
UNIVERSITY OF SOUTHAMPTON

Deep Cascade Learning

by

Enrique S. Marquez

A thesis submitted in partial fulfilment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering and Physical Sciences

Electronics and Computer Science

June 2019

http://www.soton.ac.uk
mailto:esm1g14@ecs.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Enrique S. Marquez

Deep Learning has demonstrated outstanding performance on several machine learning

tasks. These results are attributed to training very deep networks on large scale datasets.

In this thesis we investigate training models in a layer-wise fashion. We quantify perfor-

mance and discuss the advantages of using such training algorithms on computer vision

and signal processing tasks.

Inspired by the Cascade Correlation algorithm, which is a growing neural network that

iteratively learns artificial neurons, we developed a supervised layer-wise training algo-

rithm, which we name Deep Cascade Learning. Our methodology takes as input the

architecture to train and splits the model in submodels, where each iteration trains

only one layer of the network. The feature representation gets more robust as layers

are stacked. Moreover, the algorithm provides training complexity reduction while pre-

serving competitive results in comparison with state-of-the-art end to end training. We

demonstrate these advantages on multiple benchmark datasets.

Given that Deep Cascade Learning trains models from scratch successfully, we also look

at layer-wise methods to transfer features from a large base dataset, to a smaller target

dataset. This is particularly useful when the target dataset cannot be used to train a

model from scratch due to lack of data. This second algorithm, which we named Cascade

Transfer Learning (CTC), yields similar memory advantages to Deep Cascade Learning,

and enables minimal computational complexity for feature transfer. In addition, CTC

provides competitive results in comparison with other transfer learning approaches.

Finally, we further explore the scalability of Deep Cascade Learning by executing it

on a multi-variate time series classification task. Such tasks include predicting human

activities from body-worn sensors. Deep Cascade Learning can be used to reduce the

training time of these models, opening up the possibility of online training on smart

devices.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:esm1g14@ecs.soton.ac.uk

Contents

Declaration of Authorship ix

Acknowledgements xi

1 Context & Contributions 1

2 Deep Learning 5

2.1 Relevant concepts & state-of-the-art in DL 8

2.2 Deep Learning for Computer Vision . 10

2.2.1 Transfer Learning . 16

2.2.2 Metrics performance . 18

2.2.3 Datasets . 19

2.2.3.1 MNIST . 19

2.2.3.2 CIFAR-10/100 . 20

2.2.3.3 ImageNet . 20

2.3 Limitations of Deep Learning in Computer Vision 21

2.4 Deep Learning for Signal Processing . 22

2.5 Time Series Classification . 24

2.6 Summary . 24

3 Layer wise training 25

3.1 Cascade Correlation . 25

3.2 Adaptive architectures . 27

3.2.1 Resource-Allocating Networks (RAN) 27

3.2.2 Adaptive-Network-Based Fuzzy Inference (ANFIS) 28

3.3 Deep Belief Networks (DBNs) . 28

3.3.1 Convolutional DBNs (CDBN) . 29

3.4 Layer-wise training using kernel similarity 29

3.5 AdaNet . 30

3.6 Progressive Generative Adversarial Networks (PGGANs) 30

3.7 Summary . 32

4 Cascade Learning Architecture for Deep Convolutional Neural Net-
works 33

4.1 The Deep Cascade Learning Algorithm . 34

4.1.1 Algorithm description . 34

4.1.2 Cascade Learning as supervised pre-training algorithm 36

4.1.3 Time Complexity . 37

v

vi CONTENTS

4.1.4 Space complexity . 38

4.2 Experiments . 40

4.2.1 Datasets . 42

4.2.1.1 CIFAR-10 . 42

Space complexity and output block specifications. 42

Training time complexity and relationship with depth and
starting number of epochs. 43

