
Global and Quadratic Convergence of Newton
Hard-Thresholding Pursuit

Shenglong Zhou sz3g14@soton.ac.uk
School of Mathematical Sciences
University of Southampton
Southampton SO17 1BJ, UK

Naihua Xiu nhxiu@bjtu.edu.cn
Department of Applied Mathematics
Beijing Jiaotong University
Beijing, China

Hou-Duo Qi hdqi@soton.ac.uk

School of Mathematical Sciences

University of Southampton

Southampton SO17 1BJ, UK

Abstract

Algorithms based on the hard thresholding principle have been well studied with sound-
ing theoretical guarantees in the compressed sensing and more general sparsity-constrained
optimization. It is widely observed in existing empirical studies that when a restricted
Newton step was used (as the debiasing step), the hard-thresholding algorithms tend to
meet halting conditions in a significantly low number of iterations and hence are very effi-
cient. However, the thus obtained Newton hard-thresholding algorithms do not offer any
better theoretical guarantees than their simple hard-thresholding counterparts. This an-
noying discrepancy between theory and empirical studies has been known for some time.
This paper provides a theoretical justification for the use of the restricted Newton step.
We build our theory and algorithm, Newton Hard-Thresholding Pursuit (NHTP), for the
sparsity-constrained optimization. Our main result shows that NHTP is quadratically con-
vergent under the standard assumption of restricted strong convexity and smoothness. We
also establish its global convergence to a stationary point under a weaker assumption. In
the special case of the compressive sensing, NHTP eventually reduces to some existing hard-
thresholding algorithms with a Newton step. Consequently, our fast convergence result
justifies why those algorithms perform better than without the Newton step. The effi-
ciency of NHTP was demonstrated on both synthetic and real data in compressed sensing
and sparse logistic regression.

Keywords: sparse optimization, stationary point, Newton’s method, hard thresholding,
global convergence, quadratic convergence rate

Running Title: Newton Hard-Thresholding Pursuit

1. Introduction

In this paper, we are mainly concerned with numerical methods for the sparsity constrained
optimization

min
x∈Rn

f(x), s.t. ‖x‖0 ≤ s, (1)

1

where f : Rn 7→ R is continuously differentiable, ‖x‖0 is the l0 norm of x, counting the
number of nonzero elements in x, and s is a given integer regulating the sparsity level in x
(i.e., x is s-sparse). This problem has been well investigated by Bahmani et al. (2013) (from
statistical learning perspective) and Beck and Eldar (2013) (from optimization perspective).
Problem (1) includes the widely studied Compressive Sensing (CS) (see, e.g., Elad (2010);
Zhao (2018)) as a special case:

min
x∈Rn

f(x) = fcs(x) =
1

2
‖Ax− b‖2, s.t. ‖x‖0 ≤ s, (2)

where A is an m×n sensing matrix, b ∈ Rn is the observation and ‖·‖ is the Euclidean norm
in Rn. Problem (1) has also been a major model in high-dimensional statistical recovery
(Agarwal et al. (2010), Negahban et al. (2012)), nonlinear compressive sensing (Blumensath
(2013)), and learning model-based sparsity (Bahmani et al. (2016)). An important class
of algorithms makes use of the gradient information together with the hard-thresholding
technique. We refer to Bahmani et al. (2013), Yuan et al. (2018) (for (1)) and Needell
and Tropp (2009), Foucart (2011) (for CS) for excellent examples of such methods and
their corresponding theoretical results. In terms of the numerical performance, it has been
widely observed that whenever a restricted Newton step is used in the so-called debiasing
step, those algorithms appear to take a significantly low number of iterations to converge,
see Needell and Tropp (2009), Foucart (2011) and Blumensath (2012). Yet, their theoreti-
cal guarantee appears no better than their pure gradient-based counterparts. Hence, there
exists an intriguing gap between the exceptional empirical experience and the best conver-
gence theory. This paper aims to provide a theoretical justification for their efficiency by
establishing the quadratic convergence of such methods under standard assumptions used
in the literature.

In the following, we give a selective review of past work that directly motivated our
research, followed by a brief explanation of our general framework that shares a similar
structure with several existing algorithms.

1.1 A selective review of past work

There exists a large number of computational algorithms that can be applied to (1). For in-
stance, many of them can be found in Google Scholar from the many papers citing Figueiredo
et al. (2007), Needell and Tropp (2009), Elad (2010) and also in the latest book by Zhao
(2018). We opt to conduct a bit technical review on a small number of papers that directly
motivated our research. Those reviewed papers more or less suggest the following algorith-
mic framework that largely obeys the principle laid out in Needell and Tropp (2009) and
follow the recipes for hard-thresholding methods in Kyrillidis and Cevher (2011). Given
the kth iterate xk, update it to the next iterate xk+1 by the following steps:

Step 1 (Support Identification Process) : Tk = SIP(h(xk)),

Step 2 (Debiasing) : x̃k+1 = arg min
{
qk(x) : x|T c

k
= 0
}
,

Step 3 (Pruning) : xk+1 ∈ Ps(x̃k+1).

(3)

We put the three steps in the perspectives of some existing algorithms and explain the no-
tation involved. For the case of CS, the well-known CoSaMP (Compressive Sample Matching

2

Pursuit) of Needell and Tropp (2009) chose the identification function h(x) to be the gra-
dient function ∇f(x) and the support identification process SIP is chosen to be the union
of the best 2s support of h(xk) (i.e., the 2s indices that are from the 2s largest elements of
h(xk) in magnitude) and supp(xk), which are the indices of nonzero elements in xk. In this
case, the number of indices in Tk is below 3s (i.e., |Tk| ≤ 3s). In the HTP (Hard Thresholding
Pursuit) algorithm of Foucart (2011), h(x) is set to be (x− η∇f(x)), where η > 0 is a step
size. Tk is chosen to be the best s support of h(xk). Hence, |Tk| = s. In AIHT of Blumensath
(2012) (Accelerated Iterative Hard Thresholding), Tk is chosen as in HTP. For the general
nonlinear function f(x), the GraSP of Bahmani et al. (2013) (Gradient Support Pursuit)
chose Tk as in CoSaMP so that Tk| ≤ 3s. The GraHTP of Yuan et al. (2018) (Gradient Hard
Thresholding Pursuit) chose Tk as in HTP for CS.

Once Tk is chosen, Step 2 (debiasing step) attempts to provide a better estimate for the
solution of (1) by solving an optimization problem within a restricted subspace obtained by
setting all elements of x indexed by T ck to zero. Here T ck is the complementary set of T in
{1, . . . , n}. Step 3 (pruning step) simply applies the hard-thresholding operator, denoted as
Ps, to x̃k+1 to retain the best s largest elements in magnitude from x̃k+1 and set the rest to
zero. The great flexibility in choosing Tk and the objective function qk(x) in the debiasing
step makes it possible to derive various algorithms in literature. For instance, if we choose
Tk = {1, . . . , n} (hence T ck = ∅) and qk(x) to be the first-order approximation of f with a
proximal term at xk:

qk(x) := f(xk) + 〈∇f(xk), x− xk〉+
1

2η
‖x− xk‖2,

then we will recover the popular (gradient) hard-thresholding algorithms, see, e.g., Blumen-
sath and Davies (2008, 2009) and Beck and Eldar (2013) for the iterated hard-thresholding
algorithms, and Bahmani et al. (2013) for the restricted gradient descent and Yuan et al.
(2018) for GraHTP. The CoSaMP is recovered if Tk is chosen as in CoSaMP and qk(x) = fcs(x).
More existing methods can be interpreted this way and we omit the details here.

Instead, we focus on the algorithms that make use of the second order approximation
in qk(x). Bahmani et al. (2013) proposed the restricted Newton step, which is equivalent
to choosing qk(x) to be a restricted second-order approximation to f(x) at xk:

qk(x) := f(xk) + 〈∇f(xkTk), xTk − xkTk〉+
1

2
〈xTk − xkTk , ∇

2
Tk
f(xk)(xTk − xkTk)〉 (4)

where the notation xTk denotes the restriction of x to the indices in Tk, ∇f(xkTk) is the
(partial) gradient of f(x) with respect to the variables indexed by Tk and evaluated at
xkTk , and ∇2

Tk
f(xk) is the principle submatrix of the Hessian matrix ∇2f(xk) indexed by

Tk. In the case of CS (2), the restricted Newton step is equivalent to minimizing qk(x) =
fcs(x) restricted on the subspace defined by x|T c

k
= 0. Hence, the restricted Newton step

recovers CoSaMP. We note that in both cases, |Tk| ≤ 3s (i.e., Tk is relatively large). In the
HTP algorithm, Foucart (2011) managed to choose Tk of size s by making use of the hard
thresholding technique, which is further investigated by Blumensath (2012) by the name of
accelerated iterative hard-thresholding.

The benefit of using the Newton step has been particularly witnessed for the case of
CS. Foucart (2011) compiled convincing numerical evidence that HTP took a significantly

3

low number of iterations to converge when proper step-size η is used. Blumensath (2012)
confirmed this accelerated performance via AIHT when the Newton step is obtained approx-
imately by the conjugate gradient method. A general view from the two papers is that an
adaptive step-size rule in the Newton step leads to more efficient performance. However, the
existing theoretical guarantee for HTP and AIHT is no better than their greedy counterparts
(e.g., simple iterative hard-thresholding algorithms (IHT)). That is, the theory ensures that
the distance between each iterate to any given reference (sparse) point is bounded by the
sum of two terms. The first term converges linearly and the second term is a fixed approxi-
mation error that depends on the choice of the reference point. We refer to the latest paper
of Shen and Li (2018) for many of such a result, which is often called statistical error-bound
guarantee. The discrepancy between being able to offer better empirical performance than
many simple IHT algorithms and only sharing similar theoretical guarantee with them in-
vites an intriguing question: why is it so? A positive answer will inevitably provide a deep
understanding of the Newton-type HTP algorithms and lead to new powerful algorithms.
This is exactly what we are going to achieve in this paper.

A different line of research for (1) was initiated by Beck and Eldar (2013) from an
optimization perspective. The convergence results established were drastically contrasting
to the statistical error bound result mentioned above. It is proved that any accumulation
point of the generated sequence by the IHT method is one kind of stationary point (i.e., η-
stationarity, to be defined later). In the particular case of CS, the whole sequence converges
to an η stationary point under the s-regularity assumption of the sensing matrix A (note:
s-regularity of A means that any s columns of A are linearly independent). It is known that
2s-regularity is a minimal condition that any two s-sparse vectors can be distinguished and
it is often assumed by a wide range of the restricted isometry property (RIP) of Candes and
Tao (2005). The fact that the s-regularity is weaker than the 2s-regularity means that many
hard-thresholding algorithms actually converge to an η stationary point of (1). Hence, the
quality of those algorithms can be measured not only by their statistical error bounds, but
also by th quality of the η stationary point (e.g., whether a stationary point is optimal).
We refer to Beck and Eldar (2013); Beck and Hallak (2015) for more discussion on the η
stationarity in relation to the global optimality.

Similar convergence results to Beck and Eldar (2013) have also been established in the
literature of CS. Blumensath and Davies (2010) showed that the normalized IHT with an
adaptive step-size rule converges to a local minimum of (2) provided that the s-regularity
holds. This leads us to ask the following question: when the Newton step is used in
combination with IHT (such as HTP algorithm of Foucart (2011)), whether it is possible to
establish the following quadratic convergence result:

xk → x∗ and ‖xk+1 − x∗‖ ≤ c‖xk − x∗‖2 for sufficiently large k, (5)

where c is a constant solely dependent on the objective function f (independent of the iter-
ates xk and its limit x∗). This fast convergence result would justify the stronger numerical
performance of various Newton-type methods reviewed in the first part of the subsection.
Although, it is expected in optimization that Newton’s method (Nocedal and Wright (1999))
will usually lead to quadratic convergence, the problem (1) is not a standard optimization
problem and it has a combinatorial nature. Hence, quadratic convergence does not fol-
low from any existing theory from optimization. We also note that both Bahmani et al.

4

(2013) and Yuan et al. (2018) listed the restricted Newton step as a possible variant for the
debiasing step, but it was not theoretically investigated.

We finish this brief review by noticing that there are researches that exclusively studied
the role of Newton’s method for (1) (see, e.g., Dai and Milenkovic (2009), Yuan and Liu
(2017), Chen and Gu (2017)). However, as before, they do not offer any better theoretical
guarantees than their simple greedy counterparts. Furthermore, their algorithms do not
follow the general framework of (3) and hence their results cannot be used to explain the
efficiency of Newton’s method that follow (3). In this paper, we will design an algorithm,
that also makes uses of a restricted Newton step in the debiasing step (Step 2) and analyse
its role in convergence. We will show that our algorithm enjoys the quadratic convergence
(5) as well as others. We will particularly relate it to HTP of Foucart (2011) so as to justify
the strong empirical performance of similar algorithms.

1.2 Our approach and main contributions

The first departure of our proposed Newton step from the one of Bahmani et al. (2013) is
that we employ a different quadratic function, denoted as qNk (x):

qNk (x) := the second-order Taylor expansion of f(x) at xk, then set x|T c
k

= 0 (6)

= 〈∇Tkf(xk), xTk − xkTk〉+
1

2
〈xTk − xkTk , ∇

2
Tk
f(xk)(xTk − xkTk)〉

− 〈xTk , ∇
2
Tk,T

c
k
f(xk)(xkT c

k
)〉+ (constant term independent of x),

where ∇Tkf(xk) := (∇f(xk))Tk and ∇2
Tk,T

c
k
f(xk) is the submatrix whose rows and columns

are from the Hessian matrix ∇2f(xk) indexed by Tk and T ck respectively. For the case of
CS problem (2), it is straightforward to verify that qNk (x) = qk(x) in (4). Therefore, the
Newton step will become the one used in CoSaMP or HTP depending on how Tk is selected. In
this paper, we choose Tk to be the best s support of xk−η∇f(xk). That is, Tk contains a set
of indices that define the s largest absolute values in xk−η∇f(xk) with η being steplength.
For the case of CS, it is the same as that in the algorithm HTPµ of Foucart (2011). For the
general nonlinear function f , however, qNk (x) and qk(x) are different. The function qk(x) in
(4) is obtained in such a way that we first restrict f(x) to the subspace x|T c

k
= 0 and then

approximate it by the second-order Taylor expansion (i.e., restriction and approximation).
In contrast, the function qNk (x) is obtained in the opposite way. We first approximate f(x)
by its second-order Taylor expansion and then restrict the approximation to the subspace
xT c

k
= 0 (i.e., approximation and restriction). We will see that our way of construction

will allow us quantitatively bound the error ‖xk+1 − x∗‖ in terms of ‖xk − x∗‖, eventually
leading to the quadratic convergence in (5).

