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FOXD1 mutations are related to repeated
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Abstract

Background: Human reproductive disorders consist of frequently occurring dysfunctions including a broad range
of phenotypes affecting fertility and women’s health during pregnancy. Several female-related diseases have been
associated with hypofertility/infertility phenotypes, such as recurrent pregnancy loss (RPL). Other occurring diseases
may be life-threatening for the mother and foetus, such as preeclampsia (PE) and intra-uterine growth restriction
(IUGR). FOXD1 was defined as a major molecule involved in embryo implantation in mice and humans by regulating
endometrial/placental genes. FOXD1 mutations in human species have been functionally linked to RPL’s origin.

Methods: FOXD1 gene mutation screening, in 158 patients affected by PE, IUGR, RPL and repeated implantation failure
(RIF), by direct sequencing and bioinformatics analysis. Plasmid constructs including FOXD1 mutations were used to
perform in vitro gene reporter assays.

Results: Nine non-synonymous sequence variants were identified. Functional experiments revealed that p.His267Tyr
and p.Arg57del led to disturbances of promoter transcriptional activity (C3 and PlGF genes). The FOXD1 p.Ala356Gly
and p.Ile364Met deleterious mutations (previously found in RPL patients) have been identified in the present work in
women suffering PE and IUGR.

Conclusions: Our results argue in favour of FOXD1 mutations’ central role in RPL, RIF, IUGR and PE pathogenesis via C3
and PlGF regulation and they describe, for the first time, a functional link between FOXD1 and implantation/placental
diseases. FOXD1 could therefore be used in clinical environments as a molecular biomarker for these diseases in the
near future.
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Background
Human reproductive disorders consist of frequently
occurring dysfunctions including a broad range of
phenotypes affecting fertility and women’s health during
pregnancy. Several female-related diseases have been
associated with hypofertility/infertility phenotypes, most
of which can affect the ovaries (e.g. primary ovarian in-
sufficiency-POI), the hormonal system (e.g. polycystic

ovary syndrome-PCOS), the fallopian tubes (e.g. obstruc-
tion) and/or the endometrium (e.g. recurrent pregnancy
loss-RPL- and endometriosis) (Laissue, 2018; Smith et
al., 2003). Other commonly occurring diseases may be
life-threatening for the mother and foetus, such as
preeclampsia (PE) and intra-uterine growth restriction
(IUGR) both of which causes important physiological
changes during pregnancy.
RPL (which affects 2–5% of all pregnancies) has been

clinically defined as being at least three pregnancy losses
occurring before the 20th week of gestation (El Hachem
et al., 2017). Its aetiology is still poorly understood as, al-
though several causes have been described, > 50% of
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cases are considered idiopathic; such scenario pinpoints
the potential participation of a genetic component re-
lated to its origin. Various tools have been used for iden-
tifying loci and sequence variants related to this disease’s
aetiology, such as genome-wide association studies
(GWAS), Sanger and next generation sequencing (NGS),
linkage analysis and DNA methylation status assessment
(Kolte et al., 2011; Li Wang et al., 2010; Pereza et al.,
2017; Vaiman, 2015). However, the definitive association
of genetic variants or epigenetic modifications with the
phenotype has rarely been validated by functional tests.
PE is another frequently occurring disease (~ 5% of

pregnancies) which is clinically characterised by preg-
nancy-induced hypertension and proteinuria, making it
one of the main causes of pregnancy-related maternal and
foetal morbimortality. Although various pathophysio-
logical mechanisms have been described, PE’s precise aeti-
ology remains unknown (Chaiworapongsa et al., 2014).
Identifying early diagnostic/prognostic biomarkers has be-
come a relevant focus for research as PE’s clinical signs
and symptoms appear during the third trimester of gesta-
tion. More than 15 loci have been mapped and positional
cloning has led to interesting PE candidates being identi-
fied, such as ACVR2A, TNFSF13B, EPAS1 and STOX1
(Chelbi et al., 2013; Jebbink et al., 2012) (and references
therein). STOX1, a transcription factor, has been defined
as a key regulator of placental genes and its mutations
have been related to PE pathogenesis (van Dijk et al.,
2010; Vaiman and Miralles, 2016). Interestingly, Stox1
overexpression in mice has led to placental and endothe-
lial cell dysfunction, PE, IUGR and cardiovascular injury
(Collinot et al., 2018; Ducat et al., 2016). Some sequence
variants located on additional genes (e.g. SERPINA8,
MMP9,VEGF and TNFα) have been found to increase the
risk of PE (Chelbi et al., 2013). Regarding IUGR, maternal
placental and foetal genes have been proposed as relevant
pathophysiology actors (SERPINA3, PlGF, BCL2, BAX,
IGF1/IGF2, VEGF, STOX1, FV, SVCAM1 and ADMA)
(Sharma et al., 2017).
Interestingly, the participation of common genes and

