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The work presented within this thesis uses quantum mechanical (QM) calculations to

improve free energies of binding computed with classical (MM) force fields. Initially

a direct approach was taken, where snapshots were taken at equally spaced distances

throughout the classical simulation and each structure underwent a quantum single point

energy calculation. This direct approach was possible by using the Zwanzig equation.

However, one disadvantage of using the Zwanzig equation is it’s extreme sensitivity to

fluctuations in the energy difference. This led to the quantum corrected free energy

being dominated by a few snapshots and convergence could not be achieved. This led

to the application of an acceptance criterion, where instead of just using each evenly

spaced structure from the classical simulation, each structure would have to be accepted

into a target potential. In the work presented here, our target potential was a QM

potential. For a simple test system of N2 in vacuum we achieved a high acceptance and

converged free energies, however, for more complex systems little to no acceptance was

found. The poor acceptance can be attributed to the difference between the MM and

QM potential energy surfaces. Similarities were found, however, on the minima of these

potential energy surfaces between the MM and QM, which led to the application of a

bias to ensure that sampling was only taken from the minima. However, similar to the

Zwanzig equation, this method proved to be too sensitive to difference in energy, thus

convergence could not be achieved.

In order to “smooth” the transition between the MM and QM a “stepping stone” ap-

proach was used. The first step was to accept structures from a classical simulation to a

QM/MM ensemble, then we used a direct approach again using the Zwanzig equation to

move from the QM/MM potential to the QM. Using this approach, we find very small

convergence errors (< 1 kJ/mol). This method was validated by calculating hydration

free energies for a variety of ligands.

Finally, the free energy of binding was calculated for trypsin with several benzamidine

derivatives using a QM-PBSA approach, which involved running QM calculations on the

entire protein-ligand complex. The final results, however, showed no overall improvement

of the calculated free energies between the MM and QM. It was found that the inclusion

of QM methods lowered the free energy in each case.
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Chapter 1

Background

1.1 Molecular Mechanics

Balancing computational accuracy with time is one of the main challenges within the-

oretical chemistry. Molecular Mechanics (MM) uses classical mechanics to describe the

behaviour of molecules, but by doing this the accuracy is compromised. The benefit,

however, is that the energy of large systems, for example proteins, can be calculated

quickly, typically in less than a second. It is because of this speed that it is typically

paired with Molecular Dynamics (section 1.3) or Monte Carlo (section 1.4) to generate

many conformations of a system quickly.

MM uses the approximation that atoms can be represented by hard spheres and bonds as

springs, although there are some exceptions to this, such as Lennard-Jones spheres. As

such, no electrons exist within this method and any value that depends explicitly on the

electronic structure cannot be calculated. All parameters required for MM are contained

within force fields. A successful force field is one with a high degree of transferability,

such that it can describe a number of systems. One of the most widely used potential

energy functions used for protein force fields is the following [1],

1
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V (r) =
∑
bonds

kb(b− b0)2 +
∑
angles

kθ(θ − θ0)2 +
∑

torsions

kφ[cos(nφ+ δ) + 1]

+
∑
nbp

[
qiqj

4πε0rij
+
Aij
r12
ij

− Cij
r6
ij

]
. (1.1)

The first term on the right hand side of equation 1.1 uses a harmonic potential to describe

all bonding interactions. kb is the force constant and controls how steep the walls of the

potential are, b is the current length of the bond and b0 is the equilibrium bond length,

the center of the potential. Using a harmonic potential to describe bonding interactions

is quick and simple, however, within this model bonds cannot break. A similar term

exists for the angles, kθ is the force constant, θ is the current value for the angle and θ0

is the equilibrium angle.

Figure 1.1: Harmonic potential used to describe bonds

The third term on the right hand side of equation 1.1 describes the dihedral angles.

kφ is the force constant, n controls how many peaks present within the potential (the

multiplicity) and δ shifts the potential to the left or right (the phase).

The last term in equation 1.1 describes the nonbonding terms and are summed over all

non-bonded pairs. The term is commonly split into two parts, the electrostatics and the
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Figure 1.2: Potential used to describe dihedral angles

dispersion. The electrostatic interactions are modelled using Coulomb’s law,

Uelec =
N∑
i=1

N−1∑
j=1

qiqj
4πε0rij

. (1.2)

Where qi is the charge on atom i, rij is the distance between atom i and j, N is the

total number of atoms present and ε0 is the dielectric constant.

If electrostatics were the only interaction considered, atoms with opposing partial charges

would be attracted to unrealistically small distances. By including Van der Waals forces,

the attraction caused by the partial charges at small distances is less than the repul-

sive force considered for the Van der Waals interactions. A Lennard-Jones potential is

commonly used to describe the interaction between two neutral atoms,

Udisp =
N∑
i=1

N−1∑
j=1

4ε

[(
σij
rij

)12

−
(
σij
rij

)6
]
. (1.3)

Where ε is the well depth, σij is the Lennard-Jones sphere radius and is related to the

position of the minimum r∗ij by the following [2],
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r∗ij = 21/6σij . (1.4)

(σ/r)12 described the repulsive forces and (σ/r)6 describes the attractive forces (disper-

sion).

Figure 1.3: Potentials used to describe nonbonded interactions, where the right side
energy is the interaction energy between 2 neutral atoms and the left side is the elec-

trostatic energy

The example of Figure 1.3 shows that the dispersion forces converge to 0 rapidly com-

pared to the electrostatic forces, which do not converge to 0 within the range of the

figure. The nonbonded forces are the most computationally expensive calculation within

the classical potential energy because of the computational scaling with the system size

which is formally order N2, where N is the number of atoms. To lower this cost, long-

range methods are used to calculate these interactions after a cut off distance. It is
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common to only calculate the interactions explicitly within a user-defined cut off. How-

ever, this cut off is unphysical, so not possible within experiment and changing it can

have serious implications for the total energy and properties of the system [3].

Within AMBER, Van der Waals interactions are calculated using the following [3],

Ufull = Ur<rc + Ur>rc . (1.5)

Where r is the distance between two particles, rc is the cutoff distance and therefore

Ur<rc are the short-range van der Waal interactions and are calculated with the standard

Lennard-Jones formula. In AMBER, the long-range interactions, are calculated using

the following potential [3],

Ur>rc =
Nρ

2

1

N(N − 1)

n∑
i<j

∫ ∞
rc

4ε

[(σij
r

)12
−
(σij
r

)6
]
g(r)4πr2dr

= 2πNρ

∫ ∞
rc

(
〈4εijσ12

ij 〉r−12 − 〈4εijσ6
ij〉r−6

)
r2dr

= 8πNρ

[
1

9
〈εijσ12

ij 〉r−9
c −

1

3
〈εijσ6

ij〉r−3
c

]
. (1.6)

Where N is the total number of particles within the system, ρ is the average density

of the system, ε is the well depth, σij is the Lennard-Jones characteristic radius and

g(r) is the radial distribution function which is assumed to be equal to one outside the

cutoff distance. Equation 1.6 will be dominated by the r−6 term, the attractive term.

However, outside of the cutoff, this will be small so a direct cutoff is commonly applied

in other codes.

Long-range van der Waals energies scale to r−6, so are small in comparison to long-

range electrostatic interactions. There are many methods currently available to handle

long-range electrostatic interactions. These include the Ewald summation, particle-

mesh ewald, reaction field and isotropic periodic sum. A direct cutoff approach to

electrostatics will not converge.
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One approach to long range electrostatic interactions is the direct sum approach. By

using a sufficiently large cutoff so that the change in energy would be negligible by

increasing the cutoff, each interaction can be calculated explicitly. In order to achieve

this convergence, the cutoff must be very large, a method that is computationally very

expensive. An alternative way is to make use of the the Ewald Summation [4].

1.1.1 Ewald Summation

By splitting the electrostatic interactions of a periodic system into two parts, a short-

range and a long-range part, the computational time required can be significantly re-

duced. This is possible due to the following relationship,

1

r
=
f(r)

r
− 1− f(r)

r
. (1.7)

When an appropriate choice for f(r) is used, it will handle the rapid variation at short

distances and the slow decay at large distances[5].

Figure 1.4: Gaussian distributions of equal and opposite charge added to the real
space term, then corrected in the reciprocal space term by adding Gaussians of the

correct charge.

The Ewald summation ensures that no long-range interactions are considered for the

short-range part of the sum by masking the charges with Gaussian distributions of

equal magnitude, but opposite charge. This is illustrated in figure 1.4. The short-range
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calculation (which includes the interaction between charges and the charge distributions

used to neutralise them) is then performed by [6],

Vr<rc =
1

8πε0

′∑
|n|=0

N∑
i=1

N∑
j=1

qiqjerfc(α|rij + n|)
|rij + n|

. (1.8)

Where α controls the width of the Gaussians used to mask the charges and is directly

related to the cutoff distance, commonly by α = 3.5/rc[7], and n is a lattice translation

and the prime on the summation indicates that the self interaction, when i = j is not

included for the lattice box |n| = 0. Careful selection of alpha can lead to a calculation

time of the order N logN instead of N2. erfc(x) is the complementary error function,

erfc(x) =
2√
π

∫ ∞
x

e−t
2
dt. (1.9)

The long-range calculation must then cancel out the Gaussian distributions used in the

short-range calculations, this calculation will not converge in real space[6], and as such

is performed in reciprocal space using the following sum [5],

Vr>rc =
1

8πε0

∑
k 6=0

N∑
i=0

N∑
j=0

1

πL3

qiqj4π
2

k2
e−k

2/4α2
cos(k · rij). (1.10)

Where k are vectors in reciprocal space and are defined as k = 2πn/L. This long-range

sum corresponds to f(r) and erfc(x) corresponds to 1 − f(r) shown in equation 1.7.

In order to cancel out the self interactions that are calculated as a by-product of the

long-range sum, an additional term is subtracted from the equation.

Vself = − α√
π

N∑
k=1

q2
k

4πε0
(1.11)

If the simulation box is surrounded by an infinite medium with a dielectric constant then

no further corrections are needed, however, if the surrounding medium is a vacuum, then

an additional correction is needed.
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Vcorrection =
2π

3L3

∣∣∣∣∣
N∑
i=1

qi
4πε0

ri

∣∣∣∣∣
2

. (1.12)

The total Ewald summation is then,

Velectrostatic =
1

8πε0

′∑
|n|=0

N∑
i=1

N∑
j=1

qiqjerfc(α|rij + n|)
|rij + n|

+
1

8πε0

∑
k 6=0

N∑
i=0

N∑
j=0

1

πL3

qiqj4π
2

k2
e−k

2/4α2
cos(k · rij)

− α√
π

N∑
k=1

q2
k

4πε0
+

2π

3L3

∣∣∣∣∣
N∑
i=1

qi
4πε0

ri

∣∣∣∣∣
2

. (1.13)

1.1.2 Particle Mesh Ewald

The use of the Ewald summation to calculate long-range interactions scales as N2 with

the number of charges N [8]. For this reason, as the system size becomes larger it

becomes unsuitable to use. Approximate methods were therefore developed, one such

method is particle mesh Ewald (PME) [9]. PME deals with the long range interactions

by using fast Fourier transforms (FFTs). These require spatial points to be interpolated

onto a grid or mesh of density values. The potential can then be solved by using the

Poisson equation. This scales much more favourable at N · log(N).

1.1.3 Solvation models

Simulating the effect solvent has on a system can be vital to obtaining accurate system-

atic information. It is therefore important to consider this when calculating energies and

running simulations. Several methods exist to take account of the interactions between

water and solute. The most common methods are either implicit or explicit, while there

are also intermediate approaches such as the 3D-RISM model. The explicit and implicit

methods are discussed briefly here.
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1.1.3.1 Explicit solvation

There are three common descriptions used for water models: the 3-site, 4-site and 5-site.

These are illustrated in figure 1.5.

Figure 1.5: The common models used for water. 3-site, 4-site and 5-site differ by the
different number of interaction sites.

As expected, as the number of interaction sites increases the number of calculations

required are increased. The 3-site model is the most simple and has only three points

of interaction, where the charges and Lennard-Jones spheres are centred on the atoms.

The 4-site moves the negative charge present on the oxygen closer to the hydrogen atoms

(position M), leaving the Lennard-Jones sphere centred on the oxygen. The 5-site moves

the negative charge to represent the lone pairs.

Several examples are shown in table 1.1.3.1 along with the parameters used within

equation 1.1. In order to lower the computational cost when explicit water is used, it is

common to freeze the bonds and angle, such that the degrees of freedom are reduced to

only translational and rotational.

1.1.3.2 Implicit Solvation

Implicit solvation attempts to calculate the effects water has on a solute while providing

an average description of the effect of the solvent molecules.
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Table 1.1: Water parameters used for common water models.

SPC [10] TIP3P [11] TIP4P [11] TIP5P [12]

rOH (Å) 1.0000 0.9572 0.9572 0.9572

θHOH 109.47 104.52 104.52 104.52

A × 10−3 (kcal Å12/mol) 629.4 582.0 600.0 544.5

C (kcalÅ6/mol) 625.5 595.0 610.0 590.3

qO (e) -0.820 -0.834 -1.040 -0.241

qH (e) 0.410 0.417 0.520 0.241

rOM (Å) - - 0.15 -

rOL (Å) - - - 0.7

θLOL - - - 109.47

Classical electrostatics uses Coulomb’s law to describe electrostatics,

E(r) = kq1
r− s

|r− s|3
. (1.14)

E(r) is an electric field at position r due to a point charge q1 at position s and k is a

constant known as Coulomb’s constant. If there is a continuous charge distribution a

charge density can be used [13].

E(r) = k

∫
ρ(s)

r− s

|r− s|3
d3s. (1.15)

Where ρ(s) is known as the free charge density (the bound charge density relates to

polarisation and is not covered here). Calculating the divergence1 of both sides of

equation 1.15 with respect to r yields,

∇ · E(r) = ∇ · k
∫
ρ(s)

r− s

|r− s|3
d3s (1.16)

= k

∫
ρ(s)∇ · r− s

|r− s|3
d3s. (1.17)

The following function has special properties,

∇ · r− s

|r− s|3
. (1.18)

1Divergence is a measure of how much the velocity increases in an outward motion, it is the volume
density of the outward flux of a vector field
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It is zero everywhere except the origin and when integrated the result is 4π if the origin

is within the integrated space. This is very similar to a Dirac delta function δ(r − s)

[14]. The divergence of the electric field is then,

∇ · E(r) = k4π

∫
ρ(s)δ(r− s)d3s. (1.19)

Then using the sifting property of a dirac delta function and using k = 1/4πε0,

∇ · E(r) =
1

ε0
ρ(r). (1.20)

Where ε0 is the permittivity of free space2. This relates the charge density to the electric

field and is known as Gauss’s law.

The electric field E(r) can be written as the gradient of a potental φ(r),

E(r) = −∇φ(r) (1.21)

∇2φ(r) = −ρ(r)

ε0
. (1.22)

Equation 1.22 is the Poisson equation. If the charge density follows a Boltzmann distri-

bution, the Poisson-Boltzmann equation must be used[15]. In order to move from the

Poisson equation to the Poisson-Boltzmann equation, we assume that the local concen-

tration ci(r) of species i with bulk concentration c0
i at position r can be calculated by

the following Boltzmann distribution,

ci(r) = c0
i exp

(
−zieφ(r)

kBT

)
. (1.23)

Where zie is the charge of species i, which, for example is +1 for a Na+ ion, +2 for

Ca2+, etc. The free charge density can be given by,

2This is a measure of how much resistance is present when an electric field is formed
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ρ(r) = F
∑
i

c0
i zi. (1.24)

Where F is the Faraday constant. Putting this back into the Poisson equation, we obtain

the Poisson-Boltzmann equation,

∇2φ(r) = −F
ε0

∑
i

c0
i zi exp

(
−zieφ(r)

kBT

)
. (1.25)

In order to solve equation 1.25, numerical approaches are applied. One such method is

finite difference. A grid is superimposed onto the system and each grid point is assigned a

value for the charge density, electrostatic potential, ionic strength and dielectric constant

[16]. The derivatives required for equation 1.25 are then calculated using finite difference.

Each grid point has an effect on its surrounding points, thus this is an iterative process.

The non-polar interactions are then approximated, these include the cavitation energy

and the Van der Waals energy. The cavity energy is the energy required to make a cavity

in a water box, and the Van der Waals energy is the interaction between the protein and

the surrounding water. These tend to be parametrised using experimental values [16].

1.1.4 Force fields

This section so far has dealt with functional forms, solvation and how long range forces

are dealt with. The equations require parameters in order to calculate energies. These

parameters are based on values obtained from ab initio methods and experimental data

and collected together in force fields. Some example force fields that are available in

AMBER[17] are listed below.

ff94[18]

Charges are based on multiple-conformation HF/6-31G* calculations, the forcefield was

developed for use with solvated proteins. The exaggerated dipole moment present within

HF/6-31G* was thought to simulate the polarisation present within an aqueous system.

ff96[19]
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Empirical modifications of the backbone parameters within the ff94 force field were

applied, in order to better match experiment. This change led to improvement in the

relative energies between MM and QM.

ff99[20]

Small changes to the protein parameters of the ff96 force field. Parameters were intro-

duced for nucleosides.

ff99SB[21]

New parameters for the backbone dihedral angles. This improved the over estimation

of α-helices of the previous force fields, but the charges are still based on HF gas phase

calculations.

ff14SB[22]

Slight empirical improvements were made to the side chain and backbone parameters

present within the ff99SB. Certain residues were sampling structures that were not

present in experiment within the ff99SB, so the side chain corrections aimed to provide

a better match between theory and experiment.

GAFF[23]

Generalised amber force field, designed to be used with small organic molecules. For

simplicity, the atom types are more general in order to cover most organic chemistry

requirements.
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1.2 Quantum Mechanics

Quantum Mechanics describes the behaviour of subatomic particles. Within chemistry,

the most applicable of these are the electrons and nuclei, which make up the molecules.

The classical description of atoms acting as hard spheres is a crude approximation and

quantum theory needs to be used for a realistic description. In the quantum world,

particles have the qualities typical of both matter and waves and are described by a

wavefunction. This wave-particle duality was suggested by Louis de Broglie [24] when

he proposed that the momentum of a particle is inversely proportional to the wavelength,

p =
h

λ
. (1.26)

Where p is the momentum, λ is the wavelength and h is Plank’s constant [25].

This is Heisenberg’s uncertainty principle[26], the more accurately the position is known

the less accurately the momentum can be known.

∆x∆p ≥ h

4π
. (1.27)

∆x is the uncertainty on the position and ∆p the uncertainty in the momentum. h
4π is

the limit that the position and momentum can be known.

1.2.1 The wavefunction Ψ

A position of an electron can never be known exactly, so probabilities are used instead.

If a region of space has a high probability of finding an electron, then the electron density

is high[27].

The wavefunction contains information on the quantum state of a system. It is linked to

the electron density by squaring it, i.e. the square of the wavefunction gives the electron

density. In order to obtain any physically relevant information from a wavefunction,

the use of operators is required. By using the relevant operator on a wavefunction, any
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observable can be obtained. To obtain real-valued eigenvalues, the operators need to be

Hermitian, such that[28],

〈A|Ô|B〉 = 〈B|Ô|A〉∗. (1.28)

Where the superscript ∗ represents the complex conjugate. Additionally the probability

density can be obtained from the wavefunction ψ by multiplication with its complex

conjugate.

The time independent Schrödinger equation[29] is used to obtain the energy and the

wavefunction using the Hamiltonian operator Ĥ, it is impossible to solve exactly except

for the most simple cases.

Ĥψ = Eψ. (1.29)

Where E is the energy eigenvalue of the system, ψ is the eigenfunction and the Hamilto-

nian (Ĥ) can be split into the operator for the kinetic energy T̂ and the potential energy

V̂.

Ĥ = V̂ + T̂ (1.30)

= V̂NN{R}+ V̂Ne{R; r}+ V̂ee{r}+ T̂N{R}+ T̂e{r} (1.31)

Where, for the case of a molecule, V̂NN{R} is the nuclear-nuclear repulsion, V̂Ne{R; r}

is the nuclear-electron attraction, V̂ee{r} is the electron-electron repulsion, T̂N{R} is the

kinetic energy of the nuclei and T̂e{r} is the kinetic energy of the electrons. These can

be further expanded into,
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Ĥ =
1

2

N∑
k=1

N∑
l 6=k

ZkZle
2

4πε0Rkl
−

n∑
i=1

N∑
k=1

Zke
2

4πε0Rik

+
1

2

n∑
i=1

n∑
j 6=i

e2

4πε0rij
− ~2

2

∑ ∇2
Rk

mn
− ~2

2

∑ ∇2
ri

me
. (1.32)

Where Zk is the atomic charge on atom k, Rkl is the distance between atom k and l,

N is the number of atoms, n is the number of electrons, subscript i and j are electrons

and e is the elementary charge. ∇2 is the Laplacian operator and in a three dimensional

cartesian frame takes the form,

∇2 =
∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

. (1.33)

1.2.2 The Born-Oppenheimer Approximation

Equation 1.31 can be simplified by using the Born-Oppenheimer approximation[30]. The

mass of protons and neutrons are around 1800 times that of the mass of electrons[2] and

it can therefore be approximated that electrons move much faster than the protons and

neutrons. If taking this approximation into account the electrons can be thought to

rearrange themselves instantaneously to any nuclear movement. Equation 1.31 can then

be simplified to,

Ĥelec = V̂Ne{R; r}+ V̂ee{r}+ T̂e{r}. (1.34)

Where the nuclear kinetic energy can now be ignored, the nuclear-nuclear repulsion is

constant and the nuclear-electron attraction can be thought of as an external poten-

tial acting on the electrons. Ĥelec is the electronic Hamiltonian, which makes up the

electronic Schrödinger equation,

Ĥelecψelec = Eelecψelec. (1.35)
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1.2.3 Potential Energy Surfaces

Without the Born-Oppenheimer approximation, the notion of a potential energy surface

could not exist. Potential energy surfaces are utilised a great deal in the field of com-

putational chemistry, as they provide a relationship between the energy and geometry

of a system. By changing the nuclear coordinates and calculating the electronic energy,

these surfaces can show where any minima (equilibrium geometries) or transition states

are. Figure 1.6 shows an example potential energy surface for the C-O bond and the

C-O-H angle with a fixed dihedral angle in methanol.

Figure 1.6: Potential Energy surface for 2 degrees of freedom in methanol

In order to construct a potential energy surface, after equation 1.35 has been solved an

additional term must be included to account for the nuclear-nuclear repulsion,

EPES = Eelec +
N∑
k=1

N∑
l 6=1

ZkZl
|Rk −Rl|

. (1.36)

1.2.4 The Variational Principle

The variational principle is used to provide an approximation to the ground state energy.

Wavefunctions can be combined into a single trial function by a linear combination of

wave functions with weighting coefficients.
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Φ =
∑
α

cαΦα (1.37)

Where orthonormal wavefunctions are orthogonal such that
∫
ψiψjdr = 0 if i 6= j and

normalised,
∫
ψ2
i dr = 1.

This trial function must be subject to the same boundary conditions as the wave func-

tions and
∑

α |cα|2 = 1. The variational principle states that the energy obtained from

a trial function will be greater than or equal to the true ground state energy[31].

〈Φ|H|Φ〉 ≥ E0 (1.38)

An approximation to the ground state energy is found by minimising the energy with

respect to the weighting coefficients. Proof of the theorem can be seen below[32].

〈Φ|Φ〉 = 1 (1.39)∑
α

|Φα〉〈Φα| = 1 (1.40)

〈Φα|Φβ〉 = δαβ (1.41)

〈Φ|Φ〉 =
∑
αβ

〈Φ|Φα〉〈Φα|Φβ〉〈Φβ|Φ〉

=
∑
αβ

〈Φ|Φα〉δαβ〈Φβ|Φ〉

=
∑
α

〈Φ|Φα〉〈Φα|Φ〉

=
∑
α

|〈Φα|Φ〉|2 (1.42)

〈Φ|H|Φ〉 =
∑
αβ

〈Φ|Φα〉〈Φα|H|Φβ〉〈Φβ|Φ〉

=
∑
α

Eα|〈Φα|Φ〉|2. (1.43)

Since Eα ≥ E0,
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〈Φ|H|Φ〉 ≥
∑
α

E0|〈Φα|Φ〉|2

≥ E0

∑
α

|〈Φα|Φ〉|2

≥ E0. (1.44)

Where equations 1.39, 1.40 and 1.41 are true due to the orthonormality of wave functions

and in equation 1.43 equation 1.42 has been applied. Therefore, we have shown than

an approximate wavefunction Φ will always have energy higher or equal to the ground

state energy E0.

1.2.5 Hartree-Fock Theory

The Hartree-Fock approximation (HF) provides a method to solve the electronic Schrödinger

equation (equation 1.35). It deals with the many electron problem as many one-electron

problems with an average electron-electron repulsion acting on each electron. It is be-

cause of this that it is sometimes referred to as “mean-field theory”. Each electron

occupies a spin orbital χ(x), which is a molecular orbital ψ(r) with spin coordinates (ei-

ther α(ω) or β(ω))[33]. The Pauli exclusion principle states that the wavefunction must

change sign if two electrons are swapped within the system[34], such that Ψ(x1,x2) =

−Ψ(x2,x1). This anti-symmetric behaviour is upheld within HF by the use of Slater de-

terminant wavefunctions. For example, a two electron system would have the following

determinant,

Ψ(x1,x2) =

√
1

2!

χ1(x1) χ2(x1)

χ1(x2) χ2(x2)

 (1.45)

Ψ(x1,x2) =

√
1

2!
(χ1(x1)χ2(x2)− χ2(x1)χ1(x2)). (1.46)

If the electrons change place, the determinant then becomes,
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Ψ(x2,x1) =

√
1

2!
(χ1(x2)χ2(x1)− χ2(x2)χ1(x1)) (1.47)

∴ Ψ(x1,x2) = −Ψ(r2, r1). (1.48)

The single electron problem with average electron-electron repulsion is expressed within

the Fock operator,

f̂i = −1

2
∇̂2
i −

Natoms∑
k=1

Zk
Rik

+ v̂i (1.49)

= ĥi + v̂i. (1.50)

Where v̂i is the average potential felt by electron i due to all other electrons. This energy

is composed of Coulomb and exchange integrals, and is shown in equation 1.51 and 1.52

respectively.

Ĵij =

∫ ∫
χ∗i (x1)χ∗j (x2)

1

rij
χi(x1)χj(x2)dx1dx2 (1.51)

K̂ij =

∫ ∫
χ∗i (x1)χ∗j (x2)

1

rij
χj(x1)χi(x2)d(x1)d(x2) (1.52)

The exchange operator is present because of the asymmetric nature of the wavefunc-

tion, which is another consequence of the Pauli exclusion principle, stating that no two

electrons can have the same quantum number.

The Fock operator can then be written as,

f̂i = ĥi +

n/2∑
j

(2Ĵj(ri)− K̂j(ri)). (1.53)
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The energy of the system is obtained self-consistently as the Fock operator depends on

the molecular orbitals that we are trying to calculate. This process is shown in figure

1.7.

Figure 1.7: The SCF process used within the HF approximation

As described in section 1.2.4 (The Variational Principle), the energy is minimised to the

lowest possible value EHF . The difference between EHF and the ground state energy,

E0 is known as the correlation energy.
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1.2.6 Density Functional Theory

In contrast to wavefunction approaches, like HF, density functional theory (DFT) uses

the electronic density to calculate the energy. By using the density instead of the wave-

function, the cost of any calculations is limited: for an n electron system, the wave-

funtion is a 3n-dimensional quantity, whereas the density remains 3-dimensional. This

lower cost makes DFT very computationally appealing and explains its rise in popu-

larity. As previously mentioned, to get properties from the wavefunction operators are

used, to get properties from the density, however, functionals must be used3. Hohenberg

and Kohn[35] state that all ground state electronic properties can be obtained from the

density of the system in this manner.

1.2.6.1 Hohenberg and Kohn’s first theorem

The first theorem states that the external potential vext is determined by the ground

state density [35, 36]. This statement can be proved by reductio ad absurdum.

Assume that there are two external potentials that provide the same density n(r), but

have different ground states Ψ1 and Ψ2. So for each ground state, we have Hamiltonian

Ĥ1 and Ĥ2 and ground state energy E1 and E2 with external potentials vext,1 and vext,2.

Then including the variational principle, the following is true,

E2 = 〈Ψ2|Ĥ2|Ψ2〉 < 〈Ψ1|Ĥ2|Ψ1〉 (1.54)

= 〈Ψ1|Ĥ1|Ψ1〉+ 〈Ψ1|Ĥ2 − Ĥ1|Ψ1〉 (1.55)

E2 < E1 +

∫
[vext,2(r)− vext,1(r)]n(r)dr. (1.56)

Similarly for E1,

3A functional operates on a function to produce a number
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E1 = 〈Ψ1|Ĥ1|Ψ1〉 < 〈Ψ2|Ĥ1|Ψ2〉 (1.57)

= 〈Ψ2|Ĥ2|Ψ2〉+ 〈Ψ2|Ĥ1 − Ĥ2|Ψ2〉 (1.58)

E1 < E2 +

∫
[vext,1(r)− vext,2(r)]n(r)dr. (1.59)

Combining equation 1.56 and 1.59 gives,

E2 + E1 < E1 + E2. (1.60)

Which cannot be true and therefore proves that only one external potential exists for

the density.

1.2.6.2 Hohenberg and Kohn’s second theorem

The kinetic and electron-electron interaction operators are functionals of nr. Therefore,

a universal functional (F [n(r)]) can be defined that is not dependent on the number of

particles and is valid for any external potential,

F [n(r)] = 〈Ψ|T̂ + V̂ee|Ψ〉 (1.61)

E[n(r)] =

∫
vext(r)n(r)dr + F [n(r)]. (1.62)

Examination of equation 1.62 shows that for the correct density, the ground state energy

can be found, which is the focus of the second theorem. To prove this, consider the

following energy,

E[Ψ′] = 〈Ψ′|V̂ext|Ψ′〉+ 〈Ψ′|T̂ + V̂ee|Ψ′〉, (1.63)
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where Ψ′ is an approximation to the ground state wavefunction, thus has a minimum at

the ground state energy. Therefore,

E[Ψ′] =

∫
vext(r)n′(r)dr + F [n′(r)] (1.64)

E[n] =

∫
vext(r)n(r)dr + F [n(r)] (1.65)

E[n] < E[Ψ′]. (1.66)

If F [n(r)] were known exactly, then the calculation of the ground state energy would be

trivial, however, determination of the universal functional is highly non-trivial.

1.2.6.3 Kohn-Sham Theory

The current popularity of DFT is largely down to the Kohn-Sham[37] reformulation.

The issue of finding a universal function is dealt with by representing the ground state

density with the density of a system of non-interacting electrons ns(r). The energy is

then found using the following,

E[ns] = Ts[ns] + U [ns] + Vext[ns] + Exc[ns]. (1.67)

Where Ts[ns] is the kinetic energy for non-interacting electrons, U [ns] is the Coulomb

energy given by the Fock equation, Vext[ns] is the external potential, Exc[ns] is known as

the exchange correlation functional and can be split into the kinetic correlation energy,

Tc[ns], and the exchange and correlation energy Vee[ns].

Exc[ns] is used to correct for the fact that a non-interacting system has been used,

Exc[ns] = Tc[ns] + Vee[ns] (1.68)

Tc[ns] = T [n0]− Ts[ns] (1.69)

Vee[ns] = Vee[n0]− U [ns]. (1.70)
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The exchange energy is a completely non-classical term caused by the exchange of two

same spin electrons. Equation 1.67 can be written in terms of Kohn-Sham orbitals,

E[ns] =
n∑
i=1

∫
χ∗i (r)

[
−1

2
∇2

]
χi(r)dr

−
n∑
i=1

N∑
k=1

∫
χ∗i (r)

[
Zk

|ri −Rk|

]
χi(r)dr

+
n∑
i=1

∫
χ∗i (r)

[
1

2

∫
ns(r)

|ri − r′|
d(r′)

]
χi(r)dr + Exc[ns]. (1.71)

No exact expression exists for the exchange-correlation functional, if there was then

Kohn-Sham theory would be exact.

1.2.6.4 Exchange-Correlation Functional

The importance of the exchange-correlation term within Kohn-Sham DFT is highlighted

above. It is common practice to separate this functional into the exchange term and the

correlation term,

Exc[ns] = Ex[ns] + Ec[ns]. (1.72)

These components can then be treated as individual entities. Some approximations used

to calculate the exchange-correlation energy are described in the next two sections.

Local Density Approximation

The simplest method to calculate the exchange-correlation energy is the local density

approximation (LDA). The exchange energy is calculated within LDA by using the local

density of a region and using in this region the exchange energy that the uniform electron

gas with the same density has. The exchange energy is then calculated for this fictitious

system using the following,
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ELDAx [ns] = −3

4

(
3

π

) 1
3
∫
ns(r)

4
3dr. (1.73)

No equivalent term exists for the correlation energy[2]. However, the correlation energy

has been calculated using quantum Monte Carlo techniques and, by using a suitable

analytical interpolation formula, the energy can be fitted[38]. Such methods are used

within the VWN (Vosko, Wilk and Nusair)[39] functional.

LDA works well for systems with uniform density. However, molecules show a cusp in

density around nuclei, and because of this, LDA is not a suitable method for use with

molecules.

Generalised Gradient Approximation

The generalised gradient approximation (GGA) uses the value from LDA and adds

a correctional term to take into account the gradient of the density. The exchange-

correlation energy then takes the following form,

EGGAx [ns(r)] = ELDAx [ns(r)] + ∆Ex

[
|∇ns(r)|
ns(r)

4
3

]
. (1.74)

The first exchange functional was developed by Becke (B88)[40],

EGGAx [ns(r)] = ELDAx [ns(r)] + EB88
x [ns(r)]. (1.75)

Many functionals were developed based on the B88, where no empirical data is used

and everything is calculated from first principles. One example of this, which is used

throughout this thesis is the PBE functional[41].

The correlation energy is also improved within GGA. Some functionals correct the LDA

correlation energy, in a similar manner to equation 1.75, like the PW91 functional[42].

The LYP (Lee, Yang and Parr) functional[43] calculates the correlation energy by em-

pirical fitting based on simulations performed on the helium atom.

In practice GGA functionals fit within two distinct categories,



Chapter 1 Background 27

First Those that are fitted based on experimental data.

Second Those that are constructed based on physical identities and limits.

