
University of Southampton

Faculty of Engineering and Physical Sciences

Electronics and Computer Science

Non-Negative Matrix Factorisation:
Algorithms and Applications

by

Steven E. Squires

Thesis for the degree of Doctor of Philosophy

March 2019

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

Electronics and Computer Science

Doctor of Philosophy

NON-NEGATIVE MATRIX FACTORISATION: ALGORITHMS AND

APPLICATIONS

by Steven E. Squires

Non-negative matrix factorisation (NMF) is attractive in data analysis because it can

produce a sparse and parts based representation of the data. In this thesis we investi-

gate and demonstrate solutions to several aspects of NMF. In particular, we consider

the oft overlooked issue of model selection utilising a principled approach using infor-

mation theory, provide a method for including external data into the NMF formulation,

implement an autoencoder framework that can perform variants of NMF, and extend

this autoencoder approach using variational methods to produce a probabilistic form of

NMF.

Two problems of model selection are explored in this thesis by taking a minimum de-

scription length (MDL) approach. First we produce and demonstrate a method using

MDL to provide an estimate of the optimal subspace size to project onto. Secondly we

extend this work by utilising MDL within the objective function for NMF to provide

an automatic method of regularising the factorised matrices. The final representation

should then be produced from a principled trade-off between accuracy and complexity

reducing the problem of over-fitting.

In standard NMF we factorise our data into two matrices without consideration of any

external sources of information. If we could include these exogenous drivers into the

NMF formulation it might enable an improved factorisation to be formed using infor-

mation not directly available to the internal data. Our solution to this problem, called

XNMF, finds a combined representation which includes these external drivers by utilising

an extended version of the popular multiplicative update method. We prove theoreti-

cally that our method is guaranteed to reduce the objective function monotonically and

that it also does so empirically by testing on financial data. In addition, we demonstrate

that XNMF produces an improved representation and that it may produce better clus-

ters in the data than standard NMF. We also investigate the broader utility of XNMF

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

iv

by application to a problem in biology - spatial proteomics. We demonstrate that there

are useful data analysis advantages to using XNMF and that there may be many other

biological applications of this technique.

Our next contribution is to explore the use of autoencoders in producing the NMF fac-

torisation (AE-NMF). We provide a set of methods that can produce the two factorised

matrices and investigate advantages of using AE-NMF. In particular, we show that AE-

NMF allows for the easy extension of NMF to perform a wider variety of tasks and with

different objective functions.

Finally, we produce a method of combining AE-NMF with variational autoencoders to

produce a probabilistic version of NMF. This method, unlike standard NMF, allows us

to: generate new data; provides a probabilistic representation between the input and

latent space; gives some sense of the uncertainy in our representation; and produces

a representation that is regularised in a principled manner. Unlike some other forms

of probabilistic NMF this approach does not require the use of sampling such as the

Markov Chain Monte Carlo technique.

Contents

Abstract iii

Contents v

List of Figures ix

List of Tables xv

Declaration of Authorship xvii

Acknowledgements xix

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

1.3 Publications . 2

1.4 Report Organisation . 4

2 Review of Key Concepts and Related Work 7

2.1 Basics of Non-Negative Matrix Factorisation 7

2.2 The Context of NMF within Machine Learning 10

2.2.1 Unsupervised Learning . 10

2.2.2 Dimensionality Reduction . 11

2.3 Relationship between NMF and Similar Techniques 13

2.4 Algorithms for NMF . 13

2.5 Improvements to NMF . 16

2.6 NMF Extensions . 18

2.7 Applications of NMF . 19

3 Rank Selection in Non-negative Matrix Factorization using Minimum
Description Length 21

3.1 Introduction . 21

3.1.1 Rank Selection in Non-negative Matrix Factorization 21

3.1.2 Approach and Contribution . 22

3.2 Minimum Description Length . 23

3.2.1 Background and Theory . 23

v

Contents vi

3.2.2 Proposed MDL Algorithm . 24

3.3 Application of Minimum Description Length 27

3.4 Conclusion . 32

4 Minimum Description Length as an Objective Function 35

4.1 Introduction . 35

4.2 Minimum Description Length . 37

4.3 Methods and Algorithm . 38

4.4 Results and Discussion . 41

4.4.1 Recreation of the original data . 43

4.4.2 The learning process . 43

4.4.3 Representing true data over noise 47

4.5 Conclusions . 48

5 Non-Negative Matrix Factorisation with Exogenous Inputs 51

5.1 Introduction . 51

5.2 Model and Learning Algorithm . 52

5.3 Data . 56

5.4 Results . 56

5.5 Conclusion . 59

6 XNMF for Combining Spatial Proteomics and Protein-Protein Inter-
action Networks 61

6.1 Introduction . 61

6.1.1 NMF in Biology . 62

6.1.2 Spatial proteomics . 62

6.1.3 PPI networks . 63

6.1.4 Integrating Biological Data . 63

6.1.5 Motivation . 64

6.2 Data and Methodology . 64

6.2.1 Data-sets . 64

6.2.2 XNMF Method for Integrating Spatial Proteomics and PPI net-
work data . 66

6.3 Results and Discussion . 69

6.3.1 Analysis of the Data and Techniques 70

6.3.2 Representation of the data . 72

6.3.3 Clustering and Classification . 77

6.4 Summary . 79

7 A Framework for Performing Variants of Non-Negative Matrix Fac-
torisation using Constrained Autoencoders 83

7.1 Introduction . 83

7.1.1 Neural Networks and Autoencoders 84

7.1.2 Non-Negative Constraints in Neural Networks 84

7.1.3 Using Neural Networks to perform NMF 85

7.1.4 Motivation . 85

7.2 Methodology . 85

7.2.1 Basic AE-NMF . 85

Contents vii

7.2.2 Variations to AE-NMF . 87

7.2.2.1 Network Depth . 88

7.2.2.2 Alterations to Objective Function 88

7.2.2.3 Online versus Batch . 91

7.2.2.4 Autoencoder for XNMF 91

7.2.3 Transfer Learning for AE-NMF . 92

7.3 Results and Discussion . 93

7.3.1 Minor Choices . 93

7.3.2 Online Approaches . 94

7.3.3 Applying a more Convex Objective Function 95

7.3.4 Deep AE-NMF . 95

7.3.5 XNMF using AE-NMF . 96

7.3.6 Transfer Learning in AE-NMF . 97

7.4 Summary . 98

8 A Variational Autoencoder for Probabilistic Non-Negative Matrix Fac-
torisation 101

8.1 Introduction . 101

8.1.1 Using Autoencoders for NMF . 101

8.1.2 Variational Autoencoders . 102

8.1.3 Probabilistic Non-Negative Matrix Factorisation 102

8.2 PAE-NMF . 103

8.2.1 Ideas Behind PAE-NMF . 103

8.2.2 Structure of the PAE-NMF . 105

8.2.3 Details of the PAE-NMF . 105

8.2.4 Methodology . 107

8.3 Results and Discussion . 107

8.4 Summary . 111

9 Conclusions and Future Work 113

9.1 Conclusions . 113

9.2 Future Work . 115

A Cross Validation for Rank Selection in NMF 119

A.1 Cross-Validation . 119

A.1.1 Theory and Methodology . 119

A.1.2 Results and Analysis . 121

B Derivation of Equations for MDL as an Objective Function 123

B.1 MDL as an Objective Function using the Distributions 123

B.1.1 Updates of the objective function 123

C Proof of Monotonic Reduction of XNMF 129

C.1 Introduction . 129

C.2 Proof of convergence . 130

Contents viii

D A Method of Integrating Spatial Proteomics and Protein-Protein In-
teraction Network Data 135

References 145

List of Figures

2.1 (Left) The basis that PCA uses to reconstruct a face. (Right) The basis
that NMF uses to reconstruct a face. The holistic nature of PCA is easy
to compare with the parts based nature of NMF for this data-set. 9

3.1 Left) The description lengths for the Faces dataset, showing a minimum
of the total description length at around r = 80, with a reasonable range
from r = 50 to r = 100. The solid line is for the description lengths
found using the distributions and the dashed line from the histograms,
the choice of r is the same. Right) The description lengths for synthetic
data with a real r of 150. MDL shows a clear minimum at r = 150,
perfectly estimating the correct value. 30

3.2 Left) The total description length for a range of datasets showing where
turning points occur, potentially signalling an effective choice of r. While
no ground truth is known the plots show minima at sensible locations,
which correspond reasonably well with estimates from other sources. Right)
The total description length for a range of synthetic data, MDL correctly
identifies the r term for each dataset except for r = 25 which is still very
close (the red vertical line) to the correct value (the black line). 31

3.3 Left) The solid line shows the results of applying MDL using the distri-
butions for the images of faces dataset. The dotted line shows the same
but for bootstrapped data, these are hard to see as the results are almost
identical. The dashed line shows the same but for MDL applied using the
histograms and the dash-dot line for the equivalent bootstrapped results.
Again there is almost no difference, our results show no significant varia-
tion under bootstrapping. Right) The results of Ltot for varying reduced
size of n for the images of faces dataset. We see a clear reduction in the
optimal r value as n is reduced. The dashed line is for the histogram plots
and the solid line for the distributions. 32

4.1 Plots showing the quality of the final recreated data. (a) One randomly
selected sample from the images of faces dataset. The left image is the
original and the right image is the recreated face for r = 80. (b) Actual
(red dashed line) and recreated (blue dotted line) prices against time for
one stock for r = 10. The top is the stock with most similarity between
actual and recreated, while the bottom plot is the least similar. (c) 5000
randomly selected elements of the data matrices with the recreated value
plotted against original values for the transcriptome data with r = 4.
MDL-NMF effectively recreates all three datasets. 44

ix

List of Figures x

4.2 The reproduced data recorded at different iterations of the training pro-
cess. (a) A sample from the faces dataset; (b) a randomly selected stock
with the real (red dashed) and recreated (blue dotted) prices; (c) 5000
recreated results versus original values for the transcriptome data. All
three show the change from a randomised starting point to a reasonable
recreation of the original data. 45

4.3 The changes in description lengths and errors with iteration for the semi-
synthetic transcriptome data for a low noise variant and a high noise
variant. 46

4.4 The real error against noise error show that MDL-NMF almost always
finds a better fit to the real data than the noise added data. Results for
a range of semi-synthetic data-set types are shown. (a) for MDL-NMF.
(b) for NMF. 47

4.5 A comparison of the real error found for MDL-NMF against NMF and
sNMF for the three semi-synthetic data sets. 49

5.1 (a) The extended multiplicative update algorithm reduces the error mono-
tonically with iteration until a plateau is reached. The multiple blue
dashed (NMF) and solid black (XNMF) lines are for different sizes of the
subspace, r. Generally the XNMF algorithm requires more iterations to
approach a minimum than the NMF algorithm, but reaches a lower final
error. (b) The final errors for different sizes of the subspace, r, for NMF
(blue dashed lines with crosses), XNMF (solid black line) and XNMF us-
ing a W2 with random values (red dotted with circles). At all values of r
that were implemented XNMF produces smaller errors than NMF or the
randomised XNMF. As r is increased the difference between the errors
produced by the algorithms reduces as the capacity of the NMF model
increases and begins to overfit the data. 57

5.2 a) A representation of how much clusters diverge with time. K-means
clustering was applied to non-dimensionality reduced data (dark blue
bars), dimensional reduction using NMF (light blue bars) and dimen-
sional reduction using XNMF (yellow bars) for four times periods and for
a combination of the four periods. The clusters produced from data with
no dimensional reduction diverge the most, with application of NMF the
divergence is reduced and with XNMF we see the smallest divergence,
the clusters tend to hold together better through time. b) Boxplots of the
same results demonstrating the improvement of XNMF over NMF. 58

6.1 PPI distributions of number of links. The histogram is for the entire PPI
dataset of 24,283 proteins. The black line is the distribution of the spatial
proteomics proteins, if all the proteins with no links are removed. The
red line is for all 689 proteins in the spatial proteomics dataset. 66

6.2 Left) Relative importance of the external data for XNMF1 (with r2 =
6) and XNMF2 when r1 increases. Right) Relative importance of the
external data for the automatic features for increasing r2 for three values
of r1. All points shown include three repeats with the standard deviation
shown as an errorbar. 70

List of Figures xi

6.3 Left) The optimal choice of r1 = 2 with the manual features (XNMF2) in
W2 is found by minimising the description length. Right) The optimal
choice of r1 = 2 for the automatically chosen features (XNMF1), shown
for the different values of r2. 71

6.4 a) Final errors for NMF, XNMF1, XNMF2 and XNMFcontrol against
increasing r1, demonstrating that XNMF produces a reduction in error
compared to standard NMF. b) Final errors (as a fraction of the error at
r2 = 2) against r2 which demonstrates the increased value of the external
data as the dimensionality of r2 is increased. 72

6.5 The effect of added noise on the different methods. NMF produces a very
marginally better result that the XNMF versions (lower is better in this
plot). The right plot is a zoomed in version of the left plot. 73

6.6 Top left) The fractional abundances for the raw data for the original
marker proteins. Other three plots) The rows of W1 for the original
markers with r1 = 2, 5, 10 for NMF, XNMF1 and XNMF2. At low r1

values interpretation is much easier than for higher numbers of dimensions. 73

6.7 Plots, for r1 = 2 of the columns of W1 for NMF, XNMF1 and XNMF2
along with equivalent plots for PCA. Each subplot represents one column
of W1 and each dot is the value in that dimension for one protein. 74

6.8 The equivalent plots as Figure 6.7 but with r1 = 6 75

6.9 Visualisations in 2-D of the proteins using PCA, NMF, XNMF1 and
XNMF2. We used r1 = 3 and then plotted two of the components. The
marker proteins are coloured points. All versions give a good represen-
tation of the data. Some of the changes between NMF and the XNMF
versions might tell us something of interest about those proteins. 76

6.10 Left) The change in average sparseness of the W1 matrices as r2 increases.
Right) The average and standard deviation of the sparseness measure for
the W2 columns as r2 increases. 77

6.11 Quality of the clustering, compared to the real labels. A higher value
means that the clustering produces a result closer to the actual labels. . . 78

6.12 The second method of measuring consistency of clustering this time com-
paring across multiple runs of the dimensionality reduction methods. We
see no improvement in the consistency of clustering using these techniques. 78

6.13 Top) Classification accuracies using partitions of the extended marker
set as training set and another partition as the testing set. With use
of concatenated W1 with W2. Bottom) Classification accuracies using
the original marker data as training and the extended marker set as the
testing set. 80

7.1 A basic autoencoder to perform NMF. The weights of Wf must all be non-
negative, the activation function σf which operates on the output neurons
should be the identity and the activation function, σ1, that produces h
must be non-negative. The number of neurons in the hidden layer is the
subspace size. 86

7.2 A deep auto-encoder for performing NMF. We can add as many layers as
we want before the constriction (which has two neurons) but, to perform
NMF, we must have just one set of weights after the constriction. 88

List of Figures xii

7.3 An autoenoder with one hidden layer designed to perform XNMF. The
black lines are all weights that must be learnt while the red lines represent
the external subspace and are constant. 91

7.4 A transfer learning layout for an AE-NMF. We have to learn the weights
and biases labelled in the diagram fresh each time we reuse the network.
Re-learning the first and ith layers allow us to take any dimensional space
and apply this method. The final layer allows us to choose our subspace
size and vary the output size. 92

7.5 (Top left) Final errors for the sigmoid and ReLU activation functions.
(Top right) Final erors for the Adam and gradient descent methods of
updating the network. (Bottom) Final errors of the scaled MU and pro-
jection methods of keeping W non-negative. 93

7.6 Left) Final errors for two versions (grad descent and Adam) of the on-
line algorithm, both use the projection method to keep the weights non-
negative. Right) A comparison of final errors for the online and batch
methods. 95

7.7 A comparison of final squared error found by the NRAE, NRAE-RAE
and normal objective functions. We find no improvement using the RAE
or NRAE over a standard Frobenius norm objective function. 95

7.8 a) Final errors for different starting r-values for two types of deep AE-
NMF and standard NMF. b) The increasing number of H-zeros for in-
creasing starting r-value for the AE-NMF networks with different depths.
c) The final errors for different starting r-values once we factor out the
H-zeros, we see no difference between the AE-NMF and standard NMF
errors. 96

7.9 Final errors against r1 for XNMF and AE-XNMF. The results are similar
for most values of r but at the low end AE-XNMF appears to do better
than XNMF, and at the other end the reverse appears to be true. 97

7.10 Transfer learning from the faces data-set to the MNIST-reduced data-
set showing significant improvements in performance over learning from
scratch. 98

7.11 Transfer learning for the financial data with the transferred network learnt
with data from a previous time period and tested on a later period. We
see no improvement - in fact running from scratch seems to provide an
improvement in accuracy. 98

8.1 Diagram of an autoencoder designed to perform NMF. The weights of the
final layer, Wf , become the directions of the subspace, with the outputs
of the hidden layer, h, as the coefficients in that new subspace. The
activation function that produces h must be non-negative as must all the
elements of Wf . 102

8.2 General PAE-NMF with stochasticity provided by the input vector ε. . . 105

8.3 (Top) Top five are original faces with the equivalent recreated faces be-
low. (Bottom left) Nine stocks with original values (black dashed) and
recreated values (red dotted). (Bottom right) 1000 recreated elements
plotted against the equivalent original. 109

List of Figures xiii

8.4 (Left) Each small image is one of the 81 reshaped columns of Wf for the
faces data-set. The features we see are very similar to what you get in
standard NMF. (Right) Each plot is a column of Wf for the FTSE 100
data-set. 109

8.5 The distributions of h for one data-point from the faces data-set with
r = 9. (Left) These plots show the distributions when we include the DKL

term. (Right) The DKL term is not applied during training. The black
dashed line shows results when we train the network deterministically
using the median value of the distribution and the blue line is when we
trained with random samples. 110

8.6 The left images (top and bottom) are similar to one another and we plot
their distributions as black dashed lines in the plots to the right. The
right images are very different to the left, we plot their distributions as
red dotted lines. The similar images have very similar distributions for
these data-points. 111

8.7 (Left) Sampling from the distributions of the faces data-set with r = 9.
Four original faces are on the left column, with faces drawn deterministi-
cally from the centre of the distribution next to them and three sampled
faces along the next three columns. (Right) Sampling from the FTSE 100
data-set with r = 9 for four different stocks. The solid black line is the
real data and the dotted lines show three sampled versions. 111

A.1 The held-out Gabriel error for the three cross-validation methods with a
total of nine folds, with the addition of a fourth plot for four folds for
the third technique. These cross-validation methods do not show clear
turning points which would give a reasonable choice for r. 122

List of Tables

3.1 Data-set names, the type of data, the number of dimensions, m, and
number of data-points, n. 29

4.1 Data-sets, the type of data, the number of dimensions, m, and number of
data-points, n. 41

5.1 Macro-variables used in this study . 56

6.1 The structure of a spatial proteomics dataset. Each of m-proteins has
n dimensions of protein relative abundances, qi,j , within each density
fraction. If the protein subcellular location is known it is specified as a
marker. This table is adapted from Gatto et al. [39]. 65

6.2 The number of original markers and extended markers for the five or-
ganelles from the Arabidopsis thaliana data-set used in this study [34]. . . 65

8.1 Data-sets names, the type of data, the number of dimensions, m, number
of data-points, n and the source of the data. 108

xv

Declaration of Authorship

I, Steven E. Squires , declare that the thesis entitled Non-Negative Matrix Factorisation:

Algorithms and Applications and the work presented in the thesis are both my own, and

have been generated by me as the result of my own original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as: [126, 125, 124]

Signed:

Date:

xvii

Acknowledgements

I would like to start by thanking my joint supervisors Niranjan and Adam. I could not

have asked for a better combination to have been advised by over the last three years.

Thank you both for the advice, encouragement, support and suggestions.

I also want to thank all the academics and students of the VLC, it has been a brilliant

environment to work in, but also to interact in. Everyone has been so friendly and

approachable its made the lab a pleasure to come into everyday.

To all the folks of the VLCCC, thanks for a fantastic few years. I did not expect to meet

such great people or make such good friends during my PhD. I’m going to miss the trips

to Stags, lunch, coffee/tea breaks, football, squash, barbecues and the rest. It’s been

brilliant.

To my family, thank you for all your care and support over the years: to Mum and Dad,

Matt, Steph, William and Emily, and Ali and Ben. Finally, to Hannah, when I started

my PhD was Dr Hannah Salter and now that I’ve finished is Mrs (Dr) Hannah Squires,

I could not have done it without you.

xix

Chapter 1

Introduction

1.1 Motivation

Dimensionality reduction methods can lead to better predictions and more interpretable

data. Predictions can be improved when applying supervised learning techiques to

dimensionality reduced data for a range of reasons, including noise reduction, reducing

the issue of the curse of dimensionality and emphasising important relationships relevant

to the task. Lower dimensional spaces can be significantly easier to interpret as we can

focus on fewer dimensions and have reduced or removed a lot of the data which does

not provide the main correlations but does obscure the key features.

Non-negative matrix factorisation (NMF) is a linear dimensionality reduction technique

with similarities to, amongst others, principal component analysis (PCA), independent

component analysis (ICA) and linear discriminant analysis. In comparison to the dom-

inant technique, PCA, NMF can be much easier to interpret due to the non-negativity

constraint which tends to produce a sparser, more parts based representation which

is easier to understand, although this comes at the expense of a lower reconstruction

accuracy compared to PCA.

In this thesis we are focused on producing new algorithms to improve NMF and on

applying them to new applications to broaden the applicability of this technique. Inter-

pretability of results is becoming increasingly important because modern methods, such

as deep learning, produce very high prediction accuracy but simultaneously struggle to

provide one of the other key feature of machine learning, explaining why a prediction

is made. At its best, NMF offers greater interpretability than other methods and, with

further enhancements and extensions, some of which we have contributed, will provide

1

Chapter 1. Introduction 2

continued improvements in understanding as we go forward. In this thesis we have iden-

tified and attempted to solve some weaknesses in NMF while also putting forward some

methods to extend and improve this approach.

1.2 Contributions

We make contributions in four broad themes in this thesis:

1. The use of minimum description length in NMF. We apply minimum de-

scription length (MDL) to NMF to provide solutions to two problems: (1) how

to select the rank, or subspace size (Chapter 3); (2) how to trade-off between

the accuracy of the NMF reconstruction and the complexity of the model created

(Chapter 4).

2. Including external information into the NMF formulation. We provide

a method, based on multiplicative updates, to find a solution to this extended

version of NMF, called XNMF. We provide a theoretical proof along with empirical

evidence of its efficacy on financial data. We then demonstrate how XNMF can

be used to provide data analysis solutions for a biological problem (see Chapters 5

and 6).

3. Using autoencoders to perform NMF. We demonstrate how to use an autoen-

coder to perform NMF (AE-NMF) and explore some of the advantages of doing so

over standard NMF. We also show how AE-NMF can be used to perform XNMF

and to include new objective functions (see Chapter 7).

4. Producing a probabilistic version of AE-NMF using a variational au-

toencoder. We adapt the variational autoencoder to apply to AE-NMF. Con-

sequently, we produce a method which performs a probabilistic version of NMF

using an autoencoder (see Chapter 8).

1.3 Publications

These publications, presentations and posters are based purely on research conducted

during my PhD, except for the publication and oral presentatation “A Method of Inte-

grating Spatial Proteomics and Protein-Protein Interaction Network Data” (included in

Appendix D) along with the associated poster “Combining spatial proteomics and PPI

network data” for which part of the work was conducted during my previous MSc in

Computer Science with the rest completed during my PhD.

Chapter 1. Introduction 3

Publications

• Steven Squires, Adam Prügel-Bennett & Mahesan Niranjan (Under review), A

Variational Autoencoder for Probabilistic Non-Negative Matrix Factorisation In-

ternational Conference on Learning Representations.

• Steven Squires, Adam Prügel-Bennett & Mahesan Niranjan (Under review), Min-

imum Description Length as an Objective Function for Non-negative Matrix Fac-

torisation. Pattern Recognition.

• Steven Squires, Luis Montesdeoca, Adam Prügel-Bennett & Mahesan Niranjan,

Non-Negative Matrix Factorisation with Exogenous Inputs for Modelling Financial

Data, In: International Conference on Neural Information Processing, Springer

International Publishing, 2017.

• Steven Squires, Rob Ewing, Adam Prügel-Bennett & Mahesan Niranjan, A Method

of Integrating Spatial Proteomics and Protein-Protein Interaction Network Data,

In: International Conference on Neural Information Processing, Springer Interna-

tional Publishing, 2017.

• Steven Squires, Adam Prügel-Bennett & Mahesan Niranjan, Rank Selection in

Non-negative Matrix Factorization using Minimum Description Length, Neural

Computation, 2017.

Posters and Presentations

• Oral Presentation - Steven Squires, Luis Montesdeoca, Adam Prügel-Bennett &

Mahesan Niranjan, Non-Negative Matrix Factorisation with Exogenous Inputs for

Modelling Financial Data, International Conference on Neural Information Pro-

cessing, 2017

• Oral Presentation - Steven Squires, Rob Ewing, Adam Prügel-Bennett & Mahesan

Niranjan, A Method of Integrating Spatial Proteomics and Protein-Protein Inter-

action Network Data, International Conference on Neural Information Processing,

2017

• Poster (peer reviewed abstract) - Steven Squires, Adam Prügel-Bennett & Mahesan

Niranjan, Minimum Description Length as an Objective Function for Non-negative

Matrix Factorisation, Advances in Data Science, 2017

• Poster (peer reviewed extended abstract) - Steven Squires, Adam Prügel-Bennett

& Mahesan Niranjan (2016), Combining spatial proteomics and PPI network data,

NIPS Computational Biology Workshop, 2016.

Chapter 1. Introduction 4

1.4 Report Organisation

This report is structured as follows:

• Chapter 2. We begin by reviewing key concepts in the NMF field. We focus on

a broad explanation of how NMF works, where it fits within machine learning,

how it relates to other techniques and why it is of interest. As this thesis covers

different themes within NMF we also review specific literature as necessary at the

start of each chapter,

• Chapter 3. We discuss the importance, and current methods, of rank selection in

NMF. We consider the weaknesses of some of the prominent techniques and then

introduce the theoretical background behind our novel contribution using MDL.

We demonstrate the efficacy of using MDL to select the subspace size on synthetic

and real data.

• Chapter 4. We discuss potential downsides of the Frobenius norm objective func-

tion currently widely used in NMF. We then introduce the theory and imple-

mentation of using MDL as an objective function to create a different subspace

representation. We demonstrate that our objective function and related algorithms

find good solutions on real and semi-synthetic data

• Chapter 5. We describe the motivation for including additional information into

the NMF formulation (XNMF). Then we introduce our new formulation and al-

gorithm for finding solutions, proving that we monotonically reduce the objective

function. We demonstrate empirically on financial data that XNMF can produce

more stable clusters than standard NMF and produce an improved representation

compared to standard NMF.

• Chapter 6. We use XNMF to integrate spatial proteomics and protein-protein

interaction networks, consequently showing that XNMF can meet several of the

key objectives of data analysis in a biological context.

• Chapter 7. We consider the similarities between autoencoders and NMF, and then

discuss and apply the constraints necessary to make an autoencoder perform NMF.

We demonstrate some of the advantages of AE-NMF and show how it can enable

a broader use of NMF.

• Chapter 8. We produce a method for performing AE-NMF in a probabilistic

manner. We demonstrate the effectiveness of this technique and how it can improve

on standard NMF.

Chapter 1. Introduction 5

• Chapter 9. In this final chapter we draw general conclusions and provide a variety

of potential directions for future work.

Chapter 2

Review of Key Concepts and

Related Work

The work conducted for this thesis covers several areas of machine learning, therefore

in each chapter we will review specific background and literature that relates to that

particular piece of work. In this chapter we will discuss NMF itself in a broad manner

to try and set the scene for this thesis and solidify the motivation of our research as well

as reviewing some of what has been achieved in the field. In Section 2.1 we focus on the

basics of NMF, including how it works and why it is of interest. Then in Section 2.2

we review where NMF sits within machine learning. In Section 2.3 we explain the

relationship between NMF and some other similar techniques. In Sections 2.4, 2.5, 2.6

and 2.7, we review some algorithms, improvements, extensions and applications of NMF.

2.1 Basics of Non-Negative Matrix Factorisation

Consider a data matrix V ∈ Rm×n with m dimensions and n data points which has only

non-negative elements. If we define two matrices, also with only non-negative elements:

W ∈ Rm×r and H ∈ Rr×n, then NMF can reduce the dimensionality of V through the

approximation:

V ≈WH (2.1)

where r < min(m,n) is the number of directions in the subspace of m that we are

projecting onto. Pictorally NMF looks like:

7

Chapter 2. Review of Key Concepts and Related Work 8

 V

 =

W

× [H
]

where the W and H matrices are both smaller than the original starting matrix, V.

The columns of W make up the new dimensions we are projecting onto. Each column

of H represents the coefficients, or loadings, of each data point in this new subspace.

An informative way of looking at NMF, as pointed out by Lee and Seung [73], is to study

each column of V at a time (that is each data point). Equation (2.1) then reduces to

vj ≈Whj where vj and hj are column vectors of V and H respectively. The original

m-dimensional data point, vj , is now represented in this new space by the r-dimensional

hj . If we then consider each row (dimension) of V independently, then the ith row of

vj is Vi,j and the approximation is: Vi,j =
∑r

k=1Wi,kHk,j , i.e. Vi,j , is approximated as

a linear combination of all the elements of hj .

A critical question is then, what does this new subspace represent? A practical example

from facial recognition applications is that each column of W represents a feature of a

face, such as a nose or mouth. The face is then built up from these features. Another

example is in textual recognition. Here each column of W can be considered as a “topic”,

such as biology or physics or chemistry (if thinking of school science textbooks chapters

for example). The topic is a combination of words (or weighted words). So the physics

column of W might have high weightings of words such as Newton, gravity or force. Each

text document would then be represented, via the columns of H, as a combination of

the physics, chemistry and biology topics. In NMF, therefore, two processes must occur:

one finds a new basis (the features, W) while the second finds the best combination of

this new basis for each data point.

The tendency for NMF to produce a sparse and parts based representation is due to

the non-negativity constraint. In PCA if an undesirable feature is included from one

basis vector, it can often be subtracted away by another basis vector. This enables a

non-sparse approach. In NMF by contrast, there is no subtraction possible. As only

addition is allowed, the features are encouraged to be sparse and parts based to allow

an effective build up of the whole [42]. It should be noted that NMF does not always

produce a sparse and parts based solution, this limitation of standard NMF will be

discussed later in this chapter.

NMF contrasts with other linear reduction techniques such as PCA which reduces the

dimension but in a variance preserving, non-sparse and holistic manner, rather than a

sparse, parts-based way. In a facial recognition example the basis vectors from PCA

Chapter 2. Review of Key Concepts and Related Work 9

become a distorted version of the whole face, rather than features of the face [72]. An

advantage of NMF is that the form produced is potentially much more interpretable

(although exactly what we mean when discussing “interpretability” has been chal-

lenged [79]1) than the “eigenface” approach of PCA. In Figure 2.1 we show a comparison

of the basis that is used to build up an image of a faces for PCA (left) and NMF (right).

That is, we show the columns of W reshaped into 19×19 images. The holistic nature of

PCA and the parts based nature of NMF are clear to see (for details on this data-set, see

Chapter 3). The addition of topics or features is an intuitive way of building up a whole.

Moreover, in some circumstances a parts based representation may be more useful than

a holistic approach. For example, NMF can pick out faces which are occluded by the

addition of sunglasses better than methods such as PCA would [42]. As the parts based

approach selects features rather than the whole, when individual features are removed

the rest of the features are unaffected (or at least significantly less affected).

Figure 2.1: (Left) The basis that PCA uses to reconstruct a face. (Right) The basis
that NMF uses to reconstruct a face. The holistic nature of PCA is easy to compare
with the parts based nature of NMF for this data-set.

There are also several applications where it is not physically possible to have negative

values, such as hyperspectral mixing [95]. In this cases allowing negative components

is going against the physical constraints that exist in the real world. In addition, if

negative terms are allowed the components that make up the representation cannot be

true features as they contain negative values so are not built the same as the whole.

It has also been argued that human understanding of the whole is a function of the parts

that make it up [72, 106, 135]. If this claim is true, then NMF functions in a manner

closer to intelligent cognition than holistic approaches. This may be a contentious claim

considering the poor general understanding of human intelligence. In any case, even if

this claim were proved to be spurious, NMF would still be a highly useful technique for

the other reasons outlined above.

1Their claim is that most people take interpretability as a positive idea but without specifying exactly
what they mean by interpretability or exactly why it is useful. In this section we lay out what we mean
by interpretability and why we think it is important.

Chapter 2. Review of Key Concepts and Related Work 10

There is a range of algorithms for NMF, some of which we will discuss in Section 2.4,

most of them involve minimising an objective function such as:

min
W,H

||V−WH||2Fro subject to Wi,j ≥ 0, Hi,j ≥ 0. (2.2)

Other objective functions such as the Kullbeck-Leibler divergence are also options, but

in this thesis we are concerned only with the Frobenius norm, which assumes that the

noise in our data is Gaussian [42].

Most methods to find appropriate W and H matrices involve a two part process, one

of W or H is held constant whilst the other is updated. While this iterative process

ensures that the objective function is convex while one of the factorised matrices is held

constant [143] the overall objective function remains non-convex [43].

In this section we have tried to explain the key features of the basic version of NMF,

how it works and why it is of interest. In the next section we will lay out where NMF

exists in the broader context of machine learning.

2.2 The Context of NMF within Machine Learning

This thesis is concerned with NMF which is a subfield of dimensionality reduction, itself

a subfield of unsupervised learning, which is usually classified as one of the three main

fields of machine learning (alongside supervised and reinforcement learning). In this

section we will ground NMF within unsupervised learning, demonstrating where it sits

with relation to other techniques.

2.2.1 Unsupervised Learning

Unsupervised learning differs from supervised learning in that there are no labels associ-

ated with the data-points. The aim is to extract information without an explicit target.

Using unsupervised learning on its own involves extracting some form of representation,

such as which clusters each data-point belongs to or what lower dimensional space it sits

on. Or, as is quite common, outputs of an unsupervised method, treated as features of

a problem domain, are used to feed to another technique, such as a supervised learning

approach.

As with all machine learning tasks, when applying unsupervised learning, we are trying

to find structure in the data. There are many types of unsupervised learning including:

Chapter 2. Review of Key Concepts and Related Work 11

clustering, Hebbian learning, anomaly detection and dimensionality reduction. Unsuper-

vised learning is too broad a field to review in any detail, instead we focus on techniques

closely related to NMF. However, as NMF can be used to perform clustering we want

to briefy review that set of methods.

Clustering is one of the most popular methods of unsupervised learning, which aims

to assign data-points to groups where all the members are similar in some way. There

are different flavours of clustering with k-means [89] being one of the most popular. K-

means is an iterative process which assigns data-points to a cluster in one step and then

reassigns the location of the clusters in the next. It is a special case of a mixure Gaussian

model [92], commonly these methods are performed using some form of expectation-

maximisation algorithm [28].

In this thesis we focus on the dimensionality reduction side of unsupervised learning.

Dimensionality reduction enables a decrease in the number of dimensions whilst retaining

significant information. It is a technique which offers reduction in noise, increase in

interpretability, increase in speed of subsequent techniques applied to the reduced data

and partial solution to the curse of dimensionality.

2.2.2 Dimensionality Reduction

Dimensionality reduction is an important field in machine learning for several related

reasons. In many classic statistical problems the number of data-points, n, was signifi-

cantly larger than the number of dimensions, m. This meant that overfitting the data

was rarely a significant concern. In modern data problems it is regularly the case that

m > n meaning that solutions can be found to the fitting problem that extract little

real information, instead modelling noise, and provide scant predictive power on unseen

data. By reducing the dimensionality m down to r where r < m and ideally, r � m, we

should be able to reduce this problem [23].

Another challenge with high dimensional data is that as the dimensionality increases the

density of the datapoints in the space becomes increasingly small [62]. This problem is

related to the previous overfitting problem in that it becomes simple to separate out the

data into different classes - but does not provide an ability to distinguish between unseen

data-points. This low density (high sparsity) of data-points makes it very hard to draw

good distinguishing boundaries between clusters of points as there are few datapoint

to utilise. There are also general problems with computing power required when the

dimensionality is high. For example, if using a neural network, the larger the number

of dimensions into the first layer, the more weights that must be computed throughout

Chapter 2. Review of Key Concepts and Related Work 12

the network [70]. Alternatively, if working with matrices, more dimensions require more

computational power to invert or otherwise act upon the matrix.

