
UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Aerodynamics and Flight Mechanics

Full-Field Surface Pressure Reconstruction Using
Deflectometry and the Virtual Fields Method

by

Rene Kaufmann

Thesis for the degree of Doctor of Philosophy
Supervised by Prof. B. Ganapathisubramani

and Prof. F. Pierron

July 7, 2019

http://www.southampton.ac.uk/
http://www.southampton.ac.uk/engineering/index.page?
http://www.southampton.ac.uk/engineering/research/groups/afm.page
mailto:Rene.Kaufmann@Southampton.ac.uk




UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT
Aerodynamics and Flight Mechanics

FULL-FIELD SURFACE PRESSURE RECONSTRUCTION USING DEFLECTOMETRY
AND THE VIRTUAL FIELDS METHOD

by Rene Kaufmann

This thesis presents a technique for the reconstruction of full-field surface pressure distributions
with low differential amplitudes. The method is demonstrated in two different setups with air
jets impinging on flat plates. Surface deformations were obtained using deflectometry, a highly
sensitive technique for slope measurement. The surface slopes in combination with the plate
material constitutive mechanical parameters were used as input for pressure reconstructions
with the Virtual Fields Method (VFM), which is an application of the principle of virtual
work. Both static and dynamic pressure distributions were reconstructed in full-field with this
technique. Results were compared with pressure transducer measurements at discrete points.
The observed pressure amplitudes were between O(1) Pa – O(100) Pa. The spatial extent of
the investigated flow structures was O(1) mm – O(10) mm. Dynamic pressure information
was extracted from time-resolved deflectometry data using temporal band-pass filters or phase-
locked measurements. Dynamic Mode Decomposition (DMD) was used on time-resolved data
to identify relevant spatial information that correspond to specific frequencies. Despite the
low differential amplitudes, dynamically important spatio-temporal events could be observed.
Full-field measurements of such small-scale, low-amplitude pressure events are not possible
with established pressure measurement techniques. A finite element model was employed in
combination with artificial grid deformation to assess the uncertainty of the pressure recon-
structions. Finally, challenges and limitations in achieving the metrological performance for
resolving the observed surface slopes of O(0.1) mm km−1 – O(10) mm km−1 as well as in
the pressure reconstruction approach are described and strategies for future applications are
discussed.
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Chapter 1

Overview

1.1 Motivation

Full-field surface pressure information is highly relevant for engineering applications like ma-
terial testing, component design, flow control and impinging jets. It allows determining the
aerodynamic loads on e.g. fuselages, aerofoils and ship hulls, which are required to evaluate
the performance of such components. Surface pressure information is also important for appli-
cations involving pipe flows (Browne and Dinkelacker, 1995). In supersonic scenarios, full-field
information can be used to determine the position and intensity of shocks (Yang et al., 2012).
For the research of turbulent flows low-range differential pressure amplitudes are required to
identify turbulent structures forming or impinging on surfaces. This is relevant for the inves-
tigation and control of turbulent boundary layers mechanisms (Bull, 1996; Willmarth, 1975),
e.g. for drag reduction in applications of compliant surfaces (Dinkelacker et al., 1977). It also
allows investigating surface-structure interactions along rough walls in boundary-layer flows
(Young, 1965). Impinging jets are an essential tool for heat and mass transfer, e.g. in the
cooling, de-icing and coating of surfaces (N. B. Livingood and Hrycak, 1973; Jambunathan
et al., 1992). Full-field pressure information would help assessing the efficiencies of such jets,
as local transfer rates of the relevant quantities are connected to the turbulent pressure fluc-
tuations on the surface (Gardon and Akfirat, 1965).
However, full-field, low-amplitude differential surface pressure information is challenging to
obtain with established techniques. Pressure transducers and microphones, which are often
used for the measurement of low-range differential amplitudes, can only supply point-wise
information. Due to their size with typically 2 − 3 mm diameter this leads to very limited
spatial resolution (Corcos, 1963, 1964). As they need to be integrated into the investigated
surface, they can further change the mechanical material response. Large arrays of circu-
lar membranes with 2.5 mm diameter each were employed as pressure sensors in the past
(Dinkelacker et al., 1977; Emmerling et al., 1975). Using an interferometry setup, interference
fringes were recorded on each of the membranes simultaneously to measure the fluctuations
under a turbulent boundary layer. A calibration against microphones was used to derive a
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4 Chapter 1 Overview

relationship between the number of fringes and the pressure acting on the membranes. The
evaluation of the data was however challenging, and the spatial resolution was still limited
by the diameter of the membranes. Pressure sensitive paints are an option for full-field mea-
surements of large-range differential pressures, but they are difficult to procure and to apply
(Gregory et al., 2008; Kim et al., 2019; Tropea et al., 2007, chapter 4.4). They are often used
in transonic and supersonic scenarios (Engler et al., 2000; Liu et al., 2008). Particle Image
Velocimetry (PIV) can be used for pressure reconstructions in the flow field (van Oudheusden,
2013; Ragni et al., 2009), but reflections and the finite size of the reconstruction window do
not allow measurements directly on the surface. PIV can however be used to estimate pressure
close to the surface and along lines where it coincides with the field of view (Ghaemi et al.,
2012).
None of these techniques can however provide the combination of metrological performance
in terms of pressure amplitude, spatial scales and full-field data which the present work aims
at. Alternatively, pressure can be reconstructed from full-field surface deformation measure-
ments by solving the local equilibrium equations. A number of measurement techniques is
available to acquire the necessary full-field deformation information, like Digital Image Cor-
relation (DIC), Laser Doppler Vibrometers (LDV) and interferometry techniques. In Brown
et al., 2018 3D-Digital Image Correlation (DIC) measurements were conducted on a flexible
Kevlar wind-tunnel wall in order to reconstruct wall pressure. This was achieved by projecting
the measured deflection maps onto polynomial basis functions and then inserting their deriva-
tives into the corresponding equilibrium equations. The obtained pressure coefficients were
found to compare well to transducer data, but the investigated scales were relatively large.
For thin plates under pure bending as in the present scenario, the local equilibrium equation
involves fourth order derivatives of the local surface deflections (Timoshenko and Woinowsky-
Krieger, 1959). Each differentiation tends to amplify experimental noise. In case of fourth
order derivatives, it is therefore necessary to employ rigorous regularisation techniques. This
has been achieved by employing wave number filters in Pezerat and Guyader, 2000 and by
adapting the number of data points used for the finite differences in the differentiation scheme
in Leclére and Pézerat, 2012. External vibration sources acting on the investigated specimen
were identified and localized in these studies. Similarly, wave number filters were used in an
investigation of a turbulent boundary layer to identify the acoustic component of a flow in
Lecoq et al., 2014. The accuracies that can be achieved in terms of localisation and amplitude
identification are limited by the regularization technique as well as the signal-to-noise ratio of
the deformation data.
The low differential pressure amplitudes and the small spatial scales investigated in the present
work can not be resolved with these approaches. Instead, the principle of virtual work can
be employed. It yields an equation that is equivalent to the local equilibrium equation, but
only involves second order deflection derivatives in case of the problem of a thin plate in pure
bending. The Virtual Fields Method (VFM) (Pierron and Grédiac, 2012) is an application of
the principle of virtual work, which allows an identification of constitutive mechanical material
properties from known loading or vice versa from full-field kinematic data. Further advantages
are that the VFM does not require detailed knowledge of the boundary conditions and that
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it does not rely on computationally expensive, iterative procedures. The VFM was compared
with other, similar methods in Martins et al., 2018. It was found to consistently perform
best in terms of computational cost when compared to Finite Element Model Updating and
the Constitutive Equation Gap method. VFM load reconstructions have been performed in
several studies, including dynamic load identifications in a Hopkinson bar in Moulart et al.,
2011; Pierron et al., 2011. The VFM load reconstructions were found to compare reasonably
well to standard measurement techniques. Further, spatially-averaged sound pressure levels
were reconstructed with the VFM from an acoustic field using a scanning LDV in Robin and
Berry, 2018. In a similar approach, dynamic transverse loads and vibrations caused by acous-
tic pressure were identified in Berry et al., 2014. For distributed loads, the results were found
to be accurate. The study applied the VFM using piecewise virtual fields. These allow more
accurate descriptions of boundary conditions for complex shapes and heterogeneous materials
(Toussaint et al., 2006). This approach was later applied to random, spatial wall pressure
excitations in Berry and Robin, 2016. Power spectral density functions were reconstructed
from the experimental data and the VFM was used to describe the plate response. It was
found that piecewise virtual fields had to be defined over small regions to obtain reasonable
results for this application.
The VFM approach was combined with a deflectometry setup to identify mechanical point
loads of several O(1) N in O’Donoughue et al., 2017. Deflectometry is a highly sensitive opti-
cal technique for surface slope measurements (Surrel et al., 1999). In the past it was used for
the damage detection of composites e.g. in Devivier et al., 2012, for the analysis of stiffness
and damping parameters of vibrating plates in Giraudeau et al., 2010 and for the imaging
of ultrasonic Lamb waves in Devivier et al., 2016. Using full-field surface slopes as input
to the VFM reduces the order of derivatives required for pressure reconstruction to one. In
O’Donoughue et al., 2017 loads were found to be reconstructed with good accuracy for certain
sizes of the piecewise defined virtual fields. The ideal domain sizes were found empirically
from comparisons with the known amplitudes of the mechanical loads. In O’Donoughue et al.,
2019 pressure auto-spectra of spatially averaged random excitations were identified using the
same combination of deflectometry and the VFM. Except at structural resonance frequencies
and for poor signal-to-noise-ratios, the results were found to agree well with microphone array
measurements.
While these studies have shown the potential of deflectometry and the VFM for full-field pres-
sure reconstructions, they do not investigate the applicability of the techniques for the sought
low-range amplitudes and small spatial scales. They further omit the accuracy of the method
which is required for applications to unknown input loads. This is an essential step because
neither the resolution in space nor the uncertainty in pressure amplitude can be predicted
directly, as they depend on the signal amplitude and distribution, the noise level and the
processing parameters. The present thesis addresses these gaps in the current research and
systematically explores the capabilities and limitations of the experimental and processing
techniques.



6 Chapter 1 Overview

1.2 Research Objectives and Approach

This work investigates the capabilities and limitations of deflectometry and the VFM in mea-
suring full-field pressure information. The following main questions are addressed in this
thesis:

• What is required to detect and reconstruct low-amplitude differential pressure distribu-
tions in full-field?

• How can the dynamic, low-amplitude and small-scale pressure fluctuations that occur in
turbulent flows be extracted?

• What are the relevant experimental requirements and limitations?

• What influence do the processing parameters have on the identified pressure amplitudes?

• How accurate are the pressure reconstructions?

First, the reconstruction of mean pressure distributions from time-averaged slope measure-
ments is addressed. A Gaussian pressure distribution from a round, impinging air jet was
chosen as test application. This allowed investigating the general capabilities in measuring
pressure over a range of amplitudes from zero to peak pressures of O(100) Pa. Simulated
experiments are introduced in order to assess the influence of different error sources and of
the processing parameters. The fluctuations of the same impinging jet are further investigated
using time-resolved measurements. Spatial and temporal filter techniques are used to extract
relevant dynamic information. Finally, improvements for an increased metrological perfor-
mance of the setup are introduced in order to resolve small-scale spatial distributions from an
impinging synthetic jet setup.

1.3 Outline

This thesis presents a methodology for the reconstruction of static and dynamic surface pres-
sure distributions with low-range differential amplitudes from optical full-field deformation
measurements. The applicability of the data acquisition and processing approaches are demon-
strated in two different setups using air jets impinging on thin plates. The work is presented
in three main parts. The key content and results are contained in three papers, which form
the core of this thesis.

• Part I introduces background information on the theory and experimental methods that
are applied throughout this work.

• Part II presents the main content including literature review, methodology, results and
discussion in the three papers:
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- Full-field surface pressure reconstruction using the Virtual Fields Method

- Reconstruction of surface pressure fluctuations using deflectometry and the Virtual
Fields Method

- Surface pressure reconstruction from phase-averaged deflectometry measurements us-
ing the Virtual Fields Method

• Part III discusses general recommendations and presents the outlook and conclusions.





Chapter 2

Background

2.1 Deflectometry

Deflectometry is an optical technique for the measurement of surface slopes (Surrel et al.,
1999). A schematic of the setup is shown in fig. 2.1. A camera is placed next to the periodic
spatial signal, here a cross-hatched grid with printed pitch pG, and is directed at the specimen
surface. The distance to the specimen is denoted with hG. The camera records the reflected
grid in normal incidence. The angle θ should be minimized in order to avoid distortions. In
an unloaded configuration, a pixel directed at point M on the surface images the reflection of
grid point P. If a load is applied to the specimen, it deforms locally and the same pixel images
the reflection of grid point P′. In order to obtain information on the related shift in slope, the
local phases have to be extracted.

2.1.1 Phase Extraction

A number of methods for retrieving phase information from grid images is described in the
literature, e.g. Surrel, 2000; Dai et al., 2014; Grédiac et al., 2016. The relevant approaches
can be divided into global and local phase detection. For the global approach, a whole set of

hS

pG

Figure 2.1: Top view of deflectometry setup and working principle.
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intensity data from an image is processed using the Fourier transform technique. This approach
has poorer phase measurement accuracy and spatial resolution than the local approaches
(Davila et al., 2003) and may require filtering in the Fourier plane depending on the analysed
pattern, which makes automation challenging (Surrel, 2000). The local approaches calculate
phase information from local intensity measurements. They are also called phase-stepping or
phase-shifting techniques. These are further divided into temporal and spatial approaches.
In case of static measurements, temporal phase-stepping allows e.g. damage detection on a
surface (Kim et al., 2009). It requires a series of images to be taken with a known phase shift
in the reference signal between images. The phase is then calculated for each pixel from the
intensities measured at that pixel.
For the dynamic measurements investigated here, a spatial phase-stepping approach (Surrel,
1996; Poon et al., 1993) was chosen. It requires a spatial carrier signal with known frequency
and an integer number of pixels per period in the recorded image. This allows calculating a
phase map from one image. The algorithm used for spatial phase-stepping in deflectometry
under real conditions needs to cope with miscalibration, i.e. a slightly non-integer number of
pixels per grid. Further, the investigated signal is not perfectly sinusoidal here. This requires
an algorithm to suppress harmonics and sets a lower limit to the number of samples (pixels per
recorded grid pitch) required (Hibino et al., 1995). A Windowed Discrete Fourier Transform
(WDFT) algorithm is suitable to address this problem (Surrel, 2000):

ϕ = arctan


−

N−1∑
k=1

k(Ik−1 − I2N−k−1) sin(2kπ
N )

N IN−1 +
N−1∑
k=1

k(Ik−1 − I2N−k−1) cos(2kπ
N )


 , (2.1)

where N represents number of pixels per period and Ik is the measured intensity at pixel k.
The triangular weighting featured by this algorithm reduces the sensitivity to miscalibration.
It is insensitive to harmonics of order up to N − 2, (Surrel, 1996).
If a large number of grid periods is processed in each direction, the detected phase is wrapped
between [−π + π]. This results in 2π ’jumps’ which have to be removed before further
processing the phases into the measured physical quantity, (Surrel, 2000). Algorithms used
on experimental data are however susceptible to detecting false jumps which originate from
noise. An algorithm that was found to be robust to noise, fast and memory efficient is used
here (Bioucas-Dias and Valadão, 2007).

2.1.2 Surface Slopes

The displacement u between points P and P′ is related to the phase difference dφ in the grid
signal in x- and y-direction respectively as follows:

dφx = 2π
pG
ux, dφy = 2π

pG
uy (2.2)
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Since the physical point on the specimen surface is subject to a displacement, these relations
are not exact. An iterative procedure that is described in Grédiac et al., 2016, section 4.2 was
employed to minimize the resulting error:

un+1(x) = −pG2π (φdef (x+ un(x))− φref (x)) , (2.3)

Where φdef and φref the phases in the deformed and reference configuration respectively. Using
geometric considerations and assuming a sufficiently small angle α, so the camera records
images in normal incidence, and that hG is large against the shift u, a linear relationship
between slopes and displacement can be derived (see e.g. (Ritter, 1982)):

dαx = ux
2hG

, dαy = uy
2hG

(2.4)

If the above assumptions are not valid, a more complex calibration is required (Balzer and
Werling, 2010; Surrel and Pierron, 2019). Eq. 2.4 will be used throughout this work.
The spatial resolution of the method is driven by the printed pitch of the spatial signal, pG.
The phase resolution dependents on measurement noise. Here, it is defined as the standard
deviation of the difference between two phase maps measured on a stationary specimen. The
slope resolution depends on the phase resolution as well as on the printed pitch, pG, and the
distance between grid and specimen surface, hG.
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2.2 Thin Plate Assumptions

The specimen investigated here were thin plates in pure bending. This allowed employing the
Love-Kirchhoff theory, Timoshenko and Woinowsky-Krieger, 1959, which yields a simplified
description of the kinematics of such plates (e.g. Pierron and Grédiac, 2012; Devivier, 2012,
chapter 2):

• All straight lines normal to the middle plane remain normal to the middle plane after
deformation.

• Strain components are linear through the thickness of the plate.

• For a load in direction of the surface normal, the out-of-plane displacement is the same
through the entire thickness of the plate, i.e. the deflection depends only on the surface
coordinates: uz = w(x, y).

