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Lithology identification is an indispensable part in geological research and petroleum engineering study. In recent years, several
mathematical approaches have been used to improve the accuracy of lithology classification. Based on our earlier work that
assessed machine learning models on formation lithology classification, we optimize the boosting approaches to improve the
classification ability of our boosting models with the data collected from the Daniudi gas field and Hangjinqi gas field. ,ree
boosting models, namely, AdaBoost, Gradient Tree Boosting, and eXtreme Gradient Boosting, are evaluated with 5-fold cross
validation. Regularization is applied to the Gradient Tree Boosting and eXtreme Gradient Boosting to avoid overfitting. After
adapting the hyperparameter tuning approach on each boosting model to optimize the parameter set, we use stacking to combine
the three optimized models to improve the classification accuracy. Results suggest that the optimized stacked boosting model has
better performance concerning the evaluation matrix such as precision, recall, and f1 score compared with the single optimized
boosting model. Confusion matrix also shows that the stacked model has better performance in distinguishing sandstone classes.

1. Introduction

Well log data contain rich geological information, which is a
synthesized reflection of formation lithology and physical
properties. ,erefore, geological interpretation of well log
data and interpretation accuracy are crucial. Regular in-
terpretation methods such as statistical approach have low
accuracy and slow efficiency. A reliable way to understand
subterranean lithology is obtaining core samples or cuttings
from the reservoirs. However, it is expensive and there is
always some depth uncertainty [1]. Hence, it is urgent to
explore more effective, accurate, and economical methods to
make better use of well log data. Because of the development
of different logging tools such as wireline and logging while
drilling, we can collect numerous data in the petroleum
industry [2]. Computational techniques can help with the
analyzing of the log data with high dimension. With the
popularization and development of computer technology,
sophisticated tasks such as lithology identification become
more intelligent. In recent years, many researchers applied

different algorithms on lithology identification and achieved
great performance through updating and improving
algorithms.

In recent years, there has been an increasing amount of
literature on identifying lithology classes with machine
learning approaches. Rogers et al. applied the back propa-
gation approaches in neural network technique to obtain
patterns to classify the lithology such as limestone, dolomite,
and shale [3]. Rafik and Kamel compared the prediction
accuracy of three approaches, namely, neural networks
technique, generalized additive model, and alternating
conditional expectations, to predict permeability using well
logs [4]. ,eir results showed that the regression with al-
ternating conditional expectations has the best performance.
However, the neural network models are mainly applied to
regression problems. ,e support vector machine models
and random forest models have better performance in
classification problems. Al-Anazi and Gates presented a
support vector machine (SVM) classification approach to
identify lithology in a variegated sandstone reservoir with

Hindawi
Mathematical Problems in Engineering
Volume 2019, Article ID 5309852, 13 pages
https://doi.org/10.1155/2019/5309852

mailto:cz4g16@soton.ac.uk
https://orcid.org/0000-0001-9109-4783
https://orcid.org/0000-0002-2145-0559
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/5309852


fuzzy logic [5]. ,eir result showed that the performance of
SVM is better than neural network in lithology identification.
Sebtosheikh and Salehi concluded that the prediction ac-
curacy of an SVM classifier with normalized polynomial
kernel function could be improved by using the tuning
approach to obtain the optimum parameter set for the kernel
function [6]. Besides SVM, several studies have used random
forest models to classify lithology. Cracknell and Reading
concluded that random forest models have better lithology
classification performance compared with other machine
learning models based on the geological and geochemical
data [7]. Moreover, Ao et al. proposed a pruning random
forest algorithm to select appropriate features on seismic
interpretation, which improves the prediction accuracy and
generalization of the model [8]. Also, Bestagini et al. dem-
onstrated that a gradient boosting classifier could help with
the feature augmentation and improve the facies classifica-
tion accuracy based on wireline logging measurements [9].

Existing research that identifies lithology classes uses
different lithology features. ,us, examining the perfor-
mance of various machine learning models from existing
studies is technically challenging. Our previous work ana-
lyzed the performance of five machine learning models with
the same lithology feature set and concluded that ensemble
methods perform better than classifiers such as support
vector machine and neural network with a small feature set.
Boosting approach is one of the ensemble methods.
Moreover, our previous results showed that boosting
method has a better capability in distinguishing sandstone
classes compared with other classifiers [10]. Based on our
previous work, this study conducts a meticulous evaluation
over three boosting models, namely, AdaBoost, Gradient
Tree Boosting (GTB), and eXtreme Gradient Boosting
(XGBoost) with 5-fold cross validation. ,e models are
optimized with regularization and stacking. Beyond the
basic parameter set like the learning rate and the number of
boosting stages, we investigate the impact of regularization
parameters, namely, the fraction of samples to be applied for
fitting the individual base learners and the number of fea-
tures to be considered when determining the best split for
individual base learners, on the performance of the model.
Hyperparameter approach is then adopted to get the opti-
mum values for the parameter set of each model. In the end,
stacking is used to merge the three optimized boosting
models. ,e performance of three boosting models and the
stacked model is analyzed with accuracy scores and con-
fusion matrix. Results show that the stacked model not only
outperforms individual models in accuracy but also has
better performance in distinguishing sandstone classes.

