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Abstract

The assignment problem is one of the most well-studied settings in multi-agent
resource allocation. Agents express preferences over indivisible items and then
the items are allocated based on these preferences. Pareto optimality is re-
garded as a desirable property for the chosen allocation, requiring that no other
allocation exists in which no agent is worse off and at least one agent is bet-
ter of. We consider the assignment problem with the additional feature that
agents’ preferences involve uncertainty. The setting with uncertainty leads to a
number of interesting questions including the following ones. How to compute
an assignment with the highest probability of being Pareto optimal? What is
the complexity of computing the probability that a given assignment is Pareto
optimal? Does there exist an assignment that is Pareto optimal with probability
one? We consider these problems under five natural uncertainty models. For
all of the models, we present a number of algorithmic and complexity results
highlighting the differences and similarities in the complexity of the models. We
also present some general characterization and algorithmic results that apply to
large classes of uncertainty models.
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preferences

1. Introduction

Multi-agent resource allocation and dealing with uncertainty are two major
topics in Al In this paper we examine optimal allocation of resources under
uncertain preferences.

When preferences of agents are aggregated to identify a desirable social out-
come, Pareto optimality is a minimal requirement. Pareto optimality stipulates
that there should not be another outcome that is at least as good for all agents
and better for at least one agent. We take Pareto optimality as a central con-
cern and consider a richer version of the classical assignment problem where the
twist is that agents may express uncertainty in their preferences. The assign-
ment problem is a fundamental setting in which n agents express preferences
over n items and each agent is to be allocated one item. The setting is a classical
one in discrete allocation. Its axiomatic and computational aspects have been
well-studied [2, 3, 7, 11, 19, 29, 30]. Our motivation for studying assignment
with uncertain preferences is that agents’ preferences may not be completely
known because of lack of information or communication. In some settings, elic-
iting preferences from agents may be costly, so a central planner may want to
only obtain, and provide a recommendation based on, a subset of the complete
orders [26, 25, 15]. Another possible motivation is that agents are in fact vir-
tual or ‘bidding’ agents who are each representing a group of real agents and
the virtual agent’s probabilistic preferences simply represent the composition of
preferences of the real agents it represents.

Our work is inspired by recent work where the stable marriage problem under
uncertain preferences was considered (see, e.g., [6]). Uncertainty in preferences
has already been studied in voting [20]. Similarly, in auction theory, it is stan-
dard to examine Bayesian settings in which there is a probability distribution
over the types of the agents. Although computational aspects of Pareto opti-
mal outcomes have been intensely studied in various settings such as assignment,
matching, housing markets, and committee voting [3, 9, 10, 16, 21, 23, 27|, there
has not been much work on Pareto optimality under uncertain preferences. In
the presence of uncertainty, the goal of computing a Pareto optimal outcome
can be replaced by focusing on computing outcomes that have the highest prob-
ability of being Pareto optimal. We will abbreviate Pareto optimal as PO. If an
assignment is Pareto optimal with probability one, we will call it certainly PO.
When computing assignments with highest probability of being PO, we take a
centralized view of multi-agent resource allocation.!

We consider the following uncertainty models. All of them have been consid-
ered in other contexts including voting or two-sided stable matching [5, 6, 14, 24].
We will discuss the models and their motivation later in the introduction.

IThere is also increasing focus on decentralized approaches to resource allocation (see e.g.,
Chevaleyre et al. [13].)



e Lottery Model: For each agent, we are given a probability distribution
over linear preferences over the items.

e Joint Probability Model: A probability distribution over linear prefer-
ence profiles is specified where a preference profile specifies (deterministic)
preferences of each agent over items.

e Compact Indifference Model: Each agent reports a single weak pref-
erence list that allows for ties. Each complete linear order extension of
this weak order is assumed to be equally likely.?

e Pairwise Model: Each agent reports independent pairwise probabilities
over pairs of items. If agent 7 prefers item o over item o’ with probability
p, then she prefers o’ over o with probability 1 — p.

e Ranking Model: Each agent reports probabilities for an item being in
a rank, for each item and each rank.? The input for each agent can be
viewed as a bistochastic matrix—i.e., the sum of probabilities of items
being in a given rank is 1, and the sum of probabilities of an item being
in one of the n ranks is 1 as well.

Example 1. Consider the following assignment problem in which agent 1 has
uncertain preferences in the lottery model where with probability 0.5 she prefers
a over b over ¢ and with probability 0.5 she prefers b over a over c.

1: a,bec (0.5) 2: bya,c
b,a,c (0.5) 3: ¢ba
The same uncertain preferences can be also represented in the joint probabil-

ity model with a probability distribution over two preference profiles where each
profile gets probability 0.5.

1: a,b,c 1: b,a,c
2: ba,c 2: bya,c
3: ¢ba 3: ¢ba

Equivalently, agent 1’s uncertain preferences can be represented in the com-
pact indifference model by a weak order in which a and b are tied and they are
both strictly more preferred by agent 1 over c. The same uncertain preferences

2The assignment problem is also known as the House Allocation problem. Compact indif-
ference model can be viewed as the assignment problem with ties, or as it is widely known in
the literature as the House Allocation problem with Ties (HRT) [23], where any preference
list obtained by breaking ties arbitrarily is possible, and all possible preferences have the same
likelihood of being realized.

3Under a linear preference ordering, the most preferred item is ranked 1st, the second most
preferred item is ranked 2nd, and so on, with the least preferred item being ranked nth.



can also be represented in the pairwise model whereby agent 1 has probability 1
of preferring a over c and b over c. Agent 1 prefers a over b with probability 0.5
and prefers b over a with probability 0.5 as well. Finally, agent 1’s preferences
can also be represented in the ranking model as follows.

1 2 3

a (05 05 0.0
b105 05 00
c \0.0 0.0 1.0

The most natural computational problems that we will consider are as fol-
lows.

e PO-PROBABILITY: what is the probability that a given assignment is PO?

o ASSIGNMENTWITHHIGHESTPO-PROBABILITY: compute an assignment
with the highest probability of being PO.

We also consider problems that are simpler than PO-PROBABILITY:

e [SPO-PROBABILITYNON-ZERO: for a given assignment, is its probability
of being PO non-zero?

e ISPO-PROBABILITYONE: for a given assignment, is its probability of be-
ing PO one?

Additionally, we consider two problems connected to ASSIGNMENTWITH-
HiGHESTPO-PROBABILITY:

o EXISTSPOSSIBLYPO-ASSIGNMENT: does there exist an assignment that
is PO with non-zero probability?

e EXISTSCERTAINLYPO-ASSIGNMENT: does there exist an assignment that
is PO with probability one?

Note that EX1STSPOSSIBLYPO-ASSIGNMENT is trivial for all uncertainty models
in which the certainly preferred relation is acyclic. An agent certainly prefers
an item to another if the preference is with probability 1. The reason for the
triviality is that the certainly preferred relation can be completed in a way so
that it is transitive, and then for the completed deterministic preferences there
exists at least one PO assignment. We call an uncertainty model reasonable
if, for any subset of items O’ C O and any agent ¢ € NN, it can be checked in
polynomial time whether o € O’ is a possibly most preferred item for 7 among
items in O’. It is easy to verify that the lottery, joint probability, compact
indifference, and the pairwise models are all reasonable. Although it is not
obvious, we will show in Section 8 that the ranking model is reasonable as well.

We say that a given uncertainty model is independent if any uncertain pref-
erence profile L under the model can be written as a product of uncertain
preferences L, for all agents a, where all L,’s are independent [6]. Note that
the joint probability model is not independent, but all the other problems that
we study are independent.



Compact Independent Acylic Reasonable
Uncertainty Model

Lottery X v v v

Joint Probability X X v v
Compact Indifference v v v v
Pairwise v v X v
Ranking v v v 4

Table 1: Properties of models. We say that a model is compact if its representation is
polynomial in the number of agents and items. We say the model is acyclic if the certainly
preferred relation of each agent is acyclic.

Contributions. We initiate the first study of computational aspects of Pareto
optimal allocation under uncertain preferences. We present several general in-
sights and results that apply to large classes of uncertainty models.

We present a comprehensive set of results for five uncertainty models that
have not been considered in the context of Pareto optimal allocation. Our
technical results are summarized in Table 2. Note that many of our interesting
technical results are computational hardness results which therefore carry over
to any settings in which an agent may find certain items unacceptable and/or
an agent may be genuinely indifferent between two or more items.

Concretely, (1) We show that for all the models, EXISTSCERTAINLYPO-
ASSIGNMENT is NP-complete. It therefore follows that (2) ASSIGNMENT-
WITHHIGHESTP O-PROBABILITY is NP-hard for all the models. In view of
these results, we see that as we move from deterministic preferences to un-
certain preferences, the complexity of computing Pareto optimal assignments
jumps significantly. (3) However, we show that for a general class of indepen-
dent uncertainty models, both problems ISPO-PROBABILITYNON-ZERO and
ISPO-PROBABILITYONE can be solved in polynomial time. For all the uncer-
tainty models that we consider, these problems are polynomial-time solvable.
(4) Whereas PO-PROBABILITY is polynomial-time solvable for the joint prob-
ability model, we prove that the problem is #P-complete for the other four
models. (5) We additionally show that this problem becomes polynomial-time
solvable for the lottery model if there is a constant number of uncertain agents.
In fact, we show that the problem PO-PROBABILITY for the lottery model can
be solved in fixed-parameter tractable time when parameterized by the number
of uncertain agents.

Our algorithmic results for all the models except the ranking model also
extend to the setting in which agents are allowed to declare some items un-
acceptable, as well as the setting in which there are unequal number of items
and agents. However, extending the ranking model to capture either of these
two generalizations is not straightforward. This is because we heavily use the
assumption that the uncertainty matrix is bistochastic when defining various
concepts for the ranking model. When we write that a problem can be solved
in polynomial time for a certain setting, we mean polynomial in the input size
which may be exponential in n.
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Justification of the Assignment Setting. In this paper we focus on a setting
in which each agent has demand for exactly one item. Single-unit allocations
are widely used in practice. In most scenarios, agents are seeking a single job,
partner, apartment, day care, office desk, school seat, kidney etc.

We also assume that the number of items is equal to the number of agents
and that no agent gets zero items. Our model, however, can also capture the
setting in which the number of items is less than the number of agents and some
agent may not get any item. Assigning zero items can be modelled by giving a
null item to an agent.

Our hardness results carry over to the setting where an agent may be allo-
cated several items. One issue when considering multi-unit allocations is that
there are many ways of extending the preferences over items to preferences over
bundles. Studying uncertainty in multi-unit allocations is an interesting topic
for future work.

Discussion of the Uncertainty Models. The lottery and joint probability are
two models that may not necessarily be polynomial in the number of agents or
items. Note that the product of the independent uncertain preferences in the
lottery model results in a probability distribution over preference profiles and
hence can be represented in the joint probability model. However, the change
in representation can result in an exponential blowup. Thus, whereas the joint
probability model is more general than the lottery model, it is not as compact.
In view of this, complexity results for one model do not directly carry over to
results for the other model.