• All in-plane displacements ux, uy are proportional to the local slopes:

(
ux

uy

)
= − z

(
∂xw

∂yw

)
, (2.5)

where z is the through-thickness position. Differentiating eq. 2.5 yields the strains, ε, which
are proportional to the curvatures, κ:

ε = z · κ . (2.6)

It should be noted that the out-of-plane components are zero, since the deflections are inde-
pendent from z. The curvatures are:




κxx

κyy

κxy


 := −




∂2
xw

∂2
yw

∂x∂yw


 . (2.7)

2.3 Principle of Virtual Work

The principle of virtual work postulates that the sum of work of all forces Fi, i = 1, ...N
acting on a static system of N points of mass subject to a virtual displacement r∗i vanishes in
equilibrium, Timoshenko and Goodier, 1951, pp151:

δW = ΣN
i=1Fi r

∗
i = 0 . (2.8)

Virtual displacements are imagined and instantaneous changes of a mechanical systems coor-
dinates. They have to fulfill the conditions of continuity of the specimen as well as the surface
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displacement conditions. The expansion of this principle to dynamic cases is called d’Alembert
principle and states that

δW = ΣN
i=1(mi

..
ri −Fi) r∗i = 0 . (2.9)

For small deformations of a thin plate, i.e. the deformed configuration is close to the unde-
formed one, as expected for the chosen plates bending under the investigated flow conditions,
the equilibrium of the plate can be described through the principle of virtual work in its weak
form (Dym and Shames, 1973):

∫

V

ρ a · u∗dV

︸ ︷︷ ︸
W ∗

inertial

= −
∫

V

σ : ε∗dV

︸ ︷︷ ︸
W ∗

int

+
∫

S

T · u∗ dS +
∫

V

ρ FV ol · u∗ dV

︸ ︷︷ ︸
W ∗

ext

, (2.10)

with the density ρ, acceleration a, virtual displacement u∗ and virtual strain ε∗, the mean
stress vector, or traction T = σ ·n over the surface over which a load is applied, the external
volume force FV ol, and the virtual work done by inertial W ∗inertial, internal W ∗int and external
forces W ∗ext. This equation holds for any continuous and differentiable virtual field u∗.
The linear dependence expressed in equation 2.6 has to be taken into account for the pa-
rameterization of the virtual fields ε∗ and κ∗ as well. For non-trivial solutions, virtual fields
require in-plane components u∗x and u∗y which are odd functions of the out-of-plane coordinate
z. Using virtual displacement fields with the same linear z-dependence as the real fields in
equation 2.6, the virtual displacement in z-direction can be considered as virtual deflection
w∗ which again depends only on the in-plane coordinates. It follows that:

(
u∗x
u∗y

)
= − z

(
∂xw

∗

∂yw
∗

)
, (2.11)

and
ε∗ = zκ∗ (2.12)

Neglecting acceleration and external volume forces for now, eq. 2.10 becomes:
∫

V

σ · ε∗dV =
∫

S

T · u∗ dS . (2.13)

Eqs. 2.13 and 2.12 yield: ∫

V

σ · zκ∗dV =
∫

S

T · u∗ dS . (2.14)

Using Gauss’s theorem, this equals

∫

S




t
2∫

− t
2

σ · zκ∗dz


 dS =

∫

S

T · u∗ dS , (2.15)
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where t is the thickness of the plate. Assuming pure bending of the plate, i.e. no in-plane
forces, the generalized Hooke’s law describing the stress-strain relation becomes




σxx

σyy

σxy


 = Q




εxx

εyy

εxy


 , (2.16)

with the in-plane stiffness matrix Q. For isotropic materials it is given by:

Q = E

1− ν2




1 ν 0
ν 1 0
0 0 1− ν


 , (2.17)

where E is the Young’s modulus and ν the Poisson’s ratio. Inserting eq. 2.16 into eq. 2.15
and using eq. 2.12 yields:

∫

S




t
2∫

− t
2

Q · zκ · zκ∗ dz


 dS =

∫

S

T · u∗ dS . (2.18)

Since κ and κ∗ are independent of z, this is equivalent to:

∫

S

κ · κ∗




t
2∫

− t
2

z2Q dz


 dS =

∫

S

T · u∗ dS . (2.19)

Introducing the bending stiffness matrix D,

D =

t
2∫

− t
2

z2Q dz , (2.20)

eq. 2.19 becomes: ∫

S

κ∗ ·D · κ dS =
∫

S

T · u∗ dS . (2.21)

In the investigated case of transversal loading, the right-hand side is described by the pressure
distribution: ∫

S

κ∗ ·D · κ dS =
∫

S

p ·w∗ dS . (2.22)

To describe the present case of dynamic loading an acceleration term is added:
∫

S

κ∗ ·D · κ dS +
∫

S

ρ tS w
∗a dS =

∫

S

p ·w∗ dS . (2.23)
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Here the acceleration, a, only acts in z-direction. ρ is the material density and tS the plate
thickness. Assuming that the material is isotropic, one obtains:

∫

S

Dxx κxxκ
∗
xx dS +

∫

S

Dxxκyyκ
∗
yy dS +

∫

S

Dxy (κxxκ∗yy + κyyκ
∗
xx) dS ...

... +
∫

S

Dxx −Dxy

2 4 κxyκ∗xy dS +
∫

S

ρ tS w
∗a dS =

∫

S

w∗p dS ,
(2.24)

where Dxx and Dxy are the respective components of the bending stiffness matrix (2.16,
2.20) Further assuming a homogeneous material, the integrals are independent from the D
components and eq. 2.24 becomes:

Dxx

∫

S

(
κxxκ

∗
xx + κyyκ

∗
yy + 2 κxyκ∗xy

)
dS ...

... + Dxy

∫

S

(
κxxκ

∗
yy + κyyκ

∗
xx − 2 κxyκ∗xy

)
dS + ρ tS

∫

S

w∗a dS =
∫

S

w∗p dS .
(2.25)

Here, the parameters Dxx, Dxy, ρ and tS are known from the plate manufacturer. κ and a are
obtained from deflectometry measurements. For the selection of the virtual fields w∗ and κ∗

one needs to take into account theoretical as well as practical restrictions of the problem like
continuity, boundary conditions and sensitivity to noise.
The problem can be simplified by assuming the pressure p to be constant over the investigated
area and by approximating the integrals with discrete sums.

p =
(
Dxx

N∑

i=1
κixxκ

∗i
xx + κiyyκ

∗i
yy + 2 κixyκ∗ixy ...

... + Dxy

N∑

i=1
κixxκ

∗i
yy + κiyyκ

∗i
xx − 2 κixyκ∗ixy + ρ tS

N∑

i=1
ai w∗i

) (
N∑

i=1
w∗i
)−1

.

(2.26)

Here, N is the number of discretized surface elements dSi.
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2.4 Virtual Field Definition

For the present problem of identifying an unknown load distribution, it is necessary to choose
flexible virtual fields. So-called piecewise virtual fields which are defined over subdomains of
the total surface area have been used successfully for similar problems in the past, e.g. in
Toussaint et al., 2006; Berry et al., 2014; Robin and Berry, 2018; O’Donoughue et al., 2017.
4-node Hermite 16 element shape functions which are also used in FEM (Zienkiewicz, 1977) are
employed throughout this study. They enforce the condition for virtual fields for deflections to
be C1 (differentiable with continuous derivatives) and for slopes to be C0 (continuous), which
is necessary for the application in plate bending. Further, they provide slopes and deflections
that are zero around the edges, thus eliminating the influence of the unknown reaction forces
and moments along the boundaries. The formulation of these shape functions as found in the
literature is given in the following (see Pierron and Grédiac, 2012, chapter 14). The virtual
deflections are:

w∗ = NqDOF , (2.27)

with the shape functions defined as follows:

N := ( Np1(ξ1)Nq1(ξ2) Np2(ξ1)Nq1(ξ2) Np1(ξ1)Nq2(ξ2) Np2(ξ1)Nq2(ξ2) ...

... Np3(ξ1)Nq1(ξ2) Np4(ξ1)Nq1(ξ2) Np3(ξ1)Nq2(ξ2) Np4(ξ1)Nq2(ξ2) ...

... Np3(ξ1)Nq3(ξ2) Np4(ξ1)Nq3(ξ2) Np3(ξ1)Nq4(ξ2) Np4(ξ1)Nq4(ξ2) ...

... Np1(ξ1)Nq2(ξ2) Np2(ξ1) Nq3(ξ2) Np1(ξ1) Nq4(ξ2) Np2(ξ1) Nq4(ξ2) )

(2.28)

where ξ1, ξ2 are parametric coordinates (see figure 2.2) and

Np1(ξ1) = 1
4(1− ξ1)2(2 + ξ1) Nq1(ξ2) = 1

4(1− ξ2)2(2 + ξ2)

Np2(ξ1) = aN
4 (1− ξ2

1)(1− ξ1) Nq2(ξ2) = bN
4 (1− ξ2

2)(1− ξ2)

Np3(ξ1) = 1
4(1 + ξ1)2(2− ξ1) Nq3(ξ2) = 1

4(1 + ξ2)2(2− ξ2)

Np4(ξ1) = aN
4 (−1 + ξ2

1)(1 + ξ1) Nq4(ξ2) = bN
4 (−1 + ξ2

2)(1 + ξ2)

(2.29)

with the side lengths of the element in global coordinates 2aN , 2bN :

2aN = x(2)− x(1) = x(3)− x(4)

2bN = y(4)− y(1) = y(3)− y(2)
(2.30)

qDOF contains the degrees of freedom for each node, which are given by:

q∗DOF,i,1 = w∗ q∗DOF,i2 = ∂xw
∗

q∗DOF,i,3 = ∂yw
∗ q∗DOF,i,4 = ∂x∂yw

∗ (2.31)

Here, all degrees of freedom were set to zero except for the virtual deflection of the center node,
which was set to 1. Fig. 2.3 shows example virtual fields for the deflections and curvatures.
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The virtual fields are defined over a window of chosen size and shifted over the entire surface
S. One pressure value is calculated for each window. Throughout this study, this window is
referred to as pressure reconstruction window, PRW.

1 2

34

-1

-1

+1

+1

ξ1

ξ2

(a) Local coordinates.

1 2

34

2aN

2bN

x

y

(b) Global coordinates.

Figure 2.2: Rectangular element for bending plates (redrawn from (Pierron and Grédiac, 2012,
chapter 3.9.3)).
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Figure 2.3: Example Hermite 16 virtual fields with superimposed virtual elements and nodes
(black). ξ1, ξ2 are parametric coordinates.





Chapter 3

Experimental Methods

This chapter introduces the general experimental setup and components. The experimental
parameters as well as details of the three separate experiments can be found in the respective
papers in Part II of this thesis.

3.1 Setup

A basic schematic setup of the experimental setup is shown in fig. 3.1. Air jets were used
to apply pressure on the specimen. The specimen was glued around the borders on a square
acrylic frame. The cross-hatched grid that was used as spatial carrier was printed on trans-
parency and fixed between two glass plates in the setup. A white light source was placed
behind it. The camera was placed next to the grid with the image sensor at the same distance
from the sample and such that the reflected grid image was recorded at normal incidence. The
distance between grid and sample was chosen to be as large as possible in order to minimise
the angle θ (see fig. 2.1). All relevant experimental parameters are given in the respective
papers in Part II of this thesis.

Grid

Light 

source

Sample

Camera 

Jet

Figure 3.1: Experimental setup.
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3.2 Sample

The choice of the specimen sets some crucial limitations for the experimental approach. The
surface finish has to be sufficiently smooth to allow specular reflection of the small grid pitches.
Glass mirrors proved suitable for the present setups. Further, the thickness of the investigated
plate has to be chosen with respect to the expected loads. Surface deformations have to be
large enough to be detected by the deflectometry setup. For large deformations however, the
thin plate assumptions do not hold, resulting in an error. Finite element simulations were
used to determine suitable sample thicknesses. In case of the loads investigated in papers 1
and 2, it was found that for the Gaussian distributions with ca. 600 Pa peak pressure and
a 1 mm grid pitch, the plate should not be thicker than 3 mm to detect the local slopes.
However, using a 0.7 mm thick glass plate would have resulted in deviations from the thin
plate theory causing local errors in curvature of up to ca. 30%. Good results were achieved
with a thickness of 1 mm, where the identified corresponding errors in curvature were well
below 1%. Finally, mounting the specimen requires some care because particularly thin plates
are prone to deform, making it harder to align the setup components and potentially inducing
errors in the measured slopes.

3.3 Light Source

Selecting suitable light sources was an important part of the experiments. For low shutter
speeds, a standard 500 W halogen lamp was used, which could easily be replaced by other
white light sources. For higher shutter speeds however, a more powerful light source was
required. 2000 W halogen lights were tested, but produced too much heat, damaging the
printed grid and other nearby components and heating up the camera. The heat can further
cause density fluctuations in the air between grid, sample and camera, distorting the light
beams. Instead, a custom LED panel was built out of 9 100 W LED chips. In case of the
phase-locked measurements conducted in paper 3, experiments lasted for several hours despite
the high shutter speed. As the LED panel would heat up and take damage when operated
over such long times, it was replaced with a Bowens Gemini Pro 1000 Flash light.

3.4 Jets

Different kinds of impinging jets were used to apply loads on the specimen. These jets were
chosen as generic applications of fluid dynamics. Both types of jet are well described in the
literature, which facilliated the planning of the setups and allowed confirming the validity of
the results obtained with VFM reconstructions from deflectometry measurements. For paper
1 and 2 a round, fan-driven air jet was used. A honeycomb was placed behind the fan to
reduce turbulence and achieve a laminar flow region around the jet core at nozzle exit. Fig.
3.2 shows a schematic of the jet. The 3D printed jet had a nozzle diameter of 5 cm. It was
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modified with a 3D printed nozzle extension, reducing the nozzle diameter from to 2 cm. Due
to the relatively rough surface structure of the extension, the jet was fully turbulent after a
short distance downstream from the nozzle exit.
For paper 3, a synthetic jet was used. It was actuated using an acoustic speaker connected
to a cavity which was milled out of aluminium. A curved, converging nozzle with rectangular
shape was 3D printed and fit into the cavity. A schematic of the synthetic jet can be found in
fig. 3.3.
Information on the relevant physics of these jets is given in the respective papers in Part II of
this thesis.

Figure 3.2: Schematic of the fan-driven jet.

Nozzle

 w

l

Cavity

Top 

view

 

Front 

view

Speaker

Figure 3.3: Schematic of the synthetic jet. l, w are the slot length and width respectively.

3.5 Transducer Measurements

Pressure sensors were used for comparison with VFM reconstruction results. Endevco 8507C-
2 type piezoresistive pressure transducers were employed. Pressure acting on such sensors
causes deformations which result in a change of the electric resistance. The latter can then
be measured using a Wheatstone bridge. Here, a NI PXIe-4330 module was used for these
measurements.





Chapter 4

Paper Overview and Conclusions

The main content of this work is presented in the three papers which can be found in Part II
of this thesis. Paper 1 has been submitted for review. As paper 2 and 3 rely on several core
references to paper 1, they will be submitted as soon as the latter has been accepted. This
chapter provides a brief overview of the content and conclusions of the three papers. Supervi-
sion and remarks on all papers have been given by B. Ganapathisubramani and F. Pierron.

Paper 1
Kaufmann, R., Ganapathisubramani, B. and Pierron, F. (accepted 13.06.2019). Full-field
surface pressure reconstruction using the Virtual Fields Method, Journal of Experimental Me-
chanics.
This study addresses the reconstruction of static pressure distributions from time-averaged
slope measurements. The technique was demonstrated on a round air jet impinging on a flat
plate specimen. VFM pressure reconstructions were compared to transducer measurements.
The study also introduces an approach for simulating the conducted experiments numeri-
cally. This was used for the assessment of systematic errors and the accuracy of the pressure
reconstruction results. Experimental error sources were investigated by comparing pressure
reconstructions from deflectometry data to pressure transducer measurements and to numeri-
cal simulations. Finally, a finite element correction procedure was introduced to compensate
for the identified systematic processing error.

Paper 2
Kaufmann, R., Pierron, F. and Ganapathisubramani, B. (unpublished). Reconstruction of
surface pressure fluctuations using deflectometry and the Virtual Fields Method. Intended for
submission to the Journal Experiments in Fluids
This paper investigates dynamic pressure distributions induced by a round, impinging air jet.
Time-resolved slope data was processed to obtain instantaneous VFM pressure reconstructions.
Temporal filters were employed to extract statistical properties, which were compared to data
obtained with pressure transducer measurements. Dynamic Mode Decomposition (DMD) was
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used to extract information on relevant spatial-temporal events. The capabilities and limita-
tions of this approach were discussed in detail.

Paper 3
Kaufmann, R., Pierron, F. and Ganapathisubramani, B. (unpublished). Surface pressure re-
construction from phase-averaged deflectometry measurements using the Virtual Fields Method.
Intended for submission to the Journal of Experimental Mechanics
The third paper, Surface pressure reconstruction from phase-averaged deflectometry measure-
ments using the Virtual Fields Method, investigates the capabilities and limitations of phase-
locked deflectometry measurements as basis for pressure reconstructions. This allowed cap-
turing information on dynamic flow events induced by an impinging synthetic jet without the
necessity to employ temporal filters. Both the pressure amplitudes and the shapes of the spa-
tial structures occurring during different phases and for different jet settings were investigated.
Error sources were identified and the limitations and challenges for future applications were
discussed.



Part II

Papers





Paper 1





Full-field surface pressure reconstruction using the
Virtual Fields Method

R. Kaufmann, B. Ganapathisubramani, F. Pierron

Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ,
UK

Submitted for review to the Journal of Experimental Mechanics, January 2019

Abstract This work presents a methodology for reconstructing full-field surface pressure
information from deflectometry measurements on a thin plate using the Virtual Fields Method
(VFM). Low-amplitude pressure distributions of the order of few O(100) Pa from an impinging
air jet are investigated. These are commonly measured point-wise using arrays of pressure
transducers, which require drilling holes into the specimen. In contrast, the approach presented
here allows obtaining a large number of data points on the investigated specimen without
impact on surface properties and flow.
Deflectometry provides full-field deformation data on the specimen surface with remarkably
high sensitivity. The VFM allows extracting information from the full-field data using the
principle of virtual work. A finite element model is employed in combination with artificial
grid deformation to assess the uncertainty of the pressure reconstructions. Both experimental
and model data are presented and compared to show capabilities and restrictions of this
method.

1 Introduction

Full-field surface pressure measurements are highly relevant for engineering applications like
material testing, component design in aerodynamics and the use of impinging jets for cool-
ing, de-icing and drying. Surface pressure information can be used to determine aerodynamic
loads (Usherwood, 2009) and to evaluate the performance of impinging jets used for heat and
mass transfer (N. B. Livingood and Hrycak, 1973). They are however difficult to achieve, as
available methods are not universally applicable. Most commonly, large numbers of pressure
transducers are fitted into the investigated surface. This is an invasive technique as it requires
one to drill holes into the sample. Further, it yields limited spatial resolution (Corcos, 1963,
1964). Pressure sensitive paints allow obtaining full-field data, but are not suited for low-range
differential pressure measurements (Tropea et al., 2007; Yang et al., 2012, chapter 4.4). They
further require extensive calibration efforts, as well as a controlled experimental environment.
Calculating pressure from Particle Image Velocimetry (PIV) is a non-invasive method that
yields full-field data in the flow field (van Oudheusden, 2013; Ragni et al., 2009). This allows
estimations of surface pressure only along lines where the field of view capturing the flow field
coincides with the surface.

