
Fast Newton Method for Sparse Logistic Regression

Rui Wang wangruibjtu@bjtu.edu.com
Department of Applied Mathematics
Beijing Jiaotong University
Beijing, P. R. China

Naihua Xiu nhxiu@bjtu.edu.cn
Department of Applied Mathematics
Beijing Jiaotong University
Beijing, P. R. China

Shenglong Zhou sz3g14@soton.ac.uk

School of Mathematics

University of Southampton

Southampton, UK

Abstract

Sparse logistic regression has been developed tremendously in recent two decades, from
its origination the `1-regularized version by Tibshirani (1996) to the sparsity constrained
models by Bahmani, Raj, and Boufounos (2013); Plan and Vershynin (2013). This paper
is carried out on the sparsity constrained logistic regression through the classical Newton
method. We begin with analysing its first optimality condition to acquire a strong τ -
stationary point for some τ > 0. This point enables us to equivalently derive a stationary
equation system which is able to be efficiently solved by Newton method. The proposed
method NSLR an abbreviation for Newton method for sparse logistic regression, enjoys
a very low computational complexity, local quadratic convergence rate and termination
within finite steps. Numerical experiments on random data and real data demonstrate its
superior performance when against with seven state-of-the-art solvers.

Keywords: Sparsity constrained logistic regression, Strong τ -stationary point, Stationary
equation, Newton method, Quadratic convergence rate

1. Introduction

Logistic regression is a well-known effective tool of classification with extensive applica-
tions ranging from machine learning, data mining, pattern recognition, medical science to
statistics. It describes the relation between a sample data x and its associated binary
response/label y ∈ {0, 1} through the conditional probability

Pr{y|x, z} =
ey〈x,z〉

1 + e〈x,z〉
,

where Pr{y|x, z} is the conditional probability of the label y, given the sample x and a
parameter vector z. To find the maximum likelihood estimate of the parameter z, a set of n
independent and identically distributed samples (xi, yi), i = 1, 2, ..., n are first drawn, where
xi ∈ Rp and yi ∈ {0, 1}, yielding a joint likelihood of the interested parameter/classifier
z. Then the maximum likelihood estimate is obtained by addressing the classical logistic

1

ar
X

iv
:1

90
1.

02
76

8v
1

 [
m

at
h.

O
C

]
 9

 J
an

 2
01

9

regression model,

min
z∈Rp

`(z) :=
1

n

n∑
i=1

{
ln(1 + e〈xi,z〉)− yi〈xi, z〉

}
. (1)

This model usually performs well in scenario when the number n of samples is larger than
the number p of features because it enjoys a strictly convexity and thus admits a unique
optimal solution provided that the matrix [x1,x2, · · · ,xn] has a full row rank. However,
when it comes to the case n < (�)p, it usually suffers from the over-fitting. That is,
the solved classifier through (1) well fits the model (making the loss sufficiently small) on
training data but may behave poorly on unseen data.

Unfortunately, the case n < (�)p occurs often in many real applications. For instance,
each gene expression data sample comprises of thousands of genes whilst common medical
equipments are only able to obtain very limited samples. In image processing, each image
contains large amounts of pixels, which is far more than the number of observed images.
Fortunately, despite numerous features in those data, there is only a small portion that
is of importance. For example, apart from the classification task, the micro-array data
experiments also attempt to identify a small set of informative genes (to distinguish the
tumour and the normal tissues) in each gene expression data. The purpose is to remove
the irrelevant genes so as to simplify the inference. This naturally gives rise to the so-called
sparse logistic regression.

1.1 Sparse logistic regression (SLR)

Sparse logistic regression was originated from the `1-regularized logistic regression proposed
by Tibshirani (1996),

min
z∈Rp

`(z) + ν‖z‖1, (2)

where ‖z‖1 is the `1-norm and ν > 0. Under the help of `1-regularization, this model is
capable of rendering a sparse solution, which allows us to capture important features among
others. A vector is called sparse if only a few entries are non-zero and the rest are zeros.
With the advance in sparse optimization in recent decade, (2) has been extensively extended
to the following general model,

min
z∈Rp

fφ(z) := `(z) + φν(z), (3)

where the regularized function φν(z) : Rp → R is designed to pursue a sparse solution.
Methods associated with model (3) are treated as the relaxation/regularization methods
from the perspective of optimization. They share the advantage that (3) is unconstrained,
making most generic optimization methods for non-differentiable problems tractable.

An alternative is to consider logistic regression with a sparsity constraint, which was
first studied by Bahmani, Raj, and Boufounos (2013); Plan and Vershynin (2013) separately
and then well investigated by Wang et al. (2017). The model they considered is

min
z∈Rp

`(z), s.t. z ∈ S := {z ∈ Rp : ‖z‖0 ≤ s}, (4)

where S is the sparse set with s � p, and ‖z‖0 is the `0 pseudo norm of z, counting the
number of nonzero elements of z. Apparently, this model suffers form the discreteness of

2

the constraint set, which causes the NP-hardness of solving it. However, the general case of
this model, where `(z) is replaced by a general function, has been extensively explored (see
Beck and Hallak, 2015; Pan et al., 2015) since it was first introduced by Bahmani, Raj, and
Boufounos (2013) and Beck and Eldar (2013). In statistics, this model (4) where the logistic
loss ` is replaced by a square norm loss of linear regression, is the so-called best subspace
selection (see Hastie et al., 2017; Mazumder et al., 2017; Hazimeh and Mazumder, 2018;
Xie and Deng, 2018). Those researches have presented fruitful results, which not only show
that sparsity constrained model possesses many advantages over the regularized model, such
as parameter-free, ease of sparsity controlling and low computational complexity in terms
of algorithmic design, but also provide a series of tractable tools to address this NP-hard
problem. Therefore, the work in this paper is carried out along with this model.

1.2 Methods of solving SLR

Since there are large numbers of methods that have been proposed to deal with the sparse
optimization problems containing the SLR as a special example, which is far beyond our
scope of review, we only focus on those directly processing (3) and (4).

For regularization model (3), different penalty functions φν yield different methods,
which enable to be summarized as two categorizes based on the convexity of φν .

Convex regularizations are mainly associated with the usage of `1 norm.

• φν(z) = ν‖z‖1. Expectation maximization method (EM, see Figueiredo, 2003; Krish-
napuram et al., 2005), at each iteration, managed to find a majorization/upper-bound
function Fφ of fφ and then generate a Newton step to minimize Fφ; Andrew and Gao
(2007) proposed an Orthant-Wise Limited-memory Quasi-Newton method (OWL-QN)
where BFGS Quasi-Newton steps were carried out to minimize a quadratic approx-
imation of fφ at each iteration; Koh et al. (2007) took interior-point method into
account to form a truncated Newton interior-point method (TNIP); Shi et al. (2010)
created a hybrid iterative shrinkage method (HIS) which was comprised of two phases:
iterative shrinkage (fixed-point method) and interior-point scheme; Yu et al. (2010)
adopted the OWL-QN but with their own direction finding procedure to derive an im-
proved OWL-QN∗; Yuan et al. (2010) exploited the coordinate descent method with
each coordinate being updated by using one dimensional Newton direction (CDN).

• φν(z) = ν1‖z‖22 + ν2‖z‖1, where ν = [ν1, ν2] > 0 and ‖z‖2 is the `2 norm. For
this penalty, Liu et al. (2009b) created a well known package SLEP. The information
they mainly used were the function value and gradient; Friedman et al. (2010) found a
quadratic approximation L of ` and applied the coordinate descent method into solving
L + φν . They packed the method into a solver GLMNET which was then improved by
Yuan et al. (2012) to get the improved GLMNET.

• φν(z) = ν‖z‖22 + δ‖z‖1≤t(z), where t > 0 is given, δ‖z‖1≤t(z) = 0 if ‖z‖1 ≤ t and
+∞ otherwise. Model (3) with this penalty can be solved by a first order method
Lassplore (Liu et al., 2009a) or SLEP (Liu et al., 2009b); When ν = 0, namely, the
`1 constrained logistic regression,

min
z∈Rp

`(z), s.t. ‖z‖1 ≤ t, (5)

3

Lee et al. (2006) developed the IRLS-LARS scheme where LARS (see Efron et al., 2004)
was first introduced to address an `1 constrained least square problem and a direction
that was analogous to Newton direction was then chosen to update next iteration.

Nonconvex regularizations differ slightly.

• SCAD: Fan and Li (2001) first took advantage of the smoothly clipped absolute devia-
tion (SCAD) as the penalty.

• One-step LLA: Zou and Li (2008) developed a one step local linear approximation
(LLA) algorithm in which at each step, the LLA estimator was applied to adopt a
sparse representation.

• Group Bridge: Huang et al. (2009) benefited from a group bridge for multiple regres-
sion problems when covariates are grouped.

• GIST: Gong et al. (2013) designed a general iterative shrinkage and thresholding algo-
rithm (GIST) , which has the ability to precess a group of nonconvex regularizations
such as SCAD, Log-sum penalty (LSP, Candes et al., 2008), Capped-`1 penalty (Zhang,
2010), Minimax Concave Penalty (MCP, Zhang et al., 2010) and to name a few.

• APG: Li and Lin (2015) proposed the accelerated proximal gradient method (APG) to
deal with (3) with the capped-`1 penalty.

• HONOR: Gong and Ye (2015) proposed an efficient hybrid optimization algorithm for
non-convex regularized problems (HONOR), where they effectively integrated a Quasi-
Newton step and a gradient descent step.

• DC-PN: Rakotomamonjy et al. (2016) combined the idea of the difference of two convex
functions and the proximal Newton optimization scheme (DC-PN) to solve (3). The
regularization used in the model was a difference of two convex functions that equalled
to the capped-`1 penalty.

For sparsity constrained model (4), since it was introduced by Bahmani et al. (2013)
and Beck and Eldar (2013), various approaches have been proposed.

• GraSP: Bahmani et al. (2013) generalized the compressive sampling matching pursuit
(CoSaMP, see Needell and Tropp, 2009) to get the gradient support pursuit (GraSP).
The latter is able to be reduced to the former when the logistic regression is replaced
by the linear regression. Notice that apart from solving (4), GraSP was also able to
address the model

min `(z) + (ν/2)‖z‖22, s.t. z ∈ S. (6)

• Logit-GOMP: Lozano et al. (2011) applied orthogonal matching pursuit (OMP, see Mal-
lat and Zhang, 1993) into model (4), where the data is assumed to be classified into
several groups, to develop a group OMP method (Logit-GOMP).

• PD: Lu and Zhang (2013) designed a penalty decomposition (PD) method in which a
sequence of penalty subproblems were solved by a block coordinate descent method.

4

• GraHTP: Inspired by some greedy algorithms for compressing sensing (Donoho, 2006)
such as iterative hard thresholding (IHT, see Blumensath and Davies, 2009) and hard
thresholding pursuit (HTP, see Foucart, 2011), Yuan et al. (2014, 2018) designed gra-
dient HTP methods GraHTP and FGraHTP.

• NTGP: Yuan and Liu (2014, 2017) benefited from Newton method to establish Newton
greedy pursuit methods NTGP and QNTGP to solve the model (6).

• IIHT: Pan et al. (2017) followed the IHT method by (Blumensath and Davies, 2009)
and built a convergent improved IHT method (IIHT).

• GPGN: Wang et al. (2017) combined the projected gradient method and the Newton
method to derive a greedy projected gradient-Newton method (GPGN). The Newton
steps were only applied into a series of chosen subspaces.

• FNHTP: Chen and Gu (2017) proposed a fast Newton hard thresholding pursuit (FNHTP)
by using an unbiased stochastic Hessian estimator for the inverse Hessian matrix.

Notice that many of those above mentioned algorithms involve the Newton method, a
second order method, with being able to be summarized into three groups. The first group
comprises of EM, OWL-QN, OWL-QN∗,CDN, TNIP, HIS and HONOR. Those algorithms adopted
Newton method to solve an unconstrained optimization. Most of them derived Newton
directions through solving a linear equation system with at least p variables and p equa-
tions. The second group contains NTGP and GPGN, with preforming Newton steps on chosen
subspaces. The former in each step updated an iterate by processing a subproblem, that
is zk+1 = argminz∈S Q(z; zk), where Q(z; zk) a local quadratic approximation of `(z) at
current iterate zk. This subproblem was then solved by Newton method. While GPGN ben-
efited from IHT to update an iterate and only imposed Newton step on a subspace when
two consecutive iterates had same support sets. The third group seeks an approximation
to estimate the inverse of the whole Hessian matrix, such as an unbiased stochastic Hessian
estimator used in FNHTP, with hence low computational complexity compared with meth-
ods from group one. Inspired by those well established researches, we make use of Newton
method to solve (4) as well. However, the way for us to use this method is different with
that of any of above algorithms.