Although not used within this thesis, other types of functionals are available. These

include hybrid functionals and meta GGAs. Hybrid functionals include the exchange

energy as calculated by HF, an example of this is the B3LYP functional [44] and meta

GGAs include a higher order derivative of the density.

1.2.6.5 Basis Sets

The wavefunction has an unknown functional form, so in practice it can be approximated

by many known functions, a basis set. This is not an approximation: in the event of an

infinite basis set, any other functions can be made. When considering computational

effort, however, an infinite basis set is infeasible. So, as is so common within compu-

tational chemistry, a compromise must be made between the computational time and

accuracy for any calculation. As such, the development of more accurate basis sets has

three goals [2],

• minimise the number of basis functions,

• be chosen such that molecular integrals can be completed in an efficient manner,

• be large in the same regions that the probability density is large.

Slater-Type orbitals

In 1930 Slater introduced Slater-type orbitals [45]. These functions exponentially decay

at long range and show a cusp at the nucleus which is exact for the hydrogen atom.

However, no radial nodes exist within an STO, so these are made by linear combination

of many STOs [38]. The functional form can be seen below,

χζ,n,l,m(r, θ, ϕ) = NYl,m(θ, ϕ)rn−1e−ζr. (1.76)
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Where N is a normalisation constant, Yl,m are spherical harmonic functions, n is the

principle quantum number, r is the distance of the electron from the nucleus and ζ is

a constant relating to the effective charge of the nucleus. Figure 1.8 shows an example

Slater-Type orbital.

Figure 1.8: Slater-Type orbital

The disadvantage with STOs is that there is no analytical solution to the two electron

four-centre integrals, meaning these have to be computed numerically. This is compu-

tationally costly, thus the use of STOs is limited to small systems.

Gaussian-Type orbitals

In 1950 Boys introduced a new type of orbital that has an analytical solution to the

multi-centred integrals [46]. This new orbital changed the e−r term within the STO

functional form to e−r
2
, which provides a Gaussian distribution. The functional form

then becomes simply,

χζ,n,l,m(r, θ, ϕ) = NYl,m(θ, ϕ)rn−1e−ζr
2
. (1.77)

However, an individual (or primitive) Gaussian provides a poor representation of the

orbital, so multiple Gaussians are combined by linear combination (contracted Gaus-

sians). Using this process, more complex shapes can be formed and orbitals are better

represented. The orbitals are then represented by,
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χζ,n,l,m(r, θ, ϕ) =
M∑
α=1

CαNYl,m(θ, ϕ)rn−1e−ζr
2
. (1.78)

The number of primitive Gaussians used within contracted Gaussians can be controlled

to balance the computational accuracy with efficiency. Commonly, a split valence is used,

this occurs when a different number of primitive Gaussians have been used to describe

the core and valence electrons. For example the 3-21G basis set uses 3 primitives within

a contracted Gaussian to describe core electrons and two contracted Gaussians, one with

2 primitive Gaussians and one with 1 primitive, to describe the valence electrons.

Basis Set Superposition Error

Using GTO or STO to calculate the interaction energy of a system (∆E = ECOMPLEX−

EHOST −ELIGAND) or any atom centred basis set, will result in basis set superposition

error (BSSE). The error arises from an overlap of the basis set in the complex, i.e.

the basis function centred on the ligand overlaps with the host. This effect is not

duplicated when calculating either the host or ligand in the absence of the other, which

will overestimate interaction energies. One way of solving this issue is the introduction

of ghost atoms within the host and ligand calculations, so the basis functions are still

available to overlap. This is called the counterpoise correction [47].

Plane Wave Basis Sets

In contrast to the previously mentioned basis sets, the plane wave basis is uniform in

space and not on atoms. Because of this it does not not suffer from BSSE, however,

the box size will have an effect on the speed of the calculation. Plane waves are used

when periodic boundaries must be present within the simulation and are the solution to

the periodic Schrödinger equation. The form of a plane wave for a cubic box with side

length l is,

ψk(r) =
1

l
3
2

ei(kxx+kyy+kzz) (1.79)

=
1

V
1
2

eik·r. (1.80)
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Where kx = 2π
l nx and nx, ny, nz ∈ Z.4 Plane waves are distributed evenly over a grid

within the box and because of this cannot accurately represent the electrons tightly

bound around the nucleus, so are used primarily to describe the valence density. To

overcome this “effective core potentials” (ECP) or pseudopotentials are commonly used

to describe the behaviour of the core electrons.

Pseudopotentials

In 1934 Hans G. A. Hellmann introduced the pseudopotential [48]. The use of a pseu-

dopotential eliminates the need for core electrons to be described by a basis set, and

instead uses an effective potential. Using this potential makes the approximation that

the core electrons can be considered, along with the nucleus, as rigid and non-polarisable.

Without the use of pseudopotentials, basis sets such as the plane wave basis sets would be

far too computationally expensive to be useful. This is because of the rapid oscillations

of the wavefunction at small distances from the nucleus.

When deriving suitable pseudopotentials, it is required that the energy and magnitude

of the potential be the same after a cut off rc. For soft pseudopotentials, this cut off is

large, which leads to faster convergence, but makes the pseudopotential less transferable.

1.2.6.6 ONETEP

ONETEP (Order-N Electronic Total Energy Program) can perform DFT calculations

on thousands of atoms by making use of linear scaling DFT methods. As previously

mentioned, the computational effort of DFT methods scale as O(N3) where N is the

number of electrons present within a system. This restriction means that traditional

DFT can only be performed on relatively small systems. Linear scaling DFT, however,

makes use of the exponential decay of the density matrix for systems with a bandgap[50].

In practice this is done by applying a cutoff within the single particle density matrix

ρ(r, r′), where the single particle density matrix is formed by,

ρ(r, r′) =
∑
n

|ψn(r)〉fn〈ψn(r′)| (1.81)

4Where Z is a set of integers and ∈ means “is an element of”
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Figure 1.9: Pseudopotential (dashed line) with an all electron potential (solid line),
taken from reference [49]

Where fn is the occupation number. The diagonal of the density matrix provides the

density, and within traditional DFT methods this is evaluated by direct diagonalisation

of the Hamiltonian. For large systems this is not feasible, so a cutoff is applied to the

density matrix based on distance |r−r′|. A decrease in this cutoff will increase the speed

of the calculation, but lower the accuracy.

Within ONETEP, the density matrix is written as,

ρ(r, r′) =
∑
αβ

φα(r)Kαβφ∗β(r′). (1.82)

Where φα(r) are a set of spatially localised non-orthogonal generalised Wannier functions[51]

(NGWFs), an example of which is shown in figure 1.10. Kαβ is the density Kernel[52],

which is the representation of the density matrix in a set of duals of the NGWFs, and

a generalisation of the occupation numbers fn to nonorthogonal functions.

Linear scaling is achieved within ONETEP by applying a cutoff, as described above, to

the density kernel and by strict localisation of the NGWFs to atomic centres. ONETEP
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Figure 1.10: Three NGWFs on an oligopeptide, taken from [53]

operates by employing two nested loops, an outer loop which controls the optimisation

of the NGWFs and an inner loop which controls the optimisation of the density kernel.

The loops continue in a self consistent manner until convergence has been achieved.

Once the NGWFs have been optimised, they contain the same information as the Kohn-

Sham orbitals of the system and because they are optimised in situ they alter to their

chemical environment. Similarities are present between the combination of the NGWFs

and the combination of delocalised orbitals within traditional cubic scaling DFT up to

the boundary of the NGWF. Therefore by altering the radii of the NGWF, the same

accuracy as cubic scaling DFT can be achieved. This comparable accuracy is shown in

reference [54].

The optimisation procedure of the NGWFs is performed by expansion in a psinc (periodic

cardinal sine) basis[55]. Psinc functions are related to plane waves by Fourier transform

and are highly localised and orthogonal by nature. Each psinc function is centered on a

grid point and therefore the basis set can be controlled by changing the spacing between

each point. An example of a psinc function is shown in figure 1.11.

In a similar manner to a plane wave basis, because a psinc basis is not atomic centred,

ONETEP does not suffer from BSSE.

The attractive dispersion forces present within systems are not explicitly calculated

by DFT. As such an empirical correction is applied within ONETEP[57] in a similar

fashion to the DFT+D approach described by Grimme et al.[58]. These corrections
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Figure 1.11: A psinc function taken from reference [56]

include the Elstner[59] and Grimme D2[58] approaches and are parameterised for specific

functionals.
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1.3 Molecular Dynamics

The previous sections explained how the energy of a stationary molecule can be calcu-

lated. However, the most interesting properties of molecules comes from an average of

many structures. As such, methods exist to accurately generate an ensemble of struc-

tures. One of these methods, molecular dynamics (MD) [60], achieves this by calculating

the motion of a molecule when forces are applied to it [34]. If the ergodic hypothesis is

satisfied, i.e. the average properties obtained from the system over time are the same

as the average properties over the whole statistical ensemble, then accurate macroscopic

thermodynamic properties can be calculated [61].

Newton’s second law (equation 1.83) describes the relationship between the force Fi

and acceleration ai of a particle with mass mi. By integrating this equation and with

knowledge of the forces applied, the positions of the atoms can be found.

Fi = miai (1.83)

= mi
dvi
dt

(1.84)

= mi
d2ri
dt2

. (1.85)

Equations 1.84 and 1.85 use the relationship between the acceleration and velocity vi

and the position ri respectively. The force can also be calculated from the gradient of

the potential energy,

Fi = −∇iU. (1.86)

Combination of equation 1.85 and 1.86 yields a relationship between the potential energy

and position of the atoms at time t,

− dU

dri
= mi

d2ri
dt2

. (1.87)
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The simplest application is to assume that the acceleration is a constant. Using this

assumption the velocities and positions can be found simply by integrating the following

equations with respect to time,

ai =
dvi
dt

(1.88)

vi =
dri
dt
. (1.89)

Which gives respectively,

vi = ait+ v0i (1.90)

ri = vit+ r0i. (1.91)

The combination of equation 1.90 and 1.91 gives,

ri = ait
2 + v0it+ r0i. (1.92)

The initial velocities are often chosen from a Gaussian distribution, with the following

functional form,

EKIN =

n∏
i=1

√
mi√

2πkBT
exp

[
−β p2

i

2mi

]
. (1.93)

This is identical to a selection using a Maxwell-Boltzmann distribution or a Boltzmann

distribution of kinetic energies. In order to clarify this, we must start at the Boltzmann

distribution of the kinetic energy,

ρ(EKIN ) = exp[−βEKIN ]. (1.94)
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Where ρ(EKIN ) is the probability of kinetic energy EKIN . From here we can derive

both the Maxwell-Boltzmann distribution. By splitting the kinetic energy into the x, y

and z components we obtain,

EKIN =
1

2m
p2
x +

1

2m
p2
y +

1

2m
p2
z. (1.95)

This is then put back into equation 1.93. The Maxwell-Boltzmann distribution then

provides us with the probability a molecule will have velocity between vx and vx + dvx,

vy and vy + dvy, vz and vz + dvz, summing these together will give the probability that

a molecule will have velocity between v and v + dv. This forms a spherical shell of

thickness dv, the volume of this shell is 4πv2. If this is placed back into the Gaussian

distribution the Maxwell-Boltzmann distribution is achieved.

EKIN =
n∏
i=1

4π

(
m

2πkBT

)3/2

v2 exp

[
−βmv2

2

]
. (1.96)

1.3.1 Integration Algorithms

Direct application of equation 1.92 is numerically unstable for all but the most simplistic

systems. As such integration algorithms exist with the following aims:

• Energy and momentum must be conserved

• Computational efficiency

• Long time steps.

Three integrators that are commonly used are the Verlet, velocity-Verlet and leapfrog

algorithms. All of which use Taylor expansions to solve the equations of motion.
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r(t+ δt) = r(t) + v(t)δt+
1

2
a(t)δt2 + · · · (1.97)

v(t+ δt) = v(t) + a(t)δt+
1

2
b(t)δt2 + · · · (1.98)

a(t+ δt) = a(t) + b(t)δt+ · · · . (1.99)

Where the velocity v(t) is the first derivative, the acceleration a(t) is the second deriva-

tive and b(t) is the third derivative and so on. The Verlet algorithm [62] uses two Taylor

series expansions, one at t + δt and one at t − δt . Where the Taylor series for t − δt

is shown in equation 1.100 and the combination of this with equation 1.97 (t + δt) is

shown in equation 1.101.

r(t− δt) = r(t)− v(t)δt+
1

2
a(t)δt2 + · · · (1.100)

r(t+ δt) = 2r(t)− r(t− δt) + aδt2. (1.101)

One should note, however, that velocities are not explicitly calculated using this method.

Therefore, the velocities are calculated by the following,

v(t) =
r(t+ δt)− r(t− δt)

2δt
. (1.102)

In addition to not calculating the velocity explicitly, to calculate the next position r(t+

δt) the current and previous positions must be known. This algorithm was later adapted

into the velocity-Verlet algorithm [63], where the velocities are explicitly calculated.

r(t+ δt) = r(t) + v(t)δt+
1

2
a(t)δt2 (1.103)

v(t+ δt) = v(t) +
1

2
[a(t) + a(t+ δt)]δt. (1.104)
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Another variation based on the Verlet algorithm is the leap-frog algorithm. Within the

leap-frog algorithm the velocities are calculated at half time-steps.

r(t+ δt) = r(t) + v

(
t+

1

2
δt

)
δt (1.105)

v

(
t+

1

2
δt

)
= v

(
t− 1

2
δt

)
+ a(t)δt. (1.106)

1.3.2 Ensembles

Depending on the purpose of the simulation, MD can be performed in a number of sta-

tistical ensembles. Within this thesis only three ensembles are used, the microcanonical

(NVE) the canonical (NVT) and the isothermal-isobaric (NPT). The NVE ensemble is

an example of a thermodynamic closed system, no particles or energy are exchanged

outside of the system. The N within NVE stands for constant number of particles, the

V for constant volume and the E for constant energy. The NVT and NPT ensemble

are examples of thermodynamic closed systems, energy can be transferred into and out

of the system, but the particles can not. The T in NVT and NPT stands for constant

temperature and the P for constant pressure.

Both NVT and NPT can be thought of as closed system within an isolated system,

where outside the closed system is a heat bath allowing the flow of heat energy into the

system and controlling the temperature. This is illustrated in figure 1.12.

Within the NPT and NVT ensembles it is necessary to control the temperature, this

is done by use of a thermostat. Two commonly used examples are the Berendsen [8]

and Langevin [64] thermostats. The Berendsen thermostat regulates the temperature

by simply scaling the velocities. The rate in temperature change is given by,

dT

dt
=

1

τ
(T0 − T ). (1.107)

Where τ is a time constant and T0 is the target temperature. The velocities are then

scaled, v(t)′ = λv(t), to match the target temperature [65]. The Berendsen thermostat
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Figure 1.12: Illustration describing the statistical ensembles, NVE is an isolated
system, both NVT and NPT are closed systems within an isolated system

is known to have issues with producing correct canonical ensembles for small systems,

however, for large system sizes the approximation produces accurate properties [66].

The Langevin thermostat controls the temperature by solving the Langevin equations of

motion, which differ to the Newton equations by an introduction of a friction constant

ζ. The equations of motion are then,

miai = Fi + ζvi + f ′. (1.108)

Where f ′ is a random force determined from a Gaussian distribution.

Similarly, within an NPT ensemble the pressure must be regulated too. This is done by

using a barostat. Pressure can be calculated using the Claussius Virial Theorem [5],

P =
1

V

NkBT − 1

3

N∑
i=1

N∑
j=i+1

rijfij

 . (1.109)

Where P is the pressure, V is the volume, rij is the distance between particle i and j

and fij is the force acting between those particles. Within the Berendsen barostat the

volume is scaled to adjust the pressure using the scaling parameter µ, in a similar way

as within the thermostat [67].
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µ =

[
1− β∂t

τ
(P0 − P )

] 1
3

. (1.110)

Where β is the isothermal compressibility and P0 is the target pressure.

1.3.3 Time Efficiency

Running MD simulations on large systems can be costly, because of this many methods

exist to lower these costs. One such method is the application of periodic boundaries, by

running a smaller system with periodic boundaries, bulk properties can be calculated.

This is illustrated in figure 1.13.

Figure 1.13: Illustration describing periodic boundaries, the center box is calculated
explictly and the forces from the other boxes are applied to it

In addition, the time step can be increased by freezing out the fastest vibrations, such

as bonds involving hydrogen. Two constraint algorithms that do this were used in this

thesis, these were SHAKE [68] and LINCS [69].
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1.4 Monte Carlo

Another way to generate an ensemble of structures is to use Monte Carlo. Whereas

molecular dynamics allows the movement of a system as it evolves through time, Monte

Carlo applies random moves and then accepts or rejects them. As such, it does not

require the kinetic energy and so can use the configurational partition function (see

section 1.5 for a definition). Monte Carlo is a stochastic approach to generating struc-

tures, in order to ensure that it remains random (unlike the deterministic approach of

MD) a Markov chain is constructed. Structures are accepted into a Markov chain by

comparison with the structure that immediately preceded it only.

A Markov chain must satisfy the balance condition [70],

∑
m

ρmπmn = ρn. (1.111)

When

∑
n

πmn = 1. (1.112)

Where ρ is the state probability and π is the transition probability. One way to ensure

that this is satisfied is to apply the overstrict detailed balance condition,

ρmπmn = ρnπnm. (1.113)

There are two aspects of the transition matrix, the trial probability tmn and the ac-

ceptance probability πaccmn. The trial probability controls how large the movements are

between structures [71], for example this could be the displacement of one atom.

Rearranging equation 1.113 gives,

πmn
πnm

=
ρn
ρm

. (1.114)



42 Chapter 1 Background

Then using the definition of the transition probability,

πaccmn

πaccnm

=
tnmρn
tmnρm

. (1.115)

Where ρ is given by the Boltzmann probability,

ρ =
exp−βU(r)

Z(N,V, T )
. (1.116)

Cancellation of the partition functions leaves

πaccmn

πaccnm

=
exp[−βU2]

exp[−βU1]
(1.117)

= exp[−βU2 + βU1] (1.118)

= exp[−β(U2 − U1)] (1.119)

When U2 < U1 then the move will always occur, so a min function can be introduced,

πaccmn = min[1, exp(−β(U2 − U1))]. (1.120)

This equation is known as the Metropolis-Hastings criterion [72]. It can be shown that

it satisfies detailed balance [73],

πaccmn

πaccnm

=
min[1, exp(−β(U2 − U1))]

min[1, exp(−β(U1 − U2))]
(1.121)

=


exp[−β(U2−U1)]

1 if U2 > U1

1
exp[−β(U1−U2)] if U1 > U2

. (1.122)
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1.5 Free Energy

Free energy is the easiest way to make comparisons directly from theory to experiment.

It is is calculated using the rules of statistical mechanics, the object of which is to

provide mathematical relations to equilibrium properties of macroscopic systems [74],

i.e. it provides the link between what is observed using theoretical methods and what

is observed in the macroscopic world. Statistical mechanics introduces a function that

if known, all thermodynamic values (entropy, free energy, temperature etc..) can be

exactly calculated [75]. This function is known as the partition function and the classical

canonical partition function has the following functional form,

Q(N,V, T ) =
1

h3NN !

∫
exp(−βH(p, r))dpdr. (1.123)

To know the value of the partition function requires the knowledge of all energy levels

and their occupancy within a system. The only way to know this is to sample infinitely,

which is obviously not feasible. Because of this relative free energies are commonly

calculated, this will be further explained later.

The probability of selecting a structure with energy H is,

ρ(r,p) =
exp(−βH(r,p))

Q(N,V, T )
. (1.124)

For simplicity the kinetic energy part of the Hamiltonian can be integrated out and an

analytical formula can be found.
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Q(N,V, T ) =
1

h3NN !

∫
exp(−βU(r))dr

∫
exp(−βK(p))dp (1.125)∫

exp(−βK(p))dp = (2πkBTm)
3N
2 (1.126)

Q(N,V, T ) =
(2πkBTm)

3N
2

h3NN !

∫
exp(−βU(r))dr (1.127)

=
1

N !

(
2πkBTm

h2

) 3N
2
∫

exp(−βU(r))dr (1.128)

Z(N,V, T ) =

∫
exp(−βU(r))dr (1.129)

Q(N,V, T ) =
1

N ![Λ(T )]3N
Z(N,V, T ). (1.130)

Where Λ(T )3N is the thermal de Broglie wavelength (the average wavelength of gas

particles in an ideal gas at temperature T) and the step in equation 1.126 is performed

using the following,

∫
exp(−βK(p))dp =

∫
exp

(
−β p2

2m

)
(1.131)

y =

√
β

p2

2m
(1.132)

=

(
β

2m

) 1
2

p (1.133)

dy

dp
=

(
β

2m

) 1
2

(1.134)

dp =
dy(
β

2m

) 1
2

(1.135)

√
2mkBT

∫
exp(−y2)dy =

√
2πmkBT . (1.136)

Z(N,V, T ) is the configurational partition function, by using this we can calculate the

probability of selecting a conformation based on the potential energy.

ρ(r) =
exp(−βU(r))

Z(N,V, T )
. (1.137)
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The knowledge of partition functions and how to use them to obtain probabilities can

then be combined to calculate free energies. As mentioned previously, absolute free ener-

gies (free energies relative to an empty cavity) require infinite sampling, because of this

relative free energies are commonly calculated. There are several methods that allow

the calculation of relative free energies, two of the most common among these are ther-

modynamic integration and free energy perturbation. Both methods have advantages

and disadvantages and will be described in more detail.

1.5.1 Thermodynamic Integration

Thermodynamic Integration (TI) introduces a switching function to smoothly move from

one state to another. By using a switching function the degree of overlap between the

start and end states is irrelevant as a number of intermediate states are introduced.

These states do not have to have any physical significance and are merely a tool used

to smooth the path. The switching function λ is introduced into the partition function,

Q(N,V, T, λ) =
1

h3NN !

∫
exp(−βU(r, λ))dr

∫
exp(−βK(p))dp. (1.138)

Where U(r, λ) has the following functional form,

U(r, λ) = (1− λ)UA(r) + λUB(r). (1.139)

So when λ = 0 we are sampling from state A an when λ = 1 state B is sampled. The use

of this partition function leads to the following expression for the Helmholtz free energy

[7],

A(N,V, T, λ) = −kBT lnQ(N,V, T, λ). (1.140)

Then, using partial differentiation,
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∂A(N,V, T, λ)

∂λ
= − kBT

Q(N,V, T, λ)

∂Q(N,V, T, λ)

∂λ
(1.141)

= − kBT

Z(N,V, T, λ)

∂Z(N,V, T, λ)

∂λ
. (1.142)

The step in equation 1.141 is performed by application of the chain rule, and the step

in equation 1.142 comes from analytical integration of the kinetic energy cancelling.

Although this may not be the case if the mutation occurs between different size atoms,

if the full free energy cycle is applied the kinetic energy is compensated [15].

The partial differential of Z(N,V, T, λ) is then,

− kBT

Z(N,V, T, λ)

∂Z(N,V, T, λ)

∂λ
= − kBT

Z(N,V, T, λ)

∂

∂λ

∫
exp(−βU(r, λ))dr(1.143)

= − kBT

Z(N,V, T, λ)

∫ (
−β∂U

∂λ

)
exp(−βU(r, λ))dr (1.144)

=

〈
∂U

∂λ

〉
. (1.145)

The free energy difference between state A and B can be found using the following,

∆AAB =

∫ 1

0

∂A

∂λ
dλ (1.146)

=

∫ 1

0

〈
∂U

∂λ

〉
λ

dλ. (1.147)

This process allows an alchemical mutation between two states. In practice there are two

ways to obtain this data, single and dual topology. Single topology involves shrinking

and growing bonds and atoms as the value of λ changes. Within dual topology both

systems are present and λ controls the degree of how “present” a system is. If a dual

topology method is used the end states (λ = 0 and λ = 1) can be numerically unstable,



Chapter 1 Background 47

this is due to the particles still having mass and velocities, but is not coupled to any

other degree of freedom, so can cause convergence issues [15].

In either case, if a standard potential is used for the mutation, the energies would be

massively repulsive, because of this, soft-core potentials must be used. A widely used

soft-core potential for the Lennard-Jones energy is [76],

ULJ = 4εij(1− λ)
(
[αλ2 + (rij/σij)

6]−2 − [αλ2 + (rij/σij)
6]−1

)
. (1.148)

εij and σij are standard Lennard-Jones parameters, rij is the interatomic distance be-

tween particle i and j and α controls how “soft” the potential is. With the soft-core

potential for the Lennard-Jones energy, it is possible to perform thermodynamic inte-

gration by first switching off the electroststatic energy. Another option is to use an

additional soft-core potential for the electrostatic energy. Steinbrecher et al. [76] de-

scribe this and show a comparison between one step (using soft-core potentials for both

electrostatic and Lennard-Jones energy) and two step (switching electrostatics off first,

mutating, then switching electrostatics back on) within AMBER [17].

The disadvantage of using TI to obtain free energies is that it must be feasible to sample

both states. When mutating between two classical states, this is not an issue and the

error can be calculated by hysteresis (performing the forward and reverse calculation

and comparing the difference of the magnitude). By introducing intermediate states a

potential of mean force (PMF) is produced and can be viewed to ensure a smooth path

between states. If any large jumps present, it could be a sign that more λ values are

needed.

1.5.2 Free Energy Perturbation

By using free energy perturbation it is possible to move from one state to another without

the necessity of sampling any configurations from the more expensive state. In principle

this is exact, but in practice the free energies only converge if the two states have a high

degree of configurational space overlap [77].
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In order to understand how it is possible to calculate the free energy difference without

sampling from the second state, consider the following [7],

UB(r) = UA(r) + U1(r). (1.149)

Where UA(r) is our current potential, UB(r) is the desired potential and U1(r) is the

perturbation required to move between these potentials. The configurational partition

function for UB(r) is,

ZB(N,V, T ) =

∫
exp[−βUB(r)]dr. (1.150)

Combining equation 1.149 and 1.150 gives,

ZB(N,V, T ) =

∫
exp[−βUA(r)] exp[−βU1(r)]dr (1.151)

=
ZA(N,V, T )

ZA(N,V, T )

∫
exp[−βUA(r)] exp[−βU1(r)]dr (1.152)

= ZA(N,V, T )〈exp[−βU1(r)]〉A. (1.153)

The free energy for potential UB(r) is calculated using the following,

AB(N,V, T ) = −kBT lnZB(N,V, T ) (1.154)

= −kBT ln (ZA(N,V, T )〈exp[−βU1(r)]〉A) (1.155)

= −kBT (lnZA(N,V, T ) + ln〈exp[−βU1(r)]〉A) (1.156)

= −kBT lnZA(N,V, T )− kBT ln〈exp[−βU1(r)]〉A. (1.157)

The free energy required for state B has been split into the free energy for state A and

the free energy required to perturb between the systems. The perturbation free energy
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requires the calculation of an ensemble average and not the full configurational partition

function, therefore it can be used to calculate relative free energies.

∆BAA1(N,V, T ) = −kBT ln〈exp[−βU1]〉A (1.158)

This equation is known as the Zwanzig equation [78].

1.5.3 MM-PBSA

MM-PBSA (molecular mechanics - Poisson-Boltzman surface area) is an example of a

more computationally efficient, but less rigorous approach to calculate the free energy[79].

It is an example of a continuum method, where solvent effects are obtained by approx-

imating the solvent as a polarisable continuum. This then uses the Poisson-Boltzman

equation (equation 1.25) to approximate the solvent effects. These free energies are then

combined with the interaction energy and entropy to provide the free energy of binding.

The calculation of the interaction energies can be performed by running three separate

simulations, one for the complex, one for the host and one for the ligand. This approach,

although correct, suffers from convergence issues, therefore commonly this is condensed

into a single simulation.

The interaction energy is then calculated by equation 1.160, where the three simula-

tion approach calculates the interaction energy by equation 1.159. So each average in

equation 1.159 comes from a different simulation.

∆Uint = 〈Ucomplex〉 − 〈Uhost〉 − 〈Uligand〉 (1.159)

∆Uint = 〈Ucomplex − Uhost − Uligand〉 (1.160)

The final free energy is then given by,
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∆G = ∆Uint + ∆Gpbsa − T∆S. (1.161)

Within the non-polar solvation term used within equation 1.161 implicitly contains an

estimation of the entropic cost of inserting the solute into a box of solvent. This, however,

does not consider any entropic cost associated with the actual binding process[80]. To

calculate this many methods can be used, the only one used within this thesis however,

is normal mode analysis.

1.5.3.1 Normal Mode Analysis

Within Normal mode analysis the protein-ligand system is restricted to a harmonic

approximation of a minimum. As such, each system first undergoes a rigorous minimi-

sation procedure to find the lowest energy local minimum. The vibrational entropy is

then calculated from the frequency of the harmonic potential (equation 1.162). Lower

frequencies represent wider potentials, with more conformations available, so the entropy

is higher[81].

Svib =
3N∑
i=1

(
hνi
kBT

)
1

exp
[
hνi
kBT

]
− 1
− ln

(
1− exp

[
− hνi
kBT

])
. (1.162)

This is then used as an approximation to the conformational entropy within the free

energy of binding.
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Introduction

Since the development of classical mechanics by Isaac Newton, models and theories have

been used to explain natural phenomena. It wasn’t until the early 1900’s that physicists

discovered that classical mechanics cannot accurately describe the behaviour of small

particles and the theory of quantum mechanics was developed. These theories have

been adopted by chemists who developed computational chemistry approaches in order

to understand properties and processes of molecules.

Pharmaceutical companies would like to use computational methods to predict interac-

tions between proteins and ligands before potentially expensive experimental techniques

are performed. Because of this, it is crucial to be able to perform accurate calculations,

as such any method is validated extensively against “test” systems (systems with known

experimental results). In the case of protein-ligand binding, free energies are used to

compare theoretical with experimental results. The reason for this that the experimental

equilibrium constant K can be easily converted to the free energy ∆G, which can be

calculated using statistical mechanics [82]. K is known as the association constant and

is defined as,

K =
[AB]

[A][B]
. (2.1)

51
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Where [] represents the concentration. The free energy can be calculated using the

following equation,

∆Gbind = −kBT lnK. (2.2)

It is clear to see that the calculation of accurate free energies of binding is crucial to the

pharmaceutical industry. The conventional approach to calculate these free energies is to

use classical mechanics to describe the system in combination with molecular dynamics

(MD) and/or Monte Carlo (MC) to generate structures [83, 84]. Enough structures

are needed to obtain converged ensemble averages, for MD this means that the ergodic

hypothesis must be satisfied. The ergodic hypothesis states that the time average of a

system is equal to the ensemble average[38]. Because free energies require a large amount

of sampling to converge[84], classical mechanics is the obvious choice over quantum

methods due to the lower computational cost associated with it. This approach relies

on the transferability of force fields [16], and cannot possibly model every interaction

relevant to calculate accurate binding free energies. For example, classical mechanics

does not explicitly include charge transfer, polarisation or the exchange energy. In

standard force fields, such as the AMBER force field [20], the polarisation is included

implicitly within the parameterisation [85]. However, these force fields cannot show the

dependence of the electronic structure of a molecule to its environment [86]. This has

led to the development of force fields that can explicitly calculate polarisation, known as

polarisable force fields. Polarisation is taken into account within these force fields by an

additional term within the functional form, U indele [82]. The interactive induction scheme

for example, will calculate the effect the surrounding electrostatics has on a polarisable

site, forming a new dipole, then the effect the this dipole has on the surroundings, and

repeats until convergence [15]. This process can become computationally expensive and

still provides no solution to other non-classical interactions.

Ideally, the ensemble of structures generated would be as a result of ab initio molecular

dynamics, but this is far too computationally expensive to be feasible. This leads to

the use of hybrid methods and guiding potentials. QM/MM is an example of a hybrid
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method and was first suggested by Warshel et al.[87], which is the combination of using

QM for a small region of interest and MM for the surroundings. The energy then

becomes,

EQM/MM = EQM + EMM + EQM−MM . (2.3)

Where EQM is the quantum potential energy of the region of interest, EMM is the po-

tential energy of the surroundings and EQM−MM is the interaction of the two regions.

Some sources suggest that this is all that is needed to accurately describe interactions

within protein-ligand systems, as the electron correlation is primarily short-range [82].

But this still relies heavily on the forcefield to describe interactions accurately. Diffi-

culties arise when the QM region is bonded covalently to the MM region and a great

deal of expertise is required to perform calculations using these hybrid methods [2]. The

implementation of QM/MM can be described by two categories: mechanical embedding

and electrostatic embedding [88]. The former uses the classical force field to describe

electrostatics and dispersion. The latter calculates the electrostatics and polarisation at

a QM level. The latter of the two being the more accurate [89].

The use of a guiding potential is another common way to obtain accurate free energies,

these involve using a cheap potential to sample structures, then a perturbation to a more

expensive potential. This approach uses the extended thermodynamic cycle introduced

by S̆trajbl et al. [90], which can be seen in figure 2.1.

Figure 2.1: The extended thermodynamic cycle
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In this cycle, ∆G1 and ∆G5 are classical alchemical mutations of the ligand when bound

in a protein and when in solvent respectively. ∆G2, ∆G4, ∆G6 and ∆G8 are the

perturbations from a classical system to a quantum system. ∆G7 and ∆G3 are the

desired free energies, but are much too computationally expensive to calculate. However,

with all the other free energies, the relative free energy (∆G7 −∆G3) can be calculated

by ∆G1 + ∆G2 −∆G4 −∆G5 + ∆G6 −∆G8.

Application of the extended thermodynamic cycle has seen many uses, from reaction

mechanisms [90, 91] to correcting binding free energies [92, 93, 94] For the purposes

of this thesis, the application will be directed toward correcting binding free energies.

Beierlein et al. [92] correct the binding free energy using the Coulomb energies in a

single step perturbation from the classical potential to a QM/MM potential. Fox et al.

[93] performed a similar task on the solvation free energies using the interaction energies

this time perturbing from the classical to a fully quantum potential. In both studies the

Zwanzig equation [78] was used (equation 2.4), however, convergence was achieved by

using interaction energies. Formally, this equation requires the use of total energies.