molecular pathways in IUGR, PE and RPL pathophysi-
ology argues in favour of the potential existence of
central regulatory actors (e.g. transcription factors)
involved in these disorders’ aetiopathology.
A series of studies using a genetic mouse model of

interspecific congenic strains allowed us to map quanti-
tative trait loci (QTL) related to embryo resorption (a
phenotype analogous to RPL in humans) to short
chromosome regions (Laissue et al., 2016, 2009; Vatin et
al., 2012). One of these regions was found to contain
FOXD1, encoding a forkhead transcription factor, shown
to be involved in the regulation of embryo implantation
in mice (Laissue et al., 2016, 2009; Quintero-Ronderos
and Laissue, 2018). The mouse Foxd1-Thr152Ala variant

(carried naturally by the Musspretus species), when
expressed in the C57BL/6 J genetic background, was
associated to embryo resorption and massive deregu-
lation of the expression of placental and endometrial
genes (Laissue et al., 2016). FOXD1 mutations in
humans have now been functionally linked to RPL’s
origin, thereby constituting a diagnostically useful
molecular biomarker (Laissue et al., 2016; Quintero-
Ronderos and Laissue, 2018).
Herein, we describe novel FOXD1 gene mutations

identified through the screening of 158 patients affected
by PE, IUGR, RPL and repeated implantation failure
(RIF) following in vitro fertilisation. Nine non-synonym-
ous sequence variants were identified, two of which
(p.His267Tyr found in one RIF patient and p.Arg57del
in one IUGR woman) represented novel and coherent
candidates for in vitro testing. Functional experiments
revealed that both led to an increased C3 (complement
C3) promoter transcriptional activity. In addition, we
found increased FOXD1-p.Arg57del variant transactiva-
tion capacity on the PlGF (placental growth factor) pro-
moter. The FOXD1 p.Ala356Gly and p.Ile364Met
mutations (previously found in RPL patients) have also
been identified in the present work in women with PE
and IUGR and with isolated IUGR, respectively.
Our results provide new evidence of FOXD1’s central

role in endometrium and placental physiology as we show,
for the first time, that besides its involvement in RPL its
mutations contribute to RIF, IUGR and PE. FOXD1 could
therefore be used in clinical environments as a molecular
biomarker for these diseases in the near future.

Methods
Patients and controls
The study population consisted of 158 women suffering
from different reproductive disorders: RPL (n = 31), RIF
(n = 30), IUGR (n = 39), PE (n = 31), PE and IUGR (PE/
IUGR) (n = 27). The RPL and RIF patients were from Co-
lombian origin, whilst those suffering IUGR, PE or PE/
IUGR were French (Table 1). The control groups con-
sisted of 203 Colombian and 361 French women lacking a
clinical history of reproductive disorders (also see below).
The unrelated Colombian RPL patients (n = 31)

attended the Centre for Research in Genetics and Gen-
omics (CIGGUR-Universidad del Rosario, Bogotá,
Colombia). They had suffered 3 or more consecutive
pregnancy losses and had normal 46, XX karyotypes.
They had no clinical history of coagulation dysfunction,
uterine anomalies, autoimmunity (e.g. antiphospholipid
syndrome), infection, endocrine and/or metabolic disor-
ders (excluded by biochemical tests). All cases had no
background of consanguinity or reproductive diseases.
The Colombian RIF patients (n = 30) were attending

the Colombian Fertility and Sterility Centre (Cecolfes,
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Bogotá, Colombia). The inclusion criteria referred to
women having suffered two or more RIF after at least 2
consecutive cycle of IVF or ICSI in which a high-quality
embryo had been transferred during each cycle (Rine-
hart, 2007). β-HCG serum levels were followed-up for
monitoring implantation success. Maternal > 40 year-old
patients suffering uterine anomalies, miomatosis, hydro-
salpinx, having an abnormal karyotype, male-related ab-
normality factors (e.g. oligospermia, azoospermia),
suffering endocrine and coagulation and autoimmunity
diseases were excluded from the study.
The French IUGR (n = 39), PE (n = 31) and PE and