1.3 Our contributions

As what we mentioned above, we focus on the model (4) via the classic Newton method in
this paper. The main contributions are summarized as follows.

i) We start with considering the optimality condition of model (4) by introducing a
strong τ -stationary point (see Definition 3 for more details) which turns out to be a
local (even a global under some circumstances) minimizer of problem (4) by Theorem
6. More importantly, a strong τ -stationary point draws forth the stationary equation
(20), a key concept in this paper that makes the classic Newton method applicable.

ii) Differing with any of above mentioned algorithms, we perform Newton method di-
rectly on solving the stationary equation, one kind of optimality conditions of prob-
lem (4). Thanks to nice properties of the stationary equation, our proposed Newton

5

method dubbed as NSLR, an abbreviation for Newton method for the SLR, has a
simple framework (see Table 1) making its implementation easy and has a low com-
putational complexity O(s3 + s2n + np) per each iteration. One of reasons for such
low computational complexity is that we only calculate a small linear equation system
with s variables and s equations to update the Newton direction.

iii) In spite of many well established convergence results of Newton method to process
continuous optimization, it is not trivial to do convergence analysis of Newton method
to tackle (4), a combinatorial optimization. We show that the generated sequence has
a local quadratic convergence and NSLR terminates within finite steps which can be
estimated asO(log2(c/

√
ε)) (see Theorem 12 iv) for details) if the chosen initial point is

sufficiently close to a strong τ -stationary point, where c is a constant being associated
with samples and the initial point, ε is the the stopping tolerance of NSLR.

iv) Finally, the efficiency of NSLR is demonstrated against seven state-of-the-art methods
on a number of randomly generated and real datasets. The fitting accuracy and com-
putational speed are very competitive. Especially, in high dimensional data setting,
NSLR outperforms others in terms of the computational time.

Now we would like to highlight the difference between above mentioned second order
methods and our proposed method. Firstly, NSLR exploits Newton method to solve the
stationary equation of the original problem (4) itself, which clearly differs with those in
group one that aimed at solving unconstrained optimizations. Most of those methods were
typical computationally slow due to addressing a large linear equation system in each step
with complexity roughly about O(p3). By contrast, NSLR only tackles a relatively small
linear equation system with complexity roughly about O(s3). Secondly, unlike NTGP using
Newton method to solve quadratic subproblems, no subproblems in NSLR are considered.
Moreover, our proposed method enjoys the local quadratic convergence rate and terminates
with finite steps. Compared with GPGN who combined IHT procedures and Newton directions
together, NSLR always benefits from Newton direction. Finally, differing with FNHTP to seek
an unbiased stochastic Hessian to approximate the inverse of the whole Hessian matrix,
NSLR only concentrates on a small sub-matrix of the whole Hessian, which results in a small
scale linear equation to be calculated.

1.4 Organization and notation

This paper is organized as follows. To explore the optimality conditions of (4), the next
section introduces a strong τ -stationary point (see Definition 3) and establishes the its
relationship with a local/global minimizer (see Theorem 6). This relation allows us to
solve a stationary equation system (20) to acquire a local/global optimal solution of (4).
Based on the stationary equation, Section 3 proposes our method NSLR, an abbreviation for
Newton method for SLR, which turns out to have simple algorithmic framework and low
computational complexity. In Section 4, we establish the convergence results, including the
local quadratic convergence and termination with finite steps, of the sequence generated
by NSLR. In Section 5, the superior performance of NSLR is demonstrated against some of
the state-of-the-art solvers on randomly generated and real datasets in high dimensional
scenarios. Concluding remarks are made in the last section.

6

To end this section, we would like to define some notation. Let [x1,x2, · · · ,xn] =: X> ∈
Rp×n be the sample matrix and y = (y1, y2, · · · , yn)> ∈ Rn be the response vector. Denote
Np := {1, 2, · · · , p}. Let |T | be the number of elements of T ⊆ Np and T := Np \ T be the
complementary set T . Write zT ∈ R|T | (resp. XT) as the sub vector (resp. matrix) of z
(resp. X) containing elements (resp. columns) indexed on T . Similarly, XI,T is the sub
matrix containing rows indexed on I and columns indexed on T . Let 0ab stand for an order
a× b zero matrix and Ia be an order a× a identity matrix. For notational convenience, we
write 0 to denote all 0ab if there is no ambiguity in the context and combine two vectors
as (x; y) := (x> y>)>. We denote [z]↓i the ith largest (in absolute) elements of z. Let
‖ · ‖ denote the Frobenius norm for a matrix and Euclidean norm for a vector respectively,
and ‖ · ‖2 denote the Spectral norm for a matrix. Furthermore, λmin(A) and λmax(A) are
respectively the minimal and maximal eigenvalues of the symmetric matrix A. Denote 1
the vector with all entries being ones.

2. Optimality and Stationary Equation

This section is devoted to investigate the optimality conditions and a stationary equation
of (4). We summarize some properties of its objective function `(z) based on Wang et al.
(2017), which will benefit for this paper.

Property 1 (Lemma 2.2-2.4, Lemma A.3 (Wang et al., 2017)) The objective func-
tion `(z) of (4) is twice continuously differentiable and has the following basic properties:

i) The logistic loss function `(z) is nonnegative, convex and strongly smooth on Rp with
a parameter λx := λmax(X>X)/(4n), namely, for any z, z∗ ∈ Rp

`(z) ≤ `(z∗) + 〈∇`(z∗), z− z∗〉+ (λx/2)‖z− z∗‖2. (7)

ii) The gradient ∇`(z) is given by

∇`(z) = X>(h(z)− y)/n, (8)

where h(z) is a vector with (h(z))i = 1/(1 + e−〈xi,z〉), i = 1, . . . , n. And it enjoys

‖∇`(z)−∇`(z∗)‖ ≤ λx‖z− z∗‖. (9)

iii) The Hessian matrix ∇2`(z) is given by

∇2`(z) = X>D(z)X/n, (10)

where D(z) is a diagonal matrix with with

(D(z))ii =
e〈xi,z〉

(1 + e〈xi,z〉)2
∈ (0, 1/4], i = 1, . . . , n.

iv) For any z1, z2 ∈ Rp,

‖∇2`(z1)−∇2`(z2)‖ ≤ γx‖z1 − z2‖, (11)

where γx := 12λx max
i=1,...,n

‖xi‖1.

7

Our first result reveals the relation between the logistic regression and linear regression.

Property 2 For (4), denoting c := 2y − 1, we have results below.

i) 0 ≤ minz∈S `(z) ≤ (ln(2)− 1/4) + minz∈S ‖Xz− c‖2/(4n).

ii) If X>c 6= 0, then there always exists a subset T ⊂ Np with r := |T | = rank(XT) ≤ s
that satisfies X>T c 6= 0. For such T , let the singular value decomposition of XT be

XT = UΛV >,

where U ∈ Rn×r and V ∈ Rr×r are column orthogonal matrices and Λ ∈ Rr×r is a
diagonal matrix, then there is a z̄ ∈ Rp with z̄T = V Λ−1U>c and z̄T = 0 such that

z̄ ∈ S and `(z̄) < `(0).

If X>c = 0, then 0 is a global minimizer of (4) and 0 ∈ argminz∈S‖Xz− c‖2.

The relation between the logistic regression and linear regression in Property 2 i) provides
a hint to initialize a starting point (i.e., z0 ∈ argminz∈S‖Xz− c‖2) in terms of algorithmic
design. Property 2 ii) states that there are many non-trivial feasible solutions such that
their loss function values are strictly less than `(0) if X>c 6= 0. Otherwise 0 is the global
solution of (4) and meantime 0 ∈ argminz∈S‖Xz − c‖2 due to X>(X0 − c) = 0, which
means the equation of the second inequality of i) holds.

When it comes to characterize the solutions of (4), we introduce the definition of a
strong τ -stationary point. To proceed, we first give the conception of projection of a vector
β ∈ Rp onto the sparse set S:

PS(z) := argmin{‖z− x‖ : x ∈ S},

which sets all but s largest absolute value components of z to zero. Since the right hand
side may have multiple solutions, PS(z) is a set. But for the sake of notational convenience,
we write PS(z) = x when PS(z) = {x} is a singleton.

Definition 3 (Lu, 2015, Definition 3.2) A vector z ∈ S is called a strong τ -stationary
point of (4) if there is a τ > 0 such that

z = PS (z− τ∇`(z)) . (12)

Recall that a τ -stationary point is defined by Beck and Eldar (2013),

z ∈ PS (z− τ∇`(z)) .

Lemma 2.2 in (Beck and Eldar, 2013) tells us that z is a τ -stationary point if and only if

‖z‖0 ≤ s and |∇i`(z)|
{

= 0, i ∈ supp(z),

≤ 1
τ [z]↓s, i /∈ supp(z).

(13)

Similarly, we have following properties regarding to a strong τ -stationary point.

8

Property 4 For a given τ > 0, z ∈ Rp is a strong τ -stationary point if and only if

i) ‖z‖0 < s and ∇`(z) = 0, or

ii) ‖z‖0 = s and

|∇i`(z)|
{

= 0, i ∈ supp(z),

< 1
τ [z]↓s, i /∈ supp(z).

(14)

The proof is similar to that of Lemma 2.2 by Beck and Eldar (2013), and thus is omitted
here. Now we would like to emphasize the relationship between these two kinds of points.

Remark 5 The relationship between a strong τ -stationary point and τ -stationary point can
be described as follows:

i) If ‖z‖0 < s, then z is a τ -stationary point if and only if it is a strong τ -stationary
point because of ∇`(z) = 0.

ii) If ‖z‖0 = s, then a strong τ -stationary point z is also a τ -stationary point. In the
meantime, a τ -stationary point z is also a strong τ1-stationary point with any 0 <
τ1 < τ since |∇i`(z)| ≤ [z]↓s/τ < [z]↓s/τ1.

We use one simple example to illustrate ii) of above Remark. Consider s = 2 and

X =

 1 1 0
1 1 0
0 0 1

 , y =

 0
1
1

 , z∗ =

 1
−1

0

 .
Direct calculation yields∇`(z∗) =(0 0 0.5)>. One can verify that z∗ ∈ PS (z∗ − 2∇`(z∗))
and z∗ = PS (z∗ − τ1∇`(z∗)) for any given 0 < τ1 < 2. This means z∗ is a τ -stationary
point for any given 0 < τ ≤ 2 and a strong τ1-stationary point for any given 0 < τ1 < 2.
Based on the definition of strong τ -stationary point, our first main result is to establish the
relationship between a local/global optimal solution and a strong τ -stationary point of (4).

Theorem 6 Considering (4), following results hold.

i) A global minimizer is a strong τ -stationary point z∗ for any given τ ∈ (0, 1/λx).

ii) If ‖z∗‖0 = s, a strong τ -stationary point z∗ for a given τ > 0 is a local minimizer. If
it further satisfies ∇`(z∗) = 0 then it is also a global minimizer.

iii) If ‖z∗‖0 < s, a strong τ -stationary point z∗ for a given τ > 0 is a global minimizer.

The above established relationship allows us to focus on a strong τ -stationary point itself
to pursuit a ‘good’ solution of (4). Rewrite (12) as{

z = PS(z− τd),
d = ∇`(z),

(15)

9

which is equivalent to [
z− PS(z− τd)

d−∇`(z)

]
= 0. (16)

Regarding to the projected property of PS(z), it sets all but s largest absolute value com-
ponents of z to zero. To well express the solution of PS(z− τd), we define two sets

T (u; τ) := {i ∈ Np : |zi − τdi| ≥ [z− τd]↓s} with |T (u; τ)| = s (17)

T (u; τ) := {i ∈ Np : i /∈ T (u; τ)} (18)

where u = (z; d) ∈ R2p. Clearly, it has T (u, τ)∩ T (u, τ) = ∅, T (u, τ)∪ T (u, τ) = Np. One
may discern that T (u; τ) may not be unique. So we denote TB(u; τ) the set that covers all
T (u; τ) in (17). In other words, T (u; τ) is a particular element of TB(u; τ), i.e.,

T (u; τ) ∈ TB(u; τ).

Hereafter, if no confusion arises, we use the simple notation

T := T (u; τ), T := T (u; τ).

One should keep in mind T is associated with u and τ , but for notational convenience, we
drop the dependence. Based on those notation, for any T ∈ TB(u; τ), the projection is able
to be expressed as

PS(z− τd) =

[
(z− τd)T

0

]
, (19)

and thus (16) implies that the following stationary equation

Fτ (u;T) :=

dT
zT

dT −∇T `(z)
dT −∇T `(z)

 = 0 (20)

holds for any T ∈ TB(u; τ). It is worth mentioning that if T /∈ TB(u; τ), then (19) is not
correct and hence (20) may not hold.

The idea of the stationary equation refers to the results in Huang et al. (2018), in
which authors concentrated on `0-regularization linear regression. In this paper, we aim to
solve the logistic regression with sparsity constraint, and we provide different theoretical
analysis as well as some novel convergence results (refer to Section 4) from the perspective
of optimization. The following theorem confirms the equivalence between (16) and (20).