Our second innovation is to cast the Newton step as a Newton iteration for a nonlinear
equation:

Fη(x, Tk) = 0, (7)

where Fη(·, Tk) : Rn 7→ Rn is a function reformulated from the η stationarity condition.
We defer its technical definition to the next section. A crucial point we would like to make
is that this new interpretation of the Newton step offers a fresh angle to examine it and

5

will allow us to develop new analytical tools mainly from optimization perspective and
eventually establish the promised quadratic convergence.

It is known that Newton’s method is a local method. A commonly used technique for
globalization is the line search strategy, which is adopted in this paper. Therefore, we will
have a Newton iterate with varying step-size. This agrees with the empirical observation
that adaptive step-size in HTP often works more efficiently than other variants. Putting
together the three techniques (quadratic approximation qNk (x), nonlinear equation (7), and
the line search strategy) will result in our proposed algorithm termed as Newton Hard-
Thresholding Pursuit (NHTP) due to the Newton-step and the way how Tk is selected being
the two major components of the algorithm. We finish this section by summarizing our
major contributions.

(i) We develop the new algorithm NHTP, which largely follows the general framework of
(3) with Step 3 (pruning) to be replaced by a globalization step. The new step is
achieved through the Armijo line search. We will establish its global convergence to
an η stationary point under the restricted strong smoothness of f .

(ii) If f is further assumed to be restricted strongly convex at the one of the accumu-
lation points of NHTP, the Armijo line search steplength will eventually becomes 1.
Consequently, NHTP will become the restricted Newton method and leads to its con-
vergence at a quadratic rate. This result successfully extends the classical quadratic
convergence result of Newton’s method to the sparse case. For the case of CS, NHTP
reduces to some known algorithms including the HTP family of Foucart (2011), with
properly chosen step-sizes. The quadratic convergence result resolves the discrepancy
between the strong numerical performance of HTP (and its alike) and its existing linear
convergence guarantee.

(iii) Rigorously establishing the quadratic convergence of NHTP is a major contribution
of the paper. As far as we know, it is the first paper that establishes both the
global and the quadratic convergence for an algorithm that employs both the Newton
step and the gradient step (through the hard thresholding operator) for (1). The
developed framework of analysis is innovative and will open possibility to prove that
other Newton-type HTP methods may also enjoy the quadratic convergence. In our
final contribution of this paper, we show experimental results in CS and the logistic
regression, with both synthetic and real data, to illustrate the way NHTP works.

1.3 Organization

In the next section, we will describe the basic assumptions on the objective function f and
their implications. We will also develop a theoretical foundation for the Newton method
to be used in a way that it also solves a system of nonlinear equations. Section 3 includes
the detailed description of NHTP and its global and quadratic convergence analysis. We will
particularly discuss its implication to the CS problem and compare with the methods of
HTP family Foucart (2011). Since some of the proofs are quite technical, we move all of the
proofs to the appendices in order to avoid interrupting presentation of the main results. We
report our numerical experiments in Section 4 and conclude the paper in Section 5.

6

2. Assumptions, Stationarity and Interpretation of Newton’s Step

2.1 Notation

For easy reference, we list some commonly used notation below. We use “:=” to mean
“define”. Vectors are treated as column vectors and hence x> is a row vector. For an index
set T , let |T | be the number of elements of T and T c := {1, 2, . . . , }\T be its complementary
set. We denote supp(x) as the support set of x, namely, the set of indices of nonzero elements
of x, and xT ∈ R|T | as the sub vector of x containing elements indexed on T . Based on
this, denote ∇T f(x) := (∇f(x))T . For the Hessian matrix ∇2f(x), denote ∇2

T,Jf(x) its
submatrix whose rows and columns are respectively indexed on T and J . In particular,
we write ∇2

T f(x) as its principle submatrix indexed on T , namely ∇2
T f(x) := ∇2

T,T f(x).

Moreover, we let ∇2
T :f(x) be its submatrix containing rows indexed by T . We denote x(i)

the ith largest (in absolute) element of x. Let ‖·‖ an ‖·‖∞ respectively denote the Euclidean
norm and the infinity norm for a vector. We recall that Ps(x) denotes the set of all s best
supports of x and it can be obtained by picking the s largest absolute values in x and setting
the remaining to zero. It is important to note that for a given x, it may have multiple s
best supports. For example, for x> = (1, 2,−1, 0) and s = 2, Ps(x) contains two s best
supports: (1, 2, 0, 0) and (0, 2,−1, 0). In this paper, any of the s best supports would be
fine for our analysis. Finally, 〈x,y〉 denotes the standard inner product for x,y ∈ <n.

2.2 Basic assumptions and stationarity

In order to study the convergence of various algorithms for the problem (1), some kind of
regularities needs to be assumed. They are more or less analogous to the RIP for CS (see
Candes and Tao (2005)). Those regularities often share the property of strong restricted
convexity/smoothness, see Agarwal et al. (2010), Shalev-Shwartz et al. (2010), Jalali et al.
(2011), Negahban et al. (2012), Bahmani et al. (2013), Blumensath (2013), and Yuan et al.
(2018). We state the assumptions below in a way that is conducive to our technical proofs.

Definition 1 (Restricted strongly convex and smooth) Suppose that f : Rn 7→ R is a twice
continuously differentiable function whose Hessian is denoted by ∇2f(·). Define

M2s(x) := sup
y∈Rn

{
〈y, ∇2f(x)y〉

∣∣∣∣ |supp(x) ∪ supp(y)| ≤ 2s, ‖y‖ = 1

}
and

m2s(x) := inf
y∈Rn

{
〈y, ∇2f(x)y〉

∣∣∣∣ |supp(x) ∪ supp(y)| ≤ 2s, ‖y‖ = 1

}
for all s-sparse vectors x.

(i) We say f is restricted strongly smooth (RSS) if there exists a constant M2s > 0 such
that M2s(x) ≤ M2s for all s-sparse vectors x. In this case, we say f is M2s-RSS. f
is said to be locally RSS at x if M2s(z) ≤M2s only holds for those s-sparse vectors z
in a neighborhood of x.

(ii) We say f is restricted strongly convex (RSC) if there exists a constant m2s > 0 such
that m2s(x) ≥ m2s for all s-sparse vectors x. In this case, we say f is m2s-RSC. f is

7

said to be locally RSC at x if m2s(z) ≥ m2s only holds for those s-sparse vectors z in
a neighborhood of x.

(iii) We say that f is locally restricted Hessian Lipschitz continuous at an s-sparse vector
x if there exists a Lipschitz constant Lf and a neighborhood N (x) such that

‖∇2
T :f(y)−∇2

T :f(z)‖ ≤ Lf‖y − z‖, ∀ y, z ∈ N (x)

for any index set T with |T | ≤ s and T ⊇ supp(x).

Remark 1. We note that the definition of M2s(x) and m2s(x) is taken from the definition
of the restricted stable Hessian (RSH) of (Bahmani et al., 2013, Def. 1). If m2s(x) is
bounded away from zero, the RSH is equivalent to the RSC and RSS putting together.
Under the assumption of twice differentiability, RSS and RSC become that of Negahban
et al. (2009), Shalev-Shwartz et al. (2010) and (Yuan et al., 2018, Def. 1). By a standard
calculus argument, M2s-RSS implies{

‖∇f(x)−∇f(y)‖ ≤M2s‖x− y‖,
f(x)− f(y)− 〈∇f(x), x− y〉 ≤ M2s

2 ‖x− y‖2,
∀ x,y, |supp(x)| ≤ s
|supp(x) ∪ supp(y)| ≤ 2s.

(8)

The properties in (8) ensure that any optimal solution of (1) must be an η-stationary
point, which is a major concept introduced to the spares optimization (1) by Beck and
Eldar (2013). An s-sparse vector x∗ is called an η-stationary point of (1) if it satisfies the
following relation

x∗ ∈ Ps(x∗ − η∇f(x∗)).

Beck and Eldar (2013) called it the L-stationary point because η is very much related to
the Lipschitz constant M2s defined in (8). Lemma 2.2 in (Beck and Eldar, 2013) states that
an s-sparse vector x∗ is an η-stationary point if and only if

∇Γf(x∗) = 0, ‖∇Γcf(x∗)‖∞ ≤ x∗(s)/η. (9)

where Γ := supp(x∗). By invoking the proofs of (Beck and Eldar, 2013, Lemma 2.4 and
Thm. 2.2) under the condition of (8), the existence of η-stationary point is ensured.

Theorem 2 (Existence of η-stationary point) (Beck and Eldar, 2013, Thm. 2.2). Suppose
that there exists a constant M2s > 0 such that (8) holds. Let η < 1/M2s and x∗ be an
optimal solution of (1). Then

(i) x∗ is an η-stationary point;

(ii) Ps(x∗ − η∇f(x∗)) contains exactly one element.

Consequently, we have

x∗ = Ps(x∗ − η∇f(x∗)). (10)

We would like to make a few remarks on the significance of Thm. 2.

8

Remark 2. The characterization of the optimal solution x∗ as a solution of the fixed-point
equation (10) immediately suggests a simple iterative procedure:

xk+1 ∈ Ps(xk − η∇f(xk)), k = 0, 1, 2,

Indeed, for the special case of CS with ‖A‖2 < 1, the choice of η = 1 < 1/‖A‖2 ≤ 1/M2s

recovers the IHT of Blumensath and Davies (2008). Moreover, any stationary point of {xk}
is an η-stationary point and satisfies the fixed-point equation (10). For the case ‖A‖2 ≥ 1,
the same conclusion holds as long as η < 1/‖A‖2, see (Beck and Eldar, 2013, Remark 2).

Remark 3. The fixed-point equation characterization also measures how far an s-sparse
point x is from being an η-stationary point (and hence a possible candidate for an optimal
solution of (1)) by computing

h(x, η) := dist(x, Ps(x− η∇f(x))), (11)

which defines the shortest Euclidean distance from x to the set Ps(x−η∇f(x)). If h(x, η) is
below a certain tolerance level (e.g., small enough), we may stop at x. This halting criterion
is different from those commonly used in CS literature such as in CoSaMP, GraSP, and HTP.

Our third remark is about a differentiable nonlinear equation reformulation of the fixed-
point equation (10) and it will give rise to a nice interpretation of the Newton step obtained
from minimizing qNk (x) in (6). This remark is the main content of the next subsection.

2.3 Nonlinear equations and new interpretation of Newton’s step

Given a point x ∈ Rn and η > 0, we define the collection of all index sets of best s-support
of the vector y = (x− η∇f(x)) by

T (x; η) :=

{
T ⊂ {1, . . . , n}

∣∣∣∣ |T | = s,
y := x− η∇f(x)

|yi| ≥ y(s) ∀ i ∈ T

}
. (12)

That is, each T in T (x; η) includes s indices that define the locations of the s largest
absolute values among the elements of (x − ηf(x)). For any given T ∈ T (x; η), we define
the corresponding nonlinear equation:

Fη(x;T) :=

[
∇T f(x)

xT c

]
= 0. (13)

One advantage of defining the function Fη(x;T) is that it is continuously differentiable with
respect to x once T is selected. Moreover, we have the following characterization of the
fixed-point equation (10) in terms of Fη.

Lemma 3 Suppose η > 0 is given. A given point x ∈ Rn satisfies the fixed point equation
(10) if and only if

Fη(x;T) = 0, ∀ T ∈ T (x; η).

This result is instrumental and crucial to our algorithmic design. Bearing in mind that
it is impossible to solve all the nonlinear equations associated with all possible T ∈ T (x; η),

9

our hope is that solving one such equation would lead to our desired results. Suppose x
satisfies the equation (13) with one particular choice of T . Under the additional condition

|∇if(x)| ≤ 1

η
x(s), ∀ i ∈ T c (14)

we must have

x− η∇f(x) =

[
xT − η∇T f(x)

xT c − η∇T cf(x)

]
=

[
xT

−η∇T cf(x)

]
and consequently x is an η-stationary point:

x =

[
xT
0

]
∈ Ps(x− η∇f(x)).

In other words, if we can find a point x that simultaneously satisfies the conditions (13) and
(14) with one particular choice T ∈ T (x; η), then we would have reached an η-stationary
point, which is the best result we can expect of an optimization algorithm (unless more
information is available). Therefore, a natural tolerance function to measure how close x is
from being an η-stationary point is

Tolη(x; T) := ‖Fη(x;T)‖+ max
i∈T c

{
max

(
|∇if(x)| − x(s)/η, 0

)}
. (15)

It is easy to see that the halting function h(x, η) = 0 in (11) implies that there exists
T ∈ T (x; η) such that Tol(x; T) = 0 and vice verse. Our purpose is to quickly find this
correct T .

We now turn our attention to the solution methods for (13). Suppose xk is the current
approximation to a solution of (13) and Tk is chosen from T (xk; η). Then Newton’s method
for the nonlinear equation (7) takes the following form to get the next iterate x̃k+1:

F ′η(x
k;Tk)(x̃

k+1 − xk) = −Fη(xk;T), (16)

where F ′η(x
k;Tk) is the Jacobian of Fη(x;Tk) at xk and it assumes the following form:

F ′η(x
k;Tk) =

[
∇2
Tk
f(xk) ∇2

Tk,T
c
k
f(xk)

0 In−s

]
. (17)

Let dkN := x̃k+1 − xk be the Newton direction. Substituting (17) into (16) yields{ ∇2
Tk
f(xk)(dkN)Tk = ∇2

Tk,T
c
k
f(xk)xkT c

k
−∇Tkf(xk)

(dkN)T c
k

= −xkT c
k
.

(18)

At this point, it is interesting to observe that the next iterate (x̃k+1 = xk+dkN) is exactly the
one we would get for the restricted Newton step from minimizing the restricted quadratic
function qNk (x) in (6). It is because of this exact interpretation of the restricted Newton
step that it also drives the equation (13) to be eventually satisfied. In this way, we establish
the global convergence to the η-stationarity. However, there are still a number of technical
hurdles to overcome. We will tackle those difficulties in the next section.

10

3. Newton Hard-Thresholding Pursuit and Its Convergence

In this main section, we present our Newton Hard-Thresholding Pursuit (NHTP) algorithm,
which largely follows the general framework (3), but with distinctive features. We already
discussed the choice of Tk (Step 1 in (3)) and the quadratic approximation function qNk in
(6) (Step 2 in (3)). Since |Tk| = s and x̃k+1 obtained is restricted to the subspace x|T c

k
= 0,

hence supp(x̃k+1) ⊆ Tk and the pruning step is not necessary. Instead, we replace it with
the globalization step:

Step 3’ (globalization)

{
xk+1 = G(x̃k+1) such that

supp(xk+1) ⊆ Tk and f(xk+1) ≤ f(xk),
(19)

where G symbolically represents a globalization process to generate xk+1. We will choose
the Armijo line search strategy (see Nocedal and Wright (1999)) to realize this process.