IUGR (PE/IUGR (n = 27)) patients were attending The
Institut Cochin (Paris, France). Inclusion criteria for PE
were systolic pressure above 140 mmHg, diastolic pres-
sure above 90 mmHg and proteinuria above 0.3 g per
day. The inclusion criteria used for IUGR were reduction
of fetal growth during gestation with a birth weight
below the 10th percentile according to Lubchenco
growth curves. The exclusion criteria included diabetes,
chromosomal and fetal malformations, maternal infec-
tions, aspirin treatment. The control group for Colom-
bian patients consisted of 203 women (from the same
ethnical origin) over 50 years-old having had at least one
live birth child without antecedents of medical complica-
tions during pregnancy and lacking hypertensive disor-
ders. Regarding the French controls, we used data
previously reported by our group (Laissue et al., 2016).
In that study, FOXD1 was sequenced in 271 French con-
trols lacking antecedents of obstetrical disorders. In the
present study we have increased the amount of French
controls to 361 using the same DNA bank. Blood sam-
ples were collected from all patients and controls using
standard procedures.
All participating individuals signed an informed con-

sent form. All this study’s experimental steps were ap-
proved by the Universidad del Rosario’s and Institut
Cochin’s Ethics Committees and the study was con-
ducted in line with the Declaration of Helsinki.

FOXD1 sequencing and bioinformatics analysis
DNA was extracted from all patients and controls’ whole
blood samples using the salting-out method. FOXD1 ampli-
fication and sequencing has been described previously
(Laissue et al., 2016). Amplicons were purified using shrimp
alkaline phosphatase and exonuclease I. Internal primers
were used for sequencing. The sequences were compared
to that of the FOXD1 wild type version
(ENSG00000251493). Primer sequences, PCR and sequen-
cing technical conditions have been included as supple-
mentary information (Additional file 1). The novel variants
were screened in the gnomAD database (https://gnomad.
broadinstitute.org). We also compared the variants’ allele
frequencies identified in patients to those from their

ethnically-matched controls (Colombian population). SIFT
and PolyPhen-2 bioinformatics tools were used for asses-
sing the novel FOXD1-p.His267Tyr missense variant’s po-
tentially harmful effects. FOXD1 proteins from orthologous
species (Monodelphis domestica, Pan troglodytes, Sus scrofa,
Cebus capucinus imitator, Odobenus rosmarus divergens,
Delphinapterus leucas) were aligned to determine potential
conservation of His 267 during evolution.

Plasmid constructs and in vitro gene reporter assays
The complete FOXD1 ORF WT and mutant versions
(p.His267Tyr and p.Arg57del) were inserted into the
pcDNA 3.1 Zeo (+) vector (Invitrogen, Carlsbad, CA,
USA). The C3 promoter (− 792 to − 63 bp upstream of the
initial ATG start codon) was inserted into
pGL4.22[luc2CP/Puro] (Invitrogen, Carlsbad, CA, USA). A
digestion-ligation protocol was used for FOXD1 and C3
promoter cloning, using 5′-KpnI and XhoI-3′ endonucle-
ases and T4 DNA ligase (Invitrogen). The construct con-
taining the PlGF promoter region was previously described
(Laissue et al., 2016). All constructs were sequenced to ex-
clude potentially unexpected PCR-induced mutations.
COS-7 cells were cultured in Dulbecco’s modified

Eagle medium/Ham’s Nutrient Mixture F12 (DMEM/
F12, Gibco) containing 10% foetal bovine serum (FBS-
Biowest) and 1% penicillin/streptomycin (Invitrogen-
Gibco, Carlsbad, CA, U.S.A) at 37 °C in a 5% CO2
atmosphere. Cells were seeded at 50,000 cells/well in 24-
well culture dishes and incubated at 37 °C in 5% CO2 for
24 h. Cells were co-transfected using Fugene (Promega,
Madison, WI, USA) reagent in a serum-free medium with
800 ng of constructs including the C3 or PlGF promoters,
500 ng FOXD1-WT or mutant versions (c.168_
170delGCG; p.Arg57del or c.799C > T-p.His267Tyr) and
30 ng Renilla for 48 h. Negative control involved co-trans-
fection with pcDNA 3.1 Zeo (+) empty vector.
C3 and PlGF transcriptional activities, in response to