29
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Another approach is the reconstruction of pressure information from full-field surface defor-
mation measurements by solving the local equilibrium equations. Recently, wall pressure was
calculated from 3D-Digital Image Correlation (DIC) measurements on a flexible Kevlar wind-
tunnel wall in an anechoic chamber (Brown et al., 2018). This was achieved by projecting
the measured deflections onto polynomial basis functions and inserting their derivatives into
the corresponding equilibrium equations. The obtained pressure coefficients compared well to
transducer data for the relatively large spatial scales that were investigated. Many problems
in the field of fluid-structure interactions can be simplified to low amplitude loads acting on
thin plates. This allows employing the Love-Kirchhoff thin plate theory (Timoshenko and
Woinowsky-Krieger, 1959) to write the local equilibrium of the plate. The required full-field
deformation information on the test surface can be obtained using a number of measurement
techniques, e.g. DIC, Laser Doppler Vibrometers (LDV) or interferometry techniques. How-
ever, the fourth order deflection derivatives required to solve the Love-Kirchhoff equilibrium
equation make an application in the presence of experimental noise challenging, particularly
for low signal-to-noise ratios. To a degree, this issue can be addressed by applying regularisa-
tion techniques. In studies based on solving the equilibrium equation locally by employing a
finite difference scheme, regularisation was achieved by applying wave number filters (Pezerat
and Guyader, 2000) or by adapting the number of data points used for the finite differences
(Leclére and Pézerat, 2012). This allowed an identification and localisation of external vi-
bration sources acting on the investigated specimen. Similarly, the acoustic component of a
flow was identified using wave number filters in an investigation of a turbulent boundary layer
(Lecoq et al., 2014). Generally, the accuracy of this approach in terms of localisation and
amplitude identification depends strongly on the chosen regularisation.
An alternative for solving the thin plate problem using full-field data is the Virtual Fields
Method (VFM), which is based on the principle of virtual work and only requires second order
deflection derivatives. The VFM is an inverse method that uses full-field kinematic measure-
ments to identify mechanical material properties from known loading or vice versa. A detailed
overview of the method and the range of applications is given in Pierron and Grédiac, 2012.
It notably does not require detailed knowledge of the boundary conditions and does not rely
on computationally expensive iterative procedures. A study comparing Finite Element Model
Updating, the Constitutive Equation Gap Method and the VFM for constitutive mechani-
cal models using full-field measurements found that the VFM consistently performed best in
terms of computational cost with reasonable results (Martins et al., 2018). The VFM has been
adapted for load reconstruction in a number of studies, including dynamic load identification
in a Hopkinson bar (Moulart et al., 2011 Pierron et al., 2011). The data were found to compare
reasonably well to standard measurement techniques. The VFM was also used to reconstruct
spatially-averaged sound pressure levels from an acoustic field using a scanning Laser Doppler
Vibrometer (LDV) (Robin and Berry, 2018). Dynamic transverse loads, as well as vibrations
caused by acoustic pressure were identified using the same technique in Berry et al., 2014.
The results were found to be accurate for distributed loads. The latter used a VFM approach
based on piecewise virtual fields, which allows more accurate descriptions of boundary condi-
tions for complex shapes and heterogeneous materials (Toussaint et al., 2006). This approach
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was extended to random spatial wall pressure excitations in Berry and Robin, 2016, recon-
structing power spectral density functions from measured data and using the VFM to describe
the plate response. The authors found that this method requires piecewise virtual fields to
be defined over small regions. Recently, the VFM approach was combined with deflectometry
for the identification of mechanical point loads of several O(1) N (O’Donoughue et al., 2017).
Deflectometry is a highly sensitive technique for slope measurement (Surrel et al., 1999). It
was successfully used in a range of applications like damage detection of composites (Devivier
et al., 2012), the analysis of stiffness and damping parameters of vibrating plates (Giraudeau
et al., 2010) and for imaging of ultrasonic Lamb waves (Devivier et al., 2016). Since deflectom-
etry measurements yield surface slopes, the combination with the VFM reduces the required
order of derivatives of experimental data for pressure reconstruction to one. Known loads
were reconstructed in O’Donoughue et al., 2017 with good accuracy for certain reconstruction
window sizes which were found empirically. Deflectometry and the VFM were also used to
identify pressure auto-spectra of spatially averaged random excitations in O’Donoughue et al.,
2019. The results agreed well with microphone array measurements, except at the structural
resonance frequencies and for poor signal-to-noise-ratios. In the same study, the VFM ap-
proach was extended to membranes and the applicability was investigated using a simulated
experiment. A shortcoming of these previous studies was that the accuracy was not assessed
for unknown input loads. This is an important step because neither the resolution in space
nor the uncertainty in pressure amplitude can be predicted directly as they depend on the
signal amplitude and distribution, the noise level and the reconstruction parameters.
The main focus of the work presented here is the determination of static low-amplitude pressure
distributions with peak values of few O(100) Pa from time-averaged full-field slope measure-
ments, as well as an assessment of the uncertainties of the method. In the following sections
2 and 3, a brief overview of the theoretical background and experimental setup is given. In
section 4, experimental results are presented for two different specimen and for several re-
construction parameters. The pressure reconstructions are compared to pressure transducer
measurements. Section 5 introduces a numerical model for simulated experiments. This allows
an assessment of the uncertainty of the method in terms of both systematic errors and the
influence of random noise. In section 5, a finite element updating procedure is proposed to
compensate for systematic errors.

2 Theory

2.1 Impinging Jets

A fan-driven, round air jet was used to apply a load on the specimen. The flow generated
by this impinging jet can be divided into the free jet, stagnation and wall region (Kalifa
et al., 2016). These regions, shown in fig. 1, consist of subregions with distinct flow features
which are governed by the ratio between downstream distance and nozzle diameter H/D and
Reynolds number Re. Directly downstream from the nozzle exit, the free jet develops for
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Figure 1: Impinging jet regions.

sufficiently large H/D & 2 (Zuckerman and Lior, 2006). The velocity profile spreads as it
moves downstream due to entrainment and viscous diffusion causing a transfer of momentum
to surrounding fluid particles. Upon approaching the impingement plate a stagnation region
forms, characterized by an increase in static pressure up to the stagnation point on the plate
surface. The rising static pressure results in pressure gradients diverting the flow radially
away from the jet centerline. The laterally diverted flow forms the wall region. The pressure
distribution on the impingement surface is approximately Gaussian (Beltaos, 1976). This
study focuses on the measurement of the mean load distribution on the impingement plate.

2.2 Deflectometry

Deflectometry is an optical full-field measurement technique for surface slopes, Surrel et al.,
1999. Fig. 2 shows a schematic of the setup. A camera measures the reflected image of a
periodic spatial signal, here a cross-hatched grid, on the surface of a specular reflective sample.
The distance between the grid and sample is denoted by hG and the grid pitch by pG. The
angle θ has to be sufficiently small to minimize grid distortion in the recorded image. A
pixel directed at point M on the specimen surface will image the reflected grid at point P
in an unloaded configuration. If a load is applied to the surface, it deforms locally and the
same pixel will now image the reflected grid at point P′. It is assumed here that rigid body
movements and out of plane deflections are negligible (for details see section 7 below). The
displacement u between P and P′ relates to the phase difference dφ in the grid signal in x-
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Figure 2: Deflectometry setup, top view.

and y-direction respectively as follows:

dφx = 2π
pG
ux, dφy = 2π

pG
uy (1)

A spatial shift by one grid pitch pG corresponds to a phase shift of 2π. However, a direct
displacement estimation from the phase difference between a reference and a deformed image
does not take into account that the physical point on the plate surface is subject to a small
in-plane displacement. An iterative procedure to improve the displacement results given in
Grédiac et al., 2016, section 4.2 is employed here:

un+1(x) = −pG2π (φdef (x+ un(x))− φref (x)) , (2)

with the phases of the deformed and reference configurations, φdef and φref respectively. A
relationship between slopes and displacement is derived e.g. in (Ritter, 1982). It is based
on geometric considerations and assumes that α is sufficiently small, so the camera records
images in normal incidence and hG is large against the shift u:

dαx = ux
2hG

, dαy = uy
2hG

(3)

Otherwise, a more complex calibration is required, Balzer and Werling, 2010; Surrel and Pier-
ron, 2019. Equation 3 will be used here.
The spatial resolution of the method is driven by pG. The phase resolution is noise dependent
and can be defined as the standard deviation of a phase map detected between two stationary
images. Consequently, slope resolution depends on pG, hG and the phase resolution.

Phase detection
The literature describes a number of methods for retrieving phase information from grid im-
ages, e.g. Surrel, 2000; Dai et al., 2014; Grédiac et al., 2016. Here, a spatial phase-stepping
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algorithm is employed which allows investigating dynamic events, Surrel, 1996; Poon et al.,
1993. One phase map is calculated per image. The chosen algorithm needs to be capable of
coping with miscalibration, i.e. a slightly non-integer number of pixels per grid period. This
can occur due to imperfections in the printed grid, misalignment between camera, sample and
grid, lens distortion, as well as fill factor issues, which can lead to sampling issues. In addition,
the investigated signal is not generally sinusoidal. This requires an algorithm suppressing har-
monics and sets a lower limit to the required number of samples, i.e. pixels recorded per grid
pitch, Hibino et al., 1995. A windowed discrete Fourier transform algorithm using triangular
weighting and a detection kernel size of two grid periods as used in e.g. Surrel, 2000 and
(Badulescu et al., 2009) will be used in this study.

2.3 Pressure Reconstruction

The problem investigated here is a thin plate in pure bending, which allows the Love-Kirchhoff
theory to be employed (Dym and Shames, 1973). Assuming that the plate material is linear
elastic, isotropic and homogeneous, the principle of virtual work is expressed by:

∫

S

p w∗dS = Dxx

∫

S

(
κxxκ

∗
xx + κyyκ

∗
yy + 2 κxyκ∗xy

)
dS

+ Dxy

∫

S

(
κxxκ

∗
yy + κyyκ

∗
xx − 2 κxyκ∗xy

)
dS + ρ tS

∫

S

a w∗dS .
(4)

S is the surface area, p the investigated pressure, Dxx and Dxy the plate bending stiffness
matrix components, κ the curvatures, ρ the plate material density, tS the plate thickness, a
the acceleration, w∗ the virtual deflection and κ∗ the virtual curvatures. Here, the parameters
Dxx, Dxy, ρ and tS are known from the plate manufacturer. κ and a are obtained from
deflectometry measurements, see section 3.5 below. For the selection of the virtual fields w∗

and κ∗ one needs to take into account theoretical as well as practical restrictions of the problem
like continuity, boundary conditions and sensitivity to noise.
The problem can be simplified by assuming the pressure p to be constant over the investigated
area and by approximating the integrals with discrete sums.

p =
(
Dxx

N∑

i=1
κixxκ

∗i
xx + κiyyκ

∗i
yy + 2 κixyκ∗ixy

+ Dxy

N∑

i=1
κixxκ

∗i
yy + κiyyκ

∗i
xx − 2 κixyκ∗ixy + ρ tS

N∑

i=1
ai w∗i

) (
N∑

i=1
w∗i
)−1

.

(5)

Here, N is the number of discretised surface elements dSi.



Full-field surface pressure reconstruction using the Virtual Fields Method 35

2.4 Virtual Fields

For the present problem of identifying an unknown load distribution, it is beneficial to choose
piecewise virtual fields due to their flexibility (Toussaint et al., 2006; Berry et al., 2014; Robin
and Berry, 2018; O’Donoughue et al., 2017). In this study, the virtual fields are defined over a
window of chosen size which is then shifted over the surface S until the entire area is covered.
One pressure value is calculated for each window. In the following, this window will be referred
to as pressure reconstruction window PRW. This procedure also allows for oversampling in
the spatial reconstruction by shifting the window by less than a full window size.
Here, the only theoretical requirements for the virtual fields are continuity and differentiability.
Since curvatures relate to deflections through their second spatial derivatives for a thin plate in
pure bending, the virtual deflections are required to be C1 continuous. It is further necessary
to eliminate the unknown contributions of virtual work along the plate boundaries. This
is achieved by choosing virtual displacements and slopes that are zero around the window
borders. 4-node Hermite 16 element shape functions as used in FEM (Zienkiewicz, 1977)
fulfill these requirements. The full equations defining these functions can be found in Pierron
and Grédiac, 2012, chapter 14. Fig. 3 shows example virtual fields. 9 nodes are defined for
a PRW. All degrees of freedom are set to zero except for the virtual deflection of the center
node, which is set to 1.
The size of the PRW is an important parameter for the pressure reconstruction. Generally,
the presence of random noise requires a larger PRW in order to average out the effect of noise
on the pressure value within the window. A smaller PRW however can perform better at
capturing small scale spatial structures, as large windows may average out amplitude peaks.
One challenge in varying the window size is that the systematic error varies with it, as well as
the effect of random noise on pressure reconstruction. This problem is investigated numerically
in section 5.
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Figure 3: Example Hermite 16 virtual fields with superimposed virtual elements and nodes
(black). ξ1, ξ2 are parametric coordinates. The example window size is 32 points in each
direction. Full equations can be found in Pierron and Grédiac, 2012, chapter 14.
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3 Experimental Methods

3.1 Setup

Fig. 4 shows a schematic of the experimental setup. A round, fan-driven impinging air jet was
used to apply pressure on the specimen. The jet was fully turbulent at a downstream distance
of 1 cm from the nozzle exit. The specimen was glued on a square acrylic frame. The grid was
printed on transparency and fixed between two glass plates in the setup. A white light source
was placed behind it. The camera was placed next to the grid at the same distance from
the sample such that the reflected grid image is recorded at normal incidence. The distance
between the sample and grid was chosen to be as large as possible in order to minimise the
angle θ (see fig. 2). Two different glass sample plates were investigated, one with thickness of
1 mm and the other 3 mm. All relevant experimental parameters are listed in table 1.

3.2 Grid

A cross-hatched grid printed on a transparency was used as the spatial carrier. Sine grids
printed in x- and y-direction would be preferable for phase detection as they do not induce
high frequency harmonics in the phase detection. Printing these in sufficient quality is however
difficult to achieve with standard printers. Using a hatched grid and slightly defocusing the
image achieves a similar result because the discrete black and white areas become blurred,
effectively yielding a grey scale transition between minimum and maximum intensity. This does
however result in a slightly lower signal to noise ratio. It should be noted that when printing
the grid, an integer number of printed dots per half pitch is required to avoid aliasing (e.g.
Devivier, 2012). For the current setup, grids with 1 mm pitch were printed on transparencies
using a Konica Minolta bizhub C652 printers at 600 dpi.

3.3 Sample

The choice of the sample plate material and finish proved crucial for the investigation of small
pressure amplitudes and spatial scales. The surface slopes under loading need to be large

Jet

D

Sample

hN
ls

hG
Grid Light

Camera

Figure 4: Experimental setup.
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enough for detection, while at the same time the sample surface has to be plane enough for
the grid image to be sufficiently in focus over the entire field of view. Perspex mirrors, polished
aluminium and glass plates with reflective foils proved either too diffusive due to the Rayleigh
criterion or insufficiently plane, resulting in a lack of depth of field when trying to image the
reflected grid. Optical glass mirrors were chosen instead, as they provide adequate stiffness
parameters and remain sufficiently plane when mounted. As it was possible to estimate the
slope resolution from the noise level observed when recording two undeformed images on any
sample thickness, deformation estimations based on the expected experimental load were used
as input for finite element simulations to select suitable plate parameters. It was found that
plates with thickness of 3 mm or lower were required. Good results were achieved using a
1 mm thick first-surface glass mirror as specimen. Still, fitting the 1 mm glass mirror on
the frame caused it to bend slightly, resulting in small deviations from a perfect plane and
subsequent local lack of depth of field. This was addressed by closing the aperture. A second,
3 mm thick mirror was used for comparison as it did not bend notably when mounted, though
signal amplitudes for this case proved to be very low. The sample plates were glued onto a
perspex frame along all edges, resulting in simply supported boundary conditions. The frame
thickness of 10 mm was sufficient to prevent noticeable deformations during the tests (see also
section 7).

3.4 Transducer Measurements

Pressure transducer measurements allowed a validation of the pressure reconstructions from
deflectometry and the VFM. Endevco 8507C-2 type transducers were fitted in an aluminium
plate along a line from the stagnation point outwards. The transducers have a diameter of
2.5 mm and were fitted with a spacing of 5 mm. They were fitted to be flush with the surface
to within approximately 0.5 mm. Data was acquired at 10 kHz over 20 s using a NI PXIe-4330
module.

3.5 Data Acquisition and Processing

One reference image was taken in an unloaded configuration before activating the jet. The jet
required approximately 20 s to settle, after which a series of images was recorded. One data
point was calculated per grid pitch during phase detection. Slopes were calculated relative
to the reference image. Time averaged mean slope maps were calculated over N = 5400
measurements at 50 Hz, limited by camera storage. From the slope maps the curvatures
were obtained through spatial differentiation using centered finite differences. This requires
knowledge of the physical distance between two data points on the specimen. It corresponds
to the portion of the mirror required to observe the reflection of one grid pitch, which can be
determined geometrically assuming θ is sufficiently small (see fig. 2). In the present setup,
camera sensor and grid were at the same distance from the mirror hG, such that the distance
was half a printed grid pitch. Since differentiation tends to amplify the effect of noise, it can
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Optics
Camera Photron Fastcam

SA1.1
Technology CMOS
Camera pixel size 20 µm
Surface Fill Factor 52 %
Dynamic range 12 bit
Settings
Resolution 1024×1024 pixels
Frame rate f 50 fps
Exposure 1/100 s
Region of interest 64×64 mm2

Magnification M 0.32
f-number NLens 32
Focal length fLens 300 mm
Light source Halogen, 500 W
Sample
Type First-surface mirror
Material Glass
Young’s modulus E 74 GPa
Poisson’s ratio ν 0.23
Density ρ 2.5 103 kg m−3

Thickness tS 1 mm, 3 mm
Side length ls ca. 90 mm, 190 mm
Grid
Printed grid pitch pG 1.02 mm
Grid-sample distance hG 1.03 m
Pixels per pitch ppp 8
Jet
Nozzle shape Round
Nozzle diameter D 20 mm
Area contraction ratio 0.13
Nozzle exit dynamic pexit 630 Pa
pressure
Air density ρair 1.17 kg m−3

Reynold’s number Re 4·104

Sample-nozzle distance hN 40 mm

Table 1: Setup parameters.

be beneficial to filter slope data before calculating curvatures. Here, the mean slopes were
filtered using a 2D Gaussian filter, performing a convolution in the spatial domain. The filter
kernel is characterized by its side length which is determined by the standard deviation, here
denoted σα, and truncated at 3 σα in both directions. Because of its size, the filter kernel
cannot be applied to the data points at the border of the field of view without padding. As
padding should be avoided to prevent bias, 6 σα− 1 data points were cropped along the edges
of the field of view. While acting as a low-pass filter which reduces the effect of random noise,
this technique also tends to reduce signal amplitude.
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For the investigated problem of a mean flow profile, the accelerations average out to zero. This
was confirmed with vibrometer measurements on several points along the test surface using a
Polytec PDV 100 Portable Digital Vibrometer. Data was acquired at 4 kHz over 20 s. The
noise level in LDV measurements was 0.3 ms−2. The observed standard deviations varied with
the position along the plate surface and reached up to 1.4 ms−2. Therefore, the term involving
accelerations in equation 4 is zero as well and will therefore be neglected in the following.
Pressure reconstructions were conducted for several PRW sizes. The results were oversampled
by shifting the PRW over the investigated field of view by one data point per iteration. Note
that due to the finite size of these windows, half a PRW of data points is lost around the edges
of the field of view.