The rest of the section is to consolidate those three steps. We first examine how good
is the restricted Newton direction (18) as well as the restricted gradient direction. We note
that both directions were proposed in Bahmani et al. (2013). But as far as we know, they
are not theoretically studied. We then describe our NHTP algorithm and present its global
and quadratic convergence under the restricted strong convexity and smoothness.

3.1 Descent properties of the restricted Newton and gradient directions

Our first task is to answer whether the restricted Newton direction dkN from (18) provides
a “good” descent direction for f(x) on the restricted subspace x|T c

k
= 0. We have the

following result.

Lemma 4 (Descent inequality of the Newton direction) Suppose f(x) is m2s-restricted
strongly convex and M2s-restricted strongly smooth. Given a constant γ ≤ m2s and the
step-size η ≤ 1/(4M2s), we then have〈

∇Tkf(xk), (dkN)Tk

〉
≤ −γ‖dkN‖2 +

1

4η
‖xkT c

k
‖2. (20)

We note that Tk will eventually identify the true support and xkT c
k

should be close to zero

when this happens. Hence, the positive term ‖xkT c
k
‖2/(4η) is eventually negligible. When

this happens the restricted Newton direction is able to provide a reasonably good descent
direction on the subspace xT c

k
= 0. But in general (e.g., f(x) is not restricted strongly

convex), the inequality (20) may not hold and hence dkN may not provide a good descent
direction at all. In this case, we opt for the restricted gradient direction (denoted by dkg to

distinguish it from dkN):

dkg :=

[
(dkg)Tk

(dkg)T c
k

]
=

[
−∇Tkf(xk)

−xT c
k

]
. (21)

This strategy of switching to the gradient direction whenever the Newton direction is not
good enough (by certain measure) appears to have been implicitly used by Blumensath

11

(2012) in the accelerated IHT, where the conjugate gradient (CG) method was used to solve
its Newton equation. It was suggested there that using just 3 CG steps would give best
numerical performance. We note that the direction obtained by 3 CG steps is a direction
between Newton’s direction and the gradient direction. but is close to the latter because
of the small number of CG steps used. Moreover, this strategy appears very popular and
practical in optimization, see, e.g., Nocedal and Wright (1999); Sun et al. (2002); Qi et al.
(2003); Qi and Sun (2006); Zhao et al. (2010). Therefore, our search direction dk for the
globalization step (S3’) is defined as follows:

dk :=

{
dkN , if the condition (20) is satisfied

dkg , otherwise.
(22)

It is important to note that the choice of γ and η in Lemma 4 is just sufficient for the
Newton direction to be used. The inequality (20) may also hold if γ and η violate the
required bounds. This has been experienced in our numerical experiments.

Our next result further shows that the search direction dk is actually a descent direction
for f(x) at xk with respect to the full space Rn provided that η is properly chosen. Suppose
we have three constants γ, σ and β such that

0 < γ ≤ min{1, 2M2s}, 0 < σ < 1/2, and 0 < β < 1. (23)

They will be used in our NHTP algorithm. We note that this choice implies M2s/γ > σ.
Define two more constants based on them:

α := min

{
1− 2σ

M2s/γ − σ
, 1

}
and η := min

{
γ(αβ)

M2
2s

, αβ,
1

4M2s

}
. (24)

Lemma 5 (Descent property of dk) Suppose f(x) is M2s-restricted strongly smooth. Let
γ, σ and β be chosen as in (23). Suppose η < η and supp(xk) ⊆ Tk−1 (this will be automat-
ically ensured by our algorithm). We then have

〈∇f(xk), dk〉 ≤ −ρ‖dk‖2 − η

2
‖∇Tk−1

f(xk)‖2, (25)

where ρ > 0 is given by

ρ := min

{
γ − ηM2

2s

2
,

2− η
2

}
.

Lemma 5 will ensure that our algorithm NHTP is well defined.

3.2 NHTP and its convergence

Having settled that dk is a descent direction of f(x) at xk, we compute the next iterate
along the direction dk but restricted to the subspace x|Tk = 0: xk+1 = xk(αk) with αk
being calculated through the Armijo line search and

xk(α) :=

[
xkTk + αdkTk
xkT c

k
+ dkT c

k

]
=

[
xkTk + αdkTk

0

]
, α > 0. (26)

12

Our algorithm is described in Table 1.

Table 1: Framework of NHTP

NHTP: Newton Hard-Thresholding Pursuit

Step 0 Initialize x0. Choose η, γ > 0, σ ∈ (0, 1/2), β ∈ (0, 1). Set k ⇐ 0.

Step 1 Choose Tk ∈ T (xk; η).

Step 2 If Tolη(x
k;Tk) = 0, then stop. Otherwise, go to Step 3.

Step 3 Compute the search direction dk by (22).

Step 4 Find the smallest integer ` = 0, 1, . . . such that

f(xk(β`)) ≤ f(xk) + σβ`〈∇f(xk),dk〉. (27)

Set αk = β`, xk+1 = xk(αk) and k ⇐ k + 1, go to Step 1.

Remark 4. We will see that NHTP has a fast computational performance because of two
factors. One is that it terminates in a low number of iterations due to the quadratic
convergence (to be proved) and this has been experienced in our numerical experiments.
The other is the low computational complexity of each step. For example, for both CS and
sparse logistic regression problems, the computational complexity of each step is O(s3 +
ms2 + mn + ms`), where ` is the smallest integer satisfying (27) and it often assumes the
value 1. By the way how xk(α) is defined, it is guaranteed that supp(xk+1) ⊆ Tk for all
k = 0, 1, . . . ,. If Tolη(x

k;Tk) = 0, then xk is already an η-stationary point and we should
terminate the algorithm. Without loss of any generality, we assume that NHTP generates
an infinite sequence {xk} and we will analyse its convergence properties. The line search
condition (27) is known as the Armijo line search and ensures a sufficient decrease from
f(xk) to f(xk+1). Therefore, the two properties in the globalization step (19) is guaranteed,
provided that the line search in (27) is successful. This is the main claim of the following
result.

Lemma 6 (Existence and boundedness of αk) Supposef(x) is M2s-restricted strongly smooth.
Let the parameters γ, σ and β satisfy the conditions in (23) and α and η be defined in (24).
Suppose Tolη(x

k;Tk) 6= 0. For any α and η satisfying

0 < α ≤ α and 0 < η < min

{
αγ

M2
2s

, α,
1

4M2s

}
,

it holds

f(xk(α)) ≤ f(xk) + σα〈∇f(xk), dk〉. (28)

Consequently, if we further assume that η ≤ η, we have

αk ≥ βα ∀ k = 0, 1, . . . , .

It is worth noting that the objective function is only assumed to be restricted strongly
smooth (not necessarily to be restricted strongly convex). Lemma 6 does not only ensure

13

the existence of αk that satisfies the line search condition (27), but also guarantees that αk
is always bounded away from zero by a positive margin βα. This boundedness property
will in turn ensure that NHTP will converge. Our first result on convergence is about a few
quantities approaching zero.

Lemma 7 (Converging quantities) Supposef(x) is M2s-restricted strongly smooth. Let the
parameters γ, σ and β satisfy the conditions in (23) and η be defined in (24). We further
assume that η ≤ η. Then the following hold.

(i) {f(xk)} is a nonincreasing sequence and if xk+1 6= xk, then f(xk+1) < f(xk).

(ii) ‖xk+1 − xk‖ → 0;

(iii) ‖Fη(xk; Tk)‖ → 0;

(iv) ‖∇Tkf(xk)‖ → 0 and ‖∇Tk−1
f(xk)‖ → 0.

Those converging quantities are the basis for our main results below. They also justify
the halting conditions that we will use in our numerical experiments.

Theorem 8 (Global convergence) Supposef(x) is M2s-restricted strongly smooth. Let the
parameters γ, σ and β satisfy the conditions in (23) and η be defined in (24). We further
assume that η ≤ η. Then the following hold.

(i) Any accumulation point, say x∗, of the sequence {xk} is an η-stationary point of (1).
If f is a convex function, then for any given reference point x we have

f(x∗) ≤ f(x) +
x∗(s)

η
‖xΓc

∗‖1, (29)

where Γ∗ := supp(x∗).

(ii) If x∗ is isolated, then the whole sequence converges to x∗. Moreover, we have the
following characterization on the support of x∗.

(a) If ‖x∗‖0 = s, then

supp(x∗) = supp(xk) = Tk for all sufficiently large k.

(b) If ‖x∗‖0 < s, then

supp(x∗) ⊆ supp(xk) ∩ Tk for all sufficiently large k.

Remark 5. Under the assumption of f being restricted strongly smooth, NHTP shares
the most desirable convergence property (i.e., to η-stationary point) of the iterative hard-
thresholding algorithm of Beck and Eldar (2013). If f is assumed to be convex, then
(29) implies that for any given ε > 0, there exists neighborhood N (x∗) of x∗ such that
f(x∗) ≤ f(x)+ ε for any x ∈ N (x∗). In particular, if ‖x∗‖0 = s, then x∗ is a local minimum
of (1). If ‖x∗‖0 < s (so that x∗(s) = 0), then x∗ is a global optimum of (1).

14

It achieves more. If the generated sequence converges to x∗, the support of x∗ is eventu-
ally identified as Tk provided that the sparse level of x∗ is s. If ‖x∗‖0 < s, its support would
be eventually included in Tk. When specialized to the CS problem (2) with s-regularity,
the whole sequence {xk} will convergence to one point x∗. This is because that any η-
stationary point of the CS problem under the s-regularity is isolated, see (Beck and Eldar,
2013, Lemma 2.1 and Corollary 2.1). Our next result implies that under the 2s-regularity,
the whole sequence {xk} converges to x∗ at a quadratic rate.

Theorem 9 (Quadratic convergence) Suppose all conditions as in Thm. 8 hold. Let x∗ be
one of the accumulation points of {xk}. We further assume f(x) is m2s-restricted strongly
convex in a neighborhood of x∗. If γ ≤ min{1, m2s} and η ≤ η, then the following hold.

(i) The whole sequence {xk} converges to x∗, which is necessarily an η-stationary point.

(ii) The Newton direction is accepted for sufficiently large k.

(iii) If we further assume that f is locally restricted Hessian Lipschitz continuous at x∗

with the Lipschitz constant Lf . The line search steplength becomes unity eventually
and the convergence rate of {xk} to x∗ is quadratic. That is, there exists an iteration
index k0 such that

αk ≡ 1, ‖xk+1 − x∗‖ ≤
Lf

2m2s
‖xk − x∗‖2, ∀ k ≥ k0. (30)

Moreover, for sufficiently large k, we have

‖Fη(xk+1; Tk+1)‖ ≤ 2m3
2s

Lf
√
M2

2s + 1
‖Fη(xk; Tk)‖2.

Remark 6. Taking into account of Lemma 7(iii) that ‖Fη(xk; Tk)‖ converges to 0,
Thm. 9(iii) asserts that it converges at a quadratic rate. Compared with the quadratic
convergence (30), the quadratic convergence in ‖Fη(xk; Tk)‖ has the advantage that it is
computationally verifiable. The quantity is also a major part of our stopping criterion in
monitoring Tolη(x

k; Tk) of (15), see Sect. 4.

3.3 The case of CS

We use this part to demonstrate the application and implication of our main convergence
results to the CS problem (2). We will also discuss the similarities to and differences from
the existing algorithms, in particular the HTP family of Foucart (2011). The purpose is to
show that there is a wide range of choices for the parameters that will lead to quadratic
convergence. This is best done in terms of the restricted isometry constant (RSC) of the
sensing matrix A. We recall from Candes and Tao (2005) that RSC δs is the smallest δ ≥ 0
such that

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2 ∀ ‖x‖0 ≤ s.

We will use δ2s, which is assumed to be positive throughout. For this setting, we have

m2s = 1− δ2s, M2s = 1 + δ2s, and µ2s :=
M2s

m2s
,

15

where, µ2s is known as the 2s-restricted stable Hessian coefficient of A in Bahmani et al.
(2013).

For simplicity, we choose a particular set of parameters used in our NHTP to illustrate
our results (many other choices are also possible). Let

β =
1

4
, γ = m2s, σ = r(w)µ2s with r(w) :=

1− w
2µ2s − w

, 0 < w < 1.

It is elementary to verify that the function r(w) is strictly decreasing over the interval
0 ≤ w ≤ 1. Hence, r(w) < r(0) = 1/(2µ2s). Therefore, σ < 1/2 for any choice w between 0
and 1. This set of parameter choices certainly satisfies the condition (23). We now calculate
α and η defined in (24). Let

φ(r) :=
1− 2σ

M2s/γ − σ
=

1− 2rµ2s

(1− r)µ2s
= 2 +

1− 2µ2s

(1− r)µ2s
.

Clearly, φ(r) is strictly decreasing in r and we have φ(r) < φ(0) = 1/µ2s ≤ 1. The definition
of α chooses

α = φ(r) =
2− 2r(w)µ2s

(1− r(w))µ2s
=

w

µ2s
.

We now turn our attention to η. Since γ/M2
2s = 1/(µ2sM2s) < 1 and β = 1/4, we have

η =
γ

M2
2s

αβ =
1

4
× 1

µ2s
× 1

M2s
× α

≥ 1

4
× 1

µ2s
× 1

2
× w

µ2s
(because M2s ≤ 2)

=
w

8µ2
2s

.

Direction application of Thm. 9 yields the following corollary.

Corollary 10 Suppose the RIC δ2s > 0 and the parameters of NHTP are chosen as follows:

β =
1

4
, σ = r(w)µ2s, γ = m2s, η ≤ w

8µ2
2s

with 0 < w < 1. (31)

Then NHTP is well-defined. In particular, the Newton direction dkN is always accepted as the
search direction in (22) at each iteration. Moreover, NHTP enjoys all the three convergence
results in Thm. 9.

Remark 7. (On RIC conditions) In the literature of CS, a benchmark condition (for
theoretical investigation) often takes the form δt ≤ δ∗ with t being an integer. Suppose
δ2s ≤ δ∗. It is easy to define and derive the following.

m∗2s := 1− δ∗ ≤ 1− δ2s = m2s

µ∗2s :=
1 + δ∗
1− δ∗

≥ 1 + δ2s

1− δ2s
= µ2s

η∗ :=
w

8(µ∗2s)
2
≤ w

8µ2
2s

.