the WT or mutant versions of FOXD1, were measured
48 h after transfection using the Dual-Luciferase Re-
porter Assay System, following the manufacturer’s in-
structions (Promega, Madison, WI, USA). The luciferase
activity reported for each experiment was divided by
Renilla activity to obtain RLUs values. Each experiment
was repeated three times in sixplicate. Student’s t-test
was used for estimating the statistical significance be-
tween WT and mutant conditions.

Results
FOXD1 genotyping and bioinformatics analysis
Sequence analysis revealed 9 heterozygous non-synonym-
ous sequence variants (Table 1 gives FOXD1 genotyping
results). Among those, four, c.168_170delGCG (p.Arg57-
del), c.799C > T (p.His267Tyr), c.1067C >G (p.Ala356Gly)
and c.1092C >G (p.Ile364Met) were rare as they displayed
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a very low minor allele frequency (MAF) in public data-
bases of SNPs (e.g. gnomAD). In addition, they were ab-
sent in the control group described by Laissue et al.,
(2016) nor in the present work’s control groups. The
c.168_170delGCG (p.Arg57del) and c.799C > T (p.His267-
Tyr) variants had not been described previously. The
p.His267Tyr variant was found in a Colombian RIF
patient whilst the p.Arg57del variant was carried by a
French IUGR patient. The c.1067C >G (p.Ala356Gly) and
c.1092C >G (p.Ile364Met) variants have been previously
reported in RPL women (Laissue et al., 2016). Here, one
French IUGR/PE patient had the p.Ala356Gly mutation
while one IUGR woman carried the p.Ile364Met mutation.
The remaining variants were considered to be poly-
morphisms, having > 1% MAF in the gnomAD SNP
database and/or were present in control populations
(i.e. 361 French or 203 Colombian women from the
present research) (Laissue et al., 2016). SIFT and
PolyPhen prediction tools gave scores compatible with
a harmful effect for the p.His267Tyr variant (Table 1).
This variant’s protein sequence alignment suggested
strict His267 residue conservation during the species’
evolution (Additional file 2: Figure S1).

Luciferase gene reporter assays
The FOXD1-WT version overexpression allowed to trans-
activate the C3 and PlGF promoters in luciferase gene re-
porter assays (C3: WT vs empty vector, 1.9-fold, p =
0.0024; PlGF: WT vs empty vector, 3-fold, p = 1.3 × 10− 5),
as reported before by Laissue et al. (Laissue et al. 2016)
(Fig. 1). Compared to that of the WT version, the FOXD1
p.His267Tyr and p.Arg57del mutations increased signifi-
cantly C3 transcriptional activity (1.25-fold, p = 0.03 and

1.5-fold, p = 0.0004, respectively). The FOXD1-p.Arg57del
mutation increased PlGF transcriptional activity (1.4 fold,
p = 0.002) compared to that for the FOXD1-WT
counterpart.

Discussion
IUGR and PE are two complex diseases which are
frequently associated with maternal and foetal complica-
tions during pregnancy. A clear association between these
disorders has been documented, as women suffering PE
have an increased risk (up to 4-fold) of being affected by
IUGR (Fox et al., 2014; Srinivas et al., 2009). Conversely,
IUGR-affected individuals have an increased risk of being
affected by PE (Mitani et al., 2009). PE and IUGR share
pathophysiological mechanisms affecting the placenta and
endometrial tissues, such as hypoxia, thrombosis, ische-
mia, impaired angiogenesis and inflammation (Armaly et
al., 2018; Collinot et al., 2018; Garrido-Gomez et al., 2017;
Gurugubelli and Vishnu, 2018; Shamshirsaz et al., 2012;
Sharma et al., 2017). Several molecular pathways thus be-
come simultaneously dysregulated, which may partly re-
sult from the dysfunction of key transcription factors
acting in the endometrium and the placenta. Particular
interest in FOXD1 has been highlighted as it has been
shown to play a central role in mammalian embryo im-
plantation and pregnancy maintenance (Laissue et al.,
2016, 2009). FOXD1 mutations have led to embryo
resorption in mice and RPL in humans by perturbing
transcriptional networks in the endometrium and
placenta. It was thus considered that FOXD1 was a
coherent candidate gene in the present study as it is
potentially related to other female reproductive
phenotypes, such as RIF, IUGR and PE.

