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Peak-to-Average Power Ratio Reduction Based on

Penalty-CCCP for Filter Bank Multicarrier Systems
Fangyu Cui, Yunlong Cai, Minjian Zhao, Ming Lei, and Lajos Hanzo

Abstract—Filter bank multicarrier (FBMC) has received sub-
stantial research attention as benefit of its low out-of-band
emission and high spectral efficiency. However, a main challenge
of FBMC is its relatively high peak-to-average power ratio
(PAPR). Hence we formulate an optimization problem for the
PAPR reduction of FBMC signals, where the PAPR is minimized
subject to the constraints of symbol distortion and dummy
subcarrier power used for PAPR-reduction. In order to tackle
the highly coupled nonconvex problem, we convert the original
problem into a more tractable yet equivalent form and then
propose a novel algorithm based on the penalty concave-convex
procedure (penalty-CCCP). Our simulation results show that the
proposed algorithm substantially reduces the PAPR compared to
conventional techniques.

Index Terms—PAPR reduction, FBMC, penalty concave-
convex procedure.

I. INTRODUCTION

In recent years, filter bank multicarrier (FBMC) has at-

tracted much attention as a promising technique for next-

generation systems [1], [2]. Due to the multicarrier feature,

FBMC has a similar high peak-to-average power ratio (PAPR)

issue as the traditional orthogonal frequency division multi-

plexing (OFDM) [3], [4], which degrades the efficiency of

the power amplifier (PA). However, the conventional PAPR

reduction methods conceived for OFDM [5], [6] suffer from

significant performance degradation in FBMC systems due to

the overlap between adjacent symbols. Hence, specific PAPR

reduction methods have been designed for FBMC systems to

handle the overlapping structure [7]–[12].

In [7] and [8], the partial transmit sequence (PTS) method

is employed for the PAPR reduction of FBMC systems.

Specifically, the phase factor vectors for multiple symbol

blocks are jointly optimized in order to tackle the overlap

between adjacent symbol blocks. In [9] and [10], the authors

utilized the discrete Fourier transform (DFT) spreading to

suppress the PAPR of FBMC, which is similar to the single-

carrier frequency-division multiple access (SC-FDMA). Since
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the transformations in the PTS and DFT spreading methods are

known to the receiver and can be easily recovered, the bit error

rate (BER) performance will not be affected. However, the

PAPR reduction performance of these two types of methods

is limited. In order to further reduce the PAPR of FBMC,

researchers proposed the heuristic tone reservation (TR) [11]

and iterative clipping and filtering (ICF) [12] methods. Due

to the introduction of signal distortion, the PAPR of FBMC

can be suppressed to a very low level at the cost of degraded

BER performance. Note that appropriately designed signal

distortion could efficiently reduce the PAPR with marginal

BER performance degradation. Hence, the authors of [12]

maximized the signal-to-distortion ratio in each iteration of

the ICF method. However, the interior-point method is used to

solve the formulated second-order cone programming (SOCP)

problem, which results in a high complexity order.

In this work, we develop a novel PAPR reduction algorithm

based on the penalty concave-convex procedure (penalty-

CCCP) [13] for FBMC systems. The main contributions are

summarized as follows:

1) We formulate the optimization problem of the PAPR

reduction for FBMC systems. In particular, we minimize

the PAPR of a frame of FBMC signals by optimizing

the distorted frequency domain symbols subject to the

constraint of the distortion on data subcarriers and the

power constraint on the dummy subcarriers used for

PAPR-reduction, which to the best of our knowledge has

not been investigated before.

2) We convert the original challenging problem into a more

tractable yet equivalent form and develop a penalty-CCCP

based algorithm to solve it. Specifically, the subproblems

in each iteration can be solved by using the Lagrange

multiplier method or by simply examining the first-order

optimality condition, whose complexity is much lower

than the traditional interior-point method.

3) We analyze the computational complexity of the proposed

algorithm and evaluate its performance through simula-

tions. Our simulation results show that the proposed al-

gorithm substantially reduces the PAPR of FBMC signals

at a marginally reduced BER performance.

This paper is structured as follows. In Section II, we

describe the system model and formulate the optimization

problem of interest. In Section III, we develop the penalty-

CCCP based algorithm and provide the complexity analysis.