16

Therefore, in the selection of the parameters in (31), µ2s and m2s can be respectively re-
placed by µ∗2s and m∗2s, and η can be chosen to satisfy η ≤ η∗. In the scenario of Garg
and Khandekar (2009) where δ∗ = 1/3, with w = 0.5 we could choose the parameters as
β = 1/4, γ = 2/3, σ = 2/7 and η = 1/64. This set of choices would ensure NHTP converges
quadratically under the RIP condition δ2s ≤ δ∗ = 1/3.

Remark 8. (On Newton’s direction) That the Newton direction is always accepted at each
iteration is because the inequality (20) is always satisfied with the parameter selection in
(31) (its proof can be patterned after that for Thm. 9(iii)). Therefore, the Newton direction
dkN at each iteration takes the form:(

dkN

)
Tk

=
(
A>TkATk

)−1(
A>TkAT c

k
xkT c

k
−A>Tk(Axk − b)

)
=

(
A>TkATk

)−1(
A>TkAT c

k
xkT c

k
−A>Tk(ATkx

k
Tk

+AT c
k
xkT c

k
− b)

)
= −xkTk +

(
A>TkATk

)−1
A>Tkb.

Since the unit line search steplength αk = 1 is always accepted for all k sufficiently large
(say, k ≥ k0), we have

xk+1 = xk(αk) = xk(1) =

[
xkTk + (dkN)Tk

0

]
=

[(
A>TkATk

)−1
A>Tkb

0

]

Equivalently,
xk+1 = arg min {‖b−Az‖ : supp(z) ⊆ Tk} .

Consequently, NHTP eventually (when k ≥ k0) becomes HTPη of Foucart (2011):

HTPη :

{
Tk =

{
the best s support of (xk − η∇f(xk)

}
, (i.e., Tk ∈ T (xk; η))

xk+1 = arg min {‖b−Az‖ : supp(z) ⊆ Tk} .

(Foucart, 2011, Prop. 3.2) states that HTPη will converge provided that η‖A‖2 < 1, which
is ensured when η < 1/M2s. Our choice η ≤ w/(8µ2

2s) apparently satisfies this condition.
Hence, NHTP eventually enjoys all the good properties stated for HTPη under the same
conditions assumed in Foucart (2011) as long as the η (note: µ is used in Foucart (2011)
instead of η) used there does not clash with our choice.

Since the Newton direction is always accepted as the search direction every iteration,
one may wonder why we did not just use the unit steplength αk = 1. We note that NHTP

does not just seek for the next iterate satisfying f(xk+1) ≤ f(xk), it also requires it to
deduce a sufficient decrease by the quantity αkσ〈∇f(xk), dk〉, which is proportional to
the steplength αk. Newton’s direction dkN with the unit steplength may not provide this
proportional decrease and hence the unit steplength cannot be accepted in this case (but
the unit steplength will be eventually accepted). In contrast, the HTP family algorithms of
Foucart (2011) only require a decrease f(xk+1) ≤ f(xk). It is interesting to note that, in
optimization, one of the guidelines in designing a descent algorithm is to ensure it deduces
a sufficient decrease every iteration (see Nocedal and Wright (1999)) in order to achieve

17

desirable convergence properties.

Remark 9. (On the gradient direction) When the information on µ2s and m2s is difficult to
estimate, the choice of (31) may not be possible. On the one hand, those are the sufficient
conditions for the Newton direction to be accepted. Numerical experiments show that
Newton’s direction is often accepted with a wide range of parameter choices. On the other
hand, we have the restricted gradient direction to rescue if the Newton direction is not
deemed to be good enough in terms of the condition (20). The resulting algorithm still
enjoys the global convergence in Thm. 8 even if all search directions are of gradients. It is
interesting to note that a restricted gradient method was also proposed in Foucart (2011)
and is referred to as fast HTP. We describe this algorithm (with just one gradient iteration
each step) in terms of our technical terminologies.

FHTPη :

x̃k+1 = Ps(xk − η∇f(xk))
Tk+1 ∈ T (x̃k+1; η)

xk+1
Tk+1

=
(
x̃k+1 − tk+1∇f(x̃k+1)

)
Tk+1

and xk+1
T c
k+1

= 0,

where tk+1 can be set to 1 or chosen adaptively. Despite it being also shown to enjoy similar
convergence properties as HTPη in Foucart (2011), it does not fall within the framework (3)
and (19). A noticeable difference is that FHTPη solves two optimization problems each step:
one for x̃k+1 and the other for xk+1

Tk+1
. It would be interesting to see how the convergence

analysis conducted in this paper can be extended to FHTPη.

4. Numerical Experiments

In this part, we show experimental results of NHTP in CS (Sect. 4.1) and sparse logistic
regression (Sect. 4.2) on both synthetic and real data. A general conclusion is that NHTP is
capable of producing solutions of high quality and is very fast when benchmarked against
six leading solvers from compressed sensing and three solvers from sparse logistic regression.
All experiments were conducted by using MATLAB (R2018a) on a desktop of 8GB memory
and Inter(R) Core(TM) i5-4570 3.2Ghz CPU.

We first describe how NHTP was set up. We initialize NHTP with x0 = 0 if ∇f(0) 6= 0 and
x0 = 1 if ∇f(0) = 0. Parameters are set as σ = 10−4/2, β = 0.5. For γ, theoretically any
positive γ ≤ m2s is fine, but in practice to guarantee more steps using Newton directions,
it is supposed to be relatively small (De Luca et al., 1996; Facchinei and Kanzow, 1997).
Thus we choose γ = γk with updating

γk =

{
10−10, if xkT c

k
= 0,

10−4, if xkT c
k
6= 0.

For parameter η, in spite of that Theorem 9 has suggested to set 0 < η < η, it is still
difficult to fix a proper one since M2s is not easy to compute in general. Overall, we choose
to update η adaptively. Typically, we use the following rule: starting η with a fixed scalar

18

associated with the dimensions of a problem and then update it as,

η0 =
10(1 + s/n)

min{10, ln(n)}
> 1,

ηk+1 =

ηk/1.05, if mod(k, 10) = 0 and ‖Fηk(xk;Tk)‖ > k−2,
1.05ηk, if mod(k, 10) = 0 and ‖Fηk(xk;Tk)‖ ≤ k−2,
ηk, otherwise.

where mod (k, 10) = 0 means k is a multiple of 10. We terminate our method if at kth step
it meets one of the following conditions:

• Tolηk(xk; Tk) ≤ 10−6, where Tolη(x; T) is defined as (15);

• |f(xk+1)− f(xk)| < 10−6(1 + |f(xk)|).

• k reaches the maximum number (e.g., 2000) of iterations.

4.1 Compressed Sensing

Compressed sensing (CS) has seen revolutionary advances both in theory and algorithms
over the past decade. Ground-breaking papers that pioneered the advances are (Donoho,
2006; Candès et al., 2006; Candes and Tao, 2005). The model is described as in (2)

a) Testing examples. We will focus on the exact recovery b = Ax by utilizing the
sensing matrix A chosen as in (Yin et al., 2015; Zhou et al., 2016).

Example 1 (Gaussian matrix) Let A ∈ Rm×n be a random Gaussian matrix with each
column Aj , j ∈ Nn being identically and independently generated from the standard normal
distribution. We then normalize each column such that ‖Aj‖ = 1. Finally, the ‘ground
truth’ signal x∗ and the measurement b are produced by the following pseudo Matlab codes:

x∗ = zeros(n, 1), Γ = randperm(n), x∗(Γ(1 : s)) = randn(s, 1), b = Ax∗. (32)

Example 2 (Partial DCT matrix) Let A ∈ Rm×n be a random partial discrete cosine
transform (DCT) matrix generated by

Aij = cos(2π(j − 1)ψi), i = 1, . . . ,m, j = 1, . . . , n

where ψi, i = 1, . . . ,m is uniformly and independently sampled from [0, 1]. We then nor-
malize each column such that ‖Aj‖ = 1 with x∗ and b being generated the same way as in
Example 1.

b) Benchmark methods. There exists a large number of numerical methods for the
CS problem (2). It is beyond the scope of this paper to compare them all. We selected six
state-of-the-art methods. They are HTP (Foucart, 2011)1, NIHT (Blumensath and Davies,
2010)2, GP (Blumensath and Davies, 2008)2, OMP (Pati et al., 1993; Tropp and Gilbert,

1HTP is available at: https://github.com/foucart/HTP.
2NIHT, GP and OMP are available at https://www.southampton.ac.uk/engineering/about/staff

/tb1m08.page#software. We use the version sparsify 0 5 in which NIHT, GP and OMP are called
hard l0 Mterm, greed gp and greed omp.

19

2007)2, CoSaMP (Needell and Tropp, 2009)3 and SP (Dai and Milenkovic, 2009)3. For HTP,
set MaxNbIter=1000 and mu=‘NHTP’. For NIHT, the maximum iteration ‘maxIter’ is set
as 1000 and M = s. For GP and OMP, the ‘stopTol’ is set as 1000. For CoSaMP and SP, set
tol= 10−6 and maxiteration= 1000. Notice that the first three methods prefer solving
sensing matrix A with unit columns, which is the reason for us to normalize each generated
A in Example 1 and Example 2. Let x be the solution produced by a method. We say a
recovery of this method is successful if ‖x− x∗‖ < 0.01‖x∗‖.

(a) Gaussian Matrix

10 15 20 25 30 35
s

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

GP
OMP
HTP
NIHT
SP
CoSaMP
NHTP

(b) Partial DCT Matrix

10 15 20 25 30 35
s

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

GP
OMP
HTP
NIHT
SP
CoSaMP
NHTP

Figure 1: Success rates. n = 256,m = dn/4e, s ∈ {6, 8, · · · , 36}.

(a) Gaussian Matrix

0.1 0.15 0.2 0.25 0.3
m/n

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

GP
OMP
HTP
NIHT
SP
CoSaMP
NHTP

(b) Partial DCT Matrix

0.1 0.15 0.2 0.25 0.3
m/n

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

GP
OMP
HTP
NIHT
SP
CoSaMP
NHTP

Figure 2: Success rates. n = 256, s = d0.05ne,m = drne with r ∈ {0.1, 0.12, · · · , 0.3}.

3CoSaMP and SP are available at: http://media.aau.dk/null space pursuits/2011/07/a-few-corrections-to-
cosamp-and-sp-matlab.html.

20

http://media.aau.dk/null_space_pursuits/2011/07/a-few-corrections-to-cosamp-and-sp-matlab.html
http://media.aau.dk/null_space_pursuits/2011/07/a-few-corrections-to-cosamp-and-sp-matlab.html

c) Numerical comparisons. We begin with running 500 independent trials with fixed
n = 256,m = dn/4e and recording the corresponding success rates (which is defined by the
percentage of the number of successful recoveries over all trails) at sparsity levels s from
6 to 36, where dae is the smallest integer that is no less than a. From Fig. 1, one can
observe that for both Example 1 and Example 2, NHTP yielded the highest success rate
for each s. For example, when s = 22 for Gaussian matrix, our method still obtained 90%
successful recoveries while the other methods only guaranteed less than 40% successful ones.
Moreover, OMP, SP and HTP generated similar results, and GP and NIHT always came the last.
Next we run 500 independent trials with fixing n = 256, s = d0.05ne but varying m = drne
where r ∈ {0.1, 0.12, · · · , 0.3}. It is clearly to be seen that the larger m is, the easier the
problem becomes to be solved. This is illustrated by Fig. 2. Again NHTP outperformed the
others due to highest success rate for each s, and GP and NIHT still came the last.

To see the accuracy of the solutions and the speed of these seven methods, we now
run 50 trials for each kind of matrices with higher dimensions n increasing from 5000 to
25000 and keeping m = dn/4e, s = d0.01ne, d0.05ne. Specific results produced by these
seven methods are recorded in Tables 2 and 3. Our method NHTP always obtained the most
accurate recovery, with accuracy order of 10−14 or higher, followed by HTP. NIHT was stable
at achieving the solutions with accuracy of order 10−7. Moreover, GP and OMP rendered
solutions as accurate as those by NHTP when s = d0.01ne, but yielded inaccurate ones when
s = d0.05ne, which means that these two methods worked well when the solution is very
sparse. In contrast, SP and CoSaMP always generated results with worst accuracy. When
it comes to the computational speed in Table 3, NHTP is the fastest for most of the cases.
The fast convergence of NHTP becomes more superior in high dimensional data setting. For
example, when n = 25000 and s = d0.05ne, 6.58 seconds by NHTP against 36.93 seconds by
HTP, which is the fastest method among the other five methods. GP and OMP always ran the
slowest. In addition, we also compared seven algorithms on Example 1, but omitted all the
related results since they were similar to those of Example 2

Table 2: Average absolute error ‖x− x∗‖ for Example 2.

s n GP OMP HTP NIHT SP CoSaMP NHTP

d0.01ne

5000 2.78e-15 2.40e-15 2.97e-15 2.42e-7 1.12e-5 1.12e-5 4.59e-16

10000 5.21e-15 4.75e-15 5.70e-15 3.26e-7 3.59e-5 3.59e-5 1.10e-15

15000 7.05e-15 7.07e-15 7.36e-15 4.28e-7 4.25e-5 4.25e-5 1.39e-15

20000 9.49e-15 9.06e-15 9.47e-15 4.88e-7 6.56e-5 6.56e-5 1.88e-15

25000 1.15e-14 1.12e-14 1.11e-14 5.32e-7 1.78e-4 1.78e-4 2.47e-15

d0.05ne

5000 1.28e-03 1.40e-03 1.26e-14 4.80e-7 9.07e-5 9.07e-5 5.94e-15

10000 7.91e-04 3.56e-04 2.44e-14 6.86e-7 1.77e-4 1.77e-4 1.18e-14

15000 1.10e-03 6.20e-04 3.57e-14 8.54e-7 2.11e-4 2.11e-4 1.76e-14

20000 9.43e-04 3.33e-04 4.87e-14 9.80e-7 3.53e-4 3.53e-4 2.39e-14

25000 1.24e-03 5.57e-04 5.94e-14 1.01e-6 2.59e-4 2.59e-4 2.86e-14

21

Table 3: Average CPU time (in seconds) for Example 2.

s n GP OMP HTP NIHT SP CoSaMP NHTP

d0.01ne

5000 0.69 0.48 0.09 0.30 0.07 0.05 0.06

10000 4.47 3.70 0.33 1.21 0.31 0.25 0.16

15000 14.57 13.41 0.74 2.96 0.96 0.86 0.37

20000 32.70 30.46 1.34 5.53 2.30 2.00 0.65

25000 68.94 67.13 2.49 37.03 20.11 4.18 1.13

d0.05ne

5000 3.52 3.22 0.23 1.29 0.90 1.43 0.28

10000 19.84 23.55 1.52 4.63 6.02 15.56 0.79

15000 67.79 77.30 7.25 10.43 23.03 60.87 2.20

20000 151.28 177.00 18.02 18.70 58.20 148.83 3.49

25000 312.57 363.44 36.93 78.69 153.52 307.53 6.58

4.2 Sparse Logistic Regression

Sparse logistic regression (SLR) has drawn extensive attention since it was first proposed
by Tibshirani (1996). Same as (Bahmani et al., 2013), we will address the so-called `2 norm
regularized sparsity constrained logistic regression (SCLR) model, namely,

min
‖x‖0≤s

`(x) + µ‖x‖22 with `(x) :=
1

m

m∑
i=1

{
ln(1 + e〈ai,x〉)− bi〈ai,x〉

}
, (33)

where ai ∈ Rn, bi ∈ {0, 1}, i = 1, . . . ,m are respectively givenm features and responses/labels,
and µ > 0 (e.g. µ = 10−6/m). The employment of a regularization was well justified be-
cause otherwise ‘one can achieve arbitrarily small loss values by tending the parameters to
infinity along certain directions’ (see (Bahmani et al., 2013)). This is the reason why we
will only focus on (33).

d) Testing examples. We will test three types of data sets. The first two are synthetic
and the last one is from a real database. One synthetic data is adopted from (Lu and
Zhang, 2013), (Pan et al., 2017) with the features [a1 · · · am] being generated identically
and independently. The other is the same as Agarwal et al. (2010) or Bahmani et al. (2013)
who have considered independent features with each ai being generated by an autoregressive
process (Hamilton, 1994).

