.151 33 2484 1.7 27 46 5 

Shape factor 
correction 

0.15 3 5.13 2500 0.151 41 2484 1.7 27 46 5 

0.22 4.5 4.2 1800 0.19 35 1968 1.5 24 41 5 

Sample 1 (anisotropic/isotropic parallel combination) 

Test device 0.66 13 2.1 568 0.275 20 1360 1.3 20 34 5 

Scaled 0.25 5 2.1 1500 0.106 32 3520 2 32 55 5 

Shape factor 
correction 

0.13 2.52 4.2 2884 0.106 44 3520 2 32 55 5 

0.22 4.5 3.3 1800 0.151 35 2484 1.7 27 46 5 

Sample 2 (anisotropic/isotropic series combination) 

Test device 0.71 14.2 1.9 528 0.275 19 1360 1.3 20 34 5 

Scaled 0.28 5.6 1.9 1340 0.106 30 3520 2 32 55 5 

Shape factor 
correction 

0.14 2.8 3.8 2680 0.106 42 3520 2 32 55 5 

0.25 5 3 1500 0.151 32 2484 1.7 27 46 5 

Sample 3 (anisotropic/anisotropic parallel combination) 

Test device 0.61 12.2 2.3 615 0.275 20 1360 1.26 20 34 5 

Scaled 0.23 4.6 2.3 1630 0.106 33 3520 2 32 55 5 

Shape factor 
correction 

0.11 2.3 4.6 3260 0.106 47 3520 2 32 55 5 

0.25 5 3.3 1500 0.164 32 2288 1.6 26 44 5 
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Table 37 presents the static stiffness and strain caused to the original test MRE isolator (1st Light 

blue highlighted row) under a static load of 375N, the scaled-up isolator with no shape factor 

correction (2nd row) that deflects less than 0.25mm under 375N and the previously scaled up 

isolator with shape factor corrected stiffness (3nd grey highlighted row). When the shape factor 

correction is considered, the actual stiffness of the scaled-up isolator is higher than the one 

predicted using the modulus of the test device 𝐸𝑟𝑒𝑓 and a smaller size isolator can be used instead 

as the last row (purple highlighted row) indicates. Considering cost as an extra parameter the 

smallest scaled-up MRE isolator should be preferred. Thus, the isolators with anisotropic and 

sample 3 MREs are considered for further study. 

The next step is to examine the natural frequency and isolation efficiency of the scaled-up 

anisotropic and sample 3 MRE isolators. Table 38 presents the dynamic stiffness and natural 

frequency of the scaled-up isolators with dimensions defined at the previous static load design 

stage. Storage modulus E’ of simple scaled isolator (2nd row) is slightly higher than the one of the 

test device (1st blue highlighted row) to account for the variation of dynamic stiffness with input 

force amplitude. For example, for the anisotropic compression isolator the 4.37 value corresponds 

to the modulus of the test device for 0.03 MPa stress or 41N. In this case when the shape factor 

correction is considered, the predicted dynamic stiffness becomes much higher and so does the 

natural frequency of the device.   

Table 38: Dynamic properties of compression isolator for 60N force amplitude 

 tan 
E’ 

(MPa) 

K’ 

(KN/m) 

 Stress 

(MPa) 

Fn 

(Hz) 

T 

(125Hz) 

Area 

(mm2) 
S 

L 

(mm) 

w 

(mm) 

h 

(mm) 

 Anisotropic 

Test device 0.12 4.13 1124 0.044 27 0.05 1360 1.3 20 34 5 

Scaled 0.12 4.37 1720 0.030 34 0.08 1968 1.5 24 41 5 

Shape factor 
correction 

0.12 6.99 2751 0.030 43 0.13 1968 1.5 24 41 5 

 Sample 3 (anisotropic/anisotropic parallel combination) 

Test device 0.12 3.21 873 0.044 24 0.04 1360 1.3 20 34 5 

Scaled 0.12 3.35 1533 0.026 32 0.07 2288 1.6 26 44 5 

Shape factor 
correction 

0.12 6.36 2913 0.026 44 0.13 2288 1.6 26 44 5 

 

The static and design properties for the inclined isolator with anisotropic and sample 3 MREs are 

presented in Table 39 and  
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Table 40 respectively. The inclined isolator works both in compression and shear loading modes 

and thus, higher static displacements are acceptable. However, it still needs to become larger than 

the pure compression isolator to meet the 15% maximum static strain design rule. Unlike the pure 

compression isolator case, anisotropic and sample 3 inclined MRE isolators have similar static 

stiffness and are scaled-up to the same size.  However, sample 3 MRE inclined isolator has lower 

natural frequency and higher tanδ values. 