∆G = −kBT ln

〈
exp

[
−
EMM − EQM

kBT

]〉
(2.4)

Where EMM is the classical potential energy and EQM is the quantum potential en-

ergy, when interaction energies are used, these become ∆EMM and ∆EQM . Interaction

energies can simply be described by the following,

∆E = Ecomplex − Eligand − Ehost. (2.5)

In the case of potentials that include only two-body interactions, this cancels out any

intramolecular terms and intermolecular interactions within the host. The complex is the

entire system e.g. a ligand bound to a protein, and within this example the host would

be the protein in the same geometry but without the ligand present. This makes the

approximation that this conformation of the protein would be sampled in the absence

of the ligand. Although an approximation, it is an approximation that can provide
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converged free energies [92, 93]. One potential issue of using total energies is the overlap

of configurational space. However, Woods et al. [94] developed a method that allows

the perturbation from a classical system to a QM/MM system with the use of total

energies. Doing this involved evaluating whether a classically obtained snapshot was a

good representation at the QM/MM level and accepting or rejecting it.

The search for a method that can provide accurate free energies of binding that is

relatively inexpensive is one of the main challenges within computational chemistry. As

such, within this thesis, we would like to explore the possibilities of finding a method

that can accurately calculate quantum corrected free energies for a range of systems

when using total energy approaches.





Chapter 3

Calculating Quantum Corrected

Free Energies Using a Single Step

Perturbation Approach

3.1 Introduction

The introduction explained the importance of calculating accurate binding free energies

for all systems using a relatively inexpensive method. Also that, to find a rigorous

method that obeys the rules of statistical mechanics, total energies should be used.

This chapter provides the description and results of how this task was initially tackled.

Following a similar method described by Fox et al. [93] where classical mechanics will be

used to generate an ensemble of structures cheaply, then the Zwanzig equation [78] will

be used to perturb from the generated classical ensemble to a fully quantum one, making

use of the extended thermodynamic cycle. Fox et al. [93] briefly describe a few issues

associated with this, the first being that due to the large size difference between the

MM and QM total energies, the calculation of the exponential required for the Zwanzig

equation (shown in equation 3.1) is numerically unstable, however, numerical techniques

can be used to calculate this [95]. The second is that the number of classical snapshots

required for convergence is too high. This poses more of an issue, and it is because of

57
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this that we will first apply the method to small test systems with considerably less

configurational space available to sample than a larger system, e.g. a protein, to test

convergence. As such, the hydration free energies of two simple systems with slightly

different chemical characteristics were calculated. These selected systems were ethane

and ethanol in aqueous solvent.

3.2 Methods

3.2.1 Classical Simulation Setup

All classical simulations were performed in AMBER 10 [17], the initial structures for

ethane and ethanol were generated using the MOE programme [96] and parameterised

using antechamber [97]. TIP3P [11] was used as a solvent model and the generalised

AMBER force field (GAFF) [23] was used to describe ethane and ethanol.

A fifteen step equilibration procedure was applied to two test systems, ethane in 133

TIP3P water molecules and ethanol in 138 TIP3P water molecules. A small box size

was selected to keep quantum simulations fast, as a caveat of this, only a 5 Å nonbonded

cutoff could be applied, this may cause convergence issues, but is required to keep the

computational time required down. The equilibration procedure was as follows. Initially

the structure was minimised using 1000 steps of steepest descent and 1000 steps of

conjugate gradient with a restraint of 1000 kcal/mol-Å2 on all non-hydrogen atoms.

This step was then repeated with the restraint removed on the oxygen atoms within

the water. After this the system was heated from 100 to 300K over 100ps, SHAKE [68]

algorithm was used to allow for a 2 fs time step. This was performed in a canonical

ensemble with a Langevin thermostat with a 3 ps−1 collision constant with the same

restraint as the previous step applied. Then the volume was equilibrated by running

within a isothermal-isobaric ensemble for 500ps. The simulation was then cooled to

100K over 100ps. Step one was repeated with the same restraint as the previous step.

This step was repeated a further eight times lowering the restraint each time to 500, 100,

50, 20, 10, 5, 2 kcal/mol-Å2 and removing it completely. The system was then heated

back up to 300K with no restraints present.
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After the equilibration an MD simulation of 40 ns was performed in the canonical en-

semble for ethane in 133 water molecules and snapshots extracted at regular intervals.

For ethanol in water, a simulation length of 200 ns was run, the increase in length was

to ensure the results were not being affected by correlated structures. So for ethane,

ultimately each snapshot was 20ps apart, whereas for ethanol each snapshot was 100ps

apart. Although 20ps should be long enough to ensure that the structure is not corre-

lated to the previous structure, by extending this to 100ps we make correlation much

less likely.

An additional test that will be described in more detail in the results section involved

classical charge perturbations. The starting point for these simulations was the equi-

librated ethane in water system, and a simulation of 200 ns was run before extracting

snapshots at regular intervals.

3.2.2 Quantum Simulation Setup

All quantum calculations were performed using ONETEP [54] either using NGWFs or

pseudo-atomic orbitals (PAOs). If NGWFs were used, the setup involved using NGWFs

with radii of 8 bohr with 4 NGWFs describing heavy atoms and 1 for hydrogen. When

PAOs were used, a single zeta + polarisation basis set was used. NGWFs with 8 bohr

radii have been found to be of similar accuracy to a cc-PVTZ basis set [98].

3.2.3 Application of a Single Step Perturbation

In order to perturb between two ensembles in a single step, the Zwanzig equation can

be used. This can be seen in equation 3.1.

∆G = −kBT ln

〈
exp

[
−

∆EQM−MM

kBT

]〉
MM

(3.1)

The large size difference between EMM and EQM makes the direct application of equa-

tion 3.1 numerically unstable. As such, a method explained by Berg [95] can be used.

The method follows,
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C = A+B (3.2)

lnC = ln(A+B) (3.3)

= ln

[
max(A,B)

(
1 +

min(A,B)

max(A,B)

)]
(3.4)

= max(ln A, ln B) + ln(1 + exp[min(ln A, ln B)−max(ln A, ln B)]). (3.5)

Where A and B are equal to the following equation, and ∆EQM−MM changes based on

the energy difference of the snapshots included within the equation,

exp

(
−

∆EQM−MM

kBT

)
. (3.6)

The formula can then be used recursively until all snapshots have been included.

3.3 Results

3.3.1 Applying a Single Step Perturbation Approach to Non-Polar and

Polar Test Systems

The results when applying the perturbation to the structures generated from the 40ns

MD simulation for ethane in water are shown below in Table 3.1. These results have

been split into two, state A represents structures obtained from the first 20ns of the MD

simulation and state B from the second 20ns. By doing this, convergence is achieved if

both state A and state B have the same free energies, i.e. ∆∆ G = 0. In this case the

quantum calculations were run using NGWFS.

When run within ONETEP, some of the structures generated from the classical MD

would not converge and as such were discarded from the results. Examination of these

structures yielded no explanations. The convergence issues came from the outer loop

of ONETEP, the NGWF optimisation. However, even excluding these results, the free

energy does not converge and shows a difference of 5.44 kcal/mol between the two halves
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Table 3.1: MM to QM perturbation applied to ethane using NGWFs, allowing up to
10% of snapshots to be omitted due to SCF convergence errors. All energies shown are

in kcal/mol

Number of snapshots 1st 20.0 ns 2nd 20.0 ns Difference
∆ G ∆ G ∆∆ G

400 -1447906.57 -1447912.01 5.44

of the MD simulation. As such, it is clear that 400 snapshots from state A and B are not

enough to provide convergence of the method. So additional snapshots were used, but

for speed, these snapshots were calculated using PAOs instead of NGWFs. Simulation

times for the single point energy calculations when using NGWFs were approximately 7

hours on 6 cores, whereas by using PAOs, this computational time lowered to 4 hours on

6 cores. Additionally, by using PAOs the previous convergence issues were not present as

only the density kernel is optimised. However, when increasing the number of snapshots

from each state to 1000 and applying the single step perturbation (SSP) method, ∆∆G

does not converge to 0. These results can be seen in table 3.2.

Table 3.2: MM to QM perturbation applied to ethane using PAOs. All energies shown
are in kcal/mol

Number of snapshots 1st 20.0 ns 2nd 20.0 ns Difference
∆ G ∆ G ∆∆ G

1000 -1442495.51 -1442499.82 4.31

On first inspection, it appears that the difference is lowered and could point to conver-

gence being attainable if a great deal more snapshots were included. However, further

investigation into the lack of convergence within the ∆∆ G has led to calculating the free

energy as a function of the number of snapshots included. In this way if the free energy

is being dominated by one or a few snapshots it will become apparent. The resulting

graph can be seen in figure 3.1.
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Figure 3.1: Free energy as a function of the number of snapshots for ethane in 133

water, all values shown are in kcal/mol

The “sawtooth” shape of the graph in figure 3.1 is characteristic of poor sampling [99].

In order to check if the lack of convergence in the ∆∆ G was related to using a basis

set with poor accuracy, when applying the single step perturbation (SSP) method to

ethanol in 138 water, NGWFs were used. Additionally the original MD simulation

used to generate configurations was run for a longer time of 200ns to provide certainty

of obtaining uncorrelated structures. However, regardless of these additional measures

taken to achieve convergence of ∆∆ G, the difference is much larger (table 3.3) and

10% of structures would not converge, an issue that, again, was not explained by further

examination of these structures, but can be attributed to the outer loop.

Table 3.3: MM to QM perturbation applied to ethanol using NGWFs, allowing upto
10% of snapshots to be omitted due to SCF convergence errors. All energies shown are

in kcal/mol

Number of snapshots 1st 100.0 ns 2nd 100.0 ns Difference
∆ G ∆ G ∆∆ G

1000 -1511726.64 -1511765.45 38.81



Chapter 3 Calculating Quantum Corrected Free Energies Using a Single Step
Perturbation Approach 63

Figure 3.2: Free energy as a function of the number of snapshots for ethanol in 138

water, all values shown are in kcal/mol

Again plotting ∆∆ G as a function of the number of snapshots, was then produced for

ethanol in 138 water and shown in figure 3.2. This figure shows the catastrophic effect

that one of these outlier structures can have on the free energy. Where the largest effect

to the free energy occurred within this 2nd 100 ns simulation of ethanol in 138 water and

occurred at almost the end of the MD simulation. This implies that these snapshots

that have a large effect on the free energy can occur anywhere. The distributions of

energies produced by the structures within this simulation were then compared with an

aim to find a reason behind the problematic structures.

Three energy distributions were produced from this simulation, these energies were the

MM, QM and QM-MM distributions. To analyse these distributions, they were plotted

within box and whisker plots. The “box” in the box and whisker plots shows the

interquartile range (IQR) of the data, and the line in the middle of the box is the

median. This whisker length is 1.5 times the length of the IQR, any snapshots outside

of this length can be thought of as an energetical outlier.
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Figure 3.3: Energy difference distribution for the ethanol in 138 water, 2nd 200 ns,

plotted in a box and whisker plot

Six outlier snapshots can be identified from figure 3.3 and, for analysis purposes, two

snapshots close to the median value were selected to show their location within the other

distributions. Something that should be noted is the large range of energy difference

present within the box and whisker plot of 182.30 kcal/mol. Producing similar plots for

the MM and QM energy distributions provides some interesting results.
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Figure 3.4: MM energy distribution for the ethanol in 138 water, 2nd 200 ns, plotted

in a box and whisker plot

Figure 3.5: QM energy distribution for the ethanol in 138 water, 2nd 200 ns, plotted

in a box and whisker plot

Comparing which snapshots were shown to be outlier snapshots in each distribution

produced the following table (table 3.4).

Table 3.4: Outlier snapshots

Energy Difference QM MM

19901 11901 10831
14661 10111 11651
15661 15841 13861
11041
15251
19841

Table 3.4 shows that for all three distribution, there are no common outliers. Which

proves that the large jumps present in figure 3.3 attributed to the energy difference

outliers are not present due to a structure being anomalous in either the MM or QM

distributions. Additionally, the examination of the positions of the snapshots identified
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as close to the median in the energy differences within the MM and QM distributions

show that, in both cases, the snapshots are outside of the IQR. However, because both of

the snapshots appear on the same side of the MM and QM distributions i.e. either both

snapshots appear on the more negative side of the IQR or both snapshots appear on the

less negative side of the IQR, the snapshots appear close to the median in the energy

difference distribution. With regard to the outlier snapshots within the energy difference

distribution, the more negative side of the distribution will have a larger effect on the

free energy. This is due to the calculation of the exponential of the negative energy

present within the Zwanzig equation (equation 3.1). Finding these snapshots within the

MM and QM distributions show them to be on different sides of the distributions. This

difference shows that the MM and QM configurational space does not overlap exactly,

and this inexact overlap of configurational space causes these energy difference outliers.

3.3.2 Controlling the Level of Configurational Overlap to Measure the

Convergence of the Free Energy

In order to investigate the perturbation between different potentials, while controlling

the degree of configurational space overlap, a model system was set up. Calculating

quantum energies are orders of magnitude more computationally expensive than classical

energies, as such, the test case was between classical systems. The system of ethane

in 133 water was used with the setup described within the methods section. The MD

simulation was then divided into two parts and 10000 snapshots were extracted at regular

intervals and the charges present on ethane were then perturbed. The standard charges

on ethane used were obtained from antechamber [97], these were -0.0941 e on carbon

and 0.0317 e on hydrogen. The perturbations then involved changing these charges and

calculating the new energies, these charges were changed by doubling them, tripling

them etc.. up to eight times the charge. The convergence of ∆∆ G was then measured

while lowering the configurational space overlap.

Table 3.5 shows that by lowering the amount of overlap present between the two states

involved in the perturbation, the free energy does not converge. The trend of ∆∆ G is as

expected, when perturbations are small the free energy converges. The configurational
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Table 3.5: Calculating the free energy required to perturb the charges on ethane
in 133 water from standard charges to increased charges. Sampling performed using

standard charges. All energies shown are in kcal/mol

Increased charge 1st 100.0 ns 2nd 100.0 ns Difference
∆ G ∆ G ∆∆ G

Double 2.800 2.798 0.002

Triple 7.439 7.434 0.005

Quadruple 13.898 13.886 0.012

Pentuple 22.148 22.111 0.037

Sextuple 32.231 32.108 0.123

Septuple 43.957 43.635 0.322

Octuple 57.365 56.751 1.206

space overlap is demonstrated in figure 3.6 and 3.7. Where, in figure 3.6, the carbon

carbon bond length is measured when an MD simulation is performed using the altered

charges. Figure 3.7 shows a similar analysis, but using the hydrogen-carbon-carbon

angle of these MD simulations. These figures show that as the charge is increased, both

the bond length and angle is increased slightly.

Figure 3.6: Carbon-carbon bond length within 8 different MD simulations with dif-

ferent partial charges on ethane
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Figure 3.7: Carbon-carbon-hydrogen angle within 8 different MD simulations with

different partial charges on ethane

Noticing how poor the configurational space overlap is between the standard and octuple

charged systems, the reverse calculation was performed. This involved running an MD

simulation at the desired charge and perturbing to a standard charged system. Free

energy is a state function, so the reverse process should be the negative of the forward

process.

Table 3.6: Calculating the free energy required to perturb the charges on ethane in
133 water, from standard charges to an increased charge. Sampling performed using

the increased charges. All energies shown are in kcal/mol

Increased charge 1st 100.0 ns 2nd 100.0 ns Difference
∆ G ∆ G ∆∆ G

Double 2.773 2.771 0.002

Triple 7.290 7.293 -0.003

Quadruple 13.386 13.428 -0.042

Pentuple 20.864 20.795 0.069

Sextuple 29.422 29.228 0.194

Septuple 36.360 37.766 -1.406

Octuple 43.939 45.746 -1.807

The results show that when the configurational space does not overlap exactly the for-

ward and reverse process does not converge. The lack of overlap here is small, but the
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Table 3.7: The difference between perturbations, each value is the average of the 1st

and 2nd 100ns. All energies shown are in kcal/mol

Increased charge standard to increased charge increased charge to standard Difference
∆ G ∆ G ∆∆ G

Double 2.799 2.772 0.027

Triple 7.437 7.292 0.145

Quadruple 13.892 13.407 0.485

Pentuple 22.130 20.830 1.300

Sextuple 32.170 29.325 2.845

Septuple 43.796 37.063 6.733

Octuple 57.058 44.843 12.215

overlap between classical and quantum configurational space has been shown to be poor.

This offers some explanation toward the poor convergence of the MM to QM. It is clear

that without sampling a large amount of configurational space, the free energy from

MM to QM will not converge. Also the cost of running quantum calculations on 1000

snapshots for ethane in 133 water is a manageable computational cost, but for a larger,

more biologically relevant system, 1000 snapshots will be extremely computationally

expensive. So several post-processing methods were applied to try and converge these

free energies and the results are shown in the next section.

3.3.3 Methods to Converge the Free Energy

The largest effect an energy difference outlier had on the convergence of free energies

was observed for ethanol in 138 water in the 2nd 100 ns. Because of this, all attempts

to converge the free energy, using the data already obtained, will be for this system.

Section 3.3.1 shows that it is impossible to predict where energy difference outliers will

occur by examining only the classical or quantum energies. Because of this, the first

attempt to better converge the free energy was to subtract the average energy from both

energy distibutions,

∆E = (EMM
i − 〈EMM 〉)− (EQMi − 〈EQM 〉). (3.7)

Where the subscript i represents the ith structure, 〈EMM
i 〉 is the average classical energy.
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The results, shown in table 3.8, display the same poor convergence of table 3.3. Applying

the Zwanzig equation [78] as a function of the number of snapshots, provides large

“jumps” in free energy again (figure 3.8), showing that subtracting the average from

each energy distribution cannot converge the free energy.

Table 3.8: MM to QM perturbation applied to ethanol using NGWFs, each energy
distribution has the average energy subtracted from it. Allowing upto 10% of snapshots

to be omitted due to SCF convergence errors. All energies shown are in kcal/mol

Number of snapshots 1st 20.0 ns 2nd 20.0 ns Difference
∆ G ∆ G ∆∆ G

1000 -66.04 -104.51 38.47

Figure 3.8: Free energy as a function of the number of snapshots included for ethanol

in 138 water, subtracting the average energy from energy distributions

Following this, the distribution of the energy differences was examined and found to be

Gaussian. This is reinforced when considering the central limit theorem, which states

that the sum of a large number of independent distributed variables will be a Gaussian.

The combination of the energy differences for the 1st and 2nd 100ns is shown in figure

3.9. Although the distribution fits a Gaussian well, the energy differences show a large

range: approximately 138 kcal/mol. When considering that it is the exponential of these

energy differences that are calculated, 138 kcal/mol is extremely large. Nevertheless, by

introducing a Gaussian to act as a smoothing function, the low-energy tail may be better

described and provide convergence of the free energy.
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Figure 3.9: Energy differences for the full 200 ns of data for ethanol in 138 water

Using a Gaussian distribution to describe the energy differences for both the 1st and

2nd 100ns separately, then applying equation 3.8, the free energy can be found. By

using these Gaussian distributions, we approximate how the distribution would look if

we could sample infinitely. To do this, the Gaussian is used as the probability density

for ∆E, then the following can be used[99],

∆G = −kBT ln

∫
P (∆E) exp

[
− ∆E

kBT

]
dE

= −kBT
〈
− ∆E

kBT

〉
. (3.8)

Where P (∆E) is the probability density of ∆E, kB is the Boltzmann constant and T is

the temperature.

In practice, however, the distribution was divided into small segments and the following

equation was used along with the trapezoid rule for integration,

∆G = −kBT ln

nBars∑
i=1

P (∆Ei) exp

[
−∆Ei
kBT

]
. (3.9)

In order to calculate the required exponential of the energy difference for equation 3.9,

Berg’s [95] formula for the calculation of large exponentials (equation 3.5) must be used,
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as before in section 3.3.1. In this case, however, by using the rules for dealing with

logarithms, lnA will be the following,

lnA = ln(P (∆Ei))−
∆Ei
kBT

. (3.10)

When using bin widths of 1 kcal/mol, where “bin” in this case refers to the small

segments the Gaussian distribution is divided into, the results can be seen in table 3.9.

Table 3.9: Using Gaussian distributions for the 1st and 2nd 100 ns, then integrating
over the probability distribution

1000 snapshots 1st 100.0 ns 2nd 100.0 ns Difference
Bin width (kcal/mol) ∆ G ∆ G ∆∆ G

1 -1512064.46 -1512070.75 6.29

Although the free energy is still not converged, the difference is a great deal smaller,

down to 6.29 kcal/mol. This is a promising result, and the application of smoothing

functions will be further investigated. For comparison, this method was applied directly

to the histogram that was used to generate the Gaussians. The histograms were initially

normalised so that the area underneath them was equal to 1, equation 3.5 was then

applied using this new count. The results are shown in table 3.10.

Table 3.10: Using the histograms for the 1st and 2nd 100 ns

1000 snapshots 1st 100.0 ns 2nd 100.0 ns Difference
Bin width (kcal/mol) ∆ G ∆ G ∆∆ G

10 -1511729.23 -1511759.23 30.00

1 -1511723.55 -1511762.55 39.00

0.1 -1511722.84 -1511761.63 38.79

As expected without a smoothing function, the free energy does not converge. The

functional form of the Gaussian used as the smoothing function was the following,

P (∆E) = N exp
[
−α(E − E0)2

]
. (3.11)
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By integration of the following equation (equation 3.13) the analytical solution to the

free energy can be obtained.

∆G = −kBT ln

〈
exp

[
− ∆E

kBT

]〉
(3.12)

= −kBT ln

∫
P (∆E) exp

[
−∆E
kBT

]
d∆E∫

P (∆E)d∆E
(3.13)

= −kBT ln
I1

I2
(3.14)

I2 is the simpler of the two integrals, as such it will be solved first.

I2 =

∫ ∞
−∞

exp
[
−α(∆E −∆E0)2

]
dE. (3.15)

Setting y =
√
α(∆E −∆E0),

y =
√
α∆E −

√
α∆E0 (3.16)

dy

d∆E
=
√
α (3.17)

d∆E =
1√
α
dy. (3.18)

Substituting equation 3.18 into equation 3.15 and using the rule of integrating Gaussians,∫∞
−∞ exp[−x2]dx =

√
π, leads to,

I2 =
1√
α

∫ ∞
−∞

exp[−y2]dy =

√
π

α
. (3.19)

Now, examining the numerator of equation 3.13,
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I1 =

∫ ∞
−∞

exp [−β∆E] exp
[
−α(∆E −∆E0)2

]
d∆E (3.20)

=

∫ ∞
−∞

exp
[
−β∆E − α(∆E −∆E0)2

]
d∆E (3.21)

Then, working on the exponent,

−β∆E − α(∆E −∆E0)2 (3.22)

= −
[
β∆E + α∆E2 + α∆E2

0 − 2α∆E∆E0

]
(3.23)

= −
[
∆E (β − 2α∆E0) + α∆E2 + α∆E2

0

]
(3.24)

= −α
[
∆E

(
β

α
− 2∆E0

)
+ ∆E2 + ∆E2

0

]
(3.25)

= −α[∆E2 + 2∆E

(
β

2α
−∆E0

)
+

(
β

2α
−∆E0

)2

+ ∆E2
0

−
(
β

2α
−∆E0

)2

] (3.26)

= −α

[(
∆E +

(
β

2α
−∆E0

))2

+ ∆E0 −
(
β

2α
−∆E0

)2
]

(3.27)

= −α

[(
∆E +

(
β

2α
−∆E0

))2

− β2

4α2
+
β∆E0

α

]
(3.28)

= −α
(

∆E +

(
β

2α
−∆E0

))2

− β2

4α
+ β∆E0. (3.29)

Therefore,

I1 =

∫ ∞
−∞

exp
[
−α(∆E −∆E0)2 − β∆E

]
d∆E (3.30)

=

∫ ∞
−∞

exp

[
−α

(
∆E +

(
β

2α
−∆E0

))2

− β2

4α
+ β∆E0

]
d∆E (3.31)

= exp

[
−β

2

4α
+ β∆E0

] ∫ ∞
∞

exp

[
−α

(
∆E +

(
β

2α
−∆E0

))2
]
d∆E. (3.32)

Then,
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x =
√
α

[
∆E +

(
β

2α
−∆E0

)]
(3.33)

dx

d∆E
=
√
α (3.34)

d∆E =
1√
α
dx. (3.35)

I1 is then,

I1 =
1√
α

exp

[
−β

2

4α
+ β∆E0

] ∫ ∞
−∞

exp
[
−x2

]
dx (3.36)

=

√
π

α
exp

[
−β

2

4α
+ β∆E0

]
. (3.37)

Combining I1 and I2 gives,

I1

I2
= 〈exp [−β∆E]〉 (3.38)

= exp

[
−β

2

4α
+ β∆E0

]
. (3.39)

Inserting this back into the Zwanzig equation,

∆G = −β−1 ln 〈exp [−β∆E]〉 (3.40)

= −β−1 ln
I1

I2
(3.41)

= −β−1 ln

(
exp

[
−β

2

4α
+ β∆E0

])
(3.42)

= −β−1

(
β2

4α
− β∆E0

)
(3.43)

= ∆E0 −
β

4α
(3.44)

The free energy can then be calculated directly from the exponents used from the Gaus-

sian used to fit the distribution.
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The exponents fitted when using the full histogram are shown in table 3.11 and the free

energies calculated when using these exponents within equation 3.44 are shown in table

3.12. Along with these free energies, are the resulting free energies when the sample size

for the histogram is reduced and the Gaussian re-fitted. When lowering the sample size,

the snapshots selected were spread evenly throughout the simulation.

Table 3.11: Exponents used for the Gaussian distributions when using the full his-

tograms for the 1st and 2nd 100 ns

coefficient 1st 100.0 ns 2nd 100.0 ns Difference

α 0.0010276 0.0010126 0.000015

E0 -1511661.01 -1511660.96 -0.06

Table 3.12: Free energies obtained when using a Gaussian probability density along

with equation 3.44 for the 1st and 2nd 100 ns. The number of snapshots used provides
information on how many snapshots were used to make fit the gaussian distribution.

Number of snapshots 1st 100.0 ns 2nd 100.0 ns Difference
used ∆ G (kcal/mol) ∆ G (kcal/mol) ∆∆ G (kcal/mol)

1000 -1512069.09 -1512075.07 5.98

500 -1512087.09 -1512076.93 -10.16

100 -1512232.73 -1512010.76 -221.97

Figure 3.10: The Gaussian distributions for the 1st and 2nd 100 ns

The difference in free energies is surprising when considering the small difference between

the exponents of the Gaussian distribution. Figure 3.10 shows the two distributions
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overlapping to give an indication of how similar these distributions are. These results

led to a simple numerical test to find how sensitive these exponents are. First, ∆∆ G

can be calculated by,

∆∆G =

(
E

(1)
0 − 1

4α1kBT

)
−
(
E

(2)
0 − 1

4α2kBT

)
(3.45)

= ∆E0 −
1

4α1kBT
+

1

4α2kBT
(3.46)

= ∆E0 −
1

α1
+

1

α2
. (3.47)

By setting ∆E0 to 0, the α exponents can be tested. The aforementioned numerical test

then involved setting α1 to values ranging from 0.001 to 0.999 in incremental steps of

0.001 and α2 was calculated to be α1 + 1% and α1−1%. The two ∆∆G values obtained

were then compared and are shown in figure 3.11.
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Figure 3.11: The sensitivity of the α exponents used in equation 3.44

It is clear that when α is very small there is little room for any error. However, the

relative free energy for the system in table 3.12 shows a reduction from applying the

Zwanzig equation directly. The reason for this can be found when considering that

the exponential average is not calculated, so the low-energy tail of the distribution is

not given unfair weighting. To avoid this exponential averaging issue, the cumulant

expansion of the free energy was considered[100]. This is simply the expansion of the

Zwanzig equation (equation 3.8) in a Taylor series [7], the derivation follows.

Firstly we must specify the functional form that will be used,



Chapter 3 Calculating Quantum Corrected Free Energies Using a Single Step
Perturbation Approach 79

∆G = − 1

β
ln 〈exp [−β∆E]〉 (3.48)

= − 1

β
ln

〈 ∞∑
l=0

(−β∆E)l

l!

〉
(3.49)

= − 1

β
ln

(
1 +

∞∑
l=1

(−β)l

l!

〈
∆El

〉
0

)
. (3.50)

The step from equation 3.49 to 3.50 is performed as ln(1 + x) can be expanded in a

Maclaurin series (expansion of a function using a Taylor series at 0).

f(x) =

∞∑
n=0

f (n)(a)
(x− a)n

n!
(3.51)

f(a) = ln(1 + a)

f ′(a) = (1 + a)−1

f ′′(a) = −(1 + a)−2

f ′′′(a) = 2(1 + a)−3

f ′′′′(a) = −6(1 + a)−4

· · ·

a = 0

f(x) = ln(1 + 0) + (1 + 0)−1 x

1!
+−(1 + 0)−2x

2

2!
+ 2(1 + 0)−3x

3

3!

−6(1 + 0)−4x
4

4!
(3.52)

= 0 + x− x2

2
+

2x3

6
− 6x4

24
(3.53)

= 0 + x− x2

2
+
x3

3
+
x4

4
(3.54)

=
∞∑
k=1

(−1)n−1x
n

n
(3.55)

Combining equation 3.50 and 3.55,
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∆G = − 1

β

∞∑
k=1

(−1)k−1 1

k

( ∞∑
l=1

(−β)l

l!

〈
∆El1

〉)
(3.56)

Equating 3.56 to the cumulant generating function, equation 3.57, and cancelling a factor

of 1/β,

∆G =

∞∑
k=1

(−β)k−1

k!
ωk. (3.57)

Extracting powers of β1

−βω1 = −β〈∆E〉0

ω1 = 〈∆E〉0. (3.58)

Next, extracting powers of β2,

(−β)2

2
ω2 =

(
(−β2)

2
〈∆E2〉0

)
− 1

2

(
(−β)

1
〈∆E〉0

)2

(3.59)

=
(−β)2

2
〈∆E2〉0 −

(−β)2

2
〈∆E〉20 (3.60)

ω2 = 〈∆E2〉0 − 〈∆E〉20 (3.61)

〈∆E2〉0 − 〈∆E〉20 = 〈(∆E − 〈∆E〉0)2〉0 (3.62)

= 〈∆E2 + 〈∆E〉2 − 2∆E〈∆E〉0〉0 (3.63)

= 〈∆E2〉0 + 〈∆E〉20 − 2〈∆E〉20 (3.64)

= 〈∆E2〉0 − 〈∆E〉20. (3.65)

Extracting β3,



Chapter 3 Calculating Quantum Corrected Free Energies Using a Single Step
Perturbation Approach 81

−β3

6
ω3 = −β〈∆E〉0 +

(−β)2

2
〈∆E2〉0 +

(−β)3

6
〈∆E3〉0

− 1

2

(
−β〈∆E〉0 +

(−β)2

2
〈∆E2〉0 +

(−β)3

6
〈∆E3〉0

)2

+
1

3

(
−β〈∆E〉0 +

(−β)2

2
〈∆E2〉0 +

(−β)3

6
〈∆E3〉0

)3

(3.66)

=
(−β)3

6
〈∆E3〉0 −

(−β)3

4
〈∆E2〉0〈∆E〉0 +

(−β)3

3
〈∆E〉30 (3.67)

ω3 = 〈∆E3〉0 − 3〈∆E2〉0〈∆E〉0 + 2〈∆E〉30. (3.68)

Additional powers of β can be extracted in the same manner, however the higher the

power, the more complicated the derivation. When calculating the free energy using the

cumulant expansion and applying a Gaussian distribution as a smoothing function, the

terms naturally truncate after the first 2 cumulants [100]. This should not come as a

surprise, examination of the first 2 cumulants, 〈∆E〉0 and 〈∆E2〉0−〈∆E〉20 are equal to

the average energy and the variance respectively. With these two pieces of information

a Gaussian distribution can be plotted. The third cumulant is equal to the slant of the

data, as a Gaussian has no slant, this is equal to 0. Additionally, what should be noticed

is that, when applied to a Gaussian, this approach is identical to the analytical approach

previously derived,

∆E0 = 〈∆E〉0 (3.69)

σ2 =
1

2α
(3.70)

σ2 = 〈∆E2〉0 − 〈∆E〉20 (3.71)

∆G = 〈∆E〉0 −
β

2
(〈∆E2〉0 − 〈∆E〉20) (3.72)

= ∆E0 −
β

2

(
1

2α

)
. (3.73)

Applying this method directly to the histogram without the use of a smoothing function

produced the following results shown in table 3.13.
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Table 3.13: Applying the cumulant expansion to free energy directly to the histogram,
all values in kcal/mol

Cumulant truncation 1st 100.0 ns 2nd 100.0 ns Difference

First -1511660.60 -1511660.94 0.34

Second -1511245.27 -1511233.63 -11.64

Third -1511725.47 -1512194.03 468.56

Truncation after the first cumulant shows good convergence between the two simulation

runs, however, this is just the average energy difference and cannot be considered a full

solution the free energy. Truncating at the second cumulant proves that the free energy

convergence is strongly negatively effected by the variance, i.e. the distribution is spread

over a large range of data.

In an attempt to lower the effect of the variance on the free energy, a method similar to

that of bootstrapping for extracting random samples was used. The process follows,

1. Extract 500 snapshots

2. Fit a Gaussian distribution

3. Repeat 100 times

4. Average the exponents

5. Apply the analytical equation for the free energy (equation 3.44).

It was hoped that by only including 500 snapshots from the data set, that the rare

events that dominate the free energy would be selected very infrequently and the effect

would be lessened. The results for the average exponents obtained from this approach

are shown in table 3.14 and the free energy in table 3.15. The results show a smaller

difference in the average for the data, but a worse variance. The variance has the largest

effect on the free energy, as such convergence is actually decreased.

As has been shown here and previously described [99], it is the low energy tail of the

energy difference distribution that dominates the free energy. In order to avoid this, a

cutoff method was implemented. In this approach the mean of the histogram is used as
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Table 3.14: Average exponents after a “random samples” approach

Coefficient 1st 100.0 ns 2nd 100.0 ns Difference

α 0.0010383 0.0010194 0.0000189

∆E0 -1511661.49 -1511661.48 -0.01

Table 3.15: Free energies calculated using “random sampling” approach

1st 100.0 ns 2nd 100.0 ns Difference

Snapshots ∆G (kcal/mol) ∆G (kcal/mol) ∆∆G (kcal/mol)

1000 -1512065.38 -1512072.84 7.46

a center point, then the number of snapshots included within the free energy calculation

is controlled by this cutoff. For instance, a cutoff of 10 allows any snapshot higher or

lower than the average energy by 10 kcal/mol. A Gaussian is then fitted to this new-

shorter histogram and the free energy is calculated using the analytical approach. The

average energy has been shown to be consistent between separate simulation runs, so

by using increasing amounts of data either side of this average, Gaussian distributions

of the same shape may be fitted and the free energy may converge.