Example 3 (Independent Data (Lu and Zhang, 2013; Pan et al., 2017)) To gen-
erate data labels b ∈ {0, 1}m, we first randomly separate {1, . . . ,m} into two parts I and Ic

and set bi = 0 for i ∈ I and bi = 1 for i ∈ Ic. Then the feature data is produced by

ai = yivi1 + wi, i = 1, . . . ,m

with R 3 vi ∼ N (0, 1), Rn 3 wi ∼ N (0, In) and N (0, In) is the normal distribution with
zero mean and the identity covariance. Since the sparse parameter x∗ ∈ Rn is unknown,
different sparsity levels will be tested.

22

Example 4 (Correlated Data (Agarwal et al., 2010; Bahmani et al., 2013)) The
sparse parameter x∗ ∈ Rn has s nonzero entries drawn independently from the standard
Gaussian distribution. Each data sample ai = [ai1 · · · ain]>, i = 1, . . . ,m is an independent
instance of the random vector generated by an autoregressive process (see Hamilton, 1994)

ai(j+1) = θaij +
√

1− η2vij , j = 1, . . . , n− 1,

with ai1 ∼ N (0, 1), vij ∼ N (0, 1) and θ ∈ [0, 1] being the correlation parameter. The data
labels y ∈ {0, 1}m are then drawn randomly according to the Bernoulli distribution with

Pr{yi = 0|ai} =
[
1 + e〈ai,x

∗〉
]−1

, i = 1, . . . ,m.

Example 5 (Real data) This example comprises of seven real data sets for binary classi-
fication. They are colon-cancer1, arcene2, newsgroup3, news20.binary1, duke breast-

cancer1, leukemia1, rcv1.binary1, which are summarized in the following table, where the
last three data sets have testing data. Moreover, as described in the website1, for the four
data with small sample sizes: colon-cancer, arcene, duke breast-cancer and leukemia,
sample-wise normalization has been conducted so that each sample has mean zero and vari-
ance one, and then feature-wise normalization has been conducted so that each feature has
mean zero and variance one. For the rest four data with larger sample sizes, they are
feature-wisely scaled to [−1, 1]. All −1s in classes b are replaced by 0.

Data name m samples n features training size m1 testing size m2

colon-cancer 62 2000 62 0
arcene 100 10000 100 0
newsgroup 11314 777811 11314 0
news20.binary 19996 1355191 19996 0
duke breast-cancer 42 7129 38 4
leukemia 72 7129 38 34
rcv1.binary 40242 47236 20242 20000

e) Benchmark methods. Since there are numerous leading solvers that have been pro-
posed to solve SLR problems, we again only focus on those dealing with the `2 norm regu-
larized SCLR. We select three solvers: GraSP (Bahmani et al., 2013)4, NTGP (Yuan and Liu,
2014) and IIHT (Pan et al., 2017). Notice that all those methods are used to solve `2 norm
regularized SCLR model (33) with µ = 10−6/m. Except for IIHT, which only used the first
order information such as objective values or gradients, the other three methods exploit
second order information of the objective function. NTGP integrates Newton directions into
some steps, and GraSP takes advantage of the Matlab built-in function: minFunc which
calls a Quasi-Newton strategy. For GraSP, if we use its defaults parameters, it would be

1https://www.csie.ntu.edu.tw/ ∼ cjlin/libsvmtools/datasets/
2http://archive.ics.uci.edu/ml/index.php
3https://web.stanford.edu/ ∼ hastie/glmnet matlab/
4http://sbahmani.ece.gatech.edu/GraSP.html

23

less likely to meet its stopping criteria before the number of iteration reaching the maximal
one. Compared with other three methods, which all generate a sequence with decreasing
objective function values, the objective function value at each iteration by GraSP fluctuated
greatly. Therefore, we set an extra stopping criterion for GraSP: f(xk) − f(xk+1) < 10−6.
And if f(xk) < f(xk+1), then terminate it and output xk. For NTGP, to facilitate its compu-
tational speed, we set maxIter=20 for outer loops, and maxIter sub=50 and optTol sub

= 10−3 for inner loops. For IIHT, we keep its default parameters.

For both Example 3 and Example 4, we run 500 independent trials if n < 103 and 50
independent trials otherwise, and report the average logistic loss `(x) and CPU time to
demonstrate the performance of each method.

f) Numerical comparisons. For Example 3, we begin with testing each method for
the case n = 256 and m = dn/5e with varying sparsity levels s from 10 to 30. From Fig. 3(a),
one can observe that IIHT rendered the best `(x) when s = 10 and NHTP performed the best
`(x) when s > 10. And importantly, the value `(x) produced by NHTP for each instance is
far smaller than others, with order about 10−6. We then test the case n = 256, s = d0.05ne
and m = drne with varying r ∈ {0.05, 0.1, · · · , 0.7}. From Fig. 3(b), `(x) generated by NHTP

is the lowest when the sample size was relatively small, and it gradually approached to the
values similar to those obtained by the others. IIHT performed the best in terms of `(x)
when m/n > 0.2 and GraSP always rendered the highest loss.

(a)

10 15 20 25 30
s

10-6

10-4

10-2

NTGP
IIHT
GraSP
NHTP

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

m/n

10-6

10-4

10-2

NTGP
IIHT
GraSP
NHTP

Figure 3: Average logistic loss `(x) of four methods for Example 3.

When the size of example is becoming relatively large, the picture is significant different.
Hence we now run 50 independent trials with higher dimensions n increasing from 10000
to 40000 and keeping m = dn/5e, s = d0.01ne, d0.05ne. As presented in Table 4, when
s = d0.01ne, IIHT produced the lowest `(x), followed by NHTP which was the fastest. But
when s = d0.05ne, NHTP outperformed others in terms of `(x) with order of 10−7 which was
much better than others. The time used by NHTP is also significantly less than the others,
for example, 25.41s by NHTP vs. 619.5s by GraSP when n = 40000.

24

Table 4: Average logistic loss `(x) and CPU time (in seconds) for Example 3.

s n
`(x) CPU Time

NTGP IIHT GraSP NHTP NTGP IIHT GraSP NHTP

d0.01ne

10000 2.39e-1 1.43e-1 2.44e-1 2.26e-1 8.403 1.723 0.488 0.313

15000 2.48e-1 1.37e-1 2.39e-1 2.28e-1 17.81 3.307 0.974 0.457

20000 2.35e-1 1.36e-1 2.36e-1 2.20e-1 32.61 6.245 1.862 0.842

25000 2.25e-1 1.29e-1 2.30e-1 2.11e-1 52.99 8.913 3.006 1.372

30000 2.24e-1 1.24e-1 2.30e-1 2.07e-1 76.31 14.15 4.309 2.140

35000 2.21e-1 1.23e-1 2.29e-1 2.08e-1 149.7 21.84 16.08 2.875

40000 2.18e-1 1.21e-1 2.32e-1 2.05e-1 466.1 29.12 804.2 3.923

d0.05ne

10000 4.58e-2 4.76e-4 4.97e-3 6.50e-7 9.931 3.094 1.795 0.987

15000 4.05e-2 4.69e-4 7.77e-3 3.32e-7 26.34 6.218 4.069 2.442

20000 4.10e-2 4.80e-4 8.24e-3 6.32e-7 51.29 10.69 5.695 4.315

25000 4.56e-2 4.90e-4 6.06e-3 4.77e-7 54.96 15.93 8.964 7.004

30000 4.17e-2 4.92e-4 6.49e-3 6.89e-7 85.22 23.54 11.79 11.15

35000 3.95e-2 4.89e-4 6.46e-3 6.65e-7 182.1 35.97 24.34 17.25

40000 3.84e-2 4.92e-4 7.54e-3 5.81e-7 551.1 55.00 619.5 25.41

For Example 4, it is related to the parameter θ. We only report the results for θ = 1/2
since the comparisons of all methods are similar for each fixed θ ∈ (0, 1). Again we first
fix n = 256,m = dn/5e and vary sparsity levels s from 10 to 30. As shown in Fig. 4 (a),
NHTP yielded the smallest logistic loss when s > 12, followed by IIHT. We then fix n =
256, s = d0.05ne and change the sample size m = drne, where r ∈ {0.05, 0.1, 0.15, · · · , 0.7}.
From Fig. 4(b), NHTP outperformed others when the sample size was relatively small such
as m/n < 0.2, while IIHT performed best in terms of `(x) when m/n ≥ 0.2.

(a)

10 15 20 25 30
s

10-6

10-4

10-2

NTGP
IIHT
GraSP
NHTP

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

m/n

10-6

10-4

10-2

NTGP
IIHT
GraSP
NHTP

Figure 4: Average logistic loss `(x) of four methods for Example 4.

25

When the size of the example is becoming relatively large, the picture again is significant
different. We run 50 independent trials with higher dimensions n increasing from 10000
to 40000 and keeping m = dn/5e, s = d0.01ne, d0.05ne. As presented in Table 5, when
s = d0.01ne IIHT indeed provided the best logistic loss and comparable to ours. However,
NHTP was significantly faster than IIHT. Clearly, under the case of s = d0.05ne, NHTP offered
the far lowest `(x) with order of 10−6 and CPU time with 22.46 seconds against 721 seconds
from GraSP when n = 40000.

Table 5: Average logistic loss `(x) and CPU time (in seconds) for Example 4.

s n
`(x) CPU Time

NTGP IIHT GraSP NHTP NTGP IIHT GraSP NHTP

d0.01ne

10000 1.87e-1 5.68e-2 1.93e-1 1.51e-1 8.338 4.394 0.471 0.245

15000 1.81e-1 4.07e-2 1.73e-1 1.25e-1 19.72 7.156 1.403 0.702

20000 1.61e-1 3.39e-2 1.64e-1 9.94e-2 36.68 10.74 2.370 1.194

25000 1.62e-1 2.62e-2 1.61e-1 9.84e-2 54.37 16.51 3.800 1.922

30000 1.63e-1 2.75e-2 1.63e-1 9.59e-2 124.4 40.11 18.83 6.067

35000 1.58e-1 2.09e-2 1.52e-1 8.73e-2 179.1 44.47 199.2 8.257

40000 1.59e-1 2.14e-2 1.57e-1 8.87e-2 423.4 46.13 639.4 19.47

d0.05ne

10000 7.59e-2 6.02e-4 2.18e-2 1.54e-6 9.101 3.426 1.875 0.880

15000 7.95e-2 6.15e-4 2.02e-2 1.67e-6 20.40 7.426 4.316 2.140

20000 7.84e-2 5.93e-4 2.34e-2 1.55e-6 34.91 12.51 6.394 4.015

25000 7.96e-2 5.97e-4 2.44e-2 1.65e-6 54.41 19.03 8.921 6.590

30000 7.76e-2 6.00e-4 2.04e-2 1.58e-6 107.2 29.95 16.57 10.09

35000 7.74e-2 6.01e-4 2.18e-2 1.61e-6 137.3 45.71 26.05 16.10

40000 7.89e-2 5.90e-4 2.41e-2 1.58e-6 305.8 70.83 721.0 22.46

Now we compare these four methods on solving real data in Example 5. For each
method, we demonstrate its performance on instances with varying s. We first illustrate the
performance of each method on solving those data without testing data sets. As presented
in Fig. 5, we have the following observations:

• For colon-cancer, NHTP obtained the smallest `(x) followed by IIHT. While GraSP

ran the fastest and NTGP performed the slowest.

• For arcene, IIHT and NHTP generated best `(x) when s < 80 and s ≥ 80 respectively.
And the latter consumed the smallest CPU time.

• For newsgroup, NHTP outperformed others in terms of the smallest `(x) and CPU
time. NTGP rendered the worst logistic loss and IIHT ran the slowest.

• For news20.binary, GraSP performed unstably, yet achieving best `(x) for some cases
such as s ≤ 1300. NTGP still produced the highest logistic loss. As for computational
speed, NHTP was the fastest and IIHT was the slowest.

26

(a) `(x)

10 20 30 40 50 60

s

10-6

10-4

10-2

co
lo

n-
ca

nc
er

NTGP
IIHT
GraSP
NHTP

(b) CPU time

10 20 30 40 50 60

s

0

0.04

0.08

0.12

(c) `(x)

20 40 60 80 100

s

10-4

10-2

100

ar
ce

ne

NTGP
IIHT
GraSP
NHTP

(d) CPU time

20 40 60 80 100

s

0

0.2

0.6

1

1.4

(e) `(x)

1000 1200 1400 1600 1800 2000
s

0

0.1

0.2

0.3

ne
w

sg
ro

up

NTGP
IIHT
GraSP
NHTP

(f) CPU time

1000 1200 1400 1600 1800 2000

s

0

10

20

30

40

50

60

(g) `(x)

1000 1200 1400 1600 1800 2000

s

0

0.05

0.1

0.15

0.2

0.25

ne
w

s2
0.

bi
na

ry

NTGP
IIHT
GraSP
NHTP

(h) CPU time

1000 1200 1400 1600 1800 2000

s

101

102

Figure 5: Logistic loss `(x) and CPU time of four methods for Example 5.