4 Experimental Results

Slope maps obtained from deflectometry measurements were processed and temporally aver-
aged as described in section 3.5. Results for both specimens are presented in the following,
one plate with 1 mm thickness and 90 mm side length, and one with 3 mm thickness and
190 mm side length. The region of interest is 64 mm in both directions for each test cases.
Fig. 5a-5d show the measured mean slope maps for both test plates. Distances are given in
terms of radial distance from the impinging jet’s stagnation point r, normalized by the nozzle
diameter D, in x- and y-direction respectively. Note that the region of interest showing the
jet center does not coincide with the plate center, so the slope amplitudes are not necessarily
symmetric. The signal amplitudes for the 3 mm test case are significantly lower than for the
1 mm case. Slope shapes are different for both cases because the plates have different side
length while the field of view remains the same size. Further, the stagnation point is off-center
in the 3 mm test.
Fig. 5e-5p shows mean curvature maps with and without Gaussian filter. Stripes are visible
in all curvature maps for the unfiltered 1 mm test data. This indicates the presence of a
systematic error source in the experimental setup. Without slope filter, curvatures obtained
from the 3 mm plate test are governed by noise. The curvature map for κ̄xx (fig. 5g) addi-
tionally shows fringes. These disappear after slope filtering, though filtered data still appear
asymmetric, again indicating a systematic error. To assure that this issue occurring in for
both plates does not originate from a lack of convergence, mean and instantaneous curvature
maps were calculated and compared. All maps show the same bias, with small variations in
amplitude.
This may be caused by misalignment between grid and image sensor due to imperfections in
the printed grid, combined with the CMOS chip’s fill factor. This results in a slightly varying
number of pixels per grid pitch over the field of view, which leads to errors in phase detection
and fringes. While this issue could be mitigated by careful realignment of camera and grid
as well as slightly defocusing the image to address the low camera fill factor, it could not be
fully eliminated. Another possible error source is the deviation of the plate surface from a
perfect plane, e.g. due to deformations of the sample during mounting. Since differentiation
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Figure 5: Measured mean slope and curvature maps.
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Figure 6: Comparison of VFM pressure reconstruction with pressure transducer data.

amplifies the impact of noise, filtering the slope maps yields much smoother curvature maps.
The downside is a possible loss of signal amplitude and of data points along the edges (see
section 3.5).
Fig. 6a-6d show pressure reconstructions using different PRW sizes. Pressure is given in terms
of difference to atmospheric pressure, ∆p. Here, one data point corresponds to a physical
distance of 0.5 mm, such that a PRW of 28 points corresponds to a window side length of
14 mm or 0.7 rD−1. The large number of data points is a result of oversampling by shifting the
PRW over the investigated area by one point per iteration. The expected Gaussian shape of
the distribution is found to be well reconstructed for filtered data and sufficiently large PRW,
here above ca. 22 data points, for the 1 mm plate. Reconstructions from 3 mm plate tests are
less symmetric. The position of the stagnation point, which was approximately determined
during setup, is visible for all shown parameter combinations, but the shape of the distribution
shows a recurring pattern which stems from the systematic error already observed in curva-
ture maps. For both tests, some reconstructions show areas of negative differential pressure,
which is unexpected for the mean distributions in this flow. This is likely to be a consequence
of random noise, as similar patterns were observed in simulated experiments for noisy model
data (see section 5.3 below). For comparisons with the transducer measurements, pressure
reconstructions were averaged circumferentially for each corresponding radial distance from
the stagnation point. Fig. 6e and 6f show the results. The vertical error bars on transducer
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data represent both the systematic errors of the equipment as well as the random error of
the mean pressure value. The horizontal error bars indicate the uncertainty in placing the
transducers relative to the jet. Results from the 1 mm plate measurements appear to show
a systematic underestimation of the pressure amplitude at all points. Possible sources for
this error are discussed in detail in section 7 below. However, the shape of the distribution
is captured reasonably well. The 3 mm plate results show a good reconstruction of the peak
amplitude, but the shape of the pressure distribution deviates due to the influence of ran-
dom noise patterns. The results clearly show that the effects of the size of the PRW and the
Gaussian smoothing kernel σα on the reconstruction outcome are significant. Therefore, the
influence of the reconstruction parameters is investigated numerically in the following section.

5 Simulated Experiments

Comparisons of the VFM pressure reconstruction with the pressure transducer data shows that
there are discrepancies between the results. Furthermore, it is unclear what parts of the recon-
structed pressure amplitude stems from signal, random noise or systematic error. Processing
experimental data with noise can produce pressure distributions that are indistinguishable
from the signal of interest. It is also important to note that the complex measurement chain
from images to pressure does not allow for analytical expressions to be obtained and only
numerical simulations can shed light on the problem.
Numerical studies allow addressing this problem and estimating the effects of random and sys-
tematic error (Grédiac et al., 2016). As a first step, a finite element model of the investigated
thin plate problem is created. By applying a model load, the local displacements and slopes
that result from the bending experiment can be simulated. For the next step, the grid image
recorded with the camera is modelled numerically. The simulated displacements are used to
calculate the deformations of the model grid image. Experimentally observed grey level noise
is added to these grids. The simulated grids serve as input for a study of the influence of
processing parameters on the pressure reconstruction. Comparisons with the model load allow
an assessment of the uncertainties of the processing technique in the presence of random noise.
In the last subsection, a finite element correction procedure is introduced to compensate for
the reconstruction error.

5.1 Finite Element Model

Numerical data of slope maps from a thin plate bending under a given load distribution
was calculated using a finite element simulation. This was conducted using the software
ANSYS APDLv181. SHELL181 elements were chosen as they are well suited for modelling
the investigated thin plate problem (Barbero, 2013). Both experimental test plates were
simulated as homogeneous with the parameters detailed in table 1. All degrees of freedom, in
case of SHELL181 3 for translation and 3 for rotation, were fixed along the edges. For both
plates a square mesh was used with 1440 elements for the 1 mm thick plate and 2280 elements
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Figure 7: ANSYS model in- and output for 1 mm plate model.

for the 3 mm thick plate. This allowed obtaining 1024 points in a window corresponding to
64 mm, which corresponds to the experimental number of camera pixels and field of view. Fig.
7a shows the Gaussian pressure distribution used as input, with an amplitude of 630 Pa and
σload = 9 mm, based on the results of the pressure transducer measurements. Fig. 7b shows
the resulting deflections, fig. 7c and 7d the model slopes for the 1 mm plate case.

5.2 Systematic Error

The simulated slopes can be used as input for the VFM pressure reconstruction the same way
as those obtained experimentally. This allows an assessment of the systematic error of the
processing technique independent from experimental errors. A metric for estimating the error
of a reconstruction was defined taking into account the difference between reconstructed and
input pressure amplitude in terms of the local input amplitude at each point:

ε = 1
N

N∑

i=1

∣∣∣∣
√

(prec,i − pin,i)2/pin,i
∣∣∣∣ (6)

prec, i is the reconstructed and pin, i the input pressure at each point i with a total number of
points N. Pressure values below 1 Pa were omitted for this metric. Fig. 8a shows the results for
the accuracy estimate for pressure reconstructions from noise free slope data for different PRW.
The results are oversampled as in the experimental case by shifting the PRW by one point
per iteration. A minimum exists at PRW = 22 with ε = 0.12, which indicates an average
accuracy of ca. 88% of the local amplitude. The corresponding pressure reconstruction map
is shown in fig. 8b. It should be noted that the local pressure amplitudes are underestimated
for all investigated cases. For increasing PRW sizes, the peak amplitude is underestimated
because the virtual fields act as a weighted average over the entire window. Small PRWs were
expected to yield best results in a noise free environment since they average over fewer data
points. This is not confirmed here. Different finite element mesh sizes were tested to rule out
model convergence issues. The low accuracy obtained for small windows is probably due to a
lack of heterogeneity of (real) curvature in small windows. If curvatures are constant, they can
be taken out of the integral in eq. 4. Because the virtual curvatures average out to zero over
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Figure 8: Systematic error estimate for VFM.

one window, the integral then yields zero. For small windows, this situation is approached,
likely leading to wrong pressure values. Choosing heterogeneous virtual curvature fields could
be used to address this issue in future studies. One approach could be to define more nodes
on each virtual field and a non-zero virtual deflections on a node other than the center one to
increase heterogeneity. Another way could be to employ higher order approaches for pressure
calculation within one window, which is expected to yield higher accuracy for large PRW.

5.3 Grid Deformation Study

Artificial grid deformation allows for a more comprehensive assessment of error propagation by
including the effects of camera resolution and noise. Following the approach described in Rossi
and Pierron, 2012, a periodic function with a wavelength corresponding to the experimental
grid pitch was used in x- and y-direction to generate the artificial grid.

I(x, y) = Imin + Imin − Imax
2 + Imax

4

·
(

cos
(2πx
pG

)
+ cos

(2πy
pG

)

−
∣∣∣∣cos

(2πx
pG

)
− cos

(2πy
pG

)∣∣∣∣

)
(7)

Here, Imin and Imax are the minimum and maximum intensity values of the experimental grid
images. The signal amplitude values were discretised to match the camera’s dynamic range.
All simulated image parameters were set to replicate the experimental conditions as described
in table 1. This spatial grid signal was oversampled by a factor of 10 and spatially integrated
to simulate the signal recording process of the camera, as detailed in Rossi and Pierron, 2012.
To further assess the actual experiment, random noise was added to the artificial grid images
based on the grey level noise measured during experiments, here 0.95% and 0.61% of the used
dynamic range in case of the 1 mm and 3 mm plate tests respectively. It varies because the
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(a) Artificial grid after
integration and with
added noise.

(b) Experimental grid.

Figure 9: Example grid sections.
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(a) Error estimates for varying slope filter
kernel and PRW size for 1 mm plate test and
with grey level noise 0.95 % of the dynamic
range.
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Figure 10: Pressure reconstruction accuracy analysis.

illumination varied between both experiments, such that the used dynamic range was differ-
ent. The amount of random noise is reduced with the number of measurements over which the
mean value is calculated. However, the reduction of noise is not described by 1/

√
N as would

be expected. The same observation was made in Devivier, 2012. It was investigated by taking
a series of images without applying a load to the specimen. It was found that the amount of
noise in phase maps increases with the time that has passed between two images being taken.
It is likely that this is a result of small movements or deformations of the sample, printed grid
and camera due to vibrations and temperature changes during the measurement. This does
not fully account for the observed effect however. As a consequence, the amount of random
noise for averages over multiple measurements has to be determined experimentally. For 5400
measurements on the undeformed sample, it was found that the random noise in phase was
reduced by a factor of ca. 2.5 compared to two measurements. The values are statistically
well converged after 30 realisations of simulated noise.
The simulation neglects the effects of grid defects, lens imperfections, inhomogeneous illumi-

nation and imperfections of the specimen. However, it does account for any systematic errors
associated with the number of pixels on the camera sensor and the random errors coming from
grey level noise in the images. Fig. 9 shows a close-up view of simulated and experimental grid
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images. Simulated slopes yield corresponding deformations of the artificial grid at every point
using eqs. 1 and 3. The obtained artificial grids for deformed and undeformed configurations
can now be used as input for the phase detection algorithm which was used for processing the
experimental data.
Areas with negative pressure amplitude were observed in reconstructions from noisy model
data, very similar to those observed experimentally. A lower limit for pressure resolution was
determined by adding noise to two undeformed artificial grids and processing them. The stan-
dard deviation of pressure values obtained from this reconstruction can be interpreted as a
metric for the lower detection limit of the pressure reconstruction for the corresponding pa-
rameter combination. Values below the obtained threshold are neglected in all reconstructions
in the following.
Phases obtained from artificial, deformed grids were processed and the reconstructed and in-
put pressure were compared using the metric introduced in eq. 6. This allows quantifying the
systematic error of phase detection and VFM for all combinations of the relevant processing
parameters. Oversampling in the phase detection algorithm, i.e. calculating more than one
phase value per grid pitch, was found to improve the results, though at high computational
cost. Particularly in combination with larger PRW and slope filter kernels, phase oversampled
slope maps yield diminishing improvements in accuracy in terms of the overall cost. In the
VFM pressure reconstruction, oversampling provided a significant improvement at acceptable
cost. The slope filter kernel size σα also increases computational cost, but mitigates the effects
of random noise efficiently. The influence of both the size of σα and PRW are investigated in
the following as they yield the most significant improvements.
Figs. 10a and 10b show the findings for varying parameters σα and PRW for each plate.
These allow selecting parameter combinations with highest precision in terms of amplitude
over the entire field of view. Fig. 12-13 show example comparisons of pressure reconstructions
for different ε. Fig. 12 shows experimental data with two different parameter combinations
for both plates and fig. 13 below shows the corresponding results obtained using model data.
For reference, fig. 11 shows on top the model input distribution sections in the respective
field of view. As expected, reconstructions using larger smoothing kernels tend to yield lower
peak amplitudes. However, the amplitudes in other areas are captured better, as noise in-
duced peaks are filtered more efficiently. The fact that some numerical reconstructions do not
represent Gaussian distributions well shows that noise effects are not averaged out entirely.
For the low signal to noise ratio encountered in the 3 mm plate case, some reconstructions
overestimate the peak pressure amplitude. This is a consequence of the differentiation of slope
noise, which leads to large curvature and thus pressure values. Since this also leads to areas in
which the pressure amplitude is underestimated, the effect averages out for sufficiently large
slope smoothing kernel and PRW.
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Figure 11: Model input pressure distribution sections for comparison with reconstruction
results.
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(d) Pressure recon-
struction for 3 mm
plate for poor accu-
racy estimate (σα = 2,
PRW = 28, ε > 0.5).

Figure 12: Comparison of pressure reconstructions from experimental data for different pa-
rameter combinations.
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Figure 13: Comparison of pressure reconstructions from noisy model data for different param-
eter combinations.
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6 Finite Element Correction

The systematic error caused by the reconstruction technique which was identified above shows
an underestimation of the input pressure for noise free data. In the presence of noise, a similar
observation is made for large enough signal to noise ratio as in the 1 mm plate case. This error
source can be mitigated with a finite element correction procedure. For this approach, an initial
reconstructed pressure distribution is used as input for the numerical model described above.
In practice, this is the experimentally identified distribution from the VFM. Processing the
resulting slope maps obtained using the finite element model (see section 5.1) yields the first
iterated pressure distribution. The difference between this iteration and the original pressure
reconstruction corresponds to the systematic error at every point of the pressure map. This
difference is generally lower in amplitude than that between the original reconstruction and
the real pressure distribution caused by systematic error, but it serves as a first estimation
of that difference. Adding this difference to the original reconstruction yields an updated
approximation of the real pressure distribution:

dpupdate,n = prec + (prec − pit,n) (8)

This procedure can be repeated until (prec − pit,n) falls below a chosen threshold. Fig. 14
shows how the input load is well recovered after only few iterations for modelled, noise free
data. For the shown case, the second iteration result is already well converged and much
closer to the input distribution, with an improvement from ca. 15% average error to below
6%. Similar results were found for the other investigated PRW sizes.
An application to experimental data is more challenging. Each iteration tends to amplify noise
patterns in pressure maps from both random and systematic error sources. Reconstructions
from smoothed slope maps mitigate this issue, but suffer from a reduced number of available
data points. Note that for each iteration, the size of one smoothing window, i.e. 6 σα, plus
half a PRW of data points is lost around the edges (see also section 3.5). Here, this can
be mitigated by using reconstructions with small slope smoothing kernels and by calculating
circumferential averages from the stagnation point outwards, thus averaging out some of the
random noise. These are then extrapolated to 2D distributions to obtain a suitable input for

Figure 14: FE corrected results for noise free model data.
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the finite element updating procedure. The entire process is applied to both numerical and
experimental data, allowing for a comparison of the results and thus further assessment of the
influence of systematic experimental errors.
To select the correct reconstruction parameters for this approach, the accuracy assessment
was repeated using circumferential averages instead of the entire field of view. The results
vary, because low amplitude pressures are now averaged over a larger number of data points.
Further, part of the field of view with low pressure amplitude is not taken into account as it
is rectangular. The result is shown in fig. 15. Fig. 16 shows the results for iterations of
experimental data and noisy model data. A 10% error bar corresponding to the estimated
uncertainty resulting from the material’s Young’s modulus is shown for the iterations on ex-
perimental data at the positions of transducers for comparison. Fig. 16a shows that for σα = 3
and PRW = 28 the peak amplitude from transducer measurements is approximated to about
10% after 2 iterations of the experimental data. Since slope smoothing leads to a significant
loss in data points, no further iterations are possible for this case. The corresponding numer-
ical case, see fig. 16b, shows a close approximation of the input load.
For experimental data and σα = 0 and PRW = 34, see fig. 16c, the influence of noise patterns
becomes visible. These patterns are amplified by the correction procedure. Numerical data
show a very good approximation of the input load, whereas experimental VFM data deviate
from transducer data by ca. 10% after correction.
For σα = 0 and PRW = 22, see fig. 16e, noise effects in experimental data are significant.
Therefore, regularisation is necessary before iterating the results. Here, a fourth order polyno-
mial was fitted to the averaged results. The iterated corrections once again approximate the
transducer data to within ca. 10% of the peak amplitude. Fig. 16f shows that for noisy model
data an acceptable original estimation of the input amplitude is obtained. The corresponding
corrected pressure distribution overestimates the peak and low range pressure amplitudes of
the input distribution by ca. 5% of the peak amplitude. The in comparison to numerical data
more pronounced noise patterns in experimental data (see also figs. 11b and 12b) were found
to stem not only from random but also from systematic error sources (see section 4). They
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Figure 15: Error estimates for circumferentially averaged pressure reconstructions for varying
slope filter kernel and PRW size for 1 mm plate test and with grey level noise 0.95% of the
dynamic range.
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(a) Iteration of experimental data, σα = 3 and
PRW = 28.

(b) Iteration of model data with noise, σα = 3
and PRW = 28.

(c) Iteration of experimental data, σα = 0 and
PRW = 34.

