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Abstract 

Damage is inflicted upon Carbon Fiber Reinforced Polymer (CFRP) composite 

laminates using simulated lightning strikes to investigate the resulting residual 

mechanical properties. Seven different CFRP laminate specimens were exposed to 

simulated lightning strikes using three different electric waveforms. The three 

waveforms imposed were the 10/350 µs waveform, which simulates the first return 

stroke during a direct strike according to IEC 61400-24 Ed1.0. The second was a 

unipolar long stroke component, and the third was a combination of the first return 

stroke and the long stroke. After exposure to lightning, coupon specimens were 

prepared for mechanical testing. The test specimens were subsequently subjected to 

compression and shear loading to determine the post-strike mechanical properties. The 

compression tests were conducted using uniaxial coupons in accordance with ASTM 

standard D6641. The shear tests were conducted using V-notch specimens utilizing an 

Iosipescu test rig in accordance with ASTM standard D5379. Digital Image Correlation 

was used to capture the strain fields on the surface of the specimens. The results of the 

material coupon tests are compared with test results from pristine CFRP coupon 

samples that were not exposed to any electrical current. The shear and compression 
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strengths, compressive and shear stress-strain curves, compressive and shear moduli, 

and the maximum temperature on the CFRP specimens during lightning tests are 

presented and discussed. Key results include that the largest reduction of strength 

occurred in the specimens that were subjected to the largest current and specific energy. 

The specific energy correlated more closely to the observed reduction of residual 

strength than the charge, and the damaged specimens displayed a higher degree of 

nonlinear stress-strain behavior than the pristine specimens. 

Keywords 

CFRP composites; Lightning Damage; Wind Turbine Blades; Compression and Shear 

Testing; Thermal Imaging; Digital Image Correlation (DIC); Failure Initiation Stress 

1 INTRODUCTION 

Lightning protection of wind turbine (WT) blades has received significant attention as 

most wind blade manufacturers now feature blade designs that include conductive 

Carbon Fiber Reinforced Polymer (CFRP) composites for structural components. 

Previously, the leading designs predominately used non-conductive Glass Fiber 

Reinforced Polymer (GFRP) composites for structural components, hence the change in 

design has created a new set of challenges when dealing with lightning strike damage. 

CFRP materials, which are stiff, strong, and lightweight, are also effectively semi-

conductors with strong anisotropic electrical and thermal properties. Thus, CFRP 

materials exhibit properties different from other conductive engineering materials, e.g. 

metal alloys, making CFRPs more susceptible to lightning damage. The main reasons 

for this are the limited electrical and thermal conductivities transverse to the fibers, the 
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anisotropic material properties, and the integration of the CFRP into the overall WT 

blade or aerospace structures. Lightning strikes can lead to damage in CFRP materials 

from elevated temperatures which result in loss of resin, fiber breakage, and 

delamination [1].  

With the progressive use of CFRP materials in WT blade structures, it is important to 

develop a full understanding of the effects of lightning strike induced damage on the 

material and the structural response. There are several documented cases, where a 

lightning strike has been the cause of premature WT blade failure [2]. For example, a 

2012 report by the insurance company GCube Insurance [3] states that almost a quarter 

(23.4%) of damage to WT blades in the USA reported to GCube was caused by 

lightning.  

The aerospace industry has implemented CFRP materials into structural components for 

decades, and has explored different methods of reducing and/or mitigating the damage 

introduced by lightning interacting with CFRP materials. Much of the literature focuses 

on direct effects from an arc entry direct lightning strike [4]–[8] because this is the most 

common scenario of electric current injection into CFRP on aircraft structures. In WTs, 

arc entry (or direct lightning strike) occurs on occasion, but the more common exposure 

is conducting current from the so-called ‘down conductors’ i.e. a metallic wire (usually 

made of copper) which is placed between the two WT CFRP sparcaps. This wire 

conducts the electric current to ground. However, the CFRP laminate also introduces 

another conductive path. The current will use both the down conductor and the CFRP to 

conduct the electrical current to ground. Down conductors are typically bonded to the 

CFRP to prevent internal flashovers between the down conductor and the CFRP. A 
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flashover is an event where electrical current conducts through the air between two 

conductors; in this case, the down conductor and the CFRP. Left unbonded the voltage 

will continue to increase along the length of the blade leaving the blade vulnerable to 

internal flashovers. An example of a typical blade with a lightning protection system 

and the electric current path is shown in Fig. 1. The typical lightning protection system 

(LPS) consists of a cylindrical metallic conductor, connected to the air termination 

system and to the carbon fiber laminate of the blade structure. The LPS connects the 

down conductor to the root of the blade with the nacelle. 