There is a range of dimensionality reduction methods which can be performed either in

a supervised or unsupervised manner. Supervised dimensionality reduction includes the

use of regularisation such as the L1 (lasso) norm [129] which preferentially sends to zeros

those variables that add less value to the data fit. Another supervised method is linear

discriminant analysis (LDA) which is a generalisation of Fisher discriminant analysis [36]

and attempts to find a projection which effectively separates out the classes. Feature

selection involves selecting those features that provide the most information [18], usually

without actually changing the features themselves.

Factor analysis is a method that aims to describe some observed variables as a linear

sum of fewer latent variables. It aims to find the relationship X − µ = AB + ε where

X are observed variables, µ are their means, A and B hold common factors and latent

variables respectively, and ε are stochastic errors. Factor analysis aims to find both the

common factors (similar to the W in NMF) and the latent variables (H in NMF).

A similar technique to factor analysis, and one of the most famous and effective di-

mensionality reduction techniques, is principal component analysis (PCA) [147], along

with the related singular value decomposition (SVD) which reduces the dimension by

projecting the data onto the directions that maximises the variance of the data. By

ignoring the directions which hold less variance we can reduce the number of dimensions

whilst keeping the maximum information.

By contrast, independent component analysis (ICA) [74, 20] is a technique that assumes

that the signals being received are made up of independent sources. The aim is then to

find the representation that separates out these sources as much as possible, for example

by minimising the mutual information between the sources.

PCA, ICA and NMF all perform blind signal separation, which is a problem that requires

the splitting up of mixed sources with the only data available being the end mixture.

The differences between the techniques are down to different constraints and/or ob-

jective functions: PCA imposes orthogonality, NMF imposes non-negativity, and ICA

maximises the separability of the sources. While there is considerable overlap between

the techniques the differences in constraints and objectives can cause large differences

in outcome and are suitable for different problems.

Chapter 2. Review of Key Concepts and Related Work 13

2.3 Relationship between NMF and Similar Techniques

In the previous section we considered the place of NMF in machine learning. In this

section we want to look more specifically at a small number of techniques which are

closely related to NMF and focus on how NMF is different and similar to them.

Many of the dimensionality reduction techniques appear to be very similar. Often the

differences are only in small changes in certain constraints or slight changes in formu-

lation. For example, PCA and NMF have considerable similarities [37]. PCA can be

viewed as a matrix factorisation technique which takes an input vector v ∈ Rm×1 and

reconstructs it using A ∈ Rm×r and b ∈ Rr×1 [37]. Here A represents the directions

of the subspace and b the components of the datapoint in the new subspace. This for-

mulation of PCA is the same as NMF, but the difference appears when the constraints

are imposed, with PCA the columns of A must be orthogonal while in NMF all the

components of both matrices must be non-negative. These seemingly small changes in

constraints create significant differences in the representation formed and the algorithms

required to carry out the factorisation.

In some respects, sparse principal component analysis (sPCA) [160] has even greater

similarity to NMF. They impose the lasso penalty to reduce some of the components to

zero, this should create a sparser representation, like NMF. However, while sPCA will

produce a sparser solution it has no non-negativity requirement, it is trying to maximise

the variance whilst keeping to the sparseness constraint, which is a different constraint

to non-negativity.

A very close relationship exists between Probabilistic Latent Semantic Analysis (PLSA),

a popular method for analysing natural language data, and NMF, one study showed that

both are types of a more general method [14]. This idea was expanded upon to show

that a solution of PLSA is also a solution of NMF when the KL divergence objective

function is considered [40, 122]. While solutions of one of these methods is a solution of

the other they are different algorithms, a fact that has been demonstrated to be useful if

they are used together to jump out of local minima [32]. We note here that in this thesis

we mainly focus on using the Frobenius norm objective function and do not consider the

KL-divergence form.

2.4 Algorithms for NMF

Before algorithms for finding W and H can be applied an objective function needs to

be chosen, usually these are the Frobenius norm or Kullback-Leibler divergence [143].

Chapter 2. Review of Key Concepts and Related Work 14

In this thesis we solely consider the Frobenius norm. It should briefly be noted that

a potential problem emerges with respect to the objective function, in that actually

maximising the similarity between V and WH is not exactly what we want to do.

Ideally, we would find the W and H which together best compress the data and extract

the features. This will be discussed further in Chapter 4. For now we will accept that

W and H are found by minimising the objective function subject to constraints [42]:

min
1

2
||V−WH||2Fro subject to Wi,j ≥ 0, Hi,j ≥ 0 ∀ i, j. (2.3)

The NMF algorithms are run until they either reach optimality conditions, an iteration

limit or a time limit. Optimality conditions for Wi,j , required for all i and j, are:

Wi,j ≥ 0, (∇WF)i,j = (WHHT −VHT)i,j ≥ 0, (W ◦ ∇WF)i,j = 0 (2.4)

and similarly for Hi,j . The ◦ term denotes component-wise multiplication and F is the

objective function. All three terms must be true for an optimal solution: all elements

of W must be non-negative by definition; if (∇WF)i,j = 0 then a minimum has been

reached; if (∇WF)i,j > 0 and the other conditions hold then Wi,j = 0 and cannot

become smaller; the third term ensures that either (∇WF)i,j = 0 or Wi,j = 0. So there

are two scenarios that give optimal solutions: 1) if (∇WF)i,j = 0 then a stationary

point has been reached; 2) if Wi,j = 0 and (∇WF)i,j > 0 then the minimum occurs

when Wi,j < 0 which is unreachable within NMF constraints so Wi,j = 0 is an optimal

point. If (∇WF)i,j < 0 then if Wi,j increases the error will fall so a minimum has not

yet been reached. In reality, and how we ran our experiments for this thesis, it is often

the case that NMF algorithms are stopped before optimality conditions are reached due

to time or computational constraints.

Most NMF algorithms follow the type of structure in Algorithm 1 (this is adapted

from [42]). The stopping criteria here means either that the optimality conditions for

all terms are met or a time or iteration limit reached. Steps 3 and 4 update W and H

independently whilst keeping the other constant. This is because updating one with the

other fixed is a convex problem, whilst updating both simultaneously is a non-convex

problem. There are a range of techniques for the update step used in NMF of which we

will review a small number.

Multiplicative Updates

Chapter 2. Review of Key Concepts and Related Work 15

Algorithm 1 General NMF algorithm

Input: Data matrix V, subspace size r
Output: W and H

1: Initialise W(0) and H(0)

2: for t = 1, 2, ... (until stopping criteria reached) do
3: W(t) = update(V,H(t−1),W(t−1))
4: H(t)T = update(V,W(t)T ,H(t−1)T)
5: end for

The multiplicative update (MU) was first proposed by Lee and Seung [72]. At each

iteration W and H are modified by [42]:

W←W ◦ [VHT]

[WHHT]
= W− [W]

[WHHT]
◦ ∇WF (2.5)

and

H← H ◦ [WTV]

[WTWH]
= H− [H]

[WTWH]
◦ ∇HF (2.6)

where []
[] means component-wise division. Note that ∇WF = WHHT −VHT . When

∇WF = 0 then [WHHT] = [VHT] and the updated W is the same as the previous W

because the optimality conditions are met, a minima has been reached. When ∇WF > 0

then [VHT]

[WHHT]
< 1 because WHHT > VHT so W is reduced in size to decrease the ob-

jective function. When ∇WF < 0 then [VHT]

[WHHT]
> 1 so the size of W is increased

pushing the solution closer to the minimum. More importantly, Lee and Seung [73]

proved that the multiplicative update is guaranteed to monotonically reduce the objec-

tive function. In Chapter 5 and Appendix C we discuss this proof in much greater detail

when extending it to prove that our extended multiplicative update method for XNMF

also monotonically reduces the objective function. The MU is a simple and easy to im-

plement technique which is guaranteed to monotonically reduce the objective function,

all of which contributes to its popularity. However, it can be slow to reach reasonable

solutions hence the incentive for alternative methods to be developed [42, 44]. We also

include the scaled gradient descent interpretation of the MU, shown on the right hand

side of the equals sign in Equations 2.5 and 2.6, which we will use in Chapter 7.

Alternating Least Squares and Alternating Nonnegative Least Squares

The Alternating Least Squares (ALS) algorithm computes the optimal solution of an

unconstrained problem, with no non-negativity constraints. It then projects the compo-

nents of the resulting matrix (W or H) into the non-negative orthant [42]. This technique

is unlikely to converge and may just oscillate [42]. It may be useful for initialising the

W and H matrices in the first few steps as it is fairly fast. Alternating Nonnegative

Least Squares (ANLS) does the same as ALS but includes the non-negativity constraint,

Chapter 2. Review of Key Concepts and Related Work 16

this can be computationally more costly than ALS but each iteration does reduce the

objective function [78, 42].

Hierarchical Alternating Least Squares

For hierarchical alternating least squares (HALS) the objective function optimisation

problem is solved one column at a time, rather than for the whole matrix, using an

exact coordinate descent method [41, 44]. Part of the explanation for the success of

this method is that the columns of W (and correspondingly the rows of H) tend to

share few non-zero terms. If columns of W are very similar they are redundant and the

r should probably be reduced. A change in one column should have little impact on

another so they can be updated individually, if NMF is achieving the sparse, parts based

representation desired. HALS can be a fast batch technique which has been shown to

provide good solutions for problems including images of faces and sets of documents [42].

Incremental NMF

The techniques discussed above all use the whole data set in a batch approach which has

two significant drawbacks: 1) they can be relatively slow especially on large datasets,

2) if new data-points are added to the sample the entire batch must be re-run, rather

than being able to update individually. Incremental or on-line NMF updates the W

and H matrices as new data points are added. Mairal et al. [90] provide a method

for incremental NMF which they claim to be: faster, effective on large data sets and

which converges (almost certainly) to a stationary point. Other work on online NMF

has included the use of robust stochastic approximation [49] and multiplicative update

rules which assume that new samples do not affect the coefficients of previous data-

points [137].

2.5 Improvements to NMF

Improvements to NMF mainly fall into two categories: 1) improving speed of conver-

gence; and 2) improving the quality of the factorisation. The value of the first point is

obvious, especially with increasing sizes of datasets, but the second requires some further

elaboration. The quality of the factorisation depends on whether: (a) the approximation

between WH and V is reasonable, so an acceptable minimum is reached; (b) W and/or

(depending on your requirements) H are sparse; (c) real features are extracted from the

data.

Recall that in Algorithm 1, where an explanation of the general method of performing

NMF was shown, there are only a few choices to be made about the algorithm before

Chapter 2. Review of Key Concepts and Related Work 17

starting the updates. The W and H matrices must be initialised, any additional con-

straints (such as levels of sparsity) decided upon, the update method chosen and the

size of the subspace selected. In this section, methods of potentially improving these

three pre-update parts of the algorithm are explored.

Initialising W and H

The initialisation of W and H impacts on both the speed and quality categories dis-

cussed above. Many popular methods, such as Hoyer’s algorithm [57], initialise the

matrices at random which may result in both a slow speed of convergence and also a

poor quality factorisation. Gillis [42] discusses some potential methods for better initial-

isation including: clustering techniques (also see Gong and Nandi [47]); using the SVD;

column subset selection. Using genetic algorithms has also been proposed as a potential

option to improve the initialisation [112]. Other groups produce a geometric interpre-

tation which enables them to initialise the factorised matrices [154]. In this thesis we

have mostly initialised W and H at random, unless otherwise stated.

Sparseness Constraints

An important paper in NMF research as by Hoyer in 2004 [57] who showed that while

some datasets show a significant degree of sparseness when NMF is applied others do not.

For images, for example, the level of sparseness tends to depend on the orientation of

the images. Without additional sparseness constraints NMF does not factorise the data

into a parts based representation, negating the key part of the technique. In addition,

in some circumstances it may be desirable to impose addition sparseness onto either of

W or H. For example, if a clustering version of NMF is desired imposing a very high

level of sparsity onto the columns of H can enable clustering to occur [31]. In Hoyer’s

algorithm an L1 norm for W and/or H is set to the desired level, then a gradient descent

algorithm is applied which projects the elements of the matrices into the constrained

space. Adding sparseness constraints can enable NMF to be more effectively used in

some applications. For example a version of sparse NMF was used to identify biological

processes in micro-array data [77], while other work applied similar ideas to a range of

image data [81]. The sparseness constraint also adds to the uniqueness of a solution as

well as the parts based representation [143].

Selection of r

The number of new basis vectors that make up W is given by r. Recent reviews by

Gillis [42], and Wang and Zhang [143] identify the selection of r as an active area of

research which has not been properly explored. This topic will be explored in greater

detail in Chapter 3, here some of the recent literature investigating selection of r is

reviewed.

Chapter 2. Review of Key Concepts and Related Work 18

Gillis [42] points to three common methods to choose r: trial and error; estimation using

the SVD; and use of expert insights. Wang and Zhang [143] also discuss the common

use of trial and error. They point out that with more theoretical results on the non-

negative rank of the matrices or the use of manifold learning techniques might enable

better estimates or bounds on the value of r. The three methods discussed by Gillis will

be reviewed and flaws identified in Chapter 3.

A recent paper by Ulfarsson and Solo [133] used Stein’s unbiased risk estimator (SURE)

to select the best value of r. SURE provides an estimate of the mean-squared error.

This means that finding the minimum of the SURE is an estimate of the minimum

error. Hence it enables the estimation of the parameters of interest, in this case the best

value for r. They derive an equation based upon the MU from [72] and then conduct

experiments using both synthetic and real data. They conclude that their method

provides reasonable predictions of the best r value to use.

A different method by Kanagal and Sindhwani [63] utilises cross-validation to estimate

r. They split V into smaller matrices which are then kept as “held in” or “held out”

parts. We implemented these methods and demonstrated some weaknesses in them, the

results are available in Appendix A.

2.6 NMF Extensions

In this section we explore the potential for NMF to be applied in a broader range of

ways and to a wider class of problems.

Supervised NMF

NMF is an unsupervised learning technique, however there are some approaches that

convert it into a supervised method. In a paper by Wang and Gao [141] they apply

a max-min distance NMF. They add in two additions to the standard objective func-

tion: 1) a minimisation of distances betweens pairs of points in the same class; and

2) the maximisation of pairs of points in different classes. In this manner they utilise

the known class labels to try and improve the ability of the NMF representation to

discriminate between classes. A similar idea is to add the Fisher constraint which max-

imises the between-class scatter whilst minimising the within-class scatter [60]. Gupta

and Xiao [51] apply a maximum margin to the NMF, effectively merging NMF with an

SVM.

Weighted NMF

Chapter 2. Review of Key Concepts and Related Work 19

Weighted NMF introduces an additional weighting matrix, Y ∈ Rm×n, such that Equa-

tion 2.1 becomes Y ◦ V ≈ Y ◦WH [143]. An advantage of weighted NMF is that it

allows more importance to be placed on some elements of the data than others, thereby

biasing the representation so that there is a closer match between those higher weighted

elements of V and WH. This type of bias may be useful if some part of the data is

considered more important, such as the central pixels of a picture. In addition, weighted

NMF allowed Kanagal and Sindhwani [63] to apply their form of cross-validation.

Non-negative Tensor Factorisation NTF

In NMF all data is converted into a vector form before being merged together into

the matrix, V. This process of converting data into a vector may involve the loss of

information as structure in the data could be highly relevant. For example, a grey-scale

picture might be better kept in its two-dimensional form and put together with other

pictures as a three dimensional tensor [81]. NMF is essentially a sub-field of non-negative

tensor factorisation (NTF).

Non-linear NMF

NMF is a linear dimensionality reduction technique. In supervised learning the use of

non-linear mapping has proved enormously useful for classification tasks, such as the use

of support vector machines [21]. Applying a non-linear (or kernel) approach to NMF

allows for a non-linear representation of data which may be able to extract more features

from the data [156, 13]. Adding constraints into the NMF formulation can also enable

NMF to work in a non-linear manner by incorporating information about the manifold

of the data [15, 16, 48]

2.7 Applications of NMF

Most of this thesis is concerned with new algorithms and approaches to NMF. With the

exception of the work in Chapter 6, the data-sets we use are mainly to demonstrate the

value of our techniques. However, the reason for producing these new methods is to be

able to usefully apply them to real world problems. We therefore want to provide some

further motivation for the work in this thesis by considering some applications of NMF.

NMF is popular due to its ability to extract sparse and interpretable representations [143]

and therefore its applications tend to be in areas where these two requirements are high.

For example, Gillis [42] gives examples of the use of NMF in image processing [80, 152],

text mining [120] and hyperspectral imaging [95]. Other applications include using NMF

(and SVD) to model networks [91].

Chapter 2. Review of Key Concepts and Related Work 20

NMF has also proven popular in biological applications [30] where it has been used

with multimodal data to note changes in ADHD sufferers [3], clustering of micro-

array data [97], classifying brain tumours [134, 153], exploring protein-protein inter-

actions [139, 103] and investigating brain networks in rats [144].

We have not covered applications of NMF in any depth or with real breadth in this

section, the review by Wang and Zhang [143] provides many more examples. Our purpose

is, instead, to demonstrate the uses that NMF has found in a wide variety of domains

and to provide some motivation for why we have produced this thesis which attempts to

provide improvements to NMF, which will hopefully find uses in applications like those

referenced in this section.

Chapter 3

Rank Selection in Non-negative

Matrix Factorization using

Minimum Description Length

In this chapter we consider how to choose the subspace size of our factorised matrices

when performing NMF. An effective choice should minimise the noise whilst extracting

the key features. We propose a mechanism for selecting the subspace size by using

a minimum description length (MDL) technique. We demonstrate that our method

provides plausible estimates for real data as well as accurately predicting the known size

of synthetic data.

3.1 Introduction

3.1.1 Rank Selection in Non-negative Matrix Factorization

As noted in Section 2.5, a recent review [42] identified three main methods for selection

of the subspace size r: use of expert insight; trial and error; and use of singular value

decomposition. Expert insights are invaluable but suffer for three main reasons: 1)

there may be no expert capable of selecting a good choice of r; 2) the experts may

select r incorrectly; 3) even if an expert is able to effectively select r then independent

confirmation is useful to add weight to the expert opinion.

Trial and error in this context means trying different values of r and then manual

selection of one that best fits the aim of the researcher for that particular application.

This method suffers as it is hard to know what a “good” solution looks like. Trial and

21

Chapter 3. Rank Selection in NMF 22

error can be dangerous in that it allows researchers to tune their results in a manner

which produces the solution best for their work, so that a “good” solution becomes the

solution that confirms their hypothesis.

Singular value decomposition (SVD) is applied by selecting r when the values of the

singular values becomes “small”. The challenge is that unless there is a clear fall towards

zero the choice of where the values become “small” is very difficult to make. It is also

not clear that the optimal number of dimensions for the variance preserving SVD would

be the same as for NMF.

There are several more involved methods that have been proposed for the selection of

the rank. Examples include the use of cross-validation [63, 104] and the use of Stein’s

unbiased risk estimator [133]. Cross-validation, in particular, is a common technique

across supervised learning for assessing the quality of a model. In NMF, an unsupervised

model, cross-validation essentially requires the imputation of missing data. There are

different techniques for achieving this and [63] showed that these different techniques

can produce significantly different estimates of r or sometimes no estimate at all (see

Appendix A for details).

There is also an approach to NMF by [10] using a Bayesian formulation which offers the

benefit of selecting r whilst finding W and H. They impose a prior belief that the rank

should be small and from there find a solution which fulfils this prior but this requires

domain expertise to determine the choice of a good prior. A MDL approach, such as

ours, can be interpreted in a Bayesian manner with the message lengths replaced with

probabilities [88]. Our aim is to offer our approach as an additional method to help to

guide a choice of r for researchers using NMF, in particular when there is little or no

domain knowledge available.

3.1.2 Approach and Contribution

Our approach is to utilise a minimum description length (MDL) technique to find the

best trade-off between a low r which misses key features and a high r which models

noise. We suggest a pair of methods for applying MDL to NMF to assess the best choice

of r. Our algorithms allow for the estimation of the best value of r and can produce a

range of graphs that can be used to analyse the quality of the estimation.

In the next section we will introduce the background and theory behind MDL, then

propose our solution to find the minimum description length for use in selecting the

subspace size. In Section 3.3 we apply our MDL technique to real and synthetic data

demonstrating the validity of the technique. Finally, in Section 3.4 we discuss the results

Chapter 3. Rank Selection in NMF 23

we obtained and explain why we believe our technique is a useful addition to the NMF

toolbox.

3.2 Minimum Description Length

3.2.1 Background and Theory

MDL is a method for selecting between models of varying complexity. At its core is the

idea that the best model is one that compresses the data most effectively. As the best

way of compressing the data would also involve the smallest transmission cost when

sending an encoded message, compression of the data and transmitting the shortest

message are essentially equivalent.

In the NMF case the message is the matrix V which is approximated using WH. The

model is simple when r is small and, consequently, W and H have fewer elements which

are cheap to encode. However, with a small r the approximation WH ≈ V is likely to be

poor, requiring an addition to the message to correct the poor approximation. The MDL

principle is to choose the model that minimises the total message length [136, 8, 114].

By trading off between the complexity and accuracy of the model, we hope to find the

level of complexity which minimises the transmission of noise whilst maximising the

transmission of real features (or the information content of the data).

There needs to be pre-agreement between the message transmitter and receiver about

the level of precision, δD, that the data, D, should be set to. The message must be

communicated to this agreed precision. This means the message will consist of the

model, H, and corrections to the model to reproduce the original data matrix exactly.

Therefore the message length, L(D,H), consists of two parts [88]:

L(D,H) = L(H) + L(D|H)

where L(H) is the length of the hypothesis, or the complexity of the model, and L(D|H)

encodes the accuracy of the model. More complex models will tend to have a larger

L(H) and a smaller L(D|H).

Two important points should be made here. First we are not interested in how to

actually optimally encode the message, we are only interested in the message length

itself. Secondly, for model selection we are only interested in the relative length of

each message. Any additional pieces of information required in the message that are

consistent across all the different values of r are irrelevant in MDL because they will

Chapter 3. Rank Selection in NMF 24

increase the total description length by a constant amount and make no difference to the

location of the minimum. The only terms that matter are those that will be different

across different values of r. In other words, we are not interested in the message itself,

or the absolute cost of encoding the message, but in the relative cost of sending the

message at different values of r.

3.2.2 Proposed MDL Algorithm

To assess an appropriate subspace size for NMF using MDL we must first specify the

components of L(H) and L(D|H). The encoded length of the hypothesis, or the com-

plexity of the model, L(H) is L(W) + L(H) where L(W) and L(H) are the length of

messages required to encode the matrices W and H respectively. The L(D|H) term is

the length of the correction required to ensure that V can be reproduced exactly (to

pre-specified precision) and is the encoded length of the matrix of errors, L(E), where

E = V −WH. Implementation of MDL then requires the estimation of the minimum

length of code that would allow the three matrices E, W and H to be encoded into a

message. When r is small the matrices W and H are small and so cost relatively little

to encode, but the error matrix, E, is large and therefore expensive to encode. As we

increase r the errors reduce so the cost of transmitting E falls, but the cost of transmit-

ting the model, W and H, increases. At some point there should be an r value at which

the total length is minimised, this is then the minimum description length and gives us

a choice for r.

The principle of MDL relies on the use of the best possible encoding of the data, that

is the encoding with the lowest cost. An upper bound on potential encodings can be

estimated by considering the information content of each element. In general, any value

which occurs multiple times is cheap to encode. To understand why, assume that the

values in the error matrix are Gaussian distributed, then many elements will fall into a

range that is close to the mean which can be assigned a short code. Any element far

from the mean will require a longer code and is therefore more expensive to send. The

Shannon information content allows us to estimate this cost using probabilities and is

defined as [88]:

h(x) = − log2 P (x)

where x is the value of an element and P (x) the probability of that value occurring. The

aim is to find the probability of a value occurring in the W, H and E matrices then to

convert that value to a cost using the Shannon information content.

Chapter 3. Rank Selection in NMF 25

To estimate the probabilities we separate the data into bins of width δD, which is the

precision of the data. This value should be assessed from the data itself. We then apply

two methods to estimate the probability of a term occurring in that bin. The first is to

use the frequency of terms in that bin, ni, compared to the total number of terms, N , so

that P (x) = ni
N where P (x) is the probability of an element x to be in the ith bin. There is

a considerable problem with this method in that while we can estimate the probabilities

of each element in each bin, and hence the bound on the cost of sending the data, we

also would need to send a specification of the histograms themselves, essentially the

starting and end points of the histograms, along with the code used for each histogram.

The bin width could be assumed to be the precision. The encoding of starting and end

points of the histogram are likely to be fairly similar across r and there should be fairly

inexpensive methods of encoding which bins are assigned to which codes but it is not

a trivial task to complete. It is, however, likely that the parameters of this histogram

model will be dwarfed by the cost of encoding the data itself. In the rest of this report

we will refer to this technique as the histogram method.

The second method of estimating probabilities is more consistent with MDL princi-

ples but also suffers from a potential problem. Instead of using the frequencies of the

histograms themselves, probability distributions are applied to the binned data, which

allows us to find the probability density, ρi of each bin, i. The probability for an element,

x, in the ith bin is then P (x) = (ρi × δD). The advantage over the previous method

is that the technique required to send the message is quite straightforward. As long as

we use fairly simple distributions we must simply encode the parameters of the model

and send them. The receiver can then recreate the distributions and will therefore be

able to recreate the message. The only change in the model as r changes will be in the

few parameters of the distribution (for a Gaussian distribution the mean and standard

deviation, for example) which is highly unlikely to have any noticeable effect on the

description lengths for any reasonably large data matrix. The potential problem with

this method is that if the distributions do not fit well with the data, the estimates of the

probabilities will not be accurate. This will then overestimate the description length.

The probability distributions to fit the non-zero terms from W and H should possess

some features: it must be non-negative therefore the probability density should tend

towards zero or infinity at zero values and the probability density should tend towards

zero as the value becomes large. A simple choice is the gamma distribution which has a

probability density function (PDF) of:

ρ(x) =
βα

Γ(α)
x(α−1)e−βx

Chapter 3. Rank Selection in NMF 26

where Γ is the gamma function, α and β are parameters. This is a flexible family of

distributions that is often able to approximate real world distributions quite accurately.

At this point there is both a challenge and an opportunity. Part of the value of NMF

is that it naturally tends to result in sparse matrices with a relatively high proportion

of zero terms. The opportunity is that these zero terms could be sent very cheaply

as separate matrices and the challenge is that these zero terms may result in highly

inaccurate distributions being set to the W and H terms. The PDF of the gamma

distribution either falls to zero or tends to infinity at zero depending on the parameter α.

If the non-zero data is best fit by a distribution which tends to zero the estimates of the

probabilities will be very poor. Most seriously they might well significantly overestimate

the cost of sending the zero terms. It may be better to split the data up into zero-terms

and non-zero terms. The separation of zero and non-zero terms requires some threshold

to be set. Above the threshold the data is modelled using a gamma distribution and

below the threshold the data is separately encoded, as described below. The Matlab

code we provide allows for the manual choice of the threshold but also for an automatic

choice made by applying MDL techniques themselves.

The automatic threshold is selected by systematically searching through the space of

zero-thresholds for both W and H from zero up to the edge of the first bin. The total

description length is then calculated and the lowest value is selected. This can result in

different thresholds for W and H and also across different r terms.

The matrices containing the zero terms, W0 and H0, are encoded via the probability of

being a zero which is given by n0/nT where n0 is the number of zero values and nT is

the total number in W or H. This leads to:

L(X0) = −n0 log2

n0

nT
− (nT − n0) log2

(
nT − n0

nT

)

where X0 represents either W0 or H0 and the n terms are the numbers for W0 or H0

respectively. The second term encodes the cost of specifying the terms that are non-zero.

This can be viewed as sending a code specifying a matrix of zeros and ones followed by

the distribution and the codes for the non-zero terms.

This separation of the W and H matrices results in a total description length of:

L(D,H) = L(W0) + L(W+) + L(H0) + L(H+) + L(E) (3.1)

where L(W0), L(H0) are the description lengths required to encode the zeros in the

W and H matrices respectively; L(W+), L(H+) are the description lengths required

Chapter 3. Rank Selection in NMF 27

to encode the non-zero terms in the W and H matrices respectively; and L(E) is the

description length to encode the error terms.

The non-zero data is assigned to bins of width δD and a gamma distribution is separately

fitted to the W+ and H+ data. The probabilities, followed by the Shannon information

content and hence the description lengths are then calculated. The W and H matrices

that would be found from the message are calculated followed by the error matrix E. A

Gaussian probability distribution is set to the error matrix to enable the extraction of

the probabilities and description lengths. The five terms that make up the description

length are summed to give the total description length as in Eq. (3.1). Our general

technique is explained in Algorithm 2 with a more detailed algorithm for the histogram

and distribution method shown in Algorithms 3 and 4 respectively (see text for details

of the notation).

Algorithm 2 MDL algorithm for each r value with automatic moving zero threshold

Input: V, W, H, δD
Output: Description lengths for each r

1: for zero threshold values of W and H
2: Separate out zero values, calculate L(W0) and L(H0)
3: Fit gamma distributions to W+ and H+, calculate L(W+) and L(H+)
4: Calculate E then L(E)
5: Calculate L(D,H)
6: if L(D,H) is smaller than previous smallest, then store description lengths endif
7: end for
8: Return L(D,H)

Algorithm 3 MDL algorithm for each r value for the histogram method with fixed zero
threshold

Input: V, W, H, δD, zero threshold
Output: Description lengths for each r

1: Calculate E = V−WH
2: Separate elements of E, W and H into bins of width δD
3: For elements below the zero threshold calculate: L(X0) = −n0 log2

n0
nT
− (nT −

n0) log2

(
nT−n0
nT

)
4: For elements above the zero threshold calculate: L(X+) = −

∑B
i log2

ni
N (B is num-

ber of bins)
5: Calculate: L(D,H) = L(W0) + L(W+) + L(H0) + L(H+) + L(E)
6: Return L(D,H)

3.3 Application of Minimum Description Length

To demonstrate the application of our MDL technique we have applied it to real and

synthetic datasets. The results shown in this chapter utilise the NMF method of [57]

Chapter 3. Rank Selection in NMF 28

Algorithm 4 MDL algorithm for each r value for the distribution method with fixed
zero threshold

Input: V, W, H, δD, zero threshold
Output: Description lengths for each r

1: Calculate E = V−WH
2: Separate elements of E, W and H into bins of width δD
3: For elements below the zero threshold calculate: L(X0) = −n0 log2

n0
nT
− (nT −

n0) log2

(
nT−n0
nT

)
4: For elements above the zero threshold calculate probability density, ρi by fitting a

gamma distribution to the binned data
5: Calculate description length: L(X+) = −

∑
i log2 ρiδD

6: Calculate total description length: L(D,H) = L(W0) +L(W+) +L(H0) +L(H+) +
L(E)

7: Return L(D,H)

without additional sparseness constraints included (but we also tested other methods

taken from [42] and see no notable differences). It is important to emphasise that there is

no ground truth in the real data we assess, so we cannot demonstrate beyond reasonable

doubt that our technique works effectively. However, there are several criteria we would

expect our method to meet if it is capable of selecting an appropriate r:

1. That the MDL technique performs in the manner we anticipate, i.e. that L(D|H)

would fall and L(H) should rise as r increases, and there should be a turning point

in L(D,H).

2. That the MDL technique picks a plausible value of r for real data, especially if this

is similar to choices made using other methods, such as use of external knowledge.

3. That the MDL technique can reasonably estimate r-values from synthetic data

with a known r.

4. That MDL shows clear estimates of r for different types of data.

5. That the choice of r is robust to some variation in the data.

In Figure 3.1 we demonstrate the success of MDL in achieving the first and second

points and part of the fifth. The left plot shows a set of 2429 real images of faces [1] (see

Table 3.1) with 361 dimensions (pixels) used by [72]. The description lengths change

exactly as we would expect: the length of the errors falls with increasing r, at the same

time the L(W) and L(H) terms grow larger. The MDL algorithm produces the pattern

that we would expect, fulfilling our first criterion. This same plot also demonstrates

that MDL can meet the second criterion, the straight line down to r = 80 shows the

r-value of the minimum description, but the turning point is fairly flat and a reasonable

Chapter 3. Rank Selection in NMF 29

choice could be anywhere from r = 50 to r = 100. Here we should note that when Lee

and Seung [72] used this data-set they chose r = 49 for their subspace size. They do

not specify how they chose r but it may well have been via a trial and error approach

choosing that value when it gave good plots for their paper. Using MDL we have found

a result in a similar range with no parameter tuning or assumptions beyond the choice

of precision. This estimated value of r is certainly a sensible value and the turning

point is clear. In our experiments the estimate of r does not change significantly with

different choice of precision as long as the precision is chosen sensibly (based upon the

precision of the data itself). We have also included results from re-running the NMF

algorithm on the data, which show no difference in the choice of r and produce virtually

identical lengths, in fact the differences in the results are difficult to spot in the figure.

This identical solution to re-runs of the data is significant as NMF does not necessarily

produce one unique solution. Instead all the re-runs of the algorithm are likely to have

produced somewhat different W and H matrices. Our estimation of r does not change

at all implying a level of consistency across different NMF solutions. A final point to be

noted from this plot is that the solid line shows results from the distributions while the

dashed line shows the results from using the histograms alone. There is no difference in

estimation of r and only small differences in description length values between the two

methods. As both methods have potential, but complementary, flaws, the similarity in

output implies that these flaws do not adversely affect the conclusion.

Table 3.1: Data-set names, the type of data, the number of dimensions, m, and
number of data-points, n.

Name Type m n Source

Faces [1] Image 361 2429 http://cbcl.mit.edu/software-datasets
/FaceData2.html

Genes [2] Biological 5000 38 http://www.broadinstitute.org/cgi-bin
/cancer/datasets.cgi

FTSE 100 Financial 1305 94 University of Southampton Bloomberg
information terminal

The right plot in Figure 3.1 shows MDL applied to synthetic data with m = 1000 and

n = 2000. This simple synthetic data is created by creating two matrices W ∈ Rm×r

and H ∈ Rr×n with random locations of random non-zero terms. These are multiplied

together and a small amount of additional Gaussian noise added (any elements that go

below zero are set to zero). The size of the subspace r is 150 and is estimated correctly

by the MDL approach. Clearly this data is simple and the selection of an appropriate

r from here does not prove our approach is effective but it does show that MDL can

find the appropriate value of r for some datasets. Again there is no difference in the

Chapter 3. Rank Selection in NMF 30

0 50 100 150 200 250
r

0

1

2

3

4

5

6
D

es
cr

ip
tio

n
Le

ng
th

×106 Images dataset

L
tot

L
E

L
W+

L
W0

L
H+

L
H0

0 100 200 300 400 500
r

0

2

4

6

8

10

12

14

D
es

cr
ip

tio
n

Le
ng

th

×106 Synthetic dataset

L
tot

L
E

L
W+

L
W0

L
H+

L
H0

Figure 3.1: Left) The description lengths for the Faces dataset, showing a minimum
of the total description length at around r = 80, with a reasonable range from r = 50 to
r = 100. The solid line is for the description lengths found using the distributions and
the dashed line from the histograms, the choice of r is the same. Right) The description
lengths for synthetic data with a real r of 150. MDL shows a clear minimum at r = 150,
perfectly estimating the correct value.

conclusions drawn from the histograms and the distributions. We thus claim that our

MDL algorithms can fulfil the third criteria we set out.

The left plot in Figure 3.2 shows the total description lengths for several different data

types (see Table 3.1) and allows us to meet our second and fourth criteria. There is

no real ground-truth to these datasets so it is not possible to confirm that MDL is

picking a good choice of r. It is, though, selecting an r that seems to be reasonable for

each of the plots and also different from each other. If we were seeing all the turning

points at similar values we might suspect that it was a feature of the algorithm rather

than the data, the different locations of the turning points suggests that it is extracting

information from the data itself. The Genes dataset has been extensively used, often

with an implied r of 2 or 3 [30] which is similar to our estimate of between 2 and 5. Our

estimate of the FTSE 100 dataset r-value is around r = 8, where the value of r could

be considered as the number of economic sectors, such as energy, telecommunications,

IT etc. An estimate of the number of these sectors of around ten would be reasonable,

and is close to our evaluation.