(d) Iteration of model data with noise, σα = 0
and PRW = 34.

(e) Iteration of experimental data, σα = 0 and
PRW = 22.

(f) Iteration of model data with noise, σα = 0
and PRW = 22.

Figure 16: Finite element updating results. Error bars on VFM represent the estimated
uncertainty resulting from the material’s Young’s modulus. Error bars on transducer data
represent both the systematic errors of the equipment as well as the random error of the mean
pressure value.
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may also be the reason for the large difference between experimental and numerical data in
the initial reconstruction amplitude, here for PRW = 22 ca. 15%.
All iterations appear reasonably well converged after the second iteration. Notably, the dif-
ference in peak amplitude is reduced to around 10% or better for all investigated cases. The
outcome depends on the prevalence of noise patterns, which is more pronounced for small
PRWs and small or no slope filters. However, larger reconstruction windows and filter kernels
do not allow for many iterations since the loss of data points around the edges increases with
PRW size.

7 Error Sources

The presented comparisons between real and simulated experiments have shown the influence
of random noise and processing parameters on the pressure reconstruction. Experimental
random noise patterns were qualitatively reproduced with the modelled data for all investi-
gated cases. The presence of random noise was found to have a significant impact on the
reconstruction results. A systematic error in the processing method was found to result in
an underestimation of pressure amplitudes for noise-free model data. This error varies with
the processing parameters. Further, a systematic experimental error appears between recon-
structed and transducer-measured pressures. It was found that reconstructions from model
data were consistently closer to the input data than the experimental reconstructions were
to pressure transducer data, which are an established measurement technique. Based on the
comparisons of numerical and experimental data shown in section 6, this error resulted in an
additional underestimation of approximately 10% of the peak amplitude.
There are several possible sources for this experimental error. Miscalibration, i.e. non-integer
numbers of pixels per pitch in the recorded grid, can lead to errors in the detected phases. It
can be caused by misalignments between camera sensor and printed grid. Even with careful
arrangement, small deformations of the specimen surface can cause misalignment issues. Note
that these can also occur due to the deformations of the specimen under the investigated (dy-
namic) load. Misalignment can particularly result in fringes which can lead to the unexpected
patterns observed in curvature maps in section 4. Irregularities and damages in the printed
grid can also result in errors during phase detection. The influence of these error sources on
pressure amplitude is however difficult to quantify. Another possible error source is wrong
material parameter values, particularly the Young’s modulus. The data information provided
by the manufacturer gives a value of E = 74 GPa, but values between 47 GPa - 83 GPa are
found for glass in the literature (e.g. Ashby, 2011, table 15.3). 3- and 4-point bending tests
on the specimen yielded values between 69 GPa and 83 GPa before the sample broke. Note
that the relationship between Young’s modulus and plate stiffness matrix components, and
thus pressure amplitudes (see eq. 4), is linear, i.e. a 10% higher value of E would increase
all pressure amplitudes by 10%, compensating for the discrepancy observed here. Deviations
of the Poisson’s ratio from the manufacturer information would have a similar impact. Since
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the plate stiffness matrix components are proportional to the third power of the plate thick-
ness, errors in its determination have a higher impact than is the case for the other material
parameters. Several measurements did however confirm the thickness values provided by the
manufacturer. Assuming an error of 0.1% in the plate thickness as worst case estimate, one
obtains a 3% error in the pressure amplitude.
Also, the assumptions of negligibility of rigid body movement and out of plane displacement
need to be considered. LDV measurements on the frame holding the specimen showed no re-
sults above noise level, which corresponds to 0.1 µm here. Rigid body movement can therefore
be ruled out as a relevant error source. The effect of out of plane displacements can be esti-
mated based on the expected deflections, w, and the distance between grid and specimen. A
detailed derivation of this relationship is given in Devivier, 2012, chapter 2.1.2. The resulting
error on curvature maps is κoop = w

hS
. The finite element simulations from section 5 showed

that the deflections for the 1 mm plate test can be expected to be smaller than 2 µm, which
would correspond to an error in curvature of κoop = 2 10−3 km−1. This worst-case estimate
corresponds to an error of only 0.05% of the peak curvature signal amplitude. Finally, the thin
plate assumptions were tested using the finite element simulation introduced in section 5.1.
The chosen SHELL181 elements are suited for linear as well as for large rotation and large
strain nonlinear applications. This means that simulated slopes and curvatures could deviate
from those calculated from the deflections using thin plate assumptions (see e.g. (Timoshenko
and Woinowsky-Krieger, 1959)), if the latter were in fact not applicable. The simulated and
the calculated slopes and curvatures were compared to verify the validity of the assumptions.
For the 1 mm thick plate it was found that the difference was five orders of magnitude below
the signal amplitude in case of slopes and thee orders of magnitude in case of curvatures.

8 Limitations and Future Work

This study shows that it is possible to obtain full-field pressure measurements of the order of
few O(100) Pa amplitude with the described setup and processing technique. A number of
experimental limitations were encountered from applying this method to low amplitude loads.
Small grid pitches are required to provide the required slope resolution. These require a very
smooth and plane specular reflective specimen surface. Further decreasing the grid pitch would
require more camera pixels to investigate the same region of interest, as the phase detection
algorithm requires a minimum amount of pixels per pitch. Alternatively, the distance between
grid and sample could be increased, which would require a different lens to achieve the same
magnification. Furthermore, the specimen has to be stiff enough to provide a plane surface
when mounted to avoid bias errors, but is required to deform sufficiently to provide enough
signal for the measurement technique. The issue of misalignment could be addressed by using
high precision components like micro stages with stepper motors to arrange camera, sample
and grid.
Another approach is the use of infrared instead of visible light for deflectometry, with heated
grids as spatial carrier Toniuc and Pierron, 2018. Since infrared light has a longer wavelength
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than visible light, it allows achieving specular reflection on specimens that do not have mirror-
like but reasonably smooth surfaces with up to about 1.5 µm of RMS roughness, like perspex
and metal plates. However, available cameras are limited in terms of spatial and temporal
resolutions. Further issues are the lack of an aperture ring and that the lenses required to
achieve comparable magnification are more expensive. An extension of the application of de-
flectometry to moderately curved surfaces was presented recently Surrel and Pierron, 2019.
This approach requires a calibration for deformation measurement. Furthermore, the required
depth of field is a restricting factor for the use of small grid pitches. A successful combination
of deflectometry measurements on curved surfaces with VFM pressure reconstruction would
be of great value, as it would allow direct measurements on practically relevant surfaces like
e.g. aerofoils, fuselages and ship hulls.
In future studies, the turbulent fluctuations that occur in many practical flows like the imping-
ing jet used here will be investigated. Typically they have pressure amplitudes of the order of
few O(10) Pa and below. These could not be resolved in this study. Preliminary analyses of
time resolved data taken at 4 kHz show that this is in parts due to a systematic experimental
error, which results in spatial distributions fluctuating at low frequency and relatively high
amplitude. The application of Fourier analyses and Dynamic Mode Decomposition (DMD)
are currently being investigated with promising first results. Dynamic full-field pressure re-
construction of turbulent fluctuations are a continuous challenge for current experimental
measurement techniques due to their low amplitudes and small spatial scales, rendering the
further development of the technique presented here highly relevant.
Another currently investigated improvement involves employing the aforementioned higher
resolution cameras and smaller grid pitches to increase slope sensitivity and spatial resolution.
This approach does not allow for time resolved measurements due to frame rate limitations of
high resolution cameras, but first tests using phase averaging for periodic flows generated by
synthetic jets are very promising.
Finally, the selection of virtual fields is an important factor in improving the quality of recon-
structions. Particularly higher order approaches in pressure identification are likely to reduce
the systematic error.

9 Conclusion

This work presents a method for surface pressure reconstructions from slope measurements
using a deflectometry setup combined with the VFM. Experimental and numerical methods
have been introduced to assess the pressure reconstructions.

• Low amplitude pressure distributions were reconstructed from full-field slope measure-
ments using the material constitutive mechanical parameters.

• Experimental results are presented and compared for several reconstruction parameters
and for two different specimen.
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• VFM pressure reconstructions were compared to pressure transducer measurements.

• Simulated experiments employing a finite element model and artificial grid deformation
were used to assess the uncertainty of the method.

• The numerical results were used to select optimal reconstruction parameters, taking into
account experimentally observed noise.

• A finite element correction procedure was proposed to mitigate the systematic error of
VFM pressure reconstructions.

• Error sources were discussed based on the findings of both the experimental and the
simulated results.

A systematic processing error leading to an underestimation of the pressure amplitude was
identified. Since the shape of the distribution is still reconstructed well, it is possible to
compensate for this error using the proposed numerical approaches as long as noise patterns
are not too pronounced. A systematic experimental error was found to result in an additional
underestimation of the pressure amplitude by ca. 10% more than simulated reconstructions.
Yet, the results stand out in terms of the low pressure amplitudes and the large number of
data points obtained.

10 Data Provision

All relevant data produced in this study will be made available upon publication of this
manuscript.
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Abstract This study presents an approach for obtaining full-field dynamic surface pressure
reconstructions with low differential amplitudes. The method is demonstrated in a setup where
an air jet is impinging on a flat plate. Deformations of the flat plate under dynamic loading of
the impinging jet were obtained using a deflectometry setup that allows measurement of surface
slopes with high accuracy and sensitivity. The measured slope information was then used as
input for the Virtual Fields Method (VFM) to reconstruct pressure. Pressure fluctuations with
amplitudes of down to O(1) Pa were extracted from time-resolved deflectometry data using
temporal band-pass filters. Pressure transducer measurements allowed comparisons of the
results with an established measurement technique. Dynamic Mode Decomposition (DMD)
was used to identify relevant spatial information that correspond to specific frequencies. These
dynamically important spatio-temporal events can for the first time be observed despite their
low differential amplitudes. Finally, the limitations of the proposed pressure determination
method and strategies for future improvements are discussed.

1 Introduction

The measurement of dynamic surface pressure distributions is crucial for a range of applications
in fluid dynamics, material design and testing, as well as for the investigation of impinging jets
for heat and mass transfer. Time resolved measurements that provide a large number of data
points for low-range differential pressures are challenging for current techniques. Larger pres-
sure amplitudes can be measured optically in full-field using pressure sensitive paints (PSP),
e.g. Tropea et al., 2007, chapter 4.4. Pressure transducers are commonly used for the measure-
ment of small differential pressure amplitudes but they allow only point-wise measurements.
Fitting these transducers requires drill-holes in the investigated specimen, changing the ma-
terial response. Particle Image Velocimetry (PIV) allows full-field pressure reconstructions,
e.g. de Kat and van Oudheusden, 2012; Jaw et al., 2009, but is limited to the flow field. Near
the surface, the technique is restricted by reflections and the finite size of the reconstruction
window.
Alternatively, surface deformation measurements can be used to calculate the pressure acting
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on a specimen by solving the mechanical equilibrium equations. For thin plates in pure bend-
ing, the local equilibrium equation can be obtained using the Love-Kirchhoff theory, which in-
volves fourth order derivatives of the surface deflections (Timoshenko and Woinowsky-Krieger,
1959). Such high order derivatives lead to significant noise amplification and therefore require
regularisation. In Pezerat and Guyader, 2000 local deflections were measured with a Laser
Doppler Vibrometer (LDV). Wave number filters were then applied prior to solving the equi-
librium equation locally, which allowed an identification of external vibration sources. The
acoustic component of a turbulent boundary layer flow was identified with a similar approach
in Lecoq et al., 2014. Generally, the spatial as well as the signal resolution that can be achieved
vary with the chosen regularisation technique and parameters.
The Virtual Fields Method (VFM) is an alternative identification method that is based on
the principle of virtual work. For the purpose of pressure identification, the VFM requires
full-field kinematic data, the mechanical constitutive material parameters of the specimen,
and suitable virtual fields. The latter need to be selected with respect to the theoretical and
practical requirements of the investigated problem, such as boundary conditions and continu-
ity. In the case of thin plates in pure bending, the principle of virtual work yields an equation
that only involves second order deflection derivatives. Interestingly, the virtual fields can be
selected to provide different levels of regularization adapted to a given signal-to-noise ratio.
The VFM is described in detail with a range of applications in Pierron and Grédiac, 2012. It
was used in combination with scanning Laser Doppler Vibrometer (LDV) measurements for
investigating acoustic loads on plates. This allowed reconstructing spatially-averaged sound
pressure levels in Robin and Berry, 2018 and transverse loads and vibrations in Berry et al.,
2014, as well as random external wall pressure excitations in Berry and Robin, 2016. In an
investigation of the sound transmission of plates, comparisons of spatially averaged pressure
auto-spectra with microphone array measurements showed good agreement except at struc-
tural resonance frequencies in Robin and Berry, 2018. A limitation of these studies was that
full-field data could not be obtained simultaneously with LDV measurements. This can be
addressed by using alternative measurement techniques. Deflectometry is an optical full-field
technique for the measurement of surface slopes (Surrel et al., 1999), which can be combined
with high speed cameras to investigate dynamic events. It can achieve very high sensitivi-
ties. In Devivier et al., 2016, ultrasonic lamb waves were imaged using deflectometry, and
in Giraudeau et al., 2010 it was used to identify stiffness and damping on vibrating plates.
Since deflectometry measurements yield surface slopes, the required order of derivatives of
experimental data in the VFM is reduced to one. A combination of deflectometry and the
VFM was employed in O’Donoughue et al., 2017 to reconstruct dynamics of mechanical point
loads on an aluminium plate of several O(1) N. Spatially averaged random excitations were
identified with this method in O’Donoughue et al., 2019. In Kaufmann et al., 2019a it was
used to measure mean pressure distributions of an impinging air jet with differential pressure
amplitudes of several O(100) Pa. The study also proposes a methodology to assess the accu-
racy of pressure reconstructions and to select optimal reconstruction parameters. However, in
several aerodynamic and hydrodynamic applications, it is important to obtain surface pres-
sure fluctuations (both broadband as well as at certain frequencies). In the present study, the
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work of Kaufmann et al., 2019a is extended to measure the spatio-temporal evolution of low
differential pressure events generated by the flow on a surface. The method is demonstrated in
a canonical flow problem: a jet impinging on a flat surface. This work is specifically concerned
with reconstructing the pressure footprint of large-scale vortices impinging on the plate. These
pressure fluctuations will have very low differential pressure compared to the mean flow. This
specific flow problem is chosen to highlight the pros and cons of the proposed surface pressure
determination technique.

2 Theory

2.1 Deflectometry

Deflectometry is an optical technique that allows full-field slope measurements on specular
reflective surfaces using a periodic spatial signal Surrel et al., 1999. A schematic of the setup
is shown in fig. 1. pG is the pitch of the spatial signal, here a cross-hatched grid, and hG

the distance between grid and specimen surface. The camera is placed next to the grid, such
that a pixel directed at point M on the specimen surface records the reflected grid at point P.
Applying a load deforms the surface locally, resulting in a change in surface slope, dα, such
that the same pixel will now record the reflected point P′. Rigid body movements and out-of-
plane deflections are neglected here, as the specimen bending stiffness is sufficiently large and
the investigated loads small.
Phase maps are extracted from grid images using a spatial phase-stepping algorithm featuring a
windowed discrete Fourier transform algorithm with triangular weighting and using a detection
kernel size of two periods Surrel, 2000; Badulescu et al., 2009. This algorithm suppresses
some harmonics resulting from the use of a non-sinusoidal signal and mitigates the effects
of miscalibration. The displacement, u, between P and P′ is calculated iteratively from the
obtained phase maps Grédiac et al., 2016, section 4.2:

un+1(x) = −pG2π (φdef(x+ un(x))− φref(x)) , (1)

where the subscripts def and ref refer to a deformed and a reference configuration, as the phase
difference between a loaded and unloaded configuration is of interest.
For sufficiently small dα, hG � u, small angle θ and assuming that the camera records images
in normal incidence, geometric considerations yield a simplified, linear relationship between
the change in surface slope dα and u (e.g. Ritter, 1982):

dαx = ux
2hG

, dαy = uy
2hG

. (2)

If this hypothesis is not valid, then full calibration needs to be performed, which is more
complex Balzer and Werling, 2010; Surrel and Pierron, 2019. The printed grid pitch pG drives
the spatial resolution. The slope resolution depends on measurement noise as well as pG and
hG.
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Figure 1: Top view of deflectometry setup and working principle (redrawn from (Kaufmann
et al., 2019a)).

2.2 Pressure Reconstruction

Assuming that the plate material is linear elastic, isotropic and homogeneous, the principle of
virtual work is expressed by:

∫

S

p w∗dS = Dxx

∫

S

(
κxxκ

∗
xx + κyyκ

∗
yy + 2 κxyκ∗xy

)
dS

+ Dxy

∫

S

(
κxxκ

∗
yy + κyyκ

∗
xx − 2 κxyκ∗xy

)
dS + ρ tS

∫

S

a w∗dS ,
(3)

where S denotes the surface area, p the investigated pressure, Dxx and Dxy the plate bend-
ing stiffness matrix components, κ the curvatures, ρ the plate material density, tS the plate
thickness, a the acceleration, w∗ the virtual deflections and κ∗ the virtual curvatures. In the
present study Dxx, Dxy, ρ and tS were known from the plate manufacturer. κ and a were
obtained from deflectometry measurements. The virtual fields w∗ and κ∗ have to be chosen
with respect to theoretical as well as practical restrictions of the problem such as continuity,
boundary conditions and sensitivity to noise.

2.3 Virtual Fields

In this study, 4-node Hermite 16 element shape functions were used to define virtual fields over
subdomains of the plate surface S. The formulation of these fields can be found in Pierron
and Grédiac, 2012, chapter 14. They provide C1 continuous virtual deflections, which yield
the required continuous virtual slopes. They also allow defining virtual displacements and
slopes that are zero over the edges of each element, which eliminates unknown contributions
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of virtual work along the plate boundaries. The definition of virtual fields over subdomains,
also called piecewise virtual fields, provides more flexibility than globally defined virtual fields,
in particular when unknown and complex load distributions are investigated. In the following,
the subdomain over which a virtual field was defined is referred to as pressure reconstruction
window (PRW). 9 nodes were defined for one PRW. All degrees of freedom were set to zero
except for the virtual deflection of the center node, which was set to 1. One pressure value was
calculated for each window. The size of the PRW has to be chosen according to the signal-to-
noise ratio as well as the spatial distribution of the signal. Larger windows filter noise more
efficiently, but can lead to a loss of signal amplitude and limit the spatial resolution.
Assuming constant pressure within a piecewise virtual field and approximating the integrals
in equation 3 with discrete sums, one obtains a simplified expression for the pressure:

p =
(
Dxx

N∑

i=1
κixxκ

∗i
xx + κiyyκ

∗i
yy + 2 κixyκ∗ixy

+ Dxy

N∑

i=1
κixxκ

∗i
yy + κiyyκ

∗i
xx − 2 κixyκ∗ixy + ρ tS

N∑

i=1
ai w∗i

) (
N∑

i=1
w∗i
)−1

,

(4)

where N is the total number of discrete surface elements dSi.

