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Abstract In this paper, we use multiple scale homogenisation to derive a set9

of averaged macroscale equations that describe the movement of nutrients in10

partially saturated soil that contains growing potato tubers. The soil is mod-11

elled as a poroelastic material, which is deformed by the growth of the tubers,12

where the growth of each tuber is dependent on the uptake of nutrients via a13

sink term within the soil representing root nutrient uptake. Special attention14

is paid to the reduction in void space, resulting change in local water content15

and the impact on nutrient diffusion within the soil as the tubers increase16

in size. To validate the multiple scale homogenisation procedure, we compare17

the system of homogenised equations to the original set of equations and find18

that the solutions between the two models differ by . 2%. However, we find19

that the computation time between the two sets of equations differs by sev-20

eral orders of magnitude. This is due to the combined effects of the complex21

Simon J. Duncan
School of Engineering, Faculty of Engineering and Physical Sciences, University of
Southampton, UK, SO17

Keith R. Daly
School of Engineering, Faculty of Engineering and Physical Sciences, University of
Southampton, UK, SO17

Daniel M. McKay Fletcher
School of Engineering, Faculty of Engineering and Physical Sciences, University of
Southampton, UK, SO17

Siul Ruiz
School of Engineering, Faculty of Engineering and Physical Sciences, University of
Southampton, UK, SO17

Paul Sweeney
Syngenta, Jealott’s Hill, Bracknell, UK, RG42 6EY.

Tiina Roose
School of Engineering, Faculty of Engineering and Physical Sciences, University of
Southampton, UK, SO17
E-mail: T.Roose@soton.ac.uk



2 Simon J. Duncan et al.

three-dimensional geometry and the implementation of a moving boundary22

condition to capture tuber growth.23

Keywords Homogenisation · Deforming geometry · Diffusion · Solute24

movement25

1 Introduction26

Application of solutes such as fertilisers and pesticides is important in modern27

agricultural practices [21]. However, more efficient solute application is needed28

in order to mitigate growing costs of fertilisers and environmental pollution29

i.e. fertiliser and pesticide buffering, leaching and run off [21]. Hence, under-30

standing water and solute movement in soil is vital for determining sustainable31

crop production for long-term food security [10]. To aid with this goal, mathe-32

matical modelling of soil systems has been studied increasingly in recent years33

[44], since this offers one method to investigate plant-soil interactions while34

reducing time and resources compared to standard experimental practices.35

Combining mathematical modelling with traditional experiments allows us to36

efficiently improve our understanding of plant-soil interactions [37,11]. This37

can lead to further improvement of agricultural techniques for greater crop38

yield while minimising waste of resources.39

Mathematical modelling of soil systems covers a wide range of spatial40

scales, including pore, plant and field scales [14,22]. As such, when studying41

transport of water and solutes in soil, complex geometries are often required42

to capture the intrinsic details contained in the microscopic structure of the43

scale that is considered. This typically requires vast amounts of computation44

time and resources [12]. Hence, it is often favourable to construct an aver-45

aged macroscopic geometry so that the macroscale transport properties can46

be attained directly from the microscale information [7]. One technique that is47

frequently used to obtain macroscale movement of fluids and solutes in soil or48

other porous media is multiple scale homogenization [23]. This mathematical49

technique is a method of devising a system of averaged macroscopic equations50

that are parameterised by associated cell problems, which are derived from51

the inherent microscopic structure of the domain [31].52

Multiple scale homogenisation has been successfully used in a wide range53

of porous media and soil applications including: modelling saturated fluid flow54

[24], two-phase fluid flow [13], wave propagation in poroelastic materials [40]55

and single-phase fluid flow in double porosity systems [4]. One application56

that has been increasingly studied in recent years is homogenisation of mov-57

ing interfaces for first and second order partial differential equations [8,27].58

Although there has been extensive research on the mathematical theory for59

the homogenisation of moving interfaces, few applications have been explored.60

In this study, we demonstrate the utility of homogenisation by modelling61

the growth of potato tubers in soil, in which the growth is dependent on the62

quantity of nutrients the plant is able to draw up from the soil. We model the63

soil as a poroelastic material, such that any growth from a single crop will64
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influence the water content adjacent to the plant and therefore the movement65

of nutrients in the vicinity. We use a combination of poroelastic theory and66

the diffusion equation in porous media to model the movement of nutrients in67

a deforming soil environment. We develop a series of approximate equations to68

describe nutrient movement, growth in tuber size and global nutrient uptake69

in soil.70

There has been previous research which studied the effect of diffusion with71

spatially varying objects in porous media [7], in which Rayleigh’s multipole72

method was used to determine a spatially dependent effective diffusion coeffi-73

cient based on the size of the sphere within the microscopic periodic geometry74

[33]. Here we extend this idea to model both spatially and temporally varying75

objects in poroelastic media, which are coupled to the diffusion of the species76

within the material itself.77

For simplicity we choose to model the tubers as spherical objects in soil,78

however, this can be extended to any 3D geometry, including, but not limited79

to, ovoids, capsules and cylinders. To validate the homogenisation procedure,80

we compare the solution of the homogenised equations against the full system81

for a series of case studies. This shows the homogenised equations successfully82

capture the growth of each tuber and the change in nutrient diffusion from83

the reduction of volume within the domain.84

2 Theory85

2.1 Three-Phase Poroelastic Soils86

Let Ψ̃ ⊂ R3 be an open bounded subset representing a soil system (Figure 1)87

that contains N potato tubers. We define Ψ̃ = Ψ̃Soil ∪
∑N
j=1 Ψ̃pj , where Ψ̃Soil88

is the deformable poroelastic soil domain that is composed of water, air and89

solid components, and Ψ̃pj are the j = 1, . . . , N potato tubers each with a90

boundary Γ̃j .91

To describe the deformable poroelastic soil domain Ψ̃Soil, we impose a92

system of equations that describe a three-phase poroelastic domain. To derive93

the system of equations, we use the conservation laws for mass and momentum.94

The conservation of mass equations for the three phases of air, water and soil95

solid are,96

∂t̃φa = −∇̃ · (φaṽa) , x̃ ∈ Ψ̃Soil, (1)
97

∂t̃φw = −∇̃ · (φwṽw)− λc(p̃w − pr), x̃ ∈ Ψ̃Soil, (2)
98

∂t̃φs = −∇̃ · (φsṽs) , x̃ ∈ Ψ̃Soil, (3)
99

φa + φw + φs = 1, (4)

where φa is the volumetric air content, φw is the volumetric water content, φs is100

the volumetric soil solid content, ṽa is the air velocity, ṽw is the water velocity,101