The compact indifference model explains scenarios where an agent may
express indifference between some items because she does not have sufficient
knowledge about their differences. The model is neutral to the relative order-
ing of these items and assumes that all linear orders consistent with the weak
preferences are equiprobable. The model was considered by Aziz et al. [6] in
the context of the two-sided marriage problem and with stability as the main
concern. Although the model is quite restrictive, our hardness results for the
model underline the fact that uncertainty even in restrictive models can lead to
intractability.

The pairwise uncertainty model is well-studied in social sciences, in particu-
lar psychology, where people are asked to make repeated pairwise comparisons
between different items or experiences. The model was formally studied in a
related but different setting of the two-sided marriage problem [5], where the
focus was on stability rather than Pareto optimality. The model is applicable to
scenarios where the system has a record of similar pairwise choices and uses that
record to find an outcome that has a high probability of being Pareto optimal.

The ranking model appeals to the idea that agents often ascribe ranks to
items but they may not always be sure about the exact rank of each item (see,
e.g., Dopazo and Martinez-Céspedes [14], Mazurek [24]). This notable approach
to fuzzy rankings is applicable to scenarios where the system has a record of
past ranking information and uses that fuzzy or aggregate record to find an
outcome that has a high probability of being Pareto optimal.



Any compact indifference preference profile can be represented by a lottery
preference profile albeit with possibly an exponential blowup. In Section 8 we
will discuss how the ranking model has connections with the lottery model.

In the lottery, joint probability, compact indifference and the ranking models,
we assume that the underlying preferences of agents are linear orders. Hence
the certainly preferred part of the relation is acyclic under these models.

In the pairwise probability model, we do not assume that comparisons are
transitive and even allow agents to have cycles in their certainly preferred re-
lations. Cyclic and intransitive preferences may happen in practice, e.g., when
an agent is a virtual agent representing the preferences of a group of agents or
a committee, or when agents’ valuation functions over alternatives are complex
and multidimensional. Table 1 summarizes the properties of the uncertainty
models.

Roadmap. The remainder of the paper is structured as follows. We discuss some
technical preliminaries in Section 2. Then, in Section 3, we present some results
that apply to several of the uncertainty models. We then present and discuss,
in separate sections, our results for the joint probability model (Section 4),
the lottery model (Section 5), the compact indifference model (Section 6), the
pairwise model (Section 7), and the ranking model (Section 8). We conclude in
Section 9.

2. Preliminaries

An instance of the (deterministic) assignment problem is a triple (N, O, >)
where N is the set of n agents {1,...,n}, O = {o1,...,0,} is the set of items,
and the preference profile = = (>1,...,>,) specifies complete and asymmetric
preferences >; of each agent i over O. Note that in the classical assignment
problem, agents’ preferences are also assumed to be transitive, hence resulting
in linearly ordered preferences. Let Z(0O) denote the set of all complete and
asymmetric relations over the set of items O. Let =g denote the preference
profile of agents in the set S C N.

An assignment is an allocation of items to agents such that each agent is
allocated a unique item. We will represent assignments by a permutation over
O so that an item in the i-th position in the permutation is given to agent .
For example, We refer by abc the assignment in which 1 gets a, 2 gets b and 3
gets ¢. For a given assignment w, let w(i) denote the item allocated to agent .

An assignment w is PO (Pareto optimal) if there does not exist another
assignment g such that p(i) = w(i) or p(i) >; w(i) for all agents i, and p(j) >;
w(j) for some agent j. If such an assignment p exists, then we say that pu Pareto
dominates w.

In this work, we allow agents to express uncertainty in their preferences
and consider five uncertainty models. For each agent i we define the certainly
preferred relation =, We write b ¢ ¢ if and only if agent ¢ prefers b
over ¢ with probability 1. Checking b =5°'* ¢ is straightforward in the lottery,
joint probability, compact indifference, and pairwise models. We will show in



Section 8 that for the ranking model it can be checked in polynomial time
whether b =¢ c.

An agent i possibly prefers an item b to item ¢ if and only if ¢ prefers b
over ¢ with nonzero probability. Given an agent i, a subset of items O’ C O,
and an item a € O’, we say that a is a possibly most preferred item for i
among the items in O if there is a deterministic preference compatible with
the uncertain preferences in which a is preferred over all other items in O’.
Checking whether a is a possibly most preferred item in O’ is straightforward
in the lottery, joint probability, compact indifference, and pairwise models. We
will show in Section 8 that this problem can be solved in polynomial time for
the ranking model as well.

In some of our results, we will use ideas based on serial dictatorship that is
an assignment algorithm for agents with deterministic preferences. Serial dicta-
torship takes a straightforward greedy approach that is specified with respect to
a permutation m over N. The algorithm takes each agent in turn, according to
the permutation 7, and allocates the most preferred item on their preference list
to them that has not been allocated yet. We will denote by SD(N, O, >, ) the
outcome of applying serial dictatorship with respect to permutation of agents
7 over assignment problem (N, O, ). Serial dictatorship is presented more
formally as Algorithm 1.

Algorithm 1: Serial Dictatorship
Input: Agents N, items O, certain preferences >, and a permutation 7
over N
Output: Assignment w

1 Initialize the set of remaining items O’ to O

2 Initialize the set of remaining agents N’ to N

3 for roundi=1 ton do

4 Take agent (i) and give her the most preferred item o in O’
according to her preference relation =r(;): w(m(i)) = o.

5 Remove o from O’

6 Remove 7(7) from N’

7 return w

We will use the following characterization of Pareto optimal discrete assign-
ments [1] that is defined with respect to outcomes of serial dictatorship.

Fact 1 (Abdulkadiroglu and Sénmez [1]). Under deterministic strict prefer-
ences, an assignment is Pareto optimal if and only if it is an outcome of serial
dictatorship.

Fact 1 also follows from Proposition 1 of Brams and King [12]. Next, we
present another well-known characterization of PO assignments in deterministic
settings. For any assignment w, the corresponding trading graph is a graph with
vertex set N U O, where each item points to its owner and each agent points to
items more preferred to her allocated item. The assignment w admits a (trading)



cycle {(00,%0,01,%1,...,0k-1,1k—1,00) if for all j € {0,...,k — 1} we have that
0; = w(ij) and 0j11 mod  =i; 05. That is, a trading cycle is a cycle in the
trading graph. The following fact is well-known.

Fact 2 (Abraham et al. [3]). For deterministic strict preferences, an assignment
is PO if and only if its corresponding trading graph does not admit a cycle.

The trading cycle approach described for deterministic preferences can be
extended in two different ways when considering uncertain preferences: (1) each
agent can point to items that are certainly more preferred to her current item, or
(2) each agent can point to items that are possibly more preferred to her current
item. Note that computing the certainly preferred relation directly gives us the
possibly preferred relation.

The facts above show that when preferences are deterministic, a Pareto
optimal assignment can be computed and verified easily. In this paper we focus
on finding and verifying Pareto optimal assignments in settings where agents
have uncertain preferences.

Example 2. Consider the following assignment problem in which the uncertain
preferences in the lottery model are as follows. The preferences are the same as
i Fxample 1.

1: a,b,c (0.5) 2: b,a,c
b,a,c (0.5) 3: ¢ba

The same uncertain preferences can be also represented in the joint proba-
bility model with a probability distribution over two preference profiles.

Consider the assignment w in which 1 gets a, 2 gets b, and 3 gets c. The
probability of this assignment being PO is 1. This can be verified by considering
each of the two possible preference profiles, and testing that no other assignment
Pareto dominates w under either of them. On the other hand, the assignment
W in which 1 gets b, 2 gets a, and 3 gets ¢ has 0.5 probability of being PO.
This is because 1 is not PO if the first possible preference list of agent 1 is
realized, i.e., if a =1 b =1 ¢. To see this, notice that p admits a trading cycle
(b,1,a,2,b), implying that 1 and 2 prefer to trade their items and be both better
off. If 1 and 2 trade their assigned items, we get assignment w. Assignment w
Pareto dominates assignment p when the first possible preference list of agent 1
is realized.

Assignment p is PO if the second possible preference list of agent 1 is realized,
i.e., if b =1 a =1 c. Note that p is the outcome of applying serial dictatorship
with respect to permutation ™ = 1,2,3: (1) the first agent in the permutation,
agent 1, is allocated her most preferred item, item b, (2) agent 2 is allocated her
most preferred available item, that is a, as b has been already allocated to 1, (3)
agent 3 is allocated her most preferred available item, that is c.

3. General Results

In this section, we present some results that apply to several of the uncer-
tainty models that we consider.

10



We first present a couple of general results that apply to a large class of
uncertainty models that satisfy independence. Recall that a given uncertainty
model is independent if any uncertain preference profile L under the model can
be written as a product of uncertain preferences L, for all agents a, where all
L,’s are independent.

Theorem 1. For any independent uncertainty model in which the certainly
preferred relation can be computed in time O(T), given an assignment w it can
be checked in time O(Tn?) whether another assignment Pareto dominates w with
probability one.

Proof. Given an assignment w, we create a trading cycle graph G¢ in which each
agent ¢ points to any item o such that o =§°"* w(i). We then check whether G¢
admits a cycle or not. The construction of G¢ takes time O(T'n?) and testing
for the existence of a cycle takes time O(n?). We now claim that there exists a
cycle in G° if and only if the assignment w is Pareto optimal with probability
zZero.

If there exists a cycle in G¢, then another assignment Pareto dominates w
with probability one. The reason is that each agent prefers the item she points
to over her assigned item with probability one. Hence, if we implement the
trade in the cycle, each agent in the cycle gets a certainly more preferred item.
Therefore, the new assignment Pareto dominates w with probability one.

Now suppose that there is an assignment that Pareto dominates w with
probability one. Equivalently, there exists another assignment in which each
agent with a different allocation gets a certainly more preferred item. But this
means that there exists a cycle in G°. O

Theorem 2. For any independent uncertainty model in which the certainly
preferred relation can be computed in polynomial time, ISPO-PROBABILITY ONE
can be solved in polynomial time. In particular, if the certainly preferred relation
can be computed in time O(T), ISPO-PROBABILITYONE can be solved in time
O(Tn?).

Proof. We show that Algorithm 2 solves [ISPO-PROBABILITYONE in polynomial
time Given an assignment w, we create a trading cycle graph GP in which each
agent ¢ points to any item o such that w(i) #$* 0. The construction of GP can
be done in time O(n?). We then check whether G? admits a cycle or not. This
again can be done in time O(Tn?). We claim that w is Pareto optimal with
probability one if and only if GP does not contain a cycle.

We first show that if there exists a cycle, then it is not the case that w is
PO with probability one. Existence of a cycle implies that each agent in the
cycle prefers, with non-zero probability, another item to what she has received,
which in turn implies that if we implement the cycle then each of these agents
will receive an item that is more preferred with non-zero probability. Therefore
w is Pareto dominated with non-zero probability.