27

(a) Training `(x)

5 10 15 20 25

s

10-6

10-4

10-2

du
ke

NTGP
IIHT
GraSP
NHTP

(b) Testing `(x)

5 10 15 20 25

s

100

101

(c) CPU time

5 10 15 20 25

s

10-1

(d) Training `(x)

5 10 15 20 25

s

10-6

10-4

10-2

le
uk

em
ia

NTGP
IIHT
GraSP
NHTP

(e) Testing `(x)

5 10 15 20 25

s

100

(f) CPU time

5 10 15 20 25

s

10-1

(g) Training `(x)

300 500 700 900

s

0

0.1

0.2

rc
v1

.b
in

ar
y

NTGP
IIHT
GraSP
NHTP

(h) Testing `(x)

300 500 700 900

s

0.1

0.2

0.3

(i) CPU time

300 500 700 900

s

100

101

Figure 6: Logistic loss `(x) and CPU time of four methods for Example 5.

Next we illustrate the performance of each method on solving those data with testing
data sets. As shown in Fig. 6, some comments are able to be made as follows:

• For duke breast-cancer, along with increasing s, `(x) on training data obtained by
NHTP dropped significantly, with order 10−6. By contrast, NTGP stabilized at above
10−2. When it comes to the testing data, apparently NTGP yielded the best `(x),
followed by IIHT. It seems that the higher `(x) on training data was solved by a
method, the lower `(x) on testing data would be provided. For CPU time, GraSP

behaved the fastest, followed by NHTP, IIHT and NTGP.

• For leukemia, the performance of each method was similar to that on duke breast-

cancer data. A slightly difference was that NTGP no more offered the best `(x) on
testing data as IIHT generated the best ones for some s.

28

• For rcv1.binary, GraSP performed the best `(x) on training data, followed by our
method. Again NTGP came the last. It is obvious that IIHT got the smallest `(x) on
testing data when s ≥ 400, while GraSP produced the best ones otherwise. For CPU
time, NHTP and NTGP was the most efficient when s ≥ 600 and s > 600 respectively.

5. Conclusion

There exists numerous papers that use a restricted Newton step to accelerate methods
belonging to hard-thresholding pursuits. This results in the method of Newton hard-
thresholding pursuit. On the one hand, existing empirical experience shows significance
acceleration when Newton’s step is employed . On the other hand, existing theory for such
methods does not offer any better statistical guarantee than the simple hard thresholding
counterparts. The discrepancy between the superior empirical performance and the no-
better theoretical guarantee has been well documented in the case of CS problem (2) and
it invites further theory for justification.

In this paper, we develop a new NHTP, which makes use of the strategy “approximation
and restriction” to obtain the truncated approximation within a subspace. This is in con-
trast to the popular strategy “restriction and approximation”. We note that both strategies
lead to the same Newton step in the case of CS. We further cast the resulting Newton step
as a Newton iteration for a nonlinear equation. This new interpretation of the Newton
step provides a new route for establishing its quadratic convergence. Finally, we used the
Armijo line search to globalize the method. Extensive numerical experiments confirm the
efficiency of the proposed method. The global and quadratic convergence theory for NHTP

offers a theoretical justification why such methods are more efficient than their simple hard
thresholding counterparts.

We expect that our algorithmic framework will make it possible to study quadratic
convergence of existing NHTP based on the strategy of “restriction and approximation”. A
plausible approach would be to regard such method as an inexact version of our NHTP.
Technically, it would involve quantifying/controlling the inexactness so as to ensure the
quadratic convergence to hold. We leave the investigation in future work.

Appendix A. Identities and Inequalities for Proofs

Due to the restricted fashion of NHTP, we need to keep tracking the indices belonging to the
subspace x|Tk = 0 and also those fall out of this subspace. To simplify our proofs, we will
use a few more abbreviations and derive some identities and inequalities associated with
the Newton direction dkN . The sequence {xk} used is generated by NHTP.

(a) Simplification of Newton’s equation (18). We first define

Jk := Tk−1 \ Tk, Hk := ∇2
Tk
f(xk), Gk := ∇2

Tk,Jk
f(xk). (34)

We also have the following easy observation:

supp(xk) ⊆ Tk−1, |Tk| = |Tk−1| = s, and |Tk \ Tk−1| = |Tk−1 \ Tk| = |Jk|. (35)

29

It is important to note that xkT c
k

is also s-sparse. This is because for any i 6∈ Tk−1, xki = 0

(because supp(xk) ⊆ Tk−1),

xkT c
k

=

[
xkT c

k∩Tk−1

0

]
=

[
xkTk−1\Tk

0

]
=

[
xkJk
0

]
, (36)

and |Jk| ≤ |Tk−1 \Tk| ≤ |Tk−1| = s. We emphasize that Jk captures all nonzero elements in
xkT c

k
. Therefore, we will see more Jk instead of T ck being used in our derivation below. This

observation leads to the simplified Newton equation of (18):
Hk(d

k
N)Tk = Gkx

k
Jk
−∇Tkf(xk)

(dkN)T c
k

= −xkT c
k

= −

[
xkJk
0

]
.

(37)

An important feature to note is that the vectors (dkN)Tk , (dkN)T c
k
, xkJk are all s-sparse.

Putting together, at each iteration, we only involve vectors that do not exceed 2s-sparsity.
This is the reason why our assumptions are always on 2s-restricted properties of f .

(b) An identity on the Newton direction. This involves a string of equalities as follows.
We write dk for dkN because there is no danger to cause any confusion.

〈dkTk∪Jk ,∇
2
Tk∪Jkf(xk)dkTk∪Jk〉 (note Tk ∩ Jk = ∅)

= (dkTk∪Jk)>

[
Hk, Gk

G>k , ∇2
Jk
f(xk)

]
dkTk∪Jk

= (dkTk∪Jk)>

[
Hkd

k
Tk

+Gkd
k
Jk(

G>k , ∇2
Jk
f(xk)

)
dkTk∪Jk

]

(37)
= (dkTk∪Jk)>

[−∇Tkf(xk)(
G>k , ∇2

Jk
f(xk)

)
dkTk∪Jk

]
= −〈∇Tkf(xk),dkTk〉+ 〈GkdkJk ,d

k
Tk
〉+ 〈dkJk ,∇

2
Jk
f(xk)dkJk〉

(37)
= −〈∇Tkf(xk),dkTk〉 − 〈Hkd

k
Tk

+∇Tkf(xk),dkTk〉+ 〈dkJk ,∇
2
Jk
f(xk)dkJk〉

= −2〈∇Tkf(xk),dkTk〉 − 〈Hkd
k
Tk
,dkTk〉+ 〈dkJk ,∇

2
Jk
f(xk)dkJk〉.

This leads to our identity:

2〈∇Tkf(xk), dkTk〉 = −〈dkTk∪Jk ,∇
2
Tk∪Jkf(xk)dkTk∪Jk〉

−〈Hkd
k
Tk
, dkTk〉+ 〈dkJk , ∇

2
Jk
f(xk)dkJk〉. (38)

(c) An inequality on the gradient sequence. The role of Tk is like a working active
set that is designed to identify the true support of an optimal solution. Its complementary

30

set T ck is handled in such a way to make sure the next iterate xk+1 has zeros on T ck . To
achieve this, in both the Newton direction dkN and the gradient direction dkg we set(

dkN

)
T c
k

=
(
dkg

)
T c
k

= −xkT c
k
.

Let dk be either dkN or dkg . It follows from (36) that

‖xkT c
k
‖ = ‖xkJk‖ = ‖dkJk‖ = ‖dkT c

k
‖, ‖dk‖ = ‖dkTk∪Jk‖

〈∇T c
k
f(xk), xkT c

k
〉 = 〈∇Jkf(xk), xkJk〉

(39)

By the definition of Tk and the fact, xki = 0 for i ∈ Tk \ Tk−1, we have

|η∇if(xk)|2 = |xki − η∇if(xk)|2 ≥ |xkj − η∇jf(xk)|2, ∀ i ∈ Tk \ Tk−1, j ∈ Jk.

The above inequality and the fact |Tk \ Tk−1| = |Jk| in (35) imply

η2‖∇Tk\Tk−1
f(xk)‖2 =

∑
i∈Tk\Tk−1

|η∇if(xk)|2 ≥
∑
j∈Jk

|xkj − η∇if(xk)|2

≥ ‖xkJk − η∇Jkf(xk)‖2 = ‖xkJk‖
2 − 2η〈xkJk , ∇Jkf(xk)〉+ η2‖∇Jkf(xk)‖2

(39)
= ‖xkT c

k
‖2 − 2η〈xkJk , ∇Jkf(xk)〉+ η2‖∇Jkf(xk)‖2,

which together with

‖∇Tkf(xk)‖2 = ‖∇Tk∩Tk−1
f(xk)‖2 + ‖∇Tk\Tk−1

f(xk)‖2

‖∇Tk−1
f(xk)‖2 = ‖∇Tk∩Tk−1

f(xk)‖2 + ‖∇Jkf(xk)‖2

results in the following inequality on the gradient ∇f(xk)

η‖∇Tkf(xk)‖2 − η‖∇Tk−1
f(xk)‖2 − ‖xkT c

k
‖2/η ≥ −2〈xkJk , ∇Jkf(xk)〉. (40)

Appendix B. Proof of Lemma 3

Proof The proof for the “only if” part is straightforward. Suppose x satisfies (10). We
have x = Ps(x−η∇f(x)). By the definition of Ps(·) and T ∈ T (x, η), we have xT c = 0 and

xT =
(
Ps(x− η∇f(x))

)
T

= (x− η∇f(x))T = xT − η∇T f(x),

which implies ∇T f(x) = 0.
We now prove the “if” part. Suppose we have Fη(x;T) = 0 for all T ∈ T (x; η), namely,

∇T f(x) = 0, xT c = 0. (41)

We consider two cases. Case I: T (x; η) is a singleton. By letting T be the only entry of
T (x; η), then

x− Ps(x− η∇f(x)) =

[
xT
xT c

]
−
[

xT − η∇T f(x)
0

]
(41)
=

[
xT − xT

0− 0

]
= 0,

31

which means x satisfies the fixed point equation (10).
Case II: T (x; η) has multiple elements. Then by the definition (12) of T (x; η) we have

two claims:

(x− η∇f(x))(s) = (x− η∇f(x))(s+1) > 0 or (x− η∇f(x))(s) = 0.

Now we exclude the first claim. Without loss of any generality, we assume

|x1 − η∇1f(x)| ≥ · · · ≥ |xs − η∇sf(x)| = |xs+1 − η∇s+1f(x)| = (x− η∇f(x))(s).

Let T1 = {1, 2, · · · , s} and T2 = {1, 2, · · · , s − 1, s + 1}. Then Fη(x;T1) = Fη(x;T2) = 0
imply that ∇T1f(x) = ∇T2f(x) = 0 and xT c

1
= xT c

2
= 0, which lead to

|x1| = |x1 − η∇1f(x)| ≥ · · · ≥ |xs| = |xs − η∇sf(x)| =
|xs+1| = |xs+1 − η∇s+1f(x)| = (x− η∇f(x))(s) > 0.

This is contradicted with xT c
1

= 0 because of (s + 1) ∈ T c1 . Therefore, we have (x −
η∇f(x))(s) = 0. This together with the definition (12) of T (x; η) yields 0 = (x−η∇f(x))(s) ≥
|xi−η∇if(x)| = |η∇if(x)| for any i ∈ T c, which combining∇T f(x) = 0 renders∇f(x) = 0.
Hence x(s) = (x − η∇f(x))(s) = 0, yielding ‖x‖0 < s. Consequently, x = x − η∇f(x) (be-
cause ∇f(x) = 0 and x = Ps(x) = Ps(x − η∇f(x)) (because ‖x‖0 < s). That is x also
satisfies the fixed point equation (10).

Appendix C. Proof of Lemma 4

Proof For simplicity, we write dk := dkN . Since f(x) is m2s-restricted strongly convex and
M2s-restricted strongly smooth. For any ‖x‖0 ≤ s , it follows from Definition 1 that

m2sI2s � ∇2
T f(x) �M2sI2s for any |T | ≤ 2s. (42)

Clearly, |Tk ∪ Jk| ≤ 2s due to |Tk| ≤ s and |Jk| ≤ s. This together with (38) implies

2
〈
∇Tkf(xk),dkTk

〉
= −

〈
dkTk∪Jk ,∇

2
Tk∪Jkf(xk)dkTk∪Jk

〉
−
〈
Hkd

k
Tk
,dkTk

〉
+
〈
dkJk ,∇

2
Jk
f(xk)dkJk

〉
≤ −m2s

[
‖dkTk∪Jk‖

2 + ‖dkTk‖
2
]

+M2s‖xkT c
k
‖2

= −m2s

[
‖dkTk∪Jk‖

2 + ‖dkTk‖
2 + ‖dkJk‖

2 − ‖dkJk‖
2
]

+M2s‖xkT c
k
‖2

(39)
= −2m2s‖dk‖2 +m2s‖xkT c

k
‖2 +M2s‖xkT c

k
‖2

≤ −2m2s‖dk‖2 + 2M2s‖xkT c
k
‖2

≤ −2γ‖dk‖2 + ‖xkT c
k
‖2/(2η), (43)

where the last inequality is owing to that γ ≤ m2s and η ≤ 1/(4M2s).

32

Appendix D. Proof of Lemma 5

Proof It follows from the fact η < η that

η < η ≤ min

{
γ(αβ)

M2
2s

, αβ

}
< min

{
γ

M2
2s

, 1

}
,

where the last strict inequality used α ≤ 1 and β < 1. Therefore, ρ is well defined and
ρ > 0. Since supp(xk) ⊆ Tk−1, the relationships in (35)-(40) all hold. We now prove the
claim by two cases.