Table 3.16: Free energies calculated by applying a cutoff directly to the histogram
and fitting a Gaussian, then using the analytical formula. A cutoff of 10 will include

data 10 kcal/mol above and below the mean

Cutoff 1st 100.0 ns 2nd 100.0 ns Difference

Snapshots ∆G (kcal/mol) ∆G (kcal/mol) ∆∆G (kcal/mol)

200 -1512069.90 -1512075.07 5.98

100 -1512068.19 -1512069.70 1.51

50 -1512292.93 -1512048.03 -244.90

10 -1519177.07 -1546594.99 27417.92

The inclusion of 200 kcal/mol above and below the mean, a total of 400 kcal/mol, was

to ensure the method was working. Comparison with table 3.12 shows exactly the same

values in the absence of a cut off. The aforementioned cut off is large enough to include

all the energy differences within the histogram, so the method can be considered to be

working. When changing this cut off the results do not show any consistency, a cut

off of 100 kcal/mol provides much better convergence, whereas a smaller cut off, only

including the very center of the histogram show much worse convergence. These results
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are too inconsistent to conclude that this method could provide convergence when using

a set cut off.

The issue with only including a smaller data set is that the fitted Gaussian does not

have enough information to be an accurate fit. Indeed, this is the same issue that causes

a lack of convergence when using the entire histogram, in the event of infinite sampling,

the tail of the distribution would be sampled entirely and fitting a Gaussian each time

would yield the same exponents, thus converge the free energy. Including more snapshots

allows fitting a Gaussian with less error, so this cut off method was modified and applied

to the Gaussian distributions fitted on the entire histogram. Gaussian widths were used

as the controlling variable for the cut off. The halfwidth of a Gaussian is defined as

the width at half the height, so continuations, such as the quarterwidth is the width

at quarter the height etc. The free energies were found by numerical integration of the

distribution by using equation 3.13.

Table 3.17: Free energies calculated by applying a cutoff to the Gaussian, defined by
the halfwidth, and integrating over the remaining distribution

Cutoff 1st 100.0 ns 2nd 100.0 ns Difference

Width ∆G (kcal/mol) ∆G (kcal/mol) ∆∆G (kcal/mol)

Half -1511681.48 -1511681.48 0.00

Quarter -1511691.86 -1511691.86 0.00

Eighth -1511699.35 -1511699.36 0.01

Hundredth -1511719.62 -1511719.65 0.03

Ten thousandth -1511744.66 -1511744.73 0.07

Infinite -1512064.46 -1512070.75 6.29

Results shown in table 3.17 highlight which part of the distribution is causing the lack

of convergence within the free energies. It is surprising to see that even including the

Gaussian from one ten thousandth height, convergence is achieved. However, there is no

scientific reason to ignore the data below the ten thousandth height, as such, it cannot

be ignored. A study by Hummer et al.[101] applied to calculating electrostatic solvation

free energies found that the electrostatic energies of the solute interaction with the

solvent can be better described by using multiple Gaussian distributions and selecting

the appropriate substate diagnostic parameters. In this same manner, a multistate

Gaussian approach was applied to the calculation of the free energies perturbing from
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MM to QM. Multiple Gaussian distributions result in multiple low-energy tails and

by choosing the substate diagnostic parameters the energy difference outliers could be

“smoothed” over.

The probability density for the energy difference is then no longer a single Gaussian but

multiple Gaussian distributions, combined by the following,

P (∆E) =
∑
n

cnPn(∆E). (3.74)

The process for generating these new distributions was then simply to generate new

histograms from the energy differences, using a substate diagnostic parameter. For

example, the QM energy was divided into five groups. These groups were decided upon

by by the range of QM energy, e.g. if the range was 10 kcal/mol, each group would be

2 kcal/mol wide. Histograms of the energy difference were then calculated for each of

these groups, i.e. an energy difference would count toward the histogram only if the QM

energy fell into the range described by the current QM energy group.

It was decided for the energy difference that there could only be two sensible choices for

the substate diagnostic parameters: the MM and QM energy. As such, both were used

and the results compared. The resulting distributions are shown in figure 3.12, 3.13,

3.14 and 3.15.
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Figure 3.12: Gaussian distributions used to calculate the free energy when using the

1st 100ns MM energies as the substate control parameter
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Figure 3.13: Gaussian distributions used to calculate the free energy when using the

2nd 100ns MM energies as the substate control parameter

The line boundaries for the MM data are shown below:

Minimum boundary
Line colour 1st 100 ns 2nd 100 ns

Blue -1631.580 -1602.100
Green -1593.174 -1567.220
Red -1554.768 -1532.340
Cyan -1516.362 -1497.460
Pink -1477.956 -1462.580

MAX VALUE -1439.550 -1427.700
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Figure 3.14: Gaussian distributions used to calculate the free energy when using the

1st 100ns QM energies as the substate control parameter

Figure 3.15: Gaussian distributions used to calculate the free energy when using the

2nd 100ns QM energies as the substate control parameter
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The line boundaries for the QM data are shown below:

Minimum boundary
Line colour 1st 100 ns 2nd 100 ns

Blue -1513266.870 -1513255.400
Green -1513231.992 -1513227.316
Red -1513197.114 -1513199.232
Cyan -1513162.236 -1513171.148
Pink -1513127.358 -1513143.064

MAX VALUE -1513092.480 -1513114.980

The free energy can then be found by applying the following equation,

∆G = −kBT ln

∫ ∑
n

cnPn(∆E) exp

[
− ∆E

kBT

]
d∆E. (3.75)

The resultant free energy can be seen in table 3.18.

Table 3.18: Free energies calculated by using multiple Gaussian distributions to de-
scribe the probability density, where the energies within the table are the free energies,

calculated using equation 3.75.

Substate parameter 1st 100.0 ns 2nd 100.0 ns Difference

MM energy -1512019.13 -1511968.77 -50.36

QM energy -1512221.67 -1512171.68 -49.99

Examination of the multiple Gaussian distributions used as the probability density shows

in every case the center Gaussian (red) is the largest and the Gaussians used for the

extremities (pink and blue) are the smallest, both of which are indications that there

must be some degree of overlap for the configurational space between the MM and QM.

If there was no overlap at all, the substate Gaussians would have different proportional

sizes. This further enforces the examination of the energy distributions within the box

and whisker plots previously, showing that the issue of outliers comes from rare events

that are on different sides of the distributions. Several of the substate Gaussians have

low energy tails overlapping, this could have better described the low energy energy

differences and perhaps have provided better convergence. However, the produced free

energies show poor convergence between simulation runs (table 3.18), but very good

convergence between the ∆∆G produced by different substate diagnostic parameters.
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3.4 Conclusions

The work presented within this chapter has made some progress toward calculating

quantum free energies when using classical mechanics to sample structure. Issues in

convergence can be largely attributed to the inexact overlap of the configurational space.

The effect of changing this overlap was demonstrated when using charge perturbations,

it is clear that even a small perturbation can cause convergence problems. However, by

using the multistate Gaussians, it has been shown that there is no bias towards either

the high energy or low energy structures in the QM distributions, which proves some

degree of overlap. The box and whisker plots also defend this conclusion, with snapshots

close to the median of the energy difference distribution being found on the same side of

the MM and QM energy distributions. Outlier snapshots are caused by rare events when

the configurational space does not overlap, however, because of the calculation involved

within the Zwanzig equation (equation 3.1), these rare events dominate the free energy.

In the event of infinite sampling, this single step perturbation (SSP) method will work

because all rare events will be sampled, however, this is obviously infeasible. An alter-

native to this is to apply a method that will analyse whether the classically obtained

structure is a good “fit” for a quantum ensemble. Woods et al. [94] use an acceptance

criterion to converge the free energy when perturbing from MM to QM/MM. The next

chapter will apply this method, using QM/MM only as a stepping stone to the full QM.



Chapter 4

Application of Monte Carlo

Sampling to Calculate Quantum

Binding Free Energies from DFT

Total Energies

4.1 Introduction

The previous chapter showed that for systems that do not share a high degree of con-

figurational space overlap, a direct perturbation will not converge. The classical and

quantum ensemble face this issue, where certain snapshots that are not energetical out-

liers in either the quantum or classical ensemble, become energetical outliers in the

energy difference ensemble and have a drastic effect on the free energy. In order to over-

come this issue, Woods et al. [94] applied an acceptance criterion that allowed them to

use MM to generate structures that were statistically correct for a QM/MM ensemble.

The application of this method employs a Monte Carlo (MC) technique to generate MM

structures and a Metropolis Hastings MC criterion to accept or reject these structures

to the QM/MM ensemble.

91
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An alternative approach for generating a correct quantum ensemble would be to use the

Hybrid Monte Carlo (HMC) technique [102] which is based on MD and therefore allows

larger moves between acceptance tests and does not suffer random walk errors associated

with standard Monte Carlo techniques [103, 104]. In this chapter we propose a HMC

based approach for correcting classical free energies with quantum techniques. To do

this, we use HMC to generate from MM an ensemble of QM/MM structures that is a

much closer representation of the fully quantum ensemble. By doing this, the errors as-

sociated with sampling unfavourable structures are significantly lessened and also states

intermediate between MM and QM/MM are generated which allow us to compute the

MM to QM/MM change in free energy using thermodynamic integration (TI) which has

stable convergence. We can then apply a single step free energy perturbation from our

generated QM/MM ensemble to the fully quantum ensemble.

This stepwise approach to obtain the quantum corrected free energies is possible because

free energy is a state function. Within this chapter we have chosen to move initially to a

QM/MM ensemble as this should share a higher degree of configurational space overlap

with the full QM ensemble. If this proves to be the case, then a direct perturbation

from the QM/MM accepted structures to the full QM will converge.

In section 4.2 we describe the theory behind this method, then section 4.3 details which

programs have been used. Finally, section 4.4 presents the results for systems with

increasing complexity.

4.2 Theory

The method presented here uses HMC to generate a QM/MM ensemble of structures,

using MD as the underlying engine then applying an acceptance test to check the validity

of the structures in the desired (QM/MM) potential.
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4.2.1 Hybrid Monte Carlo

In order to apply the Metropolis-Hastings criterion when perturbing from MM to QM/MM,

the generation of MM structures must obey the detailed balance condition (equation 4.1).

This can be satisfied by using pure Monte Carlo or by Hybrid Monte Carlo [102]. By

using Hybrid Monte Carlo, the random walk errors associated with Monte Carlo are

avoided and the conformational changes between R and R′ can be larger [103]. The

detailed balance can be seen here,

ρ(R)π(R→ R′) = ρ(R′)π(R′ → R). (4.1)

Where ρ(R) is the probability of occupying a certain conformation R, from here on-

wards this will be referred to as state probability. π(R → R′) is the transition proba-

bility shown in equation 4.2, which consists of the trial probability and the acceptance

probability.

π(R→ R′) = πacc(R→ R′)t(R→ R′), (4.2)

πacc(R → R′) is the acceptance probability, given by a Metropolis-Hastings criterion,

and can be seen in equation 4.3, and t(R → R′) is the trial probability, which is the

probability of moving to a new conformation.

πacc(R→ R′) = min

{
1,
ρ(R′)t(R′ → R)

ρ(R)t(R→ R′)

}
(4.3)

The generation of new conformations in hybrid Monte Carlo is performed by an under-

lying MD simulation. In order to satisfy detailed balance the MD simulation here is in

the microcanonical ensemble. To run a simulation in the microcanonical ensemble, only

two inputs are required: the initial structure and velocities. The acceptance criterion

shown in equation 4.3 also requires two values and their complimentary terms. One is

the state probability of the original conformation (the complimentary in this case is the
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state probability of the new conformation) and the other is the trial probability. The

state probability is given by the following Boltzmann distribution,

ρ(R) =
exp(−βU(R))

Z(N,V, T )
. (4.4)

Where Z(N,V, T ) is the configurational partition function.

The trial probability required for the acceptance criterion is related to the selected

momenta. To ensure a Boltzmann distribution of kinetic energy, the momenta are

randomly selected from a distribution using the Marsaglia Polar method [105]. The

Marsaglia Polar method selects random numbers on a normal distribution by a simple

process; First two pseudo random numbers µ1 and µ2 are generated between -1 and 1,

such that µ3 = µ2
1 + µ2

2 < 1. The random numbers are then generated by the following,

X = µ1

[
−2

ln(µ3)

µ3

]1/2

(4.5)

Y = µ2

[
−2

ln(µ3)

µ3

]1/2

. (4.6)

Finally, the random numbers X and Y are multiplied by the required standard deviation.

By selecting momentum, the temperature of the simulation can be controlled, thus acting

like a thermostat.

t(R→ R′) ∝
n∏
i=1

1√
2miπkBT

exp

[
−β p2

i

2mi

]
(4.7)

To derive a useful form of the acceptance criterion we place equation 4.4 and 4.7 into

equation 4.3, noticing that equation 4.7 is the functional form of kinetic energy, we

obtain,
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πacc(R→ R′) = min

{
1,

exp(−βU(R′)) exp(−βK(P′))

exp(−βU(R)) exp(−βK(P))

}
= min

{
1,

exp(−βH(R′,P′))

exp(−βH(R,P))

}
= min

{
1, exp(−β(H(R′,P′)−H(R,P)))

}
= min {1, exp(−β∆H(R,P))} . (4.8)

When applying this method to generate a classical NVT ensemble of structures the

acceptance should be 100%. This is because the underlying MD simulation is performed

in the NVE ensemble, as such the total energy H(R,P) should be constant, and the

difference between the initial and final total energies will equal 0. So if the acceptance

is below 100% this is due to errors in the MD integrator, which can be minimised by

reducing the timestep, i.e. the smaller the timestep the better energy conservation. This

method will produce an accurate classical canonical ensemble of structures.

The next section deals with the case when we are moving to a QM/MM NVT ensemble.

4.2.2 Accepting to the QM/MM ensemble

The QM/MM model used within this method was initially the ONIOM approach (me-

chanical embedding)[106] later electrostatic embedding was used. ONIOM provides a

simple QM/MM description of the system by the following,

U
QM/MM
complex = UMM

complex − UMM
region + UQMregion. (4.9)

Where UMM
complex is the total complex energy of the system when calculated using a clas-

sical potential and UQMregion is the quantum potential energy of the region of interest (e.g.

a binding pocket and ligand).

Every time the acceptance test is applied we build up the QM/MM ensemble by an

additional structure. In practice the acceptance in equation 4.8 is applied by taking

the initial kinetic energy directly from the generated momentum, the initial potential
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energy is the QM/MM energy of the initial structure. The final kinetic energy is taken

directly from the MD simulation and the final potential energy is the QM/MM energy

of the final structure. So the classical potential energy is not used at all within the

QM/MM acceptance. If a structure is accepted, then it is used within the QM/MM

ensemble. However, if a structure is rejected, the last accepted structure counts again

in the QM/MM ensemble.

This will produce a QM/MM ensemble of structures at the selected temperature, in this

case 300K.

4.2.3 Stratification

In order to make the transition from MM to QM/MM smoothly, additional λ steps can

be introduced. To do this, a simulation is performed in an identical fashion as previously

described, with the only exception within the acceptance test (equation 4.8). Where the

potential energy U(r) becomes U(r) = (1− λ)Uclassical + λUQM/MM .

The free energy is then obtained using thermodynamic integration (TI),

∆G =

∫ 1

0
dλ

〈
∂U(λ)

∂λ

〉
λ

∂U(λ)

∂λ
= UQM/MM − Uclassical

∆G =

∫ 1

0
dλ
〈
UQM/MM − Uclassical

〉
λ

4.2.4 Transitioning to the full QM

If we make the assumption that the UQM/MM ensemble is an accurate representation

of the UQM ensemble, the transition from QM/MM to QM is simple. To perform this

perturbation, the energy differences UQM − UQM/MM are calculated then the Zwanzig

equation can be used as shown in equation 4.10.
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∆G = −kBT ln
〈
exp

[
−β∆UQM−QM/MM

]〉
QM/MM

. (4.10)

4.3 Methods

4.3.1 Classical details

All parameters for non-waters, unless otherwise specified, were obtained using antecham-

ber [97]. The equilibration procedure was undertaken within Gromacs v4.6.2 [107] using

the leapfrog integrator and is as follows. For ethane and ethanol in 448 and 450 wa-

ters respectively and alanine dipeptide in vacuum, structures were initially minimised

with the steepest descent algorithm for 5000 steps with a cutoff of 11 Å, long range

electrostatics were treated with PME and a cut-off method was used for Van der Waals

interactions. Following this, a 500 ps simulation in the canonical ensemble was run using

a timestep of 1 fs, the Berendsen thermostat was used to heat the system smoothly to

300 K, finally a 1 ns isothermal-isobaric simulation was performed using the Berendsen

barostat. After equilibration the box size decreased such that only a maximum of an 8

Å cut-off could to be used for the non-bonded interactions.

The process for N2 in vacuum was similar, although the pressure equilibration was

skipped and a cutoff method was used for long range electrostatics. N2 in varying

solvents (Ar, CH4 and TIP3P water) was equilibrated following the above procedure,

although a cutoff method was used for long range electrostatics within Ar and the

parameters for Ar were taken from White (1999) [108].

The equilibration for cyclodextrin for the minimisation and isothermal-isobarric equili-

bration followed the above process, the simulation within the canonical ensemble differed

slightly, in that the system was heated over 500ps and then allowed to run at 300K for

an additional 1.5 ns.

The classical simulations within hybrid Monte Carlo were performed using the velocity-

verlet algorithm, with a 0.25 fs timestep, the reason for such a small timestep can be

seen in figure 4.1, which shows the effect of changing the timestep for an MD simulation
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that was performed 3 times. The overall energy is conserved, but the fluctuations cause

a lower classical acceptance rate when any larger timestep is used. Each simulation is

run for 20 ps and then an acceptance test is applied.

Figure 4.1: Running an MD simulation using different timesteps to show fluctuations

of the total energy in the microcanonical ensemble

4.3.2 QM details

The quantum energies were calculated using ONETEP [54]. The first 100 applications

of the acceptance test (steps) were discounted and used as equilibration. The setup for

ONETEP, in the case of N2, was that 4 NGWFs were used with a 7.0 a0 localisation

radius. For ethane, ethanol, alanine dipeptide and cyclodextrin 4 NGWFs were used

on heavy atoms and 1 for light atoms, all were 8 a0 and in both cases a kinetic energy

cutoff of 800eV was used.
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4.4 Results

4.4.1 Applying HMC to N2 while Modifying the Equilibrium Bond

Length

A simple test system of N2 in vacuum was selected to show the accuracy of the generated

QM ensemble, when applying the Metropolis-Hastings criterion in comparison to the

direct method of extracting snapshots from an MD trajectory at regular intervals and

applying a single step free energy perturbation to the QM level (in the same manner

shown in the previous chapter). The advantage of such a simple test system is that there

is no need to define a classical region, meaning that we accept into a purely quantum

ensemble.

For simplicity, the snapshots required for the single step perturbation approach (SSP)

were taken from the ensemble when λ = 0 of the Metropolis-Hastings applied method

(MHA). These snapshots accurately represent the classical canonical ensemble.

All parameters were obtained for N2 from antechamber [97] with the exception of the

equilibrium bond length which was set to the experimental length of 1.098 Å [109]. The

bond length within the force field was then increased in increments of 0.01 Å and the

effect on the proposed quantum ensemble was observed. The results can be seen in table

4.1.

1.098 SSP MHA

+ Average Bond Length Average Bond Length Acceptance at λ=1

0.00 1.098 1.104 62.8

0.01 1.109 1.106 62.0

0.02 1.121 1.107 54.2

0.03 1.132 1.108 42.6

0.04 1.140 1.109 33.2

Table 4.1: The effect on the average bond length (shown in Å) of the quantum ensem-
ble when changing the equilibrium bond length within the force field. The acceptance

rate is shown as a percentage and is for λ=1
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As expected, taking snapshots directly from an MD trajectory when the force field is

parameterised badly, produces a poor representation of a quantum ensemble. This can be

seen by examining the average bond lengths of Table 4.1. However, when structures have

to go through an acceptance criterion, as in MHA, the average bond length is conserved

close to the experimental value. By forcing the classical and quantum configurational

space to overlap less, the acceptance at λ = 1 is drastically effected, in some cases no

structures were accepted post-equilibration. This shows the acceptance rate is a good

way to gauge how well the force field represents the quantum region: if the acceptance

rate is very low then the force field is badly paramterised. In a simple system such as

this, identifying which parameter is the main cause of the poor acceptance rate is trivial,

however, when moving to larger systems this will be highly non-trivial. So, although

the issue is identified the solution remains difficult to obtain.

The free energies of moving from the MM potential to the QM potential were then

calculated and are shown in figure 4.2.

Figure 4.2: Comparison of free energy calculated when using the SSP and MHA

methods while changing the classical equilibrium bond length of N2

It is apparent by examination of figure 4.2 that the free energies diverge from each other

as the equilibrium bond length is increased in the classical potential. The explanation
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for this is found when considering the potential of mean force (PMF) plots produced

when using λ windows. These are shown in figure 4.3.

Figure 4.3: PMFs when moving from MM (λ = 0) to QM (λ = 1) for N2 when

altering the classical equilibrium bond length

The Zwanzig equation (equation 4.10) assumes the PMF will be a straight line between

the MM (λ = 0) and QM (λ = 1). This assumption proves to be catastrophic to the free

energies as the force field parameters move from the ideal values. These results provide

us with confidence that the MHA method can improve upon the results obtained when

using the SSP method.

Previously we showed convergence issues when perturbing from QM/MM to QM. In

order to identify the cause of these convergence issues, N2 in solvents of increasing

complexity was used. These solvents were Ar, CH4 and TIP3P water.

4.4.2 N2 in Ar

As mentioned above, the first test is the simplest as there is no electrostatic or polarisa-

tion terms required to model the 250 Ar atoms. Because of this the classical potential
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should provide an accurate description of the ensemble. The first step to calculate the

free energies is to generate ensembles at different λ values between the MM and QM/MM

descriptions for the system. The resultant PMFs in figure 4.4 shows excellent conver-

gence between the two simulation runs, the difference between the free energies for these

runs was 0.09 kJ/mol.

Figure 4.4: PMFs when moving from MM (λ = 0) to QM/MM (λ = 1) for N2 in 250

Ar

Using the structures that were accepted at λ = 1 (the QM/MM ensemble), the fully

QM energy was calculated on the entire system. Then a single step perturbation was

performed, the produced free energy was then added to the free energy required to move

from an MM description to a QM/MM description of the system. The resultant values

can be seen in Table 4.2.

This small difference within the free energies is within thermal error. Further analysis of

the free energy calculated between the QM/MM and QM was performed by increasing
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Free Energy (kJ/mol)

Run 1 -2297316.80

Run 2 -2297315.90

Difference 1.10

Table 4.2: Free energy when moving from MM to QM for N2 in 250 Ar

the number of snapshots included within the Zwanzig equation in increments of 1. The

produced graph will show if a single or a few snapshots are dominating the free energy.

Figure 4.5: Increasing the number of snapshots included in the Zwanzig equation

when perturbing from QM/MM to QM

The results shown in figure 4.5 display a “sawtooth” shape which is characteristic of poor

sampling [99]. However, the free energy for the two runs is similar because the changes

within the free energy are small, which can be largely attributed to the simplicity of this

system. By increasing the complexity of the system, it is predicted that this “sawtooth”

sampling will have a much larger effect on the free energy.

4.4.3 N2 in CH4

By introducing the solvent of 250 CH4, there are now small partial charges and the

complexity of the system is increased. The intermolecular interactions are now no longer
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solely dispersion driven. As before, first the free energy moving from an MM description

to a QM/MM description was found.

Figure 4.6: Free energy when moving from MM to QM for N2 in 250 CH4

Figure 4.6 shows the two PMFs are almost identical and this is reflected in the 0.03

kJ/mol free energy difference between them.
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Figure 4.7: Increasing the number of snapshots included in the Zwanzig equation

when perturbing from QM/MM to QM for N2 in CH4

Performing the same analysis as before: increasing the number of snapshots included

within the Zwanzig equation, figure 4.7 was produced. The “sawtooth” shape is again

present, but the final snapshots show no large changes in either simulation runs. The

final difference in the free energy when moving from MM to QM can be seen in Table

4.3. This excellent agreement shows that the way the classical force field has modelled

the intermolecular interactions here agrees well with the quantum description.

Free Energy (kJ/mol)

Run 1 -909735.43

Run 2 -909735.72

Difference 0.29

Table 4.3: Free energy when moving from MM to QM for N2 in 250 CH4
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4.4.4 N2 in TIP3P Water

The final test system is the most complex and most interesting system. By introducing a

higher partial charge, electrostatics will be the main driving force for the intermolecular

interactions and polarisation effects will be present, although it should be noted that the

charge on nitrogen is 0, but the intermolecular interactions of the solvent will be driven

primarily by electrostatics. Polarisation is included implicitly within the force field [85]

and, as this is mechanical embedding QM/MM, it will not be modelled explicitly by

the quantum calculation. To keep the box size similar and using a realistic density,

499 waters were used. The PMFs generated by moving from a classical to a QM/MM

description are shown in figure 4.8. The convergence between the simulation runs was

0.12 kJ/mol.

Figure 4.8: Free energy when moving from MM to QM/MM for N2 in 499 water

Next, the free energy between the QM/MM and full QM was calculated. As before this

was performed is a stepwise manner to ensure convergence, the results can be seen in

figure 4.9. Again the “sawtooth” shape is present, and the two runs have not converged

to a single value. Also notice that the “jumps” in the graph are larger than in any
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other solvent, which implicates that the electrostatics have the largest effect on the

convergence. If this is the case then using a QM/MM description that uses electrostatic

embedding instead of mechanical embedding should improve the quality of the ensemble

at the QM/MM level.

Figure 4.9: Increasing the number of snapshots included in the Zwanzig equation

when perturbing from QM/MM to QM for N2 in TIP3P

The total free energy moving from MM to QM can be seen in Table 4.4.

Free Energy (kJ/mol)

Run 1 -3678943.45

Run 2 -3678948.83

Difference 5.38

Table 4.4: Free energy when moving from MM to QM for N2 in 250 CH4

Regardless of the solvent used convergence was achieved to the QM/MM level. The

perturbation the full QM displayed “sawtooth” shaped graphs, which are stereotypical

of poor sampling. This indicates that the QM/MM description is not close enough to the

full QM description, which could be improved by using electrostatic embedding instead

of the mechanical embedding used here.
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The “jumps” within the graphs increase in size as the main intermolecular interactions

between solute and solvent shift between dispersion and electrostatics, because of this

electrostatic embedding was introduced to improve configurational overlap between the

QM/MM and QM.

4.4.5 Introducing electrostatic embedding

Electrostatic embedding differs from mechanical embedding in that the QM part of the

system is surrounded by embedded point charges that represent the rest of the system.

For systems in vacuum or when mechanical embedding was used, equilibration was

achieved rapidly. However, the introduction of point charges led to slower equilibration.

In order to increase the speed at which this could be achieved, a classical equilibration

was included initially, i.e. after the system had been minimised, heated and the box size

equilibrated, a further classical equilibration was performed using HMC to accept to a

classical NVT ensemble.

Although N2 in various solvents has been used heavily as a test system, in order to

appreciate the additional accuracy provided by using electrostatic embedding an solute

that has a larger interaction with the solvent was chosen, in this case ethanol in 450

TIP3P water. TIP3P was used because of the additional acceptance that occurred when

comparing rigid with flexible waters previously.

However, it was found that once out of the 100 steps of classical equilibration and 100

steps of QM/MM equilibration, no snapshots were accepted. By comparing the MM

and QM potential energy figure 4.10 is produced. Although the QM/MM Hamiltonian

energy is used within the acceptance criterion, the potential energies of both QM/MM

and MM can be compared because of the following relationship,
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∆H = (EjQM + EjKIN )− (EiQM + EiKIN ) (4.11)

= EjQM − E
i
QM + EjKIN − E

i
KIN (4.12)

= EjQM − E
i
QM + EiMM − E

j
MM (4.13)

= (EjQM − E
j
MM )− (EiQM − EiMM ). (4.14)

Where the step in equation 4.13 can be performed because the MD is performed in the

microcanonical ensemble, i.e. (assuming no integrator errors) the difference in kinetic

energy and classical potential energy will be equal and opposite, ∆EKIN = −∆EMM , i

represents the current snapshot and j represents the new snapshot.

Figure 4.10: Comparison of MM and QM/MM potential energy for ethanol in 450

TIP3P waters

The positive correlation shown in figure 4.10 shows that there is a relationship between

the potential energies, but the correlation is not high enough for a good acceptance

rate. However, this correlation can be drastically improved by including the classical

dispersion within the QM/MM potential energy. The result can be seen in figure 4.11.
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Figure 4.11: Comparison of MM and QM/MM + LJ potential energy for ethanol in

450 TIP3P waters

Even with an R2 value of 0.99 the MM and QM/MM + LJ overlap is still insufficient to

obtain any acceptance outside of the equilibration steps. The reasoning for this becomes

clear when examining figure 4.12 and 4.13.
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Figure 4.12: Level of overlap between the MM and QM/MM+LJ, both have been

shifted down so the lowest energy snapshots sit at 0
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Figure 4.13: The difference between the QM/MM+LJ and MM potential energy, the

average energy difference has been subtracted from each energy difference

These figures (figure 4.12 and 4.13) highlight a flaw in the method, if the QM/MM+LJ

energy is lower than the MM energy in figure 4.12 then the energy difference is nega-

tive and is accepted, regardless of the true probability to select this snapshot from a

QM/MM+LJ potential energy surface. By examining the energy differences and sub-

tracting the average energy difference, figure 4.13 is produced, which shows a large

number of the snapshots appearing around 0 kJ/mol. This shows that the MM is, on

the whole, a good representation of the QM/MM+LJ surface. However, rare events

cause a large negative energy difference, which then cause the simulation to get stuck.

For example, in figure 4.13, the lowest energy difference occurs very early on, as such

after this snapshot no other is accepted. This is caused by the inexact overlap between

the MM and QM/MM+LJ.

There are several possible solutions to this issue, the first being to alter the force field

to improve the level of overlap, alternatively the MC steps can be made much smaller

to make use of the correlation between structures to ensure that energy differences are

close together.

4.4.5.1 Small MC Steps

By lowering the movement of the system between subsequent snapshots the acceptance

rate should increase. In order to lower the movement, the length of the MD simulation

used to generate structures was made shorter. By lowering the time of the MD to 0.25fs, a

single timestep, the acceptance for ethanol in 450 electrostatic embedded waters increases

to 99%. The disadvantage with this is that each snapshot is correlated, so cannot give

an accurate representation of the free energy.

Lowering the time between structures was tested on a larger system of cyclodextrin in

complex with chlorobenzene in vacuum (figure 4.14). Both MD lengths of 2 fs and 5 fs

were tested, and in both cases the acceptance was below 10%.
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Although in theory using much smaller moves works, using a method like this will take

a long time to converge the free energy, the bottleneck being the calculation of the

QM/MM.

Figure 4.14: PhCl bound to Cyclodextrin

4.4.5.2 Altering the Force Field/Removing Degrees of Freedom

In order to achieve higher acceptance rates, alterations to the force field were considered.

If the classical potential energy surface was a better match for the QM/MM potential

energy surface, then the acceptance will increase. In order to test this a simple system

of ethanol in vacuum was used.

The quantum parameters were obtained by geometry optimisation using ONETEP with

the same setup as for the single point energy calculations used throughout this study.
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The equilibrium values in the force field were then altered to match the values for the

quantum optimised structure. Table 4.5 shows the results of changing these values

Parameter changed Acceptance %

Bond lengths < 5*

Angles < 2*

None*1 27.6

Fixed Bond Lengths LINCS*1 30.2

Fixed Bond Lengths SHAKE*1 25.0

Higher Bond force constant < 5*

Fixed Angles < 10*

Table 4.5: *simulations cancelled before end of equilibration due to extremely low ac-
ceptance, *1simulations using standard classical parameters. Acceptance when altering

the classical potential

It is clear from Table 4.5 that altering the force field in such a simple manner does not

improve the overlap with the quantum surface. This was all tried for ethanol, which is

not a standard residue. The test was then repeated for alanine dipeptide, which uses the

AMBER residues, ACE, NME and ALA (figure 4.15). The results are shown in Table

4.6.

Figure 4.15: Alanine dipeptide, residues from left to right are NME, ALA and ACE
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Parameter changed Acceptance %

None < 3*1

Frozen bond LINCS < 5*1

Table 4.6: *1simulations using standard classical parameters. Acceptance when al-
tering the classical potential for alanine dipeptide

Although alanine dipeptide uses standard residues the acceptance is still very poor. By

freezing out the bond vibrations the acceptance slightly increases, however, this could

just be an artefact of the stochastic nature of the method.

The next step was to freeze part of the system, initially this was selected to be the QM

region, i.e. the solute. The ligand was allowed to move for the equilibration, then frozen

and the water allowed to move around it. The system selected was N2 in 499 water and

the acceptance was 13.2 %. If the ligand is allowed to move throughout the simulation,

this acceptance drops to below 1 %. Although an improvement, this acceptance is still

a little low. Following this the water was frozen and the ligand allowed to move. The

results can be seen in Table 4.7.

Acceptance % at λ = 1 Free Energy (kJ/mol)

Run 1 39.8 -487623.80

Run 2 20.8 -488176.35

Table 4.7: Free energy and acceptance rate when allowing N2 to move in frozen water

A difference in the free energy of 552.55 kJ/mol for a simple system such as N2 in water

suggests major convergence problems. If this method were to be applied to a more

flexible ligand the results would be expected to show even worse convergence.

4.5 Conclusions

Using classical mechanics as a guiding potential to generate a QM/MM ensemble of

structures, in practice, only works if the potential energy surfaces match. The acceptance

test used is sensitive to differences in energy, similar to that found when using the single

step perturbation approach in the previous chapter. However, unlike when using the



116
Chapter 4 Application of Monte Carlo Sampling to Calculate Quantum Binding Free

Energies from DFT Total Energies

single step perturbation approach, the problem is more subtle. The acceptance test uses

the QM/MM potential energy and kinetic energy, so in theory should not depend upon

the classical potential energy. However, because the underlying MD simulation must be

run in the microcanonical ensemble, the change in the kinetic energy, will be equal-but-

opposite the change in the classical potential energy. If this is taken into account, the

resultant acceptance test is based upon the differences between the QM/MM potential

energy and the MM potential energy. Such that, if the difference of a new snapshot is

lower than the original snapshot, it will always be accepted.