Theorem 7 z is a strong τ -stationary point for a given τ > 0 if and only if

Fτ (u;T) = 0 for all T ∈ TB(u; τ).

where u = (z; d) is denoted by the above.

10

For a given u = (z; d) and τ > 0, if a T ∈ TB(u; τ) is given, then the Jacobian matrix of
Fτ (u;T) enjoys the form

∇Fτ (u;T) =

0ss 0sr Is 0sr
0rs Ir 0rs 0rr

−∇2
T,T `(z) −∇2

T,T
`(z) Is 0sr

−∇2
T ,T

`(z) −∇2
T ,T

`(z) 0rs Ir

 , (21)

where r := p− s and ∇2
T,T

`(z) := (∇2`(z))T,T . It is worth mention that since T is related

to u, the Jacobian of Fτ (u;T) may differ with (21) if we treat T to be unknown. However,
we do not concern about the latter case and only focus on the case T ∈ TB(u; τ) being
given when it comes to the algorithmic design. We next show that for any given T , it does
not affect the overall structure and non-singularity of the matrix ∇Fτ (u;T). To see this,
we would like to introduce the so-called s-regularity of X.

Definition 8 (Definition 2.2, Beck and Eldar, 2013) A matrix is s-regular if its any s
columns are linearly independent.

If X is s-regular, then it enables us to well define

λ := min
z∈S

z>X>Xz

z>z
= min
|T |≤s

λmin(X>T XT) > 0. (22)

Theorem 9 Suppose the matrix X is s-regular. Then for any given T ∈ TB(u; τ) with a
given τ > 0, ∇Fτ (u;T) is nonsingular on R2p and its inverse matrix has the form

(∇Fτ (u;T))−1 =

(∇2

T,T `)
−1 −(∇2

T,T `)
−1∇2

T,T
` −(∇2

T,T `)
−1 0

0 Ir 0 0
Is 0 0 0

(∇2
T ,T

`)(∇2
T,T `)

−1 R(z) −(∇2
T ,T

`)(∇2
T,T `)

−1 Ir

 ,(23)

where ` := `(z) and R(z) := −∇2
T ,T

`(∇2
T,T `)

−1∇2
T,T

` +∇2
T ,T

`. Moreover, for any z∗ ∈ Rp

and a given δ > 0,

‖(∇2
T,T `(z))−1‖2 ≤ µ(X, z∗, δ) :=

e2(
√
λx‖z∗‖+δ)

λ/(4n)
, ∀ z ∈ N(z∗, δ), (24)

which means ‖(∇Fτ (u;T))−1‖ is bounded on N(u∗, δ).

3. Fast Newton Method

In this section, we aim to design an efficient algorithm to solve the stationary equation (20).
Let uk = (zk; dk) be the kth iterative point and fix τ > 0. Similar to (17) and (18), the kth
iterative index sets are defined as

Tk := T (uk; τ), T k := T (uk; τ).

11

Theorem 9 tells us that ∇Fτ (uk;Tk) is nonsingular under the condition of the s-regularity
of the matrix X. Therefore we naturally think of the Newton method to solve the system
of stationary equation (20). The classical Newton algorithm reads

∇Fτ (uk;Tk)(u
k+1 − uk) = −Fτ (uk;Tk). (25)

From the explicit formula of Fτ (uk;Tk) in (20), we have

dk+1
Tk

= 0,

zk+1
Tk

= 0,[
∇2
Tk,Tk

`(zk) ∇2
Tk,Tk

`(zk)

∇2
Tk,Tk

`(zk) ∇2
Tk,Tk

`(zk)

][
zk+1
Tk
− zkTk

−zk
Tk

]
−

[
0

dk+1
Tk

]
= −

[
∇Tk`(zk)
∇Tk

`(zk)

]
.

(26)

The third equation in (26) yields that

∇2
Tk,Tk

`(zk)zk+1
Tk
−∇2

Tk·`(z
k)zk = −∇Tk`(z

k),

where ∇2
T ·`(z) is the sub-matrix of ∇2`(z) containing rows indexed on T , which implies

that zk+1
Tk

is a solution of the following linear equation

∇2
Tk,Tk

`(zk)v = ∇2
Tk·`(z

k)zk −∇Tk`(z
k)

= ∇2
Tk,Tk−1

`(zk)zkTk−1
−∇Tk`(z

k), (27)

where the second equation holds due to supp(zk) ⊆ Tk−1 from (26). Overall, we update
uk+1 through (26) by

zk+1
Tk

= vk,

zk+1
Tk

= 0,

dk+1
Tk

= 0,

dk+1
Tk

= ∇Tk
`(zk) +∇2

Tk·
`(zk)(zk+1 − zk),

(28)

where vk is a solution of (27). If ∇2
Tk,Tk

`(zk) is nonsingular, (28) means we do not need to

calculate the inverse of the whole matrix ∇Fτ (uk;Tk) to update uk+1, because it can be
done through computing the inverse of ∇2

Tk,Tk
`(zk) to update zk+1

Tk
as

zk+1
Tk

= vk = zkTk −
[
∇2
Tk,Tk

`(zk)
]−1 [

∇Tk`(zk)−∇2
Tk,Tk

`(zk)zk
Tk

]
. (29)

Hence we propose the Newton method for (4) to iteratively process the stationary equation
(20). The algorithmic framework is summarized as in following table.

12

Table 1: Framework of the algorithm.

NSLR: Newton method for the SLR (4)

Step 0 Initialize z0, d0 = ∇`(z0). Choose ε, τ > 0. Set k ⇐ 0.

Step 1 (Support set Selection)

Choose Tk := T (uk; τ) ∈ TB(uk; τ) by (17) .

Step 2 (Convergence Check)

If ‖Fτ (uk;Tk)‖ ≤ ε, then stop. Otherwise, go to Step 3.

Step 3 (Full Newton)

Update uk+1 = (zk+1; dk+1) by (28), set k ⇐ k + 1 and go to Step 1.

Regarding to the proposed algorithm NSLR, we have some comments.

i) For Step 0, Property 2 gives us a clue to find a starting point z0 ∈ argminz∈S‖Xz−
c‖2, which, however, would consume much time. Therefore, we will simply use z0 = 0.
In addition, we will show that if the starting point z0 is chosen sufficiently closely to a
strong τ -stationary point z∗ with ‖z∗‖0 = s, all Tk will be identical and, furthermore,
NSLR will terminate within finite steps (see Theorem 12). Interestingly, in terms of
numerical experiments, to fasten the convergence of the proposed method, the choice
of starting point z0 is not necessary to be close enough to a strong τ -stationary point.
For simplicity, one could just start from the origin.

ii) For Step 1, we only pick s largest elements (in absolute) to form Tk, which allows
us to use mink function in MATLAB (2017b or later version) whose computational
complexity is O(p+ s log s).

iii) For Step 3, to update zk+1
Tk

, one need to solve a linear equation (27). The complexity of

calculating∇2
T1,T2

`(z) = X>T1D(z)XT2/n with |T1| = |T2| = s is O(sn+s2n) since D(z)
is the diagonal matrix. The complexity of solving a linear equation with s equations
and s variables is at most O(s3). Therefore, the whole complexity of updating zk+1

Tk
is

O(s3 +s2n). For updating dk+1
Tk

, since X(zk+1−zk) = XTk∪Tk−1
(zk+1−zk)Tk∪Tk−1

, its

computational complexity is O(2sn). So combining ∇2
Tk·
`(zk)(zk+1 − zk) in (28), the

complexity of updating dk+1
Tk

is O(np + ns). Overall, the computational complexity

of Step 3 is

O(s3 + s2n+ np),

which means the computation is quite fast if max{s, n} � p.

iv) It is worth mentioning that theoretically under the assumption X being s-regular (see
Theorem 9), the linear equation (27) always admits a unique solution. Numerically,
to avoid a non-singular case, one could calculate [∇2

Tk,Tk
`(zk) + µI]−1 instead with

a small positive µ. Actually, if we consider the model (6), namely ` is replace by
`+ µ‖ · ‖22, then (27) always has a unique solution without any assumptions.

13

4. Quadratic Convergence

Our first result states that if the sequence generated by NSLR is convergent, then it must
converge to a τ -stationary point of (4).

Theorem 10 For any given τ > 0, let u∞ := (z∞; d∞) be any limit point of the sequence
{uk} generated by NSLR, then z∞ is a τ -stationary point of (4).

Our next main result shows that if the initial point u0 of the sequence {uk} is sufficiently
close to a point u∗ = (z∗;∇`(z∗)) where z∗ is a strong τ∗-stationary point of (4) for a given
τ∗ > 0, then the sequence converges to u∗ quadratically. Before this, we would like to define
some notation to ease the reading. Denote Γ∗ := supp(z∗) and

τ ∈
{

(0, τ∗], if ‖z∗‖0 = s,
(0,∞), if ‖z∗‖0 < s,

(30)

δ∗ :=
mini∈Γ∗ |z∗i | − τ∗maxi/∈Γ∗ |d∗i |

2 max{1, τ∗}
, (31)

N(u∗, δ∗) :=

{ {
u = (z; d) ∈ R2p | z ∈ S, ‖u− u∗‖ < δ∗

}
, if δ∗ 6= 0,{

u = (z; d) ∈ R2p | z ∈ S
}
, if δ∗ = 0.

(32)

Theorem 7 says that a strong τ∗-stationary point z∗ is equivalent to Fτ∗(u
∗;T∗) = 0 for any

T∗ ∈ TB(u∗; τ∗). This implies d∗ = ∇`(z∗). So one can easily verify that if z∗ is a strong
τ∗-stationary point, then δ∗ > 0 if z∗ 6= 0 and δ∗ = 0 only if z∗ = 0 by Property 4. The
following lemma presents that for any z being sufficiently close to z∗, they share the same
support set supp(z∗).

Lemma 11 Let z∗ be a strong τ∗-stationary point of (4) for a given τ∗ > 0. Then for any
u ∈ NS(u∗, δ∗), following results hold.

i) If ‖z∗‖0 = s, then for any given 0 < τ ≤ τ∗ there is

{supp(z)} = TB(u; τ) = TB(u∗; τ∗) = {supp(z∗)}.

ii) If ‖z∗‖0 < s, then for any given τ > 0 there is TB(u; τ) ⊆ TB(u∗; τ∗) and

supp(z∗) ⊆ (supp(z) ∩ T), ∀ T ∈ TB(u; τ).

Now we are ready to claim our main result.

Theorem 12 For (4), assume the matrix X is s-regular. Let z∗ be a strong τ∗-stationary
point for a given τ∗ > 0 and u∗ = (z∗; d∗) with d∗ = ∇`(z∗). Let τ , δ∗, NS(·, ·) and
µ(X,u∗, δ∗) =: µ∗ be defined as (30), (31), (32) and (24) respectively. Suppose that the
initial point of sequence {uk} generated by NSLR satisfies

u0 ∈ NS (u∗,min{δ∗, δ∗x}) , with δ∗x := (
√

1 + 4λ2
xγxµ

∗)−1. (33)

Then for any k ≥ 0, following results hold.

14

i) lim
k→∞

uk = u∗ with quadratic convergence rate, namely,

‖uk+1 − u∗‖ ≤ (0.5/δ∗x)‖uk − u∗‖2.

ii) If ‖z∗‖0 = s it holds

TB(uk; τ) = {supp(zk)} = {supp(z∗)} = TB(u∗; τ∗).

If ‖z∗‖0 < s it holds

supp(z∗) ⊆ (supp(zk) ∩ Tk), ∀ Tk ∈ TB(uk; τ).

iii) ‖Fτ (uk+1;Tk+1)‖ ≤ cx‖uk − u∗‖2 and NSLR will terminate when

k ≥
⌈
log2(

√
cx‖u0 − u∗‖) + log2(1/

√
ε)
⌉
,

where dae is the smallest integer being no less than a and cx :=
[
(0.5/δ∗x)2 + (1.25γx)2

] 1
2 .

Compared with the classical convergence results of Newton method, Theorem 12 gives the
explicit value of the neighborhood and proves that NSLR will terminate within finite steps.

5. Numerical Experiments

In this part, we will conduct extensive numerical experiments of our algorithm NSLR by
using MATLAB (R2017b) on a desktop of 8GB of memory and Inter Core i5 2.7Ghz CPU,
against seven leading solvers both on synthetic data and real data.

5.1 Test examples

We first do numerical experiments on synthetic data. In such simulations, we adopt two
types of data generation. Lu and Zhang (2013); Pan et al. (2017) have uesd the model with
identically independently generated features [x1 · · · xn] ∈ Rp×n , whilst Agarwal et al.
(2010); Bahmani et al. (2013) have considered independent features with each of which xi
being generated by an autoregressive process (Hamilton, 1994).