,e paper is composed as follows. Section 2 provides a
methodology for boosting models we used in this paper,
together with the regularization and stacking optimization
process. Section 3 describes the process that we train and
optimize boosting models from the collected data. In
Section 4, we presented the performance of individual
models and the stacked model with accuracy matrix and
confusion matrix. Section 5 summarizes the performance
of the stacked model on classification accuracy and outlines
future work.

2. Methodology

2.1. Boosting. With the enormously increased data, signif-
icantly improved algorithms, and powerful computing
hardware, machine learning has excellent breakthroughs in
many diverse areas such as recommendation systems [11],
speech recognition [12], and natural language processing
[13]. Machine learning is defined as statistical approaches to
detect the data patterns that can be used to predict the
properties of unseen data [14]. Supervised learning is one of
the machine learning tasks that generate prediction models
based on the labelled training data, which has two major
learning divisions, namely, supervised regression and su-
pervised classification. Our work performed the supervised
classification on a labelled dataset with multiple classes from
several logging wells. Boosting approach is adopted to solve
the multiclass classification problem.

Boosting is one of the powerful machine learning pro-
cedures that produce accurate prediction rules by merging
several fairly inaccurate rules [15]. Different from the
bagging approach [16], boosting sequentially generates base
models and combines the base models into the final accurate
model. Boosting trains the weak classifiers on a weighted
dataset sequentially, and the performance of the previous
classifiers determines the weight of each data item [17]. Data
items that are incorrectly predicted or misclassified by the
preceding weak classifier would be assigned with a higher
weight. Consider a two-class supervised classification
problem with the training set (x1, y1), (x2, y2), . . . , (xn, yn),
where each xi belongs to the instance set X and each yi

belongs to the binary label set Y � − 1, +1{ }. Assuming the
number of boosting iterations is M, boosting fits the model
f(x) which can be written as a weighted majority vote as
f(x) � 􏽐

M
m�0fm(x) � 􏽐

M
m�0amhm(x), where hm(x) denotes

the sequentially built model and am denotes the learning rate
for this mth model. ,e loss function L(y, f(x)) is used to
tell how well the model fits the data by measuring the
difference between the predicted values f(x) and the true
values y. Most of the boosting algorithms can be seen to find
am and hm(x) to minimize the loss function 􏽐

n
i�1L

(yi, fm− 1(xi) + amhm(xi)) at each iteration m.

2.1.1. AdaBoost. ,e AdaBoost algorithm, articulated by
Freund and Schapire in 1995, is one of the most useful
boosting algorithms for classification problems [18]. Algo-
rithm 1 provides the algorithm for AdaBoost. Considering a
two-class classification problem, each data point in the
training set (x1, y1), (x2, y2), . . . , (xn, yn) is provided with
an weighting parameter wn for each xi, which is set to 1/n
initially. At each stage of the training process, AdaBoost
trains a new classifier using the data with different weighting
parameters that are altered based on the performance of the
previous classifier.,osemisclassified data points get greater
weights when trained in the next stage training. Finally,
when the number of base classifiers reaches the number of
iterations, these base classifiers are combined to form a
strong classifier based on the weight of each base classifier am

and the corresponding base classifier hm(x).
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Basic AdaBoost models are used to handle the binary
classification problems. Hastie et al. proposed a new algo-
rithm named stagewise additive modelling using a multiclass
exponential loss function (SAMME) that extends the original
AdaBoost algorithm to support multiclass classification [19].
SAMME is similar to AdaBoost except for the computation
for learning rate am. In SAMME, am is calculated as equation
(1), where K stands for the number of classes in multiclass
classification. So, the misclassified data points would gain
more weight during the training process in SAMME than
AdaBoost. Also in SAMME, the final model is also calculated
differently with equation (2), which combines the weak
classifiers and predicts the final class with themost got class k.
In this case study, we applied SAMME in AdaBoost algo-
rithm to perform the multiclass lithology classification task:

am � ln
1 − errm

errm

􏼨 􏼩 + ln(K − 1), (1)

h(x) � argmax 􏽘

M

m�1
amI hm(x) � k( 􏼁. (2)