The current levels generated by lightning in the CFRP can cause material and structural 

damage due to thermal heating from the Joule (or resistive) heating response. The 

effects of a direct lightning strike on the mechanical behavior and performance of CFRP 

materials have been investigated previously [9]–[12], and only one investigation [13] 

has previously considered CFRPs subjected to conducted current scenarios. No previous 

research has studied the effects of lightning damage on the material properties 

dominated by the polymer matrix including the shear and compression loading 

responses. 

The research presented in the present paper investigates the reduction or degradation of 

the mechanical properties of CFRP laminates caused by a simulated lighting strike, 

where the CFRP laminates investigated are representative of materials used in current 

WT blade structures. This paper focuses on the effects of simulated lightning strike 

induced damage on the load response and failure behavior of CFRP laminates subjected 

to shear and compression loading.  
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2 METHODOLOGY 

2.1 Specimen Manufacturing 

Eight CFRP unidirectional (UD) five ply laminate specimens were manufactured using 

the carbon/epoxy material system PX-35 from Zoltek. The eight laminates were 

manufactured using vacuum liquid resin infusion producing strips with dimensions of 

500 mm long x 50 mm wide x 4.5 mm thick. The specimens were chamfered at the ends 

with an approximate 1:4 taper to expose the carbon fibers and provide a connection 

point. Silver conductive paint and copper plate were added to the tapered sections to aid 

in conducting the electric current to the exposed fibers. The volume fraction of the 

material was estimated from micrographs to be 57%, which is consistent with typical 

values for the VARTM process. Fig. 2 shows an example of the manufactured CFRP 

strips. 

 

2.2 Simulated Lightning Strike Experiments  

The CFRP strip specimens were subjected to electrical current with three different 

waveforms. The first waveform examined was a unipolar 10/350µs waveform 

simulating the first return stroke during a direct strike according to IEC 61400-24 Ed1.0 

[14]. The second being a unipolar long stroke component (or DC) also defined by the 

IEC standards. The third waveform being a combination of the 10/350µs and DC 

waveform. All of the current components were tested using the conducted current test 

method provided in Annex D3.4 of IEC 61400-24 Ed1.0 [14]. An example of the test 

setup and the current path during the testing is shown in Fig. 3. 
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The initial stroke waveform was an impulse which is defined by three characteristic 

parameters; the peak current value (𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), the rise time to reach the peak current (𝑡𝑡1), 

and the time at which the current decays to half of the peak current (𝑡𝑡2), also known as 

the half time. The DC current is defined by the peak current value (𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), and the 

duration (𝑡𝑡𝐷𝐷𝐷𝐷), and these parameters are shown in Fig. 4. The charge, 𝐶𝐶, and the specific 

energy or action integral, 𝐴𝐴𝐼𝐼, are used to compare different waveforms and are 

calculated as follows: 

 𝐶𝐶 = � 𝑖𝑖(𝑡𝑡) 𝑑𝑑𝑡𝑡
𝑡𝑡𝑓𝑓

0
 (1) 

and 

 𝐴𝐴𝐼𝐼 = � 𝑖𝑖2(𝑡𝑡) 𝑑𝑑𝑡𝑡
𝑡𝑡𝑓𝑓

0
 (2) 

where 𝑡𝑡𝑓𝑓 is the final current time, and 𝑖𝑖(𝑡𝑡) is the current level at any time 𝑡𝑡.  

Table 1 provides an overview of the characteristic parameters used in the lightning 

strike tests. These comprise of three different waveforms that are considered 

representative of the exposure experienced by WT blades in operation: DC, Impulse, 

and Impulse+DC. 

During the simulated lightning strike experiments, an infrared camera was used to 

capture the thermal evolutions. The infrared camera was a PYROVIEW 640L, which is 

an uncooled micro-bolometer array with 640 × 480 pixels. The maximum image capture 

rate of 50 Hz was used. The camera captured one full surface of the specimen. The post-

processing of the thermal data was based on data captured from the middle of the CFRP 

specimens (about 40% of the specimen width). This was done to ensure that influence 
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from the connections and any flame ignition had only a small or little influence on the 

results. All thermal data from the middle of the specimen was averaged at each captured 

thermal image (frame) to gather a temperature evolution over time. This was done to 

remove outliers and determine the temperatures experienced by the material testing 

coupons. 

2.3 Compression and Shear Coupon Test Specimens 

Compression and shear tests were conducted according to ASTM D6641 [15] 

(compression) and ASTM standard D5379 [16] (Iosipescu V-notch test), respectively. 