The simulation results are presented in Section IV and the

conclusions are drawn in Section V.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider an FBMC system with N subcarriers, and assume

that each frame consists M symbol blocks. The oversampling

rate is L and the overlapping factor is denoted as β. Hence,

the time-domain length of an FBMC frame is denoted as K =
(M + β − 1/2)LN . Generally, the oversampling rate should

satisfy L ≥ 4 in order to calculate the PAPR of FBMC signals

accurately. Dummy subcarriers are routinely used for PAPR-

reduction in multicarrier systems, hence mitigating the out-

of-band (OOB) emissions or for potential future applications

instead of transmitting data [6]. We denote the set of data

subcarriers as N . Therefore, a frame of transmitted FBMC

signal can be expressed as

s(k) =

2M−1
∑

m=0

∑

n∈N

am,nh(k −mLN/2)ej
2π
LN

nkejϕmn ,

∀k ∈ K , {1, . . . ,K}
(1)

where am,n denotes the m-th real transmit symbol on subcar-

rier n with m ∈ M , {0, 1, . . . , 2M−1} and n ∈ N , h(k) is

the prototype filter, and ϕmn = (m+n)π
2 −mnπ is the phase

factor. Moreover, (1) can be further expressed as the following

matrix form:

s =
2M−1
∑

m=0

FmDam, (2)

where Fm =
[

0T
m
2
LN×N ,ΦT

mHT ,0T
2M−m−1

2
LN×N

]T

.

The vector s = [s1, s2, . . . , sK ]T denotes the time-

domain signal and am = [am,1, am,2, . . . , am,N ]T

denotes the real transmit symbols. The matrix D

is a diagonal selection matrix with Dn,n = 1
if n ∈ N and Dn,n = 0 otherwise. Moreover, Φm =
diag

[

jm+0(−1)0, jm+1(−1)m, · · · , jm+N−1(−1)m(N−1)
]

denotes the diagonal phase matrix, and H ∈ C
βLN×N

denotes the pulse shaping matrix with elements Hp,q =
h(p)ej

2π
LN

pq, p ∈ {1, . . . , βLN}, q ∈ {1, . . . , N}.

Due to the overlap between adjacent symbols, we consider

to minimize the PAPR of the whole FBMC frame. The frame-

based PAPR minimization problem is formulated as

min
{am,s}

‖s‖2∞
1
K
‖s‖22

(3a)

s.t. s =
2M−1
∑

m=0

FmDam, (3b)

‖D(am − âm)‖22
‖Dâm‖22

≤ γ, ∀m, (3c)

‖(I−D)am‖22
‖Dam‖22

≤ η, ∀m, (3d)

where âm denotes the original frequency symbols with no

distortion, γ is the pre-set threshold of the distortion-to-signal

power ratio, and η is the threshold of the dummy subcarrier

power ratio. Constraint (3c) ensures that the distortion is below

a threshold, while (3d) constrains the power allocated to the

dummy subcarriers used for PAPR reduction. Problem (3) is

challenging to handle due to the fractional form of the OF and

owing to nonconvex constraints.

III. PROPOSED PAPR REDUCTION ALGORITHM

A. Problem Transformation

To optimize this fractional OF in (3), we introduce addi-

tional auxiliary variables {r, t, t̃}, where r denotes the tight

upper bound of ‖s‖2∞, t̃ satisfies 1
t̃
≥ r

‖s‖2
2

, and t satisfies

t ≥ K
t̃

. Then, by adopting the newly introduced auxiliary

variables and inequalities as constraints, the original problem

(3) can be equivalently converted to

min
{am,s,r,t,t̃}

t (4a)

s.t. rt̃ ≤ ‖s‖2, tt̃ ≥ K, |sk|2 ≤ r, ∀k, (4b)

(3b) − (3d), (4c)

where sk denotes the k-th element of s. The original prob-

lem (3) is transformed into a more tractable form, i.e., (4). In

particular, problem (4) is identical to problem (3) in the sense

that the global optimal solutions for the variables {am, s} are

identical. It can be observed that problem (4) satisfies the

framework of penalty-CCCP shown in [13].

B. Proposed Penalty-CCCP based Algorithm

In this subsection, we develop a penalty-CCCP based algo-

rithm to solve problem (4).