The right plot of Figure 3.2 shows a range of results for synthetic data created as

discussed earlier but with r values of 25, 50, 80, 120 and 150. The black vertical lines

show the actual location of the real r value. For all results except for r = 25, where our

prediction is marginally different, the MDL estimation is identical to the actual value.

Our algorithm is correctly estimating the real value of r.

Chapter 3. Rank Selection in NMF 31

0.2 0.4 0.6 0.8
r/min(m,n)

0.4

0.5

0.6

0.7

0.8

0.9

1

D
es

cr
ip

tio
n

le
ng

th
/M

ax
 D

es
cr

ip
tio

n
Le

ng
th Faces, Genes, and FTSE 100 datasets

Faces
Genes
FTSE 100

0 100 200 300 400 500
r

0.6

0.7

0.8

0.9

1

D
es

cr
ip

tio
n

le
ng

th
/M

ax
 D

es
cr

ip
tio

n
Le

ng
th Synthetic data

r=25
r=50
r=80
r=120
r=150

Figure 3.2: Left) The total description length for a range of datasets showing where
turning points occur, potentially signalling an effective choice of r. While no ground
truth is known the plots show minima at sensible locations, which correspond reasonably
well with estimates from other sources. Right) The total description length for a range
of synthetic data, MDL correctly identifies the r term for each dataset except for r = 25
which is still very close (the red vertical line) to the correct value (the black line).

The final aspect of our technique we will consider is the robustness of our technique to

certain changes. We have already demonstrated that our technique is robust to re-runs

of the NMF algorithm which can produce significantly different W and H matrices. To

further attempt to get an impression of the uncertainty in our technique we applied

bootstrapping (random sampling with replacement) to the faces dataset to produce five

different variations of the original, in addition to the non-bootstrapped variant. NMF

was then used to find the W and H matrices and our MDL technique applied. In the left

plot of Figure 3.3 we see the results from applying the MDL techniques to this dataset.

The solid line shows the results of applying MDL using the distributions for the images

of faces dataset. The dotted lines show the same but for bootstrapped data, this is hard

to see as the five plotted lines, one for each bootstrap, are almost identical. The dashed

line shows the same but for MDL applied using the histograms and the dash-dot line for

the equivalent bootstrapped results. The differences are marginal and the choice of r is

similar for both. There is almost no difference seen in results when bootstrapping the

data, we therefore consider the method to be reasonably robust to this type of alteration

of the data.

The right hand plot of Figure 3.3 shows how the location of the MDL selection of r

changes with the number of samples from n = 500 up to n = 2429 (the full dataset).

The vertical lines record the value of the minimum for each sample size. It is apparent

that the choice of r decreases with a smaller sample size. The final two terms with

n = 2000 and n = 2429 are similar, but there is a considerable fall in the selected r-

value with smaller n. We offer an explanation of why we see such a fall in the best choice

of r consistent with these results. If we consider the data to be made up of features with

Chapter 3. Rank Selection in NMF 32

0 50 100 150 200 250
r

0

1

2

3

4

5

6

D
es

cr
ip

tio
n

Le
ng

th

×106 Bootstrapped faces data

L
tot

L
E

L
W+

L
W0

L
H+

L
H0

0 50 100 150 200 250 300 350
r

0

1

2

3

4

5

6

T
ot

al
 D

es
cr

ip
tio

n
Le

ng
th

×106 Varying n for faces

n=500
n=1000
n=1500
n=2000
n=2429

Figure 3.3: Left) The solid line shows the results of applying MDL using the distri-
butions for the images of faces dataset. The dotted line shows the same but for boot-
strapped data, these are hard to see as the results are almost identical. The dashed
line shows the same but for MDL applied using the histograms and the dash-dot line
for the equivalent bootstrapped results. Again there is almost no difference, our results
show no significant variation under bootstrapping. Right) The results of Ltot for vary-
ing reduced size of n for the images of faces dataset. We see a clear reduction in the
optimal r value as n is reduced. The dashed line is for the histogram plots and the
solid line for the distributions.

a range of importance, in the case of a set of images of faces important features might

be eyes, noses, ears or mouths. These features, and variants of them, will be required for

almost all faces. On the other hand features such as moustaches are far less common.

With lower numbers of samples it may be better to assume a moustache feature, which

may be used by a small number of images, is not worth considering as a feature, instead

a moustache can be considered as noise and accepted as part of the corrections made

by the E matrix. As the number of samples increases it becomes possible to recognise

that the extra feature is not noise and so the number of features expand, the capacity of

the model increases with more data. We can, potentially, see the features that appear

at low n as the more important features and as n increases we gain the features that

are either less important to much of the data or important to only a small subset of the

data. In reality this analysis of the data may be overly simplistic, in that the smaller

number of features are likely to partially include the less important features, we may

well then see combined features rather than the less relevant features being completely

absent. Either way, as the number of data points increases so does the capacity of the

model.

3.4 Conclusion

Our novel technique is to apply an MDL technique to selection of r. Before considering

the results there are several attractive features of MDL. First, all the data is used in

Chapter 3. Rank Selection in NMF 33

MDL, there is no need to keep hold-out folds so no need to average out the results

from the different folds or to consider the variance in the results when drawing your

conclusions, as there is in techniques such as cross-validation. Second, MDL is an elegant

technique with intuitive appeal which gives a natural trade-off between errors and model

size. Third, the only potentially arbitrary parameter is precision, δD, but this has only

a minor influence on the relative description length of different models and, in any case,

may not be arbitrary if the precision of the data itself can be used.

We have applied our MDL technique to a range of real and synthetic data. MDL is able

to accurately estimate r in synthetic data as well as providing reasonable estimates of

the best r in real data. Our technique is robust to re-runs of the NMF algorithm and

to bootstrapping the data, producing the same predictions of the best r.

Our technique has been tested on a range of data and is likely to work better on some

data than others. If the distributions of the matrices W, H and E match our set

distributions well then we would expect to make good predictions. Conversely if the

distributions do not match the data well our estimates may be inaccurate. In particular,

if V is highly sparse, most of the errors will probably be zero and our algorithm may

require some alteration. An advantage of our algorithms is that problems should be

observed in differences in results from the histogram and gamma distribution methods.

Our algorithms also allow for the production of a range of graphs to test the similarity of

distributions to the actual data, which should highlight potential problems. Extensions

to this work would likely be to investigate whether other distributions do a better job

than our Gaussian and gamma choices.

There are a range of techniques for assessing an appropriate value of r in the literature.

The best method is likely to utilise several techniques to select an appropriate r. We

would suggest our technique adds to the potential toolbox that NMF researchers utilise

to form judgements about the choice of r.

Chapter 4

Minimum Description Length as

an Objective Function

When performing NMF, often the error between the actual and recreated matrices is

used as an objective function, but this method may not produce the type of representa-

tion we desire as it allows for the complexity of the model to grow, constrained only by

the size of the subspace and the non-negativity requirement. If additional constraints,

such as sparsity, are imposed the question of parameter selection becomes critical. In-

stead of adding sparsity constraints in an ad-hoc manner we propose a novel objective

function created by using the principle of minimum description length (MDL). Our for-

mulation, MDL-NMF, automatically trades off between the complexity and accuracy of

the model using a principled approach with little parameter selection or the need for

domain expertise. We demonstrate our model works effectively on three heterogeneous

data-sets and on a range of semi-synthetic data showing the broad applicability of our

method.

4.1 Introduction

As discussed in Chapter 2, Hoyer [57] showed that for some data-sets standard NMF

does not produce sparse solutions and it can be useful to impose sparsity explicitly. That

paper introduced additional sparsity parameters through a projection operator which

constrains the W and H matrices to have a defined level of sparseness. This projection

operator operates after a gradient descent step and it projects the solution onto the

constraint space so that it satisfies the desired L1 norm (and also the L2 constraint, but

this is not relevant for the sparsity level). The formulation of Hoyer works well if there

is a specific goal in mind. If you want to extract understandable features you might

35

Chapter 4. MDL as an Objective Function 36

want to impose significant levels of sparsity on W while if you are more interested in a

representation closer to clustering, imposing sparsity constraints on H can be effective.

These choices are domain dependent and require ad-hoc choices. However, if there is no

prior knowledge or domain expertise, how do you decide the level of sparsity to impose

on the factorized matrices and the distribution of the imposed sparsity between the two

matrices? At a more fundamental level we ask whether the minimisation of the error

alone is an optimal strategy.

With no additional constraints NMF algorithms attempt to minimise the error between

the recreated and original matrices, or for other objective functions, such as the Kullbeck-

Leibler divergence, to maximise the similarity in distribution between the actual and

recreated matrices. In many situations we would expect this to result in over-fitting

of the data - modelling noise rather than signal, and resulting in a model which would

generalise poorly. By generalise poorly we mean that due to the model fitting noise

(as well as structure) for the data it has seen, if the same model could be directly

applied to other data it would do so poorly. For the data itself it means we are both

creating a model which is more complex than it needs to be and one that may not be

as interpretable as it could be. If we we to use the dimensionality reduced data as in

input into, say, a supervised methods we would not expect it to perform worse than if

it generalised better. The algorithm aims to maximise the similarity between the actual

and recreated matrices with no regard for how complex the model being created is. As

this is unsupervised learning the algorithm sees all the data and cannot be easily tested

on unseen data.

There are two features of the formulation that contend with overfitting: 1) the small

size of the subspace r, which means that it is likely real latent structure will be uncov-

ered; 2) the non-negativity constraint which works to prevent overfitting by preventing

the subtraction of structure, so providing an emphasis on sparse models which do not

include unwanted structure. The choice of r was investigated in Chapter 3 [126] and its

importance is clear when considering that if r = m or r = n then the model can perfectly

recreate the actual data. The quality of the fit increases continuously with an increas-

ing r. The non-negativity constraint can produce sparse solutions which act against

overfitting but, without additional constaints, may not be sufficient as demonstrated by

Hoyer [57]. The objective function without sparsity constraints may be biased in favour

of improving accuracy with less consideration of the level of complexity of the model

(which causes the overfitting). The imposition of sparsity constraints is an effective but

ad-hoc and arbitrary method to impose an additional constraint on the model becoming

too complex. A more fundamental approach is desirable.

Chapter 4. MDL as an Objective Function 37

A Bayesian approach to NMF has been demonstrated by, for example [119], which

overcomes some of these related issues, especially the ad-hoc nature of additional sparsity

constraints. Other groups have also applied a Bayesian formulation [10], including to

the choice of r. Bayesian approaches have great value in NMF but they still require

knowledge of the domain to enable prior distributions to be chosen. Other related work

has been performed using particle filtering ideas [142].

We propose an alternative objective function using a formulation based on minimum

description length (MDL). This formulation allows an automatic and natural trade-off

between accuracy and complexity of the model without the need for considerable domain

expertise. To our knowledge, no previous work has used MDL principles to guide the

formation of the W and H matrices.

The remainder of this chapter is organised as follows. In Section 4.2 we present the

principles behind our application of MDL to the NMF objective function; in Section 4.3

we explain our methodology and algorithm; in Section 4.4 we demonstrate the empirical

effectiveness of our model on real and semi-synthetic data and finally in Section 4.5 we

draw conclusions and propose future directions of research.

4.2 Minimum Description Length

Unlike in Chapter 3 where we used MDL to estimate the optimal subspace size here we

want to replace the Frobenius norm objective function with an MDL version. To apply

MDL to NMF, we regard the data matrix V as a message to be communicated and the

factors, W and H, as a reduced representation that can be more efficiently transmitted.

The combined number of elements of W and H is usually much smaller than the number

of elements in V (m × n � (m + n)r) so should, usually, have a shorter required code

length. In addition, we usually expect W and H to be fairly sparse compared to V

which, again, makes them cheaper to encode, as will be discussed below. We need to

reproduce the data matrix V to some pre-agreed precision so we also need a correction

matrix, E = V −WH which is the accuracy of the model, with required code length

L(D|H).

In this MDL formulation the objective function becomes

Chapter 4. MDL as an Objective Function 38

f(W,H) =L(D,H)

=L(H) + L(D|H)

=L(W) + L(H) + L(E) (4.1)

where L(W), L(H) and L(E) are the lengths of the code required for W, H and E

respectively. The terms, L(W) +L(H) = L(H) can be viewed as a penalty term similar

to Tikhonov [130] and lasso [129] regularisers in classic regression problems. Models

of high complexity require correspondingly long codes. However, with a rise in model

complexity we expect to see a model which can more accurately recreate the original data

matrix and so would expect to see the value of the elements in E fall which should cause a

reduction in L(E). Therefore, an algorithm that finds a local minimum of Equation (4.1)

should find a pair of matrices W and H which are automatically regulated to trade-off

between complexity and accuracy.

In MDL there is no need to know how to encode the matrices, all we need to do is to

estimate the length the code would need to be. As in Chapter 3 we do this using the

Shannon information content [121] which is defined as h(x) = − log2 P (x) where x is

the value of an element in the relevant matrix and P (x) is the probability of that value.

Including this estimate of the length of the code gives us an objective function:

f(W,H) =−

[
m∑
i=1

r∑
j=1

log2 P (Wij) +

r∑
i=1

n∑
j=1

log2 P (Hij) (4.2)

+

m∑
i=1

n∑
j=1

log2 P (Eij)

]
(4.3)

where Eij , Wij and Hij represent the ith, jth element of E, W and H respectively. We

have now specified the outline of our model (MDL-NMF) and why it should result in

an automatic trade-off between complexity and accuracy. In the next section we will

describe our method which estimates the probabilities and then finds appropriate W

and H matrices.

4.3 Methods and Algorithm

We propose two methods of estimating the probabilities, in the same manner as in

Chapter 3 [126]. The first is a non-parametric method of sorting the elements of the

Chapter 4. MDL as an Objective Function 39

matrix into bins and finding the probability by P (x) = bi
N where b is the number of

elements in the ith bin and N is the total number of elements of that matrix. The other,

parametric, method applies probability distributions to the E, W and H matrices to

extract the probability density of each value.

All the results in this paper were produced using the parametric model as it is computa-

tionally faster than the non-parametric approach because the objective function can be

differentiated, allowing us to apply gradient descent methods to approach a minimum.

Finding a fast non-parametric method might be an interesting future avenue of research.

To find the probability distribution we first put the elements of the W, H and E matrices,

individually, into bins. We then fit a Gaussian distribution, with mean µ and standard

deviation σ, to the E matrix and two different gamma distributions to the W (with

parameters α and β) and H (with parameters a and b) matrices.

As the objective function of the distribution method is differentiable we seek a solution

by following a gradient descent approach. Therefore we need to find ∂f
∂Wij

and ∂f
∂Hij

while

noting that E is a function of W and H. As with most NMF techniques [42] we update

W and H separately, making two separate convex functions to optimise as opposed to

the original non-convex problem if we try and update both W and H together. We

therefore apply:

Wij ←Wij − λW
∂f

∂Wij
, Hij ← Hij − λH

∂f

∂Hij
(4.4)

where λW and λH are learning rate parameters,

∂f

∂Wij
= −

[(α− 1)W−1
ij − β]

ln(2)
− 1

ln(2)σ2

n∑
k=1

[(Eik − µ)Hjk] (4.5)

and

∂f

∂Hij
= −

[(a− 1)H−1
ij − b]

ln(2)
− 1

ln(2)σ2

m∑
k=1

[(Ekj − µ)Wki] . (4.6)

Chapter 4. MDL as an Objective Function 40

The derivation of these equations is given in Appendix B. We can also consider the

updates from a matrix multiplication perspective which can significantly speed up com-

putational time. In this case we have:

W ←W − λW∇W f, H ←H − λH∇Hf (4.7)

where

∇W f = W̃ + ẼHT ∇Hf = H̃ +W T Ẽ (4.8)

and we have defined three new matrices, W̃ , H̃ and Ẽ, with elements:

W̃ij = −
((α− 1)W−1

ij − β
ln(2)

)
, H̃ij = −

((a− 1)H−1
ij − b

ln(2)

)
, (4.9)

Ẽij =
1

ln(2)σ2
(Eij − µ) (4.10)

respectively.

As the W and H matrices are changed, the distributions will also shift, so we also need

to change the parameters of the distributions in response. In Algorithm 5 we specify

the algorithm for finding the W and H matrices for the MDL-NMF formulation. The

precision term δ depends on the data and sets the bin width. We do not impose a

specific stopping criteria - generally we run the algorithm until there appears to be no

further fall in the objective function or it begins to rise.

Perhaps the most widely used NMF algorithm is the multiplicative updates (MU)

method of Lee and Seung [72, 73] which is, effectively, gradient descent of the Frobenius

norm error with an automatically changing learning rate which ensures that the objec-

tive function monotonically decreases. In contrast, due to the static learning rate, we

have no guarantee that the MDL-NMF objective function will monotonically decrease.

We compensate for this by reducing the learning rate if the objective function is not

falling.

If different distributions were chosen the only change required would be in the ∇W f

and ∇Hf terms. These would need to be worked out again for the new distributions,

otherwise the method and algorithm would remain the same.

Chapter 4. MDL as an Objective Function 41

Algorithm 5 MDL-NMF implementation

Input: Data matrix V, subspace size r.
Output: W, H

1: Initialise: W(o), H(o).
2: Define: learning rate λ, precision δ
3: Calculate: parameters of the distribution, initial objective function f0

4: for t=1,2,....stopping criteria reached
5: if Wi,j < δ/2 or Hi,j < δ/2 set to δ/2
6: Update: W←W− λ∇Wft−1

7: Update: H← H− λ∇Hft−1

8: Calculate ft
9: if ft ≥ ft−1 reduce λ, revert W and H to previous values

10: Recalculate: parameters of distributions using maximum likelihood estimates.
11: end for

4.4 Results and Discussion

In the previous sections we have given an explanation of why our MDL-NMF method

should work and the potential advantages over methods that minimise an error alone,

or those that impose sparsity with ad-hoc parameter tuning. We now present empir-

ical results to demonstrate the efficacy of our approach. In Table 4.1 we display the

three data-sets we tested our MDL-NMF method on, including the type of data, the

number of dimensions and number of data-points. These data-sets were chosen for their

considerable heterogeneity to show the breadth of application of our method.

Table 4.1: Data-sets, the type of data, the number of dimensions, m, and number of
data-points, n.

Name Type m n Source

Faces Image 361 2429 http://cbcl.mit.edu/
software-datasets
/FaceData2.html

Transcriptome Biological 5000 38 http://www.broad
institute.org/cgi-bin
/cancer/datasets.cgi

FTSE 100 Financial 1305 94 University Bloomberg
information terminal

The faces data is a set of 19-by-19 grey-scale images of faces which are individually

converted to a 361 dimension vector then stacked up to make the 361 − by − 2429

matrix. The transcriptome [46] data set is gene expression data for 38 samples, for people

with two different types of leukemia. Each column of the FTSE 100 data represents

the day closing price of one stock over a five year period, these are stacked with the

other companies (94 rather than than 100 due to companies dropping into and out

Chapter 4. MDL as an Objective Function 42

of the FTSE 100 over time) from the FTSE 100 to make our data-set. These data-

sets are from a wide range of applications, all have previously been studied using NMF

techniques, [72, 29, 125], and provide evidence for the large range of effective use of MDL-

NMF. They are from very different domains, with significantly different m/n ratios.

Making a direct comparison between dimensionality reduction techniques is a challenge.

Unlike in supervised learning there is no direct model to test held-out data on, therefore

we cannot easily check the generalisation error to compare our results to other methods.

To attempt to compensate for this we have also tested MDL-NMF on semi-synthetic

data.

The use of synthetic data has two main problems: 1) that it is difficult to know what

the underlying structure should look like; 2) that synthetic data can be created and

adjusted to provide data that produce favourable results for any particular technique

instead of a realistic portrayal of the effectiveness of the method. Therefore, instead of

using completely synthetic data we used a form of semi-synthetic data based upon the

three data-sets in Table 4.1.

Our general principle to create semi-synthetic data is to perform NMF on the real data,

producing W and H. From there we know what the underlying structure of the semi-

synthetic data is - assuming standard NMF uncovers real structure. We then rebuild

the data, add noise and use our MDL-NMF technique to attempt to uncover the known

true results.

We have not provided extensive results for how long the algorithm takes to run - if using

the matrix multiplication method a full run from a randomised starting point to final

solution for the largest and slowest dataset (faces) takes less than three minutes on an

ordinary desktop computer. We would suggest the MDL-NMF method may be better

used as a tuning method, with initial W and H matrices set as similar to the results

from standard NMF, in which case MDL-NMF runs even faster. Either way MDL-NMF,

while slower than standard NMF, takes an insignificant length of time to run on these

data-sets. The scalability of this work to much larger datasets would require further

research.

In the following subsections we demonstrate the potential value of MDL-NMF by inves-

tigating: 1) how well it reproduces the original data; 2) the process by which MDL-NMF

learns the representation; 3) the ability of MDL-NMF to extract signal rather than noise

from the semi-synthetic data.

Chapter 4. MDL as an Objective Function 43

4.4.1 Recreation of the original data

Any NMF algorithm must be able to reproduce the original data with a reasonable

degree of similarity. The precise level of similarity desired is not straightforward to

specify because part of the purpose of NMF is to suppress noise in the data. In any

real data set we do not know what is signal and what is noise. Therefore, if an NMF

algorithm perfectly recreates a real world data-set we would not necessarily consider

that a success, as it is likely to be modelling noise. On the other hand, if we are using

data-sets with a reasonably high signal to noise ratio we would expect to be able to

recreate much of the data using NMF techniques.

In Figure 4.1 examples of the final recreated output from each of the three data-sets

are shown. In Figure 4.1(a) we show one randomly selected sample from the images of

faces data-set. The left face is the original with the recreated face (for r = 80) on the

right. In Figure 4.1(b) are plots of original (red dashed line) and recreated (blue dotted

line) prices against time for one stock from the FTSE 100 dataset (with r = 10). The

top and bottom plots show the most and least accurately recreated stocks respectively.

The stock that is recreated most inaccurately, still produces a good reproduction of the

actual prices. In Figure 4.1(c) for ease of visualisation of the genomic data, we randomly

sampled 5000 of the elements of the data matrix V (x-axis) and compared the values

of them to the same elements of the recreated matrix WH (y-axis) with r = 4. For all

three data-sets our MDL-NMF method produces an effective recreation of the data.

4.4.2 The learning process

We now observe the learning dynamics by taking snapshots of the reconstruction during

the learning process. Our MDL-NMF objective function is not purely based on min-

imising the error and therefore may follow a somewhat different trajectory to finding

a minimum, it is therefore useful to demonstrate what does happen as we reduce the

objective function. The analysis of learning dynamics can be useful to improve un-

derstanding which may lead to more effective learning algorithms or other aspects of

these methods. For example learning dynamics are currently under investigation for

deep neural network where recent work has investigated the dynamics of deep linear

networks [118] and information bottlenecks in deep networks [131]. In Figure 4.2 we

show how the reproduced data looks as the algorithm proceeds. Due to the differences

between the data-sets they take a different number of iterations to arrive at a reasonable

solution and the snapshots were chosen at appropriate iteration intervals to demonstrate

how the quality of the fit improves. Figure 4.2(a) is an image from the faces dataset;

Figure 4.2(b) is a FTSE 100 stock with the real (red dashed) and recreated (blue dotted)

Chapter 4. MDL as an Objective Function 44

Original Recreated

(a)

0 200 400 600 800 1000 1200 1400
Time

0

0.5

1

S
ha

re
 p

ric
e

Most similar

Original
Recreated

0 200 400 600 800 1000 1200 1400
Time

0

0.5

1

S
ha

re
 p

ric
e

Least similar

Original
Recreated

(b)

10
-3

10
-2

10
-1

Original

10
-3

10
-2

10
-1

R
e
c
re

a
te

d

(c)

Figure 4.1: Plots showing the quality of the final recreated data. (a) One randomly
selected sample from the images of faces dataset. The left image is the original and the
right image is the recreated face for r = 80. (b) Actual (red dashed line) and recreated
(blue dotted line) prices against time for one stock for r = 10. The top is the stock
with most similarity between actual and recreated, while the bottom plot is the least
similar. (c) 5000 randomly selected elements of the data matrices with the recreated
value plotted against original values for the transcriptome data with r = 4. MDL-NMF
effectively recreates all three datasets.

Chapter 4. MDL as an Objective Function 45

prices changing with iterations; Figure 4.2(c) is 5000 of the elements of the recreated

matrix versus the real values from the transcriptome data. All three plots show the clear

trend from a randomised starting point to a reasonable final recreation of the original

data.

Faces

(a)

FTSE 100

S
ha

re
 p

ric
e

Time

(b)

Transcriptome

R
ec

re
at

ed

Real

(c)

Figure 4.2: The reproduced data recorded at different iterations of the training pro-
cess. (a) A sample from the faces dataset; (b) a randomly selected stock with the real
(red dashed) and recreated (blue dotted) prices; (c) 5000 recreated results versus orig-
inal values for the transcriptome data. All three show the change from a randomised
starting point to a reasonable recreation of the original data.

In Figure 4.3 we display the changes in both the description lengths and errors with

iteration for a low and high noise variant of the semi-synthetic transcriptome data.

There are five repeats of the MDL-NMF algorithm displayed on the same graph for the

same data with different initialisations of the W and H matrices. For these plots we

initialised the matrices for MDL-NMF by running standard NMF on the semi-synthetic

data and then adding Gaussian noise to each element of the two matrices. The true

error is defined as Etrue = ||Vtrue −WH||2Fro where Vtrue is the underlying data matrix

before we added noise while the noisy error is Enoise = ||Vnoise −WH||2Fro where Vnoise

Chapter 4. MDL as an Objective Function 46

is the semi-synthetic data-set after noise is added. All the plots are normalised so the

description lengths and errors all start at one.

There are some interesting features of the graphs. At a high noise variant the MDL-

NMF significantly reduces the true error while the noisy error is not reduced much. At

the low noise level most of the reduction in description length is achieved by reducing

the noisy error - that also reduces the true error. With the high noise level the LE terms

does not reduce much, instead we get much larger relative reduction in the LW and LH

values with commensurate significant falls in the true error. This may imply that the

algorithm is reducing the complexity of the model (LW and LH) in preference to the

error term (LE) when there is a high level of noise. These type of plots may be useful

analysis tools to use when investigating new data sets.

100 101 102 103 104

Iteration

0.5

1

D
es

cr
ip

tio
n

le
ng

th Low noise level

L
tot

L
E

L
W

L
H

100 101 102 103 104

Iteration

0

0.5

1

E
rr

or

Noise error
Real error

(a)

100 101 102 103 104

Iteration

0.6

0.8

1

D
es

cr
ip

tio
n

le
ng

th High noise level

L
tot

L
E

L
W

L
H

100 101 102 103 104

Iteration

0

0.5

1

E
rr

or Noise error
Real error

(b)

Figure 4.3: The changes in description lengths and errors with iteration for the semi-
synthetic transcriptome data for a low noise variant and a high noise variant.

Chapter 4. MDL as an Objective Function 47

4.4.3 Representing true data over noise

A good NMF technique should be able to extract true underlying signal from noisy data.

For our semi-synthetic data we can look at how well our MDL-NMF technique does with

extracting the true signal from the noise we added.

In Figure 4.4(a) we show the true error against the noise error for MDL-NMF. Any

point below the straight line shows a version where MDL-NMF finds a better error on

the true data than the noise data. These results are from a range of variants of the

semi-synthetic data: varying additional noise levels; varying r values used to create the

semi-synthetic data; varying r values used to try and extract the true representations;

true W and H matrices that are smoothed; using sparsity induced NMF (sNMF) to

create the true matrices. The different symbols represent the three different types of

semi-synthetic data. It is clear that almost all the results show a lower true error than

noisy error MDL-NMF is able to cut through the added noise to represent the true data

better than the noise data. There is no clear conclusion to draw here about whether

MDL-NMF is performing better for certain methods or others.

In Figure 4.4b we show the same results but for standard NMF using multiplicative

updates [72]. We note here that we originally made the data using a NMF method

therefore we might expect NMF to effectively find the real data beneath the noise.

Standard NMF effectively does for most of the data points but there are several points

where it produces a better fit to the noisy data than the true data, in which case it is

overfitting to the noise.

10
-4

10
-3

10
-2

Noise error

10
-4

10
-3

10
-2

T
ru

e
 e

rr
o
r

MDL-NMF

Genes

FTSE 100

Faces

(a)

10
-4

10
-3

10
-2

Noise error

10
-4

10
-3

10
-2

T
ru

e
 e

rr
o
r

NMF

Genes

FTSE 100

Faces

(b)

Figure 4.4: The real error against noise error show that MDL-NMF almost always
finds a better fit to the real data than the noise added data. Results for a range of
semi-synthetic data-set types are shown. (a) for MDL-NMF. (b) for NMF.

A direct comparison between NMF and MDL-NMF may not be completely fair, as NMF

was used to create the semi-synthetic data in the first place. Also we are assuming that

the original creation of the semi-synthetic data removed all the noise from the original

Chapter 4. MDL as an Objective Function 48

data - if it did not then there is still noise left in the true error. Accepting these

limitations, if we see any improvement in representing real data using MDL-NMF over

standard NMF then it implies that MDL-NMF can be a useful tool to use alongside

NMF.

In Figure 4.5(a) we show real error against levels of noise for the three semi-synthetic

datasets for both MDL-NMF and NMF. In Figure 4.5(b) we display the same but this

time using sparsity induced NMF (sNMF) from Hoyer [57] with induced sparsity chosen

to be the actual sparsity of the known semi-synthetic W and H. This favours the sNMF

over MDl-NMF which has no direct information about the level of sparsity of the W and

H matrices. We would therefore expect sNMF to produce significantly better results

as the noise increases and it becomes increasingly more difficult to find the true data

beneath the noise.

The comparison between MDL-NMF and NMF shows very little difference between the

two methods with low level of noise, but as the noise level increases we get a marginally

improved representation with MDL-NMF. This is true for all three data-sets although

it is most apparent for the Faces. This finding is sensible, at low levels of additional

noise there is little need to regularise but as the noise level increases we would expect

to see increased levels of over-fitting. While there is a small improvement, it is not

significant enough to provide strong evidence that MDL-NMF is doing a better job here

that standard NMF. The comparison with sNMF is instructive on this, when we set the

sparseness level to what the underlying matrices have, we get much less overfitting—

the sNMF does much better than either MDL-NMF and NMF. So the sparseness is

reducing much of the overfitting. MDL-NMF shows a promising ability to, at least a

little, compensate for the increases in noise. We initialised the MDL-NMF matrices

using the matrices produced by NMF with added noise. It is possible that with better

initialisation choices we could do even better than the small improvements we show here.

4.5 Conclusions

The standard NMF objective function which minimizes the error may result in producing

matrices which are too complex and overfit the data. We provide an alternative, based

upon an MDL approach which provides an automatic and natural tradeoff between the

accuracy and complexity of the representation.

We demonstrated the effectiveness of MDL-NMF on three heterogeneous data-sets, pro-

ducing representations which match well with the real data. We also tested our model

Chapter 4. MDL as an Objective Function 49

0 0.05 0.1 0.15

Noise Level

0

1000

2000

E
rr

o
r

Faces

NMF

MDL-NMF

0 0.05 0.1 0.15

Noise Level

0

50

100

150

E
rr

o
r

Finance

0 0.05 0.1 0.15

Noise Level

0

200

400

E
rr

o
r

Genes

NMF

MDL-NMF

NMF

MDL-NMF

0 0.05 0.1 0.15

Noise Level

0

1000

2000

E
rr

o
r

Faces

sNMF

MDL-NMF

0 0.05 0.1 0.15

Noise Level

0

50

100

150

E
rr

o
r

Finance

0 0.05 0.1 0.15

Noise Level

0

200

400

E
rr

o
r

Genes

sNMF

MDL-NMF

sNMF

MDL-NMF

Figure 4.5: A comparison of the real error found for MDL-NMF against NMF and
sNMF for the three semi-synthetic data sets.

on semi-synthetic data producing representations which represent the real data signifi-

cantly more than the noise. In addition, studying the changes in the description lengths

with iteration may be a useful analysis tool to use to investigate a dataset.

MDL-NMF produces superior results at extracting real data from noise over NMF for

some semi-synthetic data especially when the added noise becomes high. It would be

a worthwhile procedure to run MDL-NMF after a standard NMF run using the NMF

matrices as initialisations for MDL-NMF to see how the two representations compare.

We have proposed using an MDL based objective function for NMF and demonstrated

that it works effectively. However, the details are highly flexible. The choice of both

distributions to model the matrices and the optimization scheme for finding the W

and H matrices may both be subject to considerable improvement. There may also be

significantly faster and more efficient methods of finding the W and H matrices in the

MDL-NMF formulation than that proposed in this thesis. The choice of the learning

rates λW and λH could potentially be improved as could the initialisation of the W and

H matrices. Our aim is to introduce the method and background and demonstrate that

it has potential to be a useful tool.

Chapter 5

Non-Negative Matrix

Factorisation with Exogenous

Inputs

In this chapter we produce a method of extending NMF called non-negative matrix

factorisation with exogenous inputs (XNMF), which allows for the inclusion of known

external data into the NMF formulation. We will introduce the motivation behind

XNMF, derive a method of finding the factorised matrices, prove that it monotonically

reduces the new XNMF objective function, and that it produces promising empirical

results.

We demonstrate that XNMF is suitable for the analysis of multi-variate financial time

series data in which the variation in data is explained by latent subspace factors and

contributions from a set of observed macro-economic variables. On share prices from

the FTSE 100 index time series, we show that the proposed model produces a lower

reconstruction error than NMF and is effective in clustering stocks in similar trading

sectors together via the latent representations learned. While we focus our attention here

on financial data we believe there will be a range of potential applications - including

biological which we explore in Chapter 6.

5.1 Introduction

Financial systems are inherently complex, driven by the objectives of market players,

along with monetary and fiscal policies of governments. Pure time series analysis has

51

Chapter 5. XNMF 52

been applied extensively to asset returns [145, 127, 101], exchange rates [7] and deriva-

tives [100, 96]. NMF has been applied to financial data in several ways, such as iden-

tifying underlying trends in stock market data [27]. Also variants of NMF applied to

portfolio diversification have been used to minimise risk. For example, the trends that

are produced by NMF (essentially the columns of W) with the coefficients for each

stock can be analysed to split the stocks into different groups [26, 140]. Factorizing mul-

tivariate asset return data into low rank factors can potentially discover low dimensional

representations that are determined by sectors of assets that are likely to show similar

responses. However, statistical signal analysis methods usually do not take into account

exogenous information from macro-economic variables (referred to in this chapter as

macro-variables) that have significant contributions to market movements.

We expect such factorizations to potentially uncover sector-specific drivers from among a

wide range of macro-variables available. Specifically, our model represents the variation

in any asset as consisting of contributions from sector-specific components and selected

macro-variables. Hence the main novel contributions in this chapter are the specification

of such a factorization model and a learning algorithm for it. We empirically demonstrate

the effective performance of our approach on share price data from FTSE 100 companies

and theoretically prove that the XNMF algorithm is guaranteed to monotonically reduce

the objective function.

This chapter is structured as follows: in Section 5.2 we present our model including the

underlying mathematics and the proof of monotonic reduction of the objective function;

in Section 5.3 we discuss the real and synthetic data we used; in Section 5.4 we display

our results; and in Section 5.5 we conclude and summarize our results.

5.2 Model and Learning Algorithm

Our aim, in general, is to find a combined representation of some internal data using a

combination of the subspace and coefficients produced together with some fixed external

data. In this chapter we consider financial data therefore the internal data is share price

data and the external data are macro-economic variables (we call macro-variables here).

However, while we focus on financial data this method is potentially applicable across

many other domains.

In this chapter our input matrix, V ∈ Rm×n is a set of n stocks, with share prices (end of

day prices) recorded for m time points (each point being one trading day). We can utilise

standard NMF methods to find representations such that V ≈W1H1 and, separately,

V ≈ W2H2 where W1 ∈ Rm×r1 , H1 ∈ Rr1×n and H2 ∈ Rr2×n are all matrices to be

Chapter 5. XNMF 53

found. The macro-variables (our external data) are recorded in W2 ∈ Rm×r2 and are

fixed quantities, we will give specific examples of external data in the next section. Here

r1 is a parameter to select and r2 is the number of macro-variables.