3 Experimental Methods

3.1 Setup

The experiment consisted of a deflectometry setup with a reflective specimen and an impinging
air jet (see fig. 2). The cross-hatched grid used for deflectometry was printed on transparency
with 600 dpi using a Konica Minolta bizhub C652 printer. A custom made panel with 9×100 W
LEDs was used as white light source. The camera was placed at an angle beside the printed grid
to record the reflected grid in normal incidence. 5400 images were recorded per deflectometry
measurement series due to limited camera storage. A 1 mm thick first-surface glass mirror
served as specimen. A fan-driven, round air jet was used to generate the investigated flow,
which can be divided into a free jet, stagnation and wall region, e.g. Kalifa et al., 2016;

Jet D

Sample

hN

ls

hG
Grid Light source

Camera
Figure 2: Experimental setup (redrawn from (Kaufmann et al., 2019a)).
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Figure 3: Impinging jet setup and flow features (redrawn from (Kaufmann et al., 2019a)).

Zuckerman and Lior, 2006 (fig. 3). So-called primary vortices form upstream in the shear
layer around the jet core, propagate downstream and impinge on the specimen Zuckerman
and Lior, 2006. The mean pressure distribution on the impingement surface is approximately
Gaussian Beltaos, 1976. Table 1 lists the relevant experimental parameters.

3.2 Data Processing

One phase map was calculated from each image using the phase detection algorithm, with one
data point per full grid pitch in each direction. Curvatures were calculated from slope maps
with three-point centered finite differences. Deflections were obtained from the slope maps
using an inverse (integrated) gradient based on a sparse approximation (D’Errico, 2009). The
second time derivative of these deflections yields accelerations. However, this requires knowl-
edge of the integration constant, i.e. of the deflection at one reference point at each time step.
These were not measured in the present setup. Instead, plate deformations were assumed to
be quasi-static, which allows neglecting the acceleration term in equation 4. Separate LDV
measurements were used to obtain an estimate for the resulting error. VFM pressure re-
constructions were conducted as described in section 2.2. The pressure reconstructions were
oversampled in space by shifting the PRW by one data point in either direction until the entire
surface was covered. Fig. 4 shows a flowchart of the main processing steps. For the calculation
of standard deviations, data from 20 runs was used to improve convergence.
The mean pressure distributions obtained from time-resolved measurements in the present
study are compared to the mean distributions obtained from uncorrelated snapshots in Kauf-
mann et al., 2019a. Figure 5 shows the azimuthally averaged mean pressure distribution for
both methods and pressure transducer data for comparison. Even though the time-resolved
measurements presented here suffer from a lower signal-to-noise ratio due to poorer illumina-
tion, the results agree well. It is clear that the mean flow was captured well using the VFM
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Optics
Camera Photron Fastcam

SA1.1
Technology CMOS
Camera pixel size 20 µm
Surface Fill Factor 52 %
Dynamic range 12 bit
Settings
Resolution 1024×1024 pixels
Frame rate faq 4000 fps
Exposure 1/4000 s
ROI 64×64 mm2

Magnification M 0.32
f-number NLens 32
Focal length fLens 300 mm
Light source LED panel, 900 W
Sample
Type First-surface mirror
Material Glass
Young’s modulus E 74 GPa
Poisson’s ratio ν 0.23
Density ρ 2.5·103 kg m−3

Thickness tS 1 mm, 3 mm
Side length ls ca. 90 mm, 190 mm
Grid
Printed grid pitch pG 1.02 mm
Grid-sample distance hG 1.03 m
Pixels per pitch ppp 8
Jet
Nozzle shape Round
Nozzle diameter D 20 mm
Nozzle exit dynamic pexit 630 Pa
pressure
Reynold’s number Re 4·104

Sample-nozzle distance hN 40 mm

Table 1: Setup parameters.

(to within 30%) in both the snapshot data and the time-resolved data. It was shown that this
discrepancy between VFM and transducer data could be reduced to approximately 10% using
a finite element correction procedure. This is comparable to or better than other optical based
pressure determination techniques like PSP. Further details of the mean flow comparison and
the selection of optimal pressure reconstruction parameters required to achieve this can be
found in Kaufmann et al., 2019a. Given the agreement in the mean flow, the time-resolved
data can now be further examined to obtain surface pressure fluctuations. These dynamic
events were investigated here with two different filtering approaches.
First, a temporal bandpass filter was implemented by calculating the Fourier transform of
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Figure 4: Data processing steps.

the slope maps and setting the amplitudes of filtered frequencies to zero. This filter has a
poor impulse response, but yields the best achievable frequency resolution, which allows an
application down to very narrow frequency bands. Second, Dynamic Mode Decomposition
(DMD) Schmidt, 2010 was applied to instantaneous pressure reconstructions. The technique
dedicated to using DMD on large and streaming data sets introduced in Hemati et al., 2014
was employed here.
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3.3 Validation

Reference pressure measurements were conducted using Endevco 8507C-2 type pressure trans-
ducers. These transducers have a diameter of 2.5 mm. They were placed along a line beginning
from the stagnation point radially outwards with a spacing of 5 mm. Accelerations were mea-
sured using a Polytec PDV 100 Laser Doppler Vibrometer (LDV). The acquisition frequency
for both measurements was 4 kHz and the acquisition time 20 s.

3.4 Processing Parameters

A methodology for selecting optimal processing parameters based on simulated experiments
and artificial grid deformation was proposed in Kaufmann et al., 2019a, section 5. It requires
an estimate of the expected load distribution to obtain model slope maps. These allow to
numerically deform a reflected grid image, which is used as input to the processing algorithm.
By systematically varying the PRW size, its influence on pressure reconstruction can be eval-
uated to identify its optimal value.
Since this study aims at identifying dynamic events which are governed by the primary vortices
impinging on the specimen, a circular load distribution with a peak amplitude of 10 Pa was
chosen as model input (fig. 6a). The results of the analysis are shown in fig. 6b. The error
estimate, ε, is defined as the difference between reconstructed and input pressure amplitude,
prec,i and pin,i, divided by the local amplitude of the input pressure distribution at each point
i:

ε = 1
N

N∑

i=1

∣∣∣∣
√

(prec,i − pin,i)2/pin,i

∣∣∣∣ , (5)
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Figure 5: Comparison between transducer measurements and VFM pressure reconstructions
for different processing parameters. r denotes the radial distance from the stagnation point.
Snapshot and transducer data from Kaufmann et al., 2019a.
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Figure 6: Simulated experiment input and results.

where N is the number of points. With an estimated average error of ca. 20%, PRW = 24
was identified as optimal size and will therefore be employed in the following. Note that a
PRW side length of 24 data points corresponds to a physical distance of 12 mm. This PRW
size and error is consistent with what was found for the mean flow. Despite the PRW size of
12 mm, it will be shown later that the spatial structures of the impinging vortices are well
captured. The outcomes can be further improved by optimising the setup.

4 Experimental Results

4.1 Fluctuations

Instantaneous pressure maps were reconstructed from each measured slope map. The corre-
sponding standard deviations, sp, obtained from these maps allowed a first evaluation of the
captured pressure fluctuations. Fig. 7a shows that the spatial distribution obtained for sp

appears to resemble noise patterns. This data was compared to pressure transducer measure-
ments. VFM standard deviation results were averaged over all data points with the same
radial distance from the stagnation point at rD−1 = 0. Fig. 7b shows that the VFM results
significantly overestimate the standard deviations when compared to transducer data. The
error bars show the estimated uncertainty of VFM pressure reconstructions from processing
bias, experimental error and the assumption of quasi-static behaviour.
To investigate the reason for the poor agreement of these results, the Fourier spectra of deflec-
tometry as well as transducer data were compared. The spectrum obtained from transducer
data is shown in fig. 8a. Slope data (fig. 8b) was averaged over 21 data points which cor-
responds to an area of 5.3 mm2, approximately matching the 4.9 mm2 surface area of the
pressure transducers. The comparison shows that the slope measurements capture relevant
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Figure 7: Pressure fluctuations obtained through VFM reconstructions from unfiltered slope
data and comparison to transducer data.

(a) Pressure spectrum from transducer data.
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Figure 8: Qualitative comparison of Fourier spectra from different measurement sources on
specimen surface at position rD−1 = 0.
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Figure 9: Instantaneous VFM pressure reconstructions from temporally filtered slope data.

information on the dynamics of the impinging jet in the observed spectrum between ca. 200 Hz
and 1500 Hz. However, the spectrum obtained from VFM pressure reconstructions (fig. 8c)
shows only random noise for all frequencies above ca. 50 Hz. This suggests that low frequen-
cies contain sufficient noise sources to overwhelm the signal when the slopes are converted
to pressure using the VFM. This is likely because the VFM requires processing the slopes
to accelerations (obtained from slopes by spatial integration and subsequent double temporal
differentiation) and curvatures (computed from slopes by spatial differentiation). Obtaining
these quantities appears to amplify noise to the extent that the low differential pressures are
masked. However, the VFM is a linear method and therefore the methodology can be applied
either to the entire range of frequencies or to specific frequency bands. If the method were ap-
plied to specific bands, then it might be possible to obtain the sought low differential pressure
events since the lower frequency noise sources could be effectively filtered out. It is therefore
necessary to employ further processing steps to extract dynamic pressure information from
the slope measurements.

4.2 Temporal Filter

A temporal bandpass filter was applied to the slope maps (see section 3.5) in order to extract
information on dynamic flow events in the identified relevant frequency range between 200 Hz
and 1500 Hz. Fig. 9 shows instantaneous VFM pressure reconstructions from slope maps
which were filtered within a broad (fig. 9a) and a narrow (fig. 9b) frequency band. The ob-
served pressure distributions agree qualitatively with the expected distributions from primary
vortices impinging on the flat surface.
The standard deviations of these VFM pressure reconstructions (fig. 10a and 11a) are com-
pared with pressure transducer data, which are filtered within the same frequency band as
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the slope maps (fig. 10b and 11b). The VFM reconstructions compare well with transducer
data, particularly for the broader bandpass filter range. The discrepancy between both mea-
surement techniques increases for rD−1 > 0.5, which corresponds to the expected radius of the
vortices and thus the area of their impingement. It is likely that the assumption of quasi-static
behaviour leads to a larger error in this area.
The results show that information on surface pressure fluctuations was captured by the de-
flectometry measurements and that it is possible to reconstruct the corresponding pressure
distributions and amplitudes with reasonable accuracy. It is now possible to employ further
methods to address the low signal-to-noise ratio and to extract additional dynamic information
from the data.
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Figure 10: Pressure fluctuations obtained using VFM reconstructions from slope data filtered
with bandpass range from 200 Hz to 1500 Hz and comparison to filtered transducer data.
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Figure 11: Pressure fluctuations obtained using VFM reconstructions from slope data filtered
with bandpass range from 770 Hz to 772 Hz and comparison to filtered transducer data.
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4.3 Dynamic Mode Decomposition

Dynamic Mode Decomposition (DMD) is a suitable tool for extracting relevant dynamic in-
formation from a data sequence. It allows identifying spatially coherent features and their
temporal behaviour within the entire observed frequency spectrum. The main challenge in ap-
plying this technique to the present case is that the computational cost and required resources
increase with the amount of data points in space as well as with the number of snapshots.
The approach introduced in Hemati et al., 2014 allows processing all instantaneous pressure
maps by incrementally updating the calculated POD basis as well as the DMD modes and
coefficients. It is therefore employed here.
DMD was applied to VFM pressure reconstructions from slopes which were filtered within a
bandpass range from 200 Hz to 1500 Hz. This eliminated modes stemming from the mean flow
and from low frequency experimental noise sources. The calculated POD basis was truncated
at 200 modes, since higher modes primarily stem from random noise. Fig. 12a and 12b show
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Figure 12: DMD results obtained with 108·103 snapshots from VFM pressure reconstructions
using slope maps which were bandpass filtered within the range from 200 Hz to 1500 Hz. 200
POD modes were calculated.
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the amplitude and damping coefficients. The modes identified for frequencies below 200 Hz
stem from noise introduced by data processing, since this frequency range was filtered out
from the slope information. These modes resemble noise patterns, have low amplitude and
high damping coefficients. The most relevant modes corresponding to the impinging primary
vortices were identified to be around 770 Hz. They have the highest amplitude and the lowest
damping coefficients of all identified modes. Examples of pressure reconstructions from two
modes are shown in fig. 12c and 12d. The modal shapes are coherent with only small amounts
of noise and resemble the expected spatial distributions. A video of the 776 Hz mode with
damping coefficient set to zero can be found in the supplementary material of this paper.
This clearly shows that the low differential pressure events generated by impinging vortices
were captured by the new surface pressure determination method. It is important to note here
that the differential pressure amplitude captured here is O(1) Pa, which would be impossible
to capture in full-field with any extant measurement technique. More importantly, we are
now able to identify the spatio-temporal evolution of the pressure footprint of flow structures
on a surface, which was previously not possible. Combining deflectometry and VFM with
flow information will allow investigations of the flow-structure interactions in more detail. To
improve this methodology for further applications requires considerations of the error sources
and future ways in which these can be minimised. This is discussed in the next section.

5 Error Sources

This section discusses the systematic error sources encountered in the experimental setup as
well as in the processing technique. In terms of experimental error sources, several elements
of the deflectometry setup should be considered. Irregularities in the recorded grid as well
as miscalibration, i.e. non-integer numbers of pixels per grid pitch, can lead to errors in the
detected phases. The main factors causing these irregularities are damages on the specimen
surface and defects of the printed grid. Miscalibration can be caused by misalignments between
camera sensor and printed grid, as well as by irregularities and harmonics in the printed grid.
Misalignment can also result in fringes. These error sources and their effect are highly depen-
dent on the precise alignment between grid, specimen surface and camera. They can further
be time dependent, because the specimen deforms under the dynamic load. Using the LDV
to measure vibrations of the camera, it was also found that the camera cooling fans caused
vibrations at several frequencies below 100 Hz, which were also identified in the measured
slope spectrum. Based on comparisons with numerical data presented in Kaufmann et al.,
2019a, the effect of these experimental errors could amount to up to 10% of the peak pressure
value for the mean flow.
An additional issue concerning experimental bias is that the mechanical constitutive material
parameters provided by the plate manufacturer, in particular the Young’s modulus, may not
be accurate. In Kaufmann et al., 2019a it was estimated that the resulting error on pressure
amplitudes was up to 10%.



72 Kaufmann, R., Pierron, F. and Ganapathisubramani, B.

The systematic error resulting from the processing approach employed in this study was inves-
tigated in Kaufmann et al., 2019a. VFM pressure reconstructions were found to underestimate
the local amplitudes because the virtual fields act as a low pass spatial filter over the area
of a reconstruction window. The exact error value depends on the chosen reconstruction pa-
rameters as well as the investigated load distribution and signal-to-noise-ratio. In the present
study, the error associated with data processing can be estimated using the analysis presented
in section 3.4. It is approximately 20% for instantaneous pressure maps when using a PRW
size of 24 data points side length. Note that this estimate does not take into account the
influence of random noise or the filtering techniques.
The error resulting from assuming quasi-static behaviour was assessed using LDV measure-
ments to obtain accelerations at discrete points along the specimen surface. Values of up to
1.4 ms−2 were found for the standard deviation of the accelerations. A worst case estimate for
the resulting error in pressure was obtained by assuming an acceleration value of a = 1.4 ms−2

over the entire specimen. The resulting dynamic pressure value was calculated using the ac-
celeration term in equation 4. For pressure reconstructions from unfiltered slopes, it yields a
value of pdyn = 84 Pa, which corresponds to approximately 13% of the estimated peak pressure
amplitude of 630 Pa. For reconstructions from bandpass filtered slopes, significantly lower er-
ror values were identified. Using a bandpass filter range of 200 Hz to 1500 Hz for slope maps,
worst case estimates of a = 0.1 ms−2 and pdyn = 6 Pa were obtained. For the filter range of
770 Hz to 772 Hz, these values were further reduced with a = 0.01 ms−2 and pdyn = 0.6 Pa.
Based on the low amplitude of noise patterns in the extracted dynamic pressure distributions,
it appears that experimental errors from the deflectometry setup were filtered efficiently. The
systematic processing errors as well as the assumption of quasi-static behaviour are likely to
result in an underestimation of instantaneous pressure reconstructions, which can be estimated
to up to 30%. The latter is also the most likely reason for the increasing discrepancy between
pressure fluctuations identified from transducer data and from VFM reconstructions when
moving into the region in which vortices first impinge on the plate.

6 Limitations and Future Work

Low-amplitude differential pressure fluctuations were extracted from VFM pressure recon-
structions using two techniques. However, in order to achieve convergence and due to the
low signal-to-noise ratio, a large number of snapshots was required. This is a challenge for
available high-speed cameras due to limited storage and data transfer rates. Experiments
based on phase-locked measurements can address this issue. This also allows using cameras
with higher resolutions, which can be combined with smaller grid pitches to increase slope
resolution. Slope resolution can also be improved by increasing the distance between grid and
sample, though the quality and availability of suitable camera lenses is an issue. Another
limitation of the approach presented here is that the specimen is required to be of optical
mirror quality. Non-mirror-like, but reasonably smooth surfaces were successfully used for
deflectometry measurement using an infrared camera and heated grids Toniuc and Pierron,
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2018. Due to the relatively long wavelength of infrared light, sufficiently specular reflection
for slope measurements was achieved using unpolished metal plates as well as perspex with
approximately 1.5 µm surface RMS roughness. An approach for applications of deflectometry
measurements to curved surfaces is proposed in Surrel and Pierron, 2019. Though the results
were promising, a sophisticated calibration was required and time-resolved measurements are
currently not possible. For future studies, the present setup could be improved to obtain accu-
rate acceleration information. This could potentially be achieved by simultaneously measuring
deflections at a known point in the field of view using an LDV. Finally, improved virtual fields
and higher order pressure reconstruction approaches could reduce the systematic processing
error of the VFM.

7 Conclusion

This study presents an approach for obtaining full-field dynamic pressure information from
surface slope measurements. Surface slopes were measured using a highly sensitive deflectom-
etry setup. Pressure reconstructions were obtained using the VFM. The extracted differential
pressure amplitudes range down to few O(1) Pa. 85×85 data points were obtained, corre-
sponding to a field of view of 4.25 cm × 4.25 cm. The VFM pressure reconstruction results
were compared to pressure transducer data. Results were found to agree well for band pass fil-
tered data. DMD was used to extract relevant dynamic information. Error sources associated
with experimental limitations and the processing technique were identified and discussed. The
achieved high data point density and the low magnitude of the extracted pressure amplitudes
make the presented technique highly relevant for a large range of applications in engineering
and science.