4.2.2 The All CNN . 46

4.2.2.1 CIFAR-100 . 47

4.2.2.2 Pre-training with cascade learning 50

4.3 Summary . 52

5 Cascade Transfer Learning 55

5.1 Background . 55

5.2 Cascading pre-trained networks . 56

5.2.1 Algorithm Complexity . 58

5.3 Algorithm Hyperparameters . 59

5.4 Using early classifiers for resource efficiency 60

5.5 Experimental Setup . 60

5.5.1 Datasets . 60

5.5.2 Models . 61

5.6 Measuring transferability . 62

5.7 Effect of the number of residuals & starting stage 65

5.7.1 Number of residuals . 65

5.7.2 Starting stage . 65

5.8 Performance versus memory . 67

5.9 Summary . 70

6 Cascade Learning for Human Activity Recognition 73

6.1 Human Activity Recognition . 74

6.2 Deep Learning for Human Activity Recognition 76

6.2.1 Long-short Term Memory Networks (LSTM) 76

6.2.2 Convolutional Neural Networks (CNNs) 77

6.2.2.1 Temporal Convolution . 77

6.2.2.2 Residual Networks . 77

6.2.2.3 Dilated Networks . 79

6.3 Datasets . 79

6.3.1 Opportunity . 80

6.3.2 PAMAP2 . 80

6.3.3 Daphnet Gait . 80

6.4 Experimental setup . 80

6.5 Results . 81

6.5.1 Cascading ResNets for HAR . 82

6.5.2 Comparison with state-of-the-art 83

6.5.2.1 PAMAP2 . 84

6.5.2.2 DaphNet . 84

6.5.2.3 Opportunity . 84

CONTENTS vii

6.5.3 Subject wise cross-validation . 85

6.5.4 Sampling Frequency effect on Temporal ResNets 86

6.5.5 Noise tolerance . 86

6.5.6 Discussion . 88

6.6 Summary . 89

7 Conclusions & Future Work 91

References 97

Declaration of Authorship

I, Enrique S. Marquez , declare that the thesis entitled and the work presented in the

thesis are both my own, and have been generated by me as the result of my own original

research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself

• parts of this work has been published, refer to Section 1 for more details about

this publication.

Signed:...

Date:..

ix

mailto:esm1g14@ecs.soton.ac.uk

Acknowledgements

First and foremost I would like to thank my parents for their emotional and financial

support during this academic journey.

Secondly, I would like to thank my supervisors Dr. Jonathon Hare and Prof. Mahesan

Niranjan for encouraging me to take the PhD. Thanks to them I have acquired invaluable

knowledge that will help developing my career.

I extend my gratitude to all the people I have met these past years. Their time to discuss

relevant ideas regarding my PhD thesis was priceless.

Finally, I would like thank the VLC Research Group for offering an outstanding work

environment. Their daily discussions, recommendations, advice, and activities made my

PhD a very enjoyable journey.

xi

Chapter 1

Context & Contributions

Recent developments in machine learning have shown state-of-the-art results by applying

deep learning to complex datasets. The result is deep differentiable networks capable of

merging the standard machine learning pipeline (feature extraction and classification)

into a single training algorithm. Deep networks learn optimal weights by minimizing a

loss function. These weights are constrained in order to generate robust and invariant

features. The classifier is directly connected to the top hidden layer of these set of

weights (layers of feature extraction), which allows the network to optimally tune the

synergy between features and classifier.

The traditional deep learning training algorithm uses backpropagation to update the

weights of the hidden layers [108]. In the models, layers are updated as the gradient is

propagated from bottom (last layer) to top (first layer). The magnitude of the gradients

on early layers is affected by the multiplicative effect of the chain rule. In other words,

the magnitude will always decrease for layers closer to the input. This well-known

problem, often described as vanishing gradient, is tackled extensively by the literature

[70, 90, 45]. However, approaches such as ReLU [90] and residual connections [45]

alleviate the vanishing gradient problem but do not totally overcome it [125]. The

vanishing gradient problem is further discussed in Chapter 2 and 4.

The aim of this thesis is to explore supervised layer-wise training of deep learning models.

We present a novel Deep Cascade Learning algorithm and demonstrate its effectiveness

on multiple tasks. We motivate our algorithm on the premise that early layers do not

learn meaningful representations of the data, and that the robustness of the features

is built in later stages of the network. By applying a layer-wise training, a classifier is

directly connected to every layer, which ultimately increases the gradient magnitude.

Through this work we propose a novel training algorithm to sequentially learn represen-

tations of the data. We quantify performance and robustness of our method on image

classification, time series classification and a novel approach to apply transfer learning

on the image classification domain.

1

2 Chapter 1 Context & Contributions

Contributions

The main contributions of this work are as follows:

Deep Cascade Learning

• Complexity advantages. The algorithm itself is capable of achieving similar

performance to traditional training while requiring a fraction of the time. As

opposed to end to end training, the computational cost decreases as the model

gets deeper.

• Performance. Our algorithm obtains competitive results with the state-of-the-art

when fine-tuning the network after cascading. However, there is a computational

cost associated with this fine-tuning.

• Applications. We show quantitative analysis on image classification using the

CIFAR benchmark dataset, which contains 10 or 100 classes in its two variants.

In addition, we quantify the performance of cascading 1D Convolutional Networks

on a multi-variate time series classification problem.