 

Table 39: Static load design properties of inclined isolator for 37.5 Kg weight 

 
X 

(mm) 

Strain ε 

(%) 

Static E 

(MPa) 

K 

(KN/m) 

Stress σ 

(MPa) 

Fn 

(Hz) 

Area 

(mm2) 
S 

L w h 

(mm) 

Anisotropic 

Test device 1.8 36 0.76 208 0.275 12 1360 1.3 20 34 5 

Scaled 1.25 25 0.76 300 0.19 14 1968 1.5 24 41 5 

Shape factor 
correction 

0.96 20 0.99 390 0.19 16 1968 1.5 24 41 5 

0.64 13 1.18 586 0.151 20 2484 1.7 27 46 5 

Sample 3 (anisotropic/anisotropic parallel combination) 

Test device 1.85 37 0.74 203 0.275 12 1360 1.3 20 34 5 

Scaled 1.1 22 0.74 341 0.164 15.2 2288 1.6 26 44 5 

Shape factor 
correction 

0.66 13 1.15 571 0.151 20 2484 1.7 27 46 5 

 

Table 40: Dynamic properties of inclined isolator for 60 N force amplitude 

 tan 
E’ 

(MPa) 

K’ 

(KN/m) 

 Stress 

(MPa) 

Fn 

(Hz) 

T 

(125Hz) 

Area 

(mm2) 
S 

L 

(mm) 

w 

(mm) 

h 

(mm) 

 Anisotropic 

Test device 0.12 1.19 324 0.044 15 0.014 1360 1.3 20 34 5 

Scaled 0.12 1.37 372 0.024 16 0.016 2484 1.7 27 46 5 

Shape factor 
correction 

0.12 3 1497 0.024 32 0.07 2484 1.7 27 46 5 

 Sample 3 (anisotropic/anisotropic parallel combination) 

Test device 0.14 1.42 385 0.044 16 0.017 1360 1.3 20 34 5 

Scaled 0.14 1.34 665 0.024 21 0.03 2484 1.7 27 46 5 

Shape factor 
correction 

0.14 2.95 1464 0.024 31 0.07 2484 1.7 27 46 5 
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Important notes 

- The same shape factor correction function was used for both inclined and compression 

isolators assuming that they behave in a similar way when scaled-up. This assumption may not 

be accurate because the inclined isolator is working in both shear and compression modes and 

it is usually assumed that shear modulus is not affected by size or shape. The estimated static 

and dynamic stiffness considering shape factor correction might be higher than the real ones.   

- The corresponding static strain at each isolator is close to the one the 80N static force caused 

during characterization stage thus the static prestrain effect on dynamic properties is ignored. 

 

• Force transmissibility under rotating moment excitation 

In the previous section we examined the zero-field static and dynamic properties of the MRE 

isolators. In this section we will consider how we can vary the magnetic field in the MRE isolators 

to reduce the force transmitted to the substrate during start-up and stopping periods. The user 

manual of MAB 104 separator states that the start-up time is 2-3 min depending on maximum load. 

During these periods the system will pass through its natural frequency where the transmitted force 

will increase significantly. The system is modelled as a mass supported by 4 isolators and excited by 

a moment 𝑀 = 𝑀0𝜔
2sin (𝜔𝑡) as shown in Figure 111. 

 

Figure 111: Model of mass-MRE isolator system under rotating moment excitation 

Simulation parameters and assumptions: 

• System takes 180 sec (3 min) to reach steady operation at 125Hz. 

• Only the force transmitted in the vertical direction is of interest. 

• 𝑀0 = 0.1𝑒 − 3 (corresponding to approximately 62N amplitude at 125Hz) 
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• Mass: m=150 Kg  

• 4 identical MRE isolators with two planes of symmetry supplied with the same electric 

current I that depend on amplitude 𝑀0𝜔
2 and electric current I. 

The system is equivalent with the direct force excitation system described in section 7.4 by 

substituting 𝑓0 = 𝑀0𝜔
2. The force transmissibility equation therefore is: 

𝑇𝐹𝐹 =
|𝐹𝑜𝑢𝑡|

|𝐹𝑖𝑛|
=

1

√(𝑚𝜔2 [𝑐]
𝜔

−1

)

2

+ (1 − 𝑚𝜔2[𝑘]−1)2

 
(7.6.16) 

And the force transmitted: 

𝐹𝑜𝑢𝑡 =

(

 
 1 − 𝑚𝜔2[𝑘]−1

(𝑚𝜔2 [𝑐]
𝜔

−1

)

2

+ (1 − 𝑚𝜔2[𝑘]−1)2

 𝐴 𝑀0𝜔
2

)

 
 

sin𝜔𝑡

+

(

 
 

−
𝑚𝜔2 [𝑐]

𝜔

−1

(𝑚𝜔2 [𝑐]
𝜔

−1

)