Performing NMF separately does not allow us to integrate the exogenous and internal

data. We will now focus on how to formulate a combined representation and how to

find solutions, but first we will briefly revisit the multiplicative updates introduced in

Chapter 2 [72]. This method gives updates for W and H of

W←W�
[
VHT

][
WHHT

] , H← H�
[
WTV

][
WTWH

] (5.1)

where � is the Hadamard product and []
[] denotes element-wise division. These updates

monotonically reduce the objective function 1
2 ||V −WH||2Fro. In our combined repre-

sentation we want to find matrices W1, H1 and H2 that satisfy V ≈W1H1 + W2H2

which requires us to minimise

f =
1

2
||V−W1H1 −W2H2||2Fro. (5.2)

This differs from normal NMF due to the additional matrices, we therefore need to

derive an update rule to find solutions for the three matrices (W2 is kept constant).

As multiplicative updates are effective, popular and theoretically sound [73] we aim

to extend them to allow for the extra matrices. As minimising Equation (5.2) with

respect to W1, H1 and H2 together is non-convex we hold two of the matrices constant

whilst updating the third using multiplicative updates. Each individual problem is then

convex, although the overall problem remains non-convex and there is no guarantee of

reaching an optimal solution. Multiplicative updates are a type of scaled gradient descent

therefore we need to find ∇W1f , ∇H1f and ∇H2f . First we multiply out Equation (5.2)

and get:

f =
1

2
tr
[
(V−W1H1 −W2H2)T (V−W1H1 −W2H2)

]
=

1

2
tr
[
VTV−VTW1H1 −VTW2H2−

HT
1 WT

1 V + HT
1 WT

1 W1H1 + HT
1 WT

1 W2H2−

HT
2 WT

2 V + HT
2 WT

2 W1H1 + HT
2 WT

2 W2H2

]
. (5.3)

Chapter 5. XNMF 54

We then differentiate Equation 5.3 with respect to W1, H1 and H2 respectively to give

three equations:

∇W1f = (W1H1H
T
1 + W2H2H

T
1 −VHT

1), (5.4)

∇H1f = (WT
1 W1H1 + WT

1 W2H2 −WT
1 V) (5.5)

and

∇H2f = (WT
2 W2H2 + WT

2 W1H1 −WT
2 V). (5.6)

We apply multiplicative updates to W1, H1 and H2 by:

W1 ←W1 �
[
VHT

1

][
W1H1H

T
1 + W2H2H

T
1

] , (5.7)

H1 ← H1 �
[
WT

1 V
][

WT
1 W1H1 + WT

1 W2H2

] (5.8)

and

H2 ← H2 �
[
WT

2 V
][

WT
2 W2H2 + WT

2 W1H1

] (5.9)

where � is the Hadamard product and []
[] indicates element-wise division. We will discuss

how changes to W1 reduces the objective function noting that the same argument also

applies to changes in H1 and H2. As we want to follow the gradient down towards a

minimum, if ∇W1f < 0 then we want to increase W1. This is equivalent to VHT
1 >

W1H1H
T
1 +W2H2H

T
1 , and, as shown in Equation (5.7), W1 is increased. Conversely if

∇W1f > 0 then we need W1 to decrease, which the multiplicative update does because

W1H1H
T
1 + W2H2H

T
1 > VHT

1 . The final eventuality, that ∇W1f = 0, implies we have

found a minimum of W1 and so want to keep W1 the same. Our multiplicative update

multiplies W1 by one, fulfilling our requirement. We should note that if ∇W1f = 0 we

are not necessarily at a minimum of the objective function as the other two matrices

may still change which might change the situation of W1 such that ∇W1f is no longer

zero.

While this argument shows that the updates move in the correct direction, that is no

guarantee of a monotonic reduction of the objective function as we could overshoot the

minimum. However, part of the value of multiplicative updates is that Lee and Seung

proved that they do produce a monotonic reduction [73].

Chapter 5. XNMF 55

We prove that our algorithm monotonically reduces Equation (5.2) by extending the

proof of Lee and Seung [73] to cover the XNMF objective function using the same

notation they did (see Appendix C for the full proof). Definition 1 and lemma 1 from

their paper remain the same but we change the K(ht) diagonal matrix of lemma 2 to

Ka,b(h
t
(1)) = δa,b(W

T
1 W1h

t
1 + WT

1 W2h2)a/h
t
(1)a (5.10)

which changes only the K(ht(1)) term of G(h1,h
t
1). We then prove that G(h1,h

t
1) is an

auxiliary function of the altered F (h1):

F (h1) =
1

2
(v−W1h1 −W2h2)T (v−W1h1 −W2h2) (5.11)

which requires the proof that Ma,b(h
t
1) = ht(1)a(K(ht1) − WT

1 W1)a,bh
t
(1)b is positive

semidefinite:

νTMν

=
∑
a,b

νaMa,bνb

=
∑
a,b

[
ht(1)a

((
WT

1 W1h
t
1 + W1W2h2

)
a
/ht(1)a

)
a,b
ht(1)bν

2
a − νaht(1)a(W

T
1 W1)a,bh

t
(1)bνb

]
=
∑
a,b

[
(WT

1 W1)a,bh
t
(1)ah

t
(1)bν

2
a − νaht(1)a(W

T
1 W1)a,bh

t
(1)bνb + (WT

1 W2)a,bh
t
(2)bh

t
(1)aν

2
a

]
=
∑
a,b

[
(WT

1 W1)a,bh
t
(1)ah

t
(1)b

(1

2
ν2
a +

1

2
ν2
b − νaνb

)
+ (WT

1 W2)a,bh
t
(2)bh

t
(1)aν

2
a

]
=
∑
a,b

[
(WT

1 W1)a,bh
t
(1)ah

t
(1)b

(
νa − νb)2 + (WT

1 W2)a,bh
t
(2)bh

t
(1)aν

2
a

]
≥ 0. (5.12)

Our proof is then the same as Lee and Seung except, due to the different K(ht), we end

with:

ht+1
(1)a =ht(1)a

(WT
1 v)a

(WT
1 W1h1 + WT

1 W2h2)a
. (5.13)

Chapter 5. XNMF 56

Table 5.1: Macro-variables used in this study

Macro-variable Frequency Macro-variable Frequency

Gross Domestic Product Quarterly Unemployment Monthly
Interest Rate Monthly Inflation Index Rate Monthly
Imports Goods&Services Quarterly Exports Monthly
Oil Imports Monthly Gross National Income Quarterly
M1 Money Supply Monthly Productivity Quarterly
GBP/USD Daily Contribution to CPI Monthly
Balance of Payments Monthly Oil Investment Daily
Government Gross Reserve Monthly

which proves that our algorithm will monotonically reduce the objective function for

H1. Proofs for W1 and H2 are equivalent.

5.3 Data

We demonstrate the effectiveness of our model and learning algorithm empirically using

daily data from FTSE 100 companies taken over a twenty year period. To deal with

non-stationarity that may exist over such a long period in time, we also split the data

into four equal sections in time and show results on all four separately.

In Table 5.1 we show the macro-variables used in this study. The choice of which macro-

variables to use is somewhat arbitrary, there are many potential macro-variables, and

they can be changed. To compensate for the differences in frequency between the share

data (recorded on work days) and the macro-variable data we have linearly interpolated

between all the macro-variable data so that the dimensionality (the number of time

points) are equal. It is also the case that some of these macro-variables vary significantly

while some (such as the interest rate) may not change at all during some time period.

We will discuss some of these issues in the future work part of Chapter 9.

5.4 Results

We first confirm empirically that our algorithm achieves the desired goal, the reduction

in the error until it reaches a minimum. In Figure 5.1(a) we show how the error changes

with iteration for different values of r for the three different algorithms. We will use the

same terminology throughout: NMF results are from the algorithm which minimised

||V −W1H1||2Fro, XNMF (exogenous inputs NMF) is for the minimisation of ||V −
W1H1 −W2H2||2Fro and EX (exogenous inputs alone) is for the minimisation of ||V−

Chapter 5. XNMF 57

2000 4000 6000 8000 10000
Iteration

0

10

20

30

40

E
rr

or

NMF
XNMF
EX

(a)

0 10 20 30
r

0

5

10

15

20

25

E
rr

or

NMF
XNMF
XNMF Random

(b)

Figure 5.1: (a) The extended multiplicative update algorithm reduces the error mono-
tonically with iteration until a plateau is reached. The multiple blue dashed (NMF)
and solid black (XNMF) lines are for different sizes of the subspace, r. Generally the
XNMF algorithm requires more iterations to approach a minimum than the NMF al-
gorithm, but reaches a lower final error. (b) The final errors for different sizes of the
subspace, r, for NMF (blue dashed lines with crosses), XNMF (solid black line) and
XNMF using a W2 with random values (red dotted with circles). At all values of r
that were implemented XNMF produces smaller errors than NMF or the randomised
XNMF. As r is increased the difference between the errors produced by the algorithms
reduces as the capacity of the NMF model increases and begins to overfit the data.

W2H2||2Fro. The blue dashed lines are for different values of r for NMF and the solid

black lines for different values of r1 for XNMF.

The EX algorithm (red dotted line) produces a poor approximation as it contains no

information from the actual stocks themselves. The results of particular note are those

of the XNMF algorithm which works as we expect it to, we see a fall in the objective

function with iteration until it approaches a minimum where the error plateaus. The

XNMF algorithm takes more iterations than the NMF algorithm to approach a minimum

which might be expected as we have three matrices to optimise rather than two. In

addition, the third matrix may make the objective function more non-convex than with

just two matrices to optimise.

In Figure 5.1(b) we show the final errors from performing normal NMF (blue dashed

line with crosses) and XNMF (solid black line) for different sizes of the subspace, r. At

low values of r the model does not have enough subspace dimensions (columns of W1)

to effectively fit the data and so the errors are high. The additional macro-variables

here make a significant difference to the quality of the fit. As r increases the benefit of

the additional information decreases as the increased capacity of the W1H1 part of the

model means that a good fit to the data is possible without any additional information.

As r increases it is likely that the model is overfitting the data, so any use of NMF

requires a sensible choice of r to be made (see Chapter 3 [126]). We also include a

version of XNMF (red dotted line with circles) called XNMF Random where the W2

matrix is composed of random numbers. The NMF and XNMF Random plots are hard

Chapter 5. XNMF 58

1 2 3 4 All Average

Dataset

0.8

1

1.2

1.4

1.6

1.8

C
lu

st
er

 d
iv

er
ge

nc
e

None
NMF
XNMF

(a)

None NMF XNMF
Dimensionality reduction method

0.8

1

1.2

1.4

1.6

1.8

C
lu

st
er

 d
iv

er
ge

nc
e

(b)

Figure 5.2: a) A representation of how much clusters diverge with time. K-means
clustering was applied to non-dimensionality reduced data (dark blue bars), dimensional
reduction using NMF (light blue bars) and dimensional reduction using XNMF (yellow
bars) for four times periods and for a combination of the four periods. The clusters
produced from data with no dimensional reduction diverge the most, with application
of NMF the divergence is reduced and with XNMF we see the smallest divergence, the
clusters tend to hold together better through time. b) Boxplots of the same results
demonstrating the improvement of XNMF over NMF.

to distinguish demonstrating that the XNMF method is extracting real information from

the external data, and not just reducing the error by increasing the number of elements

to be optimised.

A particular appeal of NMF is noise suppression, by reducing the noise we might expect

to be able to extract more real features from the data. A key result demonstrated with

gene expression data is that the reduction in noise achieved by matrix factorization

leads to stable clustering and biologically relevant inference about genes [12, 30]. In

financial data we are often interested in how stocks and shares move together through

time, a balanced portfolio would not contain lots of shares which are likely to fall in the

same period. If we can effectively cluster the shares we can then build a more resilient

portfolio.

We explored this idea of NMF producing improved clustering by exploring applications

of the popular K-means clustering approach to the share price data. We are particularly

interested in the quality of the clustering in the future, clusters that hold together

better would be desirable. While NMF is not a clustering technique we can use the

dimensionality reduction to create a new sub-space in which we apply clustering.

We performed K-means clustering on three versions of the data: a) no dimensionality re-

duction; b) dimensionality reduced using NMF; c) dimensionality reduced using XNMF.

A measure of the similarity of a cluster is the average distance to the cluster centre

using the non-dimensionality reduced data. For simplicity we used Euclidean distances.

We are interested in the change in the average distance to the cluster centre as this

gives us a measure of how similar the cluster is at different time points. In general, we

Chapter 5. XNMF 59

would expect an increase in distance as clusters will tend to diverge with time. If we

see a smaller increase using the dimensionality reduced versions, it shows that the NMF

techniques are allowing us to produce clusters which generalise better.

In Figure 5.2 we see the results of this forward prediction of clustering. First the data

was split in half into a “training” set, the first half of the data in time, and a “testing”

set, the second half of the data. The training data was then clustering into seven cluster

centres using, respectively: the raw data, V; H1 from NMF; and H1 from XNMF.

We chose the size of the subspace, r, using a combination of domain knowledge about

numbers of sectors in the data, and automatic techniques to assess subspace size [126].

The y-axis shows the ratio of the average distances from each data-point to its cluster

centre between the testing data and the training data. A smaller value means the cluster

stayed closer together. We see a clear trend, the raw data performs the worst whilst

XNMF gives the best performance, and NMF gives a result in between the other two.

5.5 Conclusion

In this chapter we introduce a matrix factorization model suitable for multi-variate

financial time series that includes known exogenous macro-variables. We use real FTSE

100 stock data to show that the multiplicative update factorization algorithm of XNMF

produces lower errors than standard NMF and that stock clusters formed with the

addition of exogenous data stay tighter bound through time. We also prove theoretically

that the algorithm is guaranteed to monotonically reduce the objective function.

Chapter 6

XNMF for Combining Spatial

Proteomics and Protein-Protein

Interaction Networks

In this chapter we use NMF and XNMF as tools for the analysis of two types of biological

data: spatial proteomics and protein-protein interaction (PPI) networks. In particular,

we use XNMF to integrate these data-sets together to investigate if a combined repre-

sentation can provide additional insight. The only work that we know of that explicitly

attempts to integrate spatial proteomics with PPI network data was completed partially

during this PhD (see Appendix D and [124]).

The structure of this chapter is as follows: in Section 6.1 we review some of the methods

in the literature used to integrate biological data and introduce the motivation behind

this study. In Section 6.2 we discuss the data-sets and the processes we used to enable

XNMF to be successfully applied. In Section 6.3 we show and analyse our results.

Finally in Section 6.4 we summarise and conclude.

6.1 Introduction

While NMF has been used extensively for biological applications, we do not intend to

review this body of work in any detail. Instead we want to try and build up the moti-

vation for why we are applying NMF and XNMF to this particular biological problem

by discussing some examples of how NMF is used and why it is successful alongside the

importance of these two data-sets and the value of integration of data-sets.

61

Chapter 6. XNMF-Biol 62

6.1.1 NMF in Biology

NMF has been successfully utilised to perform molecular pattern discovery [30] in part

due to the improved interpretability over other methods and partly due to how well NMF

deals with heterogeneous data [45]. Other groups have used NMF because it allows for

good interpretation of spatial gene expression [149].

In this chapter we are especially interested in using XNMF to integrate two separate

data-sets. An example of integration using NMF was performed by concatenating the

input matrices together and making the assumption that one W matrix can be found

that enables a joint representation [157]. In fact, this method of concatenating matrices

and performing NMF is quite common [86, 159, 11, 138]. The downside of this tech-

nique is that it does not allow for addition of external data with known, and constant,

subspaces we want to project onto while at the same time forming new subspaces.

NMF is also used in biology as a preprocessing step before the application of classi-

fication methods [153]. A version of NMF called Discriminant Non-Negative Matrix

Factorization has also been used as a direct method to perform gene ranking [61] as has

a semi-supervised version of NMF which was used to perform cancer classification [158].

6.1.2 Spatial proteomics

Biological cell are extremely complicated both in terms of structure and of function. In

this chapter we are interested only in that cells can be considered to be made up of

compartments. These compartments, some of which are called organelles, are physically

separated from one another such that there are restrictions on what can pass into and

out of these regions of the cell [39]. Spatial proteomics is concerned with the location of

proteins within the cell, and specifically within the cellular compartments.

Proteins can only perform their function in direct physical contact with other proteins or

parts of the cell, therefore knowing the location of a protein can aid in understanding its

function. It has also been shown that there is a direct connection between diseases and

subcellular protein localisation [108], consequently understanding certain diseases and

cellular function depends on a reliable and accurate knowledge of protein localisation.

The type of spatial proteomics data we are interested in is produced using various ex-

perimental techniques [38], the specific details of which are not of interest in this study.

An important point, though, is that the spatial protoemics experiments cannot easily

split the cells into particular compartments and then study the contents of that com-

partment, without considerable contamination [39]. Instead, the data that we are using

is produced by splitting the cells into density fractions then measuring the abundance

Chapter 6. XNMF-Biol 63

of proteins in each fraction [39]. According to De Duve’s principle [25] proteins from the

same compartment will tend to have similar profiles across the density fractions. If we

then know the spatial location of some proteins, from some other method, we can then

match the proteins with unknown locations to their spatial compartment.

6.1.3 PPI networks

Protein-protein interaction (PPIs) networks record lists of known interactions between

proteins. PPIs have been studied for many years due, in part, to their importance in

understanding cellular function. Interactions between pairs or groups of proteins, or

proteins and other parts of the cell, have significant consequences for cell functionality

including links to disease [58]. PPI networks chart these known or predicted interactions.

NMF has been applied to PPI networks, including a Bayesian version of NMF used

to cluster PPI networks [102, 103]. Other work has used forms of regularised NMF to

predict protein function from PPI networks [148]

6.1.4 Integrating Biological Data

There is considerable interest in combining multiple sources of high throughput biological

measurements. Examples include the integration of spatial and temporal patterns of

gene expression [117], combining sequence and secondary structure of proteins [146],

and the integrated analysis of the transcriptome and proteome [50].

Spatial proteomics and PPI networks should have significant similarities. A pair of

proteins can only physically interact if they are in the same spatial location at the same

time, hence we would expect that there would be a link between proteins that interact

and those that share a spatial location. In principle, accurate PPI networks might be able

to predict which proteins co-localise. Conversely, spatial proteomics cannot on its own

specify whether an interaction exists, but if two proteins are in the same compartment

it may be more likely due to the increased likelihood that they share a function. In

addition, proteins that never exist in the same spatial location cannot directly interact.

There has been work conducted which uses the PPI networks to make predictions on

protein localisation. In particular, PPI networks were used together with sequence

predictors to classify proteins into spatial locations [33]. We have also performed work

on integrating spatial proteomics and PPI network data which is included in Appendix D

of this thesis [124]. In that work we demonstrated there was a correlation between spatial

proteomics and PPI network data, we then proposed a method to combine these data-

sets and demonstrated that we could use this integrated data-set to make predictions.

Chapter 6. XNMF-Biol 64

6.1.5 Motivation

The purpose of this study is to investigate whether we can usefully use XNMF to improve

the analysis of biological data. While we focus on two types of data we hope this method

will be applicable in a wider variety of domains.

The reason we believe XNMF could be useful in biology is that NMF has proven to have

some advantages over methods like PCA especially in terms of interpretation - which

could be highly useful in biology where interpretation may lead to greater understanding

of the underlying science. In addition, NMF has demonstrated its value at integrating

data [157] and integrating different types of data in biology is important as there are

many biological processes involved in that highly complex environment. If NMF is a

useful technique then we would expect XNMF to, potentially, provide even more useful

analysis.

Spatial proteomics data is being produced in increasing quantities and quality but there

is lack of methods and procedures to analyse this data [39] which is why we focus

our attention particularly on that data-type. XNMF allows for inclusion of outside

information into the spatial proteomics framework, potentially allowing integration of

different data types using NMF. For the reasons outlined earlier, PPI networks seem

a sensible choice of outside information due to their strong relationship with spatial

proteomics [124]. We hope that by using XNMF in this way we can build improved

representations of spatial proteomics data but also show that XNMF could be useful for

a range of other biological data-sets.

6.2 Data and Methodology

6.2.1 Data-sets

In this study we use two data types: spatial proteomics and PPI networks. The spatial

proteomics data we use is presented as abundances of each protein per density fraction

and has some known labels, known as markers, which specify which organelle (compart-

ment) a protein is believed to exist in (see Table 6.1).

The spatial proteomics used in this study is from Arabidopsis thaliana [34] which has 16

fractions and includes 689 proteins. There are two versions of the marker set, one has 27

markers across five organelles and we call it the “original marker” set. The authors then

use the spatial proteomics data-set along with outside information to assign other pro-

teins to the organelles resulting in a total of 142 markers in the set we call the “extended

Chapter 6. XNMF-Biol 65

Fraction1 Fraction2 . . . Fractionm Marker

Prot1 q1,1 q1,2 . . . q1,n Organelle1
...

...
...

...
...

...
Proti qi,1 qi,2 . . . qi,n Unknown

...
...

...
...

...
...

Protm qm,1 qm,2 . . . qm,n Organellek

Table 6.1: The structure of a spatial proteomics dataset. Each of m-proteins has
n dimensions of protein relative abundances, qi,j , within each density fraction. If the
protein subcellular location is known it is specified as a marker. This table is adapted
from Gatto et al. [39].

Organelle Original Markers Extended Markers

ER 6 49
Golgi 5 27
Mit 8 26
PM 4 28
Vac 4 12
Unknown 662 547

Table 6.2: The number of original markers and extended markers for the five or-
ganelles from the Arabidopsis thaliana data-set used in this study [34].

marker” set. The organelles are: the endoplasmic reticulum (ER); mitochondrion (Mit);

plasma membrane (PM); Golgi apparatus (Golgi); and the vacuole (Vac), but as we are

not interested in biological considerations in this study we will just think of them as five

classes, or clusters, of the data. The values for the original and extended markers sets

for each of the organelles are presented in Table 6.2.

PPI network data is provided as pairs of proteins with known (or scores of) interactions.

There are various public repositories of PPI network data, we use STRING [59]. The

STRING data provides scores for the confidence in the interaction. We extract all

the interactions for proteins in our spatial proteomics data-set with all the interactions

known to any other proteins in our data-set and convert it into a m×m adjacency matrix,

VPPI, with a 1 representing a known interaction and 0 if no known interaction exists.

We could have used the confidence values themselves or used some form of threshold

but to make it as simple as possible we considered that any evidence of a interaction

between two proteins would produce a 1 in our matrix. The 689 Arabidopsis proteins

have a total of 237,016 PPIs to all proteins in the PPI network. There are then 16,256

links between the 689 proteins that make up our spatial proteomics data-set.

The number of proteins in the PPI network data-set is 24,283 compared to only 689

proteins in the spatial proteomics data. It is therefore interesting to consider how the

spatial proteomics proteins fit compared to the PPI network proteins - for example we

might be interested in whether the spatial proteomics proteins have more or fewer PPI

Chapter 6. XNMF-Biol 66

Figure 6.1: PPI distributions of number of links. The histogram is for the entire PPI
dataset of 24,283 proteins. The black line is the distribution of the spatial proteomics
proteins, if all the proteins with no links are removed. The red line is for all 689 proteins
in the spatial proteomics dataset.

links compared the the average. This would give us some sense of whether the spatial

proteomics proteins are typical or somewhat abnormal, and might give us clues as to how

much information we can extract by merging these two data-set. There are 17 spatial

proteomics proteins which do not appear in the STRING data-set at all. In Figure 6.1 we

show the distributions of the number of links of the entire PPI dataset (the histogram),

the distribution of spatial proteomics proteins where we have removed the 17 proteins

without any links (black dashed line) and all the spatial proteomics proteins (red solid

line). The spatial proteomics proteins tend to have significantly more links that the

general distribution of the proteins from the PPI network data. We might expect this to

be the case - the 689 proteins will all have shown up strongly in the spatial proteomics

data, it is therefore likely that they are highly abundant in general and might then be

expected to have a considerable number of known interactions.

6.2.2 XNMF Method for Integrating Spatial Proteomics and PPI net-

work data

XNMF-Biol

For XNMF for spatial proteomics and PPI network (we denote as XNMF-Biol) data we

consider the input matrix V to be the protein abundances per fraction. We define the

dimensions to represent the proteins and the samples to be the fractions produced in

spatial proteomics experiments. We then have V ∈ Rm×n where m is the number of

proteins and n the number of fractions. The matrices to be found by XNMF are W1 ∈

Chapter 6. XNMF-Biol 67

Rm×r1 , H1 ∈ Rr1×n, H2 ∈ Rr2×n and the set matrix of exogenous data is W2 ∈ Rm×r2 .

We are then looking to find the three matrices that produce V ≈W1H1 + W2H2. We

note here that, in comparison to the work in Chapter 5, we could interpret the V matrix

as being transposed. It might be considered more natural to consider the proteins to

be equivalent to the stocks and the fractions to be equivalent to time. However, as our

external data has no relevance to the fractions our formulation works only if we consider

the proteins to be the dimensions in this case.

The interpretation of each matrix needs to be considered. Each column of the W2

matrix can be viewed as a feature extracted from some outside data source and each

element of the column as the weighting of that feature for each protein. The columns of

H2 then are spatial proteomics fractions and each element of the column represents the

importance of the relevant feature in W2 for that fraction. The columns of W1 can be

interpreted as the axes in the protein space that we project onto with the H1 columns

representing the coefficients of those directions for each spatial proteomic fraction.

Methods to generate W2

While there are many different types of potential external data that could be used,

we focus on PPI networks to demonstrate the value of our method and because the

relationship between the two data-sets has already been demonstrated [124]. There are

many possible ways of producing the W2 matrix. We considered two main methods, one

that extracts features using NMF and one that requires the manual choice of features.

Our first method (for shorthand in this chapter we call it XNMF1) uses standard NMF

to reduce the dimensionality of the VPPI (the matrix of 1s and 0s that represent whether

interactions occur or not) matrix down from m to r2 and produce the WPPI matrix from

VPPI ≈ WPPIHPPI. There might be considerable room for further exploration of how

to use NMF to produce a good choice of WPPI beyond this method.

For the second method (called XNMF2) we use hand-crafted features to produce the

W2 matrix. As the features are to come from the PPI network a sensible choice would

depend on the number of links. Our first feature, column of W2, is then the total

number of links each protein has to other proteins in the dataset, which we normalise

by dividing by the number of links that the most connected protein has. The rest of the

features (columns of W2) are the number of links of that protein to the known markers

in each of the recorded organelles, normalised by dividing by the number of markers in

each organelle.

While we want to focus mainly on these two methods we can also combine the automatic

and hand-crafted features into a third method (XNMF3). We do this by concatenating

the W2 matrices produced from the two methods together. There are clearly many other

Chapter 6. XNMF-Biol 68

different methods that could be used to produce features to fill the W2 columns. Our

aim is to demonstrate the potential benefits of using our method with a small number

of methods of producing W2.

Subspace size selection

The optimal choice of subspace size r1 depends on the aims of the researcher. The

higher the dimensions the more separate features will be extracted but more noise will

be modelled as well. A method of choosing an optimal r1 was introduced using minimum

description length in Chapter 3 [126]. This subspace size may not be the most useful

in terms of visualisations or extracting representations of interest but it is useful to

investigate what would be considered the best choice in terms of data compression. For

XNMF1 we include L(W2)+L(H2) into the description length and do a search over the

grid space of r1 and r2. This addition of the L(W2) is only used to guide the choice of

the value of r2 when performing NMF on the PPI network data, once we apply XNMF

to the combination of PPI and spatial proteomics datasets this value becomes fixed. For

XNMF2 with manual features selected we need to add L(H2) to the formulation.

Sparseness

Sparseness is a useful feature for several reasons but perhaps the most useful in this case

is for interpretation of the results. We quantify levels of sparsity using the sparseness

measure [57]: sparseness(x) =
√
m−(

∑
|xi|)/
√∑

x2i√
m−1

where x here is a column of W2 and

m the dimensionality. This sparseness measure is between 0 and 1, with 1 meaning that

only one element of x is non-zero (highly sparse) and 0 meaning all elements are equal.

Clustering

A fundamental issue in clustering is that lack of any certainty over what a good cluster

actually means. For example, in our case in this chapter, clusters could consist of proteins

with different numbers of known PPI interations. Another sensible set of clusters might

be those in similar spatial locations - so those in the ER would cluster together, for

example. There are methods to encourage the type of clustering that one is interested

in [150] and the use of these methods combined with our XNMF might be an interesting

piece of future work. We would expect the XNMF method with PPI network data as the

external data to produce clusters which do not group the proteins into spatial locations as

well as just using spatial proteomics data because the extra information could encourage

other forms of clustering. However, these different clusters with the inclusion of PPI data

might tell us something interesting especially if there are just relatively small changes

in clusters when adding in the PPI data. The proteins that show some movement might

well be considered to be those that exist in multiple compartments, for example.

Chapter 6. XNMF-Biol 69

There is also evidence that NMF can produce more stable clustering than some other

methods such as using k-means clustering on raw data or on PCA data [65]. It would

be interesting therefore to look at the stability of clustering when using: raw data,

PCA, NMF and XNMF. To try and make the comparison as fair as possible we use

k-means clustering on all the data. To measure the stability of clustering we use the

Rand index [111] which measures the similarity between two different clusterings.

The Rand index, in our case, is measured between two different clusterings. We consider

applying k-means clustering twice on the same data-set (say the raw spatial proteomics

data) with the same number of cluster centres in both. Let X be one set of clustering

and Y be another. We are then interested in calculating four values from X and Y.

All the values we consider are pairs of proteins compared. a is the number of pairs

of proteins that are in the same cluster in X and also in the same cluster in Y. b is

the number of pairs of proteins that are in different clusters in X and also in different

clusters in Y. The values a+ b gives the number of pairs of proteins where the two sets

of clusterings agree. c is the number of pairs of proteins that are in the same cluster

in X but in different clusters in Y and d is the number of pairs of proteins in different

clusters in X and the same cluster in Y. So c + d represents the number of pairs of

proteins that are differently clustered in the two different clusterings. The Rand index

is then given by:

R =
a+ b

a+ b+ c+ d
(6.1)

where if R = 1 then the two clusterings are completely consistent and in R = 0 then they

are completely inconsistent. We will use the Rand index in two ways: 1) to compare the

consistency of clustering formed using the different dimensionality reduction methods

and 2) to compare the clusterings with the organelle classes.

6.3 Results and Discussion

We are investigating whether the use of NMF and XNMF can improve the study of

spatial proteomics data so we focus on two of the main requirements of data analysis for

spatial proteomics [39]: quality of representation and of classification. However, before

we look at the representation and classification we want to consider how important the

external information is when conducting XNMF and how to choose the parameters r1

and r2.

Chapter 6. XNMF-Biol 70

6.3.1 Analysis of the Data and Techniques

We can consider XNMF to be performing V ≈ X1 + X2 where X1 = W1H1 and

X2 = W2H2. The ratio mean(X2)
mean(X1) gives us some idea of the importance of the external

information to the representation formed. For r1 ≈ r2 and r1 > r2 we would expect to

see a value less than one because W1 can vary so should always be able to fit the data

better than the constant W2 matrix. It is valuable to pay attention to this measure

because it gives us some idea of how important the external data is, if the ratio falls

very low then it is likely that the external data does not hold much value, conversely if,

in future work, a type of external data was used with a high ratio it would imply that

the type of external data could provide a lot of information. However, it may also be

the case that with a high ratio the information provided by the external data might just

be replacing information that could have been provided without the external data.

In the left plot of Figure 6.2 we show the mean(X2)
mean(X1) against r1 for both XNMF1 and

XNMF2, we use r2 = 6 for XNMF1 so it is directly comparable to XNMF2. We have

shifted the position on the graph of each point slightly to the left and right so that

it is easier to see the differences. As r1 increases the importance of the external data

decreases because the increasing r1 can fit the data better - in fact it may be overfitting

to the data and modelling noise. It is also interesting to note that XNMF1 and XNMF2

produce very similar results, it is not clear from this plot which we should favour. The

right plot of Figure 6.2 displays the importance of the external data for a varying r2

with r1 = 2, 3, 5. As r2 increases we see a clear increase in the importance of the X2

matrix to the overall reconstruction. Both of these effects are as we expect, but it is

worth noting that the importance of the X2 reconstruction never becomes very high, in

fact it does not reach even 20% of the total, even when r1 = 2 and r2 = 12. It may

mean that we cannot extract a lot of information from the external data.

2 4 6 8 10 12
r1

0.025

0.050

0.075

0.100

0.125

0.150

m
ea

n(
X 2
)/m

ea
n(
X 1
) XNMF1

XNMF2

2 4 6 8 10 12
r2

0.05

0.10

0.15

m
ea

n(
X 2
)/m

ea
n(
X 1
) r1=2

r1=3
r1=5

Figure 6.2: Left) Relative importance of the external data for XNMF1 (with r2 = 6)
and XNMF2 when r1 increases. Right) Relative importance of the external data for
the automatic features for increasing r2 for three values of r1. All points shown include
three repeats with the standard deviation shown as an errorbar.

Chapter 6. XNMF-Biol 71

For standard versions of XNMF the only parameters that need to be selected are r1 and

r2. The optimal choice of r1 and r2 can be chosen using the MDL method [126] and

results for this are shown in Figure 6.3. The left plot shows the optimal choice of r1 using

the six manually chosen features (XNMF2). The right plot shows the optimal choice of

r1 for different choices of r2. Both methods produce a choice of r1 = 2 although r1 = 3

produces a similar result. This implies we can maximise the compression of the data

using an r1 value of two or three. We emphasise here that this is the choice of r1 which

produces the best compression of the data - depending on the aims of the researcher

there may be different requirements for the dimensionality reduction, such as picking

out certain features, which may require different values of r1. This does though imply

that there is a low dimensional subspace on which the data sits and that projecting

onto that subspace should result in retaining much of the information from the original

data. This is interesting in that (presumably mostly for ease of visual inspection) a lot

of spatial proteomics analysis uses a projection subspace size of two [39], which implies

they are making a reasonable choice by projecting onto two dimensions. The right plot

also implies that as r2 increases the total description length also increases. For the

aim of maximising the noise compression it may be better to use a very low r2 or even

no r2 at all, however, noise compression is not the only aim when analysing the data.

Including the external data may not be optimal from a MDL perspective but it might

improve the representation.

0 5 10

r
1

L
T

o
ta

l

Distributions

Histograms

0 5 10

r
1

L
T

o
ta

l

r
2
=1

r
2
=3

r
2
=5

r
2
=7

r
2
=9

Figure 6.3: Left) The optimal choice of r1 = 2 with the manual features (XNMF2) in
W2 is found by minimising the description length. Right) The optimal choice of r1 = 2
for the automatically chosen features (XNMF1), shown for the different values of r2.

XNMF includes external data into the NMF formulation which should therefore pro-

duce a reconstructed matrix that is closer to the original. We would therefore expect to

see a reduction in the final XNMF error ||V −W1H1 −W2H2||2Fro compared to stan-

dard NMF. In the left plot of Figure 6.4 we show the final errors for NMF, XNMF1,

XNMF2 and XNMFcontrol for increasing r1. The XNMF version called XNMFcontrol

uses a W2 matrix with values drawn from a uniform ditribution to demonstrate that

the improvement in error is not due purely to the increase in number of matrix elements

Chapter 6. XNMF-Biol 72

that can be used to recreate the data. Both XNMF1 and XNMF2 perform better than

standard NMF as well as the control XNMF (which produces very similar results to

standard NMF). In the right plot of Figure 6.4 we show plots of how the error (taken

in comparison to the error when r2 = 2 to make the plot easier to interpret) falls for

increasing r2 when performing XNMF1. As r2 increases we see an improved error but

for higher levels of r1 the change is small - which is what we expect. At high values of

r1 the model will overfit to noise so external data will provide no significant benefit in

terms of error reduction.