The cause of the mismatch between the potential energy surfaces can be attributed

to a number of things; For small ligands, with relatively few degrees of freedom, it is

caused by either the interaction between the ligand and the electrostatic embedded water

molecules, or the intermolecular interaction in the solvent. Whereas, for larger ligands,

the degrees of freedom start to have an impact on the acceptance.

In order to improve the acceptance, at least for the smaller ligands, a bias could be

applied, so that only if the energy difference is around a central point will the snapshot

be accepted. This bias will be the focus of the next chapter.



Chapter 5

Improving convergence between

MM and QM by application of a

bias

5.1 Introduction

By using hybrid Monte Carlo [102] a desired potential can be sampled by using a cheaper,

guiding potential. In this work so far, QM/MM is the desired potential and MM is the

cheap guiding potential. The acceptance criterion for such a method is,

Aij = min{1, exp[−β((EjQM/MM + EjKIN )− (EiQM/MM + EiKIN ))]}. (5.1)

EiQM/MM is the QM/MM potential energy of snapshot i, the current snapshot. EiKIN

is the kinetic energy, for snapshot i this is taken from a Gaussian distribution, for j this

is extracted from the underlying MD simulation. MD is used as an engine to generate

uncorrelated structures quickly and is run with constant Hamiltonian energy (i.e. the

microcanonical ensemble). By using a small MD time step of 0.25 fs the errors in the

integrator will be negligible and the difference in the QM/MM Hamiltonian used within

equation 5.1 can be rewritten as,

117
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Figure 5.1: QM potential energy surface for methanol

∆H = (EjQM/MM + EjKIN )− (EiQM/MM + EiKIN ) (5.2)

= EjQM/MM − E
i
QM/MM + EjKIN − E

i
KIN (5.3)

= EjQM/MM − E
i
QM/MM + EiMM − E

j
MM (5.4)

= (EjQM/MM − E
j
MM )− (EiQM/MM − E

i
MM ). (5.5)

Where the step in equation 5.4 is possible as the MD simulation is run within the NVE

ensemble, as such ∆EKIN = −∆EMM . This shows that the acceptance of structures into

the QM/MM ensemble is related to the level of overlap between the MM and QM/MM.

In order to examine the extent at which the MM and QM potential energy surfaces

differ, a model system was used. This model system was selected to be methanol with

all degrees of freedom frozen except the C-O bond and the C-O-H angle. By using

this system, two dimensional plots can be easily generated and compared and give and

indication of how well and where the potential energy surfaces match.
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Figure 5.2: MM potential energy surface for methanol

Figure 5.3: QM - MM energy difference surface for methanol
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From figure 5.1 and 5.2 it is clear to see the poor overlap which results in figure 5.3. The

regions of negative energy difference have been caused by the different types of surface

(Morse like vs Harmonic). During a hybrid Monte Carlo simulation, an excessive weight

is given to these low energy difference structures, regardless of the position on the QM

potential energy surface. So for the above example, if a structure is in this low energy

difference region, it will be accepted. However, this is a high energy QM region and not

a good representation of the quantum ensemble. A similar conclusion was also drawn

from Iftimie et al. [104] where they fit the classical potential such that it approximately

matches the ab initio potential energy surface.

Notice however, that the position of the minimum is the same for both the MM and QM

surfaces. Therefore, it should be possible to apply a bias to ensure better sampling of

the minimum. We hope that such an approach will prevent the simulation from getting

stuck in a low energy difference region. The use of biasing potentials within free energy

calculations is not novel [110, 111, 112, 113]. Reference [111] uses the energy difference

to bias the free energy, then unbiases by using the relationship described in reference

[110],

〈X〉 =
〈X exp(βω)〉bias
〈exp(βω)〉bias

. (5.6)

Where X is the property of interest, ω is the applied biasing potential and the subscript

bias refers to ensembles generated in the presence of the biasing potential.

By including the bias into the acceptance criterion, a biased ensemble can be generated.

The acceptance criterion is then,

Aij = exp[−β{[(UfQM + ωf )− UfMM ]− [(U iQM + ωi)− U iMM ]}]. (5.7)

By setting ω to a simple function, such as 1
2κ(∆U−〈∆U〉)2 there are only two unknowns

to identify: κ and 〈∆U〉. ∆U in this case is the difference in the QM and MM energies

i.e. ∆U = UQM − UMM . Identifying the average energy difference is a process that is
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updated at every proposed snapshot. The process to find the constant κ is slightly more

complicated.

After X steps of the simulation being stuck in a low energy difference, a bias is applied

such that if the next snapshot proposed was equal to the average energy difference, it

would be accepted. i.e.,

〈∆U〉 = (∆U i) + ωi. (5.8)

Then using the value of ωi the value for κ is found,

κ =
2ωi

(∆U i − 〈∆U〉)2
(5.9)

The value for ωf is then calculated using κ. κ will remain unchanged unless the simu-

lation gets stuck in a low energy difference snapshot for X steps again.

After 100 steps of hybrid Monte Carlo, the average energy difference and the constant

κ are considered converged and held fixed for subsequent steps.

Once the biased ensemble has been generated, the property of interest to unbias using

equation 5.6 is the energy difference required for TI,

〈
∂U

∂λ

〉
=

〈
∂U
∂λ exp[−βω]

〉
bias

〈exp[−βω]〉bias
(5.10)

U = λUQM + (1− λ)UMM (5.11)

∂U

∂λ
= UQM − UMM . (5.12)

For the perturbation between the QM/MM and QM, the Zwanzig equation (equation

4.10) is used. The property to unbias in this case is the following,
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〈
exp[−β(UQM − UQM/MM )

〉
=

〈
exp[−β(UQM − UQM/MM )] exp[βω]

〉
bias

〈exp[βω]〉bias
. (5.13)

5.2 Methods

The details of the simulations are identical to the previous chapter, but are re-capped

here for clarity.

5.2.1 Classical details

The parameters for ethanol and N2 were obtained by using antechamber [97]. The

equilibration procedure was undertaken within Gromacs v4.6.2 [107] using the leapfrog

integrator and is as follows. All systems, N2, ethanol and alanine dipeptide in vacuum,

were initially minimised with the steepest descent algorithm for 5000 steps with a cutoff

of 11 Å, long range electrostatics and Van der Waals were treated with the cut-off

method. Following this, a 500 ps simulation in the canonical ensemble was run using

a timestep of 1 fs, the Berendsen thermostat was used to heat the system smoothly to

300 K. After equilibration the box size decreased such that only a maximum of an 8 Å

cut-off could to be used for the non-bonded interactions.

The classical simulations within hybrid Monte Carlo were performed using the velocity-

verlet algorithm, with a 0.25 fs timestep.

5.2.2 Quantum details

The quantum energies were calculated using ONETEP [54]. The first 100 applications

of the acceptance test (steps) were discounted and used as equilibration. The setup for

ONETEP, in the case of N2, was that 4 NGWFs were used with a 7.0 a0 localisation

radius. For ethanol and alanine dipeptide 4 NGWFs were used on heavy atoms and 1

for light atoms, all were 8 a0 and in both cases a kinetic energy cutoff of 800eV was

used.
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5.3 Results

In order to validate the proposed method, N2 in vacuum was selected to act as a test

system. By using such a simple test case, the unbiased simulation can be performed

and can be used as a reference against which to compare the biased simulation results.

Because the unbiased simulation can be performed, it is unlikely that the simulation

will get stuck in a low energy difference well, therefore a bias will never be applied.

In order to circumvent this, a pre-set bias constant (κ) of 0.5 (kJ/mol)−2 was applied.

The initial comparison between the obtained average energy difference for the unbiased

and de-biased simulation can be seen in Table 5.1. Where the de-biased simulation is a

biased simulation that has had the bias removed.

Unbiased De-biased

Average energy difference (kJ/mol) -52430.70 -52434.95

Table 5.1: Comparison of average energy difference between the QM and MM at
λ = 1

The initial results shown in the above Table display a 4 kJ/mol difference between the

average energy difference obtained from the de-biased and unbiased simulations. This

result was surprising considering only a single degree of freedom is present within N2. To

discover the reason for this difference the equation used to unbias the biased simulation

was examined,

〈
∂U

∂λ

〉
=

〈
∂U
∂λ exp[βω]

〉
bias

〈exp[βω]〉bias
. (5.14)

There are two aspects to this equation, the numerator and the denominator. By exam-

ining the average for these values as the number of included snapshots is increased, an

idea of how converged the results are can be obtained.
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Figure 5.4: Calculating the numerator of equation 5.14 as the number of snapshots

is increased

Figure 5.5: Calculating the denominator of equation 5.14 as the number of snapshots

is increased (the y-axis is unitless)
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The denominator very quickly converges to between 1.8 and 1.9, however, the numerator

continues to show large fluctuations throughout the simulation. When considering how

small the fluctuations of the denominator are, it is clear that the fluctuations within the

numerator must be due to large differences between the MM and QM energies.

Further tests were then run, these include running an additional 500 hybrid Monte Carlo

steps using the same constant (0.5 (kJ/mol)−2) and center of bias as the previous simu-

lation, using a smaller constant (0.1 (kJ/mol)−2) and finally, doubling the equilibration

steps within hybrid Monte Carlo from 100 to 200.

0.5 constant (cont) 0.1 constant 200 step equilibration

De-biased average energy difference (kJ/mol) -52434.82 -52434.96 -52434.92

Table 5.2: Comparison of average energy difference between the QM and MM at
λ = 1 varying the constant and equilibration length

The results for the additional test simulations in Table 5.2 do not match the average en-

ergy difference obtained from the unbiased simulation in Table 5.1. Interestingly, all the

results that were obtained from a biased simulation compare very well to one another,

falling within a range of 0.1 kJ/mol. This excellent convergence led to further investi-

gation of the unbiased free energy term in equation 5.14 as generated by the original

simulation. In a similar process to the examination of the numerator and denominator,

we viewed the unbiased free energy as a function of the number of snapshots included.

The resulting graph (figure 5.6) shows very little ( < 0.2 KJ/mol) fluctuation after 300

snapshots.
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Figure 5.6: Calculating the unbasied energy as the number of snapshots is increased

The converged free energy for the simple system led to the application on more compli-

cated test systems. Initially ethanol in vacuum was used. Again this system can be used

within the unbiased simulation so a pre-set set bias of 0.5 was applied and the standard

500 hybrid Monte Carlo steps were used.

Unbiased simulation De-biased simulation

Average energy difference (kJ/mol) -81546.81 -81544.51

Table 5.3: Comparison of average energy difference between the QM and MM at
λ = 1 for ethanol in vacuum

The results in Table 5.3 again show a small difference between the average energy differ-

ence obtained from the biased and unbiased simulations. In order to check convergence,

the biased simulation was continued for an additional 1000 hybrid Monte Carlo steps.
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Unbiased simulation De-biased simulation (cont)

Average energy difference (kJ/mol) -81546.81 -81544.22

Table 5.4: Comparison of average energy difference between the QM and MM at
λ = 1 for ethanol in vacuum

Performing an additional 1000 steps shows no change in the average energy difference.

As before, the average energy difference was calculated as a function of the number of

snapshots included and the result is shown in figure 5.7.

Figure 5.7: Calculating the unbasied energy as the number of snapshots is increased

The slight “jumps” present within the above figure show the first signs of “sawtooth”

behaviour, characteristic of poor sampling[99]. However, these “jumps” have little effect

on the free energy for this system. To identify if a larger effect is seen when the system

used has more degrees of freedom, alanine dipeptide was used. However, as was shown

in the previous chapter, the unbiased method cannot be used to reliably sample alanine

dipeptide. As such the unbiased simulation was not performed, so three repeats of the

biased simulation were run to check convergence. The results can be seen in Table 5.5.
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Run 1 Run 2 Run 3

De-biased average energy difference (kJ/mol) -245749.95 -245755.24 -245759.52

Center of bias (kJ/mol) -245743.87 -245740.52 -245741.59

Constant (kJ/mol)−2 0.34299 0.13284 0.07103

Acceptance % 30.6 40.8 36.2

Table 5.5: Comparison of simulation details for three repeats of alanine dipeptide in
vacuum

It is clear from Table 5.5 that convergence has not been achieved, with a range of values

around 10 kJ/mol. However, the center of the bias for each simulation, had a much

lower range of values. Following these results, a simulation was performed with a high

constant of 10 (kJ/mol)−2. The acceptance rate dropped to 7.4% as would be expected

from a more intense bias. The final result was -245743.68 kJ/mol, which is within 6

kJ/mol of run 1. This may be attributed to the higher constant within run 1, indeed, it

from Table 5.5 it is apparent that the higher constant, the closer to the unbiased average

energy will be to the bias center. The convergence for the high constant simulation for

alanine dipeptide can be seen in figure 5.8.

Figure 5.8: Calculating the unbasied energy as the number of snapshots is increased

for alanine dipeptide in vacuum with a constant of 10 (kJ/mol)−1
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To test if the unbiased average energy can be reproduced if the same bias center and

constant is used, run 1 was performed again. This time an unbiased average energy of

-245751.31 kJ/mol was achieved. This value differs with the original value of -245749.95

kJ/mol by 1.36 kJ/mol. This difference is within thermal error and shows some promise,

however, more sampling is required to make a firm conclusion. This is problematic as

each simulation run involves quantum calculations that take between 10-15 minutes of

cpu time on 4 cores.

With the consideration that more sampling is needed to make any firm conclusions,

the computational cost of the quantum calculations of simple systems and that these

systems are only simple “test” systems. A numerical model was designed with the

intention to provide some insight on what would happen on larger systems without the

prohibitive cost of the calculations. Chapter 3 showed that the QM-MM energy values

are a Gaussian distribution, as such the numerical model selected “energies” from a

Gaussian using the Marsaglia Polar method[105] detailed in Chapter 4. A constant of

0.3 (kJ/mol)2 was used as this is similar to the constant generated from the simulation

of alanine dipeptide in vacuum and within the range of the pre-set value for ethanol in

vacuum. The bias center was set to -80,000, similar to that of ethanol in vacuum, and

the standard deviation was altered to represent systems of increasing complexity, i.e.

the larger the system, the worse the overlap between the MM and QM configurational

space, the more diverse the energy differences, so the larger the standard deviation of

the Gaussian distribution. The computational cost of this numerical test is negligible,

so 1,000,000 values were collected for each run. The results are shown below.
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Figure 5.9: Results for the numerical test, bias center at -80000 kJ/mol with a con-

stant of 0.3 (kJ/mol)−2

Figure 5.9 shows that convergence is linked to the standard deviation. Indeed, for a

standard deviation of 5 kJ/mol and above, convergence is never achieved and a “saw-

tooth” shape is present. Each standard deviation was used in 2 numerical tests, to test

whether convergence could be achieved. The standard deviation affects the width of

the Gaussian distribution, so higher standard deviations represent systems with more

degrees of freedom. If the Gaussian distribution presented in Chapter 3 (figure 3.9) is

considered, the range is 138 kcal/mol (577.39 kJ/mol) and the standard deviation is

approximately 144 kJ/mol, which is considerably larger than the standard deviations

used within the numerical model. Considering the system that produced this energy dif-

ference Gaussian was a relatively simple one of ethanol in 138 water molecules, it does

not bode well for complex biologically relevant systems, such as proteins with many
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more degrees of freedom. This leads to the conclusion that the biased method presented

within this chapter will not converge for systems of biological interest.

5.4 Conclusions

This chapter initially showed the differences within the MM and QM potential energy

surfaces of a simple molecule (methanol). These differences highlighted the problem

with direct applications of HMC, in that the resulting generated ensemble can get stuck

in a low-energy difference structure, which is actually a high energy structure in the

desired potential. As such a bias was applied to ensure that simulations would not get

stuck in unfavourable structures.

This new biased method provided converged results for N2 and ethanol in vacuum, but

the results for ethanol started to show signs of “sawtooth” sampling. In both cases

the free energies from the unbiased simulation did not match those from the biased.

However, a variety of experiments were attempted using N2 in vacuum, and although

not matching the unbiased simulation, all the biased free energies matched.

We then moved on to a slightly more realistic system of alanine dipeptide in vacuum,

which could not be compared to an unbiased simulation due to poor acceptance (see the

previous chapter for more information). Three independent simulations were performed,

which did not converge, however, when the parameters used within the bias were set to

match the parameters generated for the first run and the simulation re-run, the resultant

free energy was within thermal error of the value originally produced.

Following this, a numerical model was designed to represent what would happen if this

method were applied to systems of increasing complexity with a much higher degree of

sampling. The results showed that after a standard deviation of 5 kJ/mol convergence

between two simulation runs could not be achieved. This was then compared to real

values produced within Chapter 3, where the standard deviation was 144 kJ/mol for

ethanol in 138 water.
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This method has some merit when sampling simple systems, and can produce converged

free energies for more complex systems than the unbiased method, but still faces issues

when the systems are more complex. In order to improve the convergence the guiding

potential must better match the desired potential.



Chapter 6

A “Stepping Stone” Approach for

Obtaining Quantum Free

Energies of Hydration

6.1 Introduction

In previous chapters, it has been shown that the use of hybrid Monte Carlo [102] (HMC)

can generate an ensemble that is relevant for a more expensive potential. However, if

the overlap is insufficient, the acceptance rate is too low to provide a feasible method.

Chapter 5 showed this inexact overlap in more detail and that even when a bias is

applied, convergence cannot be achieved.

This chapter deals with the inexact overlap of the configurational space between the

MM and QM, by accepting to an ensemble closer to the MM potential, but one that

includes information on polarisation. The structures from this new potential are then

used within the Zwanzig equation (equation 3.1) to calculate the quantum free energy.

Both interaction energies and total energies were tested.

The method presented here was applied to five solutes that represent a variety of chemical

behaviours, including, crucially, different polarities. The hydration free energies for these

133
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ligands were calculated in order to test the method. Although not presented here, we

expect that it should be possible to extend this method to include protein-ligand binding.

The work within this chapter has been published in J. Phys. Chem. B [114].

6.2 Methods

Our method first generates an ensemble of structures closer to the fully quantum ensem-

ble by applying the Hybrid Monte Carlo method using classical molecular dynamics to

sample configurations, but accepting to a QM/MM ensemble. The QM/MM ensemble

energy is calculated as the energy of the MM system but with the Coulombic component

of its interaction energy replaced by the equivalent interaction energy in the quantum

description. This takes into account the electronic polarisation of the solute as a result

of the surrounding solvent. Once an ensemble of QM/MM structures has been generated

then a single step perturbation approach can be applied to calculate the free energy of

mutation from the QM/MM to the full QM ensemble.

6.2.1 Theoretical Details

6.2.1.1 The Hybrid Monte Carlo Method

The theory behind HMC can be seen in Chapter 4. The acceptance criterion can also

be seen below,

πacc(R→ R′) = min

{
1,

exp(−βU(R′)) exp(−βK(P′))

exp(−βU(R)) exp(−βK(P))

}
= min

{
1,

exp(−βH(R′,P′))

exp(−βH(R,P))

}
. (6.1)

The method presented here aims to mutate a solvent-ligand complex from its MM rep-

resentation to a “quantum corrected” representation where the classical electrostatic
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interactions have been replaced by interactions from a QM/MM calculation. The ac-

ceptance criterion is then,

πacc(R→ R′) = min

{
1,

exp(−βUMM+QM int
Coul

(R′)) exp(−βK(P′))

exp(−βUMM+QM int
Coul

(R)) exp(−βK(P))

}
. (6.2)

Where the target potential energy is calculated by,

UMM+QM int
Coul

= U comMM

− [U comMMCoul
− UhostMMCoul

− U ligMMCoul
]

+ [U comQM/MM − U
host
QM/MM − U

lig
QM/MM ] (6.3)

= U comMM − U intMMCoul
+ U intQMCoul

. (6.4)

The above equation uses the classical potential energy (U comMM ) for the whole complex

(ligand in solvent) and subtracts from it the electrostatic (Coulomb, “Coul”) contribu-

tion of the classical interaction energy (U intMMCoul
). This interaction energy is replaced by

the interaction energy between the QM/MM ligand (U ligQM/MM ) and the host (UhostQM/MM )

from the QM/MM calculation (in this work the host is the solvent), where the QM/MM

description used here is the quantum ligand surrounded by classical point charges. The

dispersion (Lennard-Jones) part of the interaction energy is not replaced - it still comes

from the MM calculation.

6.2.1.2 Transitioning between MM and QM/MM

In order to make the transition from UMM to UMM+QM int
Coul

smoothly, intermediate

λQM/MM steps can be introduced. The introduction of these steps is trivial, and can be

performed by replacing the UMM+QM int
Coul

(R)term of equation 6.2 with the following,

UMM+QM int
Coul

(R;λQM/MM ) = (1− λQM/MM )UMM + (λQM/MM )UMM+QM int
Coul

. (6.5)
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HMC is run for all λ states between the MM and QM/MM, such that at λQM/MM = 0

we are accepting to a classical canonical ensemble and at λQM/MM = 1 to the QM/MM

corrected canonical ensemble. The difference for each lambda value is in the MC accep-

tance criterion which influences the progress of the MD simulations accordingly. The

free energy between the MM and QM/MM is then obtained using thermodynamic inte-

gration (TI),

∆G =

∫ 1

0
dλQM/MM

〈
∂U(λQM/MM )

∂λQM/MM

〉
λQM/MM

∂U(λQM/MM )

∂λQM/MM
= UMM+QM int

Coul
− UMM

∆G =

∫ 1

0
dλQM/MM

〈
UMM+QM int

Coul
− UMM

〉
λQM/MM

(6.6)

=

∫ 1

0
dλQM/MM

〈
U intQMCoul

− U intMMCoul

〉
λQM/MM

. (6.7)

Each lambda window is built up by running classical MD simulations and applying the

acceptance test shown in equation 6.2. To clarify, no MD simulation that involves a mix

of MM and QM/MM are needed.

6.2.1.3 Transitioning to the full QM

We expect that the QM/MM ensemble is a much closer representation of the QM en-

semble, so the transition from the QM/MM to QM should be possible with a method

which is simpler than the HMC method. Therefore, to perform this perturbation, the

energy differences UQM − UMM+QM int
Coul

are calculated and then the Zwanzig equation

is used to calculate the free energy change from QM/MM to full QM.

We have also computed this free energy by using the interaction energy, as defined in

equation 2.5, of the full quantum system, in place of the total energy UQM . The full

QM interaction energy in DFT contains also the attractive component of dispersion

interactions which are given by various types of empirical correction [57, 58]. We have
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therefore also investigated the effect of changing this empirical dispersion correction

between different dispersion methods.

As we are doing the transition to full QM via a QM/MM state, our full thermodynamic

cycle has three steps as shown in Figure 6.1. Figure 6.2 shows the whole correction

process. This differs from attempts in previous chapters by the inclusion of the QM/MM

“step” before moving to the QM.

Figure 6.1: The three-step thermodynamic cycle. Cycle I shows the classical mutation
from ligand A to B, cycle II describes the transition from MM to QM/MM and finally

cycle III shows the transition from QM/MM to full QM

6.2.2 Computational details

This chapter aims to validate this new method, by using it in the calculation of hydration

free energies, as preparation for application to more challenging host-ligand systems

in the future. We applied our method to the calculation of hydration free energies

for ethanol, ethane, ethylene glycol, dimethyl ether and propane, each in a simulation

cell with explicit waters. These molecules were chosen due to their different degree of

polarity, ranging from non-polar (hydrophobic) such as ethane and propane to highly

polar (hydrophilic) such as ethylene glycol.

6.2.2.1 Classical Simulations details

The charges for the solute were obtained from AM1-BCC calculations using Antecham-

ber [97] and the force field parameters were taken from the GAFF Force field [23]. The

water model used throughout was the TIP3P model [11]. Electrostatics were treated
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Figure 6.2: Flow chart for computing steps 2 and 3 of the 3-step thermodynamic
cycle, of Figure 6.1.

with PME and a cut-off of 8Å was used for Van der Waals interactions. All classical

MD simulations were performed within the double precision version of Gromacs v4.6.5

[107], to allow us to use the Velocity Verlet integrator as access to kinetic energies is re-

quired for the HMC method. The double precision was necessary to ensure good energy

conservation in the NVE simulations.

Each ligand was solvated with 450 waters and the whole system was equilibrated using

the following procedure. Structures were initially minimised with the steepest descent

algorithm for 5000 steps. Following this a 500 ps simulation in the canonical ensemble

was run using a timestep of 1 fs and the Berendsen thermostat was used to heat the
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system raising the temperature linearly from 100K to 300K. Finally a 1 ns isothermal-

isobaric simulation was performed using the Berendsen barostat. After equilibration the

box size for each ligand was around 24 Å3.

Using the NPT equilibrated structures, further equilibration was then applied using the

HMC method where structures were accepted from the NVE ensemble into a classical

NVT ensemble for 100 HMC steps. As the MD simulations used within the HMC method

were run in the microcanonical ensemble, we expect to have an acceptance rate of 100%

as the total Hamiltonian energy should be constant. However, due to fluctuations within

the total energy during the NVE simulation, this is commonly not the case. To minimise

these fluctuations a timestep of 0.25 fs was used. The length of these MD simulations

was determined by tests described in section 6.2.3.

Classical relative free energies between systems were calculated using TI. 17 classical

λMM windows were used, mutating the charges and VdW interactions at the same time

using soft-core potentials. The classical λMM windows had the values 0.0, 0.002, 0.01,

0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.998, 1.0, where the small λMM

differences at the end points are to tackle discontinuities. Each classical λMM window

underwent an equilibration procedure which is the same as that mentioned above, with

the exception that the NPT simulation to equilibrate the box size was 500ps. Following

this, a production simulation of 2ns was run. Errors associated with the TI free energies

were calculated by hysteresis and the free energies are the average of the forward and

reverse calculations.

6.2.2.2 Quantum simulations details

Following the classical 100 step equilibration within the HMC method, we switched from

going from NVE (MM) to NVT (MM) to going from NVE (MM) to NVT (QM/MM).

The first 100 steps of this process were also taken as equilibration where the QM/MM

energy was computed according to equation 6.3. After this, 500 steps were run and

counted as production, for the transition to QM/MM. This process was repeated, ac-

cepting to different values of λQM/MM . We used three values, λQM/MM = 0, 0.5, 1.
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Each quantum simulation was performed using ONETEP [54]. 4 NGWFs were used

on heavy atoms and 1 on hydrogen, all with a radius of 8.0 a0. Calculations used

a psinc kinetic energy cutoff of 800eV. Embedding charges[98] were used to represent

water within the calculations, so only the ligand was fully represented by QM. Only the

electrostatics were corrected by quantum mechanics, so dispersion was included at the

classical level, as in equation 6.3.

The fully quantum calculations for cycle III of the thermodynamic cycle of Figure 6.1

were obtained by restoring the embedding charges to explicit atoms, keeping all other

parameters the same with the exception of the dispersion component which, within

the total energy perturbation, was treated by a damped London potential [57] using

the “Elstner” method[59]. Within the interaction energy perturbation approach the

“Elstner”[59], “Grimme D2”[58], “Grimme D3” [115] and the dispersion component of

the force field were all tested. When the force field dispersion was used within the

correction, this was extracted from the classical simulation and used within the QM

interaction energy.

6.2.3 Determining the length of the MD simulations used within the

HMC method

In order to optimise the length of the MD simulations required to run the HMC method

with a reasonable acceptance rate, the MD runs were increased progressively from 0.1

ps to 1 ns. This was applied to ethanol in 450 waters and was repeated for two runs

to ensure convergence. Each HMC run consisted of 500 production steps following

the equilibration procedure described in subsection 6.2.2.2. The results can be seen in

Table 6.1. The “Energy” refers to the average energy differences (U intQMCoul
− U intMMCoul

)

at λQM/MM = 1. These energy differences are required for TI (equation 6.7). By

examining the energy differences at λQM/MM = 1 where the acceptance will be lowest,

we can confirm the acceptance at other windows will also be sufficient.
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Table 6.1: Determining the MD simulation length within the HMC method for ethanol
in 450 waters. Energy is the average of (U int

QMCoul
− U int

MMCoul
) at λQM/MM = 1

Energy (kJ/mol) / Acceptance (%)

HMC step size (ps) Run 1 Run 2

0.1 -16.08 / 14.0 -16.90 / 17.5

1 -15.46 / 16.2 -16.56 / 11.5

10 -16.01 / 13.6 -14.99 / 13.3

100 -16.78 / 8.6 -14.27 / 16.6

1000 -13.64 / 21.6 -16.21 / 11.2

The largest difference between two HMC runs shown is 2.51 kJ/mol which is around

thermal error (kBT , 2.5 kJ/mol ). Similarly there is only a small amount of error

between simulations of different lengths. This suggests that the energy difference is

essentially independent of the length of the MD simulation used for this system. In

order to ensure uncorrelated snapshots while keeping the length of CPU time required

for each MD manageable, 100 ps was chosen as the HMC step size, for all our subsequent

HMC simulations. The 1000 ps simulations show no substantial improvement on the

100 ps run, while taking an order of magnitude longer to run.

6.3 Results and Discussion

6.3.1 Classical TI

The classical free energy of mutation (relative hydration free energies) between our

ligands was calculated using ethanol as the reference. The values are shown in Table 6.4

in the Classical column. All the experimental values were obtained from reference [116]

with the exception of that for ethylene glycol, which was taken from reference [117].

The mutation to propane shows the largest hysteresis which is 1.2 kJ/mol, which can

be attributed either to the force field or to the introduction of two additional atoms,

whereas all other mutations involved either one or no additional atoms. All calculated

free energies were within thermal error (2.5 kJ/mol) from the experimental free energies,

with the exception of ethanol to ethane which, while being a well converged mutation,

is 7.2 kJ/mol away from the experimental value, pointing to force field limitations.
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6.3.2 Calculating the free energy of mutation from MM to QM/MM

Figure 6.3: PMFs for moving between UMM and UMM+QMint
Coul

. Each point shows the

average energy difference required for equation 6.7 in kJ/mol. These energy differences
were calculated for three λQM/MM windows for each system. The value in brackets

shows the acceptance.

The resulting dV/dλQM/MM values as a function of λQM/MM value from the application

of the HMC method to all test systems are shown in figure 6.3. Three runs were per-

formed for each ligand and in each case they are consistent and converge to the same

value.

The largest differences between same λQM/MM window are shown by ethanol and ethy-

lene glycol. In the case of ethanol the largest difference of 2.5 kJ/mol between the three

runs is observed at λQM/MM = 1 and the difference for ethylene glycol is much larger
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at 5.8 kJ/mol again at λQM/MM = 1. This can be explained by the presence of the

hydroxyl groups forming much stronger bonds with the surrounding water than any of

the other ligands used, leading to low acceptance. Indeed this is reflected by the values

shown within the graph. Ethane shows the smallest energy difference in going from

λQM/MM = 0 to λQM/MM = 1. This can be expected as it is the most apolar, meaning

that the quantum Coulombic contribution to the interaction energy was very close to

the classical equivalent. Following this trend, propane is the next apolar, thus has the

next smallest energy difference, then dimethyl ether, followed by ethanol, then ethylene

glycol.

This trend is also reflected within the acceptance ratios (shown in brackets within figure

6.3). Again, the lowest acceptance is found when applying the HMC method to ethylene

glycol, with an acceptance below 10%. This low acceptance is caused by large mismatch

between the energy differences, which shows an inconsistency between the QM and

MM electrostatic interaction energies. This fluctuation of energy differences could be

explained by the strong electronic polarisation of polar ligands. Polarisation is implicitly

included within the AMBER force field and explicitly within the QM/MM description.

Implicit polarisation may be inaccurate in a chemical environment that varies from

that of water (e.g. a binding pocket), but the force field nevertheless shows excellent

correlation with experimental hydration free energies (Classical column, Table 6.4).

In order to assess the polarisation effect on these ligands, the dipole moments of struc-

tures that were accepted to the QM/MM ensemble for dimethyl ether and ethylene glycol

were calculated both classically and within ONETEP. The classical dipole moment was

calculated once per structure, given that the force field is not polarisable, so the dipole

does not change between vacuum and solvent, but the quantum dipole moment was

calculated twice, once in solvent (embedding point charges) and once in vacuum. The

results are shown in Table 6.3.2 for 5 structures for each molecule that span the range

of the dipole moments obtained by each calculation method.
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Table 6.2: Magnitude of the dipole moments in eÅ for five example structures of
ethylene glycol and dimethyl ether accepted into the QM/MM ensemble

Ligand Structure QM/MM Solvated QM/MM Vacuum Classical

Ethylene glycol 1 0.457 0.340 0.313

2 0.635 0.530 0.579

3 0.725 0.566 0.515

4 0.720 0.492 0.641

5 0.895 0.735 0.460

Dimethyl ether 1 0.237 0.121 0.338

2 0.304 0.218 0.378

3 0.300 0.230 0.371

4 0.318 0.229 0.320

5 0.331 0.220 0.329

The classical dipole moment for dimethyl ether is fairly constant between the five sam-

pled snapshots, whereas the dipole moments for ethylene glycol fluctuate. The dis-

crepancy between the classical dipole moments and those of the QM/MM system in

solvent are markedly larger (0.2-0.4 eÅ) for the ethylene glycol than for dimethyl ether

(discrepancies of less than 0.1 eÅ). In fact for dimethyl ether two of the classical dipole

moments correctly match the quantum dipole moments, and with the exception of struc-

ture 4 and 5, the quantum dipole moments for dimethyl ether within solvent match the

experimental value of 0.271 eÅ extremely well, whereas classical mechanics overestimates

it. Another interesting comparison between the methods can be made with a TIP3P

water molecule, where the quantum dipole moment in vacuum is calculated to be 0.380

eÅ and the classical dipole moment is 0.489 eÅ. The experimental value is 0.385 eÅ,

showing again that the quantum value is extremely close and the classical value, again,

much less accurate. Although, it should be noted that the dipole of an isolated TIP3P

water molecule is higher in order to better match the bulk properties of water.

These results highlight the fact that only by using quantum corrections we can account

for the explicit polarisation, as the force field can at best describe it in an implicit

(average) manner, and indicate that the lower HMC acceptance for ethylene glycol may

be a consequence of the large discrepancy in polarisation between the classical and

quantum descriptions.

Integrating each energy vs λQM/MM value curve gives the free energy, in accordance

with equation 6.7. These free energy values are shown in Table 6.3 for each of the three
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runs.