The coupon specimens were manufactured by waterjet cutting from the vacuum infused 

CFRP strips. The layout of the test specimen waterjet cutting scheme is shown in Fig. 5. 

The compression test specimens were 10 mm wide x 150 mm long and were mounted 

with end tabs made of S-glass with a 1:4 tapered section. The end tabs were bonded to 

the specimens using Araldite 4858. An example of the compression sample is shown in 

Fig. 6 (a). The compression tests were conducted using an Instron 100 kN servo-

hydraulic test machine with a loading rate of 0.2 mm/min in accordance with ASTM 

D6641 [15]. 

An example of the Iosipescu V-notch shear test specimens is shown in Fig. 6 (b). The 

shear tests were conducted using an Instron 50 kN electro-mechanical test machine with 

a loading rate of 0.5 mm/min in accordance with ASTM standard D5379 [16].  

 

Four control specimens that had not been subjected to simulated lightning strikes were 

also tested in compression and shear. Three damaged specimens from each test 
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configuration (see Table 1) were tested in both compression and shear. A total of 50 

tests were conducted; 25 in compression and 25 in shear. The obtained results for the 

lightning strike damaged specimens were compared to the results obtained for the 

pristine (undamaged) CFRP specimens. Table 2 summarizes the adopted test matrix. 

2.4 Digital Image Correlation 

Digital Image Correlation (DIC) was used to obtain full field measurement of the strains 

on the specimen surface during testing. As the specimens were already black, they were 

coated with only a thin layer of black paint to make a uniform surface and then speckled 

with white paint as opposed to the more conventional white background with black 

speckles; this ensured the paint coating was thin, so the damage was not filled by the 

paint coating. Images were captured with an ‘E-Lite LaVision’ camera equipped with a 

Sigma 105mm lens. The load levels were recorded from the test machine as the images 

were captured simultaneously using the software package DaVis [17]. The experimental 

setup is shown in Fig. 7. The DIC was processed through the DaVis correlation 

software to determine the strains. The post-processing used a substep size of 55 x 55 

pixels and a step size of 21. 

To determine the adequacy of the DIC measurements, strain gauges were mounted on 

the back side of the control samples. A 350 Ohm linear pattern strain gauge (CEA-06-

250UW-350) was used for the compression test specimens, and a 350 Ohm shear 

pattern strain gauge (EA-06-062TV-350) was used for the shear specimens. The data 

collected using strain gauges showed a good correlation with the DIC measurements; 

see Fig. 8. The maximum difference between the measurements obtained using the two 
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techniques was assessed by calculating the Young’s or shear moduli from the linear 

regression lines drawn through the origin of the coordinate axes. The largest difference 

was found to be less than 4%. Due to the good correlation, DIC was used for the 

remainder of the tests ensuring any resin lost during due to the lightning damage was 

not filled by the adhesive bonding necessary for the strain gauge attachment. 

For the DIC measurements, a Region of Interest (ROI) was defined in the gauge 

sections of the specimens as shown in Fig. 9. The DIC data was post-processed by 

taking the mean of the strains measured over the ROI. For the compression tests, the 

strains were averaged over 50% of the gauge section length. This was done for the ROI 

to avoid stress concentration due to load introduction from the end tabs. For the shear 

specimens, the strains were averaged over the whole gauge section was used for the 

ROI as proposed by [18], [19]. The averaged strains measured over the ROI zones were 

referenced against the average (or nominal) stresses in the gauge zone defined by the 

force measured by the load cell divided by the gauge zone cross section areas. 

2.5 Determination of Failure Initiation Stress 

When conducting the tests, it was important to determine at what stress/strain levels 

damage initiated in the specimens. To assess this, the methodology devised by [20], 

[21] was employed. The method assumes that the total strain measure can be split into 

an elastic part and an inelastic part as follows: 

 𝜀𝜀 = 𝜀𝜀𝑝𝑝 + 𝜀𝜀𝑖𝑖 (1) 

where the elastic part is 𝜀𝜀𝑝𝑝 = 𝜎𝜎/𝐸𝐸, and the ‘inelastic’ part is assumed to follow the 

nonlinear relation: 
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 𝜀𝜀𝑖𝑖 = 𝑎𝑎 ln �1 − �𝜎𝜎
𝜎𝜎0
�
𝑚𝑚
� (2) 

which is often adopted for the modelling of metal alloy plasticity [20].  