Example 1 (Independent Data (Lu and Zhang, 2013; Pan et al., 2017)) To gen-
erate data labels y ∈ {0, 1}n, we first randomly separate {1, . . . , n} into two parts I and I
and set yi = 0 for i ∈ I and yi = 1 for i ∈ I. Then the feature data is produced by

xi = yivi1 + wi, i = 1, . . . , n

with R 3 vi ∼ N (0, 1), Rp 3 wi ∼ N (0, Ip), where N (0, I) is the normal distribution with
mean zero and variance identity. Since the sparse parameter z∗ ∈ Rp is unknown, different
s(< n) will be tested to pursuit a sparse solution.

Example 2 (Correlated Data (Agarwal et al., 2010; Bahmani et al., 2013)) The
sparse parameter z∗ ∈ Rp has s nonzero entries drawn independently from the standard
Gaussian distribution. Each data sample xi = [xi1 · · · xip]>, i = 1, . . . , n is an independent

15

instance of the random vector generated by an autoregressive process (see Hamilton, 1994)
determined by

xi(j+1) = ρxij +
√

1− ρ2vij , j = 1, . . . , p− 1

with xi1 ∼ N (0, 1), vij ∼ N (0, 1) and ρ ∈ [0, 1] being the correlation parameter. The data
labels y ∈ {0, 1}n are then drawn randomly according to the Bernoulli distribution with

Pr{yi = 0|xi} =
1

1 + e〈xi,z∗〉
, i = 1, . . . , n.

Example 3 (Real data) Eight real data sets are taken into consideration: arcene1, colon-
cancer2, news20.binary2, newsgroup3, duke breast-cancer2, leukemia2, gisette2 and
rcv1.binary2, which are summarized in following table, where only last four data sets have
testing data. Moreover, for arcene, colon-cancer, duke breast-cancer and leukemia,
sample-wise normalization has been conducted so that each sample has mean zero and vari-
ance one, and then feature-wise normalization has been conducted so that each feature has
mean zero and variance one. For the rest three data sets, they are feature-wisely scaled to
[−1, 1]. For rcv1.binary, we only use 20000 samples for the testing data. All −1s in the
label classes y are replaced by 0.

Table 2: Details of eight real datasets.

Data name n samples p features training size m1 testing size m2

arcene 100 10,000 100 0
colon-cancer 62 2,000 62 0
news20.binary 19,996 1,355,191 19,996 0
newsgroup 11,314 777,811 11,314 0
duke breast-cancer 42 7,129 38 4
leukemia 72 7,129 38 34
gisette 7,000 5,000 6,000 1,000
rcv1.binary 697,641 47,236 20,242 20,000

5.2 Implementation

For parameter τ , despite that Theorem 12 has given us a clue, it is still difficult to fix a
proper one since z∗ is unknown. Alternative is to update τ adaptively. By (14), it has

τ∗ <
[z∗]↓s

max{i:d∗i 6=0} |d∗i |
, if ‖z∗‖0 = s.

1http://archive.ics.uci.edu/ml/index.php
2https://www.csie.ntu.edu.tw/ ∼ cjlin/libsvmtools/datasets/
3https://web.stanford.edu/ ∼ hastie/glmnet matlab/

16

Based on this, we would like to start τ with a fixed one τ0 = 1 and then decreasingly update
it as following rule,

τk+1 =

 0.1τk, if τk ≥ [zk]↓s
maxj∈Tk

|dkj |
and ‖Fτk(uk;Tk)‖ > 1/k,

τk, otherwise,
(34)

where Tk ∈ TB(uk, τk). The reason of keeping τk+1 = τk if ‖Fτk(uk;Tk)‖ < 1/k is that this
error tends to zero with order 1/k, a desirable decreasing rate.

As for the initialization of NSLR, we set z0 = 0 as what we described before. Due to
updating τ by τk, the stop criteria is set as

‖Fτk(uk;Tk)‖ < ε = 10−6.

Notice that if the final uk satisfying ‖Fτk(uk;Tk)‖ = 0 and ∇`(zk) = 0, then it is a global
minimizer of (4) owing to zk ∈ S and Theorem 6 iii).

5.3 Benchmark methods

Since there are too many solvers being able to address the sparse logistic regression, we
only focus on those programmed by Matlab. Solvers with codes being online unavailable
or being written by other languages, such as R and C, are not selected for comparisons.
We thus choose 7 solvers mentioned in Subsection 1.2, which should be enough to make
comprehensive comparisons. We summarize them into following table.

Table 3: Benchmark Methods

Models (3) with convex φν (3) with non-convex φν (4)

First order method SLEP APG,GIST GraSP

Second order method IRLS-LARS -- NTGP, GPGN

For SLEP, we use it to solve (3) with φν(z) = ν1‖z‖22 + ν2‖z‖1, whilst IRLS-LARS aims
to solve the `1 constrained logistic regression, namely, (5). APG and GIST are taken to
solve the capped `1 logistic regression with φν(z) = ν3 min(|zi|, ν4). We only use non-
monotonous version of APG since its numerical performance was better than that of the
monotonous version (see Li and Lin, 2015). For GraSP, the version chosen here is to solve (4)
directly instead of (6). Notice that methods that aim at solving model (3) involve a penalty
parameter ν, whilst those tackling (4) need the sparsity level s. To make results comparable,
we adjust their default parameters ν for each method to guarantee the generated solution
z satisfying ‖z‖0 ≤ p/2. We will report the four indicators:

(`(z), ‖∇`(z)‖, SER, Time)

to illustrate the performance of methods, where Time (in seconds) is the CPU time, z is the
solution obtained by each method and SER is the sign error rate defined by

SER :=
1

n

m∑
i=1

|y − sign(〈xi, z〉+)| .

17

Here sign(a+) is the sign of the projection of a onto a non-negative space, namely, it returns
1 if a > 0 and 0 otherwise.

5.4 Numerical comparison

We now report the performance of eight methods on above three examples. To avoid
randomness, we report average results over 10-time independent trails for the first two
example since they are involving in randomly generated data.

(a) Comparison on Example 1. To observe the influence of the sparsity level s
on four greedy methods: NSLR, GPGN, GraSP and NTGP, we fix p = 10000, n = p/5 and
alter s ∈ {400, 600, · · · , 1600}. As demonstrated in Figure 1, NSLR outperforms others in
terms of the lowest `(z), ‖∇`(z)‖ and SER and the shortest time, followed by GPGN. By
contrast, GraSP always performs the worst results, which means this first order method is
not competitive when against with the other three methods, three second order methods.

600 1000 1400

s

10
-8

10
-6

10
-4

10
-2

10
0

l(
z
)

NSLR

GPGN

GraSP

NTGP

600 1000 1400

s

10-8

10-6

10-4

10-2

100
||

 l
(z

)|
|

NSLR
GPGN
GraSP
NTGP

600 1000 1400

s

0

10
-3

S
E

R

NSLR

GPGN

GraSP

NTGP

600 1000 1400

s

0

20

40

60

T
im

e

NSLR

GPGN

GraSP

NTGP

Figure 1: Comparison of four methods for Example 1 with p = 10000, n = 0.2p

18

To observe the influence of the ratio of the sample size n and the number of features p
on all eight methods, we fix p = 20000, s = 0.1p and vary n/p ∈ {0.1, 0.2, · · · , 0.7}. Apart
from recording the four indicators, we also report the number of non-zeros of the solution z
generated by each method. Here, for the LARS, we stop it when s variables are selected and
their default stopping conditions are met since LARS only adds one variable at each iteration
(see Huang et al. (2018)). We set ν1 = 10−1, ν2 = 10−2 for SLEP, ν3 = 10−2, ν4 = 10−4

for APG and ν3 = 10−3abs(randn), ν4 = 10−5abs(randn) for GIST. As presented in Figure
2, in terms of Obj, Grad and SER, again NSLR performs the best results, followed by GPGN

and GIST. It is obviously that LARS and SLEP produce undesirable results compared with
other methods. For the computational time, NSLR runs the fastest, while GraSP and APG

run relatively slow with over 1000 seconds when n/p ≥ 0.6. Table 4 shows the sparsity
levels ‖z‖0 only in LARS is lower than our NSLR. This is because LARS fails to recover the
support and vanishs when s = 500 in this numerical experiment (this phenomenon had also
been observed in Huang et al. (2018) and Garg and Khandekar (2009).)

0.1 0.3 0.5 0.7

n/p

10
-5

10
0

l(
z)

NSLR

GPGN

GraSP

NTGP

LARS

GIST

APG

SLEP

0.1 0.3 0.5 0.7

n/p

10-6

||
 l

(z
)|

|
NSLR
GPGN
GraSP
NTGP
LARS
GIST
APG
SLEP

0.1 0.3 0.5 0.7

n/p

0

0.05

0.1

0.15

S
E

R

NSLR

GPGN

GraSP

NTGP

LARS

GIST

APG

SLEP

0.1 0.3 0.5 0.7

n/p

10
1

10
2

10
3

T
im

e

NSLR

GPGN

GraSP

NTGP

LARS

GIST

APG

SLEP

Figure 2: Comparison of eight methods for Example 1 with p = 20000, s = 0.1p.

19

Table 4: Sparsity levels ‖z‖0 of eight methods for Example 1 with p = 20000, s = 0.1p.

n/p 0.1 0.2 0.3 0.4 0.5 0.6 0.7

NSLR, GPGN, GraSP, NTGP 2000 2000 2000 2000 2000 2000 2000
LARS 500 500 500 500 500 500 500
GIST 4403 4309 5274 7832 7913 8614 8904
APG 6138 5857 5720 6170 5574 5048 5043
SLEP 2076 2534 2980 3235 3498 3596 3873

0.1 0.2 0.3 0.4 0.5

n/p

10
-8

10
-6

10
-4

10
-2

10
0

l(
z)

NSLR

GPGN

GraSP

NTGP

LARS

GIST

APG

SLEP

(a) ρ = 0

0.1 0.2 0.3 0.4 0.5

n/p

10
-8

10
-6

10
-4

10
-2

10
0

l(
z)

NSLR

GPGN

GraSP

NTGP

LARS

GIST

APG

SLEP

(b) ρ = 1/3

0.1 0.3 0.5 0.7 0.9

n/p

10
-8

10
-6

10
-4

10
-2

10
0

l(
z)

NSLR

GPGN

GraSP

NTGP

LARS

GIST

APG

SLEP

(c) ρ = 1/2

0.1 0.3 0.5 0.7 0.9

n/p

10
-8

10
-6

10
-4

10
-2

10
0

l(
z)

NSLR

GPGN

GraSP

NTGP

LARS

GIST

APG

SLEP

(d) ρ =
√

2/2

Figure 3: Comparison of eight methods for Example 2 with p = 1000, s = 0.1p.

(b) Comparison on Example 2. To observe the influence of the correlation parameter
ρ on eight methods, we set p = 1000, s = 0.1p but choose ρ ∈ {0, 1/3, 1/2,

√
2/2}. Figure

20

3 shows the average `(z) gotten by eight methods for a wide range of the ratio n/p ∈
{0.1, 0.2, · · · , 0.9}. Apparently, at four different value of ρ, NSLR always performs stably best
results. Moreover, the trends in these eight methods perform generally consistent, which
indicates the correlation parameter has little influence on these methods. Therefore, we
further fix ρ = 1/2 and observe the performance of eight methods under higher dimensions.

Now we alter p ∈ {10000, 20000, 30000} with n = 0.2p, s = 0.05p or s = 0.1p. Here,
we set ν1 = 10−2, ν2 = 10−1 for SLEP ν3 = 10−2, ν4 = 5 × 10−4 for APG and ν3 =
5× 10−3abs(randn), ν4 = 5× 10−5abs(randn) for GIST. As reported in Table 5, for cases
of p = 20000, 30000, LARS basically fails to render desirable solutions due to the highest
`(z). It can be clearly seen that NSLR always provides the best accuracies with consuming
shortest time. More importantly, its generated ||∇`(z)|| has accuracies with order of 10−7,
which means global optimal solutions are achieved. By contrast, SLEP and LARS behave the
worst due to highest `(z) and ||∇`(z)|| with order of 10−1. As for computational speed,
NTGP and LARS seem to be the slowest, while NSLR and GPGN run the fastest.