2 3 4 5
r1

5

10

15

20

25

Fi
na

l E
rro

r

NMF
XNMF1
XNMF2
XNMFcontrol

5 10 15 20
r2

0.80

0.85

0.90

0.95

1.00

Fi
na

l E
rro

r/F
in

al
 e

rro
r a

t r
2

=
2

r1 = 2
r1 = 3
r1 = 4
r1 = 5
r1 = 6
r1 = 8
r1 = 10

Figure 6.4: a) Final errors for NMF, XNMF1, XNMF2 and XNMFcontrol against
increasing r1, demonstrating that XNMF produces a reduction in error compared to
standard NMF. b) Final errors (as a fraction of the error at r2 = 2) against r2 which
demonstrates the increased value of the external data as the dimensionality of r2 is
increased.

We might hope that the outside information would help with producing a better repre-

sentation of the data when the data becomes increasingly corrupted. This we can test

by adding increasing amounts of Gaussian distributed noise to the original data matrix.

In Figure 6.5a we show the true error against noise level for all the different methods and

in Figure 6.5b we show a zoomed in version of the same plot. There is a small decrease

in ability to recreate the true result (as opposed to the noise added data). NMF actually

gets the closest to the true result, although the result is minor. This may be a feature

of marginal overfitting when using XNMF - the features of the W2 matrix are produced

by using the corrupted data so the slight increase in error is, perhaps, to be expected.

But it does not suggest that XNMF provides any advantage over standard NMF when

trying to extract clean data from noisy data, at least for these particular data-sets and

methods.

6.3.2 Representation of the data

The interpretation of the four matrices, W1, W2, H1 and H2, was discussed in the

previous section. The most interesting matrix here is W1 as it is the representation of

Chapter 6. XNMF-Biol 73

0.00 0.05 0.10 0.15 0.20
Noise Level

2

4

6

8

10
Tr

ue
 E

rro
r

NMF
XNMF1
XNMF2
XNMF3
XNMFc

0.180 0.182 0.184 0.186 0.188 0.190
Noise Level

10.2

10.3

10.4

10.5

10.6

10.7

10.8

Tr
ue

 E
rro

r

NMF
XNMF1
XNMF2
XNMF3
XNMFc

Figure 6.5: The effect of added noise on the different methods. NMF produces a very
marginally better result that the XNMF versions (lower is better in this plot). The
right plot is a zoomed in version of the left plot.

the proteins and should have the most biological interest.

Fraction

Re
la

tiv
e

ab
un

da
nc

e

Raw data NMF
Re

la
tiv

e
ab

un
da

nc
e

W values

XNMF1

Re
la

tiv
e

ab
un

da
nc

e

W1 values

XNMF2

Re
la

tiv
e

ab
un

da
nc

e

W1 values

Figure 6.6: Top left) The fractional abundances for the raw data for the original
marker proteins. Other three plots) The rows of W1 for the original markers with
r1 = 2, 5, 10 for NMF, XNMF1 and XNMF2. At low r1 values interpretation is much
easier than for higher numbers of dimensions.

We will consider two way of looking at the W1 matrix. The first is as a dimensionality

reduced version of the spatial proteomics abundances which we show in Figure 6.6. Here

we are looking at the individual proteins and their weights in the W1 space, so each

drawn line is a row of W1. The top left plot shows the raw data for the original marker

Chapter 6. XNMF-Biol 74

proteins with different colours representing proteins from different organelles. The top

right plot show dimensionality reduced representations of the organelle markers using

NMF with r values of r = 2, 5, 10 (from top to bottom). The bottom two plots are

equivalents for XNMF1 (with r2 = 6) and XNMF2. It is of particular note how well

separated out the different marker groups are when r = 2 for NMF. In fact from these

two dimensions alone we can see that all the marker proteins can be separated into

their specific organelles. This tallies with our estimate of the optimal subspace size of

r = 2 from using MDL [126]. The dimensionality reduced version is significantly easier

to interpret and analyse than the original raw data. The effect of the external data in

XNMF1 and XNMF2 appears to be to blur the separation between the different markers.

0

PCA

0 200 400 600

0

0 200 400 6000

0

NMF

0

XNMF1

0 200 400 6000

0

XNMF2

0 200 400 6000

Figure 6.7: Plots, for r1 = 2 of the columns of W1 for NMF, XNMF1 and XNMF2
along with equivalent plots for PCA. Each subplot represents one column of W1 and
each dot is the value in that dimension for one protein.

The second way of looking at W1 we want to consider is observing each of the columns

of W1 (in contrast to considering the rows of W1 as we did in Figure 6.6). So each dot is

now the value of one protein for that column of W1 and each plot represents a different

column of W1. We also show equivalent results for PCA as a lot of dimensionality

reduction in spatial proteomics is conducted using PCA [39]. We show results for r1 = 2

in Figure 6.7 and with r1 = 6 in Figure 6.8. We see that there are clear groups of

proteins in each of the W1 columns but that the data is highly noisy and challenging to

interpret. There are several comments to be made. As has been mentioned before the V

Chapter 6. XNMF-Biol 75

PCA

0 200 400 600

NMF

0 200 400 600

XNMF1

0 200 400 600

XNMF2

0 200 400 600

Figure 6.8: The equivalent plots as Figure 6.7 but with r1 = 6

matrix is not random - the proteins are effectively lined up in organelle order, so all the

known markers from one organelle are next to one another. Therefore we expect to see

structure in the data. These plots give us some indication of how similar the proteins are

to each other. We can see that the proteins from 1 to approximately 180 are relatively

similar in values, for both r1 = 2 and r1 = 6. Conversely, from around protein 400

to 580 there seems to be little relationship between the proteins. There are also other

interesting features such as in Figure 6.8 from around protein 180 to 400 virtually all

the proteins are around zero in some dimensions (accepting some noise) but the same

proteins appear to have two structures in other dimensions where from around 180 to

270 they are very similar and then from 270 to 400 they hold a different structure. It

is possible these sort of structures in the data tell us something interesting about the

underlying biology, but that would be for future research.

Visualisation is an essential tool [39] for spatial proteomics analytics. In Figure 6.9

we use r = 3 to produce a representation and then take two of the columns of the

W1 matrices and plot them as a two dimensional graph - such that each data-point

represents one protein. The data separates out into clusters in all the plots but is least

separated in the combined version. It is interesting to note what changes occur from the

standard NMF (top left) to different versions of XNMF. In the manual XNMF2 we see

the blue points shifting towards the yellow which may have significance in that it may

Chapter 6. XNMF-Biol 76

imply there are significant PPI links between the two groups. The choice of r = 3 made

here is because it provides plots which are highly comparable between all the methods,

hence we can easily compare how the clusters in XNMF1 and XNMF2 are less tightly

bound, and overlap more with other clusters, than in PCA or NMF.

PCA NMF

XNMF1 XNMF2

Figure 6.9: Visualisations in 2-D of the proteins using PCA, NMF, XNMF1 and
XNMF2. We used r1 = 3 and then plotted two of the components. The marker
proteins are coloured points. All versions give a good representation of the data. Some
of the changes between NMF and the XNMF versions might tell us something of interest
about those proteins.

A potential advantage of using XNMF over NMF could be an increased level of sparsity

of the factorised matrices. The left plot of Figure 6.10 shows the average sparseness of

W1 as r2 increases. For each value of r2 we measured the sparseness of each column of

W2 and averaged it over the r1 columns of W1, but as r1 can also be increased we then

averaged over the different values of r1 to find our final average sparseness value. We

repeated the process three times to get the mean and standard deviation we have then

plotted. Increasing r2 does appear to result in marginally higher levels of sparseness

in the W1 columns - which is a potentially useful result as increasing sparseness has

considerable value especially in terms of interpretability. However, the magnitude of the

change is relatively small. The right plot of Figure 6.10 shows the effect of increasing r2

on the sparseness of the W2 columns. For each r2 value we take the mean sparseness

across the columns and plot it along with the standard deviation. There is a clear

Chapter 6. XNMF-Biol 77

increase in the average sparsity as r2 increases. For this plot we show the mean and

standard deviation of the sparseness of the columns for each r2 value with three repeats.

2 4 6 8 10 12
r2

0.160

0.162

0.164

0.166

0.168

0.170

Av
er

ag
e
W

1 S
pa

rs
en

es
s

2 4 6 8 10 12
r2

0.4

0.5

0.6

0.7

W
2 S

pa
rs

en
es

s

Figure 6.10: Left) The change in average sparseness of the W1 matrices as r2 in-
creases. Right) The average and standard deviation of the sparseness measure for the
W2 columns as r2 increases.

6.3.3 Clustering and Classification

We want to consider how NMF and XNMF effect the quality of both clustering and

classification. To test the quality of the clustering we will use the Rand index, discussed

in the previous section, in two ways. First we will use it to compare how well clustering

works in comparison to the real labels. Here the labels are considered as a set of clusters

which can then be compared to clusters formed using k-means clustering on raw data as

well as dimensionality reduced data using PCA, NMF, and XNMF. The higher the value,

the better the clustering algorithm matches the real labels. In Figure 6.11 the Rand

index is shown for repeats of the k-means clustering algorithm on different dimensionality

reduction methods. We ran ten repeats of the NMF and XNMFs to produce the different

points and ran k-means clustering fifteen times for each of the repeats to give a mean and

standard deviation. There is little evidence here that using NMF or XNMF produces

considerably better results than PCA, although the results using NMF are slightly higher

but it is probably not significant. It is of interest that the XNMF control version produces

reasonable results. This is probably because we are clustering on W1 and the addition

of the random W2 matrix does not significantly effect W1, meaning that the W1 from

the XNMF control version will be very similar to W from NMF.

The second way we want to measure the clustering is to consider the similarity of the

clusters to themselves. Here the clusters could be very different to the labels but if they

are consistent they will get high values. In Figure 6.12 we show results for repeated

implementations of the k-means clustering. The k-means cluster is applied twice to the

raw data, different versions of NMF/XNMF and PCA all with r1 = 5, allowing the Rand

Chapter 6. XNMF-Biol 78

Raw PCA NMF XNMF1 XNMF2 XNMF3 XNMFC

0.90

0.92

0.94

0.96

0.98

1.00
Ra

nd
 In

de
x

Figure 6.11: Quality of the clustering, compared to the real labels. A higher value
means that the clustering produces a result closer to the actual labels.

Raw PCA NMF XNMF1 XNMF2 XNMF3 XNMFC
0.90

0.92

0.94

0.96

0.98

1.00

Ra
nd

 In
de

x

Figure 6.12: The second method of measuring consistency of clustering this time
comparing across multiple runs of the dimensionality reduction methods. We see no
improvement in the consistency of clustering using these techniques.

index to be calculated each time between the two clusterings. This process is repeated

twenty times and an average Rand index with standard deviation is measured. We

produced ten points for each of the ten different repeats of the NMF/XNMF methods

with the errorbars being the standard deviation across the twenty repeats of the k-means

clustering algorithm, there is no notable differences in output. We also show repeats for

the raw data and the PCA data which should not show differences across the repeats

as they both produce the same results. This demonstrates that most of the variation is

coming from the k-means clustering algorithm.

Chapter 6. XNMF-Biol 79

The main purpose of spatial proteomics experiments is to classify proteins into the cor-

rect organelles. We therefore are interested in whether our XNMF method could produce

improved classification accuracy. It is fairly common practice to test unsupervised learn-

ing techniques by applying a linear classifier onto the reduced representation to test its

ability to effectively represent the data [110]. We therefore apply a linear support vector

machine (SVM) to various different representations of the data and examine the results.

In Figure 6.13 (top) we show the results of using a random half of the extended marker set

as training and the other half as testing, we repeated 1000 times with different random

partitions and show the average and standard deviation for the different methods. In the

bottom plot we show the results of training on only the original marker set and testing

on the total extended set. We do appear to get a better classification accuracy with

the XNMF versions when training using just the original marker set and testing on the

extended markers. It is potentially useful to utilise XNMF for improved classification

here. However, we get worse results when using XNMF on the extended markers where

PCA and NMF both do significantly better than our XNMF variants.

Part of the challenge of drawing conclusions from these results of clustering and classi-

fication is that we get generally very good results using all methods, including the raw

data, making it difficult to discriminate between the methods. We do see promising

results when working from the original markers alone though where we get significantly

better results with NMF and XNMF than with PCA or with raw data.

6.4 Summary

In this chapter we have demonstrated that NMF is an effective method to use for the

dimensional reduction of spatial proteomics data and that XNMF can be used to add ex-

ternal data into the formulation. As with many unsupervised learning methods, demon-

strating conclusively that the method works better than alternatives is challenging.

There are impressive results using standard NMF, with r = 2 we see a complete sepa-

ration of the marker proteins into different compartments, which tallies with the rank

estimated using the minimum description length method [126]. Without negative values

the columns of the W1 matrix should be easier to interpret. The 2-d visualisations

effectively separate out the marker proteins. Clusters formed do appear to be slightly

more consistent when using NMF or XNMF than PCA, but the differences are small

and may be within the margin of error. There also may be a signficant advantage of

using the NMF or XNMF methods in terms of classification accuracy compared to PCA

Chapter 6. XNMF-Biol 80

Raw PCA NMF XNMF1 XNMF2 XNMF3 XNMFc0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000

Ac
cu

ra
cy

Training Accuracy
Testing Accuracy

Raw PCA NMF XNMF1 XNMF2 XNMF3 XNMFc

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Training Accuracy
Testing Accuracy

Figure 6.13: Top) Classification accuracies using partitions of the extended marker
set as training set and another partition as the testing set. With use of concatenated
W1 with W2. Bottom) Classification accuracies using the original marker data as
training and the extended marker set as the testing set.

especially when dealing with small amounts of training data such as the original marker

proteins.

There are several potential advantages that we claim for XNMF over NMF, we im-

prove the reproduction quality - with less overfitting than doing so by increasing the

r1 value. With increasing r2 we find an increasing level of sparseness of the W1 ma-

trix which should lead to a representation which is easier to interpret. XNMF appears

to push some of the marker proteins closer together in the 2-d visualisations - poten-

tially suggesting they might be proteins of interest - such as translocalising (existing in

more than one compartment). There, potentially, could be a significant improvement

Chapter 6. XNMF-Biol 81

in generalisation accuracy when using XNMF and training on small data-set. While we

have not demonstrated drastic improvements using XNMF there are signs that it might

be a useful method with further research with other proteomics data-sets (such as the

Drosophila data-set we used in previous work [124, 128]) or different types of biological

data.

Chapter 7

A Framework for Performing

Variants of Non-Negative Matrix

Factorisation using Constrained

Autoencoders

In this chapter we explore the use of an autoencoder to perform various versions of NMF.

We will consider whether an autoencoder can effectively be used to perform standard

NMF and variants of NMF. We are particularly interested in producing a formulation

that is flexible enough to cope with a range of disparate datasets. This chapter also

feeds into Chapter 8 providing the ideas behind using an autoencoder to perform NMF

which then enables us to perform probabilistic NMF.

7.1 Introduction

As the work in this thesis is primarily concerned with unsupervised learning, and specif-

ically non-negative constraints in unsupervised learning we will explore some of the

relevant literature regarding neural networks and autoencoder; the application of non-

negative constraints in neural networks; how neural networks can be used to perform

NMF; and will conclude this section by providing a motivation for the use of autoen-

coders to perform NMF.

83

Chapter 7. AE-NMF 84

7.1.1 Neural Networks and Autoencoders

A variety of versions of neural networks have recently achieved impressive results in

supervised learning, especially convolutional neural networks [69] and recurrent neural

networks [54]. There has been somewhat less focus on unsupervised learning in neural

networks where autoencoders [115, 52] are one of the key methods.

Autoencoders are a type of unsupervised neural network with a target output the same

as its input. The network has some type of constriction which, it is hoped, forces

the network to find an efficient encoding of the input data [52]. We will discuss the

mathematics behind autoencoders in more detail in Section 7.2.

7.1.2 Non-Negative Constraints in Neural Networks

A key motivation for the application of non-negative constraints into neural networks is

to improve interpretability. The activation functions in a neural nework are non-negative

if either sigmoids or rectified linear units (ReLU) [98] are applied but the weights of the

network, usually, are allowed to be all real numbers. There has been limited significant

work published on imposing non-negativity on the weights of a neural network. One

such study found imposing non-negativity on the weights resulted in a worse test error

but claimed that the network weights were easier to interpret and understand [19].

An one-hidden-layer autoencoder with non-negative weights was introduced by Lemme

et al. with the weight matrix kept the same for the encoding and decoding parts [75, 76].

They utilise a sigmoidal activation function with the intrinsic plasticity mechanism [132]

which automatically updates the parameters of the sigmoid. This method allows the au-

toencoder to be directly compared to NMF but has limitations especially in that it ties

the weights of the encoder to those of the decoder and uses a sigmoidal activation func-

tion. They also use a standard squared error objective function. While their method is

effective it does not allow much flexibility of approach, for example they cannot easily

increase the depth of their network under their formulation. A neural network approach

with non-negativity constraints was also used with an application to audio problems,

on which they find improved source separation compared to standard NMF [123], how-

ever they do not impose non-negativity on the weights of the network directly, instead

imposing sparsity on H.

While some other work has been completed on the use of nonnegativity constraints in

autoencoders [56, 99, 6, 4, 5] these have tended to focus on what happens to an autoen-

coder when a non-negativity constraint is applied to it rather than using autoencoders

to specifically perform NMF. They all claim improved interpretability and some claim

Chapter 7. AE-NMF 85

that they find more sparse solutions. These claims tend to be made on specific data-

sets with, presumably, highly tuned methods applied which effectively work on these

particular problems.

7.1.3 Using Neural Networks to perform NMF

There has been little work conducted which specifically focuses on using neural networks

to actually perform NMF. One example of this was a proposed method which uses a

recurrent neural (RNN) to perform NMF [22]. They produce a Lagrangian formulation

of NMF and use the RNN to find the Lagrange multipliers. As previously mentioned, the

work of Lemme et al. [75, 76] does find a weight matrix and latent activation functions

that can be interpreted as performing NMF.

It is also of interest that NMF has been used to find the parameters of neural networks.

One paper used semi-NMF and NMF to optimise the layers of a deep neural network

without directly using backpropagation [116]. While we do not attempt this, the idea of

using NMF in this way to find the parameters of the network might be of future interest.

7.1.4 Motivation

In recent year neural networks have come to dominant many fields of machine learning

due, mainly, to the impressive results they have produced. NMF is still mostly conducted

using matrix factorisation techniques such as the multiplicative updates. In this chapter

we want to explore whether using neural networks to perform NMF has any advantages

over more standard methods. To this end we utilise several variations of the autoencoder

to peform NMF and analyse whether using an autoencoder for NMF has value.

7.2 Methodology

7.2.1 Basic AE-NMF

A basic autoencoder is shown in Figure 7.1, the mathematics of the autoencoder, if

certain constraints are imposed, is the same as for NMF. We consider an input data-

matrix V ∈ Rm×n with m dimensions and n data-points. If we then consider one

data-point vi ∈ Rm×1, in NMF we want to produce xi ∈ Rm×1 where xi = Whi and

xi ≈ vi. For a basic autoencoder with one hidden layer the weight matrix linking the

input to the hidden layer is W1 ∈ Rr×m where r is the number of neurons in the hidden

layer. We then have the output of the hidden layer hi = σ1(W1vi) where σ1 is some

Chapter 7. AE-NMF 86

non-linear function that operates element-wise and hi ∈ Rr×1. The final layer then has

a weight matrix Wf ∈ Rm×r and produces output xi = σf (Wfhi). If the activation

function σf is the identity, and both Wf and hi are non-negative we have an autoencoder

which can be interpreted as performing NMF.

v

h

x

W1 Wf

Figure 7.1: A basic autoencoder to perform NMF. The weights of Wf must all be
non-negative, the activation function σf which operates on the output neurons should
be the identity and the activation function, σ1, that produces h must be non-negative.
The number of neurons in the hidden layer is the subspace size.

For the basic autoencoder to perform standard NMF the constraints that must be met

are:

1. The activation function σ1 must produce a non-negative output.

2. The activation function σf should be the identity.

3. The weights of Wf must be non-negative.

4. The number of hidden units in the hidden layer must be the same as the desired

subspace size.

If these conditions are met then the autoencoder will produce a matrix Wf which is

equivalent to the W from NMF and a set of dimensionally reduced points hi ∀i ∈
{1, ..., n} which, combined together, are equivalent to the H from NMF. We call this

autoencoder AE-NMF. This explanation of basic NMF adds nothing of substance to the

previous work discussed in the previous section, except for the manner we have presented

it. The contribution we are adding in this chapter is below here where we demonstrate

how this more flexible framework we are setting out can be used in a variety of different

ways.

Within these constraints there is considerable flexibility which enables us to explore a

range of choices when performing AE-NMF. These variations fall into two main cate-

gories, those that: 1) improve performance and 2) perform different versions of NMF.

Performance here includes: finding a lower error F = 1
2 ||V−WH||2Fro; sparser solutions;

a more interpretable representation; faster computation; lower computational require-

ments; better consistency of results across multiple runs. Different versions of NMF

Chapter 7. AE-NMF 87

could include methods such as XNMF [125], seen in Chapter 5, or probabilistic ver-

sions of NMF (see Chapter 8). In the rest of this chapter we will consider variations to

AE-NMF which may be able to achieve something from either of these two categories.

7.2.2 Variations to AE-NMF

A potential advantage of AE-NMF over more standard forms is the ease with which we

can adjust a range of parameters and hyper-parameters (by which we mean the choice

of, say, the activation function itself rather than parameters associated with it). We first

consider a few relatively small changes which we will review in turn.

The Activation Function

The choice of activation function of the hidden layer is restricted in that it must be

non-negative, ruling out options such as the hyperbolic tangent. The most obvious two

choices are the sigmoid and rectified linear unit (ReLU). Many modern neural networks

use ReLU rather than sigmoids as the activation function of the neurons as they often

appear to produce better results [98].

Choice of Optimiser

There are many optimisation choices for performing on a neural network. We consider

two of the most common: gradient descent and the Adam optimiser [66].

Method of Imposing Non-negativity on Wf

We consider two options to impose non-negativity on Wf : projection to zero and the

gradient descent form of multiplicative updates [72, 42].

The projection to zero method is simple and fast. For all the elements of Wf the

projection method performs W ′i,j = max(Wi,j + ∆Wi,j , 0), where W ′i,j is the updated

element and ∆Wi,j update amount.

For the second method, using multiplicative updates [72], when we implemented them to

update the weights of the Wf matrix we got poor results. It is possible that the problem

is that when we are updating the weights of the first layer (W1) we use a static learning

rate that is kept too small. As the learning rate of Wf is adaptive (see Chapter 5) it is

possible that they are scaled too high so that the final layer weights were being updated

too much compared to the other layer, leading to poor outcomes. To compensate for

this we added an additional learning rate, λ:

W←W− λ [W]

[WHHT]
◦ ∇WF. (7.1)

Chapter 7. AE-NMF 88

The addition of λ still guarantees the monotonic decrease [73] of the objective function

but it will be slower.

We will now consider larger variations that warrant more attention: depth of the net-

work; alterations to the objective function; online versus batch approaches; the use of

an autoencoder for performing XNMF.

7.2.2.1 Network Depth

Deep neural networks often appear to achieve far better performance than shallower

networks [71, 93] even though a neural network with only one hidden layer can be a

universal function approximator [24, 55]. An optimal solution (or many optimal solu-

tions) should exist to any NMF problem and it should be possible to find them by a

fairly shallow AE-NMF with only two hidden layers. We require two hidden layers in

this AE-NMF formulation because we must constrain the number of units (to r units)

in the penultimate layer as that is the size of our subspace and for the universal function

approximator the number of units cannot be constrained in this way.

It is worth considering whether the apparent benefit of depth in certain neural networks

might be true for AE-NMF as well and may enable us to reach better solutions. The

constraint here is that the depth must all come before the final layer - we cannot add

layers after the constriction otherwise we cannot recreate NMF correctly. However, we

can alter the previous layers considerably. In Figure 7.2 we present a visualisation of a

deeper network with three hidden layers and with r = 2.

Figure 7.2: A deep auto-encoder for performing NMF. We can add as many layers
as we want before the constriction (which has two neurons) but, to perform NMF, we
must have just one set of weights after the constriction.

7.2.2.2 Alterations to Objective Function

A potentially significant benefit of performing AE-NMF rather than standard NMF is

the relative ease of altering the objective function. The example investigated in this

work was an attempt to make the objective function “more convex”.

Chapter 7. AE-NMF 89

A common problem in neural networks and in standard NMF is that the objective

function is non-convex. The importance of the non-convexity of either NMF or neural

networks is unclear, for example, if there are multiple minima but they all have the

same error and provide a similar interpretation then the non-convexity might not be

important. For example, people have claimed to demonstrate that even with non-convex

functions the local minima which dominate the error space for a deep network all have

similar results to the global minimum [64]. If this is the case for NMF then the solutions

found should be reasonable and it is not particularly important that the method fails

to find a global solution. However, it is unclear if this applies to NMF and there might

be advantages in trying to use objective functions which provide a “more convex” error

space.

We focus on using techniques from Lo et al. [82, 83, 84, 85]. The idea is that you should

adapt the objective function to remove (or reduce) the existence of local minima and

saddle points.

Convexification from the point of view of Lo et al. uses a risk averting error (RAE) and

normalised risk averting error (NRAE). A common objective function for an MLP is the

mean squared error (MSE):

Q(W) =
1

n

n∑
i=1

||vi − v̂i||2 (7.2)

where n is the number of data-points, vi is the target output and v̂i is the predicted

output. Now the RAE is given by

Jλ(W) ≡
n∑
i=1

exp
(
λ||vi − v̂i||2

)
(7.3)

where λ is called the risk sensitivity index. The larger is λ the larger the convex region,

however, if λ is large or ||vi − v̂i||2 is large then Jλ will cause a numerical overflow as

the numbers become too large to manage.

To counter these numbers getting too large Lo et al. introduced the normalised risk

averting error (NRAE):

Chapter 7. AE-NMF 90

Cλ(W) ≡ 1

λ
ln

[
1

n
Jλ(W)

]
. (7.4)

While the NRAE does prevent the production of too large numbers it does not immedi-

ately prevent the previous problem - Jλ still need to be computed before the natural log

can be applied and that will overload the computer. Lo et al. [83] therefore introduce

some new terms to correct for this problem. We now have:

Cλ(W) =
1

λ
ln

1

n
+ ||εM (W)||2 +

1

λ
ln
[n∑
i=1

ηi(W)
]

(7.5)

where

εi(W) ≡ vi − v̂i(W), (7.6)

εM (W) ≡ max
i∈[1,...,n]

||εi(W)||2, (7.7)

ηi(W) ≡ exp(λ(||εi(W)||2 − εM (W)||2. (7.8)

We use automatic differentiation built into PyTorch but we also compared the gradients

found with those of the derivative of Cλ:

∂Cλ
∂wi

=
1

λJλ

∂Jλ
∂wi

(7.9)

=
−2
∑n

k=1 ηkε
T
k
∂v̂k
∂wi∑n

k=1 ηk
, (7.10)

which produces the same result. Therefore we continue to use the automatic differenti-

ation method through the network.

While we investigate altering the objective function in this particular manner using the

NRAE and RAE there may be many other objective functions of interest such as the

MDL approach in Chapter 4. In the next section we show the results from the application

of the NRAE and RAE objective functions in the AE-NMF framework. Perhaps more

importantly, we demonstrate the ease of investigating new objective functions using the

AE-NMF framework.

Chapter 7. AE-NMF 91

7.2.2.3 Online versus Batch

Many NMF techniques such as multiplicative updates [72] or hierarchical alternating

least squares [42] are batch processes and are not easily converted into an online form.

Online updates is a useful feature under several circumstances especially if you are

working in areas where the data continuously comes in or if the data-set are too large

to hold in your memory at one time. Using AE-NMF it is relatively straightforward to

adapt to an online approach. In fact, much of the neural network background code that

exists is designed to mostly work in an online (or mini-batch) manner, with methods

such as stochastic gradient descent.

7.2.2.4 Autoencoder for XNMF

In Chapter 5 [125] we provided a novel method for including external data into the NMF

formulation, called XNMF. We can perform the same method using AE-NMF, which we

then call AE-XNMF. In Figure 7.3 we display the layout of AE-XNMF. The black solid

lines represent all the weights that can be updated while the red dot-dashed lines are

those weights which are fixed.

Figure 7.3: An autoenoder with one hidden layer designed to perform XNMF. The
black lines are all weights that must be learnt while the red lines represent the external
subspace and are constant.

In AE-XNMF the final layer produces Vp = W1H1 + W2H2 where W1 are the weights

that can vary, W2 the set weights, while H1 and H2 are the activations of the previous

layer. This formulation is identical to XNMF but has the same potential variations

outlined above that may enable improved versions of XNMF.

Chapter 7. AE-NMF 92

7.2.3 Transfer Learning for AE-NMF

Transfer learning in neural networks involves using a previously trained network, or part

of a previously trained network, and using it for a new problem [109, 107]. The use of

transfer learning in AE-NMF may provide several advantages over training a network

from scratch including: improving the speed of training; producing more consistent

solutions over repeated runs which also might make comparisons between techniques

easier; reducing overfitting; and producing more generalised results. In Figure 7.4 we

display our method of performing transfer learning for AE-NMF.

Figure 7.4: A transfer learning layout for an AE-NMF. We have to learn the weights
and biases labelled in the diagram fresh each time we reuse the network. Re-learning
the first and ith layers allow us to take any dimensional space and apply this method.
The final layer allows us to choose our subspace size and vary the output size.

The transferred network is found in some manner in a previous step - as we hope it

will uncover some form of structure in data it is not necessary to specify the method

used. Supervised or unsupervised learning methods might both work if they produce a

sensible function between the input and output.

All the weights and biases in the transferred network remain the same. We have to

update W1, b1, Wi, bi and Wf , where we do not specify which layer i is as the depth

of the transferred network does not need to be constrained. The structure of the transfer

learning part of the AE-NMF is also not heavily constrained as all the NMF constraints

occur in the final layer. There are a neurons at the entrance to the transferred network

and b at the exit. To adapt the data to the particular transferred network requires that

W1 ∈ Rm×a, b1 ∈ R1×a, Wi ∈ Rb×r and bi ∈ R1×r.

Part of the logic behind transfer learning is that deep neural networks learn a repre-

sentation characteristic of the problem domain with simpler patterns in earlier layers

and more complex forms as the depth increases [155]. Therefore some transfer learn-

ing methods take the early layers, which for images tend to form general patterns like

straight lines and curves, and hold them constant whilst altering the later layers [151].

Our method partially does that but also has a first layer which alters the dimensionality

of the data to match that of the transferred network.

Chapter 7. AE-NMF 93

7.3 Results and Discussion

In this chapter we are exploring the use of autoencoders for performing NMF, we are not

planning on finding optimal solutions to particular data-sets. Instead we will investigate

the themes we discussed in the previous section and see if we can draw conclusions about

the value, or otherwise, of using autoencoders to perform NMF. We test these methods

and variations on the same three data-sets we have regularly used throughout this thesis

(images of faces, FTSE 100 and genetic data) and also include a reduced (to speed up

computational time) version of MNIST with the digits 1, 2 and 6 included.

7.3.1 Minor Choices

First we consider the relatively minor choices discussed in the previous section that must

be made to conduct NMF using an autoencoder: choice of activation function, update

rules for the network and methods of imposing non-negativity.

Faces Fin Genes MNIST10−5

10−4

10−3

10−2

Er
ro

r

Sigmoid versus ReLU
Sigmoid
ReLU

Faces Fin Genes MNIST10−5

10−4

10−3

10−2

Er
ro

r

Adam versus Gradient Descent
Adam
Grad Descent

Faces Fin Genes MNIST10−5

10−4

10−3

10−2

Er
ro

r

Scaled MU versus Projection
Scaled MU
Projection

Figure 7.5: (Top left) Final errors for the sigmoid and ReLU activation functions.
(Top right) Final erors for the Adam and gradient descent methods of updating the
network. (Bottom) Final errors of the scaled MU and projection methods of keeping
W non-negative.

We empirically tested these three choices and show the results in Figure 7.5. We ran

repeats of these tests but the results are almost identical with errorbars that are not

possible to see. The first plot is of using a sigmoid or ReLU activation function for the

Chapter 7. AE-NMF 94

production of hi. We find better results using the ReLU but only very marginally for

the genomic and MNIST data-sets. For the faces data-set the differences are substantial

(note that we use a log scale so all four data-sets are visible). The FTSE 100 data

(labelled at Fin for financial) gives drastically different results. Here the network with the

sigmoid activation function is failing to find an appropriate solution for some unknown

reason. We did not spend much time investigating this failure as the improvements

caused by using ReLU have already been noted [98].

The second plot of Figure 7.5 shows the result of updating the network using the ADAM

optimiser [66] or standard gradient descent methods. There is not a significant difference

between the two methods but, perhaps surprisingly, the gradient descent tends to do a

little better.

The final plot shows the effect of using the scaled multiplicative updates or the projection

to zero method. There is very little difference between these methods, throughout most

of the rest of the work we use the projection method as it is computationally faster and

does not require any choice of learning rate.

Throughout the rest of this chapter we have mostly used the ReLU, gradient descent and

projection methods due to the results found here. However, we also note that improved

tuning or different data-sets might have resulted in different outcomes. What is fairly

clear though is that, with the exception of the sigmoid versus ReLU for the faces and

FTSE 100 data-sets the differences in outcome are relatively small, and therefore it is

unlikely that it makes a considerable difference to any final conclusions. In addition,

as we are exploring the use of AE-NMF rather than trying to specifically find optimal

solutions the tests performed here should be sufficient. For different data-sets these

conclusions might be different, which adds weight to our argument that our method,

being flexible, should enable improvements over more rigid methods.

7.3.2 Online Approaches

One of the potential benefits of conducting AE-NMF rather than standard NMF is that

performing NMF in an online manner is easier in AE-NMF. In the left plot of Figure 7.6

we see results of the online approach using both Adam and gradient descent where Adam

does better for all four data-sets. In the right plot we demonstrate the difference in final

error between a batch and an online approach, the batch method provides better final

errors but the online approach still gets to good results which effectively recreate the

data.

Chapter 7. AE-NMF 95

Faces Fin Genes MNIST10−5

10−4

10−3

10−2

Er
ro

r

Adam versus Grad Descent
Adam
Grad Descent

Faces Fin Genes MNIST10−5

10−4

10−3

10−2

Er
ro

r

Online versus Batch
Online
Batch

Figure 7.6: Left) Final errors for two versions (grad descent and Adam) of the online
algorithm, both use the projection method to keep the weights non-negative. Right) A
comparison of final errors for the online and batch methods.

7.3.3 Applying a more Convex Objective Function

In Figure 7.7 we apply the RAE and NRAE approaches of Lo et al. We attempted two

methods, one using the NRAE alone and one using NRAE followed by RAE. Neither

end up producing results which can match or better using the standard Frobenius norm

objective function. These results do not tally with the empirical evidence of improvement

in final error found by Lo et al. [82, 83, 84, 85]. It may be the case that on some data-sets

the RAE or NRAE approaches do work effectively, in which case using AE-NMF with

these altered objective functions would be a simple and effective strategy. While, on

these datasets, we do not find an improvement in performance it does demonstrate the

flexibility of approach of using AE-NMF over standard NMF.

Faces Fin Genes MNIST10−5

10−4

10−3

10−2

Er
ro
r

NRAE
NRAE_RAE
Frobenius

Figure 7.7: A comparison of final squared error found by the NRAE, NRAE-RAE
and normal objective functions. We find no improvement using the RAE or NRAE over
a standard Frobenius norm objective function.

7.3.4 Deep AE-NMF

In Figure 7.8 we show results of testing the network with two and six hidden layers and

compare it to standard NMF. In the top left plot we see the results, the two autoencoders

Chapter 7. AE-NMF 96

perform much worse than standard NMF. The reason is that for both of these networks

some of the final layers are being turned off, which has the effect of reducing the effective

dimensionality further, we show the number of neurons being turned off in the top

right plot for different values of r. When we correct for this effect in the bottom plot

and compare the results of the autoencoders with their effective r-value we see almost

identical results between standard NMF and the autoencoder versions. Perhaps the

most likely reason for this is that both the autoencoders and NMF are finding a result

that is close to the global minimum but we definitely cannot draw a conclusion here that

using a deep version of AE-NMF provides any clear benefit.