In Eqs. (1) and (2), 𝐸𝐸 is the Young’s modulus, 𝜎𝜎0 is the horizontal asymptote of the 

stress-strain curve, the parameter 𝑚𝑚 relates to a strain hardening rule of the material, 

and 𝑎𝑎 scales the magnitude of the inelastic strains. It should be noticed that, in this 

work, the inelastic strain 𝜀𝜀𝑖𝑖 accounts for the cumulative effects of (resin/matrix) 

plasticity, micro-cracks and geometrically nonlinear effects due to fiber rotations etc. 

Therefore, the fitting parameter 𝑚𝑚 does not represent strain hardening in any physical 

sense, and the expression for 𝜀𝜀𝑖𝑖 is merely to be seen as a nonlinear fitting law. 

Following this, an appropriate definition of onset point of damage/nonlinearity can be 

adopted as occurring when the gradient of the tangential stiffness changes sign. 

Following this the ‘failure initiation stress’ can be defined as suggested in [21]: 

 𝑑𝑑3𝜎𝜎
𝑑𝑑𝜀𝜀3

= 0. (3) 

The stress-strain response of the V-notch shear specimens is significantly influenced by 

the matrix material and therefore can be expected to exhibit substantial nonlinearity, 

whereas the compression tests are expected to display a more linear stress-strain 

response. Accordingly, the methodology outlined for estimating the onset of 

nonlinearity, defined as the failure initiation strength, was only used for the shear tests. 

The data fitting was carried out by a least squares method and implemented in the 

commercial software Maple 2017 [22]. 
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3 RESULTS 

Seven of the manufactured CFRP strips were subjected to simulated lightning strike 

events. Three specimens were subjected to long stroke direct current and labelled ‘DC’ 

in Table 1, and three specimens were subjected to a unipolar current and labelled 

‘Impulse’ in Table 1. Finally, one specimen was subjected to a combined impulse and 

long stroke and was labelled ‘Impulse+DC’ in Table 1. The resistance of the CFRP 

strips was large (200 mΩ over 50 cm) and the Impulse waveform achieved was a 

15/110µs waveform. For resin infused products porosity is a concern, hence the material 

was manufactured following the same procedure as for the wind turbine blade 

manufacture. The results from the Control mechanical test indicated strongly that there 

was little porosity as the Young’s modulus values were close to the values provided in 

the Nordex data sheet. X-ray Micro-CT scans at a resolution of 900 nm confirmed that 

there was no visible porosity in the material in three of the CFRP test specimens 

(Control, DC3 and Impulse3). 

3.1 Damage Introduction 

The temperature evolution during the DC, Impulse, and Impulse+DC tests were similar, 

as shown by images captured by the infrared camera in Fig. 10, where the temperature 

increase is distributed evenly throughout the samples. The largest increase in 

temperature corresponded to the largest specific energy used in the lightning tests. The 

DC tests yielded very little audible acoustic response and led to little or no visual 

indication of damage of the specimens. In contrast, the Impulse and Impulse+DC tests 
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were much louder and rapid events with bright flames emitting from the current 

injection points that dissipated within a few seconds.  

The images shown in Fig. 10 were captured using a Nikon digital SLR camera and a 

PYROVIEW 640L infrared camera. Fig. 10 splices white light images (Nikon) on the 

left with the thermal images (PYROVIEW) on the right. The white light images had an 

exposure time of 5 seconds that allowed the accumulation of light intensity to be 

captured throughout the tests. The thermal images were taken from the image frame 

immediately after the lightning strike test or where the maximum heating of the 

specimens occurred.  

During the DC tests there were no visual indications of suspected damage in the white 

light images captured and as shown on the right in Fig. 10 (a) the infrared image 

displays a uniform increase in temperature. The Impulse tests also showed no visual 

indication of damage despite the appearance of sparks and flames as described above. In 

Fig. 10 (b), the white light image on the left does show flames and sparks, but these are 

products of air ignition between the metallic contact point and the CFRP testing 

material, as the combustion temperature of the CFRP was not reached. This is 

confirmed in the thermal images captured after the dissipation of the flames. These 

show a uniform temperature increase in the sample both where the flames appeared at 

the contact points, as well as in the middle where no flames appeared. The Impulse+DC 

tests displayed more extensive visual indication of damage, with flames engulfing the 

sample and lasting several seconds longer than end of the current supplied to the 

sample; see Fig. 10 (c). In these tests, the combustion point of the specimens was 
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reached, igniting the epoxy matrix. Although all of the samples showed increases in 

temperature only one sample, Impulse+DC, showed visible signs of damage. 