ṽs is the velocity of the soil solid component, p̃w is the soil water pore pressure.102

Water uptake in our simulations is assumed to be dominated by transport103
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Fig. 1 Schematic of a dimensional poroelastic domain, where Ψ̃ is the total domain, Ψ̃Soil is
the deformable poroelastic soil domain, Ψ̃pj are the potato tubers, Ψ̃Soilj are the poroelastic

soil subdomains adjacent to each tuber and Γ̃j are the boundaries between Ψ̃pj and Ψ̃Soil.
In addition, lx is the macroscale and ly is the microscale.

through symplastic pathways, thus passively taken up by pressure gradients104

in the root xylem [35]. The ratio between the cortex and the xylem hydraulic105

conductivities along with the root surface area density is characterized by106

λc, and the root xylem pressure is expressed as pr. Roots are assumed to be107

uniformly distributed throughout the soil domain. We note that we neglect the108

impact that tuber growth has on the root system. The expression −λc(p̃w−pr)109

represents water uptake by plant roots.110

Furthermore, Darcy’s law for the relative phase velocity of air and water111

is written as,112

φa (ṽa − ṽs) = −κa
µa
∇̃p̃a, x̃ ∈ Ψ̃Soil, (5)

113

φw (ṽw − ṽs) = −κw
µw
∇̃p̃w, x̃ ∈ Ψ̃Soil, (6)

where p̃a is the soil air pore pressure, κa and κw are the air and water per-114

meabilities respectively, and µa and µw are the viscosities of air and water115

respectively.116

The air and water pressures p̃a and p̃w, and the air and water volume117

fractions φa and φw are related via the van Genuchten saturation expression118
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[42],119

Sw =

[(
p̃a − p̃w
pc

) 1
1−m

+ 1

]−m
, (7)

where Sw = φw/(φw + φa) is the relative water saturation, pc is the charac-120

teristic suction pressure and m is the van Genuchten parameter.121

The conservation of momentum equation is [45],122

∇̃ ·G = 0, x̃ ∈ Ψ̃Soil, (8)
123

G = G

[(
∇̃ũs

)
+
(
∇̃ũs

)T
+

ν

1− 2ν
∇̃ · ũsT

]
− Swp̃wT− Sap̃aT, (9)

where G is the stress tensor, ũs is the displacement of the solid soil matrix, G124

is the shear modulus of the soil solid, ν is the Poisson ratio, Sa = φa/(φw+φa)125

is the relative air saturation and T is the identity tensor. The displacement ũs126

is related to ṽs by the relationship,127

ṽs = ∂t̃ũs. (10)

The system of equations (1)−(10) completes a full mathematical descrip-128

tion of a three-phase poroelastic soil.129

2.2 Diffusion of Nutrients in Soil130

Solutes such as nutrients typically exist in one of two states in soil, either131

sorbed to the soil solid surfaces or dissolved in the pore water [36]. We state132

that the nutrient concentration in the sorbed state follows a reversible linear133

binding reaction such that,134

∂t̃c̃s = ds, x̃ ∈ Ψ̃Soil, (11)

where c̃s is the sorbed nutrient concentration and ds is the net transfer rate to135

the sorbed phase from the pore water phase. From conservation of mass, the136

rate of change of the nutrient concentration in the pore water phase is,137

∂t̃(φw c̃) = ∇̃ ·
(
Dφw∇̃c̃

)
+ dl − gc̃, x̃ ∈ Ψ̃Soil, (12)

where c̃ is the nutrient concentration in pore water, dl is the net transfer rate138

to the pore water phase from the sorbed phase, D is the diffusion coefficient139

and g is the nutrient uptake rate from plant roots. Adding (11) and (12) yields,140

∂t̃(c̃s + φw c̃) = ∇̃ ·
(
Dφw∇̃c̃

)
+ ds + dl − gc̃, x̃ ∈ Ψ̃Soil. (13)

We assume there is a direct jump between the nutrients in the two states with141

no intermediate phase, such that ds + dl = 0. Furthermore, we define ds,142

ds = kac̃− kdc̃s = ∂t̃c̃s, (14)
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where ka is the adsorption rate of the nutrient in solution and kd is the des-143

orption rate. We assume kd is sufficiently large such that ds/kd = ∂t̃c̃s/kd � 1144

and ka ∼ kd, then,145

c̃s = bc̃, (15)

where b = ka/kd is the buffer power of the nutrient [28,6,34]. This leads to146

the governing equation for nutrient movement in terms of c̃ only, i.e.,147

(φw + b)∂t̃c̃+ c̃∂t̃φw = ∇̃ ·
(
Dφw∇̃c̃

)
− gc̃, x̃ ∈ Ψ̃Soil. (16)

2.3 Boundary Conditions148

Here we define a series of boundary conditions on the interfaces Γ̃j , i.e., be-149

tween the deformable poroelastic soil domain Ψ̃Soil and the potato tubers Ψ̃pj .150

To describe nutrient interaction on Γ̃j we impose a zero flux condition, as the151

potato tubers take up nutrients through their rooting systems and not through152

the tuber surfaces:153

n̂ ·
(
Dφw∇̃c̃

)
= 0, x̃ ∈ Γ̃j , (17)

where n̂ is the unit normal vector pointing out of the geometry. Furthermore,154

on Γ̃j we assume the soil solid is displaced normally to the direction of the155

growing tuber, hence,156

(2n̂⊗ n̂− T) · ũs = n̂ξj , x̃ ∈ Γ̃j , (18)

where ξj is the displacement of the jth tuber given by,157

ξj = r̃j − r∗, (19)

where r∗ is the initial radius of the tubers and r̃j is the radius of the jth tuber,158

which is related to the total amount of nutrients taken up by the roots. The159

growth of each tuber is expressed as,160

∂t̃Ṽj = α

∫
Ψ̃Soilj

gc̃ dΨ̃Soilj , (20)

where Ṽj is the tuber volume, α is the ratio between the rate of growth and161

uptake, and Ψ̃Soilj is the volume of soil adjacent to each potato tuber j (see162