Table 6.3: Free energy of changing from UMM to UMM+QMint
Coul

. All values shown are

in kJ/mol, the difference is the largest difference between the three runs

Run 1 Run 2 Run 3 Range

Ethanol -11.29 -10.62 -10.45 0.84

Ethane -2.78 -2.61 -2.35 0.43

Ethylene Glycol -17.97 -19.82 -19.38 1.86

Dimethyl Ether -8.60 -7.72 -8.99 1.27

Propane -7.67 -7.45 -7.35 0.32

The magnitude of these free energies again follows the trend of the polarity of the

molecules. The differences show the convergence between the free energies. In every case

convergence has been achieved. The largest difference is present for ethylene glycol of

1.86 kJ/mol, however this value is still within thermal error (2.5 kJ/mol). By combining

these free energies with the classical free energies shown in Table 6.4 under the Classical

column, according to cycles I and II of the three-step thermodynamic cycle (Figure 6.1)

we obtain the QM/MM corrected free energies shown in Table 6.4 under the MM +

QM int
Coul corrected column.

The addition of the QM correction due to the MM to QM/MM transition to the classical

relative free energies between ethanol and ethane shows a definite improvement of the

free energy which was badly underestimated by the force field. The corrections for

ethylene glycol and propane move the free energies in the direction of improvement

although they overshoot the experimental values. The free energy for dimethyl ether

is shifted further away from the experimental value, as the classical free energy was

extremely close already. These results are encouraging and demonstrate the effect of

QM/MM derived polarisation on the free energies as an intermediate step towards the

final stage where we will introduce the full QM description.

6.3.3 Calculating the free energy of mutation from QM/MM to QM

Once a QM/MM ensemble of 500 structures was built up, the next step was the pertur-

bation to the fully quantum system (see cycle II in figure 6.1). This was performed in
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two ways: Firstly by using the difference in total potential energies (equation 6.8) and

secondly by using the difference in interaction energies (equation 6.9). In both cases,

this perturbation was performed by using the Zwanzig equation (equation 3.1).

∆U total = UQM − UMM+QM int
Coul

(6.8)

∆U int = U intQM − U intMM+QM int
Coul

. (6.9)

Where U intQM is the interaction energy at the full QM level and U int
MM+QM int

Coul
is the

interaction energy at the QM/MM level.

6.3.4 Total Energy Perturbation

The final calculated free energy when using total enegies (equation 6.8) shows no consis-

tency between the two runs which demonstrates lack of convergence of the exponential

average of the Zwanzig equation. This is demonstrated for three of the ligands in the

left panel of Figure 6.4. Figure 6.4 shows the free energy as a function of the number of

snapshots, i.e. a running exponential average as the number of snapshots is increased.

These graphs show that the free energy is affected dramatically by individual snapshots.

The graphs show large variation between the two runs for each ligand. For example,

ethylene glycol a difference of 35.17 kJ/mol is present after 500 snapshots, while for

dimethyl ether the difference between the runs is 0.33 kJ/mol. The small difference

for dimethyl ether suggests convergence, however, if Figure 6.4 is examined it is clear

that large “jumps” in the free energy are present and there is no guarantee that they

won’t affect the results if we were to run more than 500 snapshots. This is described as

“sawtooth” sampling and is characteristic of a lack of overlap between the configuration

space[99]. This observation has also been made when moving between a purely classical

ensemble and a quantum ensemble by Cave-Ayland et al. [118]. They explain that this

lack of configuration space overlap is due to differences in the intra-molecular degrees

of freedom. Therefore by excluding all intra-molecular terms (i.e. using interaction
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Figure 6.4: Free energy calculated with the Zwanzig equation as a function of the
number of snapshots included when perturbing between the MM +QM int

Coul and QM
ensembles for ethylene glycol, dimethyl ether and ethane. The blue line represents Run
1 and the red represents Run 2. For clarity, we don’t provide an absolute energy scale
for the y axis, as only the relative energies between each run are important. Three

ligands are shown as a representative of the best and worst examples.

energy-based corrections) convergence can be achieved. Indeed this is what is observed

here and will be covered in more detail in the next section.

To complete the three-step thermodynamic cycle when using total energies, an additional

calculation must be performed of the ligand in vacuum. This is displayed in the lower half

of cycle II and III in figure 6.1. However, the initial MM+QMint
Coul correction required
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for the ligand in vacuum (cycle II) would essentially be a standard classical MD as

the interaction energy in vacuum is zero, and with the system size being relatively

small, the fluctuation in the total Hamiltonian energy would be small, leading to a

high acceptance. The ligand energy differences required for the mutation from MM to

QM/MM in the Zwanzig equation (cycle III) were taken from values already calculated

within the top section of cycle II. For each ligand the calculated free energies converge

to less than 0.2 kJ/mol between the two runs. This result combined with the fact that

our water molecules are rigid leads to the conclusion that the lack of overlap between

the configuration space should be attributed to the inter-molecular interactions between

the water molecules. While this appears to be the case for the small rigid ligands we

use in this study for larger ligands, with more intra-molecular degrees of freedom, we

would expect that the lack of configuration overlap would be caused also by ligand

intra-molecular terms.

6.3.5 Interaction Energy Perturbation

Interaction energies are commonly used when applying the Zwanzig equation as it has

been often observed that convergence with total energies is problematic[93]. The smaller

magnitudes of interaction energies and the better overlap of the energies lead to better

convergence. This can be understood by the notion that the free energy of binding is

primarily delivered by the interactions between the ligand and receptor and these are

improved by the quantum description.

When using interaction energies to go from QM/MM to full QM (equation 6.9), a much

higher degree of convergence is obtained. This is shown in Figure 6.4. The largest

difference between the two runs is 1.25 kJ/mol (ethylene glycol), well within thermal

error (2.5 kJ/mol). These free energies can then be combined with the cycle II free

energies from the three-step thermodynamic cycle (Figure 6.1). The final corrected free

energies can be seen in Table 6.4 under the column labelled “Elstner”. In every case

the free energies do not improve. Dimethyl ether and ethylene glycol stay essentially

unchanged. Thus, for the more polar ligands, where the main driving force behind the

binding energies is electrostatic (e.g. ethylene glycol and dimethyl ether) the correction
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from QM/MM to QM is small. This is in contrast with the non-polar ligands, where

dispersion is the prominent interaction, where the corrections increase the relative hy-

dration free energies. Overall the cycle II corrections improve the correlation with the

experimental free energies, however little to no improvement upon cycle II is achieved

when applying the final cycle (cycle III) in figure 6.1.

We have further examined the method used to calculate the dispersion. In our first

attempt to implement cycle III corrections the Elstner method was used. We have then

also examined keeping classical dispersion (as calculated by the force field) and alter-

natively using Grimme’s D2 correction. Where the Elstner and Grimme D2 corrections

use slightly different damping functions, see reference [119] for more information. If the

dispersion calculated by the force field is used, it is effectively cancelled out within the

Zwanzig equation. This is because the interaction energy at the QM/MM level can be

divided into two components, the electrostatics and dispersion.

∆U int = ∆U elec + ∆Udisp (6.10)

The electrostatic term came from the QM/MM correction and the dispersion term comes

from the force field. Similarly, the interaction energy at the full QM description can be

split into the intrinsic DFT terms (e.g. the Coulomb and exchange) and the empirical

dispersion correction. Thus, in the case where we retain the force field dispersion in the

QM description, it will cancel out with the dispersion included in QM/MM as the two

are the same.

The use of the force field dispersion significantly improves the free energies calculated

for cycle II for every single ligand. Grimme’s D2 correction causes the largest errors

between the different dispersion approaches, to the point that overall it is a deterioration

of accuracy compared to the classical and to the QM/MM results. We have also tried the

more advanced Grimme D3 approach but the results obtained are essentially the same

as with D2 method. In order to have a single measure of accuracy for each method,

the RMS error for each method was calculated and is shown in Table 6.4. This was

calculated with respect to the experimental values. It is clear that QM/MM and QM
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with force field dispersion improves upon the classical result with the QM with force

field dispersion producing dramatic improvement with RMS error of only 2.05 kJ/mol.
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Finally we investigate how our method depends on the choice of exchange-correlation

functional. For this purpose we have tried the LDA and BLYP exchange-correlation

functionals in addition to the PBE functional that we have used up to now, for a single

mutation (ethanol to ethane) and examined how these changes affect free energies at

the QM/MM and at the full QM descriptions. The results are shown in Table 6.5.

Table 6.5: Free energy corrections with different exchange-correlation functionals
applied to the relative hydration free energy between ethanol and ethane. The experi-
mental relative hydration free energy is 7.66[116] kJ/mol and the classical free energy

is 0.53 kJ/mol.

Free Energy (kJ/mol)

Functional MM+QMint
Coul corrected Elstner Force field disp Grimme D2 Grimme D3

PBE 8.71 10.31 7.52 11.07 10.79

LDA 9.46 15.48

BLYP 8.70 9.07 7.13 9.81 9.24

These results indicate that within the GGA approximation, switching between PBE and

BLYP plays a small role in obtaining accurate corrections. This is indicates similar be-

haviour between GGA functionals. For the LDA the result for the QM/MM description

is 0.7 kJ/mol worse than the GGA functionals but really erroneous for the full QM

description with an error of about 8 kJ/mol with respect to experiment. We should note

that we have not used any dispersion correction for the LDA calculations as the LDA

method intrinsically includes spurious attractive interactions that play a role of disper-

sion in this case or in any case make the empirical dispersion corrections not applicable

to LDA.

Previously (Table 6.4), the results showed that using the force field dispersion yields the

best corrections and here the same trend can be observed again for PBE and BLYP.

6.4 Conclusions

We have presented a “stepping stone” approach for computing QM corrections to MM

free energies of binding that aims to overcome the convergence difficulties of similar
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approaches which are based on a single-step free energy perturbation from the classi-

cal to the quantum system. Our approach includes two stages: In the first stage we

gradually mutate the MM system to QM/MM using thermodynamic integration (TI)

on intermediate ensembles generated via hybrid Monte Carlo simulations. This stage

accommodates most of the change in polarisation associated with the MM to QM muta-

tion. As a result the second stage, which is a single-step QM/MM to full QM mutation

actually converges well. Here, we validated our method on the calculation of hydration

free energies for a set of ligands with different polarities. We found that the mutation

from MM to QM/MM is a definite improvement in the relative hydration free energies

with respect to classical TI results, and the stage 2 correction where we mutate to the

full QM ensemble produces further and more substantial improvement reducing the clas-

sical max and RMS errors by a factor of 2. The approach is quite sensitive to the choice

of dispersion model but less so in the choice of GGA exchange correlation functional.

This method could be further tested on protein-ligand binding in the future.





Chapter 7

QM-PBSA Simulations on

Trypsin with Benzamidine

Derivatives

7.1 Introduction

The calculation of accurate binding free energies is of great importance within compu-

tational chemistry [120, 121, 122, 123]. As such there are many different methods used

to calculate the binding affinity within protein-ligand complexes. These range from the

statistically rigorous, like thermodynamic integration [124] and free energy perturba-

tion [78] to other more computationally efficient, but less rigorous approaches such as

MM-PBSA (molecular mechanics - Poisson-Boltzmann surface area) [79].

MM-PBSA is an example of a continuum method, where solvent effects are included by

approximating the solvent as a polarisable continuum. One of the key features of PBSA

approaches is that the linearised Poisson-Boltzmann equation (equation 7.1) is used to

approximate the polar solvent effects.

∇ε(r) · ∇φ(r)− κ′φ(r) = −4πρ(r). (7.1)

155
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Where ε(r) is the dielectric permittivity, φ(r) is the electrostatic potential, κ′ is the

Debye-Hückel parameter and ρ(r) is the charge density. The non-polar interactions are

then approximated, and typically include the Van der Waals and the cavitation energy.

The combination of the polar and non-polar terms give the solvation free energy. This

can be combined with the entropy and interaction energy to give the free energy of bind-

ing. These energies are obtained as averages over snapshots which require a molecular

dynamics (MD) simulation in explicit solvent to be run, which is highly dependent on

the parameterisation of the force field used. The development of force fields has inherent

limitations which mean that ligands, especially when they contain non-standard groups

that are difficult to parameterise, may not be accurately described. In addition to this,

the widely-used fixed charge force fields cannot explicitly model quantum inherent in-

teractions such as the electronic charge transfer and polarisation, although force fields

with such capabilities are being developed. In an ideal world the classical MD would be

replaced with ab initio MD, but this is far too computationally expensive to be feasi-

ble for the time scales required for free energy calculations. As a compromise between

speed and accuracy, we can develop a QM-PBSA approach by replacing the classical

interaction energy within the free energy of binding calculation with the quantum in-

teraction energy. This work builds on the work of Fox et al. [125] who calculated the

free energy by using QM-PBSA on the T4 lysozyme double mutant L99A/M102Q. This

double mutant contains an artificial buried polar cavity within the protein, which was

then used to bind to a variety of simple ligands. Here, we apply QM-PBSA on a more

challenging and complex system, which is more biologically relevant and contains larger

ligands bound within a solvent exposed cavity. In addition, we evaluate and compare

different ways to obtain the most accurate classical results before applying the quantum

correction.

To obtain accurate classical free energies of binding two of the most well parameterised

force fields were tested, the ff99SB[21] and the ff14SB[22]. The ff14SB was further tested

by restraining a section of the protein within the MD simulations. By allowing only the

region around the binding pocket to move, the noise within the free energy is expected

to be reduced. The idea of cancelling noise in this fashion is not novel. For example,
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Bradshaw et al. [126] used a noise-cancelling approach in MM-PBSA when applied to

different mutants around protein-protein interfaces. When applying this method, only

a region around the binding pocket could move independently, the rest of the protein is

common between ligands, in a dual-topology inspired variant to MM-PBSA.

The calculation of the quantum energy on the whole complex would not be possible

using conventional DFT approaches. These calculations can, however, be performed in

a linear scaling code like ONETEP [54]. The solvation free energy is calculated by the

implicit solvation model within ONETEP, more details can be found in reference [127].

For our study we have selected trypsin bound to benzamidine derivatives, which is a

well studied system [128, 129, 130, 131]. Trypsin is a serine protease. Serine proteases

are a group of enzymes whose main biological function is to cleave peptide bonds [132].

This is a key step in digestion and ensures that polypeptides are kept small enough to

be absorbed by the small intestine. Although the binding affinity between trypsin and

benzamidine derivatives has been investigated many times previously, these ligands are

non-standard residues which means they are not parameterised as well as the amino

acids present within the protein are. This can further compromise the accuracy of the

calculated binding energies. Seven ligands were chosen for our study and are shown in

figure 7.1, selected for the variety of chemical behaviours, including halogens, amines

and nitrites, and wide range of experimental binding energies, from −4.7 kcal/mol to

−7.6 kcal/mol.

Previous studies on this system have employed a variety of methods and achieved good

correlation with experiment, in most cases predicting the binding energy to within 1

kcal/mol of the experimental values. In 1997 Essex et al.[133] used Monte Carlo simula-

tions with free energy perturbation to calculate free energies and found that polarisation

plays a big role in the binding between trypsin and benzamidine finding that the more

polar the ligand is, the weaker the binding energy due to the more polar ligands being

stabilised better in solvent. Radmer et al.[134] then used the Cornell force field with

three different methods. These included using a single simulation to estimate the binding

energies, using the first derivatives of the binding free energy and the PROFEC method
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(Pictoral Representation of Free Energy Components). In 2008 Jiao et al.[135] investi-

gated the effect of polarisation when calculating the binding free energies and found that

it is of critical importance to include explicit polarisation by using the AMOEBA po-

larisable force field. They then used MM-PMPB/SA (molecular mechanics-polarisable

multipole Poisson-Boltzmann/surface area), which uses an end-point continuum calcula-

tions paired with a polarisable force field to calculate binding free energies[136] . These

results were then used in comparison to the results obtained when using BAR, a method

which involved conformational sampling, using the AMOEBA polarisable force field, to

a much higher degree[137]. They found that when using the alchemical mutation, the

entropy has a positive effect on the results, where the opposite is true when sampling is

based on MD only. They suggest that the alchemical mutation helps to capture more

of the configurational entropy than a direct MD simulation. The driving force behind

the binding was investigated in Shi et al.[138] and found to be electrostatics. Schwarzl

et al.[129] introduced a new method based on MM-PBSA that achieves extremely good

correlation with experiment which, however, relies on an empirical scaling factor that

affects the Van der Waals interaction before the final free energy is calculated. Further

investigation into the use of this method led to the development of applying it in com-

bination with QM/MM[130] and treating the ligand only with QM with the rest of the

system represented by MM. In a comparison of methods when using trypsin, includ-

ing LIE and MM-PBSA, no single method came out as the definitive one to use[139],

however, improvements can be found if several methods are combined; Ruiter et al.

found that the combination of third power fitting and one step perturbation obtains the

more accurate free energies than if either method is to be used in isolation[131]. Chen

et al.[140] applied QM/MM MD to sample configurations in order to investigate the

binding specificity of trypsin. As mentioned above, ab initio is far too computationally

expensive, but by applying the method described by Fox et al. [125], where classical

mechanics is used to obtain configurations quickly, these structures can then be used in

QM calculations to replace the MM terms in MM-PBSA with QM terms.

We have applied QM-PBSA on trypsin with benzamidine derivatives that represent a

variety of chemical behaviours. In the following section, we discuss how the systems

were equilibrated and finally how the QM-PBSA method was applied.
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Figure 7.1: Benzamidine derivative ligands used as ligands for trypsin in this study
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7.2 Methods

7.2.1 Trypsin simulations set-up

PDB code 1BTY [141] was used as an initial structure for the trypsin/benzamidine

complex. This structure was then used as a starting point for all complex systems. The

delta protonation state for histidine 57 (HID) was used, however, Schwarzl et al. [129]

show that the protonation state will not affect the binding free energy by repeating

the calculations with different protonation states. The system was then solvated with

TIP3P water in a waterbox with water thickness of at least 10 Å from the protein and

neutralised with nine Cl− ions (eight to neutralise the protein and one to neutralise

the positive charge on the ligand). The charges for all small molecules were obtained

by using AM1-bcc charges and initial atom types were obtained from antechamber [97].

Atomtypes for the nitrogen within the amine groups (which were incorrectly assigned by

Antechamber) were manually changed from ‘nh’ (amine connected to aromatic ring) to

‘n’ (sp2 amide) due to the delocalised bond present over the amidine group, as verified

by B3LYP/cc-pVTZ calculations.

Each complex underwent a sixteen step equilibration process. First the structure was

minimised by 5000 steps of steepest descent followed by 5000 steps of conjugate gra-

dient with a 1000 kcal/mol-Å2 restraint applied to all non-hydrogen atoms with a 9 Å

nonbonded cutoff. This step was then repeated, removing the restraint from the oxygen

within the water molecules. Following this the system was heated from 100K to 300K

with the temperature increasing linearly over 500ps in the canonical ensemble using the

Langevin thermostat [64] with a collision frequency of 3 ps−1. The SHAKE algorithm

was applied to allow a timestep of 2fs timestep and the same 1000 kcal/(molÅ2) re-

straint as in the previous step was applied. A simulation within the isothermal-isobaric

ensemble was then run for 200ps with the same restraints as previous steps still applied.

The system was then cooled down to 100K in the canonical ensemble. The system was

then minimised again, as in the second step, lowering the restraint to 500 kcal/(molÅ2).

This was repeated several times, lowering the restraint each time, to 100, 50, 20, 10, 5,
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2, 0 kcal/(molÅ2). The system was then heated smoothly to 300K with no restraints

applied. Following this a further 500ps were run in the isothermal-isobaric ensemble.

This equilibration was performed for each ligand and for each method (ff99SB force

field, ff14SB force field and applying restraints to the ff14SB force field). The process

that involved restraining the backbone atoms throughout the production run (ff14SB

restrained) followed the above equilibration procedure. However, whereas the restraints

were removed within the other procedures, a 2 kcal/(molÅ2) restraint was applied and

the final structure from the 14th step (the final minimisation) was used as a reference.

This simulation protocol was explored as a way of cancelling noise, in a similar manner

to that described by Bradshaw et al. [126].

7.2.2 MM-PBSA calculations

Once equilibrated, a production calculation for each ligand was performed for 20ns

within the canonical ensemble, again using the Langevin thermostat. The RMSD was

then examined along with the fluctuation of the total energy to ensure equilibration had

been achieved. 1000 snapshots were then extracted and the MM/PBSA technique [79]

was applied using a dielectric constant of 1.0 within the protein. The PBSA energy for

each snapshot was plotted over time to ensure no “drift” was present.

In addition to the PBSA calculations, 100 evenly distributed snapshots were used to

calculate the entropy of the system via normal mode analysis.

7.2.3 QM calculations

Each QM calculation was performed in ONETEP [54]. 4 NGWFs were used to describe

non-halogen heavy atoms, for halogens this was increased to 9 NGWFs and 1 NGWF

was used for hydrogen. Each NGWF had a radius of 8.0 bohr. The psinc grid spacing

was set to be 0.5 bohr in the x, y and z direction which is equal to 827 eV psinc kinetic

energy cut off and the PBE exchange-correlation functional was used throughout. The

parameters for the implicit solvation model have been validated by Dziedzic et al. [142].

These involved using a dielectric constant of 78.54 to represent the water, the smeared ion
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width of 0.8 bohr, a discretization order of 8 and a β value of 1.3. Initially calculations

on 40 snapshots were performed and these were subsequently increased to 80 snapshots.

The final 40 calculations were run by Dr J. Dziedzic. The initial 40 snapshots were

taken from the MD simulation at regular intervals of 500ps. When the additional 40

calculations were required, these were taken in between the initial 40, such that an

interval of 250ps between snapshots was used.

7.3 Results

7.3.1 Classical Force Field Results

Initially MM-PBSA was performed on all the aforementioned ligands with both the

ff99SB and ff14SB force fields, as well as the ff14SB force field with restraints applied.

The ff14SB force field is based on the ff99SB, with a corrections such as a lower de-

pendence of side chain parameters on certain backbone conformations, because of this

we would expect minimal differences between the values obtained from the unrestrained

simulations, indeed, this is what was observed. These results can be seen in table 7.1.

Table 7.1: MM-PBSA values when using 1000 snapshots from the ff99SB and ff14SB
(without restraints and with restraints) force fields. The values for each force field
have been shifted by a constant so that ligand A matches experiment. In order to
demonstrate how close the values are between the two force fields, the unshifted values

are also shown in brackets. All values shown are in kcal/mol.

Ligand Experimental ff99SB ff14SB

No restraints Restraints

A -6.3[129] -6.30 (-12.22) -6.30 (-11.39) -6.30 (-13.32)
B -4.7[129] -3.65 (-8.20) -2.21 (-7.30) -3.29 (-10.93)
C -4.8[129] -4.28 (-10.20) -4.46 (-9.55) -9.77 (-17.41)
D -5.6[143] -6.23 (-12.15) -6.68 (-11.77) -6.24 (-13.88)
E -7.6[143] -4.83 (-10.75) -5.58 (-10.67) -1.28 (-8.92)
F -5.7[130] -8.56 (-14.48) -9.26 (-14.35) 7.86 (0.22)
G -4.8[143] -6.57 (-12.49) -7.70 (-12.79) -4.61 (-12.25)

In each case, examining the difference between unshifted (bracketed) free energy of

binding, the ff99SB and ff14SB unrestrained runs are within 1 kcal/mol. As explained
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in the table caption, each value (not in brackets) has been shifted so that ligand A has the

value -6.30 kcal/mol. The ff14SB restrained energies, however, are very different to the

energies calculated with the ff99SB and ff14SB. These values were subjected to the same

convergence tests as the ff99SB and ff14SB, i.e. no drift was present, the values fluctuate

around a central point. However, the final free energy values are considerably different

than those calculated for the other approaches. Ligands A, B and D show similar results

to free energies calculated when using the ff99SB or ff14SB, ligand G differs by around

2 kcal/mol, and all other ligands (C, E and F) differ by over 3.5 kcal/mol. The largest

difference occurs for ligand F, which shows a positive free energy. These results show

that this method for cancelling noise is not effective.

We observe that neither the ff99SB or the ff14SB match the experimental values consis-

tently. Looking at the shifted values it appears that the ff99SB is an improvement on

the ff14SB for ligand B, D, F and G and the ff14SB provides better results for ligand

C and E. These shifted values have been affected by the difference within the values for

ligand A. Once this is considered, there is no notable improvement between the ff99SB

and ff14SB for these ligands.

When compared with the experimental free energies, ligand F provides the worst calcu-

lated free energy. However, the free energies within table 7.1 are shown without entropy,

which is an approximation as we assume that the entropy component will cancel between

ligands. As ligand F is much larger than any other ligand, the entropy approximation

will not hold and must be included for this ligand. This will be covered later in this

section. Ligand C matches the experimental free energy extremely well, which is a sur-

prising result (and most likely due to cancellation of errors) when considering that four

fluorines are present.

As mentioned previously, the entropy was initially calculated using 100 evenly dis-

tributed snapshots. The results can be seen in Table 7.2.

The entropy in Table 7.2 shows differences between the ff99SB and ff14SB for all the

relative (bracketed) values and for the absolute values for ligand A, B and C. Ligands
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Table 7.2: T∆S values (shown in kcal/mol) calculated using 100 snapshots using the
mmpbsa nmode functionality within the AMBER tools. The error shown was calculated
by bootstrapping with repeats 1000 times. The values in brackets are values shifted so

that the T∆S for ligand A is 0 kcal/mol.

Ligand ff99SB ff14SB

A -18.94 (0.00) ± 0.26 -17.66 (0.00) ± 0.29
B -18.88 (0.06) ± 0.24 -16.98 (0.68) ± 0.25
C -20.28 (-1.34) ± 0.33 -18.36 (-0.70) ± 0.33
D -18.92 (0.02) ± 0.26 -18.55 (-0.89) ± 0.63
E -20.64 (-1.70) ± 0.31 -20.71 (-3.05) ± 0.24
F -19.20 (-0.26) ± 0.30 -19.43 (-1.77) ± 0.71
G -20.95 (-2.01) ± 0.25 -20.43 (-2.77) ± 0.26

D, E, F, and G have similar energies between the force fields, with the largest difference

of 0.52 kcal/mol. All the errors shown in Table 7.2 were calculated by bootstrapping

with repeats, 1000 times. The largest error is present for ligand F ff14SB at 0.71 kcal/-

mol, which is slightly higher than the thermal error (kBT , 0.6 kcal/mol). To ensure

convergence and to minimise errors, the number of snapshots included in the entropy

was increased from 100 to 200 snapshots for all ligands when using the ff14SB. These

values can be seen in Table 7.3.

Table 7.3: Comparison of T∆S (in kcal/mol) as when including 100 snapshots and
200 snapshots, using the ff14SB force field. Error calculated by bootstrapping 1000
times with repeats. The values in brackets have been shifted by a constant, so that the

T∆S for ligand A is 0 kcal/mol.

Ligand 100 200

A -17.66 (0.00) ± 0.29 -17.97 (0.00) ± 0.20
B -16.98 (0.68) ± 0.25 -17.43 (0.54) ± 0.19
C -18.36 (-0.70) ± 0.33 -18.62 (-0.64) ± 0.22
D -18.55 (-0.89) ± 0.63 -18.37 (-0.40) ± 0.18
E -20.71 (-3.05) ± 0.24 -20.82 (-2.85) ± 0.17
F -19.43 (-1.77) ± 0.71 -18.87 (-0.89) ± 0.23
G -20.43 (-2.77) ± 0.26 -20.14 (-2.16) ± 0.21

Although all the entropy values differ slightly, none of the values are drastically different.

The largest difference is again present for ligand F, and is 0.56 kcal/mol. As expected

the error in every case is lowered, most dramatically in the case of ligand F, where the

error is decreased by 0.48 kcal/mol. Given the similarities between the entropy values
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for the inclusion of 100 and 200 snapshots, and the consistent lowering of errors, we are

satisfied that the entropy is converged.

Table 7.4: Combining entropy with the energy values shown in Table 7.1. All values
are in kcal/mol and the energies in brackets are from entropy calculations with 200

snapshots for each ligand.

Ligand Experimental ff99SB ff14SB

A -6.3[129] -6.30 -6.30 (-6.30)
B -4.7[129] -2.34 -2.89 (-2.75)
C -4.8[129] -2.94 -3.76 (-3.82)
D -5.6[143] -6.25 -5.79 (-6.28)
E -7.6[143] -3.13 -2.53 (-2.73)
F -5.7[130] -8.3 -7.49 (-8.37)
G -4.8[143] -4.56 -4.93 (-5.54)

Table 7.4 shows the combination of the entropy with the energies in Table 7.1. The

values for the ff99SB and ff14SB are again very similar, with each value being within

1 kcal/mol of one another. This is still the case when the 200 snapshots are included,

shown in the brackets. The largest RMS error is found when entropy is included of

2.29, whereas when it is not included it is 2.16. However, if ligand E is ignored (as

ligand E is made drastically worse by the inclusion of entropy), the RMS error lowers to

1.47 and the RMS error for the exclusion of entropy increases to 2.18. On most of the

ligands the inclusion of entropy increases the correlation with the experimental binding

free energies.

7.3.2 QM results

Minimal difference was found between the calculated free energies from the ff99SB and

ff14SB force fields, however, due to the improvements made to the ff14SB on the ff99SB

force field, the snapshots from the ff14SB force field were used within the QM calcula-

tions. These snapshots were selected as equally spaced throughout the MD simulation.

The results can be seen in Table 7.5.
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Table 7.5: QM-PBSA values (in kcal/mol) when using the ff14SB to sample. These
values are shifted so that ligand A matches experiment, and the unshifted values are
shown in brackets. 40 equally spaced snapshots were initially used for the QM-PBSA
values for all ligands except ligand E, where one snapshot was ignored. This was later

increased to 80 (79 for ligand E)

Ligand Experimental QM 40 QM 80 QM 80 Standard Deviation

A -6.3[129] -6.30 (-39.33) -6.30 (-39.30) 2.61
B -4.7[129] -2.49 (-35.52) -2.33 (-35.33) 2.46
C -4.8[129] -7.43 (-40.46) -6.96 (-39.97) 2.34
D -5.6[143] -11.54 (-44.56) -11.89 (-44.90) 2.36
E -7.6[143] -11.64 (-44.67) -11.66 (-44.66) 2.49
F -5.7[130] -19.15 (-52.18) -19.28 (-52.28) 2.43
G -4.8[143] -11.36 (-44.38) -11.32 (-44.33) 2.70

80 equally spaced snapshots were used to generate the values shown in Table 7.5 for all

ligands with the exception of ligand E. One of the 80 snapshots was discounted for ligand

E due to a single QM-PBSA value being 497.79 kcal/mol, which has a massive effect on

the results. The high value for this snapshot is caused by an anomalous complex energy.

Both the host and ligand energies sit within the fluctuation of the other snapshots, the

complex, however is 550.59 kcal/mol away from the average (excluding the anomalous

snapshot). The high value of this single snapshot can only be attributed to a lack of

overlap of the conformational space, as seen in the previous chapters. The fluctuations

of the QM-PBSA energies can be seen in Figure 7.2. The problematic snapshot for

ligand E can be seen moving off the scale of the graph, however, ignoring this snapshot,

all the energies fluctuate around a central point for each ligand. This is reassuring, as

it means that these energies should converge to a central value.

The energies in Table 7.5 differ significantly from the experimental energies. However,

these values do not include entropy. Table 7.6 shows a comparison of the ff14SB and

the QM-PBSA energies including entropy. These energies show no great improvement

between the classical and quantum values. For example, for ligand B, we obtain similar

results with the QM results showing marginal improvement. Improvement is also shown

for ligand E, where the quantum results differ from the experimental by 1.21 kcal/mol,

an improvement from the classical difference of 4.87 kcal/mol. For each of the other

ligands (excluding ligand A) the correlation with experiment is made worse by including

the quantum correction. In each case the quantum energies overestimate how favourable

the interaction is and the binding free energies are made more negative. In fact, even
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Figure 7.2: Fluctuations of the QM-PBSA binding energies for each of the 80 snap-
shots included for each of the ligands.

in the cases where the quantum results improve upon the classical results, they are

more negative. This effect is most drastic for ligand F, with a difference between the

classical and quantum energies of 10.02 kcal/mol. These difference in energies, along

with the energy outlier for ligand E, could indicate that it is important to include

quantum only interactions in the sampling process. This does not necessarily need to be

a prohibitively expensive ab initio MD simulation, but could be a method similar to that

described in the previous chapter, that includes polarisation at the sampling stage. Here,

however, we see a poor correlation between the quantum and classical energies. This

poor correlation has been shown in previous chapters, although here the free energies

are based on interaction energies, so it is surprising how different these values are. This

could be an indication of errors within the DFT calculations, that could be minimised

by using a different exchange-correlation functional, this is something that should be

investigated at a later stage.

Although the quantum results do not improve the classical results, there are also large

errors in the MM results too. They also show a poor correlation with the experimental

values.
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Table 7.6: Combining entropy with the energy from the ff14SB and QM-PBSA values.
Both 40 snapshots and 80 snapshots were used and are indicated by the number in the
column heading. All values are in kcal/mol and the entropy is calculated when 200

snapshots are used.

Ligand Experimental ff14SB QM-PBSA 40 QM-PBSA 80

A -6.3[129] -6.3 -6.3 -6.3
B -4.7[129] -2.89 -3.03 -2.87
C -4.8[129] -3.82 -6.79 -6.32
D -5.6[143] -6.28 -11.14 -11.50
E -7.6[143] -2.73 -8.79 -8.81
F -5.7[130] -8.37 -18.26 -18.39
G -4.8[143] -5.54 -9.20 -9.16

Figure 7.3: Running average of the QM-PBSA values when increasing the number of
snapshots up to the total 80 snapshots. For ligand E only 79 snapshots are included, 1

snapshot has been discounted as discussed previously.

The difference in free energies when 80 snapshots are used to calculate the QM-PBSA

values and when 40 snapshots are used is minimal. In the worst case the difference is 0.47

kcal/mol, which is within thermal error. Indeed, a running average of the QM-PBSA

energies can be seen in figure 7.3, and the free energies look to converge very rapidly.