2

+ (1 − 𝑚𝜔2[𝑘]−1)2

𝐴 𝑀0𝜔
2

)

 
 

cos(𝜔𝑡) 

(7.6.17) 

Where: 

[𝑐]−1 = 4 
1

𝑆𝐹
[𝑐𝑒𝑞]

−1
(𝐴 𝑀0𝜔

2, 𝐼)    ,      [𝑘]−1 = 4 
1

𝑆𝐹
[𝑘𝑒𝑞]

−1
(𝐴 𝑀0𝜔

2, 𝐼) (7.6.18) 

 𝑆𝐹 =
𝐾′ (𝑠𝑐𝑎𝑙𝑒𝑑 𝑤𝑖𝑡ℎ 𝑆𝐹 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛)

𝐾′(𝑡𝑒𝑠𝑡 𝑑𝑒𝑣𝑖𝑐𝑒)
  and 𝐴 =

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑡𝑒𝑠𝑡 𝑑𝑒𝑣𝑖𝑐𝑒

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑐𝑎𝑙𝑒𝑑 𝑖𝑠𝑜𝑙𝑎𝑡𝑜𝑟
 are scaling factors to adjust 

the values calculated by the model for the test device isolator to the new size of the MRE isolator 

of interest. A scaling factor is needed because the model parameters were defined using force and 

displacement than stress and strain and the force inserted to the model has to be adjusted based 

on the stress it would cause to the test device.  

The force transmissibility of the system with the Neoprene rubber is illustrated in Figure 112. The 

maximum transmitted force at resonance is 23N at 31Hz. The force transmissibility curves of 

compression and inclined isolator with anisotropic and sample 3 MREs at zero and 3 Ampere electric 

current supplied to the electromagnet are shown in Figure 113 and Figure 114 respectively. The 

force transmissibility was simulated using the linearized model but taking under consideration the 

effect of force amplitude and the force amplitude-magnetic field coupling effects on dynamic 

properties. In Figure 113, sample 3 MRE compression isolator is shown to have a lower natural 

frequency than the anisotropic compression isolator which is the opposite of what is mentioned in 
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Table 38 where the natural frequency was calculated for 60N force amplitude. In a similar way, in 

Figure 114 the anisotropic inclined MRE isolator is shown to have a higher natural frequency than 

sample 3 inclined isolator in contrast to the values of Table 40. This is because the force 

transmissibility curves consider a moment as excitement force where amplitude increases with 

frequency and anisotropic MRE behaves differently than sample 3 with varying force amplitude as 

presented in detail is section 6.4.  

 

Figure 112: Linear force transmissibility of Neoprene rubber mounts for K’=4*1414 KN/mm, 
tanδ=0.17 and m=150 Kg. 

 

Figure 113: Force transmissibility of anisotropic and sample 3 compression isolator at 0 and 3 Amps 
in respect to frequency (using the linearized force and electric current depended model). 
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Figure 114: Force transmissibility of anisotropic and sample 3 inclined isolator at 0 and 3 Amps in 

respect to frequency (using the linearized force and electric current depended model). 

The situation becomes interesting when the magnetic field is applied and force amplitude- 

magnetic field coupling effects are present. The natural frequency, maximum transmitted force at 

resonance and force transmitted at 125Hz at 0 and 3 Amps are presented in Table 41. Anisotropic 

compression isolator shows the highest MR effect but not the best isolation efficiency. However, it 

is a much smaller device compared to the rest and since magnetic materials are expensive, size of 

the magnetic circuit should not be underestimated when considering MREs. Both inclined MRE 

isolators are of the same size and show similar isolation characteristics but sample 3 inclined 

isolator has a higher MR effect and lower transmitted force values.  

Table 41:  Isolation characteristics at zero field and 3 Amps electric current 

 

Natural 
frequency 

(Hz) 

Transmitted 
force (125 Hz) 

(N) 

Maximum 
transmitted force 

Fout (N) 

MR 
effect* 

(%) 

 
0 

(Amps) 

3 

(Amps) 

0 

(Amps) 

3 

(Amps) 

0  

(Amps) 

ON-OFF 
control 

ON-OFF 
control 

Neoprene 31 - 2 - 23 - - 

Anisotropic compression isolator 41 60 3.7 7.7 59 15 75% 

Sample 3 compression isolator 35 48 2.9 5.7 25 12 52 % 

Anisotropic inclined isolator 25 32 1 1.7 15 7 44% 

Sample 3 inclined isolator 27 42 1.2 2 12 5 58% 

*MR effect defined as 
𝐹𝑜𝑢𝑡(𝑂𝑁−𝑂𝐹𝐹)−𝐹𝑜𝑢𝑡(0)

𝐹𝑜𝑢𝑡(0)
𝑥100  
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• Control strategy 