Figure 1). Here we model the early-stage development of potato tubers (di-163

ameter 5 cm - 7 cm), hence, we approximate the tubers shape to be spherical.164

Therefore, equation (20) can be written in terms of the radius r̃j only, i.e.,165

∂t̃r̃j =
α

4πr̃2j

∫
Ψ̃Soilj

gc̃ dΨ̃Soilj . (21)
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We state the water and air components of Ψ̃Soil do not penetrate the tubers166

Ψ̃pj , thus, we require the Darcy velocities normal to the interface to be zero,167

i.e.,168

n̂ ·
(
κw
µw
∇̃p̃w

)
= 0, x̃ ∈ Γ̃j , (22)

169

n̂ ·
(
κa
µa
∇̃p̃a

)
= 0, x̃ ∈ Γ̃j . (23)

Finally, on Γ̃j we assume the the air and water velocities are equal to the170

growth of the tubers, hence,171

(2n̂⊗ n̂− T) · ṽw = n̂∂t̃r̃j , x̃ ∈ Γ̃j , (24)

172

(2n̂⊗ n̂− T) · ṽa = n̂∂t̃r̃j , x̃ ∈ Γ̃j . (25)

2.4 Non-Dimensionalisation173

To simplify the model and understand the magnitude of influence of each
parameter, we non-dimensionalise the system of equations described above.
We are interested in the macroscopic properties of the system of equations
whilst retaining the influence of the microscopic structure. Hence, we identify
there are two different length scales, the ’microscopic’ length scale ly associated
with the inner domain tuber geometry, and the macroscopic length scale lx
associated with the full domain transport of water and nutrients. Under these
scales, ly/lx = ε� 1. We choose to non-dimensionalise using the scaling,

x̃ = lxx, t̃ =
l2x
D
t, ũs = lyus, c̃ = cmaxc,

p̃i = Gpi, ṽi =
lyD

l2x
vi, r̃ = lyr, (26)

where cmax is the maximum concentration of the nutrient applied to Ψ̃Soil and174

i = {w, a}. In (26) we use the macroscopic length scale lx as the spatial scaling175

to observe that macroscale propeties, the diffusion timescale
l2x
D for the time176

scaling and the shear modulus G for the pressure scaling. Shown in Figure 2177

is the non-dimensionalised macroscopic domain Ψ and microscopic domain Ω.178

It follows that the air, water, and solid phase continuity equations become:179

∂tφa = −ε∇ · (φava) , x ∈ ΨSoil, (27)
180

∂tφw = −ε∇ · (φwvw)− λc(pw − pr), x ∈ ΨSoil, (28)
181

∂t(1− φa − φw) = −ε∇ · [(1− φa − φw)∂tus], x ∈ ΨSoil, (29)
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with the constituative poro-elastic mechanical law represented as:

∇ ·
[

(∇us) + (∇us)
T

+ ν∇ · usT−

ε−1 (SwpwT− SapaT)

]
= 0, x ∈ ΨSoil, (30)

where the force balances and relative movement of the air and water in the182

mixture domain are represented as:183

φa (va − ∂tus) = −κa∇pa, x ∈ ΨSoil. (31)

φw (vw − ∂tus) = −κw∇pw, x ∈ ΨSoil. (32)

The relationship between water and air are linked based on the Van-184

Genuchten water retention relationship:185

Sw =

{[
G(pa − pw)

] 1
1−m

+ 1

}−m
. (33)

The nutrients in the system follow the convection-diffusion equation:186

(φw + b)∂tc+ c∂tφw =∇ · (φw∇c)− gc, x ∈ ΨSoil, (34)

where we have no flux through the tuber surface:187

n̂ · (φw∇c) = 0, x ∈ Γj . (35)

The soil solid phase displacement is equal to the increase in the tuber188

radius:189

(2n̂⊗ n̂− T) · us = n̂(rj − r∗), x ∈ Γj . (36)

Neither water nor air are assumed to flow through the tuber surface:190

n̂ · (∇pw) = 0, x ∈ Γj , (37)
191

n̂ · (∇pa) = 0, x ∈ Γj . (38)

The water and air velocities normal to the tuber surface also follow the192

rate of the tuber growth:193

(2n̂⊗ n̂− T) · vw = n̂∂trj , x ∈ Γj , (39)
194

(2n̂⊗ n̂− T) · va = n̂∂trj , x ∈ Γj . (40)

Finally, the tuber growth rate is based on the rate of nutrient uptake out of195

the system:196

∂trj =
α

4πr2j

∫
ΨSoilj

c dΨSoilj . (41)

Here the system was non-dimensionalised as follows:

λc =
λcGl

2
x

D
, pr =

pr
G
, ν =

ν

1− 2ν
, κa =

κaGε
−1

Dµa
, κw =

κwGε
−1

Dµw
,

G =
G

pc
, g =

gl2x
D
, r∗ =

r∗

ly
, α =

cmaxαgl
2
x

D
. (42)
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Fig. 2 Schematic of the dimensionless macroscale domain Ψ and microscale domain Ω,
where ΨSoil is the poroelastic soil domain, ∂ΨE is the external boundary of Ψ, ΩSoil is the
poroelastic domain composed of water, air and solid components, Ωp is the potato tuber, Γ
is the boundary between ΩSoil and Ωp, ∂ΩE is the external boundary of the periodic cell
and r is the radius of Ωp .