If it is not the case that w is Pareto optimal with probability one, then it
must be that another assignment Pareto dominates it with non-zero probabil-
ity. Equivalently, there exists another assignment in which each agent with a

11



different allocation gets a different item that is more preferred with non-zero
probability. But this means that there exists a cycle in GP. O

Algorithm 2: Algorithm for ISPO-PROBABILITYONE for independent un-
certainty models

Input: Agents N, items O, assignment w, and uncertain preferences of
the agents over O that induce a certainly preferred relation »g*
for each agent ¢

1 Construct a trading graph G? = (V, E) where V.= N UO and FE is built
as follows. Each w(i) points to i. Each agent ¢ points to any item o such

that w(i) #5°* o

2 if GP? contains a cycle then

3 | return No
4 else
5 ‘ return Yes

Since all the models we consider, except for the joint probability model, are
independent, as a corollary, we get the following statement.

Corollary 1. For the lottery, compact indifference, pairwise, and the ranking
uncertainty models, ISPO-PROBABILITYONE can be solved in polynomial time.

The proof of Theorem 2 provides the following characterization of certainly
PO assignments under independent uncertainty models: an assignment is cer-
tainly PO if and only if the trading graph corresponding to ‘possibly more
preferred’ part of the relation does not admit a cycle. Analogously, one may
presume that an assignment is possibly PO if and only if the trading graph G*
(corresponding to the certainly preferred part of the relation) does not admit a
cycle. However, it can be shown that the latter condition is necessary but not
sufficient for possible Pareto optimality. See the following example.

Example 3. Agents 1 and 2 have two possible linear preferences, each with
probability 0.5, and agent 3 has one linear preferences. For agent 1 we have
a >1 b >1 c with probability 0.5 and c =1 b =1 a with probability 0.5. For agent
2 we have b =9 a >2 ¢ with probability 0.5 and ¢ =2 a =9 b with probability 0.5.
For agent 3 we have b -3 ¢ >3 a. The preferences are summarized as follows.

1: a,b,c (0.5) 2: bya,c (0.5)
¢,b,a (0.5) c,a,b (0.5)
3: beca (1)

Let w = bac and we ask whether w is possibly PO. It is easy to see that
the trading cycle graph G¢ (corresponding to the certainly preferred relations)

12



does not admit a cycle, since only agent 3 strictly prefers another choice to her
allocated item.

However, w is not possibly PO and this is easy to check by considering all
cases. If the first preference list of agents 1 and 2 are realized, then assignment
abc Pareto dominates w. If the first preference list of agent 1 and the second
preference list of agent 2 are realized, then assignment acb Pareto dominates w.
If the second preference list of agent 1 is realized, then assignment cab Pareto
dominates w.

The following results are based on the notion of serial dictatorship (SD). In
the literature, SD is defined for linearly ordered preferences. We noted earlier
that under pairwise preferences, we allow agents to have cycles in their prefer-
ences; e.g., an agent may certainly prefer b to ¢, ¢ to d, and d to b. There is
nothing to prevent one from running SD on deterministic pairwise preferences.
However, when an agent’s turn arrives she may not find an item she most prefers,
due to the existence of a cycle, in which case SD must abort without any solution
because the agent whose turn came, could not get her most preferred available
item. It can thus be shown easily that Fact 1 applies to pairwise preferences as
well. We present the following general theorem that applies to any uncertainty
model and is a general characterization of possibly PO assignments.

Theorem 3. For any uncertainty model, an assignment w is possibly PO if and
only if there is some permutation © of agents and some preference profile that
has non-zero probability under which when serial dictatorship is applied with
respect to 7, each agent in her turn gets item w(i).

Proof. (<) Follows from Fact 1. If some deterministic preference profile =’
has non-zero probability such that w is the outcome of SD(N, O, =, 7), then w
is possibly PO.

(=) Since w is possibly PO, it is PO with respect to some realizable deter-
ministic profile >='. We show that w = SD(N, O, ', 7) for some permutation
of m agents. Take any partial assignment w’ C w that allocates to a subset of
agents S C N; that is, w'(i) = w(i) for all ¢ € S. Denote the items that are
allocated in w’ by O’. (Note that w’ and hence S and O’ can be empty sets.) We
claim that there exists some agent ¢ € N \ S such that, with respect to >', w(%)
is the most preferred item of agent ¢ among the set of items O\ O’ (note that, by
the definition of w’ and O’, w(4) is in O \ O'). Suppose for a contradiction that
there exists no such an agent. Therefore, every agent j € N \ S is interested
in, and in the corresponding trading graph points to, an item (or more) that is
held (according to w) by another agent in N\ S. This implies the existence of a
trading cycle where some agents in N\ S can exchange items among themselves
to get a more preferred item than in w, implying that w is not PO with respect
to the deterministic profile ', a contradiction. Therefore, we have established
that starting with w’ = ), we can obtain w by iteratively finding an agent who
has not been allocated yet and, according to >', has w(i) as her most preferred
item among the unallocated ones. Such an agent always exists as proved above.
Let the order in which the agents are chosen be 7. It is easy to verify that
w=SD(N,0,+" ). O
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We recall an uncertainty model reasonable if, for any subset of items O’ C O
and any agent ¢ € N, it can be checked in polynomial time whether o € O’
is a possibly most preferred item for ¢ among items in O’. All of our models
are reasonable and independent, except the joint probability model. Next, we
present another general result that applies to this large class of uncertainty
models.

Theorem 4. For any independent and reasonable uncertainty model, ISPO-
PROBABILITYNON-ZERO can be solved in polynomial time. In particular, if it
can checked in time O(T) whether an item is a possibly most preferred item in
a subset of items for a given agent, then ISPO-PROBABILITYNON-ZERO can be
solved in time O(Tn?).

Proof. Consider an assignment w that we want check whether it is possibly
PO. We use the following algorithm (presented as Algorithm 3) that builds a
permutation 7 of agents such that serial dictatorship produces w given 7, if
and only if w is possibly PO. To start with, we initialize the set of remaining
items to O, the remaining agents to N, and the permutation of the agents m
to an empty list. We then repeat the following procedure until no more items
are left, or the procedure returns no. Check if there exists some agent i such
that w(?) is a possibly most preferred items for ¢ amongst the available items.
If no such agent exists, return no. Otherwise, if such an ¢ exists, append i to
the permutation 7, remove i from the set of remaining agents, and remove w()
from the set of available items. This procedure halts in time O(Tn?). Let >/
denote a preference of agent 7 that has w(7) as the most preferred remaining
item.

It is easy to verify that if the algorithm returns 7, then SD(N, O, =", 1) = w,
and thus w is possibly PO. We now show that if the algorithm returns no, then w
is PO with zero probability. Consider the first point in the algorithm where for
no agent ¢ we have w(i) as a possibly most preferred available item for i. This
means that no remaining agent gets her most preferred item (for any possible
deterministic preferences) among the available items. Therefore, for each real-
ization of the preference profiles, each of the remaining agents is interested in,
and points to, another item held by another agent among the remaining agents.
This implies the existence of a trading cycle for each realization of the preference
profiles, where some remaining agents can exchange items among themselves to
get a more preferred item than in w. Thus w is PO with probability zero. [

We note that the theorem above gives us the following corollary.
Corollary 2. For the lottery, compact indifference, pairwise, and the ranking
uncertainty models, ISPO-PROBABILITYNON-ZERO can be solved in polynomial
time.

4. Joint Probability Model
In this section, we provide results that are specific to the joint probability

model. We first observe that the PO-PROBABILITY problem can be solved easily
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Algorithm 3: Algorithm for ISPO-PROBABILITYNON-ZERO for indepen-
dent and reasonable uncertainty models.

Input: N, O, uncertain preferences, assignment w
1 Initialize the set of remaining items O’ to O, the remaining agents N’ to
N, and the permutation of the agents 7w to an empty list.
while O’ # ) do
if there exists some agent i € N' such that w(i) is a possibly most
preferred items for i amongst the available items. then
4 Append i to the permutation 7, remove ¢ from N’, and remove
w(i) from O'.
else
‘ return No

w N

return Yes

for the joint probability model.

Theorem 5. For the joint probability model, PO-PROBABILITY can be solved
i polynomial time.

Proof. The probability that a given assignment is PO is equivalent to the prob-
ability weight of the preference profiles for which the assignment is PO. This
can be checked as follows. We check the preference profiles for which the given
assignment is PO (for one profile, this can be checked in linear time). Then we
add the probabilities of those profiles for which the assignment is PO. The sum
of the probabilities is the probability that the assignment is PO. 0

This gives us the following corollary.

Corollary 3. For the joint probability model, ISPO-PROBABILITYNON-ZERO
and ISPO-PROBABILITYONE can be solved in polynomial time.

What about EXISTSCERTAINLYPO-ASSIGNMENT? This problem is equiv-
alent to checking whether the sets of PO assignments under all possible real-
izations of preference profiles have a non-empty intersection. We show that
this problem is NP-complete even when the probability distribution is over two
linear preference profiles.

We reduce from the NP-complete problem SERIALDICTATORSHIP-
FEASIBILITY. The question for this problem is to check whether there exists a
permutation of agents for which serial dictatorship allocates a given item o to
a given agent ¢ [28].

SERIALDICTATORSHIPFEASIBILITY
Input: (N,0,>,i€ N,o€ 0)
Question: Does there exist a permutation of agents for which serial
dictatorship gives item o to agent 7
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It follows from Fact 1 that the following problem is also NP-complete: check
whether there exists a Pareto optimal assignment in which a specified agent i
gets a specified item o.

Theorem 6. For the joint probability model, EXISTSCERTAINLYPO-
ASSIGNMENT is NP-complete even when the probability distribution is over two
linear preference profiles.

Proof. The problem EXISTSCERTAINLYPO-ASSIGNMENT is in NP because it
can be checked in polynomial time whether a given assignment is certainly PO
or not (Corollary 3).

To prove NP-hardness, we reduce from the NP-complete problem SERIAL-
DICTATORSHIPFEASIBILITY. Let (N,O,>,i € N,o0 € O) be an instance of this
problem. We construct a joint probability over two preference profiles. One of
the profiles is the same as . In the other preference profile =', agent i has o
as the most preferred item and has the same order of preference over all other
items as in >;. Each agent j € N \ {i} has o as the least preferred item. As
for the other items, each j € N\ {i} has the same preferences over the items in
O\ {o} as in >;.

Our first observation is that if assignment is PO under profile =’ then i gets
o in it.

Claim 1. If an assignment is PO under profile =', then i gets o in it.

Proof. The argument is as follows. If ¢ does not get o, then an agent j # 4
gets it. However both ¢ and j get a more preferred item under profile =" by
exchanging their items. A

We now prove that we have a yes instance of SERIALDICTATORSHIPFEASI-
BILITY if and only if there exists a certainly PO assignment.