The thermal data was recorded to find the maximum temperature during the lightning 

strike tests. The temperature data recorded at the center of the specimens is shown in 

Fig. 11. The thermal data results show that the maximum temperature always occurred 

after all the current was injected. This data can determine which CFRP specimens went 

above the glass transition temperature of 79°C for the resin system tested, and how long 

the specimens were above the glass transition temperature. The DC2-3, Impulse2-3 and 

Impulse+DC specimens all reached temperatures above the glass transition temperature 

for extended periods of time. Impulse+DC reached a temperature, which caused ignition 

of the sample and caused the sample to burn during the test. The apparent second peak 

of the Impulse+DC at 11s is due to flames that extinguished in the frame of the 

measurement.  

3.2 Visual Inspection 

The damaged specimens were inspected visually to assess the damage inflicted to the 

CFRP materials. The focus of the inspection was to identify fiber, resin, and 

delamination damage apparent on the surface. The visual inspection was conducted by 

eye both with and without a 10x magnification optical loupe to allow for a more 

detailed assessment of the surface. On the DC and Impulse specimens damage was 

concentrated near the connection points. For the DC and Impulse specimens, the only 

visible damage found was underneath the connection points, with the likely cause being 

the transfer from metallic connection to the CFRP, and on specimen Impulse3 within a 
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distance of 2 cm from the connection point. Selected images from the DC3 and 

Impulse3 specimens are shown in Fig. 12. In the areas where the coupons were cut out, 

see Fig. 12 (a) and (b), the material showed no visual signs of damage. Further, Fig. 12 

(c) shows what a typical cross section looks like for all the Impulse and DC samples. 

This typical cross section has no signs of damage, and there are no visible bulges on the 

top surface to suggest internal delamination damage. In Fig. 12 (d) the image shows 

damaged fibers, loss of resin, and glass fiber stitching from the dry fabric pulled away 

from the specimen close to the connection point. Therefore, the coupons used in the 

mechanical tests were cut from regions away from the connection point as indicated in 

Fig. 12 (a) and (b). 

The Impulse+DC specimen shown in Fig. 13 displays extensive damage. Both the top 

and bottom surfaces show resin damage from the flames burning the laminate, as 

indicated in Fig. 13 (a). Almost all the cross section has exposed fibers and stitching as 

shown in Fig. 13 (b). The resin in between the layers has burnt away which can be seen 

from the outer surface of the cross section, see Fig. 13 (c). Fig. 13(d) and clearly shows 

delaminated plies.  

3.3 Residual Strength 

After the simulated lighting strike tests, the coupon specimens were cut out, and the 

compression and shear tests described above were carried out. The tests were conducted 

to failure of the specimen to capture the residual (or remaining) strength after specimens 

were exposed to the lightning strike damage. The stress was calculated on the gross 

cross-sectional area before damage. All specimens failed in the gauge section and 
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displayed acceptable compression or shear failure modes as prescribed in the ASTM 

standards. 

The mean strengths of the compression and shear test specimens that were subjected to 

lightning strikes were compared to the strengths obtained for pristine/undamaged 

specimens labeled ‘control’. The strength reduction of the damaged specimens relative 

to the pristine/undamaged specimens are calculated by equation (4): 

 % 𝑅𝑅𝑅𝑅𝑑𝑑𝑅𝑅𝑅𝑅𝑡𝑡𝑖𝑖𝑅𝑅𝑅𝑅 = �(𝜎𝜎,𝜏𝜏)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−(𝜎𝜎,𝜏𝜏)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠

(𝜎𝜎,𝜏𝜏)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
− 1� 100%   (4) 

where (𝜎𝜎, 𝜏𝜏)𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 is the compression/shear failure stress of the undamaged specimen 

and (𝜎𝜎, 𝜏𝜏)𝑠𝑠𝑝𝑝𝑚𝑚𝑝𝑝𝑐𝑐𝑝𝑝 is the compression/shear failure stress of the damaged specimen. 

Table 3 shows the results obtained for the CFRP specimens loaded in compression. The 

negative % Reduction means that the mean compressive strength was slightly larger 

than the control samples but is within the overall noise of the test setup. Table 4 shows 

the results obtained for the CFRP specimens loaded in shear. 

 

From Table 3 and Table 4 it is observed that the measured residual strengths are 

reduced only moderately for the DC and Impulse specimens. However, the Impulse+DC 

case represents the most severe simulated lightning strike action on a small cross 

section, and much more severe strength reductions are seen, with 71.4% reduction for 

the compression specimens, and 43% for the shear specimens.  
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3.4 Residual Modulus 

The Young’s (𝐸𝐸) and shear moduli (𝐺𝐺) for both damaged and pristine specimens were 

also evaluated from the test data following the procedures outlined in ASTMD6641 [14] 

and ASTMD5379 [15]. The results are shown in Fig. 14, and it is observed that only 

moderate changes to 𝐸𝐸 and 𝐺𝐺 were experienced for the DC and Impulse specimens. 