2.5 Parameter Estimation197

Here we estimate the parameters contained in equations (27)−(41) in order198

to determine the magnitude of influence each parameter has on the system199

of equations. Since this model is motivated by the growth of potato tubers200

in soil, we assess the parameter values for silt soils as potatoes are frequently201

grown in this soil type [41].202

Potato plants are typically grown in ridge and furrow type systems and203

are contained in the plough layer of soil, which is the top 30 cm of soil [26].204

Hence, we choose the macroscopic length scale to be lx ≈ 0.3 m. Similarly, we205

assume that the tubers have an inter-tuber distance that is substantially less206

than the total length of the plough layer. We choose an inter-tuber distance207

of approximately ly ≈ 0.05 m, resulting in the ratio of the two length scales208

to be ε ≈ 0.1. We also assume an initial tuber radius of r∗ = O(0.05) m < ly.209

Values for the Poisson ratio of silt soils are approximately 0.3 . ν . 0.35210

[18], and the shear modulus is G ≈ 1 × 107 Pa [43]. Furthermore, typical211

characteristic suction pressures for silt soils are approximately pc ≈ 3×104 Pa212

[42], with soil permeabilities of κw ≈ κa ≈ 5× 10−14 m2 [42]. The viscosity of213

water is µw ≈ 10−3 Pa s and the viscosity of air is µa ≈ 10−5 Pa s.214

One of the key nutrients responsible for plant growth and development is215

nitrogen [28]. We choose to model this nutrient since plant growth is closely216

linked to abundance of nitrogen in soil. Nitrogen has a diffusion coefficient217
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in soil water of D ≈ 2.5 × 10−10 m2 s−1 [6]. Furthermore, for the potato218

plant Solanum tuberosum L, the uptake rate of the nutrient nitrogen is g ≈219

1 × 10−9 s−1 [39,5]. This was found to be in nitrogen concentrations in soil220

of cmax ≈ 10−1kg m−3 [5].221

In early-stage growth of Solanum tuberosum L plants, the tuber radius222

growth rate is approximately 1 × 10−9 m s−1 [46]. If we assume that the223

quantity of nitrogen that is taken up by the plant is proportional to the growth224

of the tuber, then we can estimate the ratio between the rate of growth and225

the uptake, i.e., α ≈ 1× 101 kg−1 m−1 [39,5].226

Using the values above, we find that the parameters κa and κw in equations227

(31) and (32) are κa = O(109) and κw = O(107). This is significantly larger228

than the other terms in the equations. Hence, we re-write equations (31) and229

(32) so that,230

∇pa ≈ 0, x ∈ ΨSoil, (43)
231

∇pw ≈ 0, x ∈ ΨSoil, (44)

which have the solutions pa = constant and pw = constant, i.e., the consol-232

idation of the soil is substantially faster than the diffusion of solutes. Since233

pw = constant, we find that the sink term in equation (2) representing root234

uptake is constant, i.e., λc(p̃w − pr) = F , where F is the water uptake rate235

by plant roots. The uptake rate of water from Solanum tuberosum, L roots is236

F ≈ 1× 10−8 s−1 [30].237

From equation (33), the solutions pa = constant and pw = constant result238

in Sw = constant, and since Sw+Sa = 1, this leads to Sa = constant. Although239

Sw is constant, φw will still change as a function of the changing domain240

geometry. Substituting 44 into 32 renders the domain water content to become241

dependent on the solid phase displacements:242

∂tus = vw, x ∈ ΨSoil. (45)

Thus, we reduce the system of equations (27)−(41) to,243

∂tφw = −ε∇ · (φw∂tus)− F , x ∈ ΨSoil, (46)
244

∇ ·
[

(∇us) + (∇us)
T

+ ν∇ · usT
]

= 0, x ∈ ΨSoil, (47)
245

(φw + b)∂tc+ c∂tφw =∇ · (φw∇c)− gc, x ∈ ΨSoil, (48)
246

(2n̂⊗ n̂− T) · us = n̂(rj − r∗), x ∈ Γj , (49)
247

n̂ · (φw∇c) = 0, x ∈ Γj , (50)
248

∂trj =
α

4πr2j

∫
ΨSoilj

c dΨSoilj , (51)

where F = Fl2x/D.249

Using the values discussed above, we find that the parameters contained250

in (46)−(51) have the approximate values,251

F = O(1), ν = O(1), g = O(1), r∗ = O(1), α = O(1). (52)

For the remainder of this study, equations (46)−(51) will be referred to as252

the ‘full set’ of equations to describe solute movement and tuber growth.253
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2.6 Homogenisation254

In this section, we use multiple scale homogenisation to develop a set of av-255

eraged macroscale equations that describe the movement of nutrients and tu-256

ber growth in soil. From equation (46) we observe that φw is affected by257

two mechanisms: firstly by soil compression due to the growth of the tuber,258

i.e., ε∇ · (φwvs), and secondly by root water uptake, i.e., F . From the non-259

dimensionalisation, we observe that the maximum displacement is bounded260

such that us � F . This leads to the results ∂tus � F . If we consider a sce-261

nario when the tubers are not taking up water, eq. 45 suggests that the primary262

change in water content is based on ε∇ ·(φw∂tus). Since ε∇ ·(φw∂tus)� ∂tus263

and ∂tus � F , then it follows that ε∇ ·(φw∂tus)� F . Therefore, we find that264

the root water uptake term dominates the change in water content. Hence, for265

the homogenisation procedure, we neglect the term regarding soil compression,266

and the system of equations we homogenise reduces to,267

∂tφw = −F , y ∈ ΩSoil, (53)
268

(φw + b)∂tc+ c∂tφw =∇ · (φw∇c)− gc, y ∈ ΩSoil, (54)
269

n̂ · (φw∇c) = 0, y ∈ Γ, (55)
270

∂tr =
α

4πr2

∫
ΩSoil

c dΩSoil. (56)

271

periodic y ∈ ∂ΩE . (57)

To validate this assumption, we compare the full set of equations (46)−(51)272

to the homogenised system of equations derived from (53)−(57) in the follow-273

ing section. We highlight that the horizontal boundaries for the full model274

preserve the periodicity presented here.275

We observe there are two different length scales present in the geometry276

Ψ̃, the macroscale lx and the mircoscale ly. Any change of O(1) on the length277

scale lx will result in a O(ε) change on the length scale ly. We can formalise278

this by assuming that the dependent variables φw, c and r are functions of279

a small scale y and a large scale x. We denote the unit cell Ω representing280

the microscale domain y ∈ Ω ≡ [−1/2, 1/2]3. Using the two length scales and281

chain rule, the gradient operator is written as,282

∇ =∇x + ε−1∇y. (58)

Furthermore, we expand φw, c and r such that,283

φw = φw0 +O(ε), (59)
284

c = c0 + εc1 + ε2c2 +O(ε3), (60)
285

r = r0 +O(ε). (61)

The first step of the homogenisation procedure is to determine the most dom-286

inant terms in the system of equations (53)−(57). To do this we substitute287
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equations (59)−(61) into (53)−(57) and collecting the largest terms O(ε−2).288