Table 5: Average results of eight methods for Example 2.

s = 0.05p, n = 0.2p s = 0.1p, n = 0.2p

`(z) ||∇`(z)|| SER Time(s) ||z||0 `(z) ||∇`(z)|| SER Time(s) ||z||0
p = 10000

NSLR 7.29e-8 2.39e-7 0.00e+0 3.22 500 2.43e-8 1.97e-7 0.00e+0 4.12 1000

GPGN 1.09e-7 5.49e-7 0.00e+0 4.19 500 6.84e-8 2.41e-7 0.00e+0 6.96 1000

GraSP 1.20e-2 1.32e-1 5.00e-3 17.10 500 7.41e-3 8.91e-2 1.70e-3 17.01 1000

NTGP 4.37e-3 1.70e-2 0.00e+0 33.54 500 2.18e-3 6.18e-3 0.00e+0 13.53 1000

LARS 1.43e-1 3.52e-1 1.25e-2 27.69 500 2.85e-1 5.74e-1 4.90e-3 71.80 1000

GIST 4.81e-6 2.99e-5 0.00e+0 12.54 2381 8.08e-6 6.27e-5 0.00e+0 11.40 2974

APG 1.29e-4 1.82e-3 0.00e+0 30.00 1407 1.25e-4 4.43e-3 0.00e+0 27.82 5211

SLEP 1.75e-1 3.89e-1 2.00e-3 6.56 811 1.32e-1 2.89e-1 0.00e+0 10.84 1019

p = 20000

NSLR 7.33e-8 2.54e-7 0.00e+0 13.32 1000 2.66e-8 1.45e-7 0.00e+0 15.11 2000

GPGN 8.48e-8 4.15e-7 0.00e+0 16.47 1000 5.91e-8 2.55e-7 0.00e+0 15.83 2000

GraSP 1.29e-2 1.35e-1 5.25e-3 62.22 1000 5.00e-3 7.44e-2 1.50e-3 92.69 2000

NTGP 5.43e-3 2.15e-2 0.00e+0 134.65 1000 2.30e-3 6.68e-3 0.00e+0 54.50 2000

LARS 3.96e-1 7.75e-1 5.43e-2 107.45 1000 4.21e-1 8.09e-1 6.18e-2 117.1 1000

GIST 7.20e-7 4.74e-6 0.00e+0 33.52 1542 9.98e-7 4.60e-6 0.00e+0 54.55 4137

APG 5.06e-5 2.09e-3 0.00e+0 24.94 1849 6.04e-5 2.99e-3 0.00e+0 69.46 4323

SLEP 1.88e-1 4.08e-1 3.25e-3 22.67 1511 1.45e-1 3.18e-1 0.00e+0 34.59 2005

p = 30000

NSLR 7.12e-8 2.27e-7 0.00e+0 33.98 1500 3.14e-8 1.66e-7 0.00e+0 49.11 3000

GPGN 8.58e-8 4.65e-7 0.00e+0 35.06 1500 4.09e-8 2.44e-7 0.00e+0 51.49 3000

GraSP 2.28e-2 1.76e-1 7.50e-3 181.95 1500 8.96e-3 1.07e-1 2.83e-3 208.12 3000

NTGP 5.36e-3 2.09e-2 0.00e+0 307.17 1500 2.32e-3 6.76e-3 0.00e+0 125.14 3000

LARS 4.59e-1 8.70e-1 1.03e-1 205.79 1000 4.99e-1 9.25e-1 1.21e-1 206.76 1000

GIST 2.76e-6 1.12e-5 0.00e+0 121.16 6124 7.97e-7 4.25e-6 0.00e+0 150.95 6278

APG 9.40e-4 2.82e-2 1.67e-4 206.78 7460 3.11e-4 7.03e-3 0.00e+0 247.16 6450

SLEP 1.96e-1 4.21e-1 2.33e-3 54.20 2392 1.49e-1 3.23e-1 1.67e-4 80.19 3009

21

(c) Comparison on Example 3. To observe the performance for above all eight meth-
ods on real data sets, we select eight real data sets with different dimensions. The highest
dimension is up to millions (see news20.binary). Table 6 reports results for eight methods
on four datasets without testing data (m2 = 0): arcene, colon-cancer, news20.binary
and newsgroup. For the last two datasets, LARS makes our desktop run out of memory, thus
its results are omitted here. NaN obtained by GraSP on data newsgroup means ||∇`(z)||
tends to infinity. Clearly, NSLR is more efficient than others for all test instances. For ex-
ample, NSLR only uses 9 seconds for data newsgroup with p = 777811 features and achieves
the smallest logistic loss with the sparsest solution.

Table 6: Results of eight methods for Example 3 with m2 = 0.

`(z) ||∇`(z)|| SER Time(s) ||z||0 `(z) ||∇`(z)|| SER Time(s) ||z||0
Data Arcene:m1 = 100, p = 10000 colon-cancer:m1 = 62, p = 2000

NSLR 6.58e-8 1.31e-6 0.00e+0 0.63 60 1.50e-7 1.29e-6 0.00e+0 0.13 20

GPGN 1.84e-5 2.72e-4 0.00e+0 0.58 60 3.35e-5 3.51e-4 0.00e+0 0.17 20

GraSP 1.88e-3 1.78e-1 0.00e+0 1.23 60 3.03e-1 7.00e-1 1.61e-2 0.26 20

NTGP 1.09e-1 1.34e+0 1.00e-2 2.81 60 4.51e-3 3.60e-2 0.00e+0 0.19 20

LARS 7.98e-2 7.68e-1 0.00e+0 0.97 60 2.84e-2 1.60e-1 0.00e+0 0.23 30

GIST 3.99e-7 6.12e-6 0.00e+0 5.64 134 6.22e-7 4.09e-6 0.00e+0 0.13 41

APG 1.84e-5 9.53e-4 0.00e+0 3.34 430 1.79e-7 3.66e-6 0.00e+0 0.23 20

SLEP 1.05e-1 9.58e-1 0.00e+0 3.66 66 1.68e-1 6.80e-1 4.84e-2 0.14 23

Data news20.binary:m1 = 19996, p = 1355191 newsgroup:m1 = 11314, p = 777811

NSLR 1.82e-2 4.24e-3 4.80e-3 20.43 2500 2.20e-2 6.52e-3 9.90e-3 9.55 3000

GPGN 2.94e-2 6.10e-3 8.00e-3 25.44 2500 5.17e-2 7.90e-3 1.20e-2 30.71 3000

GraSP 2.46e-2 1.00e-2 9.25e-3 205.7 2500 5.08e-1 NaN 4.75e-2 33.06 3000

NTGP 7.94e-2 1.38e-2 6.55e-3 93.20 2500 3.11e-1 4.77e-2 5.80e-2 13.07 3000

LARS — — — — — — — — — —

GIST 3.18e-2 9.98e-3 6.60e-3 27.57 4091 6.84e-2 9.70e-3 1.52e-2 10.55 3017

APG 4.18e-2 8.10e-3 1.24e-2 37.15 3869 5.12e-2 7.70e-3 1.77e-2 10.62 3257

SLEP 1.49e-1 3.19e-2 3.34e-2 43.70 5299 2.60e-1 4.15e-2 4.60e-2 23.89 5138

When all methods solve datasets with testing data (m2 > 0): duke breast-cancer,
leukemia, gisette and rcv1.binary, the table is a little different. Since the testing data
is taken into consideration, we add two indicators to illustrate the performance of each
method: `(z)-test and SER-test. Results are reported in Table 7, where `(z) and `(z)-
test denote the objective function value on training data and testing data respectively,
and similar to SER-train and SER-test. For cases of duke breast-cancer and leukemia,
LARS stops when the maximum number of iterations reaches the min{m1, p}. Hence its
produced ||z||0s are less than other methods. We can see that NSLR could guarantee a good
performance on the testing data as well as the training data. It is capable of rendering
sparsest solutions with smallest logistic loss and consuming least time.

22

Table 7: Average results of eight methods for Example 3 with m2 > 0.

||∇`(z)|| `(z) `(z)-test SER-train SER-test Time(s) ||z||0
Data duke breast-cancer: m1 = 38, m2 = 4, p = 7129

NSLR 1.53e-10 3.16e-11 1.72e-7 0.00e+0 0.00e+0 0.39 100

GPGN 9.73e-5 1.31e-5 2.55e-3 0.00e+0 0.00e+0 0.44 100

GraSP 8.76e-2 3.57e-3 1.82e-3 0.00e+0 0.00e+0 0.50 100

NTGP 8.76e-2 1.21e-5 1.20e-4 0.00e+0 0.00e+0 0.64 100

LARS 5.12e-4 1.01e-4 1.21e-4 0.00e+0 0.00e+0 0.61 37

GIST 5.78e-8 6.64e-9 1.60e-1 0.00e+0 0.00e+0 0.54 614

APG 1.12e-5 6.35e-7 2.68e-7 0.00e+0 0.00e+0 0.74 136

SLEP 9.14e-3 1.93e-3 1.04e-2 0.00e+0 0.00e+0 0.43 203

Data leukemia: m1 = 38, m2 = 34, p = 7129

NSLR 2.81e-5 1.54e-6 2.66e-1 0.00e+0 2.94e-2 0.30 150

GPGN 1.11e-3 1.29e-5 2.71e+0 0.00e+0 1.47e-1 0.35 150

GraSP 2.68e-1 3.40e-3 5.08e-1 0.00e+0 1.47e-1 0.56 150

NTGP 2.68e-1 4.22e-4 2.11e-1 0.00e+0 5.88e-2 0.75 150

LARS 8.09e-3 6.07e-4 1.11e-1 0.00e+0 8.82e-2 1.05 37

GIST 2.65e-1 5.68e-3 1.82e-1 0.00e+0 1.18e-1 0.42 295

APG 6.99e-3 1.05e-4 3.63e-1 0.00e+0 8.82e-2 0.54 1066

SLEP 2.00e+0 1.71e-1 2.85e-1 0.00e+0 2.94e-2 0.58 269

Data gisette: m1 = 6000, m2 = 1000, p = 5000

NSLR 2.43e-4 1.55e-4 1.91e-1 0.00e+0 4.18e-2 1.40 500

GPGN 3.25e-4 2.25e-4 2.63e-1 0.00e+0 4.60e-2 1.41 500

GraSP 1.23e-3 1.51e-4 2.30e-1 0.00e+0 4.82e-2 2.43 500

NTGP 1.23e-3 1.17e-3 9.58e-1 0.00e+0 4.18e-2 2.55 500

LARS 3.27e-1 1.63e-1 1.39e+0 1.00e-3 4.18e-2 8.26 500

GIST 4.02e-4 2.40e-4 1.02e+0 0.00e+0 4.30e-2 1.78 1303

APG 1.12e-3 3.72e-4 1.31e+0 0.00e+0 4.90e-2 1.64 907

SLEP 1.49e-1 1.92e-2 8.30e-1 0.00e+0 4.97e-2 2.04 1569

Data rcv1.binary: m1 = 20242, m2 = 20000, p = 47236

NSLR 2.99e-3 6.62e-2 1.21e-1 2.10e-2 4.33e-2 3.71 1000

GPGN 1.73e-3 2.90e-2 2.35e-1 8.05e-3 5.58e-2 6.81 1000

GraSP 9.07e-3 3.09e-1 1.98e+0 4.15e-2 9.51e-2 21.7 1000

NTGP 5.30e-3 7.48e-2 1.37e-1 1.06e-2 4.64e-2 4.47 1000

LARS 2.96e-2 2.27e-1 2.61e-1 5.13e-1 5.46e-1 33.5 1000

GIST 4.43e-3 3.44e-2 1.41e-1 8.20e-3 4.85e-2 4.57 1545

APG 1.54e-3 2.51e-2 2.78e-1 7.31e-3 6.00e-2 7.57 1537

SLEP 1.52e-2 1.24e-1 1.65e-1 3.02e-2 5.23e-2 8.45 3527

6. Conclusion

In this paper, we considered the sparsity constrained logistic regression (4), which is a non-
liner combinatorial problem. Despite the NP-hardness, we benefited from its nice properties
of objective function and introduced the strong τ -stationary point as a optimality condition
of (4). This contributed to a stationary equation, which can be efficiently solved by Newton

23

method. It turned out that our proposed method NSLR has a relatively low computational
complexity in each step because only a small linear equation system with s variables and
s equations need to be solved to update the Newton direction. We further established its
quadratic convergence to a strong τ -stationary point and showed termination within finite
steps. It is worth mentioning that we reasonably extended the classical Newton method for
solving unconstrained problems to sparsity constrained logistic regression. The numerical
performance against several state-of-the-art methods demonstrated that NSLR is remarkably
efficient and competitive in solving (4), especially in large scale settings.

A drawback of NSLR is that the starting point is required to be close enough to its limit
to establish the quadratic convergence results. A potential way to compensate this is to
adopt a line search scheme (see Yuan and Liu (2017) for example), which would guarantee
that the generated sequence by NSLR converges to its limit, because of this, the closeness to
the limit of the starting point is no more demanded. We leave this as a future research.

Acknowledgments

We would like to acknowledge support for this project from the National Natural Science
Foundation of China (11431002) and the 111 project of China (B16002). We are also very
grateful to Prof. Xiao-Tong Yuan for sharing with us their excellent package NTGP.

Appendix A.