Assume that there exists a certainly PO assignment. Then, it must be PO
under > implying that, by our claim above, ¢ gets o in this assignment. The
same assignment must also be PO under profile > which implies that there
exists an assignment that is PO under profile > in which i gets o. In light
of Fact 1, this implies that there exists a serial dictatorship the outcome of
which under profile > is the same assignment. Hence, we have a yes instance of
SERIALDICTATORSHIPFEASIBILITY.

Now consider the case when we have a yes instance of SERIALDICTATOR-
SHIPFEASIBILITY. This means that there is a permutation of agents 7w under
which ¢ gets o when serial dictatorship is run. Let us call this assignment by
w. We want to prove that w is PO under each possible preference profile. Due
to Fact 1, w is PO under preference profile >=. So it remains to show that it is
PO under =’. Again due to Fact 1, it is sufficient to prove that for profile >/,
there exists a corresponding permutation of agents under which the outcome of
serial dictatorship is w. In fact, we show that SD(N,O, ', 7) = w—i.e., the
outcome of applying serial dictatorship with permutation of agents 7 is w even
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if the preference profile is >’ instead of >. In order to prove the statement we
prove the following claim where we track the set of remaining items as specified
in Algorithm 1.

Claim 2. The following are the same at each round, when applying serial dic-
tatorship (Algorithm 1) to profiles = and ', in both cases with respect to per-
mutation .

e the order in which items are allocated,
e the allocation of each agent, and
e set of remaining items.

Proof. The claim can be proved via induction on the number of rounds of serial
dictatorship that have already taken place. For the base case, let us consider
agent 7(1). If w(1) = 4, then 7(1) picks o under both preference profiles. This
is because, by construction (1) 7 is a permutation of agents under which ¢
gets o when serial dictatorship is applied on >, and (2) ¢ has o as her most
preferred item under >'. If w(1) # 4, then m(1) picks some item o' # o in
w = SD(N,O,, 7). Note that for (1), her most preferred item in both profiles
must be o’. Hence by the end of the first round, the same item has been given
to the same agent in both = and *~'.

For the induction, let us assume that k rounds have taken place and the
order in which items are allocated, the allocation of each agent in the first &
rounds and the set of unallocated items T is the same under both profiles > and
>'. Now consider agent 7(k + 1). If 7(k 4+ 1) = 4, then 4 picks item o under >,
implying that o € T, which in turn implies that ¢ must pick o under =’ since o is
her most preferred item in O under preference >, and hence her most preferred
item in 7. It remains to show what happens when 7(k + 1) # ¢. In that case
7(k 4+ 1) picks some item o' # o in w = SD(N, O, >, 7). This means that o’ is
the most preferred item of agent w(k + 1) in set T' C O under preference profile
>, implying that o’ is the most preferred item of agent m(k + 1) in set T under
preference profile =’ as well. This completes the proof of the claim. A

We have thus proved that the outcome of applying serial dictatorship with
respect to permutation of agents 7 is w under both preference profiles = and =’.
Thus w is PO under both possibly realizable preference profiles. To conclude,
we have proved that there exists a certainly PO assignment if and only if we
have a yes instance of SERIALDICTATORSHIPFEASIBILITY. Since SERIALDIC-
TATORSHIPFEASIBILITY is NP-complete, it follows that EXISTSCERTAINLYP O-
ASSIGNMENT is NP-complete. O

Theorem 6 gives us the following corollary.

Corollary 4. For the joint probability model, ASSIGNMENTWITHHIGHESTP O-
PRrROB is NP-hard.
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Proof. Assume to the contrary that there exists a polynomial-time algorithm to
solve ASSIGNMENTWITHHIGHESTP O-PROB. In that case, we can compute such
an assignment w. By Corollary 3, it can be checked in polynomial time whether
w is PO with probability one or not. If w is PO with probability one, then we
know that we have a yes instance of EXISTSCERTAINLYP O-ASSIGNMENT. Oth-
erwise, we have a no instance of EXISTSCERTAINLYPO-ASSIGNMENT. Hence
EX1STSCERTAINLYPO-ASSIGNMENT is polynomial-time solvable, a contradic-
tion. O

5. Lottery Model

In this section, we obtain some further results for the lottery model, that go
beyond the results of Corollaries 1 and 2.

First, we prove that the problem of checking whether there exists an assign-
ment that is PO with probability one is NP-complete. Although the proof is
similar to the proof of Theorem 6, we give a complete argument since a com-
plexity result for the joint probability model does not directly imply a similar
result for the lottery model.

Theorem 7. For the lottery model, EXISTSCERTAINLYP O-ASSIGNMENT 4s NP-
complete even when each agent has at most two possible preferences.

Proof. The problem EXISTSCERTAINLYPO-ASSIGNMENT is in NP because it
can be checked in polynomial time whether a given assignment is certainly PO
or not (Corollary 1). To prove NP-hardness, we use an argument similar to that
used in the proof of Theorem 6.

We reduce from the NP-complete problem SERIALDICTATORSHIPFEASIBIL-
ITY. Let (N,0,>,i € N,0 € O) be an instance of this problem. We construct
an instance of the lottery model in which each agent j € N has two preference
lists where one of them is >;. For agent ¢, we add another preference list >
in which 4’s most preferred item is o and the rest of the items are in the same
order as in ;. For each other agent j € N \ {i}, we add a preference list >~
which is identical to >; except that o is moved to the end of the list.

Our first observation is that an assignment is PO under profile =’ only if 4
gets o in it. If ¢ does not get o, and agent j # ¢ gets it, then both i and j get a
more preferred item under profile =’ by exchanging their items. Hence if there
is any assignment that is certainly PO then it must give o to i.

We prove that there exists a certainly PO assignment if and only if we have
a yes instance of SERIALDICTATORSHIPFEASIBILITY.

If we have a no instance of SERIALDICTATORSHIPFEASIBILITY, then it fol-
lows Fact 1 that in no assignment that is PO under > agent ¢ gets 0. On the
other hand, an assignment is PO under >’ only if 7 receives o. Therefore, there
does not exist any certainly PO assignment.

Now consider the case when we have a yes instance of SERIALDICTATOR-
SHIPFEASIBILITY. This means that there is a permutation of agents m under
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which ¢ gets o when serial dictatorship is run. Let us call this assignment w.
Due to Fact 1, w is PO under preference profile >=. We want to prove that
w is PO under each possible preference profile. Due to Fact 1, it is sufficient
to prove that each possible realizable preference profile, there exists a corre-
sponding permutation of agents under which the outcome of serial dictatorship
is w.

In fact, we show that for each possible preference profile =",
SD(N,O,>",7) = w i.e., the outcome of applying serial dictatorship with re-
spect to permutation of agents 7 is w. In order to prove the statement we prove
the following claim. (Recall that w is PO under > with respect to .)

Claim 3. The following are the same at each round, when applying serial dicta-
torship to = and any of the realizable preference profiles »=", in both cases with
respect to permutation w

e the order in which items are allocated,
e the allocation of each agent, and
e set of remaining items.

Proof. The claim can be proved via induction on the number of rounds of serial
dictatorship that have already taken place. For the base case, let us consider
agent 7(1). If w(1) = 4, then (1) picks o in all her possible preferences. This
is because, by construction (1) 7 is a permutation of agents under which ¢
gets o when serial dictatorship is applied on >, so it must be that ¢ ranks o
at the top of her list under >; and (2) ¢ has o as her most preferred item
under >! by construction. If w(1) # ¢, then 7(1) picks some item o' # o in
w = SD(N,O,~,n). Note that for (1), her most preferred item is the same
in all possible profiles. Hence by the end of the first round, the same item has
been given to the same agent in all the realizable preferences.

For the induction, let us assume that k rounds have taken place and the order
in which items are allocated, the allocation of each agent in the first k£ rounds
and the set of unallocated items T is the same all the realizable preferences.
Now consider the agent 7(k + 1). If 7(k + 1) = 4, then ¢ picks item o under >,
implying that o € T, which in turn implies that ¢ must pick o under >} since o
is her most preferred item in O under >} and hence her most preferred item in
T. Tt remains to show what happens when 7(k 4+ 1) # 4. In that case m(k + 1)
picks some item o' # o0 in w = SD(N, O, >, 7). This means that o’ is the most
preferred item of agent 7(k 4 1) in set 7" C O under preference list = (x11),
implying that o’ is the most preferred item of agent w(k + 1) in set T under
preference list >;(k +1) 88 well. This completes the proof of the claim. A

We have thus proved that the outcome of applying serial dictatorship with
respect to permutation 7 is w under all possible preference profiles. Thus w is
PO under each possibly realizable preference profile when we have a yes instance
of SERIALDICTATORSHIPFEASIBILITY. To conclude, we have proved that there
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exists a certainly PO assignment if and only if we have a yes instance of SE-
RIALDICTATORSHIPFEASIBILITY. Since SERIALDICTATORSHIPFEASIBILITY is
NP-complete and EXISTSCERTAINLY PO-ASSIGNMENT is in NP, it follows that
Ex1STSCERTAINLY P O-ASSIGNMENT is NP-complete. O

Theorem 7 gives us the following corollary.

Corollary 5. For the lottery model, ASSIGNMENTWITHHIGHESTP O-PROB is
NP-hard.

Proof. Assume to the contrary that there exists a polynomial-time algorithm to
solve ASSIGNMENTWITHHIGHESTPO-PROB. In that case, we can compute such
an assignment w. By Corollary 1, it can be checked in polynomial time whether
w is PO with probability one or not. If w is PO with probability one, then we
know that we have a yes instance of EXISTSCERTAINLYP O-ASSIGNMENT. Oth-
erwise, we have a no instance of EXISTSCERTAINLYPO-ASSIGNMENT. Hence
EXI1STSCERTAINLYP O-ASSIGNMENT is polynomial-time solvable, a contradic-
tion. O

In light of Corollaries 1 and 2, we know that for the lottery model it can be
checked in polynomial time whether the PO probability of a given assignment
is zero or one, respectively. We now turn to the problem of computing the
probability that a given assignment is PO. We first present a polynomial-time
solution for a restricted setting, and then show that PO-PROBABILITY is #P-
complete for the lottery model in general.

Theorem 8. For the lottery model, if the number of uncertain agents in con-
stant, then PO-PROBABILITY is polynomial-time solvable.

Proof. Let w be a given assignment. Let constant k& denote the number of
uncertain agents, and let the maximum number of preferences for any uncertain
agent be ¢. Therefore, the maximum number of preference profiles that are
realizable is £ which is still polynomial in the input since k¥ = O(1). For each
possible preference profile >, it is easy to compute the probability of = by
simply computing the product of the probabilities of the preferences chosen for
the uncertain agents. Hence, we have reduced the problem to the problem PO-
PROBABILITY for the joint probability model which can be solved in polynomial
time (Theorem 5). O

Theorem 9. For the lottery model, PO-PROBABILITY is #P-complete, even
when restricted to the case where each agent has at most two possible preferences.