The control law is a simple ON-OFF operation when the electric current is applied for a predefined 

period during starting operation. The main idea is to supply 3 Amps electric current to the 

electromagnet some seconds after starting time well before the amplification stage starts at zero 

field. The electric current is switched back to zero when the amplification stage at zero field has 

passed and before the amplification stage at 3 Amps current starts. Since the starting time is a 

predefined operation no feedback control is needed.  The control system can be programmed to 

switch the MRE isolator ON and OFF at standard times every time the machine starts a starting up 

or stopping cycle with no feedback needed. Figure 115 and Figure 116 illustrate the force 

transmitted to the substrate at 0, 3 Amps and when the on-off control strategy is implemented 

during the 3min (180 sec) starting time for anisotropic compression and sample 3 inclined isolator 

respectively (MRE isolators with the highest MR effect).  

 

Figure 115: Transmitted force of anisotropic compression isolator at 0, 3Amps and ON-OFF control 
in respect to time. With ON-OFF control, maximum transmitted force decreases from 59N (at zero 
field) to 15N. 
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Figure 116: Transmitted force of sample 3 inclined isolator at 0, 3Amps and ON-OFF control in 
respect to time. With ON-OFF control, maximum transmitted force decreases from 12.5N (at zero 
field) to 5N. 

 

In terms of isolation efficiency in the full frequency range sample 3 inclined isolator has a better 

performance than anisotropic compression isolator although the latter has higher MR effect. In 

addition, the 3 Amps electric current needs to be on for 35 sec to provide efficient isolation for 

sample 3 inclined isolator while the equivalent time for the anisotropic compression is 49 sec. Thus, 

it will consume less energy while the magnetic circuit will generate less heat. However, sample 3 

inclined isolator is larger than anisotropic compression and operates at higher static strain values. 

Switching ON periods of this semi-active control system are well above the response time of the 

MRE isolators and long enough not to expect high losses on the magnetic circuit but still for real 

applications a cooling system for the electromagnet is needed.   
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 Chapter summary 

In this final chapter, a force dependent Maxwell viscoelastic model was used to describe the 

behaviour of the inclined and compression MRE isolators and to simulate the force and 

displacement transmissibility of a single degree of freedom mass-inclined isolator system. The 

principle of using the inclined MRE isolator to improve stability of a marine engine under loading 

ship motion was examined for Anisotropic/anisotropic sample 3c and anisotropic/isotropic sample 

2c MRs was also examined along with the efficiency of MREs as base isolators for a marine oil 

separator. The general conclusions can be summarized as:  

• Anisotropic/anisotropic sample 3c and anisotropic/isotropic sample 2c inclined isolators are 

effective at decreasing displacements caused by severe sea motion while ensuring that 

transmitted vibrations remain to an acceptable level. 

• The combined MRE configuration and anisotropic/isotropic or anisotropic/anisotropic ratio 

can be adjusted to control 
𝑘𝑞

𝑘𝑝
 and thus, zero field static stiffness in the X, Y axis 𝑘𝑥, 𝑘𝑦 and 𝑘𝛽 

static rotational stiffness about the Z axis. 

• When the mounts of a marine oil separator are replaced from MRE isolators and simple ON-

OFF control strategy is used to shift the natural frequency during starting up and closing stages, 

the transmitted force can be reduced up to 75%. 

• MREs are amazing. 

 

 

  

 

 

   

  



Chapter 8 

187 

Chapter 8: Conclusion 

Magnetorheological elastomers (MRE) are a category of smart materials that can adjust their 

mechanical properties according to the intensity of an external magnetic field. The aim of this project 

is to develop new magnetorheological elastomers with improved isolation efficiency for applications 

in the marine industry. A two-component room-temperature vulcanization silicon rubber was used 

as the rubber matrix. For the filler particles, I selected two types of iron particles, one with an 

average diameter lower than 220 μm (Sigma-Aldrich) and the other with average diameter of 4-6 

μm (Sigma-Aldrich), referred as large and small particles respectively. The experimental results 

showed that the pure isotropic MRE made of large (diameter< 220μm) particles has similar zero field 

dynamic properties but a slightly lower MR effect than the isotropic MRE made of small (diameter 

4-6μm) particles. The anisotropic MRE with large particles is slightly stiffer but have higher damping 

than the equivalent sample with small particles but their MR effect is 10% lower.  A strong MR effect-

strain amplitude coupling effect was observed for all samples except anisotropic MREs with large 

particles that tend to form more stable matrix-particles structures. In addition, the effect of size and 

shape of isotropic MREs on the dynamic mechanical properties was examined for the first time. The 

dynamic stiffness of isotropic MREs depends greatly on the size and thickness of the elastomer but 

not on shape while the MR effect is not influenced by the sample size and shape. 