Cascade Transfer Learning

• Memory Complexity. Traditional transfer learning includes a fine-tuning stage

after training the classifier on the last layer. Our approach trains layer by layer

which only requires to store one block at the time drastically decreasing the com-

plexity of the training. This enables the users to apply transfer learning using less

hardware than the required to train the network on the base dataset.

• Performance. The algorithm generalizes better on multiple image classification

tasks for relatively small networks, and achieves competitive results on very deep

networks.

• Scalability. We tested our algorithm on five datasets and showed its applicability

to multiple target datasets.

• Resource Efficient Prediction. The algorithm yields several classifiers with

different accuracy. Early classifiers can be used to make predictions on ‘easy’

inputs, allowing the network to stop inference at mid stages.

Chapter 1 Context & Contributions 3

Thesis structure

The thesis is structured as follows:

Chapter 2 covers the literature on Deep Learning and neural networks. We discuss the

methodology of computer vision and signal processing in detail along with the most

successful architectures to date. The Chapter starts with early approaches on neu-

ral networks including perceptrons and MLPs, and goes through state-of-the-art deep

learning models with dense and residual connections [45]. We also revise temporal neural

networks that are applied to time series data.

Chapter 3 explores the literature on layer wise training. The section includes the Cas-

cade Correlation algorithm [28] which presents an early approach to progressively train

multi-layer perceptrons. Additionally, we explore other recent approaches to iteratively

learn layers using unsupervised algorithms [48, 68]. Finally, we discuss a very powerful

architecture to progressively increase the size of a convolutional generative model for

image generation [61].

Chapter 4 presents the approach and shows quantitative analysis of our Deep Cascade

Learning algorithm on two image classification tasks. The algorithm shares advantageous

properties with other layer-wise approaches while being executed on state-of-the-art

network architectures.

Chapter 5 analyses a novel transfer learning approach where pretrained layers are se-

quentially adapted using a cascade-like algorithm. We show competitive results on three

target datasets and use ImageNet dataset from the Large Scale Visual Recognition Com-

petition [109] (ILSVRC) as the base dataset. Cascade Transfer Learning (CTL) yields

complexity advantages and allows applying transfer learning on any pretrained network

without increasing the memory requirements. The algorithm is most successful on very

deep networks. For CTL, depth is not correlated with the required training memory,

as opposed to traditional fine-tuned transfer learning. Additionally, CTL can find the

stage at which the network transfers the features better to the target dataset.

Chapter 6 discusses networks for Human Activity Recognition (HAR). This problem

includes sensor data, and can be seen as a multivariate time series classification problem.

We present results on residual networks for HAR on three datasets. In addition, we show

that Deep Cascade Learning is scalable to 1D Residual Networks and is not limited to

2D CNNs.

Chapter 7 summarizes the studies and findings developed during this thesis. Finally, we

discuss future work covering layer wise training, as well as potential scalability of our

algorithms to other applications.

4 Chapter 1 Context & Contributions

Publications

• Published Paper at IEEE Transactions on Neural Networks and Learning Systems.

Deep Cascade Learning.

Enrique S Marquez, Jonathon S Hare, and Mahesan Niranjan. Deep cascade learn-

ing. IEEE Transactions on Neural Networks and Learning Systems, 2018

Chapter 2

Deep Learning

Deep Learning can be seen as a set of machine learning methods that allow training deep

neural networks successfully. A deep neural networks (DNN) is such model that cannot

be naively trained with only backpropagation. Further regularisation and optimisation

methods have to be included in order to improve generalisation of DNNs. In addition,

GPU acceleration and automatic differentiation has allowed deep networks to learn from

large scale complex data. Before the deep learning breakthrough, neural networks were

outperformed by traditional approaches (e.g SVMs, Random Forest) due to their poor

scalability to larger problems and lack of understanding.

Rosenblatt [106] successfully developed the first artificial neuron called the Percep-

tron [106]. This artificial neuron holds some properties that are still applicable to

modern neural networks. However, some ideas did not catch up and were discarded

by subsequent studies. Such ideas include training multi-layer perceptrons (MLP) with

a fixed randomized early layers, because of lack of knowledge on how to update these

early weights. The single perceptron was limited to its linear boundary, thus, making it

impossible to learn non-linear functions, such as the XOR function [87]. The Backprop-

agation algorithm was presented as a way of learning multiple perceptrons by updating

the weights using its derivatives and the chain rule [107]. This learning procedure greatly

boosted the capabilities of neural networks, which enabled them to learn more complex

functions. Besides training a stack of perceptrons end to end, Fahlman and Lebiere [28]

presented an adaptive architecture to iteratively train multiple perceptrons. This ‘Cas-

cade Correlation’ algorithm includes several techniques with similarities across modern

deep learning. Nevertheless, neural networks were computationally expensive with com-

plex hidden mechanics; for this reason, they were put aside by the community and were

taken over by statistical approaches to machine learning.