In this appendix we prove all associated theorems from Section 2:

Proof of Property 2

Proof i) Denote `i(z) = log(1 + eti)− yiti with ti = 〈xi, z〉. By Taylor expansion of `i(z)
at ti = 0, for any min{0, ti} ≤ ςi ≤ max{0, ti}, it holds

`(z) =
1

n

n∑
i=1

`i(z) =
1

n

n∑
i=1

[
ln(2) + ti/2 + t2i /(2(2 + eςi + e−ςi))− yiti

]
≤ 1

n

n∑
i=1

[
ln(2) + ti/2 + t2i /(2 + eςi + e−ςi)− yiti

]
≤ 1

n

n∑
i=1

[
ln(2) + (1/2− yi)ti + t2i /4

]
=

1

n

n∑
i=1

[
ln(2) + [ti − (2yi − 1)]2/4− (2yi − 1)2/4

]
= ln(2) + (‖Xz− c‖2 − ‖c‖2)/(4n)

= ln(2)− 1/4 + ‖Xz− c‖2/(4n), (35)

where the last equality is due to yi ∈ {0, 1} and thus 2yi−1 ∈ {−1, 1}. Then for any z ∈ S,
we must have minz∈S `(z) ≤ `(z), which results in the conclusion.

24

ii) If X>c 6= 0, the first claim holds clearly (In fact, a typical case is when r = 1). This
indicates U>c 6= 0. Direct calculation yields that

‖X z̄− c‖2 = ‖XTV Λ−1U>c− c‖2 = ‖UΛV >V Λ−1U>c− c‖2

= ‖UU>c− c‖2 = ‖UU>c‖2 − 2〈UU>c, c〉+ ‖c‖2

= ‖c‖2 − ‖U>c‖2 (because of U>U = I)

< ‖c‖2 = n,

which together with (35) concludes the the second claim. If X>c = 0, then ∇`(0) =
X>(h(0)− y)/n = −2X>c/n = 0. This together with Property 1 i) suffices to

`(z) ≥ `(0) + 〈∇`(0), z− 0〉 = `(0)

for any z ∈ S, which means 0 is a global optimal solution. And one can easily check that
0 ∈ argminz∈S‖Xz− c‖2 due to X>(X0− c) = 0.

Proof of Theorem 6

Proof i) We argue by contradiction and suppose that for any given τ ∈ (0, 1/λx), z∗ is not
a strong τ -stationary point. Then there exists a z 6= z∗ ∈ Rp satisfies

z = PS (z∗ − τ∇`(z∗)) ,

which together with the definition of projection on S imply that

‖z− (z∗ − τ∇`(z∗))‖2 ≤ ‖z∗ − (z∗ − τ∇`(z∗))‖2.

This leads to

〈∇`(z∗), z− z∗〉 ≤ −1/(2τ)‖z− z∗‖2. (36)

It follows from Property 1 (i) and (36) that for any τ ∈ (0, 1/λx),

`(z) ≤ `(z∗) + 〈∇`(z∗), z− z∗〉+ (λx/2)‖z− z∗‖2

≤ `(z∗)− 1/(2τ)‖z− z∗‖2 + (λx/2)‖z− z∗‖2 < `(z∗)

which contradicts the assumption that z∗ is a global minimizer of SLR (4).

ii) For a given τ > 0, let z∗ be a strong τ -stationary point with ‖z∗‖0 = s. For any

z ∈ N(z∗, δ) ∩ S with 0 < δ < [z]↓s, we have

|zi| = |z∗i − (z∗i − zi)| ≥ |z∗i | − δ > [z]↓s − [z]↓s = 0, ∀ i ∈ supp(z∗),

which means supp(z∗) ⊆ supp(z). By ‖z‖0 ≤ s and |supp(z∗)| = ‖z∗‖0 = s, we obtain

supp(z∗) = supp(z), ∀ z ∈ N(z∗, δ) ∩ S. (37)

25

This implies that zi = z∗i = 0 for i /∈ supp(z∗). It follows that the convexity of ` and
Property 4 ii) (∇i`(z∗) = 0, i ∈ supp(z∗))

`(z) ≥ `(z∗) + 〈∇`(z∗), z− z∗〉
= `(z∗) +

∑
i∈supp(z∗)

∇i`(z∗)(zi − z∗i) +
∑

i/∈supp(z∗)

∇i`(z∗)(zi − z∗i) = `(z∗).

Thus z∗ is a local minimizer of SLR (4). If z∗ further satisfies `(z∗) = 0, then for any z ∈ S,
the convexity of ` suffices to

`(z) ≥ `(z∗) + 〈∇`(z∗), z− z∗〉 = `(z∗), (38)

which proves the global optimality of z∗.

iii) When ‖z∗‖0 < s, Property 4 i) guarantees ∇`(z∗) = 0, which together with (38)
yields the conclusion.

Proof of Theorem 7

Proof We only prove the ‘if’ part since the proof of the ‘only if’ part is quite straightfor-
ward. Suppose we have Fτ (u;T) = 0 for all T ∈ TB(u; τ), namely,

zT = 0, dT = 0, d = ∇`(z) (39)

If TB(u; τ) is a singleton, by letting T be the only entry of TB(u; τ), then

z− PS(z− τ∇`(z))
(39)
= z− PS(z− τd) =

[
zT
zT

]
−
[

(z− τd)T
0

]
(39)
=

[
zT − zT

0− 0

]
= 0,

which means z is a strong τ -stationary point. If TB(u; τ) has multiple elements, then

by the definition (17) of T (u; τ) we have two claims: [z − τd]↓s = [z − τd]↓s+1 > 0 or

[z − τd]↓s = 0. Now we exclude the first claim. Without loss of any generality, we assume

|z1 − τd1| ≥ · · · ≥ |zs − τds| = |zs+1 − τds+1| = [z − τd]↓s. Let T1 = {1, 2, · · · , s} and
T2 = {1, 2, · · · , s− 1, s+ 1}. Then Fτ (u;T1) = Fτ (u;T2) = 0 imply that dT1 = dT2 = 0 and
zT 1

= zT 2
= 0, which lead to

|z1| = |z1 − τd1| ≥ · · · ≥ |zs| = |zs − τds| = |zs+1| = |zs+1 − τds+1| = [z− τd]↓s > 0.

This is contradicted with zT 1
= 0 because of s+ 1 ∈ T 1. Therefore, we have [z− τd]↓s = 0.

This together with the definition (17) of T (z; τ) derives 0 = [z − τd]↓s ≥ |zi − τdi| = |τdi|
for any i ∈ T 1, which combining dT1 = 0 renders d = 0 and hence `(z) = 0 from (39).

Moreover, [z]↓s = [z− τd]↓s = 0, yielding ‖z‖0 < s. Consequently, z is a strong τ -stationary
point from Property 4.

26

Proof of Theorem 9

Proof By using the elementary transformation of the matrix ∇Fτ (u), we have

∇Fτ (u;T)
row−−−−−−→

operation

0 0 Is 0
0 Ir 0 0

−∇2
T,T `(z) 0 0 0

−∇2
T ,T

`(z) 0 0 Ir

column−−−−−−→

operation

0 0 Is 0
0 Ir 0 0

−∇2
T,T `(z) 0 0 0

0 0 0 Ir

 column−−−−−−→
operation

Is 0 0 0
0 Ir 0 0
0 0 −∇2

T,T `(z) 0

0 0 0 Ir

Clearly, we have

rank(∇Fτ (u;T)) = rank(∇2
T,T `(z)) + 2p− s = rank(X>T D(z)XT) + 2p− s,

If the matrix X is s-regular, then for ∀ h 6= 0 we have XTh 6= 0 and (XTh)>D(z)(XTh) > 0
by D(z) � 0. This shows X>T D(z)XT � 0, yielding rank(X>T D(z)XT) = s.

Direct calculation yields the form of (∇Fτ (u;T))−1 as (23). It remains to verify the
last statement of the theorem. For any given z∗ ∈ Rp and δ > 0, z ∈ N(z∗, δ) implies that
‖z‖ < ‖z∗‖+ δ and hence

‖Xz‖ ≤ (λmax(XTX))1/2‖z‖ = 2λ1/2
x ‖z‖ < 2λ1/2

x (‖z∗‖+ δ) =: σ,

which leads to
〈xi, z〉 ≤ ‖Xz‖ < σ, i = 1, . . . , n.

This together with Property 1 (iii) suffices to that for any z ∈ N(z∗, δ),

1/(4eσ) ≤ eσ/(1 + eσ)2 ≤ λmin(D(z)) ≤ λmax(D(z)) ≤ 1/4. (40)

We are ready to see that

‖(∇2
T,T `(z))−1‖2 = λmax((∇2

T,T `(z))−1)

=
[
λmin(∇2

T,T `(z))
]−1

=
[
λmin(X>T D(z)XT /n)

]−1

≤ n
[
λmin(X>T XT)λmin(D(z))

]−1

(22,40)

≤ 4neσ/λ,

which completes the whole proof.

Appendix B.

In this appendix we prove results from Section 4:

27

Proof of Theorem 10

Proof Since uk → u∞, it holds zk → z∞ and dk → d∞ as k → ∞, which suffices to
z∞ ∈ S due to ‖zk‖0 ≤ s. Clearly, {Tk} is bounded owing to Tk ⊆ Np and |Tk| = s, and
thus has a subsequence {Tkt} such that

Tkt = Tkt+1 = · · · =: T∞. (41)

Since zkt+1 → z∞, supp(zkt+1) ⊆ Tkt = T∞, we must have

T∞

{
= supp(z∞), if ‖z∞‖0 = s,
⊃ supp(z∞), if ‖z∞‖0 < s.

and hence z∞
T∞

= 0. (42)

From (27) and (28), we obtain

∇2
T∞·`(z

∞)z∞ = lim
kt→∞

∇2
Tkt ·

`(zkt)zkt+1 = lim
kt→∞

[
∇2
Tkt ·

`(zkt)zkt −∇Tkt `(z
kt)
]

= ∇2
T∞·`(z

∞)z∞ −∇T∞`(z∞),

which yields that

∇T∞`(z∞) = 0. (43)

Again by (28), we have

d∞T∞ = lim
kt→∞

dkt+1
Tkt

= 0, (44)

d∞
T∞

= lim
kt→∞

dkt+1

Tkt

= lim
kt→∞

[
∇Tkt

`(zkt) +∇2
Tkt
·`(z

kt)(zkt+1 − zkt)
]

= ∇T∞`(z
∞). (45)

Now for any i ∈ Tkt
(41)
= T∞, j ∈ T kt

(41)
= T∞, we have

|z∞i |
(44)
= |z∞i − τd∞i | = lim

kt→∞
|zkti − τd

kt
i |

(17)

≥ lim
kt→∞

|zktj − τd
kt
j | = |z∞j − τd∞j |

(42)
= τ |d∞j |,

which leads to

[z∞]↓s = min
i∈T∞

|z∞i | ≥ τ |d∞j |
(45)
= τ |∇j`(z∞)|, ∀ j ∈ T∞, (46)

If ‖z∞‖0 = s, then T∞
(42)
= supp(z∞). Consequently, [z∞]↓s ≥ τ |∇j`(z∞)|,∀ j /∈ supp(z∞).

If ‖z∞‖0 < s, then [z∞]↓s = 0 and ∇`(z∞) = 0 from (46) and (43). Those together with
(13) show z∞ is a τ -stationary point.

Before we prove Lemma 11, we need the following property.

Property 13 Let z be a strong τ -stationary point of (4). We have following results.

28

i) If ‖z‖0 = s, then TB(z; τ) is a singleton and for any 0 < τ1 ≤ τ

TB(z; τ1) = TB(z; τ) = {supp(z)} .

ii) If ‖z‖0 < s, then TB(z; τ) has finite many entries, namely,

TB(z; τ) = {T ⊆ Np : T ⊃ supp(z), |T | = s}.

Moreover, for any given τ1 > 0, TB(z; τ1) = TB(z; τ).

Proof Since z is a strong τ -stationary point of (4), it follow form Theorem (21) that
d = ∇`(z). i) When ‖z‖0 = s, Property 4 ii) yields

|di| = |∇i`(z)|
{

= 0, i ∈ supp(z),

< 1
τ [z]↓s, i /∈ supp(z),

(47)

which suffices to
|zi − τdi| = |zi| ≥ [z]↓s > τ |dj | = |zj − τdj |

for any i ∈ supp(z), j /∈ supp(z). The above inequalities together with ‖z‖0 = s imply
supp(z) ∈ TB(z; τ). If there is another T ∈ TB(z; τ) such that T 6= supp(z), then it follows
that there exists a j0 ∈ T\supp(z) and i0 ∈ supp(z)\T . This means

[z]↓s
(47)
> τ |dj0 | = |zj0 − τdj0 |

(17)

≥ |zi0 − τdi0 |
(47)
= |zi0 | ≥ [z]↓s,

which is a contradiction. Therefore, TB(z; τ) = {T (z; τ)} = {supp(z)} is a singleton. Again
by Property 4, a strong τ -stationary point z is also a strong τ1-stationary point z due to
1
τ [z]↓s ≤ 1

τ1
[z]↓s for any 0 < τ1 ≤ τ , thus TB(z; τ) = {T (z; τ1)} = {supp(z)} .

ii) When ‖z‖0 < s, Property 4 i) yields d = ∇`(z) = 0, which implies that [z− τd]↓s =

[z]↓s = 0 and T (z; τ) = {i ∈ Np : |xi| ≥ 0} with T (z; τ) = s. As ‖z‖0 < s, we must have
supp(z) ⊂ T (z; τ) due to |T (z; τ)| = s. To form T (z; τ), we need pick s − ‖z‖0 indices

from Np\supp(z), with C
s−‖z‖0
p−‖z‖0 choices, yielding C

s−‖z‖0
p−‖z‖0 T (z; τ)s to form TB(z; τ). Finally,

∇f(z) = 0 suffices to z being also a τ1-stationary point for any τ1 > 0. Similar choices to
form TB(z; τ1) lead to TB(z; τ) = TB(z; τ1).