Case 1: If dk = dkN , then it follows from (22) that

2〈∇Tkf(xk),dkTk〉 ≤ −2γ‖dk‖2 + ‖xkT c
k
‖2/(2η). (44)

In addition,

‖∇Tkf(xk)‖2 (37)
= ‖Hkd

k
Tk
−GkxkJk‖

2 (37)
= ‖[Hk, Gk]d

k
Tk∪Jk‖

2 (45)

≤ M2
2s‖dkTk∪Jk‖

2 (39)
= M2

2s‖dk‖2, (46)

where the inequality holds because ‖[Hk, Gk]‖2 ≤ ‖∇2
Tk∪Jkf(xk)‖2 due to f being M2s-

restricted strongly smooth and |Tk ∪ Jk| ≤ 2s. This together with (40) derives

−2〈xkJk ,∇Jkf(xk)〉 ≤ ηM2
2s‖dk‖2 − ‖xkT c

k
‖2/η − η‖∇Tk−1

f(xk)‖2. (47)

Direct calculation yields the following chain of inequalities,

2〈∇f(xk),dk〉 = 2〈∇Tkf(xk),dkTk〉 − 2〈∇T c
k
f(xk),xkT c

k
〉

(39)
= 2〈∇Tkf(xk),dkTk〉 − 2〈∇Jkf(xk),xkJk〉

(44,47)

≤ −
[
2γ − ηM2

2s

]
‖dk‖2 − ‖xkT c

k
‖2/(2η)− η‖∇Tk−1

f(xk)‖2

≤ −2ρ‖dk‖2 − η‖∇Tk−1
f(xk)‖2

Case 2: If dk = dkg , then it follows from (21) (namely, dkTk = −∇Tkf(xk)) that

2〈∇f(xk),dk〉 = 2〈∇Tkf(xk),dkTk〉 − 2〈∇T c
k
f(xk),xkT c

k
〉

(39,40)

≤ −2‖dkTk‖
2 + η‖∇Tkf(xk)‖2 − ‖xkT c

k
‖2/η − η‖∇Tk−1

f(xk)‖2

= −(2− η)‖dkTk‖
2 − ‖dkT c

k
‖2/η − η‖∇Tk−1

f(xk)‖2

≤ −(2− η)(‖dkTk‖
2 + ‖dkT c

k
‖2)− η‖∇Tk−1

f(xk)‖2

≤ −2ρ‖dk‖2 − η‖∇Tk−1
f(xk)‖2,

where the second inequality used the fact η(2− η) ≤ 1. This finishes the proof.

33

Appendix E. Proof of Lemma 6

Proof If 0 < α ≤ α and 0 < γ ≤ min{1, 2M2s}, we have

α ≤ 1− 2σ

M2s/γ − σ
≤ 1− 2σ

M2s − σ
.

Since f is M2s-restricted strongly smooth, we have

2f(xk(α))− 2f(xk)
(8)

≤ 2〈∇f(xk),xk(α)− xk〉+M2s‖xk(α)− xk‖2

= 2〈∇f(xk),xk(α)− xk〉+M2s‖xk(α)− xk‖2

− 2ασ〈∇f(xk),dk〉+ 2ασ〈∇f(xk),dk〉
(26)
= α(1− σ)2〈∇Tkf(xk),dkTk〉 − (1− ασ)2〈∇T c

k
f(xk),xkT c

k
〉

+ M2s

[
α2‖dkTk‖

2 + ‖xkT c
k
‖2
]

+ 2ασ〈∇f(xk),dk〉
(39)
= ∆ + 2ασ〈∇f(xk),dk〉,

where

∆ := α(1− σ)2〈∇Tkf(xk),dkTk〉 − (1− ασ)2〈∇Jkf(xk),xkJk〉+ M2s

[
α2‖dkTk‖

2 + ‖xkT c
k
‖2
]

To conclude the conclusion, we only need to show ∆ ≤ 0. We prove it by two cases.

Case 1: If dk := dkN , then combining (44) and (47) yields that

∆ ≤ α(1− σ)2〈∇Tkf(xk),dkTk〉 − (1− ασ)2〈∇Jkf(xk),xkJk〉+M2s

[
α2‖dk‖2 + ‖xkT c

k
‖2
]

≤ c1‖dk‖2 + c2‖xkT c
k
‖2 − (1− ασ)η‖∇Tk−1

f(xk)‖2,

where

c1 := −α(1− σ)2γ + (1− ασ)ηM2
2s +M2sα

2,

≤ −α(1− σ)2γ + (1− ασ)γα+M2sα
2 because of α ≤ 1, σ ≤ 1

2
, η ≤ αγ

M2
2s

= α [(M2s − σδ)α− (1− 2σ)γ] ≤ 0, because of σγ ≤M2s, α ≤
1− 2σ

M2s/γ − σ
c2 := α(1− σ)/(2η)− (1− ασ)/η +M2s

≤ (1− ασ)/(2η)− (1− ασ)/η +M2s because of α ≤ 1

≤ −(1− ασ)/(2η) +M2s ≤ 0, because of α ≤ 1, σ ≤ 1

2
, η ≤ 1

4M2s
.

Case 2: If dk := dkg , then combining (21) that dkTk = −∇Tkf(xk) and (40) suffices to

∆ ≤ c3‖dkTk‖
2 + c4‖xkT c

k
‖2 − (1− ασ)η‖∇Tk−1

f(xk)‖2,

34

where

c3 := −2α(1− σ) + (1− ασ)η +M2sα
2

≤ α [(M2s − σ)α− (1− 2σ)] because of α ≤ 1, σ ≤ 1

2
, η ≤ α

≤ 0. because of α ≤ 1− 2σ

M2s − σ
c4 := −(1− ασ)/η +M2s

≤ −1/(2η) +M2s ≤ 0, because of α ≤ 1, σ ≤ 1

2
, η ≤ 1

4M2s

which finishes proving the first claim. If η ∈ (0, η) where η is defined as (24), then for any
βα ≤ α ≤ α, we have

0 < η < min

{
αγβ

M2
2s

αβ,
1

4M2s

}
≤ min

{
αγ

M2
2s

, α,
1

4M2s

}
.

This together with (28), namely, f(xk(α))− f(xk) ≤ σα〈∇f(xk),dk〉, and the Armijo-type
step size rule means that {αk} is bounded from below by a positive constant, that is,

inf
k≥0
{αk} ≥ βα > 0. (48)

which finishes the whole proof.

Appendix F. Proof of Lemma 7

Proof Lemma 6 shows the existence of αk, then (27) in NHTP (namely, (28)) provides

f(xk+1)− f(xk) ≤ σαk〈∇f(xk),dk〉
(25)

≤ −σαk
[
ρ‖dk‖2 − (η/2)‖∇Tk−1

f(xk)‖2
]

(48)

≤ −σαβ
[
ρ‖dk‖2 − (η/2)‖∇Tk−1

f(xk)‖2
]
.

Thus f(xk+1) < f(xk) if xk+1 6= xk. Then it follows from above inequality that

σαβmax

{
ρ
∞∑
k=0

‖dk‖2, η

2

∞∑
k=0

‖∇Tk−1
f(xk)‖2

}

≤
∞∑
k=0

[
f(xk)− f(xk+1)

]
<

[
f(x0)− lim

k→+∞
f(xk)

]
< +∞,

where the last inequality is due to f being bounded from below. Hence

limk→∞‖dk‖ = limk→∞‖∇Tk−1
f(xk)‖ = 0

which suffices to limk→∞ ‖xk+1 − xk‖ = 0 because of

‖xk+1 − xk‖2 (26)
= α2

k‖dkTk‖
2 + ‖xkT c

k
‖2 ≤ ‖dkTk‖

2 + ‖dkT c
k
‖2 = ‖dk‖2

35

If dk = dkN , then it follows from (46) that ‖∇Tkf(xk)‖ ≤ M2s‖dk‖. If dk = dkg , it follows

from (21) that ‖∇Tkf(xk)‖ = ‖dkTk‖. Those suffice to limk→∞‖∇Tkf(xk)‖ = 0. Finally,
(13) allows us to derive

‖Fη(xk;Tk)‖2 = ‖∇Tkf(xk)‖2 + ‖xkT c
k
‖2 ≤ (M2

2s + 1)‖dk‖2,

which is also able to claim limk→∞‖Fη(xk;Tk)‖ = 0.

Appendix G. Proof of Theorem 8

Proof (i) We prove in Lemma 7 (iv) that

limk→∞∇Tkf(xk+1) = 0. (49)

Let {xk`} be the convergent subsequence of {xk} that converges to x∗. Since there are only
finitely many choices for Tk, (re-subsequencing if necessary) we may without loss of any
generality assume that the sequence of the index sets {{Tk`−1}} shares a same index set,
denoted as T∞. That is

Tk`−1 = Tk`+1−1 = · · · = T∞. (50)

Since xk` → x∗, supp(xk`) ⊆ Tk`−1 = T∞, we must have

T∞

{
= Γ∗ := supp(x∗), if ‖x∗‖0 = s,
⊃ Γ∗, if ‖x∗‖0 < s.

which implies

∇T∞f(x∗) = lim
k`→∞

∇Tk`−1
f(xk`)

(49)
= 0. (51)

In addition, the definition (12) of T (xk, η) means

|xki − η∇if(xk)| ≥ |xkj − η∇jf(xk)|, ∀ i ∈ Tk, ∀ j ∈ T ck (52)

Again by Lemma 7 (ii) that limk→∞ ‖xk+1 − xk‖ = 0, we obtain limk`→∞ xk`−1 = x∗ due

to limk`→∞ xk` = x∗. Now we have the following chain of inequalities for any i ∈ Tk`−1
(50)
=

T∞, j ∈ T ck`−1

(50)
= T c∞

|x∗i |
(51)
= |x∗i − η∇if(x∗)| = lim

k`→∞
|xk`−1
i − η∇if(xk`−1)|

(52)

≥ lim
k`→∞

|xk`−1
j − η∇jf(xk`−1)| = |x∗j − η∇jf(x∗)| = η|∇jf(x∗)|,

which leads to

x∗(s) = min
i∈T∞

|x∗i | ≥ η|∇jf(x∗)|, ∀ j ∈ T c∞, (53)

36

If ‖x∗‖0 = s, then T∞ = Γ∗. Consequently, x∗(s) ≥ η|∇jf(x∗)|, ∀ j ∈ Γc∗. If ‖x∗‖0 < s, then

x∗(s) = 0 and ∇f(x∗) = 0 from (53) and (51). Those together with (9) enable us to show
that x∗ is an η-stationary point.

If f(x) is convex, letting Γ∗ := supp(x∗), then

f(x) ≥ f(x∗) + 〈∇f(x∗),x− x∗〉
> f(x∗) +

∑
i∈Γ∗

∇if(x∗)(xi − x∗i) +
∑
i/∈Γ∗

∇if(x∗)(xi − x∗i)

(9)
= f(x∗) +

∑
i/∈Γ∗

∇if(x∗)xi ≥ f(x∗)−
∑
i/∈Γ∗

|∇if(x∗)||xi|

(9)

≥ f(x∗)− (x∗(s)/η)
∑
i/∈Γ∗

|xi|

= f(x∗)− (x∗(s)/η)‖xΓc
∗‖1.

(ii) The whole sequence converges because of (Lemma 4.10, Moré and Sorensen, 1983)
and limk→∞ ‖xk+1−xk‖ = 0 from Lemma 7 (ii). If x∗ = 0, then the conclusion holds clearly
due to supp(x∗) = ∅. We consider x∗ 6= 0. Since limk→∞ xk = x∗, the for sufficiently large
k we must have

‖xk − x∗‖ < min
i∈supp(x∗)

|x∗i | =: t∗.

If supp(x∗) * supp(xk), then there is an i0 ∈ supp(x∗) \ supp(xk) such that

t∗ > ‖xk − x∗‖ ≥ |xki0 − x
∗
i0 | = |x

∗
i0 | ≥ t

∗,

which is a contradiction. Therefore, supp(x∗) ⊆ supp(xk). By the updating rule (26), we
have supp(xk) ⊆ Tk−1, where |Tk−1| = s by (12). Therefore, if ‖x∗‖0 = s then supp(x∗) ≡
supp(xk) ≡ supp(xk+1) ≡ Tk. If ‖x∗‖0 < s then supp(x∗) ⊆ supp(xk), supp(x∗) ⊆
supp(xk+1) ⊆ Tk. The whole proof is finished.

Appendix H. Proof of Theorem 9

Proof (i) We have proved in Theorem 8 (i) that any limit x∗ of {xk} is an η-stationary
point. If f(x) is m2s-restricted strongly convex in a neighborhood of x∗, then we can

37

conclude that x∗ is a strictly local minimizer of (1). In fact,

f(x) ≥ f(x∗) + 〈∇f(x∗),x− x∗〉+ (m2s/2)‖x− x∗‖2

> f(x∗) +
∑

i∈supp(x∗)

∇if(x∗)(xi − x∗i) +
∑

i/∈supp(x∗)

∇if(x∗)(xi − x∗i)

(9)
= f(x∗) +

∑
i/∈supp(x∗)

∇if(x∗)xi

(9)
= f(x∗) +

{ ∑
i/∈supp(x∗)∇if(x∗)× 0, ‖x∗‖0 = s∑
i/∈supp(x∗) 0× xi, ‖x∗‖0 < s.

= f(x∗)

for any s-sparse vector x, where the first inequality is from the m2s-restricted strongly
convexity. This also shows x∗ is isolated and thus the whole sequence tends to x∗ by
Theorem 8 (ii).

(ii) The fact that f(x) is m2s-restricted strongly convex in a neighborhood of x∗ and
limk→∞ xk = x∗ implies that f(x) is also m2s-restricted strongly convex in a neighborhood
of xk for sufficiently large k. By invoking Lemma 4, we see that the Newton direction dkN
always satisfies the condition (20) and hence is accepted as the search direction when k is
sufficiently large.