20 40 60 80 100 120
r-value

Fi
na

l e
rro

r

2 Hidden
6 Hidden
MU-NMF

40 60 80 100 120
r-value

10

20

30

40

Nu
m

be
r o

f H
 ze

ro
s

2 Hidden
6 Hidden

20 40 60 80
r-value

Fi
na

l e
rro

r

2 Hidden
6 Hidden
MU-NMF

Figure 7.8: a) Final errors for different starting r-values for two types of deep AE-
NMF and standard NMF. b) The increasing number of H-zeros for increasing starting
r-value for the AE-NMF networks with different depths. c) The final errors for different
starting r-values once we factor out the H-zeros, we see no difference between the AE-
NMF and standard NMF errors.

7.3.5 XNMF using AE-NMF

We demonstrate here the further flexibility of AE-NMF by its simple alteration to pro-

duce similar results to those of XNMF [125]. We use the same FTSE 100 data as used

in Chapter 5, apply AE-XNMF for a range of r−values and compare with XNMF. In

Figure 7.9 we show that AE-XNMF and XNMF produce very similar results across the

range of r1 values. There are three repeats shown on these plots for both XNMF and

AE-NMF but they produce such similar results it is hard to see the errorbars, both AE-

NMF and XNMF produce highly consistent results. It is interesting that AE-XNMF

actually seems to produce a better solution than XNMF at low r values, which we would

Chapter 7. AE-NMF 97

not have expected since we are holding Wf non-negative by setting negative values to

zero. It is possible that XNMF is getting trapped in local minima or saddlepoints and

that AE-XNMF is able to escape. However, at the optimal r value (see Chapter 3) of

around 8-10 the results are almost identical.

5 10 15 20 25 30
r1-value

50

100

150

Fi
na

l E
rro

r

XNMF
AE-XNMF

Figure 7.9: Final errors against r1 for XNMF and AE-XNMF. The results are similar
for most values of r but at the low end AE-XNMF appears to do better than XNMF,
and at the other end the reverse appears to be true.

7.3.6 Transfer Learning in AE-NMF

A benefit of transfer learning could be that it enables the relationships between features

found in one related type of data to be transferred to another. A standard explanation of

this is in images where straight lines and curves are highly transferrable between many

different types of images so a model which extracts these features from images should

be useful for a wide range of image data-sets. There are several potential advantages to

this method, one being much faster learning on the final network as you do not have to

update as many weights. Perhaps of even more importance is that this form of transfer

learning can enable small data-sets to be used when training from a randomly initialised

network might be impossible.

We tested this potential benefit of transfer learning by training our transfer network on

the faces data-set and testing on MNIST-reduced data. We performed three versions

of this method: (Figure 7.10 one with transfer learning (black solid line), one with

transfer learning but with random weights (blue dashed line) and one from scratch (red

dotted line). We performed five repeats for each of the three versions. The results

are promising in that our transfer learning method finds the lowest error and the best

minima. Interestingly the randomised transferred network outperforms the network

trained from scratch - implying that the network trained from scratch is getting stuck

in very poor local minima or saddle-points.

Chapter 7. AE-NMF 98

Iterations
Er

ro
r

Faces to MNIST

Transfer Learning
Random Transfer Learning
Non-Transfer Learning

Figure 7.10: Transfer learning from the faces data-set to the MNIST-reduced data-set
showing significant improvements in performance over learning from scratch.

We performed the same process with the financial data. Instead of using a different

data-set we took the FTSE-100 data but from a previous time period. This may not

work well as the features extracted (columns of W) will be over a very different period

and may not transfer well. We trained the original network and selected the network

with the lowest error to be the transferred network and then tested our final network five

times using the transferred network. The results are in Figure 7.11. We do not see any

improvement with the transferred network which may be because the network trained

from scratch has no problem in finding a reasonable solution. The transferred network

also may not be aligned well with the second data-set and the features extracted from

the first data-set may not be relevant.

Iterations

Er
ro

r

FTSE 100 to later FTSE 100
Transfer
Random Transfer
Non-Transfer

Figure 7.11: Transfer learning for the financial data with the transferred network
learnt with data from a previous time period and tested on a later period. We see
no improvement - in fact running from scratch seems to provide an improvement in
accuracy.

7.4 Summary

Standard matrix factorisation methods for performing NMF such as multiplicative up-

dates [72] appear to be highly effective at finding good solutions. However, they lack

Chapter 7. AE-NMF 99

flexibility and can suffer in terms of computational resources required for large data-

sets. AE-NMF is a highly flexible approach which enables the application of multiple

methods to attempt to find a good solution for a particular data-set. In addition, for

any new data-point, vi we can find its latent representation, hi, by passing it through

the AE-NMF network.

The application of AE-NMF enables different objective functions to be imposed, easy

application of an online approach, the flexibility over a range of hyper-parameters (such

as update methods or optimization schemes) and adjustments to different methods such

as XNMF. This overall flexibility allows for experimentation on a data-set until desired

results are achieved.

We found comparable performance to standard NMF and to XNMF using our autoen-

coder method. However, we did not find any evidence that AE-NMF could improve on

NMF. It is possible that NMF applied to these data-sets finds very good solutions so we

are unlikely to surpass them.

In the next chapter we will investigate using a variational autoencoder to perform prob-

abilistic NMF, that work is based upon the principles outlined in this chapter of using

an autoencoder to perform standard NMF.

Chapter 8

A Variational Autoencoder for

Probabilistic Non-Negative

Matrix Factorisation

We introduce and demonstrate the variational autoencoder for probabilistic non-negative

matrix factorisation (PAE-NMF). We design a network which can perform NMF and

add in aspects of a VAE to make the coefficients of the latent space probabilistic. By

restricting the weights in the final layer of the network to be non-negative and using

the non-negative Weibull distribution we produce a probabilistic form of NMF which

allows us to generate new data and find a probability distribution that effectively links

the latent and input variables. We demonstrate the effectiveness of PAE-NMF on three

heterogeneous datasets: images, financial time series and genomic.

8.1 Introduction

8.1.1 Using Autoencoders for NMF

Several authors have studied the addition of extra constraints to an autoencoder to

perform NMF [76, 6, 56] and we explored these idea in Chapter 7. These methods

show some potential advantages over standard NMF including the implicit creation of

the H matrix and straightforward adaptation to online techniques. For completeness

we recreate the diagram of an autoencoder for performing NMF from Chapter 7 in

Figure 8.1.

101

Chapter 8. PAE-NMF 102

v

h

x

W1 Wf

Figure 8.1: Diagram of an autoencoder designed to perform NMF. The weights of
the final layer, Wf , become the directions of the subspace, with the outputs of the
hidden layer, h, as the coefficients in that new subspace. The activation function that
produces h must be non-negative as must all the elements of Wf .

8.1.2 Variational Autoencoders

NMF and autoencoders both produce a lower dimensional representation of some input

data. However, neither produce a probability model, just a deterministic mapping.

It is also not obvious how to generate new data from these lower dimensional spaces.

Generative models solve both of these problems, enabling a probability distribution to

be found linking the input and latent spaces whilst enabling new data to be created.

One of the most popular recent generative model is the variational autoencoder (VAE) [67,

113]. A VAE is a probabilistic model which utilises the autoencoder framework of a neu-

ral network to find the probabilistic mappings from the input to the latent layers and

on to the output layer. Unlike a standard autoencoder the VAE finds a distribution

between the latent and seen variables, which also enables the production of new data by

sampling from the latent distributions.

8.1.3 Probabilistic Non-Negative Matrix Factorisation

Several authors have presented versions of NMF with a probabilistic element [105, 17,

119] which involve the use of various sampling techniques to estimate posteriors. Other

work has been done using hidden Markov models to produce a probabilistic NMF [94] and

utilising probabilistic NMF to perform topic modelling [87]. However, to our knowledge

no one has utilised the ideas behind the VAE to perform NMF.

Although probabilistic methods for NMF have been developed, even a full Bayesian

framework still faces the problem that, for the vast majority of problems where NMF

is used, we have little idea about what is the appropriate prior. We would therefore

be forced to do model selection or introduce hyperparameters and perform inference

(maximum likelihood or Bayesian) based on the evidence. However, as the posterior

in such cases is unlikely to be analytic this is likely to involve highly time consuming

Chapter 8. PAE-NMF 103

Monte Carlo. In doing so we would expect to get results close to those we obtain us-

ing PAE-NMF. However, for machine learning algorithms to be of value they must be

practical. Our approach, following a minimum description length methodology, provides

a principled method for achieving automatic regularisation. Because it fits within the

framework of deep learning it is relatively straightforward and quick to implement (using

software such as Keras or PyTorch with built-in automatic differentiation, fast gradient

descent algorithms, and GPU support). In addition, our approach provides a consid-

erable degree of flexibility (e.g. in continuous updating or including exogenous data),

which we believe might be much more complicated to achieve in a fully probabilistic

approach.

The next section lays out the key alterations needed to a VAE to allow it to perform

NMF and is our main contribution in this chapter.

8.2 PAE-NMF

The model proposed in this chapter provides advantages both to VAEs and to NMF.

For VAEs, by forcing a non-negative latent space we inherit many of the beneficial

properties of NMF; namely we find representations that tend to be sparse and often

capture a parts based representation of the objects being represented. For NMF we

introduce a probabilisitic representation of the vectors h which models the uncertainty

in the parameters of the model due to the limited data.

8.2.1 Ideas Behind PAE-NMF

Kingma and Welling [67] proposed the VAE for which the aim is to perform inference

where the latent variables have intractable posteriors and the data-sets are too large

to easily manage. Two of their contributions are showing that the “reparameteriza-

tion trick” allows for use of standard stochastic gradient descent methods through the

autoencoder and that the intractable posterior can be estimated.

In a standard autoencoder we take some data point v ∈ Rm and run it through a neural

network to produce a latent variable z = f(v) ∈ Rr where r < m and f is some non-

linear element-wise function produced by the neural network. This is the encoding part

of the network. We then run z through another neural network to produce an output

v̂ = g(z) ∈ Rm, which is the decoding part of the network. The hope is that due to

r < m the latent variables will contain real structure from the data.

Chapter 8. PAE-NMF 104

A standard VAE differs in that instead of encoding a deterministic variable z we find a

mean, µ, and variance, σ2 of a Gaussian distribution. If we want to generate new data

we can then sample directly from this distribution to get z and then run z through the

decoding part of the network to produce our new generated data. As well as sampling

from a distribution, VAEs also differ in that they require a different objective function.

PAE-NMF utilises the same objective function as a standard VAE, so for each data-

point, we are minimising:

obj =Eqφ(z|v)

(
− log

(
pθ(v|z)

))
+ DKL(qφ(z|v)||p(z)) (8.1)

≈ 1

2σ2
||v− v̂||2 + DKL(qφ(z|v)||p(z)) (8.2)

where DKL is the KL divergence, φ and θ represent the parameters of the encoder and

decoder, respectively, v is an input vector with v̂ the reconstructed vector. The first term

represents the reconstruction error between the original and recreated data-point. The

second term is the KL divergence between our prior expectation, p(z), of the distribution

of z and the representation created by the encoding part of our neural network, qφ(z|v).

We can interpret this as a regularisation term, it will prevent much of the probability

density being located far from the origin, assuming we select a sensible prior. Another

way of looking at it is that it will prevent the distributions for each datapoint being very

different from one another as they are forced to remain close to the prior distribution.

This objective function can also be interpreted as the amount of information needed to

communicate the data [68]. We can think of vectors in latent space as code words. Thus

to communicate our data, we can send a code word and an error term (as the errors fall

in a more concentrated distribution than the original message they can be communicated

more accurately). The log-probability term can be interpreted as the message length for

the errors. By associating a probability with the code words we reduce the length of the

message needed to communicate the latent variables (intuitively we can think of sending

the latent variables with a smaller number of significant figures). The KL divergence

(or relative entropy) measures the length of code to communicate a latent variable with

probability distribution qφ(z|v). Thus by minimising the objective function we learn

a model that extracts all the useful information from the data (i.e. information that

allows the data to be compressed), but will not over-fit the data.

Chapter 8. PAE-NMF 105

8.2.2 Structure of the PAE-NMF

The structure of our PAE-NMF is given in Figure 8.2. The input is fed through an

encoding neural network which produces two vectors k and λ, which are the parameters

of the qφ(h|x) distribution. The latent vector for that data-point, h, is then created

by sampling from that distribution. However, this causes a problem when training the

network because backpropagation requires the ability to differentiate through the entire

network. In other words, during backpropagation we need to be able to find ∂hi
∂ki

and
∂hi
∂λi

, where the i refers to a dimension. If we sample from the distribution we cannot

perform these derivatives. In variational autoencoders this problem is removed by the

“reparameterization trick” [67] which pushes the stochasticity to an input node, which

does not need to be differentiated through, rather than in the middle of the network.

A standard variational autoencoder uses Gaussian distributions. For a univariate Gaus-

sian the trick is to turn the latent variable, h ∼ q(h|x) = N (µ, σ2), which cannot be

differentiated through, into h = µ + σε where ε ∼ N (0, 1). The parameters µ and σ

are both deterministic and can be differentiated through and the stochasticity is added

from outside.

We cannot use the Gaussian distribution because we need our hi terms to be non-

negative to fulfill the requirement of NMF. There are several choices for probability

distributions which produce only non-negative samples, we use the Weibull distribution

for reasons detailed later in this section. We can sample from the Weibull distribution

using its inverse cumulative distribution and the input of a uniform distribution at an

input node. In Figure 8.2 we display this method of imposing stochasticity from an

input node through ε. Similarly to using a standard autoencoder for performing NMF

the same restrictions, such as Wf being forced to stay non-negative, apply to the PAE-

NMF.

Figure 8.2: General PAE-NMF with stochasticity provided by the input vector ε.

8.2.3 Details of the PAE-NMF

In this paper we have utilised the Weibull distribution which has a probability density

function (PDF) of

Chapter 8. PAE-NMF 106

f(x) =


k
λ

(
x
λ

)k−1
exp (−(x/λ)k) if x ≥ 0

0 if x < 0

with parameters k and λ. The Weibull distribution satisfies our requirements: that the

PDF is zero below x = 0, falls towards 0 as x becomes large and is flexible enough

to enable various shapes of distribution. For each data point there will be r Weibull

distributions generated, one for each of the subspace dimensions.

To perform PAE-NMF we need an analytical form of the KL divergence, so we can

differentiate the objective function, and a way of extracting samples using some outside

form of stochasticity. The KL divergence between two Weibull distribution is given

by [9]

DKL(F1||F2) =

∫ ∞
0

f1(x|k1, λ1) log

(
f1(x|k1, λ1)

f2(x|k2, λ2)

)
dx

= log

(
k1

λk11

)
− log

(
k2

λk22

)
+ (k1 − k2)

[
log(λ1)− γ

k1

]

+

(
λ1

λ2

)k2
Γ

(
k2

k1
+ 1

)
− 1

(8.3)

where γ ≈ 0.5772 is the Euler-Mascheroni constant and Γ is the gamma function.

In other situations using NMF with probability distributions the gamma distribution

has been used [126] (see Chapters 3 and 4. The reason that we have chosen the Weibull

distribution is that while it is possible to apply variations on the reparameterization trick

to the gamma function [35] it is simpler to use the Weibull distribution and use inverse

transform sampling. To sample from the Weibull distribution all we need is the inverse

cumulative function, C−1(ε) = λ(− ln(ε))1/k. We generate a uniform random variable ε

at an input node and then sample from the Weibull distribution with λ and k by C−1(ε).

So, refering to Figure 8.2, we now have ε ∼ U(0, 1) and each of the dimensions of z are

found by zi = C−1
i (εi).

It is worth considering exactly how and where PAE-NMF differs from standard NMF. In

Figure 8.1 we see that, in terms of NMF, it is fairly unimportant what occurs before the

constriction layer in terms of the outputs of interest (W and H). The aim of the design

before that part is to allow the network to find the best possible representation that

gets the lowest value of the objective function. There are effectively two parts which

make this a probabilistic method: the choice of objective function and the fact that we

sample from the distribution. Without those two parts the link between the distribution

Chapter 8. PAE-NMF 107

parameters and h would just be a non-linear function which might do better or worse

than any other choice but would not make this a probabilistic method.

8.2.4 Methodology

We now have the structure of our network in Figure 8.2 and the distribution (Weibull)

that we are using. The basic flow through the network with one hidden layer, for an

input datapoint v, looks like:

λ = f(Wλv), k = g(Wkv), h = C−1
λ,k(ε), v̂ = Wfh (8.4)

where f and g are non-linear functions that work element-wise. The inverse cumulative

function, C−1
λ,k, also works element-wise.

There are a range of choices to make for this network, to demonstrate the value of

our technique we have kept the choices as simple as possible. We use rectified linear

units (ReLU) as the activation function as these are probably the most popular current

method [98]. To keep the network simple we have only used one hidden layer. We update

the weights and biases using gradient descent. We keep the Wf values non-negative by

setting any negative terms to zero after updating the weights. We use the whole data-set

in each batch, the same as is used in standard NMF. We use a prior of k = 1 and λ = 1.

We calculate the subspace size individually for each data-set using the method of [126]

or pick values manually depending on what we are trying to demonstrate. The learning

rates are chosen by trial and error.

To demonstrate the use of our technique we have tested it on the same three heteroge-

neous data-sets as we have used throughout this thesis, they are displayed in Table 8.1.

The faces data-set, are a group of 19×19 grey-scale images of faces. The Genes data-set

is the 5000 gene expressions of 38 samples from a leukaemia data-set and the FTSE 100

data is the share price of 94 different companies over 1305 days.

8.3 Results and Discussion

First we demonstrate that PAE-NMF will produce a reasonable recreation of the original

data. We would expect the accuracy of the reconstruction to be worse than for standard

NMF because we impose the KL divergence term and we sample from the distribution

Chapter 8. PAE-NMF 108

Table 8.1: Data-sets names, the type of data, the number of dimensions, m, number
of data-points, n and the source of the data.

Name Type m n Source

Faces Image 361 2429 http://cbcl.mit.edu/software-datasets
/FaceData2.html

Genes Biological 5000 38 http://www.broadinstitute.org/cgi-bin
/cancer/datasets.cgi

FTSE 100 Financial 1305 94 Bloomberg information terminal

rather than taking the latent outputs deterministically. These two impositions should

help to reduce overfitting resulting in the higher reconstruction error.

In Figure 8.3 we show recreations of the original data for the three data-sets from

Table 8.1. The faces plots show five original images chosen at random above the recreated

versions (with r = 81). The bottom left plot shows nine stocks from the FTSE 100 with

the original data as a black dashed line and the recreated results as a red dotted line

(r = 9). The results here follow the trend well and appear to be ignoring some of the

noise in the data. In the bottom right plot we show 1000 elements of the recreated

matrix versus the equivalent elements (r = 3). There is significant noise in this data,

but there is also a clear trend. The black line shows what the results would be if they

were recreated perfectly.

Secondly, we want to look at the Wf matrices (the weights of the final layer). In NMF

the columns of W represent the dimensions of the new subspace we are projecting onto.

In many circumstances we hope these will produce interpretable results, which is one of

the key features of NMF. In Figure 8.4 we demonstrate the Wf matrices for the faces

data-set, where each of the 81 columns of Wf has been converted into a 19× 19 image

(left) and the FTSE 100 data-set (right) where the nine columns are shown. We can see

that the weights of the final layer does do what we expect in that these results are similar

to those found using standard NMF [72]. The faces data-set produces a representation

which can be considered to be parts of a face. The FTSE 100 data-set can be viewed as

showing certain trends in the stock market.

We now want to consider empirically the effect of the sampling and KL divergence term

during the training process. In Figure 8.5 we show the distributions of the latent space

of one randomly chosen datapoint from the faces data-set. We use r = 9 so that the

distributions are easier to inspect. The left and right set of plots show results with

and without the KL divergence term respectively. The black and blue dashed lines

show samples extracted deterministically from the median (the median due to the ease

of extracting the median from the cumulative distribution) of the distributions and

Chapter 8. PAE-NMF 109

Or
ig
in
al

Re
cr
ea

te
d

Sh
ar

e
pr

ice

0 1000 0 1000
Time

0 1000 10−3 10−2 10−1

Original values

10−3

10−2

10−1

Re
cr

ea
te

d
va

lu
es

Figure 8.3: (Top) Top five are original faces with the equivalent recreated faces below.
(Bottom left) Nine stocks with original values (black dashed) and recreated values (red
dotted). (Bottom right) 1000 recreated elements plotted against the equivalent original.

0 1000 0 1000
Time

0 1000

Figure 8.4: (Left) Each small image is one of the 81 reshaped columns of Wf for the
faces data-set. The features we see are very similar to what you get in standard NMF.
(Right) Each plot is a column of Wf for the FTSE 100 data-set.

sampled from the distribution respectively. The inclusion of the KL divergence term has

several effects. First, it reduces the scale of the distributions so that the values assigned

to the distributions are significantly lower in the left hand plot. This has the effect of

making the distributions closer together in space. The imposition of randomness into

the PAE-NMF through the uniform random variable ε has the effect of reducing the

variance of the distributions. When there is a KL divergence term we can see that the

Chapter 8. PAE-NMF 110

distributions follow fairly close to the prior. However, once the stochasticity is added

this is no longer tenable as the wide spread of data we are sampling from becomes

harder to learn effectively from. When there is no KL divergence term the effect is to

tighten up the distribution so that the spread is as small as possible. This then means

we are approaching a point, which in fact would return us towards standard NMF.

The requirement for both the KL divergence term and the stochasticity during training

means that we do get a proper distribution and the results are prevented from simply

reducing towards a standard NMF formulation.

With DKL

PD
F

0 2 4

Median
Random

0 2 4
h

0 2 4

No DKL

PD
F

0 2 4

Median
Random

0 2 4
h

0 2 4

Figure 8.5: The distributions of h for one data-point from the faces data-set with
r = 9. (Left) These plots show the distributions when we include theDKL term. (Right)
The DKL term is not applied during training. The black dashed line shows results when
we train the network deterministically using the median value of the distribution and
the blue line is when we trained with random samples.

A potentially valuable effect of PAE-NMF is that we would expect to see similar dis-

tributions for similar data-points. In Figure 8.6 we can see the distributions of the h

vectors for two pairs of faces, each pair is similar to the other one in the pair and very

different from the other pair. Next to them we plot the distributions. The distributions

for the two faces on the left are the black dashed lines and the distributions for the two

faces on the right are given by the red dotted lines. There is very clear similarity in

distribution between the similar faces, and significant differences between the dissimilar

pairs.

Finally, we want to discuss the generation of new data using this model. We show results

for the faces and FTSE 100 data-sets in Figure 8.7. For the faces we use a low r = 9

value and show four random faces (left column), with the median being the h drawn

from the middle of the inverse cumulative distribution. The three image plots on the

right are then drawn randomly from the distributions. Four stocks from the FTSE 100

data are shown on the right of the figure. The solid lines are the original data with

the dotted lines representing sampled data. This ability to directly sample from the

Chapter 8. PAE-NMF 111

Black dashed Red dotted

Pr
ob

ab
ilit

y
de

ns
ity

Figure 8.6: The left images (top and bottom) are similar to one another and we plot
their distributions as black dashed lines in the plots to the right. The right images are
very different to the left, we plot their distributions as red dotted lines. The similar
images have very similar distributions for these data-points.

distributions and produce plausible new data-points is one of the most useful features

of using PAE-NMF over standard NMF.

Originals Median Sampled from the distributions

Sh
ar

e
pr

ice

0 500 1000
Time

Sh
ar

e
pr

ice

0 500 1000
Time

Figure 8.7: (Left) Sampling from the distributions of the faces data-set with r = 9.
Four original faces are on the left column, with faces drawn deterministically from the
centre of the distribution next to them and three sampled faces along the next three
columns. (Right) Sampling from the FTSE 100 data-set with r = 9 for four different
stocks. The solid black line is the real data and the dotted lines show three sampled
versions.

8.4 Summary

We have demonstrated a novel method of probabilistic NMF using a variational autoen-

coder. This model extends NMF by providing us with uncertainties on our h vectors

and allowing us to sample new data. The advantage over a VAE is that we should see

Chapter 8. PAE-NMF 112

improved interpretability due to the sparse and parts based nature of the representa-

tion formed, especially in that we can interpret the Wf layer as the dimensions of the

projected subspace.

Our method extracts the useful information from the data without over-fitting due to the

combination of the log-probability with the KL divergence. While the log-probability

works to minimise the error, the KL divergence term acts to prevent the model over-

fitting by forcing the distribution qφ(h|x) to remain close to its prior distribution. This

provides a principled regularisation mechanism. Other alternatives for probabilistic

NMF still require the choice of an appropriate prior. This could be done using model

selection through the evidence term, but this would require computing the full posterior,

which is likely to require techniques such as Markov Chain Monte Carlo and could be

prohibitively time consuming.

Another advantage of this approach is that as the objective function measures the de-

scription length, we could use it to select the appropriate size for the latent space. This

would provide an alternative to the approach demonstrated in Chapter 3. However, as

the distribution qφ(h|x) provides a self-regularisation the size of the latent space is likely

to be less critical.

Chapter 9

Conclusions and Future Work

9.1 Conclusions

This thesis addresses the important problems of model selection, inclusion of external

data, use of neural network approaches and probabilistic formulation of the linear di-

mensionality technique, non-negative matrix factorisation, which has found a wide range

of application in data analysis. In this section we bring together the key problems we

considered along with the methods used to solve them and how effectively they worked.

In Chapter 3 we demonstrated a method which provides a solution for one of the issues

facing NMF [42], the selection of the subspace size r. By applying a principled trade-off

between complexity and the accuracy of the representation using MDL we developed

a technique to assess the optimal size of the subspace. We showed that this method

finds the correct subspace size on synthetic data and on real data we produced empirical

evidence that several desirable requirements are fulfilled. The selection of the subspace

size is important because with a good choice of r there should be less over, or under,

-fitting of the data.

Another potential problem of overfitting in NMF is that the factorised matrices them-

selves may become highly complex and end up modelling noise. While this effect can

be countered by applying regularisation, it is a fairly unprincipled approach and still

requires choices about how much regularisation, and what type, to apply. In Chapter 4

we proposed using a similar MDL approach as in Chapter 3 but with MDL applied as

the objective function. The minimisation of this MDL objective function should allow

for an automatic and principled trade-off between the complexity of the model and the

accuracy of the reconstruction. We produced a method to conduct NMF using an MDL

objective function and demonstrated promising results on real and semi-synthetic data.

113

Chapter 9. Conclusions and future work 114

The second theme we examined was how to include fixed external data into the NMF

formulation (Chapter 5). We can consider this external data to be prior knowledge we

are trying to inject into our problem domain. To solve this issue we created a novel

method, called XNMF. We designed a new objective function to include the external

data, created a new extended version of the multiplicative update method [72] and

proved that it was guaranteed to monotonically reduce the new objective function. We

demonstrated the potential of this method to produce an improved representation on

FTSE 100 data by showing that it finds a lower error and can build tighter clusters than

standard NMF.

Building upon XNMF, in Chapter 6, we demonstrated that the method can also be

applied to biological data and has the potential to provide additional information and

representations. We considered spatial protoemics data with external information com-

ing from a PPI network. We focussed on representation and clustering/classification

and demonstrated that there were some advantages in using XNMF especially in iden-

tifying outlier proteins (that may exist in multiple compartments) and in classification.

Perhaps more importantly we demonstrated that XNMF can integrate biological data

which opens up a wide realm of possible valuable future directions of research.

In Chapter 7 we explored the use of autoencoders to perform NMF (AE-NMF). We

laid out some of the reasons why using an autoencoder to perform NMF might be a

fruitful avenue of research and outlined the constraints that have to be imposed on

an autoencoder so that it provides the benefits of NMF. We demonstrated that an

autoenoder can reproduce similar results to standard NMF which is a necessary (but

not sufficient) condition for it to be useful in the NMF domain. We then looked at how

using AE-NMF might provide some advantages over standard NMF. We showed that

AE-NMF can perform methods such as XNMF and that we could use AE-NMF to test

different objective functions, such as the risk averting error [83].

One of the reasons for using an autoencoder to perform NMF is it opens up a range of

other methods that can be applied to NMF from the neural network world. In Chapter 8

we investigated how one of these recent techiques, the variational autoencoder, could be

applied to perform a probabilistic form of NMF. This probabilistic version has several

advantages over a standard deterministic NMF including providing a level of uncertainty

on the representation of each data-point in the latent space and allowing us to sample

new data-points from the distribution. We produced a design for this network and a

distribution (the Weibull) which enables us to perform probabilistic NMF. We then

tested the method on three heterogenous data-sets and demonstrated that it produces

a regularised version of NMF and that we can successfully draw new data-points from

the distributions found.

Chapter 9. Conclusions and future work 115

9.2 Future Work

It might be informative to reproduce our method of rank selection using MDL with

other distributions such as the Weibull distribution used in Chapter 8. We would then

be able to compare the results found with the different distributions, if they are similar

then it adds weight to the method, if different then it casts doubt on the quality of

the technique. It would also be interesting to investigate empirically when and how the

optimal choice of r changes between the histogram method and the distribution method

for different data-sets. This would be of particular interest to see what happens when

the distributions fit the data poorly and how quickly the optimal values of r change.

This would give us some sense of when the method begins to fail and how robust it is

to data which does not fit the distributions well.

Similarly it might be useful to test other non-negative distributions when using MDL

as the objective function. It would also be valuable to find a computationally efficient

method to perform discrete optimisation using the histograms alone as this would enable

a direct comparison between the distribution and histogram methods. This comparison

would be especially useful as it might give us some insight into how well the method is

working, if the results from both are similar we could be more confident that this method

has value. There would also be a considerable advantage to finding a better method for

minimising the objective function of the parametric version than our gradient descent

method as we took a very simple approach which could doubtlessly be significantly

improved. One option would be to use the AE-NMF formulation and utilise improved

optimisation schemes as there are a suite of built in methods for use with neural networks.

A potentially interesting future extension of XNMF would be to relax the non-negativity

constraint on the H2 matrix. One method would be to allow any element of H2 to be

negative as well as positive, which would be straight-forward to do in the AE-XNMF

formulation, which is, incidently, another potential advantage of the autoencoder method

of performing NMF. Another technique would be to have a forced negative and forced

positive matrix, such that XNMF would become: V ≈W1H1 + W2H2−W2H3, where

all the matrices are forced to be non-negative so that all elements of H3 are effectively

negative. We would use the same W2 matrix for the final two matrix multiplications,

again something that would be easy to do with the AE-NMF. This would maintain

the benefits of XNMF in terms of parts based and sparse solutions but would enable

negative values to be used. Another option would be to allow negative external data,

i.e. allowing W2 to be negative. While this would allow a broader range of external

data to be used it might reduce to interpretability of the W1 and H1 matrices, but it

would be worth investigating.

Chapter 9. Conclusions and future work 116

One of the issues with performing XNMF is how to select and preprocess the exogeneous

data. In Chapter 5 we briefly mentioned that there are many other types of macro-

economic data that could be considered, such as values of indices from other stock

markets. Also the questions of how to normalise these external values and how to

manage the differences in frequency of the data are still open.

Continuing with XNMF, there may be other data-sets that might be usefully analysed

using this method. We investigated one small problem in the biological world in Chap-

ter 6 but there will be many other open problems in that highly complex and integrated

domain where both reducing the complexity of data while integrating multiple data-sets

would be valuable. Also the best way to create and normalise the external data, W2,

would be useful to investigate.

It is also possible that XNMF could be accomplished by concatenating the W1 and W2

matrices. Standard NMF would then be performed on the combined matrix but the

elements associated with W2 would not be updated. This may produce the same results

as our XNMF method but that would need to be checked and analysed as would a proof

of monotonic reduction of the objective function.

There is a potentially wide range of future work that could be done for AE-NMF (Chap-

ter 7). We have already discussed how the AE-NMF formulation could be useful for both

extensions to XNMF and with the MDL objective function. It would be interesting to

take one data-set of interest and focus on using all the methods available to produce the

best representation possible, seeing what changes might help in a systematic way and if

this can result in a better set of results compared to NMF. We would also be interested

in making a comparison of computational speed and complexity for different forms of

AE-NMF. If AE-NMF could be made to run faster than NMF, or with less memory

requirement, then it would be of considerable value, especially if it would enable NMF

to be applied to very large data-sets.

One way that AE-NMF might be of value is to attempt to measure the ability of different

NMF methods to generalise. As the W matrix (weights of the final layer) is produced

as part of the AE-NMF process we only need to find the weights of the previous layers

to be able to use AE-NMF to get some estimate of the ability of the method to gener-

alise. Either we could use the network without any alteration, or we could update the

earlier layer weights which produce the H matrix. Either method could give us some

understanding of how well the NMF method could be applied to unseen matrices.

There is considerable scope for further investigations using PAE-NMF (Chapter 8) or

in combining PAE-NMF with other methods. To give some sense of the robustness of

PAE-NMF, using the gamma distribution rather than the Weibull would be interesting.

Chapter 9. Conclusions and future work 117

We would hope that it does not make much difference what the specific choice of dis-

tribution is, if we find similar results with different distributions it implies this is the

case, conversely, if we found very different results it would call into question the method

itself.

A particularly interesting future technique would be to perform a form of probabilistic

XNMF, called PAE-XNMF, which is a merger of the work from Chapters 5 and 8. This

would give some sense of the uncertainty and would allow for the extraction of samples

from the distribution while including external data. We have created this method and

implemented it but have not yet completed the analysis which we are doing with a

colleague and did not feel it was ready to include in this thesis.

One frustration in developing new NMF methods is the lack of ground truth or a standard

test suite to make comparisons between techniques easier. This is intrinsically difficult

because what is considered a good solution might be dependent on the application.

Nevertheless, the creation and curation of a test suite for NMF may be necessary to

enable better comparisons and would be a valuable piece of further work in this field.

Appendix A

Cross Validation for Rank

Selection in NMF

A.1 Cross-Validation

A.1.1 Theory and Methodology

Many supervised learning techniques use cross-validation to test their models and pre-

vent over-fitting. In cross-validation the model is trained on “held-in” data and tested

on “held-out” data. In supervised classification learning the result desired is the label

of an unknown data point. In NMF the desired outcome is both the W matrix, which is

produced from all the data points and the column of H which represents the unknown

data point in the new space. If there is a reasonably large number of data points then

W can be found using the held-in data with reasonable confidence that it would be

similar to that W if all the data was used, similarly to the production of the model

in the supervised case. However, in the supervised case the model would then be ap-

plied to the test data and the quality of the outcome assessed. With NMF there is no

straight-forward method for assessing what the missing columns of H would be to then

apply and compare to the associated columns of the original data matrix V.

Kanagal and Sindhwani [63] assessed three different types of cross-validation. The first

is a standard type of cross-validation. The second is based on work by Owen and

Perry [104] and the third is a method they introduce themselves.

1) Basic holdout mechanism. The input matrix is split up into k training and

testing sets, as for standard k-fold cross-validation: V = [Vtrain,Vtest]. Then Wtrain

and Htrain are found from the training data for each fold. The objective function for the

119

Appendix A. Cross Validation for Rank Selection 120

training data: Ftrain = ||Vtrain −WtrainHtrain||2Fro is the analogue for training error, or

classification error, in supervised machine learning and will decrease as r increases. The

objective function for the held-out set is: Ftest = ||Vtest −WtrainHtest||2Fro. So Wtrain

is reused but Htest must be found using Vtest. A reduced version of Algorithm 1 which

removes the third step which updates W is applied to find the H terms which best fit

the objective function for the held-out set. The obvious problem with this method is

that Htest is trained using Vtest, unlike in cross-validation in supervised learning where

the held-out testing set is not trained in the presence of the relevant labels. Here if the

NMF algorithm works effectively the mechanism is highly susceptible to over-fitting.

2) Bi-Cross-Validation [104]

Here the dimensions (rows of the matrix) are divided into h groups and columns into l

groups, combinations of which give each fold, for a total of (h× l) folds. One of the folds

is the hold-out group while the others are available for training. This is equivalent to

splitting the matrix V into four smaller matrices: V =

(
A B

C D

)
where A contains the

holdout elements for testing while B, C and D contain the hold-in elements available

for training. The aim of this type of cross-validation is to find FA = ||A−WAHA||2Fro

which is the objective function for the held-out elements. Their technique uses B, C

and D together to find WA and HA without using A.

First WD and HD are found using NMF with the objective function FD = ||D −
WDHD||2Fro. Next HC = argminH ||C −WDH||2Fro is calculated. This HC is the best

(within the limits of NMF) choice to minimise the objective function when using WD.