However, the Impulse+DC specimens showed significant reductions in both Young’s 

(𝐸𝐸) and shear moduli (𝐺𝐺). The residual compressive modulus is reduced to almost a 

third of its pristine/undamaged value.  

3.5 Stress Strain Relationship 

The stress vs. strain relations were also recorded for all the test specimens, and typical 

stress-strain curves are shown in Fig. 15 for the compression tests, and in Fig. 16 for the 

shear tests. A significant change of the stress-strain response is observed for all cases 

(i.e. DC, Impulse and Impulse+DC), even for the DC and Impulse specimens where the 

residual strengths and moduli only changed modestly as shown in Table 3 and Table 4 

and Fig. 14. In particular, it is observed that as the lightning strike energy level 

increases, the nonlinearity of the stress-strain response as well as the strain to failure 

increases. The former suggests that the failure initiation shear strength of the CFRP 

specimens, as defined in section 2.5 and Eqs. (1-3), reduces with increasing lightning 

strike energy levels. 
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3.6 Failure Initiation Stress 

The failure initiation stress values, as defined in section 2.5 and Eq. (1-3), for the shear 

test specimens are shown in Table 5.  

The failure initiation strength provides a quantitative measure of the stress where 

nonlinear stress-strain behavior initiates. It is observed from Table 5 that this reduces 

significantly even for DC and Impulse simulated lightning strike events that led to 

modest changes of (initial) stiffness (𝐸𝐸 and 𝐺𝐺) and compressive/shear strengths (see 

section 3.3 and 3.4), and where only limited visual damage could be identified. For the 

worst case scenario of the Impulse+DC simulated lightning strike event, is it also clear 

from Table 5 that significant damage has been introduced. The initiation point of 

nonlinear behavior/response has been reduced by 60%, for that specimen. This 

reduction can be seen in Fig. 15 and Fig. 16, as well as in Table 4 which shows a 

significant reduction in shear strength. 

4 DISCUSSION 

The research presented proposes a procedure with results to evaluate the damage 

inflicted to CFRP materials from exposure to a severe simulated lightning strike event. 

The series of simulated lightning strike tests conducted represent common exposure 

(Impulse 1-3 and DC 1-3) to overly exposed (Impulse+DC) lightning situations 

experienced by WT blades manufactured using CFRP composite materials. The samples 

tested were scaled down versions of a typical sparcap. The tests conducted aimed at 

exposing the CFRP samples with lightning current, providing a certain degree of 

damage (reduction of residual strength). The current magnitudes and hence current 

https://doi.org/10.1016/j.compositesb.2019.107298


T.M. Harrell, O.T. Thomsen, J.M. Dulieu-Barton, and S.F. Madsen, “Damage in CFRP 
Composites Subjected to Simulated Lighting Strikes - Assessment of Thermal and 
Mechanical Responses,” Composites Part B: Engineering, 2019. 
https://doi.org/10.1016/j.compositesb.2019.107298  
 

18 
 

densities chosen may be exceeding the actual exposure for profiles being part of a real 

sparcap in a wind blade. To compare the results of the present tests with the exposure of 

actual blades in service, the current densities for the actual sparcap geometry must be 

carefully assessed by analysis or current distribution testing according to IEC 61400-24 

Ed2. This means that the Impulse1-3 specimens were struck with a maximum current of 

60 kA; this scales to an average cross-section (500mm x 5mm) to have a similar current 

density level on the specimen as a typical WT blade sparcap exposed to a “Lightning 

Protection Level 1” or LPL1 from the IEC61400-24 wind turbine lightning standard 

[14]. The DC1-3 specimens were made to match the Impulse1-3 action integrals (AI) to 

a maximum of 200 C. The combine Impulse+DC case is an extreme case which is not a 

realistic lightning strike scenario but shows the full damage which can be caused in a 

CFRP material when exposed to a large amount of electrical current.  

During a lightning strike event, the CFRP material typically can experience significant 

heating exceeding glass transition or combustion temperatures. For CFRP materials that 

have been exposed to lightning strikes that cause combustion/burning, significant 

damage will be inflicted including loss of loss of resin, fiber breakage, and 

delamination. This in turn can lead to significant changes (reductions) of the mechanical 

response of the material, demonstrated by the findings described in the previous section 

of this paper. Similar results show that CFRP materials exposed to fire (i.e. exposure to 

elevated temperatures) can experience a significant loss of strength and stiffness with a 

clear correlation to their mass loss [23]. This indicates that thermal effects and 

degradation play a large role in determining the influence of lightning induced damage 

on the strength, stiffness and overall load response of CFRP materials.  
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The strong correlation between sample temperature and the severity of a lightning strike 

event is indicated in Fig. 17, which shows the surface temperature rise measured on the 

CFRP specimens using an infrared camera, and the charge and specific energy 

associated with the specific simulated lightning strike tests conducted.  