For ligand E, the problematic snapshot discussed previously was discarded. However,

in order to ensure convergence, a boostrapping approach was applied. By selecting 80

snapshots with replacements from the available snapshots and calculating the average,

then repeating this step 1000 times, we can see if a single snapshot is having a large

effect on the average energy. Once this average had been calculated, we compared them

with the average energy from the 80 snapshots. These are shown in Table 7.7 and show
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very little difference between the bootstrap averaging and the standard average (taken

from Table 7.6). This is a strong indicator to how converged these results are.

Table 7.7: Comparison of average energies with entropy included between the stan-
dard average and the bootstrapped average. All values shown are in kcal/mol.

Ligand Experimental Standard average Bootstrap average

A -6.3[129] -6.3 -6.3
B -4.7[129] -3.03 -2.86
C -4.8[129] -6.79 -6.31
D -5.6[143] -11.14 -11.50
E -7.6[143] -8.79 -8.81
F -5.7[130] -18.26 -18.36
G -4.8[143] -9.20 -9.15

In chapter 6 we showed that the choice of dispersion model can have a drastic effect

on the free energy. We also showed that the best choice for the systems studied was

to use classical dispersion throughout the quantum correction. As such, we applied a

similar correction to the QM-PBSA free energies when using both 40 and 80 snapshots.

In practice, we subtract the QM dispersion correction from each snapshot and add the

classical dispersion. The results can be seen in Table 7.8.

Table 7.8: Free energies when calculated with 40 and 80 equally spaced snapshots,
when replacing the quantum dispersion correction with the classical dispersion. All

values shown are in kcal/mol.

Ligand Experimental QM-PBSA 40 QM-PBSA 80

A -6.3[129] -6.3 -6.3
B -4.7[129] -3.69 -3.91
C -4.8[129] -11.03 -10.47
D -5.6[143] -13.49 -13.78
E -7.6[143] -15.32 -15.21
F -5.7[130] -33.63 -33.76
G -4.8[143] -13.74 -13.87

The results in Table 7.8 show consistent values regardless of when 40 or 80 snapshots

are used. When using ligand A to shift the results, we see little improvement to the

free energies presented in Table 7.6. Ligand B seems to be the only ligand that is not
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negatively effected by the inclusion of classical dispersion, where the calculated free

energy is 0.88 kcal/mol closer to the experimental free energy. However, if the free

energies were shifted using ligand D as the reference value, 3 of the ligand’s (D, E and

G) free energies are very close to the experimental values. Ligand C is much closer than

it is when shifted by ligand A, but still around 2 kcal/mol away. Ligand A and B are

made positive by this shift, thus the difference between the experimental and calculated

free energies would widen. Ligand F is much more negative by the inclusion of the

classical dispersion, this can only be attributed to its relative size when compared to

the other ligands. The large change that occurs when including the classical dispersion

energy for ligand F indicates that the issue of poor correlation with experiment could

be down to the dispersion model used. However, in this case inclusion of the classical

dispersion is not sufficient to improve the correlation. Table 7.9 shows these new shifted

values with the results in table 7.6 along with the classical results for the ff14SB force

field when using ligand D as a reference. However, only limited improvement is made

on the classical free energies.

Table 7.9: Comparison of free energies when using ligand D as the reference ligand.
All values shown are in kcal/mol.

Ligand Experimental ff14SB QM-PBSA 80 QM-PBSA 80 (classical dispersion)

A -6.3[129] -5.62 -0.40 1.88
B -4.7[129] -2.07 3.03 4.27
C -4.8[129] -3.13 -0.42 -2.29
D -5.6[143] -5.60 -5.60 -5.60
E -7.6[143] -2.05 -2.92 -7.04
F -5.7[130] -7.68 -12.49 -25.59
G -4.8[143] -4.86 -3.27 -5.70

7.4 Conclusions

We have applied QM-PBSA on an important biologically relevant protein-ligand system.

This involved running quantum calculations on an entire complex of around 3000 atoms.

We have investigated the use of different force fields and a restraining method and

replacing the quantum dispersion term with its classical counterpart.
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We have shown that only a minimal difference is present when using the ff99SB or the

ff14SB to calculate the free energies for trypsin with benzamidine derivatives. However,

our approach to cancel noise shows no improvement on using a standard approach. The

unrestrained values were improved by including entropy. When increasing the number of

snapshots from 100 to 200 for the ff14SB force field, very little difference was observed,

other than a lowering of error.

80 equally spaced snapshots from the ff14SB force field were then used in quantum

calculations. However, no overall improvement was observed. The classical results,

although better than the quantum results, still did not match the experimental results.

This highlights an important issue when using QM-PBSA, in that, as accurate as the

QM calculations are, they are still limited by what structures can be sampled by the

force field. This means that unfavourable QM snapshots can be sampled and given

equal weight to other snapshots, which can lead to drastic effects in the free energy (see

chapter 3). Additionally in order to ensure that the error in the DFT calculations are

minimal, calculations could be rerun with a different exchange-correlation functional and

the results compared. Further testing of the classical results could also be performed,

testing different methods to calculate the free energy to try to improve the classical free

energies. Such methods include, for example, thermodynamic integration (TI). This will

increase the amount of conformational sampling, therefore, should improve the result.

The increased cost of TI when compared to MM-PBSA is a disadvantage, but still

negligible when compared to the cost of the QM calculations.

The inclusion of classical dispersion in place of the quantum dispersion improved the

results in the previous chapter, however, within this chapter, such an approach did not

improve the results. This could be due to the different environments present for the

systems in the previous chapter. In the previous chapter all the ligands were surrounded

by water only, which can be thought of as largely uniform, whereas within the binding

pocket of trypsin, the interactions are more varied. When the reference ligand was

changed from ligand A to ligand D an improvement upon the previous quantum method

was achieved, but overall the force field produced free energies closer to the experimental

values.
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Conclusions

We have presented a way to correct classical binding free energies and the steps leading

up to a method that produced accurate free energies of hydration. These steps have

shown several important difficulties when applying quantum corrections. Chapter 3

shows the issue of using a single step perturbation (SSP) approach to correcting free

energies with total potential energies, namely that large “jumps” are present within

the free energy. These “jumps” occur as a result of energy outliers at the low energy

tail of the energy difference distribution. The energy difference distributions within

this thesis are primarily for simple systems, such as ethanol, ethane, propane, dimethyl

ether and ethylene glycol in water. Nevertheless, these distributions all have a large

range. If further examination is performed on the outliers within the energy difference

distribution, it is found that they are not outliers in either the classical or quantum

energy distributions. However, they are on different sides of the distributions. This

highlights the inexact overlap of the configurational space.

The issue of inexact overlap was then further investigated by perturbing between two

classical potentials with different charges. By adjusting the charges the level of overlap

between the guiding and target potential can be controlled. It was found that, as

the level of overlap was decreased (i.e. the difference in the charges was increased)

the worse the convergence of the free energy between subsequent runs. This was then

further investigated by running the “reverse” calculations, where the MD is performed

using the higher charged potential and a single step perturbation is performed back

173
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to a standard charged potential. No convergence was found between the “forward”

and “reverse” process. This showed the sensitivity of the Zwanzig equation and led

to the examination of post-processing methods with an aim to “smooth” over the low

energy tail. First a Gaussian distribution was fitted to the energy difference. Numerical

integration showed much improved convergence on the direct SSP approach, but still

yielded a difference of over 6 kcal/mol between runs. Additionally an analytical approach

was applied, which emphasized the sensitivity of the exponents on the convergence of

the free energy. Specifically, the variance or α exponent has the largest effect on the free

energy. Again this is due to the low energy tail of the distribution, by only allowing data

from ten thousandth height of the Gaussian the free energy converges. However, there

is no valid scientific reason to ignore part of the data, which shows that such a post-

processing method cannot be applied to increase the convergence. This demonstrated

the importance of finding an accurate representation of the QM configurational space.

We then examined the accuracy of a method that applied an acceptance test in order to

validate each snapshot’s relevance in a QM/MM ensemble. However, the issue of inexact

overlap of configurational space affected the acceptance rate again. For simple systems,

such as N2 in a vacuum, where there is a high degree of overlap, the acceptance was high.

By changing the bond length, such that the overlap between the ensembles was made

worse, the acceptance lowered. By including additional λ steps for this simple system,

it was clear that, as the bond length was moved further away from the true equilibrium

value, the PMF would become more “bent”. A single step perturbation approach cannot

model all the nuances within the PMF, only the start and (if the overlap is high) the end

point, therefore as the PMF moves from a straight line shape a single step perturbation

approach becomes less accurate, thus highlighting the issue with a single step procedure.

Following the promising results of N2 in vacuum, systems of increasing complexity were

utilised in order to locate the poor areas of configurational space overlap between the MM

and QM. The results showed that, for simple systems, as the main interaction between

the solute and solvent became more electrostatically driven, the overlap became much

worse. For larger ligands the number of degrees of freedom present had a negative

effect on the overlap, this was the case even when an alanine dipeptide (made up from
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standard residues) was used. Various techniques were tried in order to increase the

overlap between the ensembles, with very limited success. Therefore the next step in

the process was to find a method that could discount the snapshots that are energy

outliers within the QM/MM distribution.

Examination of the potential energy surfaces showed that there is overlap present be-

tween the MM and QM at the minima. Therefore a bias was applied to only sample

around this region. A number of systems were tested, including alanine dipeptide, which

previously provided no acceptance to the QM/MM ensemble. With the bias in place,

the acceptance was good and duplicate runs with the same bias parameters applied

provided the same free energy. However, if the bias parameters were allowed to change

dynamically, and different bias parameters were found to be optimal, the free energy

would differ. In order to sample more, for a fraction of the cost, a numerical model

was designed. The results showed if the energy difference distribution (QM-MM) had

a standard deviation of just 5 kJ/mol, then consecutive runs would not converge the

free energy. This was then compared to the energy difference distribution in chapter 3,

which has a standard deviation of approximately 144 kJ/mol.

This led to the method described in chapter 6, where a “stepping stone” approach was

used to obtain the quantum free energies. This “stepping stone” was a QM/MM en-

semble, built up from the classical energy with quantum polarisation included. The first

step was to transition from a purely classical ensemble to the QM/MM ensemble using

total energies. The second step was to go from the QM/MM ensemble to the full QM.

Unfortunately, the QM/MM ensemble still lacked overlap of the configurational space

with the full QM ensemble, such that when total energies were used in a single step

perturbation, convergence could not be achieved. The reason for this lack of conver-

gence, for the relatively small ligands used within the validation, was found to be the

intermolecular interactions between the water molecules.

When using parts of or the whole interaction energies to perturb from the generated

QM/MM ensemble to QM, we see an overall improvement on the classical results when

compared with the experimental values. The largest improvement comes when using

the classical dispersion throughout, instead of switching to a more quantum dispersion
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model. Differing the exchange-correlation functional was also tested, but it was found

that results between GGA functionals are very similar and a vast improvement if com-

pared to using an LDA functional.

A future extension of the work could involve the application of the “stepping stone”

approach to a more realistic test system. This should be much closer to a protein-ligand

binding site, but much smaller, for example, cyclodextrin bound to a variety of small

organic ligands. This would provide a non-uniform polarity around the ligand and should

show the real benefit this method can have on complex systems.

The final results chapter examined the QM-PBSA method when applied to trypsin bound

to several different benzamidine derivatives. This involved ONETEP DFT calculations

on the entire protein-ligand complex, which consisted of around 3000 atoms. Previous

work in this area by Fox et al. [125] showed an improvement of QM-PBSA on MM-

PBSA binding free energies. However, this study was performed on a simpler system,

here we applied the QM-PBSA method to a more complex system. Neither the classical

nor quantum results cannot replicate the experimental values. The quantum results do

not improve the classical results for most of the ligands and in each case the binding free

energies are predicted to be lower than the classical calculation. The method is limited

by the sampling performed at the classical level, this shows the importance of including

quantum only interactions in the sampling. It would be an interesting study to obtain

the free energies by using a method like the one described in chapter 6 (the “stepping

stone” approach) and compare the free energies with the QM-PBSA energies. By using

an approach like the “stepping stone” approach, polarisation would be included at the

sampling stage, which would form a more accurate ensemble of structures to use within

the QM-PBSA method. The limiting factor would be whether the acceptance is high

enough to provide converged properties and the time taken to calculate the quantum

interaction energy used within the acceptance criterion. However, this could be affected

by adjusting how much of the protein is represented by quantum mechanics.

This thesis has developed and evaluated a variety of methods to correct free energies and

the limitations associated with these methods. Several conclusions can be drawn from

the work presented here, however, the key points can be summed up like this: The MM
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and QM configurational spaces have extremely poor overlap, and because of this single

step perturbations are likely to only have a limited, if any, success; This lack of overlap

increases as the degrees of freedom increase, and is exacerbated by the intermolecular

interactions within the solvent; In order to obtain accurate binding free energies it is

imperative to work with the quantum potential energy surface in the sampling stage;

And finally, although formally not correct, interaction energies can provide converged

free energies of binding, where total energies cannot.
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Apendix B

Code example:

#Last edited 22/08/13

#V2.0 04/08/13

#python gromacs ... py inputFile lambda

#

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#

#

-------------------------------------------------------------------------------------------------------

SETUP

-----------------------------------------------------------------------------------------------------------------#

#

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#

#required modules

import random

import os

import sys

import re

import numpy

from decimal import Decimal

import math

#

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#

# Constants

nm2bohr=numpy.float64 (018.897161643)

hartrees2kj=numpy.float64 (2625.49962)

atomicMass2kg=numpy.float64 (1.66053892173e-27)

kBKcal=numpy.float64 (0.001987204118)
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kBJoules=numpy.float64 (1.380648813e-23)

avagadro=numpy.float64 (6.0221412927e+23)

kBJoulesMol=numpy.float64 (0.008314462175)

T=300.0

#

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#

foutOutput=open("script_output.txt", ’w’)

numberOfSteps =400000

timeStep =0.00025

#Writes Gromacs NVE input file

fout=open("nve.mdp", ’w’)

fout.write("integrator = md-vv\ngen_vel = no\nnsteps = %s\

ndt = %s\nnstlist = 10\ nrlist = 1.1\

ncoulombtype = PME\ncoulomb -modifier = Potential -shift\nrcoulomb =

0.8\nvdw -type = cutoff\nvdw -modifier = Potential -shift\nrvdw

= 0.6\ ntcoupl = no\npcoupl = no\nnstenergy = 1\

nnstxtcout = 1000\ nxtc -precision = 100000\ ncontinuation = no\

nconstraint -algorithm = Lincs\nconstraints = h-bonds" % (numberOfSteps ,

timeStep))

fout.close()

#

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#

#

------------------------------------------------------------------------------------------------------

MODULES

----------------------------------------------------------------------------------------------------------------#

#

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#

#Add in dictionaries here !!

dicETH ={"C1":"C", "H11":"H", "H12":"H", "H13":"H", "C2":"C", "H21":"H", "H22":"H"

, "H23":"H"}
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dicWAT ={"O":"O", "H1":"H", "H2":"H"}

dicINT ={"N1":"N", "N2":"N", "N":"N"}

dicEOH ={"C1":"C", "H11":"H", "H12":"H", "H13":"H", "C":"C", "H2":"H", "H3":"H", "

H4":"H", "O12":"O"}

dicPCL ={"C":"C", "C1":"C", "C2":"C", "H":"H", "H1":"H", "C3":"C", "H2":"H", "C4":

"C", "H3":"H", "C5":"C", "H4":"H", "Cl":"Cl"}

dic4GA ={"O4":"O", "H10":"H", "C6":"C", "H8":"H", "H9":"H", "C5":"C", "O3":"O", "

H7":"H", "C4":"C", "O5":"O", "H6":"H", "C3":"C", "O2":"O", "H5":"H", "H4":"H"

, "C2":"C", "O1":"O", "H3":"H", "H2":"H", "C1":"C", "H1":"H", "O30":"O", "C34

":"C", "C35":"C", "O28":"O", "C36":"C", "O29":"O", "H59":"H", "H57":"H", "H58

":"H", "H56":"H", "H55":"H", "C33":"C", "O27":"O", "H54":"H", "H53":"H", "C32

":"C", "O26":"O", "H52":"H", "H51":"H", "C31":"C", "H50":"H", "O25":"O", "C28

":"C", "C29":"C", "O23":"O", "C30":"C", "O24":"O", "H49":"H", "H47":"H", "H48

":"H", "H46":"H", "H45":"H", "C27":"C", "O22":"O", "H44":"H", "H43":"H", "C26

":"C", "O21":"O", "H42":"H", "H41":"H", "C25":"C", "H40":"H", "O20":"O", "C22

":"C", "C23":"C", "O18":"O", "C24":"C", "O19":"O", "H39":"H", "H37":"H", "H38

":"H", "H36":"H", "H35":"H", "C21":"C", "O17":"O", "H34":"H", "H33":"H", "C20

":"C", "O16":"O", "H32":"H", "H31":"H", "C19":"C", "H30":"H", "O15":"O", "C16

":"C", "C17":"C", "O13":"O", "C18":"C", "O14":"O", "H29":"H", "H27":"H", "H28

":"H", "H26":"H", "H25":"H", "C15":"C", "O12":"O", "H24":"H", "H23":"H", "C14

":"C", "O11":"O", "H22":"H", "H21":"H", "C13":"C", "H20":"H", "O10":"O", "C10

":"C", "H16":"H", "C9":"C", "O7":"O", "H15":"H", "H14":"H", "C8":"C", "O6"

:"O", "H13":"H", "H12":"H", "C7":"C", "H11":"H", "O8":"O", "C11":"C", "H17"

:"H", "C12":"C", "H18":"H", "H19":"H", "O9":"O", "H6O":"H" }

dicALA ={"N":"N", "H":"H", "CA":"C", "HA":"H", "CB":"C", "HB1":"H", "HB2":"H", "

HB3":"H", "C":"C", "O":"O"}

dicACE ={"HH31":"H", "CH3":"C", "HH32":"H", "HH33":"H", "C":"C", "O":"O"}

dicNME ={"N":"N", "H":"H", "CH3":"C", "HH31":"H", "HH32":"H", "HH33":"H"}

def generateVelocities(ligandAtoms , solventAtoms):

""" Input: ligand and solvent atoms

Output: new random velocities """

kineticEnergy =0

randomVelocities =[]

#Process for ligand atoms

#velocity needs to be in m/s to cancel out 1/ kBT (in Joules)

for i in range(len(ligandAtoms)):

tempVelo =[]

if ligandAtoms[i]==’H’:

atomicMass =1

mass =1.008* atomicMass2kg
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elif ligandAtoms[i]==’C’:

atomicMass =12

mass =12.000* atomicMass2kg

elif ligandAtoms[i]==’O’:

atomicMass =16

mass =16.000* atomicMass2kg

elif ligandAtoms[i]==’N’:

atomicMass =14

mass =14.000* atomicMass2kg

elif ligandAtoms[i]==’Cl’:

atomicMass =35.500

mass =35.500* atomicMass2kg

stdev=numpy.sqrt(kBJoules*T*mass)

while len(tempVelo) <3:

z=100

while z>=1:

pseudoRandomNumber1=random.randrange ( -1000000 ,

1000000 , 1) /1000000.

pseudoRandomNumber2=random.randrange ( -1000000 ,

1000000 , 1) /1000000.

z=( pseudoRandomNumber1 **2)+( pseudoRandomNumber2

**2)

w=numpy.sqrt ((-2* numpy.log(z))/z)

var1=( pseudoRandomNumber1*w*stdev)/mass

var2=( pseudoRandomNumber2*w*stdev)/mass

#0.01 converts from m/s to Ang/ps

#Dviding through by 1000 to get units of km/s, needed for

gromacs

if len(tempVelo) <3:

tempVelo.append ((var1)/1000)

if len(tempVelo) <3:

tempVelo.append ((var2)/1000)

for vel in tempVelo:

randomVelocities.append(vel)
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#Repeats process for solvent atoms

for i in range(len(solventAtoms)):

tempVelo =[]

if solventAtoms[i]==’H’:

atomicMass =1

mass =1.008* atomicMass2kg

elif solventAtoms[i]==’C’:

atomicMass =12

mass =12.000* atomicMass2kg

elif solventAtoms[i]==’O’:

atomicMass =16

mass =16.000* atomicMass2kg

stdev=numpy.sqrt(kBJoules*T*mass)

while len(tempVelo) <3:

z=100

while z>=1:

pseudoRandomNumber1=random.randrange ( -1000000 ,

1000000 , 1) /1000000.

pseudoRandomNumber2=random.randrange ( -1000000 ,

1000000 , 1) /1000000.

z=( pseudoRandomNumber1 **2)+( pseudoRandomNumber2

**2)

w=numpy.sqrt ((-2* numpy.log(z))/z)

var1=( pseudoRandomNumber1*w*stdev)/mass

var2=( pseudoRandomNumber2*w*stdev)/mass

#0.01 converts from m/s to Ang/ps

#Dividing through by 20.455 converts Ang/ps to Ang

/(1/20.455) ps - Units Amber uses

if len(tempVelo) <3:

tempVelo.append ((var1)/1000)

if len(tempVelo) <3:

tempVelo.append ((var2)/1000)

for vel in tempVelo:

randomVelocities.append(vel)



202 Chapter 8 Apendix B

return(randomVelocities)

def writeVelocitiesG96(file , velocities):

""" Input G96 file

Output: .g96 file with new velocities """

fin=open(file , ’r’).readlines ()

fileContent =[]

for line in fin:

for value in line.split():

fileContent.append(value)

numberOfAtoms=fileContent [1]

boxInfo=fileContent [-4:-1]

fout=open("temp_file", ’w’)

fout.write("TITLE\n%s system\nEND\nPOSITION" % (numberOfAtoms))

for coordinate in re.findall(’POSITION (.*?) END’, open(file).read(), re.S)

:

fout.write(coordinate)

fout.write("END\nVELOCITY\n")

velocityInfo =[]

for velocity in re.findall(’VELOCITY (.*?) END’, open(file).read(), re.S):

velocityInfo.append(velocity.split())

roundedVelocities =[]

for generatedVelocity in velocities:

value=Decimal(str(generatedVelocity))

roundedVelocities.append(value.quantize(Decimal (10) **-9))

for i in range(len(velocityInfo [0])):

try:

a=(5-len(velocityInfo [0][i*7]))*" "
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b=(12-len(velocityInfo [0][i*7+2]) -len(velocityInfo [0][i

*7+3]))*" "

c=(15-len(str(roundedVelocities[i*3])))*" "

d=(15-len(str(roundedVelocities[i*3+1])))*" "

e=(15-len(str(roundedVelocities[i*3+2])))*" "

fout.write("%s%s %s %s%s%s%s%s%s%s%s%s\n" % (a,

velocityInfo [0][i*7], velocityInfo [0][i*7+1], velocityInfo [0][i*7+2] , b,

velocityInfo [0][i*7+3], c, roundedVelocities[i*3], d, roundedVelocities[i

*3+1], e, roundedVelocities[i*3+2]))

except IndexError:

pass

fout.write("END\nBOX\n %s %s %s\nEND" % (boxInfo [0], boxInfo [1],

boxInfo [2]))

os.system("mv temp_file %s" % file)

def runGromacs(file , outFile , structureNumber):

""" input: .gro file , output file

output: runs gromacs """

foutOutput.write( "Running GROMACS ....\n")

os.system(" grompp -f nve.mdp -c structure_%s.g96 -p %s -po mdout_%s.mdp

-o %s >> gromacs_output.txt" % (structureNumber , topologyFile ,

structureNumber , outFile))

os.system(" mdrun_d -nt 4 -s %s -c structure_%s.g96 -e structure_%s_end.

edr -o structure_%s_end.trr -x structure_%s_end.xtc -g structure_%s_end.log

&> gromacs_output.txt" % (outFile , structureNumber +1, structureNumber ,

structureNumber , structureNumber , structureNumber))

#22/08/13 16:11

def readG96FileNames(file):

""" Input: .g96 file

Output: ligand atoms , solvent atoms , box size """

atomNames =[]

residueNames =[]

boxInfo =[]

fin=open(file , ’r’).readlines ()

boxInfo.append(fin[-2]. split())

fin=fin[4:-4]
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velocityCorrection =0

for line in fin:

if "VEL" in line:

velocityCorrection =1

try:

residueNames.append(line.split()[1])

atomNames.append(line.split()[2])

except IndexError:

pass

if velocityCorrection ==1:

# print "Residue Names", len( residueNames )

residueNames=residueNames [0:( len(residueNames)/2)]

# print len( residueNames )

correctLigandNames =[]

correctSolventNames =[]

#Add in dictionaries link here

for i in range(len(residueNames)):

residue=residueNames[i]

if "ETH" in residue:

correctLigandNames.append(dicETH[atomNames[i]])

elif "WAT" in residue:

correctSolventNames.append(dicWAT[atomNames[i]])

elif "OHH" in residue:

correctSolventNames.append(dicWAT[atomNames[i]])

elif "INT" in residue:

correctLigandNames.append(dicINT[atomNames[i]])

elif "EOH" in residue:

correctLigandNames.append(dicEOH[atomNames[i]])

elif "4GA" in residue:

correctLigandNames.append(dic4GA[atomNames[i]])

elif "PCL" in residue:

correctLigandNames.append(dicPCL[atomNames[i]])

elif "ALA" in residue:

correctLigandNames.append(dicALA[atomNames[i]])

elif "ACE" in residue:

correctLigandNames.append(dicACE[atomNames[i]])

elif "NME" in residue:

correctLigandNames.append(dicNME[atomNames[i]])
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else:

print 60*"-"

print "RESIDUES NOT ADDED TO DICTIONARIES , PLEASE ADD

DICTIONARY , EDIT MODULE ’readG96FileNames ’ AND EDIT ’writeOnetepFile ’ TO

INCLUDE PSEUDOPOTENTIALS AND ATOM TYPES"

print 60*"-"

return(correctLigandNames , correctSolventNames , boxInfo)

def g96Reader(file):

""" Input: g96 file

Output: x, y, z coordinates , box Information """

coordinates =[]

#Reads in the coordinates

for coordinate in re.findall(’POSITION (.*?) END’, open(file).read(), re.S)

:

coordinates.append(coordinate.split())

coordinates=coordinates [0]

x=[]

y=[]

z=[]

#Divides the coordinates into x, y and z components

for value in range(len(coordinates)/7):

x.append(float(coordinates[value *7+4]))

y.append(float(coordinates[value *7+5]))

z.append(float(coordinates[value *7+6]))

fin=open(file , ’r’).readlines ()

fileContent =[]

#Reads the box information

for line in fin:

for value in line.split():

fileContent.append(value)

boxInfo=fileContent [-4:-1]
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return(boxInfo , x, y, z)

def extractEnergy(file , keyWord):

energies =[]

for energyValue in re.findall(’Writing (.*?) <==’, open(file).read(), re.S)

:

energies=energyValue.split()

c=0

energy_numbers =[]

strings =[]

#Splits the numbers and strings

for i in energies:

try:

energy_numbers.append(float(i))

except:

strings.append(i)

#Removes (SR) from strings

while "(SR)" in strings:

strings.remove("(SR)")

#Removes all the start unimportant information

strings=strings [8:]

#Removes other units etc .. to get the strings and energies the same

length

if "(bar)" in strings:

strings.remove("(bar)")

if "recip." in strings:

strings.remove("recip.")

if "En." in strings:

strings.remove("En.")

if "Energy" in strings:

strings.remove("Energy")

energy_numbers=energy_numbers [3:]

#Finds the energies related

for i in range(len(strings)):

if strings[i]== keyWord:

return energy_numbers[i]
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def scaleVelocities(ligandAtoms , solventAtoms , velocities):

""" Scales the vlocities so the center of mass movement is 0"""

totalMass =0

xMomenta =0

yMomenta =0

zMomenta =0

for i in range(len(ligandAtoms)):

tempVelo =[]

if ligandAtoms[i]==’H’:

atomicMass =1

mass =1.008* atomicMass2kg

elif ligandAtoms[i]==’C’:

atomicMass =12

mass =12.010* atomicMass2kg

elif ligandAtoms[i]==’O’:

atomicMass =16

elif ligandAtoms[i]==’N’:

atomicMass =14

mass =16.000* atomicMass2kg

totalMass += atomicMass

xMomenta += atomicMass*velocities [3*i]

yMomenta += atomicMass*velocities [3*i+1]

zMomenta += atomicMass*velocities [3*i+2]

velocities=velocities [(len(ligandAtoms)*3):]

for i in range(len(solventAtoms)):

tempVelo =[]

if solventAtoms[i]==’H’:

atomicMass =1

mass =1.008* atomicMass2kg

elif solventAtoms[i]==’C’:

atomicMass =12

mass =12.010* atomicMass2kg

elif solventAtoms[i]==’O’:

atomicMass =16

mass =16.000* atomicMass2kg

totalMass += atomicMass
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xMomenta += atomicMass*velocities [3*i]

yMomenta += atomicMass*velocities [3*i+1]

zMomenta += atomicMass*velocities [3*i+2]

return(xMomenta/totalMass , yMomenta/totalMass , zMomenta/totalMass)

def removeCenterOfMass(velocities , xVAll , yVAll , zVAll):

""" Scales all velocities by vAll """

newVelocities =[]

c=1

for value in velocities:

if c==1:

newVelocities.append(value -xVAll)

c+=1

elif c==2:

newVelocities.append(value -yVAll)

c+=1

elif c==3:

newVelocities.append(value -zVAll)

c=1

return newVelocities

def kineticEnergyCalc(file , keyWord):

energies =[]

for energyValue in re.findall(’Energies (.*?) Step’, open(file).read(), re

.S):

for i in energyValue.split ():

energies.append(i)

c=0

energy_numbers =[]

strings =[]

#Splits the numbers and strings

for i in energies:

try:

energy_numbers.append(float(i))

except:

strings.append(i)
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#Removes (SR) from strings

while "(SR)" in strings:

strings.remove("(SR)")

#Removes all the start unimportant information

# strings=strings [8:]

#Removes other units etc .. to get the strings and energies the same

length

while "(bar)" in strings:

strings.remove("(bar)")

while "recip." in strings:

strings.remove("recip.")

while "En." in strings:

strings.remove("En.")

while "Energy" in strings:

strings.remove("Energy")

while "(kJ/mol)" in strings:

strings.remove("(kJ/mol)")

while "Energies" in strings:

strings.remove("Energies")

while "rmsd" in strings:

strings.remove("rmsd")

# energy_numbers = energy_numbers [3:]

values =[]

#Finds the energies related

for i in range(len(strings)):

if strings[i]== keyWord:

try:

values.append(energy_numbers[i])

except: pass

# print values

return(values [0])

def acceptanceCriteriaHybridMC(totalEnergy1 , totalEnergy2):

""" Input: Initial and final classical energies

Output: 1 if structure accepted , 0 if not """

deltaE =(float(totalEnergy2)-float(totalEnergy1))



210 Chapter 8 Apendix B

foutOutput.write("ACCEPTANCE VALUE = %s\n" % (deltaE))

probAcceptance=numpy.exp (-(1/( kBJoulesMol*T))*deltaE)

foutOutput.write("prob acceptance = %s\n" % (probAcceptance))

if probAcceptance >=1:

return 1

else:

randomNumber=random.random ()

foutOutput.write("%s\n" % (randomNumber))

if probAcceptance >= randomNumber:

return 1

else:

return 0

def writeClassicalStructureFile(structureNumber):

""" Writes 2 files , one for the ligand and one for the host """

fin=open("structure_%s.g96" % (structureNumber +1), ’r’).readlines ()

foutClassicalLigand=open("structure_%s_LIGAND.g96" % (structureNumber +1),

’w’)

foutClassicalLigand.write("TITLE\n1359 system\nEND\nPOSITION\n")

c=0

for i in fin:

if "VELOCITY" in i:

x=c

c+=1

fin2=fin[:x]

for line in fin2:

if "EOH" in line:

foutClassicalLigand.write(line)

foutClassicalLigand.write("END\nBOX\n")

foutClassicalLigand.write(fin[-2])

foutClassicalLigand.write("END")

foutClassicalHost=open("structure_%s_HOST.g96" % (structureNumber +1), ’w’

)
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foutClassicalHost.write("TITLE\n1359 system\nEND\nPOSITION\n")

for line in fin2:

if "WAT" in line:

foutClassicalHost.write(line)

foutClassicalHost.write("END\nBOX\n")

foutClassicalHost.write(fin[-2])

foutClassicalHost.write("END")

def calculateInteractionEnergy(structureNumber):

""" Calculates the electrostatic term for the MM """

complexElectrostatics=float(extractEnergy("structure_%s_end.log" % (

structureNumber), "Coulomb")) + float(extractEnergy("structure_%s_end.log" %

(structureNumber), "Coul."))