1) Penalized Problem: In the penalty-CCCP framework, the

equality constraints are incorporated into the OF as penalty

terms [13]. The penalty-CCCP algorithm has a twin-loop struc-

ture. The penalty parameter is updated in the outer loop and

the variables are updated in a block coordinate descent method

in the inner loop. Therefore, by properly introducing auxiliary

variables and equality constraints, we decompose the original

problem into several subproblems, where each variable at most

appears in one inequality constraint so that the subproblems

can be solved by using the Lagrange multiplier method or the

first-order optimality condition. Based on this guideline, we

introduce the auxiliary variables {s̃, r̄k, t̄, ãm, ām} that satisfy

s̃ = s, r̄k = r, t̄ = t̃, ãm = am, ām = am, ∀k,m, (5)

Then, problem (4) can be equivalently transformed as

min
Z

t (6a)

s.t. |sk|2 ≤ r̄k, ∀k, (6b)

rt̃ ≤ ‖s̃‖2, (6c)

tt̄ ≥ K, (6d)

‖D(ām − âm)‖22 − γ‖Dâm‖22 ≤ 0, ∀m, (6e)

‖(I−D)ãm‖22 − η‖Dãm‖22 ≤ 0, ∀m, (6f)

(3b), (5), (6g)

where Z , {am, s, r, t, t̃, s̃, r̄k, t̄, ãm, ām} denotes the set of

variables.
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By incorporating the penalty terms corresponding to the

equality constraints (3b) and (5) into the OF, we finally obtain

the following penalized problem

min
Z

L(Z) ,t+ ρ





∥

∥

∥

∥

∥

s−
2M−1
∑

m=0

FmDam

∥

∥

∥

∥

∥

2

+ ‖s− s̃‖2

+
2M−1
∑

m=0

‖am − ãm‖2 +
2M−1
∑

m=0

‖am − ām‖2

+

K
∑

k=1

|r − r̄k|2 + |t̄− t̃|2
)

(7a)

s.t. (6b) − (6f). (7b)

Based on the introduction in [13], we observe that the outer

loop updates the penalty parameter ρ to reduce the equality

constraint violation. While the inner loop solves the penalized

problem (7) with fixed ρ via CCCP [14]. The proposed

penalty-CCCP based algorithm for problem (6) is summarized

in Algorithm 1.

Algorithm 1 Proposed penalty-CCCP based algorithm for

problem (6)

1. Define the tolerance of accuracy δ. Initialize the algorithm with a
feasible point. Set the iteration number r = 0. Set α > 1 and ρ0 > 0.

2. Repeat

– Solve the penalized problem (7) via CCCP.
– Update the penalty parameter: ρr+1 = αρr .
– Update the iteration number: r = r + 1.

3. Until the value of the penalty term is less than δ.

2) Proposed Algorithm for Solving Problem (7): Referring

to the penalty-CCCP framework in [13], the core of the

algorithm design is to develop an efficient algorithm to solve

problem (7) with fixed ρ for the inner loop.

Due to the nonconvex constraints (6c) and (6f), problem (7)

is difficult to handle. However, we can successively approxi-

mate these nonconvex constraints as convex ones in each inner

iteration according to the CCCP concept [14]. Let us take (6c)

as an example. The nonconvex constraint (6c) can be rewritten

as the following difference-of-convex (DC) form

(r + t̃)2

4
−
(

(r − t̃)2

4
+ ‖s̃‖22

)

≤ 0. (8)

Then, by applying the first-order Taylor expansion to linearize

the subtracted convex term, we obtain the approximated con-

vex constraint as follows

(r + t̃)2

4
−
(

(ri − t̃i)(r − t̃)

2
− (ri − t̃i)2

4

+2ℜ{s̃iH s̃} − ‖s̃i‖2
)

≤ 0,

(9)

where {ri, t̃i, s̃i} denotes the current point of {r, t̃, s̃} in the

i-th inner iteration. Similarly, the nonconvex constraint (6f)

can be approximated as the following convex one

‖(I−D)ãm‖22−η
(

2ℜ{ãiHm DHDãm} − ‖Dãim‖22
)

≤ 0, ∀m.
(10)

Moreover, constraint (6d) can be rewritten as the following

convex form
√

K +
(t̄− t)2

4
− t̄+ t

2
≤ 0. (11)

Hence, problem (7) can be approximated to the following

convex problem in the i-th inner iteration:

min
Z

L(Z) (12a)

s.t. (6b), (6e), (9) − (11). (12b)

In the inner loop, we update the variables in a block

coordinate descent method. In order to simplify the decom-

posed subproblems for each variable block, we consider the

overlapping structure of FBMC and divide the variables into

the following 2β + 2 blocks:

• Zj = {a2βm′+j−1, m
′ = 0, 1, . . . , ⌊ 2M−j

2β ⌋}, j ∈ J ,

{1, 2, . . . , 2β},

• Z2β+1 = {s, r̄k, t, t̄},

• Z2β+2 = {s̃, r, t̃, ãm, ām}.