This results in the system of equations,289

∇y · (φw0
∇yc0) = 0, y ∈ ΩSoil, (62)

290

n̂ · (φw0
∇yc0) = 0, y ∈ Γ, (63)

291

periodic y ∈ ∂ΩE . (64)

Theorem Equations (62)−(64) have the solution c0 = c0(x, t), i.e., c0 has large292

scale dependence only.293

Proof We observe from (62) that,294 ∫
ΩSoil

c0∇y · (φw0∇yc0) dΩSoil = 0. (65)

Applying Green’s first identity to (65) yields,∫
∂Γ

c0n̂ · (φw0
∇yc0) dΓ +

∫
∂ΩE

c0n̂ · (φw0
∇yc0) d∂ΩE−∫

ΩSoil

∇yc0 · (φw0
∇yc0) dΩSoil = 0. (66)

Using (63) and (64), we find,295 ∫
ΩSoil

∇yc0 · (φw0
∇yc0) dΩSoil = 0. (67)

Equation (67) can be expressed as,296 ∫
ΩSoil

φw0 ||∇yc0||22 dΩSoil = 0, (68)

where ||·||2 is the Euclidean norm, i.e., ||x||2 =
√
〈x,x〉 =

√
x21 + ...+ x2n. In297

order to satisfy (68), ||∇yc0||22 = 0. By definition, ||x||2 = 0 ⇐⇒ x = 0,298

hence,299

||∇yc0||22 = 0 ⇒ ∇yc0 = 0 ⇒ c0 = C, (69)

where C is an arbitrary constant. Therefore c0 = c0(x, t). ut

From the theorem above we observe that c0 has large scale dependence300

only and is independent of the small scale y, however, we recieve no other301

information regarding the solution of c0.302

To proceed with the homogenisation methodology, we collect the next most303

dominant terms in the system of equations. This is achieved by collecting terms304

O(ε−1) and using the results ∇yc0 = 0, i.e.,305

∇y · (φw0∇yc1 + φw0∇xc0) = 0, y ∈ ΩSoil, (70)
306

n̂ · (φw0
∇yc1 + φw0

∇xc0) = 0, y ∈ Γ, (71)
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307

periodic y ∈ ∂ΩE . (72)

To ensure (70)−(72) form a well-posed problem, i.e., the equations have a
solution that agrees with the boundary conditions, we check the solvability of
the system. We can show the system is well-posed by applying the divergence
theorem to equation (70) and use the boundary condition (71) such that,∫

ΩSoil

∇y · (φw0
∇yc1 + φw0

∇xc0) dΩSoil =∫
∂ΩSoil

n̂ · (φw0∇yc1 + φw0∇xc0) d∂ΩSoil = 0. (73)

Next we choose to rescale c1 such that,308

c1(x,y) =

3∑
k=1

χk(y)∂xk
c0 + c̄1(x), (74)

where c̄1(x) is the large scale component of c1(x,y). Substituting (74) into309

(70)−(72) yields the cell problem for χk,310

∇y · (∇yχk + êk) = 0, y ∈ ΩSoil, (75)

311

n̂ · (∇yχk + êk) = 0, y ∈ Γ, (76)
312

periodic y ∈ ∂ΩE , (77)

where êk is the unit vector.313

We note that the tubers grow in the soil domain, hence, the cell problem314

solution χk is dependent on the radius of the tuber. Since the cell problem is315

a representation of the impedance of nutrient movement due to tuber obstruc-316

tion, and as the tuber grows the impact on nutrient transport will change,317

therefore we have the relationship χk = χk(r), i.e., the cell problem solution318

is dependent on the radius of the tuber.319

The last step of the homogenisation procedure is to collect terms O(ε0),320

i.e.,321

∂tφw0
= −F , y ∈ ΩSoil, (78)

(φw0
+ b)∂tc0 + c0∂tφw0

=∇y · (φw0
∇yc2 + φw0

∇xc1)+

∇x · (φw0
∇yc1 + φw0

∇xc0)− gc, y ∈ ΩSoil, (79)

322

n̂ · (φw0∇yc2 + φw0∇xc1) = 0, y ∈ Γ, (80)
323

periodic y ∈ ∂ΩE , (81)
324

∂tr0 =
α

4πr20

∫
ΩS

c0 dΩS . (82)
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To check (78)−(82) provide a well-posed problem, we check the solvability of
the system of equations. To do this, we apply the divergence theorem to (79),∫

ΩSoil

(φw0
+b)∂tc0+c0∂tφw0

dΩSoil =

∫
ΩSoil

∇y·(φw0
∇yc2+φw0

∇xc1) dΩSoil

+

∫
ΩSoil

∇x · (φw0∇yc1 + φw0∇xc0) dΩSoil −
∫

ΩSoil

gc dΩSoil, (83)

and using boundary condition (80) yields,∫
ΩSoil

(φw0+b)∂tc0+c0∂tφw0 dΩSoil =

∫
ΩSoil

∇x·(φw0∇yc1+φw0∇xc0) dΩSoil

−
∫

ΩSoil

gc dΩSoil. (84)

We define,325

||ΩSoil|| = ||ΩSoil(r)|| =
∫

ΩSoil

dΩSoil, (85)

to be the volume integral of the cell problem, which is dependent on the radius
of the tuber. It follows that (84) can be written,

||ΩSoil||
[
(φw0

+ b)∂tc0 + c0∂tφw0

]
=

∂

∂xi

∫
ΩSoil

[
φw0

(
∂c0
∂xi

+
∂χj
∂yi

∂c0
∂xj

)]
dΩSoil − ||ΩSoil||gc0, y ∈ ΩSoil. (86)

This results in the approximate equations for φw0 , c0 and r0,326

∂tφw0
= −F , y ∈ ΩSoil, (87)

||ΩSoil(r0)||
[
(φw0

+ b)∂tc0 + c0∂tφw0

]
= φw0

∇x · (De(r0)∇xc0)

− ||ΩSoil(r0)||gc0, y ∈ ΩSoil, (88)