Essentially this step does the same as the basic hold-out mechanism discussed above but

for the input matrix VCD = [C,D]. The next step is to assign HA = HC so that now

we have an approximation for HA. The reasoning for this step is that if we consider

VAC =
[
A
C

]
it is clear that any H that approximates for C in the new space must also

approximate A because H provides coefficients for the data point in the new space, and

H ∈ R(r×n) which has no dependence on the dimension m which is different between A

and C. So the assumption here is that as A and C are from the same data points they

will share the same H, or that HC is a reasonable approximation for HA.

Next WA is found in an analogous manner. So WB = argminW ||B−WHD|| and then

WA is set to WB. The logic is similar as for finding HA: D and B must share the same

H but different W. So WB is optimised when using HD. If VAB = [A,B] the A and

B must share a W, as W represents the new subspace which must be shared by A and

B. So we set WA = WB.

Now we have approximations of WA and HA and can calculate the held-out error FA

which is the analogue to the testing error, or generalisation error, in supervised learning.

Appendix A. Cross Validation for Rank Selection 121

At no point has WA or HA been trained on A so the error should not over-fit. This

method is a form of data-imputation.

3) Cross-validation using a weighted NMF [63]. A weighted NMF (introduced in

Section 2.6) minimises the objective function:

F = argminW≥0,H≥0||S� (V−WH)||2 (A.1)

where � is the Hadamard product and S is a matrix of weights which can emphasise the

importance of parts of the data matrix over other parts. In this type of cross-validation S

is a binary matrix where zeros correspond to the held-out elements and ones to the held-

in elements. Simple modifications to the MU rules produce update rules for weighted

NMF [53, 91]:

W = W � (
√
S � V)HT(√

S � (WH)
)
HT

H = H � W T (
√
S � V)

W T
(√

S � (WH)
) . (A.2)

The left out cells can be either random (Wold holdouts) or more systematic as in the

Bi-Cross-Validation technique (Gabriel hold-outs). The held-in (classification) error is

then the error on the elements with a weight of one and the held-out (generalisation)

error is the error on the cells with a weighting of zero.

A.1.2 Results and Analysis

The three types of cross validation were implemented using modified versions of MU

and Hoyer’s NMF code. Gabriel hold-outs were used for the third type to make it a fair

comparison with the other two methods. These were then applied to the Faces dataset

with m = 361 and an unknown “true” r: there is no ground truth here.

The results in Figure A.1 demonstrate the unsatisfactory performance of the three meth-

ods. The error bars record the standard deviation of the different folds. The first

cross-validation method (red line) appears to show over-fitting with results considerably

below the other methods. It also shows no turning point or plateau and therefore no

clear choice for r. The second type of cross-validation (green line) also fails to show any

turning point. The third type of cross-validation was run for nine (in total) and four

folds as done in the paper by Kanagal [63]. The third method with nine folds shows no

obvious turning points but with four folds does at around r = 100. The turning point is

not ideal at the error falls again as r becomes large. While turning points do appear as

the number of folds decreases they can also move around for different numbers of folds.

Appendix A. Cross Validation for Rank Selection 122

0 50 100 150 200 250 300

r-value

2

4

6

8

10

H
e
ld

-o
u
t
E

rr
o
r

×10-3

Cross-Val Type 1 3x3 folds

Cross-Val Type 2 3x3 folds

Cross-Val Type 3 3x3 folds

Cross-Val Type 3 2x2 folds

Figure A.1: The held-out Gabriel error for the three cross-validation methods with
a total of nine folds, with the addition of a fourth plot for four folds for the third
technique. These cross-validation methods do not show clear turning points which
would give a reasonable choice for r.

This seems to shift the selection of r onto the selection of fold number, which is not ob-

viously a significant improvement. The cross-validation techniques produce interesting

results which may be of value to assessing sensible options for r but cannot, on their

own, provide a strong guide for how to choose r.

Appendix B

Derivation of Equations for MDL

as an Objective Function

B.1 MDL as an Objective Function using the Distributions

We want to be able to minimise the objective function, f , with respect to W and H

therefore we need to be able to differentiate f with respect to W and H. We can then

either follow some form of gradient descent.

The probability densities ρ(X) are easy to calculate once you have the parameters (αW ,

αH , βW , βH , σ, µ). To get these parameters in the first place requires computer power.

But more importantly it requires all the values to be binned and then a distribution set

to the binned results. Once we have that original distribution we can actually go back

to using the X values as non-binned, if we are happy to use the approximation that

the data points are no longer in their bin centres, we can then consider the probability

densities to be continuous variables. We can then differentiate f and follow some form

of gradient descent.

B.1.1 Updates of the objective function

So start with our objective function:

f = LE + LW + LH

= −

[
B∑
b=1

n
(E)
b log2 P (Eb) +

B∑
b=1

n
(W)
b log2 P (Wb) +

B∑
b=1

n
(H)
b log2 P (Hb)

]
. (B.1)

123

Appendix B. MDL as an Objective Function Derivatives 124

If we are considering distributions we may be able to make this simpler by removing the

bins and instead just using values. So Eq (B.1) becomes:

f = −

 m∑
i=1

n∑
j=1

log2 P (Eij) +
m∑
i=1

r∑
j=1

log2 P (Wij) +
r∑
i=1

n∑
j=1

log2 P (Hij)

 . (B.2)

The errors will be modelled with a Gaussian distribution while the Ws and Hs with a

gamma distribution. Our probabilities for the gamma distribution look like:

P (Wil) =
∆Wβ

α

Γ(α)
Wα−1
il e−βWil (B.3)

where ∆W is the precision required of the data.

We now consider how the change in the element Wil effects the objective functions, f .

Wil will have an effect on LW and LE but not on LH .

First we will consider the effect of changes in Wil on LW . The only part of LW that will

be effected by shifts in Wil is log2(P (Wil)). We need to differentiate LW with respect to

Wil. Let u = P (Wil), then LW = − log2 u and ∂LW
∂u = − 1

u ln(2) and using the chain rule:
∂LW
∂Wil

= ∂LW
∂u

∂u
∂Wil

therefore

∂LW
∂Wil

= − 1

P (Wil) ln(2)

∂P (Wil)

∂Wil

where, if we let A = ∆W βα

Γ(α) ,

∂P (Wil)

∂Wil
=
∂
[
AWα−1

il e−βWil
]

∂Wil

= A
[
(α− 1)Wα−2

il e−βWil − βWα−1
il e−βWil

]
= Ae−βWilWα−2

il [(α− 1)− βWil]

and then, with a bit of cancelling down

Appendix B. MDL as an Objective Function Derivatives 125

∂LW
∂Wil

= −
W−1
il [(α− 1)− βWil]

ln(2)
= −

[
(α− 1)W−1

il − β
]

ln(2)
(B.4)

Note the problem here about what to do as Wil tends towards zero. The whole solution

will blow up, so need to be very wary of that happening - this is why we keep the

elements of W larger than zero.

The LW term will also be effected by changes in Wil. So we need to find the solution to
∂LE
∂Wi,j

.For the Gaussian distribution terms we have

P (Eij) =
∆E√
2σ2π

e−
(Eij−µ)

2

2σ2 . (B.5)

Now we start with:

LE = −
m∑
i=1

n∑
j=1

log2(P (Eij)).

but let us consider just one component, Eij , so that LEij = − log2(P (Eij)).

We know that Eij = Vij −
∑r

k=1WikHkj so we want:

∂LEij
∂Wil

=
∂LEij
∂P (Eij)

∂P (Eij)

∂Eij

∂Eij
∂Wil

(B.6)

So we can go through each part of Eq (B.6) in turn to find our final answer:

∂LEij
∂P (Eij)

= − 1

ln(2)P (Eij)
(B.7)

and

∂P (Eij)

∂Eij
= − ∆E√

2σ2π

(Eij − µ)

σ2
e

−(Eij−µ)
2

2σ2 (B.8)

and

Appendix B. MDL as an Objective Function Derivatives 126

∂Eij
∂Wil

= −Hlj (B.9)

so finally:

∂LEij
∂Wil

= −
(Eij − µ)Hlj

ln(2)σ2
. (B.10)

Now for each change in Wil there is a change in the whole ith row of E (but no changes

in the other rows) so the final equation is:

∂LE
∂Wil

= − 1

ln(2)σ2

n∑
j=1

(Eij − µ)Hlj . (B.11)

We then can see the final solution:

∂f

∂Wil
= −

[(α− 1)W−1
il − β]

ln(2)
− 1

ln(2)σ2

n∑
j=1

[(Eij − µ)Hlj] (B.12)

So the equivalent for the H needs to be found. First let:

P (Hlj) =
∆Hb

a

Γ(a)
Ha−1
lj e−bx (B.13)

where a and b are parameters for the gamma distribution equivalent to α and β for the

W terms. The we have:

∂LH
∂Hlj

= −

[
(a− 1)H−1

lj − b
]

ln(2)
(B.14)

and

Appendix B. MDL as an Objective Function Derivatives 127

∂LE
∂Hlj

= − 1

ln(2)σ2

m∑
i=1

(Eij − µ)Wil. (B.15)

Then the final solution for the the H terms is:

∂f

∂Hlj
= −

[(a− 1)H−1
lj − b]

ln(2)
− 1

ln(2)σ2

m∑
i=1

[(Eij − µ)Wil] . (B.16)

Appendix C

Proof of Monotonic Reduction of

XNMF

C.1 Introduction

We follow almost entirely the scheme of Lee and Seung [73] to prove that our algorithm

will monotonically reduce the objective function for our XNMF formulation but extend

it to include the extra matrices that we add.

We have an objective function

f =
1

2
||V−W1H1 −W2H2||2Fro. (C.1)

with three unknown matrices W1, H1 and H2. We propose an extension to the multi-

plicative update rule that should monotonically reduce the objective function.

Theorem C.1. The Frobenius norm ||V−W1H1 −W2H2||2Fro will monotonically de-

creases under the updates:

W1 ←W1 �
[
VHT

1

][
W1H1H

T
1 + W2H2H

T
1

] , (C.2)

H1 ← H1 �
[
WT

1 V
][

WT
1 W1H1 + WT

1 W2H2

] (C.3)

and

H2 ← H2 �
[
WT

2 V
][

WT
2 W2H2 + WT

2 W1H1

] . (C.4)

129

Appendix C. Proof of Monotonic Reduction of XNMF 130

where� is element-wise multiplication and []
[] is element-wise division. So for components

we would have: W
(1)
ij ← Wij

(VHT
1)ij

(W1H1H
T
1 +W2H2H

T
1)ij

. Our aim then is to prove that these

multiplicative updates monotonically reduce the objective function.

C.2 Proof of convergence

These proofs are from Lee and Seung [73] with a small extension that we have done. In

this proof we consider just changes to H1, in particular looking at the column vector

h1 and then each component of that vector h(1)a. As we are updating h1 we consider

updates ht1, where t is the iteration number and ht1 is a fixed point of h1. We also define

v is a column vector of V. A proof for h1 suffices for all of the rest of the columns that

make up H and for both W1 and H2.

Definition C.2. G(h,h′) is an auxiliary function for F (h) if the conditions

G(h,h′) ≥ F (h), G(h,h) = F (h) (C.5)

are satisfied.

This definition is important because of the next lemma.

Lemma C.3. If G is an auxiliary function, then F is nonincreasing under the update

ht+1 = argminhG(h,ht) (C.6)

Proof. F (ht+1) ≤ G(ht+1,ht) ≤ G(ht,ht) = F (ht)

Definition C.2 and lemma C.3 are both taken almost exactly from Lee and Seung 2001.

I want to expand slightly upon what they specify. The first definition specifies what

an auxiliary function in this context is: it is a function that is always larger than F

except at point (or points?) h = h′ where they are equal. The lemma then proves that

if a function G is an auxiliary function of F then decreasing G will guarantee not to

increase F , which is the monotonic condition we want. An extra note is that, I believe,

minimising G may push h past the minimum point of F , but it will still reduce the value

of F , never increase it.

They also note that F (ht+1) = F (ht) only if ht is a local minimum of G(h,ht). This

then also implies that ∇F (ht) = 0 therefore we are at a minimum (local) of F . So if we

Appendix C. Proof of Monotonic Reduction of XNMF 131

update G we eventually get to a minimum of F . We note that this is true because if

G(ht+1,ht) = G(ht,ht) = F (ht) by definition, then the two functions must be touching

at that point. If G is at a turning point and F is not a minima, then G must pass under

F at some point as it turns towards the horizontal. This would mean G is less than F

at that point, contrary to the definitions, therefore F must also be at a local turning

point. Therefore iterating through (C.6) must reduce F to a minimum.

It is from lemma C.4 that our proof diverges from that of Lee and Seung 2001 although

it follows exactly the same logic. Our notation is ht(1)a is the ath component of the vector

h1, which is a column of the matrix H1 and is found at iteration t of the algorithm,

i.e. it gives the values of h1 at a particular point. Similar notation applies for the other

terms.

Lemma C.4. If K(ht) is a diagonal matrix

Ka,b(h
t) = δa,b(W

T
1 W1h

t
1 + WT

1 W2h2)a/h
t
(1)a (C.7)

then

G(h1,h
t
1) = F (ht1) + (h1 − ht1)T∇F (ht1) +

1

2
(h1 − ht1)TK(ht1)(h1 − ht1) (C.8)

is an auxiliary function for

F (h1) =
1

2
(v−W1h1 −W2h2)T (v−W1h1 −W2h2) (C.9)

Proof. Since G(h1,h1) = F (h1) is obvious we need to only show that G(h1,h
t
1) ≥ F (h1).

We begin by using a Taylor expansion to find an exact (function is quadratic so Taylor

series should be exact not approximation) formulation for F (h1):

F (h1) = F (ht1) + (h1 − ht1)T∇F (ht1) +
1

2
(h1 − ht1)T (WT

1 W1)(h1 − ht1). (C.10)

This form comes about because the Taylor expansion of F (h1) around ht1 is given by:

F (h1) = F (ht1) + (h1−ht1)T∇h1F (ht1) +
1

2
(h1−ht1)T∇h1(∇h1F (ht1))(h1−ht1). (C.11)

Then we have:

Appendix C. Proof of Monotonic Reduction of XNMF 132

F (h1) =
1

2

[
vTv− vTW1h1 − vTW2h2

− hT1 WT
1 v + hT1 WT

1 W1h1 + hT1 WT
1 W2h2

− hT2 WT
2 v + hT2 WT

2 W1h1 + hT2 WT
2 W2h2

]
(C.12)

which differentiating with respect to h1 gives:

∇h1F (h1) =
[
WT

1 W1h1 + WT
1 W2h2 −WT

1 v
]

(C.13)

and so

∇h1(∇h1F (h1)) = WT
1 W1 (C.14)

which then, combined, gives us Equation (C.10).

Comparing Equations (C.8) and (C.10) gives us the same result as Lee and Seung, that

G(h1,h
t
1) ≥ F (h1) is equivalent to

0 ≤ (h1 − ht1)T
[
K(ht1)−WT

1 W1

]
(h1 − ht1) (C.15)

and as Lee and Seung do we consider the matrix:

Ma,b(h
t
1) = ht(1)a(K(ht1)−WT

1 W1)a,bh
t
(1)b.

We will have proved that G is an auxiliary function of F if can show M is positive

semi-definite. We prove this by following the exact same steps as Lee and Seung but

with an extra set of terms which make no difference to the conclusion.

Appendix C. Proof of Monotonic Reduction of XNMF 133

νTMν

=
∑
a,b

νaMa,bνb

=
∑
a,b

[
ht(1)a

((
WT

1 W1h
t
1 + W1W2h2

)
a
/ht(1)a

)
a,b
ht(1)bν

2
a − νaht(1)a(W

T
1 W1)a,bh

t
(1)bνb

]
=
∑
a,b

[
(WT

1 W1)a,bh
t
(1)ah

t
(1)bν

2
a − νaht(1)a(W

T
1 W1)a,bh

t
(1)bνb + (WT

1 W2)a,bh
t
(2)bh

t
(1)aν

2
a

]
=
∑
a,b

[
(WT

1 W1)a,bh
t
(1)ah

t
(1)b

(1

2
ν2
a +

1

2
ν2
b − νaνb

)
+ (WT

1 W2)a,bh
t
(2)bh

t
(1)aν

2
a

]
=
∑
a,b

[
(WT

1 W1)a,bh
t
(1)ah

t
(1)b

(
νa − νb)2 + (WT

1 W2)a,bh
t
(2)bh

t
(1)aν

2
a

]
≥ 0 (C.16)

Now the final step is to prove that Theorem C.1 is true.

Proof of Theorem C.1. The proof here is almost identical to Lee and Seung except

with a different K(ht). Replace G(h,ht) in Equation (C.6) with Equation (C.8):

∇h1G(h1,h
t
1) = ∇h1

[
hT1∇h1F (ht1)

]
(C.17)

+
1

2
∇h1

[
hT1 K(ht1)h1 − htT1 K(ht1)h1 − hT1 K(ht1)ht1

]
= ∇F (ht1) +K(ht1)h1 −K(ht1)ht1 = 0 (C.18)

rearranging gives:

ht+1
1 = ht1 −K−1(ht1)∇F (ht1). (C.19)

If we then consider components explicitly:

ht+1
(1)a =ht(1)a −

ht(1)a

(WT
1 W1h1 + WT

1 W2h2)a
(∇F)a

=ht(1)a −
ht(1)a

(WT
1 W1h1 + WT

1 W2h2)a

[
WT

1 W1h1 + WT
1 W2h2 −WT

1 v
]
a

=ht(1)a

(WT
1 v)a

(WT
1 W1h1 + WT

1 W2h2)a
. (C.20)

Appendix C. Proof of Monotonic Reduction of XNMF 134

The same argument is true for h2 and W1 and therefore we show that the objective

function, F , monotonically decreases under our update rules.

Appendix D

A Method of Integrating Spatial

Proteomics and Protein-Protein

Interaction Network Data

This paper was partially completed as part of my previous MSc in Computer Science

at the University of Southampton and partially during this PhD. While it has not been

included in this thesis due to both its partial completion during another degree and its

lack of synergy with the rest of the thesis it is included in this appendix for completeness.

135

A Method of Integrating Spatial Proteomics and
Protein-Protein Interaction Network Data

Steven Squires, Rob Ewing, Adam Prügel-Bennett, and Mahesan Niranjan

University of Southampton, UK
{ses2g14,rob.ewing,apb,mn}@soton.ac.uk

Abstract. The increase in quantity of spatial proteomics data requires a
range of analytical techniques to effectively analyse the data. We provide
a method of integrating spatial proteomics data together with protein-
protein interaction (PPI) networks to enable the extraction of more in-
formation. A strong relationship between spatial proteomics and PPI
network data was demonstrated. Then a method of converting the PPI
network into vectors using spatial proteomics data was explained which
allows the integration of the two datasets. The resulting vectors were
tested using machine learning techniques and reasonable predictive ac-
curacy was found.

Keywords: Bioinformatics · Spatial proteomics · Machine learning

1 Introduction

Proteins can only perform their function in direct physical contact with other
proteins or parts of the cell, therefore knowing the location of a protein (known
as spatial proteomics) can aid in understanding its function. It has also been
shown that there is a direct connection between diseases and subcellular protein
localisation [1], consequently understanding certain diseases and cellular function
depends on a reliable and accurate knowledge of protein localisation.

Protein-protein interactions (PPIs) have been studied for many years due,
in part, to their importance in understanding cellular function. Interactions be-
tween pairs or groups of proteins, or proteins and other parts of the cell, have
significant consequences for cell functionality including links to disease [2]. PPI
networks chart these known or predicted interactions.

There is considerable interest in combining multiple sources of high through-
put biological measurements. Examples include the integration of spatial and
temporal patterns of gene expression [3], combining sequence and secondary
structure of proteins [4], and the integrated analysis of the transcriptome and
proteome [5].

Spatial proteomics and PPI networks should have significant similarities. A
pair of proteins can only physically interact if they are in the same spatial lo-
cation at the same time, hence we would expect that there would be a link
between proteins that interact and those that share a spatial location. In princi-
ple, accurate PPI networks might be able to predict which proteins co-localise.

2 Steven Squires, Rob Ewing, Adam Prügel-Bennett, Mahesan Niranjan

Conversely, spatial proteomics cannot on its own specify whether an interaction
exists, but if two proteins are in the same compartment it may be more likely
due to the increased likelihood that they share a function. In addition, proteins
that never exist in the same spatial location cannot directly interact.

There has been work conducted which uses the PPI networks to make pre-
dictions on protein localisation. In particular, a recently published paper used
PPI networks together with sequence predictors to classify proteins into spatial
locations [6]. In contrast, we use the spatial proteomics profiles themselves and
integrate them together with the PPI network data. In doing so we propose to
aid the development of analytical tools for the analysis of proteomics data.

Our contributions are, first, to demonstrate the strong relationship between
spatial proteomics and PPI network data. We then provide a mechanism to
integrate the two datasets along with some useful visualisation techniques. We
demonstrate that prediction of spatial localization from fractionation profiles
can potentially be enhanced by the inclusion of information taken from PPI
interactions and that interactions themselves are somewhat predictable from
spatial profiles.

This paper is structured as follows: in Section 2 we discuss the spatial pro-
teomics and PPI datasets along with the methods we use; in Section 3 we demon-
strate the strong correlation between PPI and spatial proteomics data, the vi-
sualisation benefits of our technique, and the predictive power of the datasets.
Finally, in Section 4 we provide a brief discussion of our results.

2 Methods

2.1 Spatial Proteomics and PPI Network Datasets

Spatial proteomics data is obtained from experiments which separate the con-
tents of the cell into fractions and measure the relative abundance of each protein
within each fraction. Proteins with a similar profile of fractional abundances
are believed to occupy the same spatial location [7]. These proteins are then
mapped to organelles by using marker proteins with similar profiles whose loca-
tion is known [8, 9]. The marker proteins tend to be extracted from literature and
need to be highly reliable as they set the mapping from profiles to locations. In
this study we used two sets of data obtained from Arabidopsis thaliana [10] and
Drosophila melanogaster [11]. Spatial proteomics data is generally of a fairly low
dimensionality (usually under 10 fractions) and the datasets contain 689 and 888
proteins for Arabidopsis and Drosophila respectively. We consider two marker
sets for each organism, the same as the authors use [10, 11]. The first, which we
call the original marker set, are those proteins with known location extracted
from literature. There are 27 for Arabidopsis and 55 for Drosophila. The authors
then use the spatial proteomics datasets to assign previously unknown proteins
to an organelle. We use the same assigned proteins which are named as extended
marker sets in this paper.

A Method of Integrating Spatial Proteomics and PPI Network Data 3

Two PPI datasets were used: STRING [12] and BIOGRID [13]. These datasets
have different methodologies to extract PPIs and present the results differently
but results we have gained from both, where comparable, are consistent.

2.2 Combining Spatial Proteomics and PPI Network Data

Spatial proteomics data is produced in a format suitable for applying standard
machine learning classification techniques as there is a matrix withm dimensions,
n datapoints and each datapoint is within a class. In contrast the PPI data is
presented as pairs of known interactions and needs to be converted into a form
suitable for applying machine learning methods.

We create a simple fixed dimensional representation to capture information
held in interaction networks and apply standard machine learning techniques.
We do not consider more sophisticated techniques such as graph kernels [14]
in this work because the amount of experimental data relating to subcellular
measurements is small. Consider three organelles α, β and γ and a protein of
interest, A. The PPI data for A is transformed into a three-dimensional vector
by calculating the number of interactions between protein A and the marker
proteins within α, β and γ respectively. Protein A is then represented as a vector
with each dimension associated with an organelle. We normalise the vector by
dividing by the number of proteins within each organelle and then dividing each
protein individually by the sum of the vectors across each organelle. We then
scale up each protein components so the sum across the PPI vector equals one.

3 Results

3.1 Correlation between Spatial Proteomics and PPI Network Data

For the integration of spatial proteomics and PPI network data to be a valuable
analytical technique it should first be demonstrated that they are structurally
similar. A key structural similarity is the relationship between the spatial lo-
cation and the chance of an interaction occurring. In the STRING database
approximately 10% and 7% of proteins have links for Drosophila and Arabidop-
sis respectively; proteins located in the same organelle should, in general, have
a higher likelihood of interacting. The ratio of interactions to potential inter-
actions was measured for each protein in the extended marker set. Figure 1(a)
shows the fraction of interactions occurring within the same organelle against the
fraction to proteins in other organelles. The dots are the proteins for Drosophila
and crosses for Arabidopsis, the stars are the averages for each organelle and
the black line is the average expected if there was no correlation between the
datasets. Any protein above the line has a higher fraction of links to proteins
within its organelle than to proteins in other organelles. A majority of proteins
have significantly more links within the organelles than between them.

The probability of these results occurring by chance from an uncorrelated
PPI network (P-values) was calculated using the hypergeometric distribution.

4 Steven Squires, Rob Ewing, Adam Prügel-Bennett, Mahesan Niranjan

Within an individual organelle, the probability of the number of interactions
observed occurring by chance ranges from P = 10−12 to P = 10−404. We can
reasonably conclude that the marker proteins in the two datasets are correlated.

0 0.2 0.4 0.6 0.8
Between organelle links

0

0.2

0.4

0.6

0.8

W
ith

in
 o

rg
an

el
le

 li
nk

s

Drosophila
Arabidopsis

(a)

0 50 100 150 200
Iterations

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

is
ed

 K
 v

al
ue

Within organelle
Between organelle
Randomised PPI

(b)

Fig. 1. a) The fraction of interactions for each extended marker protein within the
organelle is plotted against the fraction of interactions to proteins in different organelles.
The black line is the expectation if there is no correlation and the stars show the
averages for the organelles. The vast majority of proteins lie above the line. b) The
clustering algorithm iteratively removes links, preferentially removing PPI links which
connect clusters together rather than those links that are within a cluster. The fall in
number of links between proteins within the same organelle (solid line) is slower than
those links between proteins in different organelles (dotted line) or a randomised PPI
network (dashed line).

If similar clusters of proteins are formed in the PPI networks as in the or-
ganelle groupings in spatial proteomics data it would provide further evidence
of the correlation between the data types. A clustering algorithm was developed
based upon previous work [15, 6] which removes links sequentially based on the
structure of the PPI network. The first links to be removed are those considered
to be joining separate clusters together. If the structures of the datasets are
similar we would expect the number of links between proteins in different or-
ganelles to fall off much faster than between proteins within the same organelle.
The normalised K value [15] gives a measure of how well connected a group of
proteins are, if it falls fast then these proteins are unlikely to be in a cluster to-
gether. The average number of links between proteins within the same organelle,
Kin, and the equivalent number of links between proteins in different organelles,
Kout, were calculated and normalised. In Figure 1(b) we show that the fall in
Kout (dotted line) is far faster than for Kin (solid line) or for a randomised PPI
network (dashed line) demonstrating that the clusters formed in the PPI data
are similar to those in spatial proteomics data.

A Method of Integrating Spatial Proteomics and PPI Network Data 5

3.2 Visualisation of the Datasets

Visualisation of the spatial proteomics and PPI network data is important for
both gaining a qualitative understanding of the quality of the data and for
observation of potential patterns.

For spatial proteomics data the ability to classify the proteins depends on
differences in the profiles for proteins in different organelles [8]. Part of our con-
tribution is to add the PPI vectors to create vectors with additional dimensions
which add extra information to the spatial proteomics data. The average vectors
for the original marker proteins for each organelle together with the additional
PPI dimensions are in Figure 2(a). The average profile for the PPI dimensions
shows peaks at the dimension associated with each organelle (noted by their
first letter on the plots). Any protein not showing a significant peak in a PPI
dimension while being well classified by the spatial proteomics profile may be of
particular biological interest. The organelles shown are the endoplasmic retic-
ulum (ER), mitochondrion (Mito), plasma membrane (PM), Golgi apparatus
(Gol) and the vacuole (Vac).

2 4 6 8 E M P G V
Fraction

0

0.4

0.8

A
bu

nd
an

ce ER
Mito
PM
Gol
Vac

2 4 6 E M P
Fraction

-0.8
-0.4

0
0.4
0.8

A
bu

nd
an

ce

ER
Mito
PM

(a)

-2 -1 0 1
PCA1

-1

-0.5

0

0.5

1

P
C

A
2

ER
Mito
PM

(b)

Fig. 2. a) The average profiles for the original marker proteins for Arabidopsis (top) and
Drosophila (bottom) are shown. The first eight (for Arabidopsis) and six (Drosophila)
fractions are from the spatial proteomics data with the remaining created from the PPI
data with labels associated with the first letter of the relevant organelle. b) The original
marker protein profiles for Drosophila were projected onto their principal components
and PPI network links added. Proteins that have strong connections outside of their
organelle can be investigated.

Visualisation of the PPI network data is difficult as the number of links are
large. Here, an example of what the network looks like for the small number
of original marker proteins for Drosophila is shown in Figure 2(b). The spatial
proteomics profiles were projected onto their principal components and known
interactions from the STRING database are shown. It may be useful to inspect
the links between individual proteins and the markers in this manner to gain
insight into how each protein is linked. While there are many links between

6 Steven Squires, Rob Ewing, Adam Prügel-Bennett, Mahesan Niranjan

proteins in different organelles there are significantly more to proteins within the
same organelle. It should also be noted that with only 55 proteins the network
plots are already difficult to inspect in this format.

While the PPI networks may be difficult to visualise, the PPI vectors are
somewhat easier when two components of the vector are compared. In Fig-
ure 3(a) the PM component was plotted against the Mito component for all
the Drosophila expanded marker proteins. The PPI vectors were also used to
create a Gaussian probabilistic model, with means (shown as stars) and covari-
ances extracted from the vectors. Contours of equal probability are then plotted
which aids with understanding the separation and structure of the data. For
example, the Mito vectors are much tighter bound than the PM vectors which
visually represents that the Mito proteins are more closely connected to other
Mito proteins than to proteins in other organelles than the PM proteins are.
The structure of the plot is exactly as would be expected with the PM and Mito
proteins tending to reside high up the PM and Mito axes respectively and the
ER proteins following a fairly isotropic distribution near the origin.

0 0.2 0.4 0.6 0.8 1
Mito component

0

0.2

0.4

0.6

0.8

1

P
M

 c
om

po
ne

nt

ER
Mito
PM

(a)

0.12 0.13 0.14 0.15 0.16
First component

-0.78

-0.77

-0.76

-0.75

-0.74

-0.73

-0.72

-0.71

S
ec

on
d

co
m

po
ne

nt

ER
Mito
PM
Gol
Vac
Unknown

(b)

Fig. 3. a) The PPI vectors for the PM and Mito components for Drosophila marker
proteins are plotted. The PM proteins tend to cluster high up the PM axis and the Mito
proteins along the Mito axis. The ER proteins are based near the origin. The contours
of equal probability are centred on the average of each organelle. b) The application
of a Fisher Linear Discriminant to the combined spatial proteomics and PPI vectors
for Arabidopsis allows for effective partition of the extended marker proteins into their
respective organelles.

We also show the effect of projection using Fisher discriminant directions
for the combined vector for Arabidopsis in Figure 3(b). Most of the extended
marker proteins are well separated into their organelles, the combined vector is
able to effectively partition the proteins into different compartments.

A Method of Integrating Spatial Proteomics and PPI Network Data 7

3.3 Predictive Power

We have demonstrated the similarity of the two datasets and some visualisation
techniques. Now we will show that there is considerable predictive power in the
method of combining datasets

First we show the PPI networks can predict spatial location. As we have
converted the PPI network into a vector we can apply standard machine learning
techniques. The protein extended marker data was partitioned randomly into two
and a support vector machine [16] (SVM) was trained on half of the proteins
with the PPI vector as input and the organelles as output classes. The trained
SVM was then tested on the remainder of the randomised data. The process,
with different random partitions, was then repeated two hundred times. The
classification accuracies, sensitivities (true positive rate) and specificities (true
negative rates) are shown as boxplots in Figure 4(a). Generally, the SVM trained
on the PPI data was able to predict the location of the proteins approximately
70% of the time. The most notable exception was the vacuole where very poor
predictions are made. There are only small numbers of vacuole proteins in the
extended marker set which is likely to be the reason for the poor predictive
ability.

0.3

0.7

A
cc

ur
ac

y

0.3

0.7

S
en

si
tiv

ity

ER Mito PM ER Mito PM Gol Vac
Drosophila Arabidopsis

0.3

0.7

S
pe

ci
fic

ity

(a)

Accuracy Specificity Sensitivity
Drosophila

0.42
0.48
0.54
0.6

0.66

Accuracy Specificity Sensitivity
Arabidopsis

0.48

0.52

0.56

0.6

(b)

Fig. 4. a) The fraction of extended marker proteins predicted correctly from two hun-
dred runs of an SVM classifier based on the PPI vectors as input and the organelle
markers as output classes. The classifier is able to correctly predict the organelle around
70% of the time. b) The spatial proteomics data can make weak predictions on the ex-
istence of PPI links. The notched plots show the accuracy, specificity and sensitivity for
Drosophila (top) and Arabidopsis (bottom) while the square plots are the results for a
randomised PPI network. There is a clear (but faint) signal from the spatial proteomics
data.

The inverse problem is more challenging. To attempt to use the spatial pro-
teomics data to estimate whether a PPI exists between two proteins, first each
pair of proteins were merged together to create a combined vector by multi-
plying each component of each vector by all the components of the other. The

8 Steven Squires, Rob Ewing, Adam Prügel-Bennett, Mahesan Niranjan

six dimensional Drosophila vector, for example, was transformed to a 36 dimen-
sional combined vector. A two-class SVM for interactions and non-interactions
was then trained. The new dataset is the combination of all the protein pairs so
contains 393,828 protein pairs for Drosophila and 237,016 for Arabidopsis. The
data was split into training sets of protein pairs and, as the data is highly skewed
towards non-interactions, the sampling was biased to force the training set to
contain 50% interactions. The process was repeated twenty times. The accuracy,
sensitivity and specificity of the predictions are shown in the notched plots of
Figure 4(b). The equivalent SVM was applied to a randomised PPI network and
shows what would be expected if there was no signal available (the non-notched
plots). While the signal from the real data is small, it is consistently larger than
the results from the randomised PPI network and can make some predictions
about the PPI network.

4 Discussion

In this paper, we show how sub-cellular proteomics measurements can be com-
bined with information contained in protein-protein interaction networks. Our
work shows that there is significant correlation between spatial protein expres-
sion in cells and protein interaction information. Using a simple representation
of interaction data in a fixed dimensional space, we show that predictions can
be made in both directions between spatial proteomics and PPI networks.

There are many potential benefits from using the combined datasets. Differ-
ences in classification between the datasets may be of particular interest as it
may imply interesting cases such as proteins that exist in multiple compartments
or false data that should be re-evaluated. Confidence in conclusions can also be
increased if the same conclusion is drawn using two separate datasets. Inspec-
tion of the data using some of the visualisation techniques discussed may also
be useful for increasing understanding of data quality and building intuition.