The possibility of combining isotropic and anisotropic MREs in parallel and series configurations to 

a novel composite MRE as an easy way to tailor its dynamic mechanical properties was then 

examined. The new composite MRE has higher tangent of the loss angle tanδ than isotropic MRE 

by keeping stiffness lower than anisotropic MRE without compromising the MR effect. Under a 0.5T 

magnetic field, pure anisotropic and isotropic MREs increased their storage modulus E’ by 31% and 

21% respectively while their parallel and series combination composite MREs by 27% and 28% 

respectively. The exact stiffness and damping capability of composite samples can be tailored by 

selecting the dimensions of each part and the particle size that each MRE part is made of. For 

example, using an anisotropic MRE core made of large particles to a cylinder isotropic MRE made 

of small particles, increases tangent of the loss angle for small strains by 25% while keeping stiffness 

the same with the case where the anisotropic core is made of small particles. However, there is a 

5% compromise on the MR effect. 

Combining two anisotropic MREs in parallel, one with particle chains aligned parallel to the applied 

load and field and the other perpendicular (along x axis), result to a new MRE with same axial and 

transverse stiffness and MR effect. Combining two anisotropic MREs in parallel, one with particle 

chains aligned parallel to the applied load and field and the other perpendicular (along z axis), 

result to a new MRE with same axial and longitudinal stiffness, tangent of the loss angle and MR 
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effect. The composite isotropic/anisotropic and anisotropic/anisotropic MREs were tested in 

practice by examining the mechanical properties of a MRE prototype isolator working in pure 

compression and compression/shear (inclined) mode.  

The experimental data were then used to determine the principal elastic axis stiffness ratio 
𝑘𝑝

𝑘𝑞
 and 

how this is influenced by the magnetic field. The MR effect of dynamic stiffness is higher in pure 

compression isolator than the inclined isolator. For example the anisotropic MRE increases its 

dynamic stiffness by 68% in the compression isolator while for the inclined the percentage drops 

to 55%. In the inclined isolator composite anisotropic/anisotropic sample 3c has the same zero 

field static stiffness, lower dynamic stiffness, higher tanδ and same MR effect with anisotropic 

MRE. Thus, this type of MRE can offer better isolation efficiency than the rest samples. The 

principal elastic axis stiffness 
𝑘𝑝

𝑘𝑞
 and damping ratio 

𝑐𝑝

𝑐𝑞
 changes with the magnetic field for all 

samples. More tests are needed to define in detail the mechanism behind this phenomenon in 

application where the MRE would be subjected to multi directional forces. 

Finally, a force dependent Maxwell viscoelastic model is used to describe the behaviour of the 

inclined and compression MRE isolators.  The model can predict the magnetic field- strain 

amplitude coupling effects while the linearized version allows for an easy parameter fitting method 

and was used to simulate the force and displacement transmissibility of a single degree of freedom 

mass-inclined and mass-compression isolator system. In addition, two possible applications for the 

MRE isolators in the marine industry are discussed. The first examines the principle of using MRE 

inclined isolators to maintain alignment of a marine engine during changing sea states. It was 

shown, that the MRE inclined isolator can reduce significantly translational and rotational 

displacements of the mass caused by sea motion. The second example presents the design process 

of an MRE base isolator that can be controlled by a simple on-off operation to decrease transmitted 

vibrations during starting up and closing stages. In this example the problem of scaling up the 

isolator is also addressed. 
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Appendix A Matlab functions 

A.1 Functions for solving the system 

• Function to solve the model equation 

 

function [axf,axs,sol] = calc_model( ) 
syms f0 fst xs xf w t B 
syms ra0 ra1 ra2 ra3 ma0 ma1 ma2 ma3 m 
syms rst0 rst1 rst2 rst3 mst0 mst1 mst2 mst3  
syms r01 r02 r03 r11 r12 r13 r21 r22 r23 r31 r32 r33  
syms m01 m02 m03 m11 m12 m13 m21 m22 m23 m31 m32 m33  
f=f0*sin(w*t); 
x=xs*sin(w*t)+xf*cos(w*t); 
dx=diff(x,t); 
g0fd=ra0+ra1*f+ra2*f^2+ra3*f^3; 
g0fst=rst0+rst1*fst+rst2*fst^2+rst3*fst^3; 
gBfd=(r01*B+r02*B^2+r03*B^3)+(r11*B+r12*B^2+r13*B^3)*f+(r21*B+r22*B^2+r23

*B^3)*(f^2)+(r31*B+r32*B^2+r33*B^3)*(f^3); 
z0fd=ma0+ma1*f+ma2*f^2+ma3*f^3; 
z0fst=mst0+mst1*fst+mst2*fst^2+mst3*fst^3; 
zBfd=(m01*B+m02*B^2+m03*B^3)+(m11*B+m12*B^2+m13*B^3)*f+(m21*B+m22*B^2+m23