Improvements in neural network architectures were still been made after MLPs were

developed. In the computer vision field, Fukushima [33] presents the Neocognitron,

an artificial neural network inspired by discoveries on the visual primary cortex. The

5

6 Chapter 2 Deep Learning

Neocognitron presented a few concepts that were then applied into more robust visual

networks, such concepts include feature integration and receptive field. Subsequently,

LeCun et al. [71] proposed the first Convolutional Neural Network (CNN) named LeNet-

5. The architecture contributed key concepts that are applicable to modern state-of-the-

art CNNs, such as weight sharing, and downsampling. After LeNet-5, the community

followed a standard pipeline of classifying handcrafted features to tackle vision problems

due to the complexity of CNNs, which made almost impossible to train on large scale

datasets.

Similarly, the community explored the possibility of using recurrent units to capture

temporal patterns in the data [86]. Recurrent Neural Networks (RNNs) allows artificial

neurons to process sequences of inputs, hence, extracting temporal information from

the input sequences. Hochreiter and Schmidhuber [49] presented the Long short term

memory (LSTM), which is an architecture to hold or forget information across the time

axis. LSTMs showed better performance on several tasks by extracting short and long

patterns. This improvement enabled recurrent architectures to overcome vanilla RNNs.

Their applicability goes from handwriting recognition [39] to speech applications [74].

The decay in neural network research was a result of the training complexity of these net-

works. Recent developments in processing power and GPU acceleration has drastically

decreased the training time. Nowadays, these networks are not only computationally

feasible, but we are now capable of increasing the number of parameters to learn more

complex representations. In addition, with the digital revolution the availability of the

data has dramatically increased. The machine learning community can now gather

thousands of data points and iteratively train these networks using batch training.

Deep networks, however, still hold several drawbacks in contrast with traditional ma-

chine learning approaches (e.g SVM and Random Forest). One of the main criticisms

is the interpretability of the models. It is not straightforward to quantify the internal

mechanics of deep networks, which leaves the open question, how do deep networks actu-

ally learn representative features? For this reason the community has been researching

around understanding the “black box” that is deep learning. Shwartz-Ziv and Tishby

[113] conclude that DNN find efficient representations by approximating minimal suf-

ficient statistics in the sense of the information bottleneck. In addition, Lin et al. [75]

aims to unravel deep networks through physics by exploring frequently presented prop-

erties that are similar in both domains, such as symmetry, locality, compositionality,

and polynomial log-probability.

Besides the interpretability problem, deep networks suffer from degradation of the back-

propagated gradients. Vanishing gradients in early layers generates smaller updates of

weights, which do not allow the network to learn meaningful representations on early

stages [45]. To define the vanishing gradient problem, we make use of a small net-

work with four hidden layers. The parameters of this model are defined as: weights

Chapter 2 Deep Learning 7

W = w1, w2, w3, w4 (for the purpose of this definition the shape/nature of the weights

is irrelevant), biases B = b1, b2, b3, b4, hidden layers outputs Z = z1, z2, z3, z4, the in-

puts to the hidden layers are defined as x1, x2, x3, x4 and final output y. Hence, we

can define the output of a layer as zi = f(wi, xi) + bi, where f is the function between

inputs and weights (e.g linear for dense layers, or convolutional for convolutional lay-

ers). zi is then evaluated using the predefined activation function σ. If we apply the

backpropagation using the chain rule to obtain the first hidden layer gradients we get,
∂y
∂w1

= σ′(z1)×w2 × σ′(z2)×w3 × σ′(z3)×w4 × σ′(z4)× ∂y
∂z4

. If we analyse the previous

equation we realise that to obtain the gradients of the first layer, we have to multiply the

derivative of the activation function σ several times. Hence, if σ′ < 1, the resulting value

of multiplying several number between 0 − 1 will be very small. In addition, the more

layers we use, the more multiplications are performed in the chain rule, and the smaller

the resulting value for early layers will be. This can be alleviated by using activation

functions with larger derivatives such as Rectified Linear Units [90] (further discussed in

later sections of this chapter). However, we can spot that to obtain ∂y
∂w1

it also has to be

included multiplications of the weights wi, which are very often initialised between 0−1.