Proof. We show #P-hardness by reduction from the #P-complete problem
Monotone-#2SAT—count the number of satisfying assignments for a 2CNF
formula that contains no negation [31].

MONOTONE-#2SAT

Input: A 2CNF formula that contains no negation.
Question: Count the number of satisfying assignments.
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Let ¢ be a monotone 2CNF formula with clauses ¢y, ..., ¢, and variables
T1,...,Tn. We construct an instance of PO-PROBABILITY as follows. Consider
agents 1,...,n and items o1, ..., 0,, and take the assignment ¢ that gives each
agent i item o;.

We construct the preferences of the agents as follows. Take an arbitrary
agent ¢. Consider the set {ji,...,J,} of indices j such that the clause (z; V x;)
occurs in o—i.e., {j1,...,Ju} ={ j | (z; Vz;) appears in ¢ }. (Without loss of
generality, this set {ji,..., .} is non-empty.) Suppose that j; < jo < -+ < ju,
in order to fix an (arbitrary) order over these indices. With probability 1,
agent ¢ has o; at the top of her preference list, followed by the rest of the items
in arbitrary order. With probability %7 agent i has the following preference:
0j, > =+ =4 0j, =; 0; =; ---, where the remaining items appear in arbitrary
order after o;.

This way, the possible preference profiles correspond one-to-one to the pos-
sible truth assignments over z1, ..., z,. Namely, taking the preference o; >; - - -
for agent ¢ corresponds to setting x; to 1, and taking the other preference for
agent ¢ corresponds to setting z; to 0. Moreover, each possible preference profile
occurs with probability 2%

We show that the number of satisfying assignments for ¢ is equal to the
number of preference profiles under which o is Pareto optimal. In particular,
we show that ¢ is PO under a preference profile if and only if the corresponding
truth assignment T satisfies .

( =) Take a possible preference profile > under which o is PO and suppose,
for a contradiction, that the corresponding truth assignment T does not satisfy
. That is, there is some clause ¢ = (x; V x;) that is not satisfied, implying that
in T both x; and x; are set to 0. Then we know that agent i prefers o; to o;
and agent j prefers o; to o;, hence they are willing to swap their assigned items.
Therefore o is not Pareto optimal under >, a contradiction.

(«<=) Take a possible preference profile > and suppose that the correspond-
ing truth assignment T satisfies ¢. We show that we cannot find a Pareto
improvement of o, implying that ¢ is PO. Take an arbitrary agent ¢. First sup-
pose that T sets z; to 1. This means that agent ¢ prefers o; to all other items,
and so she is not willing to exchange it with another item. Now, suppose that
T sets x; to 0. Take the set {ji,...,j.} of indices such that the clause (x; V x;)
occurs in ¢. As x; is set to 0, this means that ¢ prefers o;,,...,0;, to o; and is
willing to exchange o; with either of these items (but no other item). Because
T satisfies ¢, we know that T sets x;,,...,2;, to 1, and consequently, agents
Ji,-- ., ju prefer items o;,,...,0;, over all other items (respectively). So neither
of these agents is willing to exchange their assigned item with o;. Therefore, as
no Pareto improvement exists, o is Pareto optimal.

The number of satisfying truth assignments of ¢ is then exactly equal to
2" times the probability that assignment o is Pareto optimal. Thus, PO-
PROBABILITY is #P-hard, even when restricted to the case where each agent
has at most two possible preferences.

Next, we argue that PO-PROBABILITY is in #P. Technically speaking, the
class #P consists of counting problems, which are functions f : ¥* — N. We
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can consider PO-PROBABILITY as such a function producing natural numbers
in the following way. Without loss of generality, suppose that the probabilities
in the input are all given as rational numbers with the same denominator d.
(We can transform the input in polynomial time to an equivalent input that
satisfies this property.) Then the probability that the given assignment is Pareto
optimal is  for some positive integer z. We then consider the problem PO-
PROBABILITY as the function that returns z, rather than the rational 7.

We argue membership in #P by describing a nondeterministic Turing ma-
chine M that has the property that for each input, the number of accepting paths
of M for this input equals the number z that corresponds to the probability that
the given matching is Pareto optimal. The existence of such a Turing machine
implies membership in #P [31]. The machine M operates as follows. For each
agent a;, it uses nondeterminism to generate d different (partial) computation
paths. These partial computation paths are concatenated, resulting in d" to-
tal computation paths. Suppose that the input specifies ¢ possible preference
orders for agent a;, occurring with probabilities “, ..., =, respectively. Then
the first u; partial computation paths generated for a; correspond to the first
preference order, the next us correspond to the second order, and so on. As a
result, each total computation path corresponds to some preference profile. At
the end of each computation path, the machine M checks (in deterministic poly-
nomial time) whether the assignment is Pareto optimal for the corresponding
preference profile, and accepts if and only if this is the case. It is straightforward
to verify that the number of accepting computation paths of M is exactly the
number z such that the probability that the assignment is Pareto optimal is 7.
Therefore, we know that PO-PROBABILITY is in #P. U

We showed that when there are only a constant number of uncertain agents,
we can compute the PO probability in polynomial time for the lottery model
(Theorem 8). However, the order of the polynomial that upper bounds the
running time of our proposed algorithm grows with the number of uncertain
agents. In particular, when k is the number of uncertain agents, and ¢ is the
maximum number of possible preference orders for these uncertain agents, the
running time of the algorithm outlined in the proof of Theorem 8 is Q(¢¥). We
improve on this result by showing that there exists a fixed-parameter tractable
algorithm that computes the PO probability for the lottery model—that is, an
algorithm running in time f(k)|I|¢ for some computable function f and some
fixed constant ¢ independent of k, where |I| denotes the input size. In other
words, we show that the parameterized problem k-PO-PROBABILITY, where
the parameter is the number of uncertain agents, is fixed-parameter tractable
for the lottery model. The proof involves an interesting reduction to counting
homomorphisms.

Theorem 10. For the lottery model, k-PO-PROBABILITY can be solved in fixed-
parameter tractable time.

Proof. Take an arbitrary instance of the problem k-PO-PROBABILITY, con-
sisting of agents 1,...,n, objects 01,...,0,, and an assignment o. Without
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loss of generality, assume that the assignment gives each agent i the object o,
and that the uncertain agents are agents 1,...,k. For each uncertain agent 1,
let >=;1,...,>;u, denote the different possible preferences for agent .

Additionally, assume without loss of generality that for each of the uncertain
agents 1,...,k, each of the possible preferences for these agents occurs with
probability g, where the numerator ¢ can vary between different agents and
different possible preferences, but where the denominator d is common among all
agents and all possible preferences. In other words, all probabilities mentioned
in the instance are rational numbers that share a common denominator d. If
this were not the case, we could straightforwardly transform the instance in
polynomial time to an equivalent instance that does satisfy this property.

Also, assume without loss of generality that there exists no trading cycle that
involves only the agents ogy1,...,0,. If this were the case, the assignment is
Pareto optimal with probability zero, and we can filter out such trivial instances
using a polynomial-time preprocessing procedure.

We now show how to compute the probability that the given assignment is
Pareto optimal in fixed-parameter tractable time. Our computation will proceed
in three stages:

(1) We construct a directed graph G with O(kquz) vertices, where the edges
are weighted. Here u denotes the maximum number of possible preferences
for any uncertain agent.

(2) We count the number of homomorphisms f of a directed path Psyio of
length 2k + 2 to this graph G, where each homomorphism is counted
multiple times according to (the product of) the weights on the edges
in f(Pak+2). This counting can be done in polynomial time using an
extension of a known algorithm [17, 18].

(3) We divide the weighted total number of homomorphisms of P12 to G
by the number d* to obtain the probability that the given assignment is
Pareto optimal.

We begin with phase (1), and we construct the weighted, directed graph G.
Let II = {o1,...,05}> be the set of all possible pairs (0;,0;) of objects
among o1, ...,0;. We define the set V of vertices of G as follows. First, we
define an auxiliary set V':

V/ = {177k+ 1} U {(i7>_i,j) | (RS [k+ 1]a] € [U"L]}
Then, we define the set V' of vertices as follows:
V={s,t}U{( 1) | € V' II' CII}.

That is, the graph G has vertices s and ¢, and 2k? copies of each element in V'
(one for each II' C II). Intuitively, the vertices s and ¢ will act as source and
target for each homomorphism of Ps 4o to G.

The sets II' C II will intuitively be used to memorize the ‘trading paths’
(i.e., paths in the trading cycle graph) that result from particular choices of the
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preference orders >; ; chosen for the agents 1,..., k. That is, each (0;,0;) € II'
corresponds to a path from o; to o; in the directed graph with vertices o1, ..., 0,
where there is an edge from oy to oy if and only if agent i’ prefers object o;
to object 0.

We construct the set E of (weighted and directed) edges as follows. This
is where the agents’ preference orders >; ; are encoded into the graph G—in
particular, under (ii) and (iii).

(i) We add an edge with weight 1 from s to (1, 0).

(ii) Foreachi € [k], each j € [u;], and each IT" C II, we add an edge from (7, IT")
to (4,>,,1I'). This edge has weight ¢, where the possible preference
order >=; ; for agent i occurs with probability 5.

(iii) For each i € [k], each j € [u;], and each II' C II, we add an edge with
weight 1 from (i, >; ;,1I") to the vertex (i 4+ 1,II"), for some II' C II"” C
II. The choice of II” is determined as follows. Consider the follow-
ing graph G, ;. The vertices of this graph are o1,...,0,. For each
pair (o;,0;+) of vertices among ogy1,...,0,, there is an edge from oy
to o, if and only if agent j prefers object o;» to object o;. Moreover,
for each (0;,0;) € I, we add an edge from o; to o;~. Finally, for each
agent oy among ogy1,...,0,, we add an edge from o; to o; if and only
if 0; >; ; 0;. We then let II"” C II be the set of all pairs (0;/, 0;) such that
there is a path from o; to 0y in Gy -, ;. Clearly, II' C 11",

(iv) For each II' C II such that (0;,0;) € II’ for all ¢ among 1,...,k, we add
an edge with weight 1 from (k + 1,1I') to ¢.

Clearly, any homomorphism f from the directed path Psj o of length 2k + 2
to G must map the first vertex of the path to s and the last vertex of the path
to ¢. Each such homomorphism must map the (24)-th vertex of the path to some
vertex (4,II') and the (2¢ + 1)-th vertex of the path to some vertex (i, >; ;,II').
Also, the (2k+2)-th vertex of the path must be mapped to some vertex (k+1,II')
where IT' contains no pair (o;, 0;). These observations follows directly from the
construction of G.