*B^3)*(f^2)+(m31*B+m32*B^2+m33*B^3)*(f^3); 
gr=g0fd+gBfd+g0fst; 
zm=z0fd+zBfd+z0fst; 
xk=gr*f; 
dxc=zm*f; 
dxk=diff(xk,t); 
% error functions 
e=dx-dxc-dxk; 
%partial differentials  
axf=diff(e,xf); 
axs=diff(e,xs); 
%solution 
a1=2*e*axf; 
a2=2*e*axs; 
fa1=int(a1,t,0,pi/w); 
fa2=int(a2,t,0,pi/w); 
eqns = [2*fa1 == 0,2*fa2 == 0 ];  
S = solve(eqns); 
sol = [S.xf; S.xs]; 
end 
 

• Function to solve the linear system under force excitation 

 

function [sol] = calc_system4( ) 
% excitation force applied to the mass fin=f0*sin(w*t); 
syms f0 fst xs xf w t B m  
syms ra0 ra1 ra2  ma0 ma1 ma2   
syms rst0 rst1 rst2 rst3 mst0 mst1 mst2 mst3  
syms r01 r02 r03 r11 r12 r13 r21 r22 r23 r31 r32 r33  
syms m01 m02 m03 m11 m12 m13 m21 m22 m23 m31 m32 m33  
fin=f0*sin(w*t); 
x=xs*sin(w*t)+xf*cos(w*t); 
dx=diff(x,t); 
ddx=diff(dx,t); 
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fout=(fin-m*ddx); 
f=f0; 
g0fd=ra0+ra1*f+ra2*f^2; 
g0fst=rst0+rst1*fst+rst2*fst^2+rst3*fst^3; 

gBfd=(r01*B+r02*B^2+r03*B^3)+(r11*B+r12*B^2+r13*B^3)*f+(r21*B+r22*B^2+

r23*B^3)*(f^2)+(r31*B+r32*B^2+r33*B^3)*(f^3); 
z0fd=ma0+ma1*f+ma2*f^2; 
z0fst=mst0+mst1*fst+mst2*fst^2+mst3*fst^3; 
zBfd=(m01*B+m02*B^2+m03*B^3)+(m11*B+m12*B^2+m13*B^3)*f+(m21*B+m22*B^2+

m23*B^3)*(f^2)+(m31*B+m32*B^2+m33*B^3)*(f^3); 
gr=g0fd+gBfd+g0fst; 
zm=z0fd+zBfd+z0fst; 
xk=gr*fout; 
dxc=zm*fout; 
dxk=diff(xk,t); 
% error functions 
e=dx-dxc-dxk; 
%partial differentials  
axf=diff(e,xf); 
axs=diff(e,xs); 
%solutions 
a1=2*e*axf; 
a2=2*e*axs; 
fa1=int(expand(a1),t,0,pi/w); 
fa2=int(expand(a2),t,0,pi/w); 
eqns = [2*fa1 == 0,2*fa2 == 0 ];  
S = solve(eqns); 
sol = [S.xf; S.xs]; 
end 

 

• Function to solve the system under base excitation 

 

function [S1,S2] = calc_system5( ) 
  % excitation movement of the support x3=xin*sin(w*t); 
syms xin fst xs xf w t B m  
syms ra0 ra1 ra2 ma0 ma1 ma2   
syms rst0 rst1 rst2 rst3 mst0 mst1 mst2 mst3  
syms r01 r02 r03 r11 r12 r13 r21 r22 r23 r31 r32 r33  
syms m01 m02 m03 m11 m12 m13 m21 m22 m23 m31 m32 m33  
x3=xin*sin(w*t); 
f3=m*(w^2*xin*sin(w*t); 
x=xs*sin(w*t)+xf*cos(w*t); 
dx=diff(x,t); 
f=f3; 
g0fd=ra0+ra1*f+ra2*f^2; 
g0fst=rst0+rst1*fst+rst2*fst^2+rst3*fst^3; 
gBfd=(r01*B+r02*B^2+r03*B^3)+(r11*B+r12*B^2+r13*B^3)*f+(r21*B+r22*B^2+

r23*B^3)*(f^2)+(r31*B+r32*B^2+r33*B^3)*(f^3); 
z0fd=ma0+ma1*f+ma2*f^2; 
z0fst=mst0+mst1*fst+mst2*fst^2+mst3*fst^3; 
zBfd=(m01*B+m02*B^2+m03*B^3)+(m11*B+m12*B^2+m13*B^3)*f+(m21*B+m22*B^2+

m23*B^3)*(f^2)+(m31*B+m32*B^2+m33*B^3)*(f^3); 
gr=g0fd+gBfd+g0fst; 
zm=z0fd+zBfd+z0fst; 
xk=gr*f; 
dxc=zm*f; 
dxk=diff(xk,t); 
% error functions 
e=dx-dxc-dxk; 
%partial differentials  
axf=diff(e,xf); 
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axs=diff(e,xs); 
%solutions 
a1=2*e*axf; 
a2=2*e*axs; 
fa1=int(expand(a1),t,0,pi/w); 
fa2=int(expand(a2),t,0,pi/w); 