2.1.2. Gradient Tree Boosting. Gradient Tree Boosting (GTB)
is another stepwise boosting approach that builds the final
accurate model by adding base models sequentially.,e base
models of each training stage are trained to best reduce the
loss function. Friedman proposed the gradient boosting
method [20] and the refined generalized boosting model that
uses regression tree as the base model [21].,e GTB training
algorithm is presented in Algorithm 2. ,e model is ini-
tialized with a value a0. A gradient descent process is applied

at each training stage m to minimize the loss function
􏽐

n
i�1L(yi, fm− 1(xi) + amhm(xi)). Assume there are M iter-

ations. For each training stage, first-order Taylor expansion
of loss function is evaluated and zim is calculated to get the
direction to minimize amhm(x). In GTB, regression tree
models are taken as base learner as it can simplify the de-
cision-making process [22]. ,e regression tree model selects
the feature with the highest information gain as the root node.
,en, the root node splits and adds features with the next best
information gain as its child node. ,is splitting and adding
process is then repeated recursively for the new grandchild
nodes. ,e input space is partitioned into Jm joint regions
R1m, R2m, . . . , Rjm with predicted constant values
b1m, b2m, . . . , bjm. ,e base learner hm(x) is the sum of these
predicted values. ,en, amhm(x) is calculated to minimize
the loss function. At last, the new model fm(x) is updated
with the sum of previous model f(m − 1) and amhm(x).
However, a large number of iterations lead to poor gener-
alized models. To solve this problem, Friedman’s algorithm
uses a shrinkage parameter ρ on the calculated model
amhm(x) to constrain the learning rate of the training process
[21]. ,e training process for the boosting model is slow and
requires more boosting iterations to train the model.

2.1.3. eXtreme Tree Boosting. GTB algorithm adopts first-
order Taylor expansion of loss function for approximate tree
learning, while Chen and Guestrin proposed a scalable tree
boosting algorithm eXtreme Tree Boosting (XGBoost) by
using higher-order approximation to learn a better tree
structure [23]. ,e XGBoost algorithm works as Algo-
rithm 3. For each iteration m in boosting steps, it calculates
the multiplier zim and gim with first-order Taylor expansion

(1) Given (x1, y1), . . . , (xn, yn), where xi ∈ X, yi ∈ Y � − 1, +1{ }; the number of iterations: M
(2) Initialize equal weights for each data item wi � 1/N, i � 1, 2, . . . , N

(3) For m � 1 to M:

(a) Fit a classifier hm(x) to training data by minimizing the weighted error function Jm � 􏽐
N
i�1w

(m)
n I(hm(xi)≠yi)

(b) Compute errm � 􏽐
N
i�1w

(m)
i I(hm(xi)≠yi)/􏽐

N
i�1w

(m)
i and evaluate αm � ln (1 − errm)/(errm)􏼈 􏼉

(c) Update the weight for each data item w(m+1)
n � w(m)

n exp αmI(hm(xi)≠yi)􏼈 􏼉

(4) Construct final model h(x) with am and weak model hm(x): h(x) � sign(􏽐
M
m�1αmhm(x)).

ALGORITHM 1: AdaBoost algorithm, modified from [17].

(1) Given (x1, y1), . . . , (xn, yn). ,e number of iterations: M
(2) Initialize f0(x) � a0 � argmin􏽐

n
i�1L(yi, a0)

(3) For m � 1 to M:

(a) Compute ∀i · i ∈ 1 . . . n⟹ zim � − [zL(yi, f(xi))/zf(xi)]f(x)�fm− 1(x)

(b) Fit base model hm(x), hm(x) � 􏽐
Jm

j�1bjmI(x ∈ Rjm)

(c) Calculate amhm(x) to minimize the loss function amhm(x) � argmin􏽐
n
i�1L(yi, fm− 1(xi) + amhm(xi))

(d) Update current model fm(x) with previous model fm(x) and the constrained ρamhm(x),
fm(x) � fm− 1(x) + ρamhm(x) (x ∈ Rjm)

(4) Calculate the final boosting model f(x) � 􏽐
M
m�0fm(x).

ALGORITHM 2: Gradient Tree Boosting algorithm, modified from [20, 21].
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and higher-order Taylor expansion and uses themultiplier to
calculate the leaf weights that determine the weak tree model
structure. ,en, the weak tree models fm(x) are combined
to generate the final boosting model f(x).

2.2. Regularization. ,e task of machine learning is to fit an
accuracy model to describe a pattern for both training data
or untrained data. If a trained model is excessively complex
and too fit to the training data, the overfitting occurs so that
the trained model has poor predictive performance. Regu-
larization technique is used to control the model complexity
and improve the generalization of the model, which is a
trade-off between training loss and model complexity.
Regularization can be seen to minimize the loss function
􏽐

n
i�1L(yi, f(xi) + ah(xi)) + C∗Ω(h(xi)) where Ω(h(xi))

denotes the complexity of the model and C denotes the
penalization parameter on model complexity. Lasso regu-
larization (L1) and Ridge regularization (L2) are the most
commonly used regularization techniques in supervised
learning. L1 regularization can be seen to minimize the loss
function 􏽐

n
i�1L(yi, f(xi) + ah(xi)) + C∗ 􏽐min‖w‖, where

the penalization C is applied on the absolute value of the
weights [24]. L2 regularization is used minimize the loss
function 􏽐

n
i�1L(yi, f(xi) + ah(xi)) + C∗􏽐min‖w‖2 [25].