This also has an effect on the vanishing gradient problem, thus changing the activation

function does not fully overcome this issue.

The training of deep networks has been optimized over the past few years, in order to

enhance their stability, performance, and complexity. The methodology includes:

• Regularization methods. In order to avoid overfitting the training data. Such

methods include: dropout [117], constraints to the loss function (e.g weight decay

and L1 norm [36]) and batch normalization [55].

• Complexity reduction. Methods to reduce training complexity such as batch

training [48, 67]; and methods to reduce the cost of inference after training, such

as pruning or binarizing the weights [100, 42].

• Optimization. The latest algorithms include optimization steps to speed up the

convergence of the network (e.g cross-entropy loss function for classification and

Adam optimizer [63]). These methods are further discussed on the next section.

• Initialization. Better initial weights leads to faster and more efficient convergence

[46]. We discuss this in more details in the next section.

• Architectures. The community has explored multiple architectures to learn bet-

ter representations. Most recently, residual connections have been a trend towards

better learning, we discuss this into depth in Section 2.2. This improvement is

developed as a way of circumventing the vanishing gradient problem.

8 Chapter 2 Deep Learning

2.1 Relevant concepts & state-of-the-art in DL

In this section we discuss into detail several concepts used during this thesis. We describe

a set of commonly applied architectures as well as state-of-the-art methodology to train

these networks.

• Convolutional Neural Networks (CNNs). These models are motivated by

studies around animals visual cortex [53]. Neocognitron [33] was a first approach

to emulate the visual system. However, it failed to incorporate with key aspects of

the cortex, such as its hierarchical structure and translational invariance. LeCun

et al. [71] developed LeNet-5 as first successful CNN trained to classify handwriting

letters and digits. CNNs are feedforward networks in which the parameters are

filters or kernels instead of linear weights. Each filter produces one feature by

convolving it with the input. Theoretically the feature is translation invariant,

thus allowing the network to search for the same pattern across the spatial input.

The stack of convolutional layers is known as a feature extractor, often referred as

an encoder. The MLP on the last stage of the network is known as the classifier.

The model contains activation functions to learn non-linear features. AlexNet

[67] is a CNN architecture trained on GPUs, which made feasible the training

of these networks on large scale datasets. This architecture is further discussed

on the Section 2.2. The entire network is differentiable and can be trained using

backpropagation and Stochastic Gradient Descent (SGD) to minimize the loss

function.

• Recurrent Neural networks (RNNs). In some problems the patterns to capture

are not in the spatial domain, but rather in the temporal domain. Other appli-

cations of these networks may include sequence analysis and natural language

processing. RNNs aim to extract such patterns using recurrent units to “hold”

information from previous inputs. This recurrent procedure contains an internal

state to process sequence of inputs, hence, preserving or forgetting features from

past data. The vanilla RNN [129] is known to be capable of finding short term

patterns. For the case when long term dependencies are necessary, Hochreiter

and Schmidhuber [49] presents the Long Short Term Memory Networks (LSTMs).

Derivatives of LSTMs, such as Gated Recurrent Unit(GRU) [15], have been ex-

plored extensively in the literature. These networks have produced state-of-the-art

results on speech [1, 64] and text [119] problems. RNNs are less parallelisable than

CNNs, computationally more complex, and not easily compressed [5].

• Regularization. In Deep Learning there are several techniques to avoid over-

fitting. Srivastava et al. [117] developed Dropout to prevent deep networks from

overfitting the training data. It is a simple yet powerful method which is applied

to the training routine. On every iteration of training, dropout “deactivates” some

Chapter 2 Deep Learning 9

units in the specified stage with a fixed probability (typically p = 0.5). By apply-

ing this, the network not only prevents complex co-adaptations on the training set,

but also decreases the variance (high variance induces is reflected as overfitting the

training set) by emulating an average of smaller sub-networks. Many years ear-

lier, Fahlman and Lebiere [28] mentioned an insight to dropout when applying the

cascade correlation algorithm, and stated that their algorithm generalized better

when ignoring some weights during training. Constraints to the loss function, such

as l1 (which induces sparsity and feature selection) and l2 norm are also applicable

as regularization methods. Moreover, Batch Normalization [55] decreases the co-

variance shift of the features by learning a normalization function at intermediate

stages of the network.