 S1 = solve(2*fa1==0,xf); 
 S2 = solve(2*fa2==0,xs); 

 End 

 

A.2 Function to extract the amplitude dependent model parameters 

 

function [req_i,meq_i] = an_param_inc_T( ) 
%% Anisotropic MRE in inclined isolator (linear case) 
%%  0 amp 
I0=[0 0 0 0 0 0 0 0]; 
F_0=1000.*[0.012213008 0.021347563 0.029298048 0.036578842 0.043707403 

0.050518826 0.0572317 0.063177287]; 
x_0=[0.026203152 0.051858968 0.07716023 0.101893439 0.127103547 

0.151905433 0.176386686 0.197899713]; 
tan_0=[0.110206681 0.11676846 0.119959143 0.120438546 0.121388775 

0.121080096 0.117041977 0.115559423]; 
LA_0=atand(tan_0); 
M=length(x_0); 
for i=1:M; 
xs0(i)=x_0(i)*cosd(LA_0(i)); 
xf0(i)=x_0(i)*sind(LA_0(i)); 
end 
%% 1 amp 
I1=[1 1 1 1 1 1 1 1]; 
F_1=1000.*[0.01411168 0.02440916 0.033866999 0.042874816 0.051671306 

0.060112293 0.06793943 0.075047647]; 
x_1=[0.026347001 0.051950582 0.07725871 0.102298133 0.12695996 

0.151772051 0.174933463 0.196666453]; 
tan_1=[0.126122593 0.132917331 0.133832478 0.132473276 0.130715119 

0.129164838 0.12443329 0.122636042]; 
LA_1=atand(tan_1); 
M=length(x_1); 
for i=1:M; 
xs1(i)=x_1(i)*cosd(LA_1(i)); 
xf1(i)=x_1(i)*sind(LA_1(i)); 
end 
; 
%% 2 Amp  
I2=[2 2 2 2 2 2 2 2]; 
F_2=1000.*[0.016188017 0.028084807 0.038973006 0.049246187 0.059380151 

0.068735427 0.077754231 0.085939766]; 
x_2=[0.026154598 0.051841573 0.077334408 0.102378095 0.127488967 

0.151125876 0.175135878 0.1977405]; 
tan_2=[0.127969419 0.134976783 0.136957713 0.135562807 0.133988959 

0.131886047 0.127677829 0.126670018]; 
LA_2=atand(tan_2); 
M=length(x_2); 
for i=1:M; 
xs2(i)=x_2(i)*cosd(LA_2(i)); 
xf2(i)=x_2(i)*sind(LA_2(i)); 
end 

  
%% 3 Amp 
I3=[3 3 3 3 3 3 3 3]; 
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F_3=1000.*[0.017880701 0.031006938 0.04305478 0.054493661 0.06532582 

0.075948387 0.085618329 0.094115747]; 
x_3=[0.02610191 0.051680262 0.077265145 0.102501723 0.126770042 

0.151201966 0.174155143 0.195237638]; 
tan_3=[0.12595826 0.134847796 0.137083676 0.136237103 0.13458637 

0.132858249 0.127824641 0.12645756]; 
LA_3=atand(tan_3); 
M=length(x_3); 
for i=1:M; 
xs3(i)=x_3(i)*cosd(LA_3(i)); 
xf3(i)=x_3(i)*sind(LA_3(i)); 
end 

  
%% MR effect 
MR_xs=[(xs0) (xs1) (xs2) (xs3)]; 
MR_xf=[(xf0) (xf1) (xf2) (xf3)]; 
F=[F_0 F_1 F_2 F_3]; 
I=[I0 I1 I2 I3]; 