,e penalization C determines how much to penalize the
weights to make the model simpler and avoid overfitting. In
L1 regularization, different penalization parameters can be
tried on different independent subsample of data to get the
optimal value. Chen and Guestrin have used several regu-
larization techniques to control the complexity of the tree
model, namely, regularization on the basis function ex-
pansion, regularization on the individual tree model, and
randomization, based on L2 regularization [23]. Chen’s
approach tried to minimize the objective function
􏽐

n
i�1L(yi, f(xi) + ah(xi)) +Ω(h(xi)) in each iteration, and

they used the second-order approximation to quickly op-
timize the objective in general setting [26]. In Chen’s ap-
proach, they expand Ω(h(xi)) with equation (3). Here, cT

denotes the number of leaves in the tree and (1/2)λ‖w‖2

denotes the L2 norm of leaf scores. By expanding Ω(h(xi)),
the optimal solution is to minimize objective in equation (4),
which can be rewritten to equation (5) with a second-order
approximation [23]. ,en, the optimal leaf weight w∗j of leaf

j can be computed by equation (6). In this case study, we
applied L1 regularization with subsampling on the GTB
model and L2 regularization on the XGBoost model:

Ω h xi( 􏼁( 􏼁 � cT +
1
2
λ‖w‖

2
, (3)

L � 􏽘

n

i�1
L yi, fm− 1 xi( 􏼁 + amhm xi( 􏼁( 􏼁 + cT

+
1
2
λ‖w‖

2
,

(4)

L≃􏽘
T

j�1
􏽘
i∈Ij

zim
⎛⎜⎝ ⎞⎟⎠wj +

1
2

􏽘
i∈Ij

gim
⎛⎜⎝ ⎞⎟⎠w

2
j

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

+ cT,

(5)

w
∗
j � −

􏽐i∈Ij
zim

􏽐i∈Ij
gim

. (6)

2.3. Stacked Generalization. Ensemble methods are learning
strategies that take a weighted vote over the predictions of a
collection of constructed classifiers to classify new examples
[27]. ,ese stacked classifiers should be accurate and diverse
to make the ensemble of the classifiers with better perfor-
mance than any of the individual classifiers [28]. ,e
stacking method works as shown in Figure 1, which im-
plements hard and soft voting for the classifiers. In hard
voting, the final class label is predicted as the label with the
majority vote by the classification models, while soft voting
averages the class probabilities to predict the final class. In
this case study, we applied soft voting with equal weights for
the AdaBoost classifier, Gradient Tree Boosting classifier,
and XGBoost classifier.

2.4. Evaluation. Overfitting and underfitting are two critical
issues for learning models. Overfitting occurs when the
model is too complicated and fits the training data too well,
which has high variance and low bias. Underfitting, on the
contrary, has a high bias but low variance because the model
is too simple. Evaluating the accuracy of classifiers is helpful
to predict the result of unseen data [29]. Cross validation is

(1) Given (x1, y1), . . . , (xn, yn). ,e number of iterations: M
(2) Initialize f0(x) � a0 � argmin􏽐

n
i�1L(yi, a0)

(3) For m � 1 to M:

(a) Compute zim � − [zL(yi, f(xi))/zf(xi)]f(x)�fm− 1(x), for i � 1, . . . , n, and gim � − [z2L(yi, f(xi))/zf (xi)
2]f(x)�fm− 1(x), for

i � 1, . . . , n

(b) Fit base model hm(x), hm(x) � 􏽐
Jm

j�1bjmI(x ∈ Rjm).
(c) Determine the leaf weight for the learnt structure with zim and gim

(d) Update current model fm(x) with previous model fm(x) and the constrained ρamhm(x), fm(x) � fm− 1(x) +

ρamhm(x)(x ∈ Rjm)

(4) Calculate the final boosting model f(x) � 􏽐
M
m�0fm(x).

ALGORITHM 3: XGBoost algorithm, modified from [23].
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one of the evaluation approaches with resampling procedure
on a limited number of data. A k-fold cross validation splits
the dataset D into k subsets with approximate equal size
randomly. For each iteration i ∈ 1, 2, . . . , k{ }, the classifier is
trained on data D/Di and tested on Di. ,e accuracy of the
model is estimated by averaging the k results.