• Rectified Linear Activation Function. ReLU [90], in the machine learning

context, is an activation function motivated to address the vanishing gradient

problem. This is as a result of the derivative of the function ReLU, which is 1. In

addition, computing its function and derivative is computationally more efficient

than traditional activations, such as Sigmoid and hyperbolic tangent. However,

ReLU still holds a “dying units” problem, where neurons are often driven to in-

active states and cannot be brought back due to its zero gradient to the left of

the zero [18]. Several approaches have been used to avoid having dead neurons

on early stages of the training algorithm. Leaky ReLU [80] uses small slope on

the negative axis of the function, this allows inactive neurons to be back to acti-

vate state since its derivative has a small value instead of zero. Other activation

functions based on ReLU have been proposed as ways of better feature learning.

For example, Parametric ReLU [46] uses a similar method as Leaky ReLU, the

main difference remains in the slope, which is adaptively learnt and included in

the backpropagation algorithm. Equations 2.1, 2.2, 2.3 show the mathematical

operation of ReLU, Leaky ReLU (a is fixed) and PReLU (λ is learnt).

ReLU(x) = max(0, x) (2.1)

LeakyReLU(x) = max(x, ax) (2.2)

PReLU(x) = max(x, λx) (2.3)

• Optimization and loss functions. Convergence of deep networks can be a

complex problem and might require several forward passes of the data. In order

to speed up training and ensure convergence, the community has developed op-

timization algorithms. Popular approaches include adaptive learning rates which

consider the first and second moments of the gradients [27, 63, 134]. Depending

on the problem, the loss function can be adapted to further enhance the training.

10 Chapter 2 Deep Learning

For example, on multi-class datasets one might apply a näıve loss function, such

as Mean Square Error, however, using a Softmax function with CrossEntropy loss

may squash the output into a probability vector and more rapidly find a minimum

with desirable properties.

• Initialization. Arbitrarily initializing the weights can damage the network’s con-

vergence. Recent developments have found correlation between the number of

parameters in the model and its ‘ideal’ initialization. He et al. [46] compares mul-

tiple initialization methods and presents a novel method to randomly initialise the

weights from a fix distribution. Kaiming’s initialization [46] considers the activa-

tion function of the network, for ReLU networks they concluded that the weights

should be initialised from a Gaussian distribution with zero mean and
√

2/nl stan-

dard deviation, where nl represents the number of parameters of layer l. These

methodology has been recently adapted to modern deep learning networks, al-

though, its motivation comes from early studies in initialising neural networks

2.2 Deep Learning for Computer Vision

CNNs have achieved state-of-the-art results on multiple visual learning tasks. Such

tasks include image/object classification [67, 45], object detection [121], biometrics [122],

segmentation [78], and medical image processing [62]. This breakthrough comes from

training networks from scratch, as well as transferring the feature extractor from one

large scale dataset to a less complex domain [67, 132]. This is known as transfer learning

and is explained into details in later sections.

The convolution operator is defined as yij =
∑k

a=0

∑k
b=0w

t
abx(i+a)(j+b) where yij is the

output value at index i and j, w is the (for most computer vision cases) square filter

with size k, and x is the input image. For multichannel cases (e.g RGB images, three

channels with C = 3), the filters are multidimensional with shape (C, k, k) and can be

unravelled as a linear combination of multiple 2D filters to generate a single feature map

per multidimensional filter. In order to generate more than one feature, the layer may

contain several multidimensional filters, hence the shape of the convolutional weights

of a layer is defined as (N,C, k, k) where N is the number of “3D” filters to be learnt.

The operation does not work on the whole input like in fully connected layers, instead

it computes the operation on one fixed sized region of the image (receptive field) at the

time using shared parameters. This generates robust translational invariant features,

but does not allow these features to capture patterns at multiple scales. Thus, to make

it more robust to scale, pooling operators are often used to downsample the features and

learn filters at multiple scales. Commonly used pooling operators include Max Pooling,

which takes the values of highly activated neurons and discards those with low activation

value; and Average Pooling, which takes the average of the activations. Both use a

Chapter 2 Deep Learning 11

sliding window approach on fixed receptive field with a constant step (stride). Other

pooling operators have been proposed to tackle different issues in the learning of features

[37, 44]. Recent architectures do not use pooling operators, instead the downsampling

can be learnt by a strided convolution [116]. It is intuitive to think that learning the

downsampling function would be more beneficial than having a fixed operator, however,

it adds some extra parameters to the network. The input to these layers are usually

padded with zeros to preserve the dimensionality. Batch normalization is also included

into the set of learnable layers of the CNNs. It aims to decrease the variance of the hidden

features (covariance shift) by learning normalization parameters (mean and standard

deviation) at mid stages of the network. Nevertheless, CNNs architectures might not

use all the techniques listed, but a subset of them. Features are flattened on the last

stage of the feature extractor in order to connect the classification device, which is often

an MLP to make the network differentiable end to end.