Proof of Lemma 11

Proof i) If z∗ is a strong τ∗-stationary point of (4), then Theorem 7 shows Fτ∗(u
∗;T∗) = 0

for any T∗ ∈ TB(u∗; τ∗). This means

z∗
T ∗

= 0, d∗T∗ = 0, d∗ = ∇`(z∗). (48)

When ‖z∗‖0 = s, Property 13 i) already shows TB(u∗; τ∗) = TB(u∗; τ) = {supp(z∗)} . This
means T∗ = supp(z∗). Next, we show that

supp(z) = supp(z∗). (49)

29

To prove above equation, we only prove supp(z) ⊇ supp(z∗) since z ∈ S and ‖z∗‖0 = s. If it
is not true, i.e., there is an i ∈ supp(z∗) but i /∈ supp(z), then it follows from the definition
of NS(u∗, δ∗) that

[z∗]↓s
(31)

≥ δ∗
(32)
> ‖u− u∗‖ ≥ ‖z− z∗‖ ≥ |0− z∗i | ≥ [z∗]↓s.

which is a contradiction. Again, u ∈ NS(u∗, δ∗) suffices to

(|zi − z∗i |+ |di − d∗i |+ |dj − d∗j |)2 ≤ 3(|zi − z∗i |2 + |di − d∗i |2 + |dj − d∗j |2)

≤ 3‖u− u∗‖2
(32)
< 4(δ∗)2. (50)

For any T ∈ TB(u; τ), we now prove supp(z∗) = T . Considering any i ∈ supp(z∗), j /∈
supp(z∗), direct calculation derives following chain of inequalities

|zi − τdi| − |zj − τdj |
(49)
= |zi − τdi| − |τdj | ≥ |zi| − τ |di| − τ |dj |

(48)
= |zi − z∗i + z∗i | − τ |di − d∗i | − τ |dj − d∗j + d∗j |
≥ |z∗i | − |zi − z∗i | − τ∗|di − d∗i | − τ∗|dj − d∗j | − τ∗|d∗j |
≥ |z∗i | −max{1, τ∗}(|zi − z∗i |+ |di − d∗i |+ |dj − d∗j |)− τ∗|d∗j |

(50)
> [z∗]↓s − 2 max{1, τ∗}δ∗ − τ∗ max

j /∈supp(z∗)
|d∗j |

(31)

≥ 0.

This means for any i ∈ supp(z∗) it has i ∈ T , namely, supp(z∗) ⊆ T . Finally ‖z∗‖0 = s
and |T | = s suffice to supp(z∗) = T . This combining the arbitrariness of T ∈ TB(u; τ),
indicates TB(u; τ) = {supp(z∗)}.

ii) For ‖z∗‖0 < s, if z∗ = 0 the conclusion holds obviously due to supp(z∗) = ∅. We now
only focus on z∗ 6= 0, which means δ∗ > 0 from (31). We first show that Γ∗ := supp(z∗) ⊆
supp(z). If it is not true, i.e., there is an i ∈ Γ∗ but i /∈ supp(z), then by the definition of
NS(u∗, δ∗) as (32), it follows

min
i∈Γ∗
|z∗i |

(31)

≥ δ∗ > ‖u− u∗‖ ≥ ‖z− z∗‖ ≥ |0− z∗i | ≥ min
i∈Γ∗
|z∗i |,

which is a contradiction. We then prove Γ∗ ⊆ T for any T ∈ TB(u; τ), namely, |zi − τdi| >
|zj − τdj | for any i ∈ Γ∗, j /∈ Γ∗. For any given τ > 0 and any u ∈ NS(u∗, δ∗), we have

(|zi − z∗i |+ |zj − z∗j |+ |di − d∗i |+ |dj − d∗j |)2

≤ 4(|zi − z∗i |2 + |zj − z∗j |2 + |di − d∗i |2 + |dj − d∗j |2) < 4(δ∗)2. (51)

30

Notice that z∗ is a strong τ∗-stationary point with ‖z∗‖0 < s, then it must satisfy d∗ =
∇`(z∗) = 0 by Property 4 i). Direct calculation derives following chain of inequalities

|zi − τdi| − |zj − τdj |
≥ |zi| − τ |di| − |zj | − τ |dj |
= |zi − z∗i + z∗i | − |zj − z∗j | − τ |di| − τ |dj | (because of z∗j = 0, ∀ j /∈ Γ∗)

≥ |z∗i | − |zi − z∗i | − |zj − z∗j | − τ∗|di − d∗i | − τ∗|dj − d∗j | (because of d∗ = 0)

≥ |z∗i | −max{1, τ∗}(|zi − z∗i |+ |zj − z∗j |+ |di − d∗i |+ |dj − d∗j |)
> min

i∈Γ∗
|z∗i | − 2 max{1, τ∗}δ∗ (because of (51))

≥ 0. (because of (31))

This means for any i ∈ Γ∗ it has i ∈ T , namely, Γ∗ ⊆ T . Overall we prove Γ∗ ⊆
supp(x)∩T, ∀ T ∈ TB(z, τ). Finally, the proof of Property 13 ii) says that TB(z∗; τ∗) con-
tains every T∗ which satisfies T∗ ⊇ Γ∗ and |T∗| = s. Particularly, it covers all T ∈ TB(z; τ)
because of T ⊇ Γ∗ and |T | = s, namely TB(z; τ) ⊆ TB(z∗; τ∗).

Proof of Theorem 12

Proof i) Since z∗ is a strong τ∗-stationary point, then Fτ∗(u
∗;T∗) = 0 for any T∗ ∈

TB(u∗; τ∗) from Theorem 7, namely,

z∗
T ∗

= 0, d∗T∗ = 0, d∗ = ∇`(z∗). (52)

Choose T0 ∈ TB(u0; τ). Lemma 11 and u0 ∈ NS(u∗, δ∗) suffice to T0 ∈ TB(u0; τ) ⊆
TB(u∗; τ∗). This together with (52) derives

z∗
T 0

= 0, d∗T0 = ∇T0`(z∗) = 0. (53)

For any 0 ≤ t ≤ 1, denote[
z(t)
d(t)

]
= u(t) := u∗ + t(u0 − u∗) =

[
z∗ + t(z0 − z∗)
d∗ + t(d0 − d∗)

]
.

It is easy to verify that u(t) ∈ NS(u∗, δ∗).This together with Property 1 iv) generates

max
{
‖∇2

T ·`(z
0)−∇2

T ·`(z(t))‖, ‖∇2
T ·`(z

0)−∇2
T ·`(z(t))‖

}
≤ ‖∇2`(z0)−∇2`(z(t))‖ ≤ γx‖z0 − z‖ = (1− t)γx‖z0 − z∗‖, (54)

where ∇2
T ·`(z

0) is the sub-matrix of ∇2`(z0) containing rows indexed on T . Moreover, by
Taylor expansion, one has

∇`(z0)−∇`(z∗) =

∫ 1

0
∇2`(z(t))(z0 − z∗)dt. (55)

31

It follows from u0 ∈ NS(u∗,min{δ∗, δ∗x}) that ‖z0−z∗‖ ≤ ‖u0−u∗‖ < δ∗, which combining
with (24) in Theorem 9 leads to

‖(∇2
T0,T0`(z

0))−1‖2 ≤ µ∗ =
e2(
√
λx‖z∗‖+δ∗)

λ/(4n)
. (56)

Now, we have following chain of inequalities

‖z1 − z∗‖

= (‖z1
T0 − z∗T0‖

2 + ‖z1
T 0
− z∗

T 0
‖2)1/2 (28,53)

= ‖z1
T0 − z∗T0‖

(28)
= ‖z0

T0 − z∗T0 − (∇2
T0,T0`(z

0))−1(∇T0`(z0)−∇2
T0,T 0

`(z0)z0
T 0

)‖
(56)

≤ µ∗‖∇2
T0,T0`(z

0)(z0
T0 − z∗T0) +∇T0`(z0)−∇2

T0,T 0
`(z0)z0

T 0
‖

(53)
= µ∗‖∇2

T0,T0`(z
0)(z0

T0 − z∗T0)−∇T0`(z0) +∇T0`(z∗) +∇2
T0,T 0

`(z0)(z0
T 0
− z∗

T 0
)‖

(55)
= µ∗‖∇2

T0·`(z
0)(z0 − z∗)−

∫ 1

0
∇2
T0·`(z(t))(z0 − z∗)dt‖

= µ∗‖
∫ 1

0
[∇2

T0·`(z
0)−∇2

T0·`(z(t))](z0 − z∗)dt‖

≤ µ∗
∫ 1

0
‖∇2

T0·`(z
0)−∇2

T0·`(z(t))‖‖z0 − z∗‖dt

(54)

≤ µ∗γx‖z0 − z∗‖2
∫ 1

0
(1− t)dt = 0.5µ∗γx‖z0 − z∗‖2. (57)

Next we estimate ‖d− d∗‖. One can verify that

µ∗λx =
e2(
√
λx‖z∗‖+δ∗)

λ/(4n)
λx >

λx

λ/(4n)
=
λmax(X>X)

λ

(22)
=

λmax(X>X)

min|T |≤s λmin(X>T XT)
≥ 1. (58)

Similarly, we have following chain of inequalities

‖d1 − d∗‖ = (‖d1
T0 − d∗T0‖

2 + ‖d1
T 0
− d∗

T 0
‖2)1/2 (28,53)

= ‖d1
T 0
− d∗

T 0
‖

(28,53)
= ‖∇T 0

`(z0) +∇2
T 0·
`(z0)(z1 − z0)−∇T 0

`(z∗)‖

= ‖∇T 0
`(z0)−∇T 0

`(z∗)−∇2
T 0·
`(z0)(z0 − z∗) +∇2

T 0·
`(z0)(z1 − z∗)‖

(55)
= ‖

∫ 1

0
[∇2

T 0·
`(z0)−∇2

T 0·
`(z(t))](z0 − z∗)dt+∇2

T 0·
`(z0)(z1 − z∗)‖

(54)

≤ γx‖z0 − z∗‖2
∫ 1

0
(1− t)dt+ ‖∇2

T 0·
`(z0)‖2‖z1 − z∗‖

≤ 0.5γx‖z0 − z∗‖2 + ‖∇2`(z0)‖2‖z1 − z∗‖
≤ 0.5γx‖z0 − z∗‖2 + λx‖z1 − z∗‖

(57)

≤ 0.5γx(1 + µ∗λx)‖z0 − z∗‖2
(58)

≤ γxµ
∗λx‖z0 − z∗‖2. (59)

32

Based on (57) and (59), we have

‖u1 − u∗‖2 = ‖z1 − z∗‖2 + ‖d1 − d∗‖2

≤ (1/2γxµ
∗)2‖z0 − z∗‖4 + (γxµ

∗λx)2‖z0 − z∗‖4

≤ (1/4 + λ2
x)(γxµ

∗)2‖z0 − z∗‖4

= (0.5/δ∗x)2‖z0 − z∗‖4 ≤ (0.5/δ∗x)2‖u0 − u∗‖4, (60)

which gives rise to

‖u1 − u∗‖ ≤ (0.5/δ∗x)‖u0 − u∗‖2 ≤ 0.5‖u0 − u∗‖. (61)

The above inequality suffices to ‖u1−u∗‖ ≤ ‖u0−u∗‖ < min{δ∗, δ∗x}. In addition, z1
T 0

= 0

from (28) means z1 ∈ S. Then u1 ∈ NS(u∗,min{δ∗, δ∗x}). Similar reasons to derive (60)
allow us to get

‖u2 − u∗‖ ≤ (0.5/δ∗x)‖u1 − u∗‖2.