,ere are several evaluation metrics to measure the
performance of a multilabel classification model, namely,
accuracy score, precision, recall, and f1 score. Accuracy score
measures the portion of the classes that are correctly pre-
dicted. Precision defines the ratio of positive classes that are
predicted by the model correctly to all predicted positive
classes. Recall defines the ratio of positive classes that are
predicted by the model correctly to all actual positive classes.
,e f1 score is a balanced average of the precision and recall,
which can be presented as

f1 � 2∗
precision∗ recall
precision + recall

. (7)

In this case study, a generalizable multiclass classification
model is built to identify lithology classes from different
areas.We use 5-fold cross validation with accuracy score and
f1 score as the evaluation matrix to control the model
complexity and improve the model generalization.

3. Case Study

3.1. Dataset. Ordos Basin, which is located in the central-
west of China, is a largemulticycle cratonic basin.,e proved
reserves of natural gas, coal-bed gas, and coal in Ordos Basin
are ranking first in China. ,e relevant research data are
collected from the Carboniferous and Permian clastic strata,
which are the main gas-bearing continental strata in Ordos
Basin. ,e major lithologies of these formations are sand-
stone, mudstone, and coal. Also, a small amount of carbonate
rocks can be found. ,e data used in this study are obtained
from two gas fields, namely, the Daniudi gas field (DGF) and
Hangjinqi gas field (HGF), which are two productive gas
fields in north Ordos Basin. A large amount of log data and
core analysis reports of the corresponding depth of twelve
wells are used to identify lithologies.

In this study, based on the grounds of the sandstone
grain diameter classification of the oil industry standard of
China, five sandstone types are classified in the light of
different grain size ranges. ,e lithologies are divided into
five types, namely, sandstone, siltstone (S), mudstone (M),
coal (C), and carbonate rock (CR). Based on the grain di-
ameters of the sandstones, we categorized the sandstone
classes into pebbly sandstone (PS), coarse sandstone (CS),
medium sandstone (MS), and fine sandstone (FS). Seven
well log parameters are collected from twelve wells of the two
gas fields, which provide information of characteristics of the
rock or sediment in a borehole. Table 1 shows the log pa-
rameters with their descriptions. ,us, we classify eight li-
thology classes in the DGF area and seven lithology classes in
the HGF area during model selection and evaluation.

3.2. Data Processing. We collected 915 and 1,238 log
readings from several wells in the DGF area and HGF area,
respectively. Seven logging parameters mentioned in Section
3.1 are extracted to build the training and test dataset. With
the collected data, we created two datasets, one with 915
instances of data with seven features and the other with 1,238
instances of data with seven features. We used the data from
the DGF to train and optimize the boostingmodels; then, the
performance of the optimized model was evaluated by using
the datasets from both areas. During the training process, the
data were randomly split into two datasets, which takes 80%
as the training set and 20% as the test set.

3.3. Multiclass Classification Model Training. In this case
study, we evaluated the performance of unoptimized boosting
models, namely, AdaBoost, Gradient Tree Boosting, and
XGBoost. ,en, we optimized the Gradient Tree Boosting
approach and XGBoost with the regularization technique. In
the end, we optimized the three classifiers by applying soft
voting with equal weights on them. It is essential for su-
pervised models to obtain appropriate parameter set to be
trained to predict the unseen data.,is case study used tuning
as a parameter selection process to improve the model
classification accuracy.,e tuning process uses a performance

Training
set

Test set

C1

C2

Classification
models Predictions

Final
prediction

Voting

Cn Pn

P2

P

P1

... ...

Figure 1: Ensemble method working process.
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matrix to evaluate the same model with various parameter
sets and selects the parameter set that has the best classi-
fication accuracy. Grid search approach was adopted with
the accuracy score to optimize the parameter set. We iterate
through all the combinations of the parameter set to get the
best one. As mentioned in Section 2, the boosting model
requires two parameters to be tuned, namely, the number of
iterations M and the learning rate am. In regression tree
models, the parameter of a tree needs to be tuned, namely,
the minimum number of samples required at a leaf node,
maximum depth of the individual tree, and the minimum
number of samples required to split an internal node. In
addition, the parameter of regularization also needs to be
tuned, namely, the parameters that constraint and penalize
the complexities of individual tress and subsampling of row
and column. Table 2 provides the parameters that require
tuning in the AdaBoost classifier, GTB classifier, and
XGBoost classifier, including the parameters for regulari-
zation of models.

,e grid search will train the data through all the per-
mutation of the parameter set. It takes a lot of time and
calculation power to train the data if the parameter set is
large. Narrowing down the range of parameter set is helpful
to improve the training efficiency and accuracy. In this case
study, we adopted the validation curve and test set deviance
to determine the range of the parameter set.

Validation scores show whether the trained model is
overfitting or underfitting for the parameter values. When
the model is underfitting, the validation score increases with
the training score and vice versa. We used 5-fold cross
validation to calculate the validation curve for AdaBoost and
XGBoost to determine the proper parameter search range.
Figures 2 and 3 show the validation curve for parameters
that need to be tuned for the AdaBoost classifier and
XGBoost classifier, respectively. Results indicate that both
the tree model parameters as well as the regularization
parameter require tuning as the validation curve does not
change dramatically. Table 2 shows the determined search
range of parameter of AdaBoost and XGBoost.