(iii) By supp(x∗) ⊆ Tk for sufficiently large k from 8 (ii) and x∗ is an η-stationary point,
it follows from (9) that

x∗T c
k

= 0 and

{
∇Tkf(x∗) = ∇supp(x∗)f(x∗) = 0 if ‖x∗‖0 = s,

∇f(x∗) = 0 if ‖x∗‖0 < s.
(54)

For any 0 ≤ t ≤ 1, denote x(t) := x∗ + t(xk − x∗). Clearly, as xk, x(t) is also in the
neighbour of x∗. So f being locally restricted Hessian Lipschitz continuous at x∗ with the
Lipschitz constant Lf gives rise to

‖∇2
Tk:f(xk)−∇2

Tk:f(x(t))‖ ≤ Lf‖xk − x(t)‖ = (1− t)Lf‖xk − x∗‖. (55)

Moreover, by the Taylor expansion, we have

∇f(xk)−∇f(x∗) =

∫ 1

0
∇2f(x(t))(xk − x∗)dt. (56)

We also have the following chain of inequalities

‖xk+1 − x∗‖ =
[
‖xk+1

Tk
− x∗Tk‖

2 + ‖xk+1
T c
k
− x∗T c

k
‖2
]1/2

= ‖xk+1
Tk
− x∗Tk‖

(26)
= ‖xkTk − x∗Tk + αkd

k
Tk
‖

≤ (1− αk)‖xkTk − x∗Tk‖+ αk‖xkTk − x∗Tk + dkTk‖ (57)

(48)

≤ (1− αβ)‖xk − x∗‖+ α‖xkTk − x∗Tk + dkTk‖, (58)

38

where the second equality used the fact (26) and supp(xk+1) ⊆ Tk. Since dk = dkN , we have

‖xkTk − x∗Tk + dkTk‖ (59)

(18)
=

∥∥∥H−1
k

(
∇2
Tk,T

c
k
f(xk)xkT c

k
−∇Tkf(xk)

)
+ xkTk − x∗Tk

∥∥∥
=

∥∥∥H−1
k

(
∇2
Tk,T

c
k
f(xk)xkT c

k
−∇Tkf(xk) +∇2

Tk
f(xk)xkTk −∇

2
Tk
f(xk)x∗Tk

)∥∥∥
≤ 1

m2s

∥∥∥∇2
Tk:f(xk)xk −∇Tkf(xk)−∇2

Tk
f(xk)x∗Tk

∥∥∥
(54)
=

1

m2s

∥∥∥∇2
Tk:f(xk)xk −∇Tkf(xk)−∇2

Tk:f(xk)x∗ +∇Tkf(x∗)
∥∥∥

(56)
=

1

m2s

∥∥∥∥∇2
Tk:f(xk)(xk − x∗)−

∫ 1

0
∇2
Tk:f(x(t))(xk − x∗)dt

∥∥∥∥
=

1

m2s

∥∥∥∥∫ 1

0

[
∇2
Tk:f(xk)−∇2

Tk:f(x(t))
]

(xk − x∗)dt

∥∥∥∥
≤ 1

m2s

∫ 1

0

∥∥∥∇2
Tk:f(xk)−∇2

Tk:f(x(t))
∥∥∥ ‖xk − x∗‖dt

(55)

≤
Lf
m2s
‖xk − x∗‖2

∫ 1

0
(1− t)dt

≤ Lf/(2m2s)‖xk − x∗‖2. (60)

Now, we have obtained (fact 1) limk→∞ xk = x∗, (fact 2) 〈∇f(xk),dk〉 ≤ −ρ‖dk‖2 from
Lemma 5 and (fact 3)

lim
k→∞

‖xk + dk − x∗‖
‖xk − x∗‖

= lim
k→∞

‖xkTk + dkTk − x∗Tk‖
‖xk − x∗‖

(60)

≤ lim
k→∞

Lf‖xk − x∗‖2

2m2s‖xk − x∗‖
= 0,

where the first equality is because of dkT c
k

= −xkT c
k

and (54). These three facts are exactly the

same assumptions used in (Theorem 3.3, Facchinei, 1995), which establishes that eventually
the step size αk in the Armijo rule has to be 1, namely αk ≡ 1. Therefore, for sufficiently
large k, it follows from (57) that

‖xk+1 − x∗‖ ≤ αk‖xkTk − x∗Tk + dkTk‖+ (1− αk)‖xkTk − x∗Tk‖
= ‖xkTk − x∗Tk + dkTk‖

(60)

≤ (Lf/2m2s)‖xk − x∗‖2. (61)

That is, we have proved that the sequence has a quadratic convergence rate. Finally, for
sufficiently large k, it follows

‖Fη(xk+1;Tk+1)‖2 (13)
= ‖∇Tk+1

f(xk+1)‖2 + ‖xk+1
T c
k+1
‖2

(54)
= ‖∇Tk+1

f(xk+1)−∇Tk+1
f(x∗)‖2 + ‖xkT c

k+1
− x∗T c

k+1
‖2

(8)

≤ (M2
2s + 1)‖xk+1 − x∗‖2

(61)

≤ (M2
2s + 1)(Lf/2m2s)

2‖xk − x∗‖4. (62)

39

Since f(x) is m2s-restricted strongly convex in a neighborhood of x∗, then f(x) is also
m2s-restricted strongly convex in a neighborhood of xk due to xk being in neighborhood of
x∗ for sufficiently large k. Then

f(xk) ≥ f(x∗) + 〈∇f(x∗),xk − x∗〉+ (m2s/2)‖x− x∗‖2

f(x∗) ≥ f(xk) + 〈∇f(xk),x∗ − xk〉+ (m2s/2)‖xk − x∗‖2.

Adding them yields that 〈∇f(xk)−∇f(x∗),xk − x∗〉 ≥ m2s‖xk − x∗‖2, which implies

m2s‖xk − x∗‖2 ≤ 〈∇f(xk)−∇f(x∗),xk − x∗〉
= 〈∇Tkf(xk)−∇Tkf(x∗),xkTk − x∗Tk〉
≤ ‖∇Tkf(xk)−∇Tkf(x∗)‖‖xkTk − x∗Tk‖
= ‖∇Tkf(xk)−∇Tkf(x∗)‖‖xk − x∗‖,

where two equalities hold due to xkT c
k

= x∗T c
k

(54)
= 0. This proves

m2s‖xk − x∗‖ ≤ ‖∇Tkf(xk)−∇Tkf(x∗)‖,

which allows us to prove that

‖Fη(xk;Tk)‖2
(13)
= ‖∇Tkf(xk)‖2 + ‖xkT c

k
‖2 ≥ ‖∇Tkf(xk)‖2

(54)
= ‖∇Tkf(xk)−∇Tkf(x∗)‖2 ≥ m2

2s‖xk − x∗‖2

(62)

≥ 2m3
2s

Lf
√
M2

2s + 1
‖Fη(xk+1;Tk+1)‖.

This completes the whole proof.

References

Alekh Agarwal, Sahand Negahban, and Martin J Wainwright. Fast global convergence
rates of gradient methods for high-dimensional statistical recovery. In Advances in Neural
Information Processing Systems, pages 37–45, 2010.

Sohail Bahmani, Bhiksha Raj, and Petros T Boufounos. Greedy sparsity-constrained opti-
mization. Journal of Machine Learning Research, 14(Mar):807–841, 2013.

Sohail Bahmani, Petros T. Boufounos, and Bhiksha Raj. Learning model-based sparsity via
projected gradient descent. IEEE Transactions on Information Theory, 62(4):2092–2099,
2016.

Amir Beck and Yonina C Eldar. Sparsity constrained nonlinear optimization: Optimality
conditions and algorithms. SIAM Journal on Optimization, 23(3):1480–1509, 2013.

Amir Beck and Nadav Hallak. On the minimization over sparse symmetric sets: projections,
optimality conditions, and algorithms. Mathematics of Operations Research, 41(1):196–
223, 2015.

40

Thomas Blumensath. Accelerated iterative hard thresholding. Signal Processing, 92:752–
756, 2012.

Thomas Blumensath. Compressed sensing with nonlinear observations and related nonlinear
optimization problems. IEEE Transactions on Information Theory, 59(6):3466–3474,
2013.

Thomas Blumensath and Mike E Davies. Gradient pursuits. IEEE Transactions on Signal
Processing, 56(6):2370–2382, 2008.

Thomas Blumensath and Mike E Davies. Iterative hard thresholding for compressed sensing.
Applied and computational harmonic analysis, 27(3):265–274, 2009.

Thomas Blumensath and Mike E Davies. Normalized iterative hard thresholding: Guaran-
teed stability and performance. IEEE Journal of selected topics in signal processing, 4
(2):298–309, 2010.

Emmanuel J Candes and Terence Tao. Decoding by linear programming. IEEE transactions
on information theory, 51(12):4203–4215, 2005.

Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency information. IEEE Trans-
actions on information theory, 52(2):489–509, 2006.

Jinghui Chen and Quanquan Gu. Fast newton hard thresholding pursuit for sparsity con-
strained nonconvex optimization. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 757–766. ACM, 2017.

Wei Dai and Olgica Milenkovic. Subspace pursuit for compressive sensing signal reconstruc-
tion. IEEE transactions on Information Theory, 55(5):2230–2249, 2009.

Tecla De Luca, Francisco Facchinei, and Christian Kanzow. A semismooth equation ap-
proach to the solution of nonlinear complementarity problems. Mathematical program-
ming, 75(3):407–439, 1996.

David L Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):
1289–1306, 2006.

Michael Elad. Sparse and Redundant Representations. Springer, 2010.

Francisco Facchinei. Minimization of sc1 functions and the maratos effect. Operations
Research Letters, 17(3):131–138, 1995.

Francisco Facchinei and Christian Kanzow. A nonsmooth inexact newton method for the
solution of large-scale nonlinear complementarity problems. Mathematical Programming,
76(3):493–512, 1997.

Mário A.T. Figueiredo, Robert D. Nowak, and Stephen J. Wright. Graident projection
for psarse reconstruction: application to compressed sensing and other inverse problems.
IEEE J. Selected Topics in Signal Processing, 1:586–597, 2007.

41

Simon Foucart. Hard thresholding pursuit: an algorithm for compressive sensing. SIAM
Journal on Numerical Analysis, 49(6):2543–2563, 2011.

Rahul Garg and Rohit Khandekar. Gradient descent with sparsification: an iterative algo-
rithm for sparse recovery with restricted isometry property. In Proceedings of the 26th
Annual International Conference on Machine Learning, pages 337–344. ACM, 2009.

James Douglas Hamilton. Time series analysis, volume 2. Princeton university press Prince-
ton, NJ, 1994.

Ali Jalali, Christopher C Johnson, and Pradeep K Ravikumar. On learning discrete graphi-
cal models using greedy methods. In Advances in Neural Information Processing Systems,
pages 1935–1943, 2011.

Anastasios Kyrillidis and Volkan Cevher. Recipes on hard thresholing methods. In 2011
4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP), pages 353–356. IEEE, 2011.

Zhaosong Lu and Yong Zhang. Sparse approximation via penalty decomposition methods.
SIAM Journal on Optimization, 23(4):2448–2478, 2013.

Jorge J Moré and Danny C Sorensen. Computing a trust region step. SIAM Journal on
Scientific and Statistical Computing, 4(3):553–572, 1983.

Deanna Needell and Joel A Tropp. Cosamp: Iterative signal recovery from incomplete and
inaccurate samples. Applied and computational harmonic analysis, 26(3):301–321, 2009.

Sahand Negahban, Bin Yu, Martin J Wainwright, and Pradeep K Ravikumar. A unified
framework for high-dimensional analysis of m-estimators with decomposable regularizers.
In Advances in Neural Information Processing Systems, pages 1348–1356, 2009.

Sahand N Negahban, Pradeep Ravikumar, Martin J Wainwright, and Bin Yu. A unified
framework for high-dimensional analysis of m-estimators with decomposable regularizers.
Statistical Science, 27(4):538–557, 2012.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 1999.

Lili Pan, Shenglong Zhou, Naihua Xiu, and Hou-Duo Qi. A convergent iterative hard
thresholding for nonnegative sparsity optimization. Pacific Journal of Optimization, 13
(2):325–353, 2017.

Yagyensh Chandra Pati, Ramin Rezaiifar, and Perinkulam Sambamurthy Krishnaprasad.
Orthogonal matching pursuit: Recursive function approximation with applications to
wavelet decomposition. In Signals, Systems and Computers, 1993. 1993 Conference
Record of The Twenty-Seventh Asilomar Conference on, pages 40–44. IEEE, 1993.

Houduo Qi and Defeng Sun. A quadratically convergent newton method for computing
the nearest correlation matrix. SIAM journal on matrix analysis and applications, 28(2):
360–385, 2006.

42

Houduo Qi, Liqun Qi, and Defeng Sun. Solving karush–kuhn–tucker systems via the trust
region and the conjugate gradient methods. SIAM journal on optimization, 14(2):439–
463, 2003.

Shai Shalev-Shwartz, Nathan Seebro, and Tong Zhang. Trading accuracy for sparsity in
optimization problems with sparsity constraints. SIAM J. Optim., 20:2807–2832, 2010.

Jie Shen and Ping Li. A tight bound of hrad thresholding. Journal of Machine Learning
Research, 18:1–42, 2018.

Defeng Sun, Robert S Womersley, and Houduo Qi. A feasible semismooth asymptotically
newton method for mixed complementarity problems. Mathematical Programming, 94(1):
167–187, 2002.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

Joel A Tropp and Anna C Gilbert. Signal recovery from random measurements via orthog-
onal matching pursuit. IEEE Transactions on information theory, 53(12):4655–4666,
2007.

Penghang Yin, Yifei Lou, Qi He, and Jack Xin. Minimization of 1-2 for compressed sensing.
SIAM Journal on Scientific Computing, 37(1):A536–A563, 2015.

Xiao-Tong Yuan and Qingshan Liu. Newton greedy pursuit: A quadratic approximation
method for sparsity-constrained optimization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4122–4129, 2014.

Xiao-Tong Yuan and Qingshan Liu. Newton-type greedy selection methods for `0-
constrained minimization. IEEE transactions on pattern analysis and machine intelli-
gence, 39(12):2437–2450, 2017.

XiaoTong Yuan, Ping Li, and Tong Zhang. Gradient hard thresholding pursuit. Journal of
Machine Learning Research, 18:1–43, 2018.

Xin-Yuan Zhao, Defeng Sun, and Kim-Chuan Toh. A newton-cg augmented lagrangian
method for semidefinite programming. SIAM Journal on Optimization, 20(4):1737–1765,
2010.

Yunbinl Zhao. Sparse Optimization: Theorey and Methods. CRC Press/Taylor & Francis
Group, 2018.

Shenglong Zhou, Naihua Xiu, Yingnan Wang, Lingchen Kong, and Hou-Duo Qi. A null-
space-based weighted l 1 minimization approach to compressed sensing. Information and
Inference: A Journal of the IMA, 5(1):76–102, 2016.

43

	1 Introduction
	1.1 A selective review of past work
	1.2 Our approach and main contributions
	1.3 Organization

	2 Assumptions, Stationarity and Interpretation of Newton's Step
	2.1 Notation
	2.2 Basic assumptions and stationarity
	2.3 Nonlinear equations and new interpretation of Newton's step

	3 Newton Hard-Thresholding Pursuit and Its Convergence
	3.1 Descent properties of the restricted Newton and gradient directions
	3.2 NHTP and its convergence
	3.3 The case of CS

	4 Numerical Experiments
	4.1 Compressed Sensing
	4.2 Sparse Logistic Regression

	5 Conclusion
	A Identities and Inequalities for Proofs
	B Proof of Lemma 3
	C Proof of Lemma 4
	D Proof of Lemma 5
	E Proof of Lemma 6
	F Proof of Lemma 7
	G Proof of Theorem 8
	H Proof of Theorem 9