By induction, one could conclude that uk ∈ NS(u∗,min{δ∗, δ∗x}) and

‖uk+1 − u∗‖ ≤ (0.5/δ∗x)‖uk − u∗‖2. (62)

Hence lim
k→∞

uk = u∗, and the sequence {zk} has quadratic convergence rate.

ii) The above proof shows that uk ∈ NS(u∗,min{δ∗, δ∗x}) for any k ≥ 0, which indicates
uk ∈ NS(u∗, δ∗). This combining Lemma 11 directly derives the claim.

iii) Since uk ∈ NS(u∗,min{δ∗, δ∗x}) and (62), we get

‖uk+1 − u∗‖ ≤ 0.5‖uk − u∗‖. (63)

By the last equation of (26), we have

dk+1 = ∇`(zk) +∇2`(zk)(zk+1 − zk). (64)

In addition, it follows from ii) Tk+1 ∈ TB(z∗; τ∗), Property 4 and (52) that

‖z∗‖0 = s =⇒ supp(z∗) = Tk+1

=⇒ z∗
Tk+1

= 0, d∗Tk+1

(52)
= 0,

‖z∗‖0 < s =⇒ supp(z∗) ⊂ Tk+1, d∗
(52)
= ∇`(z∗) Property 4 i)

= 0
=⇒ z∗

Tk+1
= 0, d∗Tk+1

= 0.

(65)

These give rise to

Fτ (uk+1;Tk+1)
(20)
=

 dk+1
Tk+1

zk+1
Tk+1

dk+1 −∇`(zk+1)

 (65)
=

 dk+1
Tk+1
− d∗Tk+1

zk+1
Tk+1

− z∗
Tk+1

dk+1 −∇`(zk+1)

(64)
=

 dk+1
Tk+1
− d∗Tk+1

zk+1
Tk+1

− z∗
Tk+1

∇`(zk) +∇2`(zk)(zk+1 − zk)−∇`(zk+1)

 .
33

Then Taylor Expansion,

∇`(zk+1)−∇`(zk) =

∫ 1

0
∇2`(zk + t(zk+1 − zk))(zk+1 − zk)dt

enables us to derive that

I := ‖∇`(zk) +∇2`(zk)(zk+1 − zk)−∇`(zk+1)‖

= ‖
∫ 1

0
(∇2`(zk + t(zk+1 − zk))−∇2`(zk))(zk+1 − zk)dt‖

≤
∫ 1

0
‖∇2`(zk + t(zk+1 − zk))−∇2`(zk)‖‖zk+1 − zk‖dt

(11)

≤
∫ 1

0
tγx‖zk+1 − zk‖2dt = 0.5γx‖zk+1 − zk‖2

≤ 0.5γx‖uk+1 − uk‖2 ≤ γx(‖uk+1 − u∗‖2 + ‖uk − u∗‖2)

(63)

≤ 1.25γx‖uk − u∗‖2.

Next we estimate

II := ‖dk+1
Tk+1
− d∗Tk+1

‖2 + ‖zk+1
Tk+1

− z∗
Tk+1
‖2

≤ ‖uk+1 − u∗‖2
(62)

≤ (0.5/δ∗x)2‖uk − u∗‖4.

Based on those facts, we obtain

‖Fτ (uk+1;Tk+1)‖ =
√
I2 + II ≤

[
(0.5/δ∗x)2 + (1.25γx)2

]1/2 ‖uk − u∗‖2,

= cx‖uk − u∗‖2
(63)

≤ cx2−2k‖u0 − u∗‖2,

which suffices to the conclusion.

References

Alekh Agarwal, Sahand Negahban, and Martin J Wainwright. Fast global convergence
rates of gradient methods for high-dimensional statistical recovery. In Advances in Neural
Information Processing Systems, pages 37–45, 2010.

Galen Andrew and Jianfeng Gao. Scalable training of `1-regularized log-linear models. In
Proceedings of the 24th international conference on Machine learning, pages 33–40. ACM,
2007.

Sohail Bahmani, Bhiksha Raj, and Petros T Boufounos. Greedy sparsity-constrained opti-
mization. Journal of Machine Learning Research, 14(Mar):807–841, 2013.

Amir Beck and Yonina C Eldar. Sparsity constrained nonlinear optimization: Optimality
conditions and algorithms. SIAM Journal on Optimization, 23(3):1480–1509, 2013.

34

Amir Beck and Nadav Hallak. On the minimization over sparse symmetric sets: projections,
optimality conditions, and algorithms. Mathematics of Operations Research, 41(1):196–
223, 2015.

Thomas Blumensath and Mike E Davies. Iterative hard thresholding for compressed sensing.
Applied and computational harmonic analysis, 27(3):265–274, 2009.

Emmanuel J Candes, Michael B Wakin, and Stephen P Boyd. Enhancing sparsity by
reweighted `1 minimization. Journal of Fourier analysis and applications, 14(5-6):877–
905, 2008.

Jinghui Chen and Quanquan Gu. Fast newton hard thresholding pursuit for sparsity con-
strained nonconvex optimization. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 757–766. ACM, 2017.

David L Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):
1289–1306, 2006.

Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. Least angle regres-
sion. The Annals of statistics, 32(2):407–499, 2004.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and
its oracle properties. Journal of the American statistical Association, 96(456):1348–1360,
2001.

Mário AT Figueiredo. Adaptive sparseness for supervised learning. IEEE transactions on
pattern analysis and machine intelligence, 25(9):1150–1159, 2003.

Simon Foucart. Hard thresholding pursuit: an algorithm for compressive sensing. SIAM
Journal on Numerical Analysis, 49(6):2543–2563, 2011.

Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of statistical software, 33(1):1, 2010.

Rahul Garg and Rohit Khandekar. Gradient descent with sparsification: an iterative algo-
rithm for sparse recovery with restricted isometry property. In Proceedings of the 26th
Annual International Conference on Machine Learning, pages 337–344. ACM, 2009.

Pinghua Gong and Jieping Ye. Honor: Hybrid optimization for non-convex regularized
problems. In Advances in Neural Information Processing Systems, pages 415–423, 2015.

Pinghua Gong, Changshui Zhang, Zhaosong Lu, Jianhua Huang, and Jieping Ye. A general
iterative shrinkage and thresholding algorithm for non-convex regularized optimization
problems. In International Conference on Machine Learning, pages 37–45, 2013.

James Douglas Hamilton. Time series analysis, volume 2. Princeton university press Prince-
ton, NJ, 1994.

Trevor Hastie, Robert Tibshirani, and Ryan J Tibshirani. Extended comparisons of
best subset selection, forward stepwise selection, and the lasso. arXiv preprint
arXiv:1707.08692, 2017.

35

Hussein Hazimeh and Rahul Mazumder. Fast best subset selection: Coordinate descent and
local combinatorial optimization algorithms. arXiv preprint arXiv:1803.01454, 2018.

Jian Huang, Shuange Ma, Huiliang Xie, and Cun-Hui Zhang. A group bridge approach for
variable selection. Biometrika, 96(2):339–355, 2009.

Jian Huang, Yuling Jiao, Yanyan Liu, and Xiliang Lu. A constructive approach to l0
penalized regression. Journal of Machine Learning Research, 19(10), 2018.

Kwangmoo Koh, Seung-Jean Kim, and Stephen Boyd. An interior-point method for large-
scale `1-regularized logistic regression. Journal of Machine learning research, 8(Jul):
1519–1555, 2007.

Balaji Krishnapuram, Lawrence Carin, Mario AT Figueiredo, and Alexander J Hartemink.
Sparse multinomial logistic regression: Fast algorithms and generalization bounds. IEEE
Transactions on Pattern Analysis & Machine Intelligence, (6):957–968, 2005.

Su-In Lee, Honglak Lee, Pieter Abbeel, and Andrew Y Ng. Efficient l1 regularized logistic
regression. In AAAI, volume 6, pages 401–408, 2006.

Huan Li and Zhouchen Lin. Accelerated proximal gradient methods for nonconvex pro-
gramming. In Advances in neural information processing systems, pages 379–387, 2015.

Jun Liu, Jianhui Chen, and Jieping Ye. Large-scale sparse logistic regression. In Proceedings
of the 15th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 547–556. ACM, 2009a.

Jun Liu, Shuiwang Ji, Jieping Ye, et al. Slep: Sparse learning with efficient projections.
Arizona State University, 6(491):7, 2009b.

Aurelie Lozano, Grzegorz Swirszcz, and Naoki Abe. Group orthogonal matching pursuit for
logistic regression. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pages 452–460, 2011.

Zhaosong Lu. Optimization over sparse symmetric sets via a nonmonotone projected gra-
dient method. arXiv preprint arXiv:1509.08581, 2015.

Zhaosong Lu and Yong Zhang. Sparse approximation via penalty decomposition methods.
SIAM Journal on Optimization, 23(4):2448–2478, 2013.

Stéphane Mallat and Zhifeng Zhang. Matching pursuit with time-frequency dictionaries.
Technical report, Courant Institute of Mathematical Sciences New York United States,
1993.

Rahul Mazumder, Peter Radchenko, and Antoine Dedieu. Subset selection with shrinkage:
Sparse linear modeling when the snr is low. arXiv preprint arXiv:1708.03288, 2017.

Deanna Needell and Joel A Tropp. Cosamp: Iterative signal recovery from incomplete and
inaccurate samples. Applied and computational harmonic analysis, 26(3):301–321, 2009.

36

Li-Li Pan, Nai-Hua Xiu, and Sheng-Long Zhou. On solutions of sparsity constrained opti-
mization. Journal of the Operations Research Society of China, 3(4):421–439, 2015.

Lili Pan, Shenglong Zhou, Naihua Xiu, and Hou-Duo Qi. A convergent iterative hard
thresholding for nonnegative sparsity optimization. Pacific Journal of Optimization, 13
(2):325–353, 2017.

Yaniv Plan and Roman Vershynin. Robust 1-bit compressed sensing and sparse logistic
regression: A convex programming approach. IEEE Transactions on Information Theory,
59(1):482–494, 2013.

Alain Rakotomamonjy, Remi Flamary, and Gilles Gasso. Dc proximal newton for nonconvex
optimization problems. IEEE transactions on neural networks and learning systems, 27
(3):636–647, 2016.

Jianing Shi, Wotao Yin, Stanley Osher, and Paul Sajda. A fast hybrid algorithm for large-
scale `1-regularized logistic regression. Journal of Machine Learning Research, 11(Feb):
713–741, 2010.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

Rui Wang, Naihua Xiu, and Chao Zhang. Greedy projected gradient-newton method for
large-scale sparse logistic regression. technical report, 2017.

Weijun Xie and Xinwei Deng. The ccp selector: Scalable algorithms for sparse ridge regres-
sion from chance-constrained programming. arXiv preprint arXiv:1806.03756, 2018.

Jin Yu, SVN Vishwanathan, Simon Günter, and Nicol N Schraudolph. A quasi-newton
approach to nonsmooth convex optimization problems in machine learning. Journal of
Machine Learning Research, 11(Mar):1145–1200, 2010.

Guo-Xun Yuan, Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. A comparison of opti-
mization methods and software for large-scale `1-regularized linear classification. Journal
of Machine Learning Research, 11(Nov):3183–3234, 2010.

Guo-Xun Yuan, Chia-Hua Ho, and Chih-Jen Lin. An improved glmnet for `1-regularized
logistic regression. Journal of Machine Learning Research, 13(Jun):1999–2030, 2012.

Xiao-Tong Yuan and Qingshan Liu. Newton greedy pursuit: A quadratic approximation
method for sparsity-constrained optimization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4122–4129, 2014.

Xiao-Tong Yuan and Qingshan Liu. Newton-type greedy selection methods for `0-
constrained minimization. IEEE transactions on pattern analysis and machine intelli-
gence, 39(12):2437–2450, 2017.

Xiao-Tong Yuan, Ping Li, and Tong Zhang. Gradient hard thresholding pursuit for sparsity-
constrained optimization. In International Conference on Machine Learning, pages 127–
135, 2014.

37

Xiao-Tong Yuan, Ping Li, and Tong Zhang. Gradient hard thresholding pursuit. Journal
of Machine Learning Research, 18(166):1–43, 2018.

Cun-Hui Zhang et al. Nearly unbiased variable selection under minimax concave penalty.
The Annals of statistics, 38(2):894–942, 2010.

Tong Zhang. Analysis of multi-stage convex relaxation for sparse regularization. Journal
of Machine Learning Research, 11(Mar):1081–1107, 2010.

Hui Zou and Runze Li. One-step sparse estimates in nonconcave penalized likelihood models.
Annals of statistics, 36(4):1509, 2008.

38

	1 Introduction
	1.1 Sparse logistic regression (SLR)
	1.2 Methods of solving SLR
	1.3 Our contributions
	1.4 Organization and notation

	2 Optimality and Stationary Equation
	3 Fast Newton Method
	4 Quadratic Convergence
	5 Numerical Experiments
	5.1 Test examples
	5.2 Implementation
	5.3 Benchmark methods
	5.4 Numerical comparison

	6 Conclusion