327

∂tr0 =
α

4πr20
||ΩSoil(r0)||c0, (89)

where,328

De(r0) =

∫
ΩSoil

T +∇yχk(r0)⊗ êk dΩSoil, (90)

for k = (1, ..., 3).329

Here the averaged terms ||ΩSoil(r0)|| and De(r0) are parameterised from330

the cell problem (75)−(77). This result identifies that equations (78)−(82)331

provide a well-posed problem if and only if the system of equations (87)−(90)332

have a solution. For the remainder of this study, equations (87)−(90) will be333

referred to as the ‘homogenised set’ of equations to describe solute movement334

and tuber growth.335
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3 Validation of the Homogenisation Procedure336

We validate the mathematical steps used in the homogenisation procedure337

by comparing the homogenised set of equations (87)−(90) to the full set of338

equations (46)−(51). We consider multiple comparisons by varying parameters339

for the buffer power b, root uptake rate F and initial volumetric water content340

φw|t=0 to examine the accuracy of the averaging procedure.341

We generate two geometries, one for the full set of equations (46)−(51) con-342

taining potato tubers, and a second uniform geometry for the homogenised343

equations (87)−(90). We choose the domain length of each geometry to be344

composed of eight periodic cells. Due to the homogenisation procedure, the345

approximate equations (87)−(90) do not require any tubers as the influence346

of the microscale geometry is contained in the paramterised terms ||ΩSoil(r0)||347

and De(r0). Shown in Figure 3 are the geometries used to validate the ho-348

mogenisation procedure.349

Lastly, we numerically illustrate that the full solution tends towards the350

homogenised solution as ε→ 0. Since ε =
ly
lx

, then it suffices to show that the351

solutions become closer as lx →∞, as this implies that ε→ 0. We begin with352

by setting lx = 0.3, where the domain of the full solution can only consist353

of 3 tubers. We incrementally increase the domain size up to lx = 0.8, where354

the domain consists of 8 tubers. We take the percent difference between the355

homogenised solution for the concentration profile as:356

dp =
‖c(ε) − c(ε)0 ‖∞
‖c(ε)‖∞

× 100%, x ∈ ΩSoil, (91)

where c(ε) is the solute concentration profile in the full solution as a func-357

tion of a given epsilon, c
(ε)
0 is the solute concentration profile based on the358

homogenised solution, ‖c(ε) − c(ε)0 ‖∞is the largest difference between the two359

solutions for all time points in the whole domain for a fixed ε value, and360

‖c(ε)‖∞ is the supremum concentration value for all time in the full domain361

for the full solution for a fixed ε value.362

To solve the systems of equations, we use the finite element package COM-363

SOL Multiphysics R© 5.3 (www.comsol.com). We run our full model with a364

mesh consisting of 21729 tetrahedral elements and 1405 for the homogenised365

model. Simulations were run using the MUMPS (Multifrontal Massively Paral-366

lel Sparse) direct solver for a fully coupled physical system. In this section, we367

describe the implementation of each set of equations, and show a comparison368

between them.369

3.1 Full Equations370

Implementation of the full set of equations (46)−(51) requires the implemen-371

tation of a complex moving boundary problem. This accounts for the uptake372

of nutrients by each tuber Ψpj , the subsequent growth of Ψpj , and the reduc-373

tion in volumetric water content φw. The geometry we impose the full set of374



16 Simon J. Duncan et al.

Fig. 3 The geometries used to validate the homogenisation procedure (a): The approximate
equations (87)−(90) are solved on the left geometry, whereas the original set of equations
(46)−(51) are solved on the right geometry that contains potato tubers. (b): The cell problem
is solved on a single unit cell that contains a potato tuber (coloured in red). Comparisons be-
tween the homogenised model and the full model were done by analysing the concentrations
along the of the domain running down the vertical axes.

equations on can be seen in Figure 3a. However, we require two versions of this375

geometry; an undeformed geometry that is constant in time, and a deforming376

geometry that is dependent on tuber growth, since different components of377

the system (46)−(51) are solved on either an undeformed or deforming frame378

of reference. There are three main components that are required to be imple-379

mented in order to solve (46)−(51), these are: the poroelastic equations, the380

compaction and deformation of soil, and the nutrient movement equations.381

To implement the poroelastic equations (46)−(47) and (49) for the local382

displacement us and reduction in φw is straightforward, since these equations383

are solved on the undeformed geometry regardless of tuber size. Using this384

solution at each time step, we can prescribe a deformation (for the deforming385

geometry) within the soil domain to correspond with the increase in tuber386

size.387

The nutrient equations (48) and (50)−(51) are solved on the deforming ge-388

ometry to correspond with the growth of the tubers. However, these equations389

use the poroelastic solution from the undeformed geometry. Hence, we imple-390

ment a reference frame change such that poroelastic solution can be mapped391

from the undeformed geometry to the deformed geometry. This allows us to392
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solve the nutrient equations on the deformed geometry corresponding with the393

prescribed tuber deformation.394

Since the nutrient equations are solved on a deforming geometry, we are re-395

quired to ensure that c is conserved. This is achieved by making two alterations396

to (48) and (50). Firstly, we note Reynolds Transport Theorem,397

d

dt

∫
θ(t)

F dV =

∫
θ(t)

∂F

∂t
dV +

∫
∂θ(t)

(ω · n̂)F dA, (92)

where, dV and dA are volume and surface elements respectively, ω is the veloc-398

ity of the surface element, n̂ is the normal vector pointing out of the geometry,399

F is any function of x and t, and θ(t) is the domain. Reynolds Transport The-400

orem states that the change in nutrient concentration in a domain is equal to401

the change in concentration within the domain plus the rate at which nutrient402

is entering the domain. Applying equation (92) to the full set of equations we403

have leads to,404

d

dt

∫
ΨSoil(t)

c dΨSoil(t) =

∫
ΨSoil(t)

∂c

∂t
dΨSoil(t) +

∫
∂ΨSoil(t)

(ωmesh · n̂)c d∂ΨSoil(t),

(93)
where, ωmesh is the velocity of the boundaries Ψpj . This requires us to adapt405

equation (50) so that,406

n̂ · (φw∇c) = −(ωmesh · n̂)c, x ∈ Γj . (94)

Equation (94) then satisfies the conservation law for moving boundaries.407

Secondly, as Ψpj grows and ΨS is deformed, this causes an advective move-408

ment effect on c within ΨS . This can be interpreted as the boundaries of the409

tubers and Γj physically pushing the nutrients. Hence, we are required to add410

a conservative advection term to equation (48) accounting for the individual411

elements within the mesh moving, i.e.,412

(φw + b)∂tc+ c∂tφw =∇ · (φw∇c− ωmeshc)− gc, x ∈ ΨSoil. (95)