8 Data Provision

All relevant data produced in this study will be made available upon publication of this
manuscript.

Acknowledgements This work was funded by the Engineering and Physical Sciences
Research Council (EPSRC). F. Pierron acknowledges support from the Wolfson Foundation
through a Royal Society Wolfson Research Merit Award (2012-2017).





Paper 3





Surface pressure reconstruction from
phase-averaged deflectometry measurements using

the Virtual Fields Method

R. Kaufmann, F. Pierron, B. Ganapathisubramani

Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ,
UK

Intended for submission to the Journal Experimental Mechanics

Abstract In this study, pressure distributions were reconstructed from phase-locked surface
deformation measurements on a thin plate. Slope changes on the plate surface were induced
by an external flow interacting with the specimen and measured with a highly sensitive deflec-
tometry setup. The Virtual Fields Method (VFM) was used to obtain pressure reconstructions
from the processed surface slopes and the plate material constitutive mechanical parameters.
The applicability of the approach in combination with phase-locked measurements is demon-
strated using a synthetic jet setup generating a periodic flow in air. Phase-averaging slope
data allows mitigating random noise effects and resolving low-range differential pressure am-
plitudes despite the turbulent flow. The size of the spatial structures of the investigated low
amplitude flow events identified in full-field with the present method are O(1) mm, which is
beyond the capabilities of other available pressure measurement techniques. Challenges and
limitations in achieving the metrological performance for resolving the observed surface slopes
of O(0.1) mm km−1 are described and improvements for future applications are discussed.

1 Introduction

Full-field surface pressure information is required for the research of flow-structure interactions,
the design of aerodynamic components, and applications for heat and mass transfer. Extant
techniques are limited in terms of the differential pressure amplitude ranges that can be re-
solved and in terms of the achievable spatial resolutions. Particle Image Velocimetry (PIV)
is a technique that allows full-field investigations of pressure in the flow field, e.g. de Kat
and van Oudheusden, 2012; Jaw et al., 2009, but cannot be applied directly on a surface.
Pressure sensitive paints, e.g. Tropea et al., 2007, chapter 4.4, yield full-field surface pressure
information directly on surfaces, but are typically restricted to limited ranges of large differ-
ential pressure amplitudes. Pressure transducers allow accurate measurements for low-range
differential pressures. They can be integrated into the investigated surface by drilling holes
into the specimen. This can however change the material response. In order to investigate
surface pressure distributions, a large number of pressure transducers is required, which then
still yield very limited spatial resolution.
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A number of studies have focused on obtaining pressure information from optical deformation
measurements on surfaces instead. This was achieved by solving the mechanical equilibrium
equations of the investigated specimen. A common problem of these approaches is that regu-
larization is necessary in order to mitigate the influence of experimental noise. E.g. in Brown
et al., 2018, deflections measured with 3D-Digital Image Correlation on a flexible Kevlar wind
tunnel wall section were projected onto polynomial basis functions to reconstruct pressure using
the equilibrium equation. In other studies, surface deformation measurements on thin plates
were used as basis for force and pressure reconstruction. The local equilibrium equation for a
thin plate in pure bending, which can be obtained using the Love-Kirchhoff theory, requires
fourth-order deflection derivatives to calculate pressure. This leads to an amplification of the
experimental noise and thus increases the need for regularization. In Pezerat and Guyader,
2000; Lecoq et al., 2014, noise amplification was addressed using wave number filters on the
deformation data, which was obtained with Laser Doppler Vibrometer (LDV) measurements.
These were used to solve the equilibrium equation and identify external mechanical vibration
sources, as well as the acoustic component of a turbulent boundary layer.
To address the issues of experimental noise and noise amplification due to differentiation, the
Virtual Fields Method (VFM), which is based on the principle of virtual work, has been used
in a series of studies. In case of the problem of a thin plate in pure bending, the princi-
ple of virtual work only requires second order spatial derivatives of the surface deflections
to calculate pressure. It was used in combination with LDV measurements to reconstruct
spatially-averaged sound pressure levels in Robin and Berry, 2018, transverse loads and vi-
brations in Berry et al., 2014, random external wall pressure excitations in Berry and Robin,
2016 and sound transmission of plates in Robin and Berry, 2018. These studies used piecewise
virtual fields, which allow pressure reconstructions over subdomains and act as as a spatial
low-pass filter. In the above studies, numerical simulations and microphone measurements
revealed that the performance of the method varies with the chosen size of the subdomains
and that it can be affected by the structural resonance frequencies of the thin plate specimen.
In order to acquire time-resolved full-field pressure information, the VFM was combined with
optical measurements using deflectometry in recent studies. Since deflectometry is a technique
for the measurement of surface slopes (Surrel et al., 1999), this combination reduces the order
of derivatives of experimental data for calculating pressure with principle of virtual work to
two. Dynamic mechanical point loads were measured this way in O’Donoughue et al., 2017.
In Kaufmann et al., 2019a, pressure reconstructions of an impinging air jet on a flat plate
were obtained for mean distributions. The study also addressed the accuracy and systematic
processing error of the approach, as well as a procedure to mitigate the latter. Dynamic loads
of the same impinging jet were reconstructed in Kaufmann et al., 2019b. The slope resolution
in these experiments were of the order of O(1) mm · km−1. The surface slopes caused by
dynamic flow events were well below this limit, such that they could not be measured directly.
Instead, the spatio-temporal evolution of low differential pressure events in the flow were ex-
tracted using a temporal filter and Dynamic Mode Decomposition (DMD).
The present study explores an alternative approach for obtaining low-range differential pres-
sure amplitudes in dynamic flows. It further aims at resolving flow events on small spatial
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scales of O(1) mm. Phase-locked deflectometry measurements were used to measure pressure
distributions caused by an impinging synthetic air jet. This allowed implementing changes
in the deflectometry setup that improve the metrological performance to resolve the surface
slopes caused by the low differential pressure events. The dynamic range and signal-to-noise
ratio in grid images was improved by using a flash light to achieve an optimal illumination.
This was a shortcoming in Kaufmann et al., 2019b, where continuous lighting was required
for the time-resolved measurements. Since camera storage is not an issue for phase-locked
measurements, it was further possible to use higher camera resolutions. These allowed using
smaller pitches for the hatched grid which was used as spatial carrier signal in the deflectome-
try setup. Smaller grid pitches increase the spatial resolution as well as the resolution in slope,
allowing measurements of the extremely small deformations associated with the investigated
flow events.
This study demonstrates the feasibility of the approach as well as its limitations and discusses
possible improvements for future applications.

2 Deflectometry

Deflectometry is an optical full-field slope measurement technique (Surrel et al., 1999). Figure
1 shows a schematic of the setup. It requires a periodic spatial signal, here a cross-hatched
grid with printed pitch pG, a specular reflective specimen, a camera and a light source. The
printed grid is placed at a distance hG from the specimen surface. The camera is placed at an
angle next to the grid, such that it records the reflected grid in normal incidence. The angle
θ should be minimized to avoid distortions in the recorded image.
The principle of deflectometry is also visualized in figure 1. In an unloaded specimen config-
uration, a camera pixel records the reflected grid point P when directed at point M on the
specimen surface. In a loaded configuration, deformations cause local changes of the surface
slopes, dα. Neglecting rigid body movements and out-of-plane deflections, this means that the
pixel directed at point M records the reflected grid point P′ after the surface deformation.
Recorded grid images can be used to extract phase information and thus the phase shift induced
by applying a load to the specimen. Here, a spatial phase-stepping algorithm was employed
to obtain phase maps (Surrel, 1996; Poon et al., 1993). In order to suppress some harmonics
and errors from miscalibration, a detection algorithm featuring a windowed discrete Fourier
transform algorithm with triangular weighting was used (Surrel, 2000; Badulescu et al., 2009).
The chosen detection kernel size was two grid pitches, here 18 pixels.
The phase maps obtained from the unloaded reference configuration and the deformed config-
uration allow calculating the displacement, u, between P and P′. To account for the physical
displacement of the point on the specimen surface, an iterative procedure is employed, which
is described in Grédiac et al., 2016, section 4.2:

un+1(x) = −pG2π (φdef (x+ un(x))− φref (x)) , (1)
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hS

pG

Figure 1: Top view of deflectometry setup and working principle (redrawn from Kaufmann
et al., 2019a).

A linear approximation of the slopes dα corresponding to u can be derived using geometrical
considerations, assuming that dα is small, hG � u, θ is negligible and that the camera records
images in normal incidence (e.g. Ritter, 1982):

dαx = ux
2hG

, dαy = uy
2hG

. (2)

If the assumptions are not met, a more complicated full calibration is required (Balzer and
Werling, 2010; Surrel and Pierron, 2019). The printed grid pitch pG drives the spatial resolu-
tion. The slope resolution is driven by measurement noise, the printed grid pitch pG and the
distance hG, the spatial resolution by pG.

3 Pressure Reconstruction

Assuming that the plate material is linear elastic, isotropic and homogeneous, the principle of
virtual work is expressed by:

∫

S

p w∗dS = Dxx

∫

S

(
κxxκ

∗
xx + κyyκ

∗
yy + 2 κxyκ∗xy

)
dS

+ Dxy
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(
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∗
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)
dS + ρ tS

∫

S

a w∗dS ,
(3)

where S denotes the surface area, p the investigated pressure, Dxx and Dxy the plate bend-
ing stiffness matrix components, κ the curvatures, ρ the plate material density, tS the plate
thickness, a the acceleration, w∗ the virtual deflections and κ∗ the virtual curvatures. In the
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present study Dxx, Dxy, ρ and tS were known from the plate manufacturer. κ and a were
obtained from deflectometry measurements. The virtual fields w∗ and κ∗ have to be chosen
according to theoretical as well as practical restrictions of the problem such as continuity,
boundary conditions and sensitivity to noise.
Assuming pressure to be constant over the investigated area yields a simplified equation. Ap-
proximating the integrals with discrete sums yields:

p =
(
Dxx
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κixxκ

∗i
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∗i
yy + 2 κixyκ∗ixy

+ Dxy

N∑

i=1
κixxκ

∗i
yy + κiyyκ

∗i
xx − 2 κixyκ∗ixy + ρ tS

N∑

i=1
ai w∗i

) (
N∑

i=1
w∗i
)−1

,

(4)

where N is the total number of discrete surface elements dSi. By defining this equation over
subdomains of the total surface area, pressure distributions can be reconstructed iteratively.
These subdomains are referred to as pressure reconstruction windows (PRW) in the following.
In the present study, the spatial data was oversampled by overlapping these windows.

3.1 Virtual Fields

Virtual fields were defined with 4-node Hermite 16 element shape functions, which are used
in FEM Zienkiewicz, 1977. The full formulation of these fields as well as an implementation
example can be found in Pierron and Grédiac, 2012. They yield the required C1 continuous
virtual deflections and continuous virtual slopes. They further allow eliminating the unknown
contributions of virtual work over the plate boundaries because the obtained virtual displace-
ments and curvatures vanish at the borders. Here, 9 nodes were defined for one PRW. All
degrees of freedom were set to zero except for the virtual deflection of the center node, which
was set to 1.

4 Experimental Methods

4.1 Setup

Figure 2 shows a schematic of the experimental setup. A first-surface glass mirror was used as
specimen. The grid was printed on transparency and fixed between two glass plates. A flash
light was used for illumination. The light source was placed behind the grid. The camera was
placed next to the grid at the same distance from the specimen, recording images at normal
incidence. The distance between the sample and grid was chosen to be as large as possible in
order to minimise the angle θ.
A synthetic jet was used to generate the flow impinging on the specimen. It was generated using
a driver connected to a cavity with orifice. The driver changes the cavity volume, inducing a
pressure difference which results in fluid being either sucked in or ejected through the orifice.
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Figure 2: Experimental setup and nozzle geometry.

During ejection, vortical structures form around the edges of the nozzle exit due to shear.
For sufficiently small Strouhal numbers St < π−1, the fluid forming the vortices around the
edge of the orifice is not sucked back into the cavity but convects downstream (Holman et al.,
2005). If the actuator is operated continuously, this leads to a train of vortices (Glezer and
Amitay, 2002). Here, a rectangular nozzle was used as orifice. For such nozzle symmetries,
the vortices form structures with a major and a minor axis upon formation, which deform
after some distance downstream and switch axes (e.g. Amitay and Cannelle, 2006; Van Buren
et al., 2014; Chen and Yu, 2014). They eventually break down entirely and form a turbulent
jet (Glezer and Amitay, 2002). The jet was driven by a speaker which was actuated using a
sinusoidal signal, generating a continuous train of vortices. The jet was directed at the flat
plate specimen. Depending on the distance between nozzle and plate, either the described
vortical structures or a circular turbulent jet impinge on the plate, leading to an increase of
static pressure and a subsequent diversion of the flow along the wall, e.g. Xu and Wang, 2016a.
All relevant experimental parameters are listed in table 1. The jet amplitude is given in terms
of the peak-to-peak input voltage amplitude of the speaker, Upp, as well as the peak velocity
at the nozzle exit, vpeak, which was determined using hot wire anemometry measurements.
Two jet setups were used to investigate the capabilities in resolving high and low differential
amplitudes, as well as different spatial shapes. Since the sample plate was found to deform
over time, e.g. due to temperature fluctuations, a set of images for unloaded and loaded
configuration was taken for each phase sample.

4.2 Data Processing

Each phase map was calculated from a set of grid images taken in an unloaded and a loaded
configuration. The slope maps were calculated from phase maps which were averaged from
approximately 500 snapshots. In order to mitigate the amplification of noise in later processing
steps, slope maps were smoothed using a 2D Gaussian filter. The filter kernel is characterised
by its side length, which is given in terms of the standard deviation σα. Here, the side length
was truncated at 3σα in both directions. This low-pass filter reduces the effect of both random
noise and high-frequency bias, but also leads to a reduction of the signal amplitude. Note that
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Optics
Camera Imperx

IGV-B6620M
Technology CCD
Camera pixel size 5.5 µm
Surface Fill Factor 98%
Dynamic range 8 bit
Maximum resolution 6600×4400 pixels
Settings
Used resolution 4400×4200 pixels
Exposure 1/2000 s
ROI 73.3×70 mm2

Magnification M 0.33
f-number NLens 32
Focal length fLens 300 mm
Light source Bowens Gemini

Pro 1000 Flash
Sample
Type First-surface mirror
Material Glass
Young’s modulus E 74 GPa
Poisson’s ratio ν 0.23
Density ρ 2.5 103 kg m−3

Thickness tS 1 mm
Grid
Printed grid pitch pG 0.3 mm
Grid-sample distance hG ca. 1000 mm
Pixels per pitch ppp 9
Jet
Actuator Acoustic speaker

Visaton SC 8 N
Nozzle shape Rectangular
Slot length l 1 mm
Slot width wS 8 mm
Jet frequency f 100 Hz
Sample-nozzle distance hN 25 mm, 10 mm
Jet amplitude Upp 20 V, 46 V
Peak velocity vpeak 31 m s−1, 45 m s−1

at nozzle exit

Table 1: Setup parameters.

this Gaussian filter leads to a loss of data points around the borders, depending on the filter
kernel size.
Three-point centered finite differences were used to differentiate slope maps and calculate cur-
vatures. Using geometrical considerations, one can determine that the distance between two
data points on the specimen surface, which is required for the finite differences, is pG/2 if the
camera is positioned at the same distance hG from the specimen surface as the printed grid.
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Figure 3: Data processing steps for reconstruction of quasi static pressure maps from deflec-
tometry measurements.

Deflections were obtained from the slope maps using an inverse (integrated) gradient based on
a sparse approximation (D’Errico, 2009). Accelerations were then obtained from the second
temporal derivative of the deflection maps. The acquired deflections and accelerations did
however show unexpected distributions for a number of phase points. It is possible that the
number of acquired phase points were insufficient to resolve accelerations accurately. Further,
since the integration constant for calculating deflections was unknown and set to 0, a compar-
ison with an established measurement technique was necessary. Accelerations were however
found to be below the noise level of 0.3 m s−2 found for the Polytec PDV 100 laser Doppler
vibrometer which was used for reference measurements. Fig. 4 shows deflections and accelera-
tions obtained from slope measurements using a high amplitude jet setup with Upp = 23 V and



Surface pressure rec. from phase-averaged deflectometry meas. using the VFM 85

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-5 0 5 10 15

(a) Deflection map.
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(b) Acceleration map.

Figure 4: Phase averaged deflections and accelerations for Φ = 15 · 2π
20 . Upp = 23 V, hN =

10 mm.

hN = 10 mm. Higher acceleration amplitudes of up to 0.4 m s−2 were observed for different
phase points, but with unexpected and asymmetric distributions. Since LDV measurements
did not confirm these values and due to the potential inaccuracy of the results, accelerations
were not taken into account and set to 0 in the following. The resulting error in pressure
amplitude from neglecting accelerations can be estimated to up to 35 Pa.

Pressure maps were reconstructed using the curvatures and the material constitutive me-
chanical parameters as described in section 3. The results were oversampled by shifting the
reconstruction window by one data point in both directions until the full field of view was
covered. The reconstruction steps are summarised in fig. 3.

4.3 Processing Parameters

The chosen processing parameters, in particular the slope filter kernel size, σα, and the PRW
size, significantly impact the pressure reconstruction outcome. Large PRW sizes act as more
efficient low-pass filter, but can lead to an underestimation of pressure amplitude and average
out small-scale spatial distributions. Kaufmann et al., 2019a introduced a methodology for
selecting optimal processing parameters in terms of local pressure amplitudes. It addresses
the complex interactions between pressure signal, random noise and systematic processing
errors. In the present study however, random noise is averaged out reasonably well due
to the large number of snapshots, while systematic experimental error sources significantly
impact the pressure reconstructions. These errors cannot be modelled because of their unkown
distribution and magnitude. Further, in this work the identification of flow structures with
small spatial scales of O(1) mm is more relevant than the accuracy in pressure amplitude. It
was therefore necessary to determine the optimal reconstruction parameters empirically. The
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potential increase in the systematic processing error of the pressure amplitude associated with
non-optimal parameters was addressed using the finite element correction procedure described
in Kaufmann et al., 2019a.