It is observed from Fig. 17 that the Impulse+DC tests conducted led to far higher 

specimen temperatures than the DC and Impulse tests, indicating much more damage 

being inflicted during the former. This corresponds very well with the results presented 

in sections 3.3 to 3.6 where it was shown that the Impulse+DC tests inflicted very 

significant damage leading to large reductions of strength, stiffness, and failure 

initiation strength.  

Although the visual inspections conducted on the DC and Impulse coupon tests did not 

reveal any significant damage, the mechanical tests revealed that both types of 

simulated lightning strikes reduced the strength for both the compression and shear load 

cases. This trend can be identified by evaluating the (residual) compression and shear 

strength measured for the CFRP specimens that did not combust (i.e. DC1-3 and 

Impusle1-3) against charge, see Fig. 18, and specific energy, see Fig. 19, of the 

simulated lightning strike. From Fig. 18 and Fig. 19 it is observed that the specific 

energy appears to have a stronger effect in reducing the residual strengths than the 

charge of the lightning strike event. It should also be noted that even though the 

simulated lightning strike waveforms displayed large variations with respect to the 

amount current and charge injected into the specimens, it is clear that the both the DC 

and Impulse test specimens display a clear strength reduction correlation with respect to 

the specific energy. 
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5 CONCLUSIONS 

The results of a comparative investigation of the damage induced by a lightning strike 

through conducted current in CFRP materials has been presented. The focus of this 

investigation has been to measure the residual mechanical properties of CFRP 

specimens post lightning strike, as well as the recording of the temperature evolution 

during simulated lightning strike events. In addition to visual inspection, the mechanical 

testing encompassed assessment of the residual compression strength, the shear strength 

and the material stiffnesses (Young’s and shear moduli), measured using ASTM 

standard test methods, as well as estimation of the overall change of stress-strain 

response due to lightning strike.  

Seven CFRP strips were subjected to simulated lighting strike events characterized by 

three different waveforms considered representative for the exposure experienced by 

WT blades in operation: DC, Impulse, and Impulse+DC. The recorded temperatures and 

the mechanical tests have shown that the most significant damage was induced to the 

CFRP specimens, which experienced the highest temperature and combustion/burning.  

The compression tests showed that impulse current has a more severe impact on the 

compression strength than DC current, with a strength reduction of approximately 19% 

caused by a 60 kA 10/110µs waveform (10 Coulomb). In comparison, a 7% reduction 

of the compression strength was observed for the case of a 0.75 kA long duration (200 

Coulomb) DC current. There was little difference between the effects caused by impulse 

and DC currents on the shear strength with 7-8% reduction for both the impulse and 

long duration currents.  
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The most severe damage was inflicted by combined impulse and DC currents 

(Impulse+DC), which resulted in reductions of the compression strength of more than 

70% and more than 40% for the shear strength. 
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Fig. 1. Wind turbine blade with lightning protection system  
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Fig. 2. CFRP strip specimen with dimensions and plating used in simulated lightning strike 
experiment 
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Fig. 3. Electrical circuit describing the current introduction into the CFRP sample through 
conducted current superimposed on an image of the experimental setup  
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Fig. 4. Lightning strike waveform with parameters for (a-b) impulse waveform characterization, 
and (c-d) DC waveform characterization 
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Fig. 5. Waterjet cutting scheme for CFRP compression and shear test specimens 
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Fig. 6. (a) Compression specimen dimensions and image of a typical sample (b) shear specimen 
dimensions and image of a typical sample 
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Fig. 7. Experimental setup for Iosipescu tests 
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Fig. 8. Strain gauge and DIC comparison 
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Fig. 9. Example of DIC ROIs: (a) compression specimen, and (b) shear V-notch specimen with 
an overlay of the ROI area used to calculate the average compression and shear strains 
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Fig. 10. Selected photos and thermal images from: (a) DC tests, (b) Impulse test, and (c) 
Impulse+DC test 
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Fig. 11. Average temperature measured at the center of the specimens during lightning strike 
tests 
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Fig. 12. DC (a) and Impulse (b) post lightning strike damaged specimens with selected cross 
section images showing (c) typical non-damaged cross section observed for all DC and Impulse 