As a result, we express the i-th inner iteration as the 2β + 2
steps shown below.

Step 1 to 2β: update the variables in Zj =

{a2βm′+j−1, m
′ = 0, 1, . . . , ⌊ 2M−j

2β ⌋} with the other

variables fixed in Step j, where j ∈ J . In Step j,

problem (12) can be decomposed into ⌊ 2M−j
2β ⌋ + 1 parallel

subproblems, with the m′-th subproblem expressed as

min
a2βm′+j−1

∥

∥

∥

∥

∥

∥

s−
min{2βm′+j+2β−2,2M−1}

∑

m=2βm′+j−1

FmDam

∥

∥

∥

∥

∥

∥

2

+ ‖a2βm′+j−1 − ã2βm′+j−1‖2
+ ‖a2βm′+j−1 − ā2βm′+j−1‖2. (13a)

By examining the first-order optimality condition with respect

to a2βm′+j−1, we obtain the closed-form solution

a2βm′+j−1

=
(

ℜ{DHFH
2βm′+j−1F2βm′+j−1D}+ 2I

)−1

×
(

ã2βm′+j−1 + ā2βm′+j−1 + ℜ
{

DHFH
2βm′+j−1

×



s−
min{2βm′+j+2β−2,2M−1}

∑

m=2βm′+j

FmDam













 .

(14)

Step 2β + 1: update the variables in Z2β+1 = {s, r̄k, t, t̄}
with the other variables fixed. Problem (12) can be decom-

posed into two subproblems.

The first subproblem with respect to {s, r̄k} can be further

divided into K subproblems with the k-th one expressed as

min
sk,r̄k

|sk − ck|2 + |sk − s̃k|2 + |r − r̄k|2 (15a)

s.t. |sk|2 ≤ r̄k, (15b)

where c =
∑2M−1

m=0 FmDam is fixed in this step, and ck
denotes the k-th element of c. By attaching a Lagrange mul-

tiplier λk to the constraint, we obtain the Lagrange function

shown below

L(sk, r̄k, λk) , |sk − ck|2 + |sk − s̃k|2 + |r − r̄k|2
+λk

(

|sk|2 − r̄k
)

.
(16)

By applying the first-order optimality condition with respect

to sk and r̄k, respectively, we obtain

sk(λk) =
ck + s̃k
2 + λk

, r̄k(λk) = r +
λk

2
. (17)
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The value of the Lagrange multiplier λk should be chosen

to satisfy the complementarity slackness condition. Therefore,

we first define the function corresponding to the constraint as

C(sk, r̄k) ,|sk|2 − r̄k. (18)

Then, we are able to obtain the value of λk by exam-

ining the complementary slackness condition. That is, if

C(sk(0), r̄k(0)) ≤ 0 is satisfied, the optimal value of the

multiplier is λk = 0. Otherwise, we should search for a

positive λk that ensures

C(sk(λk), r̄k(λk)) =
(ck + s̃k)

2

(2 + λk)2
− λk

2
− r = 0. (19)

We are able to obtain the optimal λk by applying the one

dimensional bisection search to solve (19). Then, the optimal

solution {sk, r̄k} is obtained by substituting the optimal λk

in (17).

Similarly, we use the Lagrange multiplier method to solve

the second subproblem with respect to {t, t̄}. The solution is

t(λ) =

√
K(λ− 2)√
λ− 1

+
λ− 1 + 2ρt̃

2ρ
, t̄(λ) =

λ− 1 + 2ρt̃

2ρ
.

(20)

The value of λ is obtained by examining the complementarity

slackness condition corresponding to constraint (11).

Step 2β + 2: update the variables in Z2β+2 =

{s̃, r, t̃, ãm, ām} with the other variables fixed. Similar

to Step 2β + 1, we decompose problem (12) into three

subproblems with respect to {s̃, r, t̃}, {ãm}, and {ām},

respectively, and solve each of them by using the Lagrange

multiplier method.

The solution of the first subproblem with respect to {s̃, r, t̃}
is

s̃(λ) = s+ λs̃i, (21)

r(λ) =
8
∑K

k=1 r̄k + 2(ri − t̃i +
∑K

k=1 r̄k − t̄)λ+ (ri − t̃i)λ2

8K + 2(K + 1)λ
,

(22)

and

t̃(λ) =
8Kt̄+ 2(K(t̃i − ri)−∑K

k=1 r̄k + t̄)λ− (ri − t̃i)λ2

8K + 2(K + 1)λ
.