LeNet-5 [71] introduces key concepts to train CNNs. It contains two convolutional

layers with kernels of size (6, 1, 5, 5) and (16, 6, 5, 5) and downsample operations (2 by

2 average pooling) after every convolutional layer. The classification on that model is

performed by two fully connected layers with 120 and 84 neurons each. After LeNet-5,

the community followed more traditional approaches to tackle vision problems. This

decay in CNN research was a result of the complexity of the training of these networks.

Figure 2.1: AlexNet CNN applied to ImageNet, input image RGB 224 × 224 and
outputs the class. C1-5 are convolutional layers. C1, C2, and C5 have MaxPooling
layers after the convolutions. The dimensionaly of the filters are: C1 96 × 11 × 11
(channels, rows, and columns of filter), C2 256× 5× 5, C3 384× 3× 3, C4 384× 3× 3,

and C5 256× 3× 3.

The breakthrough of CNNs came with AlexNet [67] in 2012. Krizhevsky et al. [67]

introduced a setup to train CNNs with GPU acceleration with a set of methods to

reduce overfitting. They applied a CNN to the ImageNet challenge, which is a large

scale visual classification competition containing 1.5M images and is further explained

in Section 2.2.3. AlexNet won the 2012 ImageNet competition by a margin of 8% top-5

classification accuracy (see Section 2.2.2 for details on the metric). The algorithm in

second place extracted SIFT descriptors using Fisher vectors and classified them with

Support Vector Machines (SVMs) [110]. The network included dropout on the layers of

12 Chapter 2 Deep Learning

Figure 2.2: Inception modules used in GoogLeNet. (left) Naive approach, computa-
tionally untraceable, (right) Bottleneck approach with layers to reduce the dimension-

ality of the feature maps. Figure taken from the original paper [120].

the classifier, which helped avoid the network overfitting the training data. Dropout also

increases the number of epochs necessary to train the models. In addition, ReLU was

applied in every hidden layer as well as Softmax on the output layer. MaxPooling was

introduced under this context to downsample the data after every convolution. Data

Augmentation was included in Alex’s Net methodology to generate more images from

the raw data [17]. Their implementation included rotation, mirroring, and shifting, and

it allowed them to perform it at zero computational cost by performing the augmentation

in parallel with the training algorithm. Figure 2.1 illustrates AlexNet as a block diagram.

The community developed several architectures around AlexNet in order to learn better

representations and boost generalization. Multiple contributions are listed chronologi-

cally as follows:

• GoogLeNet [120]. September 2014: Winner of 2014 ImageNet challenge. This

model is based on the sequential concatenation of inception modules. Each module

contains a stack of filters with multiple size (k = 1, 3, 5) to extract features at

multiple scales. The inputs are padded in order to preserve dimensionality and to

enable the concatenation of multi-scale features. The complexity of the network

became an issue, hence, they applied a bottleneck structure using 1×1 convolutions

to compress the number of feature maps and make the model computationally

feasible. Figure 2.2 shows the inception module diagrams used in GoogLeNet. The

architecture also contains multiple output blocks at different stages to increase the

magnitude of the gradient on early layers. GoogLeNet is made of nine inception

modules and three output blocks on the 3rd, 6th, and last module of the network.

During testing, they adopted an aggressive cropping approach resulting in 144

crops per testing image. This testing procedure does not boost generalization but

decreases false positives, which ultimately increases accuracy.

• The All Convolutional Neural Network [116]. April 2015. In contrast with

previous models, The All CNN used small 3×3 filters and made the downsampling

learnable by using strided convolutions. The classifier contains 1× 1 convolutions

Chapter 2 Deep Learning 13

with average pooling and softmax activation. Removing the fully connected layers

drastically reduces the parameters of the network. The novel idea was also later

applied to segmentation problems [79]. They achieved competitive performance

on three image classification datasets. In addition, the hidden representations can

easily be visualized by inverting the data flow of the CNN. This is possible due to

the fact that the model is fully convolutional.

• Visual geometry Group Network [114]. (VGG) April 2015. Similar to the All

CNN, the VGG Net applies 3× 3 convolutions but uses MaxPooling as downsam-

pling operator. Simonyan and Zisserman [114] present several models with 11 to

19 layers. The classification structure was taken from AlexNet, which contains two

fully connected layers with 4096 neurons each. In their augmentation procedure

they also used random cropping which is extensively used nowadays [45, 51]. Pre-

vious architectures contain 2-3 downsampling operators, meaning that the network

holds 2-3 spatial dimensions. Therefore, one of the main achievements of the VGG

nets was training deep CNNs with five resolutions. Thus, enabling the network to

generate more scale invariant features, yet again confirming the importance of hi-

erarchical depth to learn visual representations. The complexity of the network is

greater than previous nets due to its number of parameters. Although, it requires

fewer iterations to converge due to implicit regularization given by small filters.