Moreover, each homomorphism f’ from the directed path Psriq of
length 2k + 1 to G that maps the first vertex of the path to s is uniquely
determined by some series of choices =i j,,...,>kj, for the possible pref-
erences of the uncertain agents 1,...,k. We argue that such a homomor-
phism f’ can be extended to a homomorphism f from Pspio to G if and only
if the corresponding preferences >~1 j,,..., >k, do not lead to a trading cy-
cle. The homomorphism f’ maps the (2k + 2)-th vertex of the path to some
pair (k+1,1I'). Here Il is the set of pairs (0;,0;) € {01,...,0,}? such that the
preferences > j,,..., >k j, lead to a trading path from o; to o;. By our assump-
tion that there exists no trading cycle that involves only the agents ogy1, ..., 0y,
we know that the set II' contains some pair (o;, 0;) if and only if there exists a
trading cycle. Therefore, by construction of the edges between (k+1,1I') and ¢,
we know that the choices >~1 j,,..., >, of preferences for the agents 1,...,k
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that make the assignment Pareto optimal are in one-to-one correspondence with
the homomorphisms f from Ps 4o to G.

We count each such homomorphism f in a weighted fashion as follows—
this is phase (2). Take a homomorphism f from Payio to G. Its weight in
the grand total is the product of the weights for each edge in f(Pogi2). The
only edges in f(Pag42) that have weigth > 1 are edges from (z,II') to (4, >; ;
,II'). Such an edge has weight ¢, where the probability that >; ; occurs is g.
From this, it is straightforward to verify that the total weighted sum of all
homomorphisms is equal to p - d¥, where p is the probability that the given
assignment is Pareto optimal. Therefore, in order to compute p, we only need
to take the weighted sum of all homomorphisms, and divide it by d*—this is
phase (3) of the algorithm.

All that remains is to show how we can compute the weighted sum of all
homomorphisms f from Psrio to G in polynomial time. We can do this by
extending a known polynomial-time algorithm to count the number of homo-
morphisms of a graph whose treewidth is bounded by a fixed constant into
another graph [18, Theorem 14.7]. Since paths have treewidth 1, counting the
number of homomorphisms from a path to another graph can be done in poly-
nomial time using this algorithm. This algorithm uses a dynamic programming
approach to count the number of homomorphisms. This dynamic programming
technique can straightforwardly be extended to take into account the weights
of the homomorphisms. (We omit a detailed description of the extended algo-

rithm.)
This concludes our proof that k-PO-PROBABILITY can be solved in fixed-
parameter tractable time for the lottery model. O

6. Compact Indifference Model

In this section, we turn to the compact indifference model. Any compact
indifference preference profile admits a possibly PO assignment that can be
computed as follows: break the ties arbitrarily and then run serial dictatorship.
What about the existence of certainly PO assignments? Although the com-
pact indifference model is one of the most restricted and structured uncertainty
models we consider, EXISTCERTAINLYP O-ASSIGNMENT is NP-complete for this
model.

Theorem 11. For the compact indifference uncertainty model, EXIST-
CERTAINLYPO-ASSIGNMENT is NP-complete.

Proof. EXISTSCERTAINLYPO-ASSIGNMENT is in NP because it can be checked
in polynomial time whether a given assignment is certainly PO or not (Corol-
lary 1).

We show hardness by reducing from the SERIALDICTATORSHIPFEASIBIL-
ITY problem. Let (N,0,>’,i,0) be an instance of this problem, where N =
{1,...,n} and O = {o1,...,0,}. W.lLo.g., suppose that i = 1. We construct
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an instance (N’,0’,>) of the compact indifference uncertainty model as fol-
lows. Let o’,0” be fresh items not appearing in O, let O’ = O U {0’,0"}, and
let N =NU{l',n+1}.

Let O1,5/0 be the items that agent 1 prefers over item o with respect to >~} —
i.e., those items oy such that o, =] o. Moreover, let O1 </, be the items that
agent 1 likes less than item o—i.e.,, O1 <, = O\ ({0} U O1,,). Also, for
each 1 < j <n,let ji,...,jn be the indices of items such that o;, =/ --- =" o .

We define the preferences of the agents in N’ over the items in O’ as follows:

o Agent 1: (01,510 U{0'}) =1 0>1 (01,270 U{0"}).
o Agent 1: (01,0, U{0'}) =1 0 =1 (01,20 U{0"}).
o Agents 1 < j<mn:oj =, >0, =;{0,0"}.

e Agent n+ 1: O’ (one big tie).

We show that there is a permutation 7 of the agents in N under which
agent ¢ = 1 gets item o when serial dictatorship is run on (N, O, >') if and only
if there is an assignment that is certainly PO for (N', 0, >).

(=) Suppose that there is a permutation 7 of the agents in N under which
agent ¢ = 1 gets item o when serial dictatorship is run on (N,O,>'). Let M
denote this PO assignment. Let M’ = M + {(1,0'), (n + 1,0"”)}, that is, M’
extends M by awarding the new items o’ and o” to new agents 1’ and n + 1
respectively. It is easy to see that M’ is certainly PO for (N’,O’; ).

(<) Conversely, suppose that there is an assignment M’ that is certainly
PO for (N’,0’,>). Then it can be proved that following statements are true
w.r.t. M.

(i) Claim: Item o' must go to n + 1.
Proof: Otherwise, under a complete linear order extension of > in which
n + 1 ranks o” at the top, and the agent who has got o” ranks it at the
bottom, both agent benefit by swapping their assigned items.

(43) Claim: Agents 1 and 1’ cannot get an item from their last ties.
Proof: Assume otherwise, then 1 and 1’ get items say o0, and oy from
their last tie. Recall that we already argued that n + 1 gets o”. Under a
complete linear order extension in which 1 prefers oy to 01, 2 prefers o” to
02, and n+ 1 prefers o1 to 0", agents 1, 1’ and n+ 1 all benefit by trading
their assigned items ({01, 1,02,1’,0”,n+ 1,01) is a trading cycle).

(#3) Claim: Agents 1 and 1’ cannot both get an item from their first ties.

Therefore one of them, say 1 gets o, and the other one, say 1’, gets an
item from her first tie. In fact, since 1 and 1’ have exactly the same
preferences under >, we can assume w.l.o.g. that 1 gets o in M’.
Proof: Assume otherwise, then 1 and 1’ get items say o7 and o from their
first tie. Under a complete linear order extension in which 1 prefers oo to
01 and 2 prefers 01 to 02 both agents benefit from swapping their assigned
items.
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() Claim: Agent 1’ must get item o'.
Proof: We already argued that 1’ gets an item from her first tie. Assume
that 1’ does not get o’. Thus 1’ gets another item o7 from her first tie,
and another agent j gets o’. Agent j cannot be 1 or n + 1, therefore by
the construction of > she ranks o’ in a tie with o” at the bottom of her
preferences. Under any complete linear order extension in which 1’ prefers
o' to 01, both 1’ and j benefit by swapping their assigned items.

We have established so far that in M’ items o and o’ go to agents 1 and 1’
respectively, and item o” goes to agent n + 1. Let M be the assignment M’
restricted to the original agents. It is clear that since M’ is certainly PO for
>, hence M is PO for ='. Furthermore, agent 7 = 1 is awarded item o in M.
Therefore, by Fact 1, there is a permutation of agents in N under which i =1
gets o when serial dictatorship is run on (N, O, ). O

Theorem 11 gives us the following corollary.

Corollary 6. For the compact indifference uncertainty model, ASSIGNMENT-
WITHHIGHESTPO-PROB is NP-hard.

Finally, we show that PO-PROBABILITY is #P-complete for the compact
indifference model.

Theorem 12. For the compact indifference uncertainty model, PO-
PROBABILITY is #P-complete.

Proof. 1t is straightforward to show that PO-PROBABILITY is in #P. We show
#P-hardness by reducing from the #P-complete problem Monotone-#2SAT
that is defined as follows: count the number of satisfying assignments for a
2CNF formula that contains no negation [31].

Let ¢ be a monotone 2CNF formula with clauses ci,...,c¢, and vari-
ables z1,...,7,. We construct an instance of PO-PROBABILITY as follows.
Consider agents 1,...,2n, and items o1,...,02, and take the assignment w
where w(i) = o; for all 1 < i < 2n. Agents’ preferences are constructed as
follows. Take an arbitrary 1 < ¢ < n. Consider the set {j1,...,j,} of indices j
such that the clause (x; V x;) occurs in . Suppose that j; < jo < -+ < jy,
in order to fix an (arbitrary) order over these indices. Then agent ¢ has
the following preference: (0n44,0;) >; ---, where the remaining items ap-
pear in arbitrary order. Moreover, agent n + ¢ has the following preference:
0j1 ™n+i " >n+i 0j, ™n+i Onti >n+i -, Where the remaining items appear
in arbitrary order. Note that agents n + 1,...,2n have certain preferences.

The instantiations of linear preferences to uncertain agents 1,...,n corre-
spond one-to-one to truth assignments to variables x1,...,x,: for each 1 <i <
n, setting the preferences of agent ¢ to o; >; 0p4; >; -+ corresponds to set-
ting x; to true, and setting agent ¢’s preferences to 0y,4; >; 0; >; - - - corresponds
to setting x; to false.

We show that a truth assignment « to the variables z1, ..., x,, satisfies ¢ if
and only if the corresponding profile of linear preferences for the agents 1,...,2n
leads the assignment w to be PO.
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(=) Suppose that « satisfies . We show that the assignment w admits
no trading cycles under the profile corresponding to «. Suppose, to derive a
contradiction, that w admits a trading cycle. By construction of the prefer-
ences of the agents, any trading cycle must involve the sequence (0;, %, 0p4i, 7 +
1,05,7,0ntj,n + j,0;). That is, agent i must prefer 0,4, over o;, agent j must
prefer o,,4; over oj, and agent n + ¢ must prefer o; over o,4;. The former two
statements are the case if and only if a sets both x; and x; to false. The latter
statement is the case if and only if (z; V x;) is a clause of . This is a contra-
diction to our assumption that « satisfies ¢. Thus, we can conclude that w is
PO under the profile corresponding to a.

(<) Conversely, suppose that « does not satisfy . That is, there is a
clause (z; V z;) of ¢ such that « sets both x; and z; to false. We show that
the assignment w admits a trading cycle under the profile corresponding to «.
Since « sets x; and z; to false, we know that o,1; >; 0, and 0,4; >; 0.
Moreover, since (z;Vx;) is a clause of ¢, we know that 0; >y4; 0p4; and 0; >4 ;
On+j- Thus, (04,4, 0n4:,n + 4,05, J,0n45,n + 7,0;) is a trading cycle under this
preference profile, and hence w is not PO.

Each possible preference profile occurs with probability 27". The number of
satisfying truth assignments ¢ is then exactly equal to 2" times the probability
that assignment w is PO. Thus, PO-PROBABILITY is #P-hard. O

7. Pairwise Model

In this section, we present results for the pairwise uncertainty model. A
possibly PO assignment exists for the pairwise model if the ‘certainly preferred’
relation of each agent is acyclic: one can derive a possible linear order consistent
with the certainly preferred relation and then run serial dictatorship. In the
presence of cycles, however, there is no guarantee that an instance admits a
possibly PO assignment. The next example shows that under the pairwise
model, if the certainly preferred relation is not acyclic, then there may not exist
a possibly PO assignment.