Test set deviance was also applied to determine the
search range for tree model parameters and regularization
parameters based on the boosting iterations. Figure 4
presents the test set deviance for the GTB model with dif-
ferent parameter sets. We used the cross-entropy loss to
measure the performance of a model over various stages of
the boosting iteration. Results show that the test deviance
converges within 200 boosting iterations for the parameter
set. We determined the search range for boosting iterations
is within 100–200. ,e fourth figure shows that a smaller

learning rate will get a better result. Besides, the tree model
parameters require tuning as test deviance are almost the
same for different parameter values. We determined the
search range for GTB in Table 2.

,e tuning process iterates through all the combinations
of the parameter set within the search range. Each time, the
training data are trained with the specific parameter set with
5-fold cross validation. And the optimum parameter set that
has the best cross validation score was selected to train the
data from the DGF and HGF area. Table 2 presents the
optimum parameter set for the three classification models.

3.4. Prediction Evaluation. To prove that the optimized
boosting model works on general lithology classification
problems, we evaluate the model with lithology datasets
from two different areas. Besides, random seeds are also
examined in the model to promise the generalization of the
optimized boosting model. For the two datasets from two
areas, we trained the data ten times and calculated the matrix
of precision, recall, and f1 score to assess the performance of
AdaBoost, GTB, XGBoost, and the stacked model. ,e data
are split into the training set and test set randomly with a
random seed in each training iteration. ,e training data are
trained on fourmodels with the optimum parameter set. Test
data are then used to calculate the performance matrix. After
ten training iterations, average scores of precision, recall,
and f1 score are calculated to analyze the performance of
different models. Beyond the performance matrix, confusion
matrix of each model is calculated over the two areas. We
used the confusion matrix to present which lithology class is
challenging to identify and which kind of lithology classes
are difficult to be distinguished.

4. Results and Analysis

,is section analyzes the classification results of the three
classifiers as well as the stacked model. Initially, the grid
search result of the best parameter value set for the four
classifiers is presented. Next, the evaluation matrix that
contains precision, recall, and f1 score is assessed over the
models trained with the best hyperparameter in the Ada-
Boost classifier, GTB classifier, and XGBoost classifier.
Evaluation is also provided in the stackedmodel that has soft
voting over the three classifiers with the best parameter set.
Finally, we develop confusion matrices in two areas by
comparing the predicted labels from four classifiers with true
labels from the test set, which presents the classification
performance of each classifier on each lithology class.

Table 1: Logging parameters with descriptions.

Logging parameter (unit) Abbreviation Descriptions
Gamma-ray (API) GR Measure naturally occurring gamma radiation
Acoustic (μs/m) AC Measure capacity to transmit seismic waves
Density (g/cm3) DEN Provide formation’s bulk density
Compensated neutron (%) CNL Measure thermal and epithermal neutron
Deep lateral (Ωm) LLD Measure deep formation resistivity
Shallow lateral (Ωm) LLS Measure shallow formation resistivity
Caliper (cm) CAL Measure the diameter and shape of the formation
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4.1. Tuning Process. Table 2 shows the optimum parameter
set for the three classification models. Results show that the
performance of three boosting models is profoundly af-
fected by the learning rate that shrinks the contribution of
each base model hm(x) within the boosting model. A small
value of learning rate leads to underfitting as the penalty
imposed on the base models is small, but if there is no
shrinkage used in the boosting stages, a huge variance will
occur. ,e number of boosting iterations is also a

significant parameter for boosting approaches. Results
show that 200–300 boosting iterations are enough to train
the model with the specified boosting model. More
boosting iterations will make the model better fit the
training data at the expense of increased large variance.
Regarding parameters related to the tree structure, smaller
value of the depth of the tree models will cause underfitting
for the model. Other parameters will not cause the model
losing classification accuracy.

Table 2: Tuned parameters for boosting models with search range and optimum value.

Boosting model Tuned parameters Search range Optimum value

AdaBoost Learning rate 0.1–0.9 0.4
Number of iterations 50–300 200

GTB

Learning rate 1e − 5–1 0.3
,e minimum number of samples obliged at a leaf

node 5–20 20

Maximum depth of the individual tree 5–20 20
,e number of boosting steps 100–200 200

,e minimum number of samples obliged to split an
internal node 10–50 25

Subsample 0.6–1 0.7

XGBoost

Learning rate 0–0.3 0.3
Minimum loss reduction to split 0.1–0.5 0.2
L1 regularization term on terms 1e − 5–1e− 2 1e − 4