This modified system of equations can then be successfully implemented to413

model coupled nutrient movement and poroelastic deformation from growing414

tubers.415

3.2 Homogenised Equations416

The geometry we impose the homogenised set of equations on can be seen417

in Figure 3a. However, to solve the set of homogenised equations (87)−(90),418

we are required to solve a series of cell problems, i.e., equations (75)−(77),419

to calculate the terms ||ΩSoil(r0)|| and De(r0) that paramterise equation (88)420

and (89). Since the geometric properties of the domain Ω are contained in421

||ΩSoil(r0)|| and De(r0), we solve the cell problem for a series of different422

tuber radii to correspond with different levels of growth/displacement from the423
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Fig. 4 Validation of homogenised equations (87)−(90) against the original set of equations
(46)−(51). The plots show the nutrient profile c and c0 from the base to the top of the
domains shown in Figure 3 for a series of case studies using the parameter values b ∈ {0.5, 5},
F ∈ {0.1, 10}, φw|t=0 ∈ {0.4, 0.6}.

original tuber size. Using the results from the cell problems, we can construct424

interpolated functions to describe ||ΩSoil(r0)|| and De(r0) as functions of the425

homogenised radius r0.426

3.3 Results427

To validate the homogenisation procedure we compare the homogenised equa-428

tions (87)−(90) against the original set of equations (46)−(51). We choose429

to run a series of case studies by varying the parameters b, F and φw|t=0.430

For the buffer power b we choose the values b ∈ {0.5, 5} since this covers a431

range of buffer powers for the nutrients nitrogen, boron, magnesium, zinc and432

molybdenum [6]. From the non-dimensionalisation and parameter estimation433

we observe the value for root water uptake is F = O(1). However to test the434

homogenisation procedure, we select the values F ∈ {0.1, 10} for low and high435
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Fig. 5 Validation of homogenised equations (87)−(90) against the original set of equations
(46)−(51). The plots show the effective radius r0 against the actual radius rj of the tubers
from the base to the top of the domains shown in Figure 3 for a series of case studies using
the parameter values b ∈ {0.5, 5}, F ∈ {0.1, 10}, φw|t=0 ∈ {0.4, 0.6}.

levels of water uptake respectively. Finally, for the initial water content φw|t=0436

we assign the values φw|t=0 ∈ {0.4, 0.6} as these are approximate upper and437

lower bounds for silty soils [15].438

In each of the simulations we impose a Dirichlet condition of c = c0 = 1 on439

the top of each of the geometries shown in Figure 3a. Additionally, we choose440

the initial non-dimensionalised tuber radius to be r∗ = 0.025 and choose the441

remaining parameters to be g = α = 1. We also impose a stop condition442

on each of the simulations so that when the non-dimensionalised volume of443

a tuber has doubled in magnitude, the simulation is terminated. Finally, in444

order to construct interpolated functions to describe ||ΩSoil(r0)|| and De(r0)445

in equations (88) and (89), we solve a series of 6 cell problems with varying446

sphere radii.447

Shown in Figure 4 are the nutrient profiles for c and c0 down the length448

of the geometries shown in Figure 3a. We observe for all buffer powers, root449

uptake values and initial porosities, that the homogenised nutrient profile for450
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Fig. 6 (a): Shown are the results for the actual and effective tuber volumes for the simu-
lation using the parameters F = 0.1, b = 0.5 and φw|t=0 = 0.4 at the beginning and end of
the simulation.
(b): Illustrates the convergence of the full solution to the homogenised solution (presented
as percent difference) as ε→ 0.
(c): Shown are the results for the actual and effective solute concentration for the same
simulation as (a). Additionally the geometries capturing the tuber growth are shown.

c0 is qualitively identical to the full nutrient concentration c. We find there to451

be a maximum error of . 2% between the solutions across all scenarios.452

Additionally, shown in Figure 5 are the individual tuber radii rj for the full453

set of equations against the effect radius r0 from the homogenised equations.454

Similar to the results from Figure 4, we find that the effective radius r0 suc-455

cessfully captures the growth of each tuber within the full domain shown in456



Homogenisation of Solute Movement in Poroelastic Domains 21

Figure 3a. We find there to be a maximum error of . 2% between the actual457

and effective tuber radius.458

To highlight the accuracy of the homogenised set of equations, shown in459

Figure 6 are detailed results for the simulation using the parameters F = 0.1,460

b = 0.5 and φw|t=0 = 0.4. From Figure 6a we observe that the effective radius461

r0 is able to mimic the growth of the tubers in the full geometry. The growing462

tubers can be seen in Figure 6b, in which the tubers at the top of the full463

equation domain at the time point t = end have grown substantially larger464

than those at the base of the domain. Furthermore, we find that the solute465

concentration profiles exhibit identical trains between the full and homogenised466

domains.467

As a final confirmation of our model accuracy, we increased our mesh den-468

sity from 21729 tetrahedral elements to 49218 elements in order to insure that469

our results are sufficiently accurate. Percent difference between the refined vs470

course solutions was on the order of 0.1%. This grants us confidence that our471

mesh is sufficiently resolved given the current problem. It is worth noting that472

our current simulations do not consider any automatic mesh refinement, as473

the deformations modelled do not result in any large aspect ratios. Under fu-474

ture considerations with more general geometries or greater deformations [16].475

This would be more significant when considering large deformations, which476

are more common in soil materials [48].477

From Figures 4 and 5, we observe that the homogenised equations suc-478

cessfully capture the nutrient movement and tuber growth in soil. However,479

the computation time between the two systems of equations differs by several480

orders of magnitude. We find that the full set of equations in three dimensions481

requires ≈ 5 minutes (300 seconds) to solve one simulation for eight periodic482

cells. Conversely, solving the homogenised equations requires ≈ 10 seconds to483

solve an analogous 3D simulation. Furthermore, the homogenised set of equa-484

tions can be reduced to a 1D problem which will achieve the same results485

as the 3D problem due to the homogenisation procedure. We find that the486

computation time to solve the 1D problem is � 1 second, which is substan-487

tially faster than the full set of equations. However, a set of 3D cell problems488

is required to parameterise the homogenised set of equations for the terms489

||ΩSoil|| and De. In this case study, we chose to conduct six cell problems490

for varying sphere radii. Each of the cell problems requires ≈ 10 seconds to491

solve. However, these cell problems are only required to be solved once for492

each set of parameters. Hence, we find that the homogenised sets of equations493

can reduce the computation time substantially whilst retaining a high level of494

accuracy. Furthermore, we can highlight the influence that the tubers’ radii495

have on the effective homogenised diffusion coefficient (Figure 7). Under more496

dramatic growth scenarios where tubers increase their radii by a factor of 5,497

the effective diffusion in the system could be reduced by as much as 30%.498
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Fig. 7 Effective homogenised diffusivity coefficient as a function of potato radius.