Fig. 1 Transactivation properties of FOXD1-WT and mutant versions on C3 and PlGF promoters. The FOXD1-WT version overexpression allowed to
transactivate the C3 and PlGF promoters in luciferase gene reporter assays (C3: WT vs empty vector, 1.9-fold, p = 0.0024; PlGF: WT vs empty vector,
3-fold, p = 1.3 × 10− 5) (a and b panels). a Compared to that of the WT version, the FOXD1 p.His267Tyr and p.Arg57del mutations increased
significantly C3 transcriptional activity (1.25-fold, p = 0.03 and 1.5-fold, p = 0.0004, respectively). b The FOXD1-p.Arg57del mutation increased PlGF
transcriptional activity (1.4 fold, p = 0.002) compared to that for the FOXD1-WT counterpart. RLU: relative luciferase units. (*): p < 0.05;
(***): p < 0.001
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We focused our attention on FOXD1-p.His267Tyr and
p.Arg57del from the 9 non-synonymous sequence variants
identified in the present study since they are rare and had
not been described previously in RPL women (Laissue et
al., 2016) (Table 1). The c.799C > T (p.His267Tyr) variant
was carried by a Colombian RIF patient. Since the Colom-
bian population consists of a particular ethnic admixture,
and its genetic composition/variability is not widely repre-
sented in public SNP databases, we screened this variant
in a panel of 203 ethnically-matched controls. The variant
was not found in this control population, thereby arguing
in favour of an association with the disease’s aetiology.
Furthermore, the His267 residue has been conserved dur-
ing mammalian species’ evolution, strongly suggesting
functional relevance (Additional file 1). Accordingly, SIFT
and PolyPhen bioinformatics’ prediction tools gave scores
compatible with a harmful effect (Table 1). Furthermore,
replacing a histidine (His) with a tyrosine (Tyr) has been
predicted to be potentially deleterious, since as His is an
amino acid which is electrically charged with basic side
chains, whilst Tyr is a large aromatic polar uncharged
molecule. The p.His267Tyr mutation could thus have led
to local or global changes regarding FOXD1’s physio-
chemical properties, thereby contributing to transcrip-
tional disturbances.
We used a gene reporter system to explore this hy-

pothesis as it facilitated assessing FOXD1’s transactiva-
tion capability regarding the C3 and PlGF promoters. C3
belongs to the complement system family of proteins
which has at least 50 members and can be activated in
several tissues by different mechanisms (Regal et al.,
2015). Interestingly, complement factors (including C3)
act at the crossroads of endometrium/placenta develop-
ment and physiology, meaning that they can be consid-
ered key molecules potentially involved in various
female reproductive disorders (Laissue et al., 2016; Regal
et al., 2017, 2015). Recurrent studies in animal models
hint to a central effect of C3 deregulation in placental
pathophysiology (Girardi, 2018; Girardi et al., 2015; Qing
et al., 2011; Wang et al., 2012).
In vitro, we showed that the protein’s WT version was

able to transactivate the C3 promoter (1.9-fold, p = 0.024)
(Fig. 1). The FOXD1-p.His267T and the pArg57del muta-
tions led to statistically significant increases in C3 tran-
scription activity compared to that induced by the WT
version. This finding reinforced those described previously
for the FOXD1-p.Ile364Met and p.429AlaAla mutations
identified in RPL women, arguing in favour of this vari-
ant’s functional contribution to the phenotype (Laissue et
al., 2016).
High C3 levels have been recorded in women hav-

ing suffered three pregnancy losses, which might be
linked to other inflammatory-related molecules’ local
(endometrium and placental tissues) expressional

disturbances. Interestingly, increased complement acti-
vation has been recorded in human placentas follow-
ing spontaneous abortion, while CD46 and CD55
(complement regulators) became reduced (Banada-
koppa et al., 2014; Regal et al., 2015). Here, we have
identified the FOXD1-p.His267Tyr mutation in a RIF
patient consistently with the hypothesis that FOXD1
plays an essential role in early pregnancy mainten-
ance. This is consistent with our previous observa-
tions where the 66H-IRCS strain of mice (which
carries the M. spretus–derived Foxd1-Thr152Ala mu-
tation) presents with high rates of early embryonic
death (Laissue et al., 2009).
Regarding the FOXD1-p.Arg57del mutation (which we