,e minimum number of samples obliged at a leaf
node 5–50 20

Maximum depth of individual tree 1–9 6
Number of boosting steps 300–900 900

Ratio of columns when constructing trees 50–100 60
Subsample 0.4–1 0.7

Minimum sum of instance weight 1–10 2
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Figure 2: Validation curve of learning rate and boosting iterations for the AdaBoost classifier.
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4.2.AccuracyMatrix. ,e performances of the four boosting
models are evaluated over the training set with the 5-fold
cross validation approach, which takes precision, recall, and

f1 score as the evaluation matrix. Tables 3 and 4 show the
evaluation matrix of each boosting model for each lithology
class in the DGF and HGF, respectively. ,e results of the
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Figure 4: Test set deviance for the Gradient Tree Boosting classifier.
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performance matrix show that the prediction accuracy in the
HGF area is higher than that in the DGF area.,is is because
that HGF has fewer classes to classifier, thus the prediction
accuracy would be higher. Another important finding is that
the optimized stacked boosting model achieves best classi-
fication accuracy compared with the other three individual
boosting models in both areas. Tables 3 and 4 compare the
average prediction accuracy of three boosting models and
the stacked model. As shown in the tables, the f1 scores of
optimized stacked boosting model are 83.2% and 86.4%,
respectively, which are higher than all the individual
boosting models. ,is proves that the performance of the
stacked boosting model is better in accuracy and general-
ization. Moreover, Tables 3 and 4 present the abilities of four
models to distinguish different lithology classes. Looking at
the prediction accuracy for C and M, it is apparent that all

boosting models have a higher classification accuracy for
coal class and mudstone class compared to those of other
classes. ,e accuracy scores indicate that there exist some
identical lithology properties to identify coal and mudstone
classes. Our previous research shows that the ensemble
methods are applicable to identify lithology classes given the
number of logging data is limited.,e gradient tree boosting
model performs better in classifying the four sandstone
classes than the SVM classifier, neural network classifier, and
random forest classifier [10]. In this case study, the average
precision scores of GTB classifier on the sandstone classes in
DGF and HGF are 76.1% and 83.%, respectively, while the
average precision scores of the optimized stacked boosting
model are 77.5% and 84.2%, respectively. ,ese results show
that the optimized boostingmodel has better performance in
classifying sandstone classes than the GTB classifiers.

4.3. Confusion Matrix. Figures 5 and 6 show the confusion
matrix that compares the class labels predicted by the four

Table 3: Performance matrix of 5-fold cross validation over the
AdaBoost classifier, Gradient Tree Boosting classifier, XGBoost
classifier, and stacked classifier in the Daniudi gas field.

Precision Recall f1 score
AdaBoost
C 0.996 0.935 0.964
CR 0.96 0.901 0.925
CS 0.629 0.585 0.603
FS 0.788 0.78 0.783
M 0.859 0.872 0.863
MS 0.779 0.835 0.805
PS 0.82 0.807 0.811
S 0.786 0.791 0.777
Avg 0.825 0.818 0.819
XGBoost
C 0.991 0.938 0.963
CR 0.941 0.957 0.947
CS 0.592 0.629 0.601
FS 0.758 0.782 0.767
M 0.855 0.862 0.857
MS 0.788 0.759 0.771
PS 0.793 0.796 0.791
S 0.762 0.74 0.74
Avg 0.81 0.801 0.802
Gradient Tree Boosting
C 0.969 0.961 0.964
CR 0.93 0.924 0.925
CS 0.614 0.605 0.602
FS 0.812 0.779 0.793
M 0.881 0.861 0.869
MS 0.781 0.815 0.793
PS 0.84 0.832 0.833
S 0.801 0.832 0.808
Avg 0.826 0.824 0.823
Stacking result
C 0.99 0.962 0.974
CR 0.94 0.949 0.943
CS 0.64 0.668 0.648
FS 0.819 0.79 0.802
M 0.888 0.874 0.879
MS 0.801 0.809 0.803
PS 0.839 0.82 0.826
S 0.798 0.858 0.819
Avg 0.841 0.833 0.832

Table 4: Performance matrix of 5-fold cross validation over the
AdaBoost classifier, Gradient Tree Boosting classifier, XGBoost
classifier, and stacked classifier in the Hangjinqi gas field.