Example 4. The pairwise preferences for the agents 1, 2 and 3 over the items
a, b and ¢ are as depicted. All the three agents have the same certainly preferred
relations.

1: a=$""ce="bb={"q
2: a=5"ec =5 b b =5 a
3: a=5"c,e =5 ,b =5 a

Take assignment abe. It is not PO because it is Pareto dominated by bca.
By symmetry no other assignment is PO either.

We show, with an argument similar to that of the proof of Theorem 6 or
Theorem 11 that the problem of checking whether a PO assignment exists is
NP-complete under pairwise preferences even in the absence of uncertainty.
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Theorem 13. Given an instance of the assignment problem with deterministic
pairwise preferences, the problem of deciding if a PO assignment exists is NP-
complete.

Proof. The problem is in NP because it can be checked in polynomial time
whether a given assignment is certainly PO (Corollary 1) which is equivalent to
PO under deterministic pairwise preferences.

To prove NP-hardness, we reduce from the NP-complete problem SERIAL-
DICTATORSHIPFEASIBILITY. Let (N,O,>',i,0) be an instance of this prob-
lem, where N = {1,...,n} and O = {o1,...,0,}. We construct an in-
stance (N’,0’,>) of the pairwise uncertainty model as follows. Let o, 0"
be fresh items not appearing in O, let O = O U {0/,0"}, and let N’ =
NU{n+1,n+2}.

e For agent i:
— For each pair of items o1, 02 such that o € {01,092}, let 01 =5 0q if
and only if 01 >} 09.
— Let 0 =5 0/, 0 =5 0/ and o' =5 0",
— For each item 01 € O\ {0}, let 01 =5 0, 0; =5°"* o/, and 01 ="t o
if and only if 0; >} o.
— For each item 01 € O\ {0}, let 0 =5 01, o' =" 01, and 0" =§°"* 0,
if and only if 0 >, 0.
e For each agent j € N\ {i}:
— For each pair of items 01, 02 such that o & {01, 02}, let 01 »;ert 0y if
and only if 01 = 0g.
_ cert ./ / cert I/ 1 cert
Let o =5 o/, o' =5 0" and 0" =5 0.
— For each item 01 € O\ {0}, let 0; >—§-°“ 0, 01 >—§-°“ o', and o0y >§C“ o"
if and only if o1 = o.
— For each item 01 € O\ {0}, let 0 =5 01, o' =" 01, and 0 5" 0
if and only if 0 = 0;.
e For both agents j € {n+ 1,n + 2}:
— For each pair of items oy, 0 € O\ {0}, let 0 =5 o4 if and only
if 6> 0.
— For each item oy € O\ {0}, let o >§ert o0¢, 0 >§ert o0¢, and o” >§ert o¢.
_ cert ./ / cert I/ 1 cert
Let 0 =5 o, o' =5 0" and o =57 o.

Intuitively, the (linear) preference ={'* is obtained from >} by replacing o
with o = o' = 0”. The preference ~$°"* for each j € N\ {i} is obtained from >/

cert

by replacing o with the cycle o > o’ > 0" = o. Finally, the preferences >
and >&7% are constructed by having the cycle o > o > o’ > o on the top,
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followed by the items in O\ {o} (in arbitrary order). Note that all these pairwise
preferences are deterministic.

We show that there is a permutation of agents m under which agent i gets
item o when serial dictatorship is run on (N, O, >") if and only if there is an
assignment that is PO for (N',0’, ).

(=) Suppose that there is a permutation of agents 7 under which agent i gets
item o when serial dictatorship is run on (N, O, ') (resulting in assignment w).
Construct the permutation 7’ for agents N’ obtained from 7 by placing the
agents n + 1,n + 2 directly after agent . Then SD(N’,O’, >, ') returns the
assignment w’ = wU{n+ 1~ o’ ,n+ 2+ 0"}. This assignment w’ is PO.

(<) Suppose that there is an assignment ' for (N',O0’;>) that is PO.
By Theorem 3, we know that there exists a permutation 7’ of the agents in N’
such that executing SD with this permutation on (N, 0’, ) yields w'. Let n’ =
(70,1, ), i.e., mo is the sequence of agents appearing in 7 before agent i, and
is the sequence of agents appearing in 7 after agent ¢. By construction of >,
we know that o is picked before o' and o”, because o’ and o” are dominated in
every preference order whenever o has not yet been picked. Moreover, we know
that agent ¢ must pick item o, because whenever o,0’,0” have not yet been
picked, item o is dominated in every preference order except agent i’s. Thus,
after the agents in my have picked the unique most preferred remaining item
in their preference order, all items that agent i prefers to item o (in >}) have
been picked. Note that agents n + 1 and n + 2 are not in 7, since as long as
item o is not picked both of these agents are confused (i.e. they don’t have a
most preferred item in their preference order). Thus, (mp,7) can be extended
(by appending the rest of agents in N in arbitrary order) to a permutation 7w
under which agent i gets item o when serial dictatorship is run on (N, 0, >')
with permutation of agents . O

Since possibly PO and certainly PO assignments coincide with PO assign-
ments for deterministic pairwise preferences, we get the following corollary.

Corollary 7. For the pairwise uncertainty model, EXISTSPOSSIBLYPO-
ASSIGNMENT and EXISTSCERTAINLYPO-ASSIGNMENT are NP-complete even
if pairwise preferences are all deterministic.

The proof of Theorem 13 exploits the fact that certainly preferred relations
can be cyclic under the pairwise uncertainty model. What if we disallow cycles
in certainly preferred relations? Our next result shows that checking whether a
certainly PO assignment exists is NP-complete for instances of pairwise uncer-
tainty model, even if the certainly preferred part of the preferences is acyclic.

Theorem 14. For the pairwise uncertainty model, EXISTSCERTAINLYPO-
ASSIGNMENT is NP-complete even if the certainly preferred part of the pref-
erences is acyclic.

Proof. EXISTSCERTAINLYPO-ASSIGNMENT is in NP because it can be checked
in polynomial time whether a given assignment is certainly PO or not (Corol-
lary 1).
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To prove NP-hardness, we reduce from SERIALDICTATORSHIPFEASIBILITY
problem. Let (N,O,>’,i,0) be an instance of this problem. We construct an
instance of the pairwise uncertainty model (N, O, >) as follows.

e For agent i:

— For all pair of items o; and o, 0; # 0 and oy # o, let 0y =5 oy if
and only if o; >} of.

— For all items oy, such that o >} o, let o >§ert Og

— For all items oy, such that ox >/ o, let p(o >=; o) = 0.5. That is,
1 prefers o over o with probability half, and prefers o, to o with
probability half as well. In fact we can replace 0.5 with any value in
(0,1).

e For each agent j € N\ {i}:

— For all pair of items o; and ok, oy # o and o # o, let oy >§e“ oy if
and only if o; = 0.

— For all items oy such that oy >; o0, let oy >§ert 0

— For all items oy such that o =} o, let p(ox =; 0) = 0.5. That is,
j prefers o over o with probability half, and prefers o to o, with
probability half as well. In fact we can replace 0.5 with any value in
(0,1).

Intuitively speaking, in the uncertain pairwise instance constructed above,
each agent preserves the same certainly preferred relation as in =’ for all pairs
of items that do not include o. In addition, agent i preservers the certainly
preferred relation between o and every item she likes less than o under >/,
and every other agent preserves the certainly preferred relation between o and
every item she liked better than o under »'. Every other possible pairwise
comparisons are assigned probability half. This way, we can ensure that there
exists a linear realization of the preference profiles such that ¢ ranks o at the
top of her preference list, and every other agent ranks o at the bottom of their
preference lists. We denote this linear preference profile by =*. Also, =’ is one
of the realizable preference profiles.

Our first observation is that an assignment is PO under profile >=* only if 4
receives o in it (Observation 1).

We now prove that we have a yes instance of SERIALDICTATORSHIPFEA-
SIBILITY if and only if our constructed uncertain pairwise instance admits
a certainly PO assignment. Since SERIALDICTATORSHIPFEASIBILITY is NP-
complete, this will entail that EXISTSCERTAINLYPO-ASSIGNMENT is NP-
complete.

Assume that there exists a certainly PO assignment w. Then, w must be PO

under =* implying that, by Observation 1, 7 receives o in w. Assignment w must
also be PO under profile =" which implies that there exists an assignment (i.e.
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w) that is PO under profile >’ and in which ¢ receives o. In light of Fact 1, this
implies that there exists a serial dictatorship the outcome of which under profile
>’ is w. Hence, we have a yes instance of SERIALDICTATORSHIPFEASIBILITY.

Now consider the case when we have a yes instance of SERIALDICTATOR-
SHIPFEASIBILITY. This means that there is a permutation of agents m under
which ¢ gets o when serial dictatorship is run. Let us call this assignment by
w. Due to Fact 1, w is PO under preference profile =’. It remains to show that
w is PO under all preference profiles that are realizable from >. Due to The-
orem 3, it is sufficient to prove that for all realizable preference profiles, there
exists a corresponding permutation of agents under which the outcome of serial
dictatorship is w.

In fact, we show that SD(N, O, =", 1) = w for all realizable preference profiles
>=". The proof is by induction on the number of rounds in SD, and by showing
that at the end of any given round k, all agents m(1)...w(k) are assigned the
same items as in w.

Round 1: Either the first agent in the permutation is ¢ or not.

e If (1) = i: It must be that i ranks o at the top of >,. Therefore, 0 =% o,
for all items oy, # o. Hence in all realizable preference profiles >, i prefers
o to all other items and there SD(N, O, =", ) assigns o = w(i) to i.

e If m(1) = j, j # i: First note that j cannot have o at the top of >~/ or
w(j) = o, a contradiction. Therefore, there is another item, say o', at the
top of = and w(j) = o. By the construction of >, j prefers o’ to all other
items in every realizable preference profile -7, and hence SD(N, O, >",)
assigns o' = w(j) to j.

Assume that the induction claim holds for k¥ > 1. We show that it holds for
k+1.

Round k + 1: either the k£ 4 1’th agent in the permutation is ¢ or not.

o If w(k + 1) = i: When serial dictatorship is executed given >’ and the
permutation of the agents m, i is assigned o. This implies that o is still
available, and all items 7 prefers to o under =’ are taken. As the assignment
of all agents who appeared earlier than 7(k + 1) = ¢ are the same under
both >’ and =", therefore the set of remaining items T is the same under
both preference profiles and includes o. Therefore, by the construction
of =i, 0 =5 o for all o, € T, and hence i prefers o to all items in
T under all realized preference profiles =7. Therefore SD(N, O, =", )
assigns o = w(i) to i.

o If m(k+1) =14, j # i: Agent j is assigned an item that is not o, say o,
in w. This means that when serial dictatorship is executed given =" and
the permutation of the agents 7, o is available when it is j’s turn, and all
items j prefers to o’ are taken. This implies that if o is not taken yet, then
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it must be the case that o’ =’ o (Observation 2). As the assignment
of all agents who appeared earlier than 7(k + 1) = i are the same under
both >’ and >", therefore the set of remaining items T is the same under
both preference profiles and includes o’. By the construction of >, and
Observation 2, o’ >§e“ o, for all o, € T', and hence j prefers o’ to all items
in 7" under all realized preference profiles 7. Therefore SD(N, O, =", )
assigns o’ = w(j) to j.