specimens (the image shows specimen Impulse3) and (d) damage cross-section close to the 
connection point (< 2cm) of the Impulse3 specimen 
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Fig. 13. Impulse+DC: (a) post lightning strike damage specimens with selected cross section 
images showing typical damage cross section with (b) glass fiber stitching pulled away from the 

laminate, (c) typical damaged cross-section, and (d) most severely damaged cross section 
damage close (> 2 cm) to the connection point 
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Fig. 14. Residual compression and shear modulus based on specimen waveform 
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Fig. 15. Typical stress-strain curves recorded for compression specimens 
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Fig. 16. Typical stress-strain curves recorded for shear specimens 
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Fig. 17. Maximum temperature rise measured on the CFRP specimen surfaces using vs. (a) 
charge and (b) action integral (specific energy) associated with specific simulated lightning 

strike tests 
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Fig. 18. Residual Strength of damaged and undamaged CFRP specimens vs. charge 
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Fig. 19. Residual Strength of damaged and undamaged CFRP specimens vs. specific energy 
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Table 1. Test parameters defined for the simulated lightning strike tests:  Peak amperage, 
waveform, charge, and specific energy applied to the specimens 

Specimen 
Peak Amp 

[kA] 

Waveform 

Characterization 

(Impulse 𝑡𝑡1/𝑡𝑡2) 

(DC 𝑡𝑡𝐷𝐷𝐷𝐷) 

Charge 

[C] 

 

AI 

[kJ/Ohm] 

 

DC1 0.293 314.4 73.2 17.59 

DC2 0.531 317.6 141.1 66.94 

DC3 0.753 319.6 201.3 134.5 

Impulse1 16.2 15.8/50.8 2.13 10.61 

Impulse2 34.4 14.6/88.0 4.46 73.9 

Impulse3 56.8 15.4/128.8 9.29 263 

Impulse+DC 51.5(1) 15.8/110 (622) 8.1 (540.1) 227(498) 
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Table 2. Test matrix for compression and shear coupon tests 

Residual Strength 

Specimen 
Type 

Nominal 

Thickness 

[mm] 

Gauge Width 

[mm] 
Repetitions 

Control-C Compression 4.8 10 4 

DC1-C Compression 4.8 10 3 

DC2-C Compression 4.8 10 3 

DC3-C Compression 4.8 10 3 

Impulse1-C Compression 4.8 10 3 

Impulse2-C Compression 4.8 10 3 

Impulse3-C Compression 4.8 10 3 

Impulse+DC-C Compression 4.8 10 3 

Control-S Shear 4.8 11.5 4 

DC1-S Shear 4.8 11.5 3 

DC2-S Shear 4.8 11.5 3 

DC3-S Shear 4.8 11.5 3 

Impulse1-S Shear 4.8 11.5 3 

Impulse2-S Shear 4.8 11.5 3 

Impulse3-S Shear 4.8 11.5 3 

Impulse+DC-S Shear 4.8 11.5 3 
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Table 3. Compression test results of control specimen and damaged specimens showing  

Specimen 

Mean Compression 

Strength 

[MPa] 

Standard 

Deviation 

[MPa] 

% Reduction 

Control 754.7 20.9 - 

DC1 768.9 55.5 -1.9% 

DC2 727.0 45.7 3.7% 

DC3 702.6 33.4 6.9% 

Impulse1 625.8 19.9 17.1% 

Impulse2 679.0 67.3 10.0% 

Impulse3 613.4 27.4 18.7% 

Impulse+DC 215.6 41.5 71.4% 
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Table 4. V-notch shear test results of control specimen and damaged specimens  

Specimen 
Mean Shear Strength 

[MPa] 

Standard 

Deviation 

[MPa] 

% Reduction 

Control 87.6 0.70 - 

DC1 83.6 1.02 4.5% 

DC2 79.0 0.67 9.8% 

DC3 81.1 3.13 7.4% 

Impulse1 85.5 2.61 2.4% 

Impulse2 80.5 4.18 8.1% 

Impulse3 81.0 0.19 7.5% 

Impulse+DC 49.9 0.67 43.0% 
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Table 5. Failure initiation stress for damaged shear samples  

Specimen 
Failure Initiation 

Stress [MPa] 
(mean) 

Standard 
Deviation 

[MPa] 
% Reduction 

Control 16.2 0.82 - 
DC1 12.3 0.20 24.2% 
DC2 13.8 1.03 14.6% 
DC3 12.7 1.13 21.5% 

Impulse1 13.7 0.40 15.4% 
Impulse2 13.0 0.27 19.7% 
Impulse3 10.3 0.59 36.3% 

Impulse+DC 6.4 1.77 60.8% 
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