(23)

By examining the complementary slackness condition corre-

sponding to constraint (9), the optimal value of λ is obtained.

The second subproblem with respect to {ãm} can be

further divided into M subproblems. The solution of the m-th

subproblem is

ãm(λm) = (I+ λm(I−D))
−1 (

am + ηλmDãim
)

. (24)

The value of λm is obtained by examining the complementary

slackness condition corresponding to constraint (10). Note

that the solution of {ãm} contains matrix and vector op-

erations, which may lead to high complexity in the bisec-

tion search of λm. Hence, we convert the function corre-

sponding to constraint (10) to an equivalent form that only

contains scalar operations of λm as shown in (25), where

dp = [D]p,p, u1,p = [amaHm]p,p, u2,p = [2ηℜ{DãimaHm}]p,p,

u3,p = [η2DãimãiHm DH ]p,p, ũ1,p = [ℜ{amãiHm }]p,p, ũ2,p =

[ηDãimãiHm ]p,p, and ū = η‖Dãim‖22. If C(ãm(0)) ≤ 0 is

satisfied, the optimal value of the multiplier is λm = 0.

Otherwise, we apply the one dimensional bisection search

to solve C(ãm(λm)) = 0 and obtain a positive λm. By

substituting the optimal λm in (24), the optimal solution ãm
is obtained.

The third subproblem with respect to {ām} can be further

divided into M subproblems. The solution of the m-th sub-

problem is

ām(λm) = (I+ λmD)
−1

(am + λmDâm) . (26)

Again, the value of λm is obtained by examining the comple-

mentary slackness condition corresponding to constraint (6e).

C. Convergence and Complexity

As demonstrated in [13], the proposed penalty-CCCP based

algorithm converges to a stationary solution of problem (6).

Note that (3) and (6) are equivalent in the sense of the solution

{am, s}. Therefore, the obtained solution is also a stationary

point of the original problem (3).

The complexity is measured by the number of complex

multiplications. Let us focus on the updating of {am} in

Step 1 to 2β and {ãm} in Step 2β + 2, respectively.

The variables {am} are updated through (14). Note

that ℜ{DHFH
2βm′+j−1F2βm′+j−1D} is a constant

diagonal matrix, which can be precalculated, since the

matrices are invariant and FBMC achieves real-domain

orthogonal. Moreover, the operation ℜ
{

DHFH
2βm′+j−1s

}

is equivalent to demodulating the signal s, which

requires a complexity of O (βLN + LN log2(LN))
for each symbol block when employing the PPN

structure [1]. Similarly, the complexity of calculating

ℜ
{

DHFH
2βm′+j−1

∑min{2βm′+j+2β−2,2M−1}
m=2βm′+j FmDam

}

is also O (βLN + LN log2(LN)). Therefore, the overall

computational complexity of updating {am}, ∀m, is given

by O (MβLN +MLN log2(LN)) after excluding the

precalculations corresponding to the invariant matrices.

For the subproblems with respect to {ãm}, we should

first solve C(ãm(λm)) = 0 to find the optimal λm and

then compute {ãm(λm)} through (24). The complexity

of solving C(ãm(λm)) = 0 is dominated by computing

the coefficients in (25) and the one dimensional bisection

search. Since D is a diagonal selecting matrix, computing

the coefficients in (25) requires a complexity of O (N).
Moreover, the complexity of the one dimensional bisection

search is given by O
(

log2
(

θ0
θ

))

, where θ0 is the initial

interval size and θ is the tolerance. Hence, the complexity

of solving C(ãm(λm)) = 0 is given by O
(

log2
(

θ0
θ

)

+N
)

.

After obtaining the optimal λm, the complexity of

computing {ãm(λm)} through (24) is O (N). Therefore,

the overall complexity of updating {ãm}, ∀m is given

by O
(

M log2
(

θ0
θ

)

+MN
)

.

By following the similar procedures of analyzing the

complexity of updating {am} and {ãm}, the complex-

ity of each subproblem in the inner loops can be ob-

tained. By retaining dominant terms, the overall complex-

ity of each inner iteration for the proposed algorithm
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C(ãm(λm)) ,‖(I−D)ãm‖22 − η
(

2ℜ{ãiHm DHDãm} − ‖Dãim‖22
)

,

=Tr
{

(

am + ηλmDãim
)H

(I+ λm(I−D))
−H

(I−D) (I+ λm(I−D))
−1 (

am + ηλmDãim
)

}

− Tr
{

2ηℜ{ãiHm D (I+ λm(I−D))
−1 (

am + ηλmDãim
)

}
}

+ η‖Dãim‖22

=

N
∑

p=1

(1− dp)(u1,p + u2,pλm + u3,pλ
2
m)

(1 + (1− dp)λm)2
−

N
∑

p=1

2ηdp(ũ1,p + ũ2,pλm)

(1 + (1− dp)λm)
+ ū.