#RUN THE CALCULATIONS HERE !!!

os.system("mdrun_d -s 450 _waters.tpr -rerun structure_%s_HOST.g96 -g

structure_%s_end_HOST.log -e structure_%s_end_HOST.edr -o structure_%

s_end_HOST.trr &> gromacs_output.txt" % ( structureNumber +1, structureNumber ,

structureNumber , structureNumber))

os.system("mdrun_d -s ethanol_vacuum.tpr -rerun structure_%s_LIGAND.g96 -

g structure_%s_end_LIGAND.log -e structure_%s_end_LIGAND.edr -o structure_%

s_end_LIGAND.trr &> gromacs_output.txt" % ( structureNumber +1,

structureNumber , structureNumber , structureNumber))

for result in re.findall(’Energies (.*?) Constr.’, open("structure_%

s_end_LIGAND.log" % (structureNumber), ’r’).read(), re.S):

ligandElectrostatics=float(result.split()[21]) + float(result.

split() [22])

for result in re.findall(’Energies (.*?) Constr.’, open("structure_%

s_end_HOST.log" % (structureNumber), ’r’).read(), re.S):

hostElectrostatics=float(result.split()[11]) + float(result.split

()[12])

return(complexElectrostatics - ligandElectrostatics - hostElectrostatics)

#22/08/13 16:39
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def move(ligandAtoms , solventAtoms , structureNumber ,

initialPotentialComplexEnergy , initialPotentialHostEnergy ,

initialPotentialLigandEnergy , initialClassicalComplexEnergy ,

initialMMElectrostatics , failCount):

""" Controls the movement step with the Monte Carlo """

#Generate new velocities

(velocities)=generateVelocities(ligandAtoms , solventAtoms)

# Calculate the values the velocities need to be scaled by

(xVAll , yVAll , zVAll)=scaleVelocities(ligandAtoms , solventAtoms ,

velocities)

#Scale the new velocities

newVelocities=removeCenterOfMass(velocities , xVAll , yVAll , zVAll)

#Write the velocities to file

foutOutput.write("WRITING TO FILE structure_%s.g96" % (structureNumber) )

writeVelocitiesG96("structure_%s.g96" % (structureNumber), newVelocities)

#Run gromacs

runGromacs("structure_%s.g96" % (structureNumber), "structure_%s_end.tpr"

% (structureNumber), structureNumber)

#Extract energies

initialKineticEnergy=kineticEnergyCalc("structure_%s_end.log" % (

structureNumber), "Kinetic")

finalKineticEnergy=extractEnergy("structure_%s_end.log" % (

structureNumber), "Kinetic")

finalClassicalComplexEnergy=extractEnergy("structure_%s_end.log" % (

structureNumber), "Potential")

finalLJEnergy=extractEnergy("structure_%s_end.log" % (structureNumber), "

LJ")

#HMC edit

(boxInfo , x, y, z)=g96Reader("structure_%s.g96" % (structure +1))

(newX , newY , newZ)=wrapCoordinates(x, y, z, boxInfo)

writeClassicalStructureFile(structureNumber)

finalMMElectrostatics=calculateInteractionEnergy(structureNumber)

writeOnetepFile(newX , newY , newZ , boxInfo , ligandAtoms , solventAtoms)

#Make this so 3 energies from thisfunction

(finalPotentialComplexEnergy , finalPotentialHostEnergy ,

finalPotentialLigandEnergy)=runOnetep(structure)

initialCorrectedInteractionPotential =(( initialClassicalComplexEnergy -

initialMMElectrostatics) + (initialPotentialComplexEnergy -

initialPotentialHostEnergy - initialPotentialLigandEnergy))

finalCorrectedInteractionPotential =(( finalClassicalComplexEnergy -

finalMMElectrostatics) + (finalPotentialComplexEnergy -

finalPotentialHostEnergy - finalPotentialLigandEnergy))
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print initialCorrectedInteractionPotential ,

finalCorrectedInteractionPotential

initialQMLambda =(((1- lambdaWindow)*float(initialClassicalComplexEnergy))

+(( lambdaWindow)*initialCorrectedInteractionPotential))

finalQMLambda =(((1 - lambdaWindow)*float(finalClassicalComplexEnergy))+((

lambdaWindow)*finalCorrectedInteractionPotential))

totalEnergy1=float(initialQMLambda)+float(initialKineticEnergy)

totalEnergy2=float(finalQMLambda)+float(finalKineticEnergy)

acceptance=acceptanceCriteriaHybridMC(totalEnergy1 , totalEnergy2)

#Return comp host lig for MM and QM

return(acceptance , float(initialKineticEnergy), float(finalKineticEnergy)

, float(finalPotentialComplexEnergy), finalPotentialHostEnergy ,

finalPotentialLigandEnergy , float(finalMMElectrostatics), float(

finalClassicalComplexEnergy), failCount)

#23/1/14 11:16

def classicalMove(structureNumber , initialClassicalComplexEnergy):

""" Controls the classical hybrid Monte Carlo movement """

(velocities)=generateVelocities(ligandAtoms , solventAtoms)

# Calculate the values the velocities need to be scaled by

(xVAll , yVAll , zVAll)=scaleVelocities(ligandAtoms , solventAtoms ,

velocities)

#Scale the new velocities

newVelocities=removeCenterOfMass(velocities , xVAll , yVAll , zVAll)

#Write the velocities to file

foutOutput.write("WRITING TO FILE structure_%s.g96" % (structureNumber) )

writeVelocitiesG96("structure_%s.g96" % (structureNumber), newVelocities)

#Run gromacs

runGromacs("structure_%s.g96" % (structureNumber), "structure_%s_end.tpr"

% (structureNumber), structureNumber)

#Extract energies

initialKineticEnergy=kineticEnergyCalc("structure_%s_end.log" % (

structureNumber), "Kinetic")

finalKineticEnergy=extractEnergy("structure_%s_end.log" % (

structureNumber), "Kinetic")

finalClassicalComplexEnergy=extractEnergy("structure_%s_end.log" % (

structureNumber), "Potential")



214 Chapter 8 Apendix B

finalLJEnergy=extractEnergy("structure_%s_end.log" % (structureNumber), "

LJ")

totalEnergy1=float(initialKineticEnergy)+float(

initialClassicalComplexEnergy)

totalEnergy2=float(finalKineticEnergy)+float(finalClassicalComplexEnergy)

acceptance=acceptanceCriteriaHybridMC(totalEnergy1 , totalEnergy2)

return(acceptance , initialKineticEnergy , finalKineticEnergy ,

finalLJEnergy , finalClassicalComplexEnergy)

def writeOnetepFile(x, y, z, boxSize , ligandAtoms , solventAtoms):

""" Input: coordinates

Output: Onetep dat file """

from decimal import Decimal

fout=open("qmElec_embed_coords_%d.dat" % int(structure), ’w’)

fout.write("cutoff_energy : 800 eV \n")

fout.write("ngwf_threshold_orig : 0.000002\n")

fout.write("kernel_cutoff : 1000 \n")

fout.write("k_zero : 3.5 \n")

fout.write("write_xyz true \n")

fout.write("write_tightbox_ngwfs false \n")

fout.write("write_denskern false \n")

fout.write(" \n")

fout.write("elec_cg_max 5 \n")

fout.write("occ_mix 1.0 \n")

fout.write(" \n")

# fout.write (" threadsmax 4 \n")

# fout.write (" threadsperfftbox 1 \n")

# fout.write (" threadsnumfftboxes 4 \n")

# fout.write (" threadspercellfft 4 \n")

# fout.write (" threadsnummkl 4 \n")

fout.write(" \n")

# fout.write (" comms_group_size 4 \n")

#Change to 10 if PAOs are used

fout.write("minit_lnv 5 \n")

fout.write("maxit_lnv 5 \n")

fout.write(" \n")

fout.write("maxit_pen 0 \n")

fout.write(" \n")

fout.write("dispersion 1 \n")



Chapter 8 Apendix B 215

fout.write(" \n")

fout.write(" \n")

fout.write("lnv_threshold_orig 1.0e-7 \n")

fout.write(" \n")

fout.write("output_detail VERBOSE \n")

fout.write(" \n")

fout.write("xc_functional PBE \n")

fout.write(" \n")

fout.write("maxit_ngwf_cg 100 \n")

#fout.write (" maxit_ngwf_cg 0 \n")

fout.write(" \n")

#Add additional atom types here

fout.write("%block species \n")

# fout.write ("N N 7 4 8.0 \n")

fout.write("H H 1 1 8.0 \n")

fout.write("C C 6 4 8.0 \n")

fout.write("O O 8 4 8.0 \n")

# fout.write ("Cl Cl 17 8 8.0 \n")

fout.write("%endblock species \n")

fout.write(" \n")

# fout.write ("% block species_atomic_set \n")

# fout.write(’H "SOLVE conf =1s1" \n ’)

# fout.write(’C "SOLVE conf =2s2 2p4" \n ’)

# fout.write ("N AUTO\n")

# fout.write ("% endblock species_atomic_set \n")

fout.write(" \n")

# fout.write (" initial_dens_realspace F\n")

fout.write("\n")

#Add additional pseudopotentials here

fout.write("%block species_pot \n")

# fout.write ("N N_00.recpot \n")

fout.write("H H_04.recpot \n")

fout.write("C C_01.recpot \n")

fout.write("O O_01.recpot\n")

# fout.write ("Cl Cl_00.recpot\n")

fout.write("%endblock species_pot \n")

fout.write(" \n")

fout.write("%block lattice_cart \n")

#Sorts out the box sizes here

roundedX=str(Decimal(str(float(boxSize [0])*nm2bohr)).quantize(Decimal (10)

**-3))
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roundedY=str(Decimal(str(float(boxSize [1])*nm2bohr)).quantize(Decimal (10)

**-3))

roundedZ=str(Decimal(str(float(boxSize [2])*nm2bohr)).quantize(Decimal (10)

**-3))

fout.write((7-len(roundedX))*" "+roundedX+" 0.000 0.000\n")

fout.write(" 0.000"+(8-len(roundedY))*" "+roundedY+" 0.000\n")

fout.write(" 0.000 0.000"+(8-len(roundedY))*" "+roundedZ+"\n")

fout.write("%endblock lattice_cart \n\n")

fout.write("%block positions_abs\n")

#Writes the standard full atom section here

for i in range(len(ligandAtoms)):

#Rounds values to 8 decimal places after converting them from Ang

to Bohr

roundedX=str(Decimal(str(x[i]* nm2bohr)).quantize(Decimal (10) **-8)

)

roundedY=str(Decimal(str(y[i]* nm2bohr)).quantize(Decimal (10) **-8)

)

roundedZ=str(Decimal(str(z[i]* nm2bohr)).quantize(Decimal (10) **-8)

)

try:

fout.write(ligandAtoms[i]+(17 -len(roundedX))*" "+str(

roundedX)+(15-len(roundedY))*" "+str(roundedY)+(15-len(roundedZ))*" "+str(

roundedZ)+"\n")

except: pass

# fout.write( solventAtoms [i-len( ligandAtoms )]+(17 - len(

roundedX))*" "+ str(roundedX)+(15 - len(roundedY))*" "+ str(roundedY)+(15 - len(

roundedZ))*" "+ str(roundedZ)+"\n")

fout.write("%endblock positions_abs\n\n")

fout.write("%block classical_info\n")

#Writes the electrostatic embedding section here

for i in range( len(ligandAtoms), (len(solventAtoms)+len(ligandAtoms))):

roundedX=str(Decimal(str(x[i]* nm2bohr)).quantize(Decimal (10) **-8))

#Decimal module will round to 0E-8 if the value is 0,
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#Below converts back to standard format

if roundedX =="0E-8":

roundedX="0.00000000"

roundedY=str(Decimal(str(y[i]* nm2bohr)).quantize(Decimal (10) **-8))

if roundedY =="0E-8":

roundedY="0.00000000"

roundedZ=str(Decimal(str(z[i]* nm2bohr)).quantize(Decimal (10) **-8))

if roundedZ =="0E-8":

roundedZ="0.00000000"

if solventAtoms[i-len(ligandAtoms)]==’O’:

#These Charges are consistent with the flexible SPC model

charge =-0.82

elif solventAtoms[i-len(ligandAtoms)]==’H’:

charge =0.41

else:

print "SOLVENT ATOM COULD NOT BE FOUND"

fout.write(solventAtoms[i-len(ligandAtoms)]+(17 -len(roundedX))*" "

+str(roundedX)+(15-len(roundedY))*" "+str(roundedY)+(15-len(roundedZ))*" "+

str(roundedZ)+(15-len(str(charge)))*" "+str(charge)+"\n")

fout.write("%endblock classical_info\n")

# ############################################################################

# ################################### HOST ###################################

# ############################################################################

foutHost=open("qmElec_embed_coords_%d_HOST.dat" % int(structure), ’w’)

foutHost.write("cutoff_energy : 800 eV \n")

foutHost.write("ngwf_threshold_orig : 0.000002\n")

foutHost.write("kernel_cutoff : 1000 \n")

foutHost.write("k_zero : 3.5 \n")

foutHost.write("write_xyz true \n")

foutHost.write("write_tightbox_ngwfs false \n")

foutHost.write("write_denskern false \n")

foutHost.write(" \n")

foutHost.write("elec_cg_max 5 \n")

foutHost.write("occ_mix 1.0 \n")

foutHost.write(" \n")

foutHost.write(" \n")

foutHost.write("minit_lnv 0 \n")

foutHost.write("maxit_lnv 0 \n")
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foutHost.write(" \n")

foutHost.write("maxit_pen 0 \n")

foutHost.write(" \n")

foutHost.write("dispersion 0 \n")

foutHost.write(" \n")

foutHost.write(" \n")

foutHost.write("lnv_threshold_orig 1.0e-7 \n")

foutHost.write(" \n")

foutHost.write("output_detail VERBOSE \n")

foutHost.write(" \n")

foutHost.write("xc_functional PBE \n")

foutHost.write(" \n")

foutHost.write("maxit_ngwf_cg 0 \n")

foutHost.write(" \n")

foutHost.write("%block species \n")

foutHost.write("H H 1 1 8.0 \n")

foutHost.write("C C 6 4 8.0 \n")

foutHost.write("O O 8 4 8.0 \n")

foutHost.write("%endblock species \n")

foutHost.write(" \n")

foutHost.write(" \n")

foutHost.write("\n")

foutHost.write("%block species_pot \n")

foutHost.write("H null.recpot \n")

foutHost.write("C null.recpot \n")

foutHost.write("O null.recpot\n")

foutHost.write("%endblock species_pot \n")

foutHost.write(" \n")

foutHost.write("%block lattice_cart \n")

#Sorts out the box sizes here

roundedX=str(Decimal(str(float(boxSize [0])*nm2bohr)).quantize(Decimal (10)

**-3))

roundedY=str(Decimal(str(float(boxSize [1])*nm2bohr)).quantize(Decimal (10)

**-3))

roundedZ=str(Decimal(str(float(boxSize [2])*nm2bohr)).quantize(Decimal (10)

**-3))

foutHost.write((7-len(roundedX))*" "+roundedX+" 0.000 0.000\n")

foutHost.write(" 0.000"+(8-len(roundedY))*" "+roundedY+" 0.000\n")

foutHost.write(" 0.000 0.000"+(8-len(roundedY))*" "+roundedZ+"\n")
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foutHost.write("%endblock lattice_cart \n\n")

foutHost.write("%block positions_abs\n")

#Writes the standard full atom section here

for i in range(len(ligandAtoms)):

#Rounds values to 8 decimal places after converting them from Ang

to Bohr

roundedX=str(Decimal(str(x[i]* nm2bohr)).quantize(Decimal (10) **-8)

)

roundedY=str(Decimal(str(y[i]* nm2bohr)).quantize(Decimal (10) **-8)

)

roundedZ=str(Decimal(str(z[i]* nm2bohr)).quantize(Decimal (10) **-8)

)

try:

foutHost.write(ligandAtoms[i]+(17- len(roundedX))*" "+str(

roundedX)+(15-len(roundedY))*" "+str(roundedY)+(15-len(roundedZ))*" "+str(

roundedZ)+"\n")

except: pass

# fout.write( solventAtoms [i-len( ligandAtoms )]+(17 - len(

roundedX))*" "+ str(roundedX)+(15 - len(roundedY))*" "+ str(roundedY)+(15 - len(

roundedZ))*" "+ str(roundedZ)+"\n")

foutHost.write("%endblock positions_abs\n\n")

foutHost.write("%block classical_info\n")

#Writes the electrostatic embedding section here

for i in range( len(ligandAtoms), (len(solventAtoms)+len(ligandAtoms))):

roundedX=str(Decimal(str(x[i]* nm2bohr)).quantize(Decimal (10) **-8))

#Decimal module will round to 0E-8 if the value is 0,

#Below converts back to standard format

if roundedX =="0E-8":

roundedX="0.00000000"

roundedY=str(Decimal(str(y[i]* nm2bohr)).quantize(Decimal (10) **-8))

if roundedY =="0E-8":

roundedY="0.00000000"

roundedZ=str(Decimal(str(z[i]* nm2bohr)).quantize(Decimal (10) **-8))

if roundedZ =="0E-8":

roundedZ="0.00000000"
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if solventAtoms[i-len(ligandAtoms)]==’O’:

#These Charges are consistent with the flexible SPC model

charge =-0.82

elif solventAtoms[i-len(ligandAtoms)]==’H’:

charge =0.41

else:

print "SOLVENT ATOM COULD NOT BE FOUND"

foutHost.write(solventAtoms[i-len(ligandAtoms)]+(17-len(roundedX))

*" "+str(roundedX)+(15-len(roundedY))*" "+str(roundedY)+(15-len(roundedZ))*"

"+str(roundedZ)+(15-len(str(charge)))*" "+str(charge)+"\n")

foutHost.write("%endblock classical_info\n")

# ############################################################################

# ################################## LIGAND ##################################

# ############################################################################

foutLigand=open("qmElec_embed_coords_%d_LIGAND.dat" % int(structure), ’w’)

foutLigand.write("cutoff_energy : 800 eV \n")

foutLigand.write("ngwf_threshold_orig : 0.000002\n")

foutLigand.write("kernel_cutoff : 1000 \n")

foutLigand.write("k_zero : 3.5 \n")

foutLigand.write("write_xyz true \n")

foutLigand.write("write_tightbox_ngwfs false \n")

foutLigand.write("write_denskern false \n")

foutLigand.write(" \n")

foutLigand.write("elec_cg_max 5 \n")

foutLigand.write("occ_mix 1.0 \n")

foutLigand.write(" \n")

foutLigand.write(" \n")

foutLigand.write("minit_lnv 5 \n")

foutLigand.write("maxit_lnv 5 \n")

foutLigand.write(" \n")

foutLigand.write("maxit_pen 0 \n")

foutLigand.write(" \n")

foutLigand.write("dispersion 1 \n")

foutLigand.write(" \n")

foutLigand.write(" \n")

foutLigand.write("lnv_threshold_orig 1.0e-7 \n")

foutLigand.write(" \n")

foutLigand.write("output_detail VERBOSE \n")
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foutLigand.write(" \n")

foutLigand.write("xc_functional PBE \n")

foutLigand.write(" \n")

foutLigand.write("maxit_ngwf_cg 100 \n")

foutLigand.write(" \n")

foutLigand.write("%block species \n")

foutLigand.write("H H 1 1 8.0 \n")

foutLigand.write("C C 6 4 8.0 \n")

foutLigand.write("O O 8 4 8.0 \n")

foutLigand.write("%endblock species \n")

foutLigand.write(" \n")

foutLigand.write(" \n")

foutLigand.write("\n")

foutLigand.write("%block species_pot \n")

foutLigand.write("H H_04.recpot \n")

foutLigand.write("C C_01.recpot \n")

foutLigand.write("O O_01.recpot\n")

foutLigand.write("%endblock species_pot \n")

foutLigand.write(" \n")

foutLigand.write("%block lattice_cart \n")

#Sorts out the box sizes here

roundedX=str(Decimal(str(float(boxSize [0])*nm2bohr)).quantize(Decimal (10)

**-3))

roundedY=str(Decimal(str(float(boxSize [1])*nm2bohr)).quantize(Decimal (10)

**-3))

roundedZ=str(Decimal(str(float(boxSize [2])*nm2bohr)).quantize(Decimal (10)

**-3))

foutLigand.write ((7-len(roundedX))*" "+roundedX+" 0.000 0.000\n")

foutLigand.write(" 0.000"+(8-len(roundedY))*" "+roundedY+" 0.000\n")

foutLigand.write(" 0.000 0.000"+(8-len(roundedY))*" "+roundedZ+"\n")

foutLigand.write("%endblock lattice_cart \n\n")

foutLigand.write("%block positions_abs\n")

#Writes the standard full atom section here

for i in range(len(ligandAtoms)):

#Rounds values to 8 decimal places after converting them from Ang

to Bohr
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roundedX=str(Decimal(str(x[i]* nm2bohr)).quantize(Decimal (10) **-8)

)

roundedY=str(Decimal(str(y[i]* nm2bohr)).quantize(Decimal (10) **-8)

)

roundedZ=str(Decimal(str(z[i]* nm2bohr)).quantize(Decimal (10) **-8)

)

try:

foutLigand.write(ligandAtoms[i]+(17 -len(roundedX))*" "+

str(roundedX)+(15-len(roundedY))*" "+str(roundedY)+(15-len(roundedZ))*" "+str

(roundedZ)+"\n")

except: pass

# fout.write( solventAtoms [i-len( ligandAtoms )]+(17 - len(

roundedX))*" "+ str(roundedX)+(15 - len(roundedY))*" "+ str(roundedY)+(15 - len(

roundedZ))*" "+ str(roundedZ)+"\n")

foutLigand.write("%endblock positions_abs\n\n")

#22/08/13 16:45

def runOnetep(QMStructure):

""" Input: None

Output: energy """

foutOutput.write("Running ONETEP ...\n")

os.system( "mpirun -np 5 -hostfile nodes.host ./ onetep.iridis3

qmElec_embed_coords_%s_HOST.dat > qmElec_embed_coords_%s_HOST.out &" % (int(

QMStructure), int(QMStructure)))

os.system( "mpirun -np 5 -hostfile nodes.lig ./ onetep.iridis3

qmElec_embed_coords_%s_LIGAND.dat > qmElec_embed_coords_%s_LIGAND.out &" % (

int(QMStructure), int(QMStructure)))

os.system( "mpirun -np 4 -hostfile nodes.comp ./ onetep.iridis3

qmElec_embed_coords_%s.dat > qmElec_embed_coords_%s.out" % (int(QMStructure),

int(QMStructure)))

looper =0

while looper ==0:

try:

for result in re.findall(’Epredicted (.*?) <--’, open("

qmElec_embed_coords_%s.out" % (QMStructure), ’r’).read(), re.S):

if float(result.split()[-2]) <0.000002:

complexEnergy=result.split ()[-1]
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foutOutput.write (60*"-"+"ONETEP ENERGY

CONVERGED"+60*"-"+"\n")

for result in re.findall(’Ewald Energy (.*?) ===’, open("

qmElec_embed_coords_%s_HOST.out" % (QMStructure), ’r’).read(), re.S):

hostEnergy=result.split()[1]

for result in re.findall(’Epredicted (.*?) <--’, open("

qmElec_embed_coords_%s_LIGAND.out" % (QMStructure), ’r’).read(), re.S):

if float(result.split()[-2]) <0.000002:

ligandEnergy=result.split()[-1]

foutOutput.write (60*"-"+"ONETEP LIGAND

ENERGY CONVERGED"+60*"-"+"\n")

looper =1

except:

looper =0

return float(complexEnergy)*hartrees2kj , float(hostEnergy)*hartrees2kj ,

float(ligandEnergy)*hartrees2kj

def MetropolisHastingsAcceptance(initialQuantMEnergy , finalQuantMEnergy ,

initialCLEnergy , finalCLEnergy):

""" Input: start & end QM energy , start & end classical energy

Output: whether the structure is accepted or not """

deltaDeltaE =(( float(finalQuantMEnergy)-float(finalCLEnergy)) -(float(

initialQuantMEnergy)-float(initialCLEnergy)))

print "QUANTUM ACCEPTANCE VALUE = ", deltaDeltaE

probAcceptance=numpy.exp (-(1/( kBJoulesMol*T))*deltaDeltaE)

print "prob acceptance = ", probAcceptance

if probAcceptance >=1:

return(1, deltaDeltaE)

else:

randomNumber=random.random ()

foutOutput.write("randomNumber %s\n" % (randomNumber))

if probAcceptance >= randomNumber:

return(1, deltaDeltaE)
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else:

return(0, deltaDeltaE)

def wrapCoordinates(xCoordinates , yCoordinates , zCoordinates , boxSize):

""" Input: coordinates

Output: Wrapped coordinates """

boxSizeX=float(boxSize [0])

boxSizeY=float(boxSize [1])

boxSizeZ=float(boxSize [2])

wrappedXCoordinates =[]

wrappedYCoordinates =[]

wrappedZCoordinates =[]

# Subtracting a box length from all coordinates that are outside the box

for value in xCoordinates:

if value >( boxSizeX /2):

wrappedXCoordinates.append(value -boxSizeX)

else:

wrappedXCoordinates.append(value)

for value in yCoordinates:

if value >( boxSizeY /2):

wrappedYCoordinates.append(value -boxSizeY)

else:

wrappedYCoordinates.append(value)

for value in zCoordinates:

if value >( boxSizeZ /2):

wrappedZCoordinates.append(value -boxSizeZ)

else:

wrappedZCoordinates.append(value)

# translates the box so the left hand corner is at the origin

wrappedXCoordinates=numpy.array(wrappedXCoordinates)-min(

wrappedXCoordinates)

wrappedYCoordinates=numpy.array(wrappedYCoordinates)-min(

wrappedYCoordinates)

wrappedZCoordinates=numpy.array(wrappedZCoordinates)-min(

wrappedZCoordinates)

return wrappedXCoordinates , wrappedYCoordinates , wrappedZCoordinates
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#22/08/13 16:04

def inputReader(file):

""" Input: file specifying all parameters for run

Output: parameters used for run in python variables """

fin=open(file , ’r’).readlines ()

error=0

for line in fin:

if "-QM" in line.split ()[0]:

numberOfQM=int(line.split ()[1])

elif "-MM" in line.split()[0]:

numberOfMM=int(line.split ()[1])

elif "-TOP" in line.split()[0]:

topologyFile=line.split ()[1]

elif "-LJ" in line.split()[0]:

#CHANGE code at later date

lJParam =0

elif "-G96" in line.split()[0]:

g96File=line.split ()[1]

elif "-EQ" in line.split()[0]:

equilibrationNumber=int(line.split()[1])

elif "-CONT" in line.split()[0]:

continuation=int(line.split ()[1])

else:

print 120*"-"

print " UNKNOWN

FLAG IN INPUT FILE", line.split ()[0]

print 120*"-"

error=1

if error ==0:

try:

return(topologyFile , g96File , numberOfQM , numberOfMM ,

lJParam , equilibrationNumber , continuation)

except UnboundLocalError:

print 120*"-"

print " CHECK ALL

FLAGS PRESENT IN INPUT FILE"

print 120*"-"
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#

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#

#

------------------------------------------------------------------------------------------------------

CONTROL

----------------------------------------------------------------------------------------------------------------#

#

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#

#23/08/13 09:20

if __name__ ==’__main__ ’:

(topologyFile , g96File , numberOfQM , numberOfMM , lJParam ,

equilibrationNumber , CONT)=inputReader(sys.argv [1])

print "Using %s as topology file and %s for coordinates" % (topologyFile ,

g96File)

fout=open("run_information.txt", ’w’)

fout.write("Structure Start Ekin Qpot Cpot LJ End Ekin

Qpot Cpot LJ Epot\n")

#Sets the value of lambda

lambdaWindow=float(sys.argv [2])

#Start structure number

structure =0

#Read in gro file for ligand and solvent atoms

(ligandAtoms , solventAtoms , boxSize)=readG96FileNames(g96File)

if len(solventAtoms)==0:

print 120*"-"

print "WARNING , YOU ARE RUNNING IN A VACUUM AND WILL NEED TO MAKE

SMALL CHANGES TO THE CODE IN MODULE ’writeOnetepFile ’"

print 120*"-"

#Copys the original file to structure_0 .g96 -- Change this?

os.system(’cp %s structure_%s.g96’ % (g96File , structure))

print("copying %s to structure_%s.g96" % (g96File , structure))
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if CONT ==0:

# initialise the average Energy variables

averageEnergyDifference = -245743.865632

averageLength =0

#runs gromacs

runGromacs("structure_%s.g96" % (structure), "structure_%s_end.

tpr" % (structure), structure)

initialClassicalComplexEnergy=extractEnergy("structure_%s_end.log

" % (structure), "Potential")

initialLJEnergy=extractEnergy("structure_%s_end.log" % (structure

), "LJ")

# Equilibration Steps

initialPotentialComplexEnergy="N/A"

finalPotentialComplexEnergy="N/A"

counterMM =0

while counterMM <equilibrationNumber:

fout.flush()

foutOutput.flush ()

structure +=1

(acceptance , initialKineticEnergy , finalKineticEnergy ,

finalLJEnergy , finalClassicalComplexEnergy)=classicalMove(structure ,

initialClassicalComplexEnergy)

#Write classical move

if acceptance ==1:

fout.write("%s %s %s %s %s %

s %s %s %s Accepted\n" % (structure , initialKineticEnergy

, initialPotentialComplexEnergy , initialClassicalComplexEnergy ,

initialLJEnergy , finalKineticEnergy , finalPotentialComplexEnergy ,

finalClassicalComplexEnergy , finalLJEnergy))

fout.write("structure %s accepted !!!!!\n" % (

structure))

initialPotentialComplexEnergy=

finalPotentialComplexEnergy
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initialClassicalComplexEnergy=

finalClassicalComplexEnergy

initialLJEnergy=finalLJEnergy

counterMM +=1

acceptedStructure=structure

else:

fout.write("%s %s %s %s %s %

s %s %s %s Failed\n" % (structure , initialKineticEnergy ,

initialPotentialComplexEnergy , initialClassicalComplexEnergy , initialLJEnergy

, finalKineticEnergy , finalPotentialComplexEnergy ,

finalClassicalComplexEnergy , finalLJEnergy))

fout.write("Structure FAILED\n")

os.system("cp structure_%s.g96 structure_%s.g96"

% ( structure , structure +1))

counterMM +=1

fout.write("Structure Start Ekin Qcomp Qhost Qlig

Ccomp Celec End Ekin Qpot Qhost Qlig Cpot Celec \n")

# initialise the force constant

forceConst =0

(boxInfo , x, y, z)=g96Reader("structure_%s.g96" % (structure +1))

(newX , newY , newZ)=wrapCoordinates(x, y, z, boxInfo)

# print (" length of newZ=", len(newZ))

writeClassicalStructureFile(structure)

initialMMElectrostatics=calculateInteractionEnergy(structure)

writeOnetepFile(newX , newY , newZ , boxInfo , ligandAtoms ,

solventAtoms)

(initialPotentialComplexEnergy , initialPotentialHostEnergy ,

initialPotentialLigandEnergy)=runOnetep(structure)

failCount =0

counterQM =0

while counterQM <numberOfQM:

fout.flush()

foutOutput.flush ()

#Add 1 to the structure

structure +=1

#Makes a move
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(acceptance , initialKineticEnergy , finalKineticEnergy ,

finalPotentialComplexEnergy , finalPotentialHostEnergy ,

finalPotentialLigandEnergy , finalMMELectrostatics ,

finalClassicalComplexEnergy , failCount)=move(ligandAtoms , solventAtoms ,

structure , initialPotentialComplexEnergy , initialPotentialHostEnergy ,

initialPotentialLigandEnergy , initialClassicalComplexEnergy ,

initialMMElectrostatics , failCount)

if acceptance ==1:

fout.write("%s %s %s %s %s %s %

s %s %s %s %s %s %s Accepted %s\n" % (

structure , initialKineticEnergy , initialPotentialComplexEnergy ,

initialPotentialHostEnergy , initialPotentialLigandEnergy ,

initialClassicalComplexEnergy , initialMMElectrostatics , finalKineticEnergy ,

finalPotentialComplexEnergy , finalPotentialHostEnergy ,

finalPotentialLigandEnergy , finalClassicalComplexEnergy ,

finalMMELectrostatics , failCount))

fout.write("structure %s accepted !!!!!\n" % (

structure))

initialPotentialComplexEnergy=

finalPotentialComplexEnergy

initialClassicalComplexEnergy=

finalClassicalComplexEnergy

initialPotentialHostEnergy=

finalPotentialHostEnergy

initialPotentialLigandEnergy=

finalPotentialLigandEnergy

initialMMElectrostatics=finalMMELectrostatics

counterQM +=1

acceptedStructure=structure

failCount =0

else:

fout.write("%s %s %s %s %s %s %

s %s %s %s %s %s %s Failed %s\n" % (

structure , initialKineticEnergy , initialPotentialComplexEnergy ,

initialPotentialHostEnergy , initialPotentialLigandEnergy ,

initialClassicalComplexEnergy , initialMMElectrostatics , finalKineticEnergy ,

finalPotentialComplexEnergy , finalPotentialHostEnergy ,

finalPotentialLigandEnergy , finalClassicalComplexEnergy ,

finalMMELectrostatics , failCount))

fout.write("Structure FAILED\n")

os.system("cp structure_%s.g96 structure_%s.g96"

% ( structure , structure +1))

counterQM +=1
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failCount +=1

elif CONT ==1:

finContinuation=open("../ run_information.txt", ’r’).readlines ()

for line in finContinuation:

if "Accepted" in line:

try:

structure=int(line.split()[0])

initialClassicalComplexEnergy=float(line.

split()[7])

initialLJEnergy=float(line.split()[8])

averageEnergyDifference=float(line.split

()[9])

forceConst=float(line.split()[-1])

averageLength =0

failCount =0

initialPotentialComplexEnergy=float(line.

split()[6])

except: pass

#the count will start at 1, required for the correct qmElecEmbed

numbering

os.system("cp structure_0.g96 structure_%s.g96" % (structure +1))

print "copying structure_0.g96 structure_%s.g96" % (structure +1)

(boxInfo , x, y, z)=g96Reader("structure_%s.g96" % (structure +1))

(newX , newY , newZ)=wrapCoordinates(x, y, z, boxInfo)

writeOnetepFile(newX , newY , newZ , boxInfo , ligandAtoms ,

solventAtoms)

# ( initialPotentialComplexEnergy )= runOnetep( structure)

counterQM =0

while counterQM <numberOfQM:

fout.flush()

foutOutput.flush ()



Chapter 8 Apendix B 231

#Add 1 to the structure

structure +=1

(acceptance , initialKineticEnergy , finalKineticEnergy ,

finalPotentialComplexEnergy , finalLJEnergy , finalClassicalComplexEnergy ,

averageEnergyDifference , failCount)=move(ligandAtoms , solventAtoms , structure

, initialPotentialComplexEnergy , initialLJEnergy , averageEnergyDifference ,

averageLength , failCount , forceConst)

if acceptance ==1:

fout.write("%s %s %s %s %s %s

%s %s %s %s %s Accepted %s\n" % (structure ,

initialKineticEnergy , initialPotentialComplexEnergy ,

initialClassicalComplexEnergy , initialLJEnergy , finalKineticEnergy ,

finalPotentialComplexEnergy , finalClassicalComplexEnergy , finalLJEnergy ,

averageEnergyDifference , failCount , forceConst))

fout.write("structure %s accepted !!!!!\n" % (

structure))

initialPotentialComplexEnergy=

finalPotentialComplexEnergy

initialClassicalComplexEnergy=

finalClassicalComplexEnergy

initialPotentialHostEnergy=

finalPotentialHostEnergy

initialPotentialLigandEnergy=

finalPotentialLigandEnergy

counterQM +=1

acceptedStructure=structure

failCount =0

else:

fout.write("%s %s %s %s %s %s

%s %s %s %s %s Failed %s\n" % (structure ,

initialKineticEnergy , initialPotentialComplexEnergy ,

initialClassicalComplexEnergy , initialLJEnergy , finalKineticEnergy ,

finalPotentialComplexEnergy , finalClassicalComplexEnergy , finalLJEnergy ,

averageEnergyDifference , failCount , forceConst))

fout.write("Structure FAILED\n")

os.system("cp structure_%s.g96 structure_%s.g96"

% ( structure , structure +1))

counterQM +=1
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failCount +=1

fout.close()
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