identified in an IUGR patient), we also considered it as po-
tentially having a functional impact because it had a low
MAF in the gnomAD database. Similarly to other harmful
FOXD1 missense mutations, FOXD1-p.Arg57del may lead
to the protein’s three-dimensional conformational changes
and functional disturbances. The FOXD1-p.Arg57del muta-
tion increased 1.5-fold C3 promoter transcriptional activity.
Although C3 levels have not been widely studied in women
affected by IUGR, due to its relevant role during placental
physiology we consider that the transcriptional increase ob-
served in our experiments might also be found in vivo.
FOXD1 has already been shown to be a regulator of

PlGF in mice and humans (Zhang et al., 2003, Laissue et
al., 2016). We observed increased PlGF transcriptional ac-
tivity (1.4 fold, p = 0.002) with the FOXD1-p.Arg57del
mutation compared to that for the FOXD1-WT counter-
part, thereby arguing in favour of a potential placental
dysfunction leading to IUGR. Low plasmatic PlGF levels
have been reported in PE women and it has been seen that
FOXD1 mutations have led to reduced induction capacity
on the PlGF promoter in recurrent pregnancy loss pa-
tients, whilst PlGF overexpression has been linked to en-
hanced angiogenesis in tumours (Laissue et al., 2016,
Chau et al., 2017 and references therein). These findings
and the results of the present work, suggest that fine-tun-
ing PlGF expression is an essential condition contributing
to placental/endometrial physiology; indeed its transcrip-
tional dysregulation may contribute to different diseases
pathogenesis.
Interestingly, two FOXD1 previously identified muta-

tions (p.Ile364Met, p.Ala356Gly) were re-identified in
the present study in IUGR patients. We have previously
found them in RPL women and shown that they led to
C3 promoter transactivation disturbances (Laissue et al.,
2016). Indeed, similarly to that observed in our present
FOXD1-p.His267Tyr and p.Arg57del experiments, the
FOXD1-p.Ile364Met mutation also increased C3 pro-
moter transcription activity ~ 5 fold (Laissue et al.,
2016). These findings argue in favour of FOXD1
mutations possibly contributing to IUGR pathogenesis.
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Surprisingly, contrary to that observed for the
FOXD1-p.Arg57del mutation, FOXD1-p.Ala356Gly has
been reported to decrease C3 promoter transcription ac-
tivity (Laissue et al., 2016). Although complement cas-
cade activation has been observed in PE patients, it has
been postulated that the fine tuning of C3 expression may
be an important factor regarding physiological gestation
in mice and humans (Chow et al., 2009; Laissue et al.,
2016; Lynch et al., 2012, 2011, 2008; Regal et al., 2017). C3
expression disturbances (up or down-regulation) due to
FOXD1 mutations over/under specific thresholds might
therefore contribute to RPL, PE, and/or IUGR. The func-
tional differences amongst FOXD1 mutations might be re-
lated to specific physicochemical modifications triggered
by particular amino acid changes and/or secondary to
regulatory networks’ inherent downstream complexity. It
should be also taken into account that other genetic (e.g.
variants in other genes) and epigenetic (e.g. imprinting of
paternal alleles, or consequences to variable environmen-
tal exposures) changes may modify FOXD1 mutations’
phenotypic effect.
Taken together, our results argue in favour of FOXD1

mutations’ central role in RPL, RIF, IUGR and PE patho-
genesis via C3 regulation (Laissue et al., 2016). We con-
sider that FOXD1 should be genotyped in larger panels
of patients to establish an accurate genotype-phenotype
correlation and to justify proposing it as a reliable,
clinically useful biomarker.

Conclusions
Taken together, our results argue in favour of FOXD1 mu-
tations’ central role in RPL, RIF, IUGR and PE pathogen-
esis via C3 regulation [18]. Although several functionally
harmful FOXD1 mutations have been described, a well-
documented genotype-phenotype correlation remains to
be discovered. This should help clinicians in making more
accurate diagnosis/predicting several pregnancy-related
disorders. Identifying new mutations and their functional
impact may lead to using FOXD1 in the near future as a
clinically useful biomarker.
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