(25)

is O
(

βLMN + LMN log2(LN) + (M + β)LN log2
(

θ0
θ

))

.

Note that the complexity of bisection search, i.e., log2
(

θ0
θ

)

,

is generally small and negligible if M and N are

large enough. Hence, the overall computational complex-

ity of the proposed algorithm is roughly expressed as

O (I1I2 (βLMN + LMN log2(LN))), where I1 and I2 de-

note the maximum inner and outer iteration numbers, respec-

tively.

If problem (12) in each inner iteration is solved via the

traditional interior-point method, the overall complexity is

roughly O
(

I1I2 (LMN)
3.5

)

[15]. The complexity order of

our proposed algorithm is much lower than the traditional

interior-point method since all the variables are updated via

the closed-form solutions or the Lagrange multiplier method.

IV. SIMULATION RESULTS

The FBMC system is assumed to have N = 64 subcarriers,

where 52 of them are data subcarriers and the rest 12 are

dummy subcarriers. There are M = 10 FBMC symbol blocks

in one frame. Here we use the same prototype filter as in [1]

and set the overlapping factor as β = 4. Moreover, the

oversampling rate is L = 4. For the penalty-CCCP based

algorithm, we set the initial penalty parameter as ρ0 = 10−3

and the increasing parameter α = 2. The maximum number

of inner iterations is Nmax = 100.

Fig. 1 illustrates the convergence performance of the pro-

posed algorithm. The thresholds of distortion on data subcar-

riers and power on dummy subcarrier are chosen as γ = 0.01
and η = 0.09, respectively. From the figure, we observe

that the PAPR value decreases with the increasing of outer

iterations and the algorithm converges within 20 iterations.

Moreover, the penalty value decreases below 10−8 within

30 iterations, which demonstrates that the proposed penalty-

CCCP based algorithm effectively handles the complicated

constraints of the optimization problem.

Fig. 2 shows the PAPR complementary cumulative distri-

bution functions (CCDFs) and BER performance for different

schemes, including the following algorithms for comparison:

• Original: the original FBMC signal with no distortion.

• Proposed: the proposed penalty-CCCP based algorithm.

• TR: the tone reservation method, which iteratively clips

the signal and constructs peak cancelling signal on

dummy subcarriers [11].

• ICF: the iterative clipping and filtering method, which

iteratively clips the signal and employs the demodulated

result as the transmit symbols.
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Fig. 1: The convergence performance of the proposed penalty-CCCP
based algorithm.

The algorithms compared here reduce the PAPR by introduc-

ing signal distortion. Hence, the PAPR of FBMC signals can

be better suppressed if larger distortion is permitted. However,

the BER performance degrades at the same time. It is worth

noting that if the distortion is well designed, a better tradeoff

between the PAPR and BER performance could be achieved.

The clipping threshold is denoted as A. When CCDF = 10−3,

our proposed algorithm outperforms TR even if TR achieves

its best performance with A = 1.8. Moreover, our proposed

algorithm also outperforms the ICF method when A = 1.8.

When the clipping threshold is A = 1.8 and SNR = 10 dB,

the BER performance degradation of our proposed algorithm

is small compared to the TR method. Moreover, our algorithm

outperforms the ICF method.

From the simulations above, we observe that our proposed

method outperforms ICF both in PAPR performance and

BER performance. When compared with TR, our algorithm

significantly reduces the PAPR with slightly degraded BER

performance.

V. CONCLUSION

In this paper, we have investigated the reduction of PAPR

for FBMC systems. In particular, we have minimized the

PAPR of a frame of FBMC signals with the constraint of

the distortion on data subcarriers and the power constraint on

dummy subcarriers. In order to handle the nonconvex problem,

we have transformed the original problem into a more tractable

form and then proposed a penalty-CCCP based algorithm.

Simulation results show that the proposed algorithm effectively
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Fig. 2: PAPR reduction performance and BER performance for
different schemes.

reduces the PAPR of FBMC signals with slightly reduced BER

performance.
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