Precision Recall f1 score
AdaBoost
C 0.9 0.675 0.741
CS 0.836 0.81 0.821
FS 0.827 0.823 0.824
M 0.909 0.922 0.914
MS 0.858 0.817 0.835
PS 0.846 0.901 0.872
S 0.859 0.716 0.772
Avg 0.859 0.857 0.856
XGBoost
C 0.825 0.725 0.759
CS 0.822 0.792 0.806
FS 0.796 0.816 0.802
M 0.899 0.919 0.907
MS 0.853 0.761 0.803
PS 0.839 0.886 0.862
S 0.819 0.805 0.805
Avg 0.846 0.845 0.842
Gradient Tree Boosting
C 0.9 0.7 0.76
CS 0.832 0.793 0.812
FS 0.819 0.826 0.82
M 0.919 0.915 0.916
MS 0.854 0.823 0.836
PS 0.839 0.895 0.865
S 0.843 0.755 0.787
Avg 0.857 0.851 0.85
Stacking result
C 0.9 0.75 0.801
CS 0.856 0.795 0.823
FS 0.826 0.835 0.827
M 0.919 0.924 0.919
MS 0.863 0.831 0.847
PS 0.847 0.904 0.874
S 0.901 0.818 0.852
Avg 0.868 0.867 0.864
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trained models and true labels on the DGF and HGF test
dataset. To eliminate the effect of CR in the confusion
matrix, we remove the CR classification result in the DGF
area. ,e diagonal of the matrix presents the percentage of
lithology classes that are correctly classified. ,e rest of the
matrix shows the percentage of corresponding classes that
are misclassified to other classes. It is evident in the matrix
that only a small amount of C and M classes would be
misclassified to other classes. In both areas, the classification
accuracy for M and C classes is over 95.0% and 85.0%,
respectively. However, the four sandstone classes are easy to
be misclassified with each other. All the models have dif-
ficulty in distinguishing the sandstone classes. For example,
with the GTB model in the DGF area, 30% of CS class would
be misclassified to PS class and 16.7% of CS class would be
misclassified to MS class. And this is the case for all the four

models. It is likely that the grain diameters of sandstone are
challenging to ascertain in some circumstances. And it is
possible that human error is involved in the labelling work
that labels the sandstone classes. However, the stacked
model has the best classification accuracy in classifying
sandstone classes. In the DGF area, the average classification
accuracy for AdaBoost, GTB, and XGBoost are 77.7%,
77.22%, and 79.65%, respectively. However, the classification
accuracy for the stacked model is 81.15%. ,e same result
applies to the HGF area. ,e average classification accuracy
for AdaBoost, GTB, and XGBoost is 80.1%, 81.75%, and
81.73%, respectively. And the classification accuracy for the
stacked model is 82.73%. As shown in Figure 5, three in-
dividual models have different classification performances in
different sandstone classes. ,e GTB model can classify the
PS class with 95% of accuracy while the other models only
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Figure 5: Confusion matrix of (a) AdaBoost model, (b) Gradient Tree Boosting model, (c) XGBoost model, and (d) stacked model on the
DGF test dataset.
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achieve 85%. Also, the AdaBoost model can classify the MS
class with 84.8% while other models can only achieve 81.8%.
,e stacked model can balance the advantages of three
individual models and construct the model with the best
performance. It achieves the 95% of accuracy for PS class and
84.8% for MS class. ,e same rule applies to the HGF area.
Overall, the stacked model has better classification accuracy
in sandstone classes compared with the individual models.

5. Conclusion

In this study, well logging data acquired from several wells
from two gas fields in the Ordos Basin were used to train
the boosting models for the multiclass lithology classifi-
cation problem. ,e performance of three individual

boosting models and their stacked model was evaluated
through classification accuracy, precision, recall, f1 score,
and confusion matrix. During the training process, the
grid search approach was adopted to optimize the pa-
rameter set for boosting models. We used the test deviance
approach and validation curves to narrow down the search
range of the parameter set. In order to prove the gener-
alization of the result, the experiment was performed ten
times in two different areas. Each time, all the data items
were mixed and then split into training sets and test sets
randomly, where training sets are used to train the
boosting model and stacked boosting model with 5-fold
cross validation and evaluation matrix. Testing sets are
used to evaluate the performance of each model with the
confusion matrix.
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Figure 6: Confusion matrix of (a) AdaBoost model, (b) Gradient Tree Boosting model, (c) XGBoost model, and (d) stacked model on the
HGF test dataset.
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Results show that the stacked boosting model performs
the best for lithology classification compared with other
individual boosting models when the number of lithology
characteristics is limited. ,e test deviance result also shows
that 200–300 might be enough for the number of boosting
iterations for GTB. A large number of boosting iterations
will cause overfitting in AdaBoost and GTB. Moreover, the
stacked boosting model could avoid overfitting by applying
regularization on GTB and XGBoost. Our previous work
shows that the difficulty for multiclass lithology classification
is the sandstone classification. ,e confusion matrix shows
that the optimized stacked boosting model has better per-
formance in distinguishing sandstone classes, while the GTB
and AdaBoost classifiers have relatively lower classification
accuracy. ,e optimized stacked boosting model has a
relatively high classification accuracy, which could assist in
lithology identification and improve work efficiency.
However, as the ensemble method requires the trained
boosting models for the soft voting, it is relatively slow to
construct. As the boosting approach trains the final model
step by step, more work can be done to develop a pretrained
model as the base model for the multiclass lithology clas-
sification problem. Also, more data with more features could
be collected to improve the classification accuracy for
sandstone classes.
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