Thus w is PO under all possibly realizable preference profiles, and this com-
pletes the proof. O

Theorem 14 gives us the following corollary.

Corollary 8. For the pairwise uncertainty model, ASSIGNMENTWITHHIGHEST-
PO-PROB is NP-hard even if the certainly preferred part of the preferences is
acyclic.

Theorem 15. For the pairwise model, PO-PROBABILITY is #P-complete.

Proof. 1t is straightforward to show that PO-PROBABILITY is in #P. Hardness
for #P can be shown by following the reduction used in the proof of Theorem 12.
In this reduction, each agents either has a certain linear preference, or a pref-
erence where they are indifferent between their two most preferred items (and
have a certain linear preference over all other items). These preferences can
straightforwardly be expressed in the pairwise model, hence PO-PROBABILITY
is #P-hard under this model as well. O

8. Ranking Model

In this section, we consider the ranking uncertainty model. In the ranking
model, each agent i reports a bistochastic matrix M; of size n x n. The rows
of the matrix correspond to indices of items and the columns to the rank of
the items. Note that if the matrix is a permutation matrix (with only 0-1
entries), then the ranking model degenerates to a linear preference. We say
that a permutation matrix P is consistent with a bistochastic matrix @ if for
each P;; = 1, we have that ();; > 0. We say that a linear preference >; is
consistent with a ranking preference if the permutation matrix representing >;
is consistent with the ranking preference matrix. For any ranking preference
matrix M; for agent i, we will also consider a corresponding ‘consistency graph’
which is a bipartite graph (OU R, E) where R = {1,...,n} is the set of possible
ranks and (o,r) € E if ¢ expresses non-zero probability for o to be in rank r.

By Birkhoft’s theorem [22], any bistochastic matrix can be represented as
a convex combination of at most quadratic number of permutation matrices.*
Hence, a ranking preference profile can always be represented as a lottery pref-
erence profile. This representation is not necessarily unique; that is, a ranking

4We say that the bistochastic matrix is decomposed into permutation matrices.
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preference profile may have several or possibly even exponentially many lottery
preference profile representation. Due to this reason, it is not clear whether
the PO probability of a matching is well-defined under the ranking model. In
view of this we clarify the definitions of possibly PO and certainly PO that
we are using for the ranking model. We say that an assignment is certainly
PO under the ranking model if it is certainly PO for all lottery preference pro-
files that represent the ranking preference profile. Likewise, we say that an
assignment is possibly PO under the ranking model if it is possibly PO for
some lottery preference profile that represents the ranking preference profile.
Next, we argue that Corollaries 1 and 2 regarding ISPO-PROBABILITYONE and
[sSPO-PROBABILITYNONZERO hold under the ranking model. In order to do
so, we will show that “possibly preferred” (and hence “certainly preferred”) and
“possibly most preferred item in a set” can be checked in polynomial time.

Given a ranking preference profile =, we say that b =$* ¢ if b >/ ¢ in each
linear preference profile =’ that is in the support of some lottery preference
profile that represents . Note that a linear preference is in the support of
some lottery preference that represents a ranking preference if and only if the
linear preference is consistent with the ranking preference. The negation of
b =5°" ¢ holds if there exist j,k € [n] such that j < k and there is a linear
preference consistent with the ranking preferences in which b gets rank k and
c gets rank j. The relation b #$°"* ¢ can be tested by checking whether there
exist j,k € [n] such that j < k and the consistency graph corresponding to the
ranking preferences admits a perfect matching in which (b, k) and (c, j) are part
of the matching.

Given a ranking preference profile >, we say that a is a possibly most pre-
ferred item of agent i among a set of items O, if there is a linear preference
consistent with > in which a is the most preferred item in set O’. The latter
can be checked in polynomial time as follows. For each possible rank j for item
a, we construct a corresponding graph G; = (O U R, E) which is derived from
the consistency graph by removing all edges involving a except (a, j), as well as
removing all edges (o, k) where o' € O’ \ {a} and k < j. Then a is a possibly
most preferred item of ¢ in O if and only if there exists a perfect matching for
some Gj.

For the ranking model, a possibly PO assignment always exists and can
be computed by finding a linear preference profile consistent with the ranking
model and then running serial dictatorship.

Theorem 16. For the ranking uncertainty model, a possibly PO assignment
always exists and can be computed in polynomial time.

Proof. Note that in the ranking model, each agent i reports a bistochastic ma-
trix M; of size n x n. Since the matrix is bistochastic, it admits at least one
permutation matrix consistent with M;. Such a permutation matrix is a valid
possible deterministic preference of agent ¢ and it can be computed in polyno-
mial time via reduction to finding a perfect matching. Thus we can find for
each agent a possible linear order. Once we compute a linear order for each
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agent, we can run serial dictatorship on the resultant linear order profile to find
a possibly PO assignment. O

On the other hand, just like the other four models, EXISTSCERTAINLYPO-
ASSIGNMENT is NP-complete under the ranking model. The proof is an adap-
tation of the proof of Theorem 7.

Theorem 17. For the ranking model, EXISTSCERTAINLYPO-ASSIGNMENT is
NP-complete.

Proof. The problem EXISTSCERTAINLYPO-ASSIGNMENT is in NP because it
can be checked in polynomial time whether a given assignment is certainly PO
or not (Corollary 1). To prove NP-hardness, we adapt the proof of Theorem 7.

The proof of Theorem 7 involved a reduction from SERIALDICTATOR-
SHIPFEASIBILITY to the problem EXISTSCERTAINLYPO-ASSIGNMENT for the
lottery preference model. In particular, it was shown that there is a yes instance
of SERIALDICTATORSHIPFEASIBILITY if and only if there exists a certainly PO
assignment for the constructed lottery preferences.

Recall that in the proof of Theorem 7 the lottery preferences are constructed
as follows in the reduction. The set of agents and items is the same as in
the original problem SERIALDICTATORSHIPFEASIBILITY. Each agent has two
possible preferences each with probability 0.5. Each agent j € N now has two
preference lists where one of them is >;. For agent i, we add another preference
list >/ in which ¢’s most preferred item is o and the rest of the items are in the
same order as in ;. For each other agent j € N\ {i}, we add a preference list
' which is identical to »; except that o is moved to the end of the list.

We now show that the particular lottery preferences involved in the reduc-
tion have a one-to-one correspondence with uncertain preferences in the ranking
model. The uncertainty lottery preferences of each agent k induce a correspond-
ing ranking matrix M}, that consists of 1s, Os and 1/2s entries. The matrices
are specified as follows.

Let r;(0) be the rank of item o agent ¢ in preference =;. If r;(0) # 1, then
M;(0,1) = 0.5 and M;(o,7;(0)) = 0.5. If r;(0) = 1, then M;(0,1) = 1. The
other entries of the row M;(o) are all zeroes. Now consider some item o' # o.
If o =; o, then M;(d,7;(0")) = 1. If o' >=; o, then M;(o',r;(0")) = 0.5 and
M;(0',r;(0') + 1) = 0.5. The other entries of row M;(0’) are all zeroes.

If rj(0) = n, then M;(o,n) = 1. If rj(0) < n, then M;(o,7;(0)) = 0.5
and M;(o,n) = 0.5. The other entries of row M; (o) are all zeroes. Now con-
sider some item o' # o. If o' >; o, then M;(0’,r;(0’)) = 1. If 0 >; o, then
M;(o',r;(0")) = 0.5 and M;(o’,r;(0') —1) = 0.5. The other entries of the row
M;(0') are all zeroes.

We now claim that the lottery model preferences constructed are the unique
lottery preferences consistent with agents’ ranking uncertain preferences. Con-
sider any decomposition of the matrix M} into permutation matrices. Each
permutation matrix can be viewed as encoding an injection from the set of
items to their ranking for agent k. If & = i, then for agent 7, in one of the
permutation matrices P?, i has to have o in the first position, and in another

35



permutation matrix P}, i has o in the same ranking as in the preference ;. In
P?, when i has o in the first position, i has her original first ranked item in the
second position, her original second ranked item in the third position, and so on
until we reach o’s original ranked position. Hence P? corresponds to preference
~!. By a similar argument P} corresponds to preference ;. If k = j # 4, then
by a similar argument, one of the permutation matrices le corresponds to >
and the other permutation matrix Pj2 corresponds to >-;-.

It is clear that the uncertain lottery preferences > and >} with probability
half each resulted in uncertain ranking matrix M. We also showed that M
can only be achieved by the unique probability distribution of half probabil-
ity each over deterministic preferences > and >=}. Thus, we have established
that the ranking preference represented by M} are equivalent to the lottery
preferences. Therefore there exists a certainly PO assignment in the ranking
preferences model if there exists a certainly PO assignment in the other lottery
preference model. Hence, it follows that there exists a certainly PO assignment
for the ranking model if and only if we have a yes instance of SERIALDICTA-
TORSHIPFEASIBILITY. O

Theorem 17 gives us the following corollary.

Corollary 9. For the ranking model, ASSIGNMENTWITHHIGHESTP O-PROB is
NP-hard.

Next we show that PO-PROBABILITY is #P-complete for instances for which
PO probability is well defined because there is a unique and compact lottery
model representation for the ranking model preferences. Hardness for #P can
be shown by using the reduction used in the proof of Theorem 12.

Theorem 18. For the ranking model, PO-PROBABILITY is #P-complete.

Proof. 1t is straightforward to show that PO-PROBABILITY is in #P. Hardness
for #P can be shown by using the reduction used in the proof of Theorem 12.
In this reduction, each agents either has a certain linear preference, or a pref-
erence where they are indifferent between their two most preferred items (and
have a certain linear preference over all other items). These preferences can
straightforwardly be expressed in the ranking model. Thus, for the ranking
model, PO-PROBABILITY is #P-hard as well. O

9. Conclusions

We presented some general characterization and algorithmic results that ap-
ply to large classes of uncertainty models. We then extended the study to five
uncertainty models, three of which are especially compact (at most polynomial
in the number of agents and items). We see that as we move from determin-
istic preferences to uncertain preferences, the complexity of computing Pareto
optimal outcomes jumps significantly even though the input for problems we
study may not be compact. The computational hardness results carry over to
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more complex models in which there may be more items than agents, agents
may have capacities, and items may have copies. In the paper, we made an
assumption that the underlying preferences are strict. It will be interesting to
explore the situation when the underling preferences could be weak. A deeper
parametrized complexity analysis of the problems is a promising research direc-
tion. An orthogonal but equally interesting direction will be to consider other
fairness, stability, or efficiency desiderata.
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