  
%% Fit xf 
[xData, yData, zData] = prepareSurfaceData( F, I,(-MR_xf./F) ); 
ft = 

fittype( '((m00+m01*y+m02*y^2+m03*y^3)+(m10+m11*y+m12*y^2+m13*y^3)*x+m20*

(x^2))', 'independent', {'x', 'y'}, 'dependent', 'z' ); 
opts = fitoptions( ft ); 
opts.Display = 'Off'; 
opts.Lower = [-Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf]; 
opts.StartPoint = [0 0 0 0 0 0 0 0 0]; 
opts.Upper = [Inf Inf Inf Inf Inf Inf Inf Inf Inf]; 
[fitMR_xf, gof] = fit( [xData, yData], zData, ft, opts ); 
m00_i=fitMR_xf.m00; 
m10_i=fitMR_xf.m10; 
m20_i=fitMR_xf.m20; 
m01_i=fitMR_xf.m01; 
m02_i=fitMR_xf.m02; 
m03_i=fitMR_xf.m03; 
m11_i=fitMR_xf.m11; 
m12_i=fitMR_xf.m12; 
m13_i=fitMR_xf.m13; 
meq_i=[m00_i m10_i m20_i m01_i m02_i m03_i m11_i m12_i m13_i]; 
% Fit xs 
[xData, yData, zData] = prepareSurfaceData( F, I, MR_xs./F ); 
ft = 

fittype( '(r00+r01*y+r02*y^2)+(r10+r11*y+r12*y^2)*x+r20*x^2+r30*x^3', 

'independent', {'x', 'y'}, 'dependent', 'z' ); 
opts = fitoptions( ft ); 
opts.Display = 'Off'; 
opts.Lower = [-Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf]; 
opts.StartPoint = [0 0 0 0 0 0 0 0]; 
opts.Upper = [Inf Inf Inf Inf Inf Inf Inf Inf]; 
[fitMR_xs, gof] = fit( [xData, yData], zData, ft, opts ); 
r00_i=fitMR_xs.r00; 
r10_i=fitMR_xs.r10; 
r20_i=fitMR_xs.r20; 
r30_i=fitMR_xs.r30; 
r01_i=fitMR_xs.r01; 
r02_i=fitMR_xs.r02; 
r11_i=fitMR_xs.r11; 
r12_i=fitMR_xs.r12; 
req_i=[r00_i r10_i r20_i r30_i r01_i r02_i r11_i r12_i]; 
end 
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Appendix B Zero field static mechanical properties 

The static compression tests were performed following the directions of the BS ISO 7743:2011 

standard (‘Rubber, volcanized or thermoplastic-Determination of compression stress-strain 

properties’). The zero field stress-strain curves for the four different samples are illustrated in Figure 

117. Anisotropic MREs are stiffer than isotropic MREs with a more pronounced nonlinear 

behaviour. MREs with large particles are stiffer than the equivalent samples with small particles but 

the difference is not that great. Isotropic samples with large particles are 19% stiffer than isotropic 

MREs with small particles, while for anisotropic MREs this number drops to 13%. For design 

purposes the Young modulus E is more useful. The median value of E at 5% and 15% strain for all 

four samples are reported in Table 42.  

 

Figure 117: Static strain-stress curves for anisotropic a and isotropic a samples with large 

(<220m) and small (4-6m) particles at zero field. 

 

Table 42: Zero field static compression modulus. 

 𝑺𝑴 5% (MPa) 𝑺𝑴 15% (MPa) E (median) (MPa) 

Isotropic a_l 4.18 4.70 3.983 

Anisotropic a_l 6.75 8.69 6.8995 

Isotropic a_s 3.39 4.05 3.3315 

Anisotropic a_s 6.57 6.94 6.07 
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Although, the BS ISO 7743-1:2011  standard requires the samples to be compressed up to 20% 

strain, this was not possible for anisotropic samples due to the load capacity of INSTRON E1000 

machine. For this reason, the samples were compressed up to 15% strain and the compression 

modulus 𝑆𝑀 (Secant modulus) is measured at 5% and 15% strain instead of those at 10% and 20% 

indicated on the ISO standard. Young modulus E is then calculated  𝐸 = 𝑆𝑀(1 − 𝜀) for 5% and 15% 

strain and the median value is reported. The zero field static strain-stress curves of all disk and 

rectangular samples are presented in Figure 118 and the values of the compression static modulus 

E measured at 5% and 15% static strain in Table 43. 

 

Figure 118: Static stress-strain curves of disk and rectangular shaped isotropic MRE samples.  

Table 43: Static compression modulus E of disk and rectangular isotropic MRE samples 

sample 
H 

(mm) 

D 

(mm) 
S 

𝑬 

(MPa) 
sample 

H 

(mm) 

H1 

(mm) 

H2 

(mm) 

𝑬 

(MPa) 

a_1 6.25 29 1.17 3.5 b_1 6.25 22 22 4.4 

a_2 12.5 29 0.56 3.6 b_2 10.5 22 22 3.6 

a_3 21 29 0.34 2.5 b_3 22 22 22 3.5 

a_4 12.5 56.5 1.14 3.2 b_4 5.5 34 34 3.4 

a_5 10.5 15.5 0.37 3.5 c_3 6.25 30 60.5 5.2 

a_6 14.5 41.5 0.7 3      
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