References

1. Park, S., Yang, J.S., Shin, Y.E., Park, J., Jang, S.K., Kim, S.: Protein localization
as a principal feature of the etiology and comorbidity of genetic diseases. Molecular
systems biology 7(1), 494 (2011)

2. Ideker, T., Sharan, R.: Protein networks in disease. Genome research 18(4), 644–652
(2008)

3. Samsonova, A.A., Niranjan, M., Russell, S., Brazma, A.: Prediction of gene ex-
pression in embryonic structures of drosophila melanogaster. PLoS computational
biology 3(7), e144 (2007)

4. Wieser, D., Niranjan, M.: Remote homology detection using a kernel method that
combines sequence and secondary-structure similarity scores. In silico biology 9(3),
89–103 (2009)

5. Gunawardana, Y., Fujiwara, S., Takeda, A., Woo, J., Woelk, C., Niranjan, M.:
Outlier detection at the transcriptome-proteome interface. Bioinformatics 31(15),
2530–2536 (2015)

A Method of Integrating Spatial Proteomics and PPI Network Data 9

6. Du, P., Wang, L.: Predicting human protein subcellular locations by the ensemble
of multiple predictors via protein-protein interaction network with edge clustering
coefficients. PloS one 9(1), e86879 (2014)

7. De Duve, C., Beaufay, H.: A short history of tissue fractionation. The Journal of
cell biology 91(3), 293 (1981)

8. Gatto, L., Breckels, L.M., Burger, T., Nightingale, D.J., Groen, A.J., Campbell, C.,
Mulvey, C.M., Christoforou, A., Ferro, M., Lilley, K.S.: A foundation for reliable
spatial proteomics data analysis. Molecular & Cellular Proteomics pp. mcp–M113
(2014)

9. Itzhak, D.N., Tyanova, S., Cox, J., Borner, G.H.: Global, quantitative and dynamic
mapping of protein subcellular localization. Elife 5, e16950 (2016)

10. Dunkley, T.P., Hester, S., Shadforth, I.P., Runions, J., Weimar, T., Hanton, S.L.,
Griffin, J.L., Bessant, C., Brandizzi, F., Hawes, C., et al.: Mapping the arabidopsis
organelle proteome. Proceedings of the National Academy of Sciences 103(17), 6518–
6523 (2006)

11. Tan, D.J., Dvinge, H., Christoforou, A., Bertone, P., Martinez Arias, A., Lilley,
K.S.: Mapping organelle proteins and protein complexes in drosophila melanogaster.
Journal of proteome research 8(6), 2667–2678 (2009)

12. Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks,
T., Julien, P., Roth, A., Simonovic, M., et al.: String 8a global view on proteins and
their functional interactions in 630 organisms. Nucleic acids research 37(suppl 1),
D412–D416 (2008)

13. Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers,
M.: Biogrid: a general repository for interaction datasets. Nucleic acids research
34(suppl 1), D535–D539 (2006)

14. Kondor, R.I., Lafferty, J.: Diffusion kernels on graphs and other discrete input
spaces. In: ICML. vol. 2, pp. 315–322 (2002)

15. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and iden-
tifying communities in networks. Proceedings of the National Academy of Sciences
of the United States of America 101(9), 2658–2663 (2004)

16. Vapnik, V.: The nature of statistical learning theory. Springer science & business
media (2013)

References

[1] Cbcl face database 1. MIT Center For Biological and Computation Learning,

Retrieved Feb 2016. http://www.ai.mit.edu/projects/cbcl.

[2] Cancer program datasets. Broad Institute, Retrieved Feb 2016.

http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi.

[3] Ariana Anderson, Pamela K Douglas, Wesley T Kerr, Virginia S Haynes, Alan L

Yuille, Jianwen Xie, Ying Nian Wu, Jesse A Brown, and Mark S Cohen. Non-

negative matrix factorization of multimodal mri, fmri and phenotypic data reveals

differential changes in default mode subnetworks in adhd. NeuroImage, 102:207–

219, 2014.

[4] Babajide O Ayinde and Jacek M Zurada. Deep learning of constrained autoen-

coders for enhanced understanding of data. IEEE Transactions on Neural Net-

works and Learning Systems, 2017.

[5] Babajide O Ayinde and Jacek M Zurada. Nonredundant sparse feature extraction

using autoencoders with receptive fields clustering. Neural Networks, 93:99–109,

2017.

[6] Babajide O Ayinde, Ehsan Hosseini-Asl, and Jacek M Zurada. Visualizing and

understanding nonnegativity constrained sparse autoencoder in deep learning. In

International Conference on Artificial Intelligence and Soft Computing, pages 3–

14. Springer, 2016.

[7] AS Babu and SK Reddy. Exchange rate forecasting using arima, neural network

and fuzzy neuron. Journal of Stock & Forex Trading, 3(4):1–5, 2015.

[8] Andrew Barron, Jorma Rissanen, and Bin Yu. The minimum description length

principle in coding and modeling. Information Theory, IEEE Transactions on, 44

(6):2743–2760, 1998.

[9] Christian Bauckhage. Computing the kullback-leibler divergence between two gen-

eralized gamma distributions. arXiv preprint arXiv:1401.6853, 2014.

145

References 146

[10] David M Blei, Perry R Cook, and Matthew Hoffman. Bayesian nonparametric

matrix factorization for recorded music. In Proceedings of the 27th International

Conference on Machine Learning (ICML-10), pages 439–446, 2010.

[11] Sanja Brdar, Vladimir Crnojevic, and Blaz Zupan. Integrative clustering by non-

negative matrix factorization can reveal coherent functional groups from gene pro-

file data. Biomedical and Health Informatics, IEEE Journal of, 19(2):698–708,

2015.

[12] J-P Brunet, P Tamayo, T R Golub, and J P Mesirov. Metagenes and molecular

pattern discovery using matrix factorization. Proceedings of the national academy

of sciences, 101(12):4164–4169, 2004.

[13] Ioan Buciu, Nikos Nikolaidis, and Ioannis Pitas. Nonnegative matrix factorization

in polynomial feature space. Neural Networks, IEEE Transactions on, 19(6):1090–

1100, 2008.

[14] Wray Buntine. Variational extensions to em and multinomial pca. In European

Conference on Machine Learning, pages 23–34. Springer, 2002.

[15] Deng Cai, Xiaofei He, Xiaoyun Wu, and Jiawei Han. Non-negative matrix factor-

ization on manifold. In Data Mining, 2008. ICDM’08. Eighth IEEE International

Conference on, pages 63–72. IEEE, 2008.

[16] Deng Cai, Xiaofei He, Jiawei Han, and Thomas S Huang. Graph regularized

nonnegative matrix factorization for data representation. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 33(8):1548–1560, 2011.

[17] AT Cegmil. Bayesian inference in non-negative matrix factorization models. Com-

putational Intelligence and Neuroscience, 2008.

[18] Girish Chandrashekar and Ferat Sahin. A survey on feature selection methods.

Computers & Electrical Engineering, 40(1):16–28, 2014.

[19] Jan Chorowski and Jacek M Zurada. Learning understandable neural networks

with nonnegative weight constraints. Neural Networks and Learning Systems,

IEEE Transactions on, 26(1):62–69, 2015.

[20] Pierre Comon. Independent component analysis, a new concept? Signal processing,

36(3):287–314, 1994.

[21] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,

20(3):273–297, 1995.

References 147

[22] Giovanni Costantini, Renzo Perfetti, and Massimiliano Todisco. Recurrent neural

network for approximate nonnegative matrix factorization. Neurocomputing, 138:

238–247, 2014.

[23] John P Cunningham and Zoubin Ghahramani. Linear dimensionality reduction:

survey, insights, and generalizations. Journal of Machine Learning Research, 16

(1):2859–2900, 2015.

[24] George Cybenko. Approximation by superpositions of a sigmoidal function. Math-

ematics of control, signals and systems, 2(4):303–314, 1989.

[25] Christian De Duve and Henri Beaufay. A short history of tissue fractionation. The

Journal of cell biology, 91(3):293, 1981.

[26] Ruaiŕı de Fréin, Konstantinos Drakakis, and Scott Rickard. Portfolio diversifica-

tion using subspace factorizations. In Information Sciences and Systems, 2008.

CISS 2008. 42nd Annual Conference on, pages 1075–1080. IEEE, 2008.

[27] Ruaiŕı de Fréin, Konstantinos Drakakis, Scott Rickard, and Andrzej Cichocki.

Analysis of financial data using non-negative matrix factorization. In International

Mathematical Forum, volume 3, pages 1853–1870. Journals of Hikari Ltd, 2008.

[28] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood

from incomplete data via the em algorithm. Journal of the royal statistical society.

Series B (methodological), pages 1–38, 1977.

[29] K Devarajan. Nonnegative matrix factorization—a new paradigm for large-scale

biological data analysis. In Proceedings of the Joint Statistical Meetings. Joint

Statistical Meetings, pages 6–10, 2006.

[30] Karthik Devarajan. Nonnegative matrix factorization: an analytical and interpre-

tive tool in computational biology. PLoS Comput Biol, 4(7):e1000029, 2008.

[31] Chris Ding, Xiaofeng He, and Horst D Simon. On the equivalence of nonnegative

matrix factorization and spectral clustering. In Proceedings of the 2005 SIAM

International Conference on Data Mining, pages 606–610. SIAM, 2005.

[32] Chris Ding, Tao Li, and Wei Peng. On the equivalence between non-negative

matrix factorization and probabilistic latent semantic indexing. Computational

Statistics & Data Analysis, 52(8):3913–3927, 2008.

[33] Pufeng Du and Lusheng Wang. Predicting human protein subcellular locations by

the ensemble of multiple predictors via protein-protein interaction network with

edge clustering coefficients. PloS one, 9(1):e86879, 2014.

References 148

[34] Tom PJ Dunkley, Svenja Hester, Ian P Shadforth, John Runions, Thilo Weimar,

Sally L Hanton, Julian L Griffin, Conrad Bessant, Federica Brandizzi, Chris Hawes,

et al. Mapping the arabidopsis organelle proteome. Proceedings of the National

Academy of Sciences, 103(17):6518–6523, 2006.

[35] Michael Figurnov, Shakir Mohamed, and Andriy Mnih. Implicit reparameteriza-

tion gradients. arXiv preprint arXiv:1805.08498, 2018.

[36] Ronald A Fisher. The use of multiple measurements in taxonomic problems. An-

nals of eugenics, 7(2):179–188, 1936.

[37] Paul Fogel, Douglas M Hawkins, Chris Beecher, George Luta, and S Stanley

Young. A tale of two matrix factorizations. The American Statistician, 67(4):

207–218, 2013.

[38] Laurent Gatto, Juan Antonio Vizcáıno, Henning Hermjakob, Wolfgang Huber,

and Kathryn S Lilley. Organelle proteomics experimental designs and analysis.

Proteomics, 10(22):3957–3969, 2010.

[39] Laurent Gatto, Lisa M Breckels, Thomas Burger, Daniel JH Nightingale, Arnoud J

Groen, Callum Campbell, Claire M Mulvey, Andy Christoforou, Myriam Ferro,

and Kathryn S Lilley. A foundation for reliable spatial proteomics data analysis.

Molecular & Cellular Proteomics, pages mcp–M113, 2014.

[40] Eric Gaussier and Cyril Goutte. Relation between plsa and nmf and implica-

tions. In Proceedings of the 28th annual international ACM SIGIR conference on

Research and development in information retrieval, pages 601–602. ACM, 2005.

[41] Nicolas Gillis. Nonnegative Matrix Factorization Complexity, Algorithms and Ap-

plications. PhD thesis, Universite catholique de Louvain, 2011.

[42] Nicolas Gillis. The why and how of nonnegative matrix factorization. Regulariza-

tion, Optimization, Kernels, and Support Vector Machines, 12:257, 2014.

[43] Nicolas Gillis. Introduction to nonnegative matrix factorization. arXiv preprint

arXiv:1703.00663, 2017.

[44] Nicolas Gillis and François Glineur. Accelerated multiplicative updates and hier-

archical als algorithms for nonnegative matrix factorization. Neural Computation,

24(4):1085–1105, 2012.

[45] Vladimir Gligorijević and Nataša Pržulj. Methods for biological data integra-

tion: perspectives and challenges. Journal of the Royal Society Interface, 12(112):

20150571, 2015.

References 149

[46] Todd R Golub, Donna K Slonim, Pablo Tamayo, Christine Huard, Michelle

Gaasenbeek, Jill P Mesirov, Hilary Coller, Mignon L Loh, James R Downing,

Mark A Caligiuri, et al. Molecular classification of cancer: class discovery and

class prediction by gene expression monitoring. science, 286(5439):531–537, 1999.

[47] Liyun Gong and Asoke K Nandi. An enhanced initialization method for non-

negative matrix factorization. In Machine Learning for Signal Processing (MLSP),

2013 IEEE International Workshop on, pages 1–6. IEEE, 2013.

[48] Quanquan Gu and Jie Zhou. Neighborhood preserving nonnegative matrix factor-

ization. In BMVC, pages 1–10, 2009.

[49] Naiyang Guan, Dacheng Tao, Zhigang Luo, and Bo Yuan. Online nonnegative

matrix factorization with robust stochastic approximation. IEEE Transactions on

Neural Networks and Learning Systems, 23(7):1087–1099, 2012.

[50] Yawwani Gunawardana, Shuhei Fujiwara, Akiko Takeda, Jeongmin Woo, Christo-

pher Woelk, and Mahesan Niranjan. Outlier detection at the transcriptome-

proteome interface. Bioinformatics, 31(15):2530–2536, 2015.

[51] Mithun Das Gupta and Jing Xiao. Non-negative matrix factorization as a feature

selection tool for maximum margin classifiers. In Computer Vision and Pattern

Recognition (CVPR), 2011 IEEE Conference on, pages 2841–2848. IEEE, 2011.

[52] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of

data with neural networks. science, 313(5786):504–507, 2006.

[53] ND Ho, P Van Dooren, and V Blondel. Weighted nonnegative matrix factorization

and face feature extraction. submitted to Image and Vision Computing, 2007.

[54] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-

putation, 9(8):1735–1780, 1997.

[55] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neu-

ral networks, 4(2):251–257, 1991.

[56] Ehsan Hosseini-Asl, Jacek M Zurada, and Olfa Nasraoui. Deep learning of part-

based representation of data using sparse autoencoders with nonnegativity con-

straints. IEEE transactions on neural networks and learning systems, 27(12):

2486–2498, 2016.

[57] Patrik O Hoyer. Non-negative matrix factorization with sparseness constraints.

The Journal of Machine Learning Research, 5:1457–1469, 2004.

References 150

[58] Trey Ideker and Roded Sharan. Protein networks in disease. Genome research, 18

(4):644–652, 2008.

[59] Lars J Jensen, Michael Kuhn, Manuel Stark, Samuel Chaffron, Chris Creevey,

Jean Muller, Tobias Doerks, Philippe Julien, Alexander Roth, Milan Simonovic,

et al. String 8—a global view on proteins and their functional interactions in 630

organisms. Nucleic acids research, 37(suppl 1):D412–D416, 2008.

[60] Yuan Wang Yunde Jia and Changbo Hu Matthew Turk. Fisher non-negative

matrix factorization for learning local features. In Proc. Asian Conf. on Comp.

Vision, pages 27–30. Citeseer, 2004.

[61] Zhilong Jia, Xiang Zhang, Naiyang Guan, Xiaochen Bo, Michael R Barnes, and

Zhigang Luo. Gene ranking of rna-seq data via discriminant non-negative matrix

factorization. PloS one, 10(9):e0137782, 2015.

[62] Luis O Jimenez and David A Landgrebe. Supervised classification in high-

dimensional space: geometrical, statistical, and asymptotical properties of mul-

tivariate data. IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), 28(1):39–54, 1998.

[63] Bhargav Kanagal and Vikas Sindhwani. Rank selection in low-rank matrix ap-

proximations: A study of cross-validation for nmfs. reconstruction, 1:10, 2010.

[64] Kenji Kawaguchi. Deep learning without poor local minima. In Advances in Neural

Information Processing Systems, pages 586–594, 2016.

[65] Jingu Kim and Haesun Park. Sparse nonnegative matrix factorization for cluster-

ing. 2008.

[66] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[67] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

[68] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling.

Semi-supervised learning with deep generative models. In Advances in Neural

Information Processing Systems, pages 3581–3589, 2014.

[69] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information pro-

cessing systems, pages 1097–1105, 2012.

References 151

[70] Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew D Back. Face recog-

nition: A convolutional neural-network approach. IEEE transactions on neural

networks, 8(1):98–113, 1997.

[71] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521

(7553):436–444, 2015.

[72] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative

matrix factorization. Nature, 401(6755):788–791, 1999.

[73] Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix fac-

torization. In Advances in neural information processing systems, pages 556–562,

2001.

[74] Te-Won Lee. Independent component analysis. In Independent component analysis,

pages 27–66. Springer, 1998.

[75] Andre Lemme, René Felix Reinhart, and Jochen Jakob Steil. Efficient online

learning of a non-negative sparse autoencoder. In ESANN, 2010.

[76] Andre Lemme, René Felix Reinhart, and Jochen Jakob Steil. Online learning

and generalization of parts-based image representations by non-negative sparse

autoencoders. Neural Networks, 33:194–203, 2012.

[77] Yifeng Li and Alioune Ngom. Versatile sparse matrix factorization: Theory and

applications. Neurocomputing, 145:23–29, 2014.

[78] Chih-Jen Lin. Projected gradient methods for nonnegative matrix factorization.

Neural computation, 19(10):2756–2779, 2007.

[79] Zachary C Lipton. The mythos of model interpretability. arXiv preprint

arXiv:1606.03490, 2016.

[80] Haifeng Liu, Zhaohui Wu, Xuelong Li, Deng Cai, and Thomas S Huang. Con-

strained nonnegative matrix factorization for image representation. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 34(7):1299–1311, 2012.

[81] Ji Liu, Jun Liu, Peter Wonka, and Jieping Ye. Sparse non-negative tensor factor-

ization using columnwise coordinate descent. Pattern Recognition, 45(1):649–656,

2012.

[82] James T Lo and Devasis Bassu. An adaptive method of training multilayer per-

ceptrons. In Neural Networks, 2001. Proceedings. IJCNN’01. International Joint

Conference on, volume 3, pages 2013–2018. IEEE, 2001.

References 152

[83] James Ting-Ho Lo. Convexification for data fitting. Journal of global optimization,

46(2):307–315, 2010.

[84] James Ting-Ho Lo, Yichuan Gui, and Yun Peng. Overcoming the local-minimum

problem in training multilayer perceptrons with the nrae training method. In

International Symposium on Neural Networks, pages 440–447. Springer, 2012.

[85] James Ting-Ho Lo, Yichuan Gui, and Yun Peng. Training deep neural networks

with gradual deconvexification. In Neural Networks (IJCNN), 2016 International

Joint Conference on, pages 1000–1007. IEEE, 2016.

[86] Jiawei Luo, Gen Xiang, and Chu Pan. Discovery of micrornas and transcription

factors co-regulatory modules by integrating multiple types of genomic data. IEEE

transactions on nanobioscience, 16(1):51–59, 2017.

[87] Minnan Luo, Feiping Nie, Xiaojun Chang, Yi Yang, Alexander G Hauptmann,

and Qinghua Zheng. Probabilistic non-negative matrix factorization and its robust

extensions for topic modeling. In AAAI, pages 2308–2314, 2017.

[88] David JC MacKay. Information theory, inference and learning algorithms. Cam-

bridge university press, 2003.

[89] James MacQueen et al. Some methods for classification and analysis of multivariate

observations. In Proceedings of the fifth Berkeley symposium on mathematical

statistics and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.

[90] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online learning

for matrix factorization and sparse coding. The Journal of Machine Learning

Research, 11:19–60, 2010.

[91] Yun Mao and Lawrence K Saul. Modeling distances in large-scale networks by

matrix factorization. In Proceedings of the 4th ACM SIGCOMM conference on

Internet measurement, pages 278–287. ACM, 2004.

[92] Geoffrey J McLachlan and Kaye E Basford. Mixture models: Inference and appli-

cations to clustering, volume 84. Marcel Dekker, 1988.

[93] Hrushikesh Mhaskar, Qianli Liao, and Tomaso A Poggio. When and why are deep

networks better than shallow ones? In AAAI, pages 2343–2349, 2017.

[94] Nasser Mohammadiha, W Bastiaan Kleijn, and Arne Leijon. Gamma hidden

markov model as a probabilistic nonnegative matrix factorization. In Signal Pro-

cessing Conference (EUSIPCO), 2013 Proceedings of the 21st European, pages 1–5.

IEEE, 2013.

References 153

[95] Michael Möller, Ernie Esser, Stanley Osher, Guillermo Sapiro, and Jack Xin. A

convex model for matrix factorization and dimensionality reduction on physical

space and its application to blind hyperspectral unmixing. Technical report, MIN-

NESOTA UNIV MINNEAPOLIS INST FOR MATHEMATICS AND ITS APPLI-

CATIONS, 2010.

[96] Luis Montesdeoca and Mahesan Niranjan. Extending the feature set of a data-

driven artificial neural network model of pricing financial options. In Computa-

tional Intelligence (SSCI), 2016 IEEE Symposium Series on, pages 1–6. IEEE,

2016.

[97] Lucian Morgos. Non-negative factorization for clustering of microarray data. In-

ternational Journal of Computers Communications & Control, 9(1):16–23, 2014.

[98] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltz-

mann machines. In Proceedings of the 27th international conference on machine

learning (ICML-10), pages 807–814, 2010.

[99] Tu Dinh Nguyen, Truyen Tran, Dinh Phung, and Svetha Venkatesh. Learning

parts-based representations with nonnegative restricted boltzmann machine. In

Asian Conference on Machine Learning, pages 133–148, 2013.

[100] Mahesan Niranjan. Sequential tracking in pricing financial options using model

based and neural network approaches. In Advances in neural information process-

ing systems, pages 960–966, 1997.

[101] Mohamed F Omran. Nonlinear dependence and conditional heteroscedasticity in

stock returns: Uk evidence. Applied Economics Letters, 4(10):647–650, 1997.

[102] Le Ou-Yang, Dao-Qing Dai, and Xiao-Fei Zhang. Protein complex detection via

weighted ensemble clustering based on bayesian nonnegative matrix factorization.

PloS one, 8(5):e62158, 2013.

[103] Le Ou-Yang, Dao-Qing Dai, Xiao-Li Li, Min Wu, Xiao-Fei Zhang, and Peng Yang.

Detecting temporal protein complexes from dynamic protein-protein interaction

networks. BMC bioinformatics, 15(1):335, 2014.

[104] Art B Owen and Patrick O Perry. Bi-cross-validation of the svd and the nonneg-

ative matrix factorization. The annals of applied statistics, pages 564–594, 2009.

[105] John Paisley, D Blei, and Michael I Jordan. Bayesian nonnegative matrix fac-

torization with stochastic variational inference. Handbook of Mixed Membership

Models and Their Applications. Chapman and Hall/CRC, 2014.

References 154

[106] Stephen E Palmer. Hierarchical structure in perceptual representation. Cognitive

psychology, 9(4):441–474, 1977.

[107] Sinno Jialin Pan, Qiang Yang, et al. A survey on transfer learning. IEEE Trans-

actions on knowledge and data engineering, 22(10):1345–1359, 2010.

[108] Solip Park, Jae-Seong Yang, Young-Eun Shin, Juyong Park, Sung Key Jang, and

Sanguk Kim. Protein localization as a principal feature of the etiology and comor-

bidity of genetic diseases. Molecular systems biology, 7(1):494, 2011.

[109] Lorien Y Pratt. Discriminability-based transfer between neural networks. In Ad-

vances in neural information processing systems, pages 204–211, 1993.

[110] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015.

[111] William M Rand. Objective criteria for the evaluation of clustering methods.

Journal of the American Statistical association, 66(336):846–850, 1971.

[112] Masoumeh Rezaei and Reza Boostani. Using the genetic algorithm to enhance

nonnegative matrix factorization initialization. Expert Systems, 31(3):213–219,

2014.

[113] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-

propagation and approximate inference in deep generative models. arXiv preprint

arXiv:1401.4082, 2014.

[114] Jorma Rissanen. A universal prior for integers and estimation by minimum de-

scription length. The Annals of statistics, pages 416–431, 1983.

[115] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal

representations by error propagation. Technical report, California Univ San Diego

La Jolla Inst for Cognitive Science, 1985.

[116] Tetsuya Sakurai, Akira Imakura, Yuto Inoue, and Yasunori Futamura. Alternating

optimization method based on nonnegative matrix factorizations for deep neural

networks. In International Conference on Neural Information Processing, pages

354–362. Springer, 2016.

[117] Anastasia A Samsonova, Mahesan Niranjan, Steven Russell, and Alvis Brazma.

Prediction of gene expression in embryonic structures of drosophila melanogaster.

PLoS computational biology, 3(7):e144, 2007.

References 155

[118] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to

the nonlinear dynamics of learning in deep linear neural networks. arXiv preprint

arXiv:1312.6120, 2013.

[119] Mikkel N Schmidt, Ole Winther, and Lars Kai Hansen. Bayesian non-negative ma-

trix factorization. In International Conference on Independent Component Anal-

ysis and Signal Separation, pages 540–547. Springer, 2009.

[120] Farial Shahnaz, Michael W Berry, V Paul Pauca, and Robert J Plemmons. Doc-

ument clustering using nonnegative matrix factorization. Information Processing

& Management, 42(2):373–386, 2006.

[121] C. E. Shannon. A mathematical theory of communication. The Bell System

Technical Journal, 27(3):379–423, July 1948. ISSN 0005-8580. doi: 10.1002/j.

1538-7305.1948.tb01338.x.

[122] Madhusudana Shashanka, Bhiksha Raj, and Paris Smaragdis. Probabilistic la-

tent variable models as nonnegative factorizations. Computational intelligence

and neuroscience, 2008, 2008.

[123] Paris Smaragdis and Shrikant Venkataramani. A neural network alternative to

non-negative audio models. In Acoustics, Speech and Signal Processing (ICASSP),

2017 IEEE International Conference on, pages 86–90. IEEE, 2017.

[124] Steven Squires, Rob Ewing, Adam Prügel-Bennett, and Mahesan Niranjan. A

method of integrating spatial proteomics and protein-protein interaction network

data. In International Conference on Neural Information Processing, pages 782–

790. Springer, 2017.

[125] Steven Squires, Luis Montesdeoca, Adam Prügel-Bennett, and Mahesan Niranjan.

Non-negative matrix factorization with exogenous inputs for modeling financial

data. In International Conference on Neural Information Processing, pages 873–

881. Springer, 2017.

[126] Steven Squires, Adam Prügel-Bennett, and Mahesan Niranjan. Rank selection

in nonnegative matrix factorization using minimum description length. Neural

Computation, 2017.

[127] Mehrdad Tamiz, R Hasham, DF Jones, B Hesni, and EK Fargher. A two staged

goal programming model for portfolio selection. In Multi-Objective Programming

and Goal Programming, pages 286–299. Springer, 1996.

References 156

[128] Denise JL Tan, Heidi Dvinge, Andrew Christoforou, Paul Bertone, Alfonso Mar-

tinez Arias, and Kathryn S Lilley. Mapping organelle proteins and protein com-

plexes in drosophila melanogaster. Journal of proteome research, 8(6):2667–2678,

2009.

[129] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of

the Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

[130] Andrĕı Nikolaevich Tikhonov, Vasilĭı IAkovlevich Arsenin, and Fritz John. Solu-

tions of ill-posed problems, volume 14. Winston Washington, DC, 1977.

[131] Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck

principle. In Information Theory Workshop (ITW), 2015 IEEE, pages 1–5. IEEE,

2015.

[132] Jochen Triesch. A gradient rule for the plasticity of a neuron’s intrinsic excitability.

Artificial Neural Networks: Biological Inspirations–ICANN 2005, pages 65–70,

2005.

[133] Magnus O Ulfarsson and Victor Solo. Tuning parameter selection for nonnegative

matrix factorization. In ICASSP, pages 6590–6594, 2013.

[134] Albert Vilamala, Paulo JG Lisboa, Sandra Ortega-Martorell, and Alfredo Vel-

lido. Discriminant convex non-negative matrix factorization for the classification

of human brain tumours. Pattern Recognition Letters, 34(14):1734–1747, 2013.

[135] E Wachsmuth, MW Oram, and DI Perrett. Recognition of objects and their

component parts: responses of single units in the temporal cortex of the macaque.

Cerebral Cortex, 4(5):509–522, 1994.

[136] Christopher S Wallace and David M Boulton. An information measure for classi-

fication. The Computer Journal, 11(2):185–194, 1968.

[137] Dong Wang and Huchuan Lu. On-line learning parts-based representation via

incremental orthogonal projective non-negative matrix factorization. Signal Pro-

cessing, 93(6):1608–1623, 2013.

[138] Hong-Qiang Wang, Chun-Hou Zheng, and Xing-Ming Zhao. jnmfma: a joint

non-negative matrix factorization meta-analysis of transcriptomics data. Bioin-

formatics, page btu679, 2014.

[139] Hua Wang, Heng Huang, Chris Ding, and Feiping Nie. Predicting protein–protein

interactions from multimodal biological data sources via nonnegative matrix tri-

factorization. Journal of Computational Biology, 20(4):344–358, 2013.

References 157

[140] Jie Wang. Stock trend extraction via matrix factorization. In International Con-

ference on Advanced Data Mining and Applications, pages 516–526. Springer, 2012.

[141] Jim Jing-Yan Wang and Xin Gao. Max–min distance nonnegative matrix factor-

ization. Neural Networks, 61:75–84, 2015.

[142] Naiyan Wang, Jingdong Wang, and Dit-Yan Yeung. Online robust non-negative

dictionary learning for visual tracking. In Proceedings of the IEEE International

Conference on Computer Vision, pages 657–664, 2013.

[143] Yu-Xiong Wang and Yu-Jin Zhang. Nonnegative matrix factorization: A compre-

hensive review. Knowledge and Data Engineering, IEEE Transactions on, 25(6):

1336–1353, 2013.

[144] Jing Wei and Xin Tian. Network connectivity revealed through non-negative ma-

trix factorization in rat medial prefrontal cortex during working memory task. In

Neural Engineering (NER), 2013 6th International IEEE/EMBS Conference on,

pages 202–205. IEEE, 2013.

[145] Andreas S Weigend, Bernardo A Huberman, and David E Rumelhart. Predicting

the future: A connectionist approach. International journal of neural systems, 1

(03):193–209, 1990.

[146] Daniela Wieser and Mahesan Niranjan. Remote homology detection using a kernel

method that combines sequence and secondary-structure similarity scores. In silico

biology, 9(3):89–103, 2009.

[147] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.

Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

[148] Qingyao Wu, Zhenyu Wang, Chunshan Li, Yunming Ye, Yueping Li, and Ning Sun.

Protein functional properties prediction in sparsely-label ppi networks through

regularized non-negative matrix factorization. BMC systems biology, 9(Suppl 1):

S9, 2015.

[149] Siqi Wu, Antony Joseph, Ann S Hammonds, Susan E Celniker, Bin Yu, and Erwin

Frise. Stability-driven nonnegative matrix factorization to interpret spatial gene

expression and build local gene networks. Proceedings of the National Academy of

Sciences, 113(16):4290–4295, 2016.

[150] Eric P Xing, Michael I Jordan, Stuart J Russell, and Andrew Y Ng. Distance

metric learning with application to clustering with side-information. In Advances

in neural information processing systems, pages 521–528, 2003.

References 158

[151] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are

features in deep neural networks? In Advances in neural information processing

systems, pages 3320–3328, 2014.

[152] Zhijian Yuan and Erkki Oja. Projective nonnegative matrix factorization for image

compression and feature extraction. Image analysis, pages 333–342, 2005.

[153] N Yuvaraj and P Vivekanandan. An efficient svm based tumor classification with

symmetry non-negative matrix factorization using gene expression data. In In-

formation Communication and Embedded Systems (ICICES), 2013 International

Conference on, pages 761–768. IEEE, 2013.

[154] Rafal Zdunek. Initialization of nonnegative matrix factorization with vertices of

convex polytope. In Artificial Intelligence and Soft Computing, pages 448–455.

Springer, 2012.

[155] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional

networks. In European conference on computer vision, pages 818–833. Springer,

2014.

[156] Daoqiang Zhang, Zhi-Hua Zhou, and Songcan Chen. Non-negative matrix fac-

torization on kernels. In PRICAI 2006: Trends in Artificial Intelligence, pages

404–412. Springer, 2006.

[157] Shihua Zhang, Qingjiao Li, Juan Liu, and Xianghong Jasmine Zhou. A novel

computational framework for simultaneous integration of multiple types of genomic

data to identify microrna-gene regulatory modules. Bioinformatics, 27(13):i401–

i409, 2011.

[158] Xiang Zhang, Naiyang Guan, Zhilong Jia, Xiaogang Qiu, and Zhigang Luo. Semi-

supervised projective non-negative matrix factorization for cancer classification.

PloS one, 10(9):e0138814, 2015.

[159] Yuan Zhang, Nan Du, Liang Ge, Kebin Jia, and Aidong Zhang. A collective nmf

method for detecting protein functional module from multiple data sources. In

Proceedings of the ACM Conference on Bioinformatics, Computational Biology

and Biomedicine, pages 655–660. ACM, 2012.

[160] Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component anal-

ysis. Journal of computational and graphical statistics, 15(2):265–286, 2006.

	Abstract
	Contents
	List of Figures
	List of Tables
	Declaration of Authorship
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Publications
	1.4 Report Organisation

	2 Review of Key Concepts and Related Work
	2.1 Basics of Non-Negative Matrix Factorisation
	2.2 The Context of NMF within Machine Learning
	2.2.1 Unsupervised Learning
	2.2.2 Dimensionality Reduction

	2.3 Relationship between NMF and Similar Techniques
	2.4 Algorithms for NMF
	2.5 Improvements to NMF
	2.6 NMF Extensions
	2.7 Applications of NMF

	3 Rank Selection in Non-negative Matrix Factorization using Minimum Description Length
	3.1 Introduction
	3.1.1 Rank Selection in Non-negative Matrix Factorization
	3.1.2 Approach and Contribution

	3.2 Minimum Description Length
	3.2.1 Background and Theory
	3.2.2 Proposed MDL Algorithm

	3.3 Application of Minimum Description Length
	3.4 Conclusion

	4 Minimum Description Length as an Objective Function
	4.1 Introduction
	4.2 Minimum Description Length
	4.3 Methods and Algorithm
	4.4 Results and Discussion
	4.4.1 Recreation of the original data
	4.4.2 The learning process
	4.4.3 Representing true data over noise

	4.5 Conclusions

	5 Non-Negative Matrix Factorisation with Exogenous Inputs
	5.1 Introduction
	5.2 Model and Learning Algorithm
	5.3 Data
	5.4 Results
	5.5 Conclusion

	6 XNMF for Combining Spatial Proteomics and Protein-Protein Interaction Networks
	6.1 Introduction
	6.1.1 NMF in Biology
	6.1.2 Spatial proteomics
	6.1.3 PPI networks
	6.1.4 Integrating Biological Data
	6.1.5 Motivation

	6.2 Data and Methodology
	6.2.1 Data-sets
	6.2.2 XNMF Method for Integrating Spatial Proteomics and PPI network data

	6.3 Results and Discussion
	6.3.1 Analysis of the Data and Techniques
	6.3.2 Representation of the data
	6.3.3 Clustering and Classification

	6.4 Summary

	7 A Framework for Performing Variants of Non-Negative Matrix Factorisation using Constrained Autoencoders
	7.1 Introduction
	7.1.1 Neural Networks and Autoencoders
	7.1.2 Non-Negative Constraints in Neural Networks
	7.1.3 Using Neural Networks to perform NMF
	7.1.4 Motivation

	7.2 Methodology
	7.2.1 Basic AE-NMF
	7.2.2 Variations to AE-NMF
	7.2.2.1 Network Depth
	7.2.2.2 Alterations to Objective Function
	7.2.2.3 Online versus Batch
	7.2.2.4 Autoencoder for XNMF

	7.2.3 Transfer Learning for AE-NMF

	7.3 Results and Discussion
	7.3.1 Minor Choices
	7.3.2 Online Approaches
	7.3.3 Applying a more Convex Objective Function
	7.3.4 Deep AE-NMF
	7.3.5 XNMF using AE-NMF
	7.3.6 Transfer Learning in AE-NMF

	7.4 Summary

	8 A Variational Autoencoder for Probabilistic Non-Negative Matrix Factorisation
	8.1 Introduction
	8.1.1 Using Autoencoders for NMF
	8.1.2 Variational Autoencoders
	8.1.3 Probabilistic Non-Negative Matrix Factorisation

	8.2 PAE-NMF
	8.2.1 Ideas Behind PAE-NMF
	8.2.2 Structure of the PAE-NMF
	8.2.3 Details of the PAE-NMF
	8.2.4 Methodology

	8.3 Results and Discussion
	8.4 Summary

	9 Conclusions and Future Work
	9.1 Conclusions
	9.2 Future Work

	A Cross Validation for Rank Selection in NMF
	A.1 Cross-Validation
	A.1.1 Theory and Methodology
	A.1.2 Results and Analysis

	B Derivation of Equations for MDL as an Objective Function
	B.1 MDL as an Objective Function using the Distributions
	B.1.1 Updates of the objective function

	C Proof of Monotonic Reduction of XNMF
	C.1 Introduction
	C.2 Proof of convergence

	D A Method of Integrating Spatial Proteomics and Protein-Protein Interaction Network Data
	References