5 Experimental Results

5.1 Pressure Reconstructions

Fig. 5a-5b and 6a-6b show averaged slope maps obtained from phase-locked measurements for
one phase and for both investigated jet setups. These were used to calculate the corresponding
curvature maps (fig. 5c - 5e and 6c - 6e). The noise patterns found in curvature maps indicate
the presence of systematic experimental error sources. Without slope smoothing, they can
overwhelm the signal from the impinging jet. Pressure reconstructions for 2 different phases
for a nozzle exit velocity of 31 m s−1 and a distance of 10 mm between nozzle and sample,
hN, are shown in fig. 7. σα = 8 and PRW = 12 were used as reconstruction parameters.
Due to experimental noise, differential pressure amplitudes below approximately 1 Pa could
not be resolved here and were set to 0 to mitigate noise patterns. Fig. 7a shows the phase
with the highest observed peak pressure amplitude for this setup. The elongated shape of
the vortex structure, which originates from the rectangular nozzle, is clearly visible. The
orientation of the long and short axis is switched compared to the nozzle orientation (see
section 4.1). Since the dynamic pressure decreases with the downstream distance due to
entrainment and turbulent decay, the reconstructed peak amplitude of 450 Pa is consistent
with the approximately 1200 Pa dynamic pressure that corresponds to the peak velocity at
the nozzle exit. Pressure reconstructions for the second jet setup with nozzle exit velocity of
19 m s−1 and hN = 25 mm are shown in fig. 8. Due to the low signal-to-noise ratio, σα = 7
and PRW = 42 were used as reconstruction parameters. The position of the jet impinging in
the center of the specimen was identified for both presented phase points. Due to the large
downstream distance, the pressure amplitude is significantly reduced compared to the 540 Pa
peak dynamic pressure at nozzle exit, and the vortical structure with minor and major axes
has decayed into a turbulent jet with approximately Gaussian profile. The negative differential
pressure region identified around the center indicates the presence of a vortex ring entraining
fluid while moving along the specimen surface, which is consistent with the findings of studies
focusing on the flow field, e.g. Xu and Wang, 2016b. Fig. 7a shows the phase with the
lowest reconstructed pressure amplitude for which the position of the impinging jet could be
identified. Pressure maps for the remaining phase points yield similar results, depending on
the pressure amplitudes during the respective phase. The position of the impinging jet could
not be identified for a number of phase points, indicating that the amplitudes encountered in
these cases are too low to be detected with the present setup. The pressure reconstruction
results for all phases and both setups can be found in appendix 1.
It should be noted that the observed spatial distributions and pressure amplitudes could not
be validated with any established measurement techniques. Pressure transducers, which are
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Figure 5: Phase averaged slope maps and curvature maps for Φ = 1 2π
20 . Upp = 46 V,

hN = 10 mm.
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Figure 6: Phase averaged slope maps and curvature maps for Φ = 1 2π
20 . Upp = 20 V,

hN = 25 mm.
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Figure 7: VFM pressure reconstructions from phase averaged slope maps. Upp = 46 V,
hN = 10 mm, σα = 8, PRW = 12.
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Figure 8: VFM pressure reconstructions from phase averaged slope maps. Upp = 20 V,
hN = 25 mm, σα = 7, PRW = 42.

often used to measure low differential pressure amplitudes, do not only provide an insufficient
amount of data points, but also average over too large of an area due to their surface diameter
of typically 2− 3 mm. Other full-field techniques cannot resolves the low differential pressure
amplitudes or are not applicable to surfaces.

5.2 Finite Element Correction

Due to systematic errors in data processing, VFM pressure reconstruction can lead to under-
estimations of the local pressure amplitudes. In Kaufmann et al., 2019a it was shown that the
resulting error can be mitigated using a finite element correction procedure, which is employed
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in the following. In a first step, slope maps are calculated from a VFM pressure reconstruc-
tion, prec, using a finite element simulation. Processing the thus obtained slope maps yield
a new pressure distribution, pit. The difference between prec and pit reflects the systematic
processing error for this particular distribution. It can be interpreted as a first estimate for the
systematic error between the real distribution and prec. Adding this difference to prec yields a
corrected pressure distribution, pcor:

pcor, n = prec + (prec − pit, n) , (5)
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tion after 1 iteration.

Figure 9: Input distribution and iterated result for finite element correction for Upp = 46 V,
hN = 10 mm and Φ = 1 2π
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Figure 10: Input distribution and iterated result for finite element correction for Upp = 20 V,
hN = 25 mm and Φ = 1 2π
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where n is the number of iterations. It was found that this method yields well converged
results after 1-3 iterations for the investigated cases. In Kaufmann et al., 2019a numerical
data was used to show that the original load distribution can be approximated very closely
for noise-free data with this procedure.
Here, only one iteration was performed because the correction procedure was found to amplify
noise patterns which affect the lower amplitude region of the vortex shape. The peak pressure
amplitudes of the shown corrected distribution is approximately 25% higher than that of the
original reconstruction. Note that the field of view is reduced around the borders with each
iteration, depending on the size of the spatial slope filter kernel and the PRW. For cases with
low signal-to-noise ratio, it was necessary to address the noise patterns found in pressure maps,
since they are typically amplified by the procedure. Since the pressure distributions found for
large distances between nozzle and sample are approximately symmetric, this was achieved
by averaging the pressure values for each radial distance from the stagnation point. Fig. 10a
shows the original pressure reconstruction from experimental data, and fig. 10b the averaged
and corrected distribution. The peak pressure amplitudes of the corrected distribution are
10% − 35% higher than that of the original reconstructions, depending on the investigated
phase point.

6 Error Sources

This section discusses experimental and data processing errors affecting the obtained pressure
amplitudes and distributions, as well as the origin of the observed noise patterns. First, sys-
tematic errors resulting from phase detection and VFM should be considered. They depend
on the chosen reconstruction parameters, particularly the size of the slope filter kernel σα
and PRW, the investigated load distribution as well as the signal-to-noise-ratio. In Kaufmann
et al., 2019a the systematic error was investigated in detail for Gaussian pressure distribu-
tions and for different signal-to-noise ratios. In the present study it is difficult to quantify the
amount of random noise because slopes were calculated from sets of reference and deformed
grid images and averaged, and because the noise patterns stemming from systematic error
sources cannot be reliably distinguished from random noise patterns. However, the results of
the finite element correction (see section 5.2) can be interpreted as an estimate for the sys-
tematic processing error (see also Kaufmann et al., 2019a, chapters 5-6). It can be estimated
to be up to 35% of the local amplitude for uncorrected pressure reconstructions.
In order to estimate the error associated with neglecting inertia (quasi-static plate behaviour),
acceleration measurements were conducted using a LDV. The accelerations on the specimen
surface were however found to be below the noise level of 0.3 ms−2. As a worst case estimate, a
value of 0.3 ms−2 can be assumed for the accelerations at every data point. The corresponding
dynamic pressure value depends on the PRW window size and is 5−35 Pa in the present case.
Note that since the accelerations could not be resolved for any setup with the LDV, this is an
estimate of the error for the high-amplitude jet setup using Upp = 23 V and hN = 10 mm. The
worst-case error estimate is therefore below 8% of the observed peak amplitude. However, if
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these acceleration were to occur at phases with low pressure amplitude, the associated error in
pressure would be of the order of the identified pressure amplitudes. For the lower amplitude
jet setup, accelerations can be assumed to be far lower and thus negligible.
Finally, experimental error sources need to be considered. The deflectometry setup is sus-
ceptible to misalignments between printed grid and camera sensor, miscalibration, as well as
grid defects and damages on the reflective surface. All of these can lead to errors in phase
detection. Misalignment is the likely cause for the vertical stripes observed in several pressure
maps. Note that the acquisition time for each phase point was more than 30 min, such that
factors like temperature fluctuations and strained cables may have caused small displacements
during measurements. As the investigated printed grid pitch was very small with 0.3 mm and
9 pixels were used to record one reflected grid pitch, these would be sufficient to cause the
observed misalignment, despite careful initial arrangement. It should also be noted that the
Young’s modulus of the specimen, which is s a linear factor in pressure calculation, was only
measured to within 10% (Kaufmann et al., 2019a).
Even though the accumulated potential uncertainty in the identified pressure amplitudes is
relatively high, the overall results agree with the magnitudes expected from the applied nozzle
exit velocities and downstream distances. The identified spatial distributions correspond to
the expected shapes of the vortical structures for the investigated downstream distances.

7 Limitations and Future Work

The presented VFM pressure reconstructions show that it is possible to obtain high resolution
pressure measurements of low-range differential amplitudes with phase-locked deflectometry
measurements. Even lower pressure amplitudes can potentially be resolved in future studies by
addressing experimental error sources, thus mitigating noise patterns. This could be achieved
by using translation stages for the positioning of grid, specimen and camera to address the
issue of misalignment. Smaller grid pitches would further increase slope resolution and spatial
resolution. Since not all available camera pixels were used in the present study, this would be
relatively easy to achieve by changing the printed grid and the camera lens. Slope resolution
can also be improved by choosing a larger distance between grid and specimen. However, the
availability of suitable camera lenses is a restricting factor.
Improving the performance of the VFM by optimising the virtual fields or the pressure deter-
mination with higher order approaches could reduce the systematic processing error. These
could also allow using smaller PRW sizes, effectively increasing the spatial resolution.

8 Conclusion

This study presents an approach for full-field pressure reconstructions from phase-locked op-
tical surface slope measurements. A highly sensitive deflectometry setup was used to obtain
slopes on a specular reflective specimen. The VFM was used to reconstruct pressure from the
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experimental data and the material mechanical constitutive parameters of the flat plate spec-
imen. It was shown that it is possible to obtain physically meaningful pressure distributions
with amplitudes of O(1) Pa – O(100) Pa and spatial extent of O(1) mm – O(10) mm with
this approach. The identification of lower pressure amplitudes was limited by noise patterns
originating from experimental error sources. Possible improvements for addressing this issue
in future studies were discussed. The results are outstanding in terms of the small spatial
scales and pressure amplitudes which were identified in full-field.

9 Data Provision

All relevant data produced in this study will be made available upon publication of this
manuscript.
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Part III

Summary





Chapter 5

Recommendations and Future Work

A number of limitations and requirements was identified that allow general recommendations
for the future use of deflectometry and the VFM for surface pressure reconstructions.
Finite element simulations and simulated experiments are a substantial support in designing
the experimental setups. They help to predict suitable sample stiffness parameters and the
printed grid pitches which are required to resolve the investigated load amplitudes and distri-
butions. Camera fill factor, the number of pixels per recorded grid pitch and signal-to-noise
ratio can also be simulated to determine whether the image sensor and illumination are suitable
for a given setup. Simulated experiments further allow choosing appropriate reconstruction
parameters for processing. This is particularly important for applications where a wide range
of pressure events can occur simultaneously, e.g. in investigations of turbulent flows or other
random excitation sources. Particularly small-scale flow events may be filtered out or confused
with noise patterns when using ill-suited reconstruction parameters. Comparing simulated and
real experiments also helps to identify patterns stemming from systematic experimental error
sources like fringes or specimen surface deformations, which can be difficult to distinguish from
the investigated signal.
A general issue was the precise alignment between grid, camera and sample. If available, micro
stages and stepper motors should be used to facilitate the arrangement of these setup compo-
nents. As applying the investigated load can induce surface deformations of several µm, test
images in unloaded as well as loaded configurations should be taken before each experiment to
make sure that no fringes occur in curvature maps. Other factors that may introduce errors
in phase detection are harmonics in the printed grid, grid defects, deformations and damages
of the sample surface, aberration and other camera lens imperfections, and the fill factor of
the image sensor.
For tests with high shutter speed, the choice of the light source is crucial. Many common
light sources produce substantial amounts of heat. This can cause density gradients in the air
between grid, sample and camera, which can distort the light beams. If placed too closely to
grid or sample heat can cause deformations and damages. Cooling fans on the light source (or
camera) cause vibrations that are likely detectable in the signal.
A shortcoming of the present study was that accelerations could not be measured accurately.
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The main challenge in obtaining these was the determination of the integration constant that
is required to calculate instantaneous deflections. It was initially assumed that the deflections
in the corners of the relatively large region of interest would not change over time, which was
not confirmed. It may be possible to address this issue by physically fixing the specimen in
a small area in the field of view in order to prevent variations of deflections over time, or by
simultaneously measuring deflections at a known point in the field of view using an LDV.
A main challenge in the application of the presented experimental approach is that the inves-
tigated surfaces have to be mirror-like and plane, which are major restrictions for practical
engineering applications. Recently, deflectometry measurements were extended to moderately
curved surfaces in Surrel and Pierron, 2019. Though promising results were obtained, time-
resolved measurements are currently not possible with this approach. Further, it requires a
calibration and the required depth of field is a restricting factor for the use in combination
with small grid pitches. A successful combination of deflectometry measurements on curved
surfaces with the VFM would be of great value, as it would allow pressure reconstructions
directly on practically relevant surfaces like e.g. aerofoils, fuselages and ship hulls. A combi-
nation with the VFM is however challenging because in-plane displacements are generally not
negligible on curved surfaces.
The requirement of mirror-like surfaces could be addressed by using infrared instead of visible
light sources for deflectometry. This was achieved with heated grids as spatial carrier in Toniuc
and Pierron, 2018. Since infrared light has a longer wavelength than visible light, specular
reflection can be achieved on specimens that do not have mirror-like but reasonably smooth
surfaces with up to about 1.5 µm of RMS roughness, like perspex and metal plates. Current
restrictions are the lack of an aperture ring and that available infrared cameras are limited in
terms of spatial and temporal resolutions. Further, the lenses required to achieve compara-
ble magnification are more expensive. A combination of infrared deflectometry measurements
with the VFM may allow measurements directly on e.g. walls of water tanks or flumes.
Finally, the pressure reconstruction approach and the selection of virtual fields is an important
factor in addressing the systematic error of the technique. Varying the virtual fields would also
allow investigating the issue of lower accuracy for decreasing reconstruction window sizes. Fur-
ther, the assumption of constant pressure over a reconstruction window is clearly inaccurate,
such that linear or higher order approaches are likely to yield improved results.



Chapter 6

Conclusion

This thesis investigated the capabilities and limitations of full-field surface pressure recon-
structions from deflectometry measurements with the Virtual Fields Method. Surface slopes
of O(0.1) mm km−1 – O(10) mm km−1 were measured with the highly sensitive deflectome-
try setup. The VFM was used to reconstruct surface pressure information using the full-field
deformation measurements and the material constitutive mechanical parameters. The data ob-
tained with this technique allowed extracting mean and dynamic pressure distributions with
low-range differential amplitudes of O(1) Pa – O(100) Pa and spatial extent of O(1) mm –
O(10) mm. The results are presented in three papers which form the core of this thesis. The
key findings of the study are summarized in the following.

• Static pressure distributions were reconstructed from time-averaged slope measurements.

• The influence of the processing parameters was investigated using experimental and
model data.

• Simulated experiments employing a finite element model and artificial grid deformation
were used to assess the uncertainty of the method.

• The numerical results were used to select optimal reconstruction parameters, taking into
account experimentally observed noise.

• VFM pressure reconstructions were compared quantitatively to pressure transducer mea-
surements.

• A finite element correction procedure was proposed to mitigate the systematic error of
VFM pressure reconstructions.

• Temporal filters were used to extract dynamic information which was compared to trans-
ducer measurements.

• Dynamic Mode Decomposition (DMD) was used to identify relevant spatial information
that correspond to specific frequencies.
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• Phase-locked measurements were employed to directly measure dynamic flow events.

• Error sources were discussed based on the findings of both the experimental and the
simulated results.

• The limitations of the approach as well as possible improvements for future studies and
applications were discussed.

The results are outstanding in terms of the small spatial scales and the low differential am-
plitudes of the identified surface pressure distributions, as well as the high data point density
that was achieved. These key features make the investigated technique highly relevant for a
large range of applications in engineering and science.



Appendix A

Experimental Data
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1 Pressure reconstructions from phase-locked slope measure-
ments (Paper 3)
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Figure 1: Pressure reconstructions from phase averaged slope maps (PRW = 12, σα = 8).
hN = 10 mm, Upp = 46 V.
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Figure 2: Pressure reconstructions from phase averaged slope maps (PRW = 42, σα = 7).
hN = 25 mm, Upp = 20 V.
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1 DMD

The main aspects of DMD as introduced in Schmidt, 2010 are recalled here. For a snapshot
sequence VN

1 = v1...vN, where the vi represent individual snapshots, the technique assumes
that a linear mapping A exists which remains approximately constant over the entire data
set, such that AV N−1

1 = V N
2 . By calculating the Singular Value Decomposition (SVD) for

the snapshot sequence,
V N−1

1 = UΣWH , (1)

where the superscript H denotes the conjugate transpose, one obtains:

UHAU = UHV N
2 WΣ−1 = S̃ . (2)

Note that the right hand side of equation 1 contains the Proper Orthogonal Decomposition
(POD), Pearson, 1901, of the snapshot sequence, with the spatial structures contained in U ,
the temporal structures in W and the energy coefficients in Σ. S̃ is thus a projection of
A onto the spatial POD modes. For large data sets, this step is computationally expensive
and requires large amounts of RAM. Truncating the POD modes can mitigate this problem.
Especially modes Φ containing small amounts of energy often correspond to random noise
events. The dynamic modes can then be obtained using the eigenvectors yj for S̃yj = µjyj :

Φj = Uyj . (3)

Further, the complex eigenvalues contain information on damping and frequency coefficients
of the modes:

µj = eδj+i·fj . (4)

δj is the damping coefficient and fj the frequency of the j-th mode. Finally, the amplitudes
of each mode need to be determined. Introducing the matrix:

L =




Y

YM

...

YMN−1




, (5)

with the matrix Y containing the eigenvectors of S̃ as columns and the diagonal matrix M
containing the corresponding eigenvalues as diagonal elements, one obtains:

V N
1 = LC . (6)

Now L contains the information on shapes and temporal evolution of the modes, and the
diagonal matrix C the amplitude coefficients cj as diagonal elements. Using the SVD L =
ULΣLW

H
L one can obtain the pseudo inverse of L such that:

C = WLΣ−1
L U

H
L V

N
1 . (7)



Surface pressure rec. from phase-averaged deflectometry meas. using the VFM 107

Now the snapshot reconstructions can be expressed as:

vk =
Nmodes∑

j=1
Φj exp (ifj + δj) · f−1

aq · (k − 1)cj . (8)

In order to manage the large data sets encountered in this study, the streaming DMD approach
introduced in Hemati et al., 2014 was employed here. It is based on incrementally updating
an orthonormal basis calculated from all available snapshots with the Gram-Schmidt process.
This basis is used to obtain a POD, which is also truncated to reduce computational cost. The
snapshot projections onto this basis are used to calculate a DMD operator K̃, which takes the
place of S̃ above.
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