4 Discussion499

In this study, we developed a physical model for potato tuber growth that500

couples water and nutrient uptake with mechanical growth of potatoes in soil.501

The explicit consideration of the potato growth in the soil domain creates502

a physical impedance to nutrient transport through the soil. The geometry503

and the surface sinks due to the presence of potatoes impede the effective504

transport of nutrients through the soil domain (Figure 6). If impedance to505

diffusion caused by the potato tubers was not considered, we would incur an506

error between 175 to 300% in the effective diffusion of the solute (where the507

effective diffusion is Deff = φD
φ+b in the case with no potatoes and Dh

eff =508

φ(r0)De(r0)
(φ(r0)+b)||ΩSoil(r0)||

when impedance to diffusion caused by growing tubers is509

homogenised). Furthermore, an error of up to 62.5% in effective diffusion could510

occur if the the tubers were modelled as a sphere with constant half of the511

final time dependent radius. These errors in effective diffusion would greatly512

impact the predicted solute leaching or plant solute uptake of models ignoring513

geometric impedance to diffusion.514

One primary novelty associated with our growth model largely pertains515

to the growth domain locally external to our growing tubers. Similar studies516

have invoked a fluid-solid mechanical coupling to describe biological tissue as517

a porous medium, where cells are grow in an interstitial fluid [29,32]. These518

models deal with a saturated fluid domain interacting with a solid cell that519

is able to grow based on either nutrient uptake [29] or a prescribed growth520

rate [32]. Our model is applied to a partially saturated domain. Similar to521

[29], our biological agents grow proportional to the rate of nutrient uptake.522

However, our potato tubers also take up water, which impact the advective523

fluxes associated with the nutrient transport in the unsaturated soil domain.524
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As the focus of our system is to obtain a geometrically simplified model through525

our homoginisation procedure, the final equations that arise are convection-526

diffusion equations. By choosing a different re-scaling approach, it may be527

possible to obtain a similar Darcy type expression as demonstrated by [29]528

and [32], however, this was not within the scope of this study.529

Previous studies have coupled fluid and solid mechanical systems to infer530

not only the impact that a solid inclusion would have on the fluid flow, but531

also the mechanical deformations that fluid flow would induce on the solid532

inclusion [38,9]. Authors have found that the homogenised system parameters533

are impacted by the distribution of inclusions in the domain. While our mod-534

elling scheme does not explicitly account for the mechanical response of the535

inclusions to externally applied stresses, the distribution of our potato tubers536

impact the flow and transport coefficients in a similar manner as demonstrated537

in previous studies [38]. It is worth noting that the growth behaviour of our538

modelled tubers implies a compensation for external stresses. Plant roots are539

known to respond to mechanical stresses by increasing their radii and reducing540

their length [1]. This behaviour does not readily lend itself to a simple coupling541

between mechanical stresses and growth responses, and future work should be542

conducted to better quantify these contrasting effects.543

The full system of equations in this paper required the implementation of a544

complex moving boundary problem. This required the use of multiple domains545

to solve different components of the equations, and subsequent mappings of546

solutions across domains. Not only does this system require considerable com-547

putational power to solve, the time required to correctly implement this sys-548

tem is substantial. This is due to ensuring conservation of mass and consistent549

mappings of solutions across domains. Using mathematical homogenisation,550

many of the more cumbersome modelling aspects were simplified into an ef-551

fective media, where the tuber surfaces are treated as domain sinks, and the552

tuber geometries are accounted for in the diffusivity term shown on Figures553

4 and 5. Applying a similar method to a root system would facilitate a more554

rigorous quantification of bulk scale rhizosphere transport dynamics for both555

water and nutrients, generating better tools to disentangle the plant influence556

(rhizosphere soil) from the soil physical properties (bulk soil) [25].557

Although the explicit model couples the poroelastic mechanical model to558

the transport equations for water and nutrients, a more specific mechanical559

coupling might be more appropriate to define the tubers expanding in partially560

saturated soil. Partially saturated soils are not subject to consolidation [48],561

thus considering the soil as an elasto-viscoplastic media may be important in562

this situation [19]. Furthermore, the mechanical stresses likely exceed typical563

yield stress values found in soil under field saturation conditions [20]. Previous564

models have utilised strictly linear-elastic parameters to quantify the mechan-565

ics of cavity expansion in unsaturated soil [3]; however, future work should566

attempt to remedy this by considering soil plasticity.567

This study was motivated by the growth of tubers in soil, however, the568

system of equations is not limited to this particular problem. Other biological569

processes could also be modelled, including, but not limited too, clusters of570
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lymph nodes swelling under an inflammatory response from a disease or virus571

moving through a biological tissue [47], the growth of roots in response to water572

and nutrients [3,17], or to model the effect of tumour growth on nutrient flow573

during angiogenesis [2].574

Technical analysis regarding the homogenisation procedure showed encour-575

aging results. Comparing the results from the homogenised sets of equations576

to the full set yielded less than about a 2% difference between nutrient con-577

centrations at different depths, Figure 4. Despite similarity in the results, the578

homogenised set of equations could be solved three orders of magnitude faster579

than the full set of equations, and, while the homogenised set of equations580

could readily be scaled with minimal increases to the computational time;581

increasing the domain size for the explicit geometry would increase the com-582

putational time substantially. This is important if we were to do combinatorial583

simulations spanning large numbers of soil and climate parameters to predict584

how potato crops grow. Thus, the averaged model will computationally allow585

extensive explorations of soil management and crop breeding strategies to be586

investigated in silico.587
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