Figure 2.3 summarizes the VGG network structure.

Figure 2.3: VGG-19 CNN applied to ImageNet with 16 convolutional and two fully
connected layers, input image RGB 224x224 and outputs the class probabilities. C1-16
are convolutional layers. After every block of convolutional layers, there is a MaxPooling
layer. The dimensionaly of the filters are: C1-2 64x11x11 (channels, rows, and columns
of filter), C3-4 128x3x3, C5-8 256x3x3, C9-12 512x3x3, and C13-16 512x3x3. The

activation of all the hidden neurons is ReLu, and of the output layer softmax.

• Residual networks [45, 47] (ResNets) Dec 2015. These models take benefits

from residual connections, which adds skip connections that propagates the fea-

tures from the previous hidden layer to the current hidden layer. In Figure 2.4 this

residual connection is represented as the function id. The community has widely

used residual connections to learn better representations at early stages of the

networks. ResNets have yielded state-of-the-art results on multiple visual tasks.

14 Chapter 2 Deep Learning

These models directly alleviate the vanishing gradient problem by appending a

skip connection between the input and outputs of the residual blocks. The net-

work is built by sequential concatenation of residual blocks (ResBlocks) instead of

convolutional layers. Each (original) ResBlock contains two convolutional layers,

batch normalization, ReLU activation, and most importantly an identity mapping

layer to merge the previous features to the output of the ResBlock. Figure 2.4 illus-

trates the ResBlock diagram presented in the original paper. Later studies showed

empirical results using multiple ResBlocks, such as dropout and pre-activation

ResBlocks. Their models contain from 52 to 1000+ layers and won the ImageNet

competition 2015. In order to train deeper networks, they adopted the protocols

of GoogLeNet to reduce the number feature maps, thus allowing them to train

networks as deep as 1000+ layers. However, the performance decreased when us-

ing very deep models, which suggests that the vanishing gradient problem is not

actually solved. In addition, Veit et al. [125] suggests that ResNets are simply an

ensemble of shallower networks, which then raises uncertainty on the actual need

for depth in ResNets. An additional procedure to decrease the number of parame-

ters was changing the classification layers to follow The All CNN structure (global

average pooling and softmax). The majority of recently developed architectures

utilise residual connections.

Figure 2.4: Residual block diagram presented in [45]. It contains two convolutional
layers, batch normalization, and activation functions. The input is propagated using
the identity mapping function id. The figure was adapted from the original paper [52].

• Stochastic Depth Networks [52]. March 2016. The limits of depth were pushed

by using the stochastic depth protocol during training. Huang et al. [52] suc-

cessfully trained very deep ResNets (1200+ layers) using a generalized version of

dropout by ‘deactivating’ layers instead of neurons. During training, the depth of

the network changes by randomly deactivating several ResBlocks. For testing and

inference, the inputs are evaluated using the whole network. In theory, applying

this procedure should further alleviate the vanishing gradient problem given that

the magnitude of the gradient remains unchanged on deactivated layers.

• Fractal Networks [70] May 2017. Larsson et al. [70] present a model with multi-

ple paths or branches to bypass one or more ResBlocks. It uses a simple expansion

rule to increase the depth of the network. The architecture holds a structural

Chapter 2 Deep Learning 15

layout which are precisely truncated fractals. During training, a FractalNet ran-

domly changes its topology and connections, which has some similarities with the

Stochastic Depth procedure [52]. It is important to mention that when randomly

disabling connections, there has to exist at least one path that connects input

with output layer. These models benefit from “drop-path” regularization, which

deactivates certain paths of the network during training. They tested FractalNets

for image classification on three datasets and obtained results comparable with the

state-of-the-art. In FractalNets time complexity is proportional to depth, however,

going deeper does not impair accuracy.

• Densely Connected Networks [51] July 2017. Using ResNets as foundation,

this architecture includes more than one residual connection. In fact, it appends

direct connections between any two layers within the same resolution (same size of

feature map). Instead of adding the previous input, this model reuses features from

early layers by concatenating them on later layers. Applying this successfully leads

to an increase on performance in comparisons with standard ResNets. Ultimately,

the concatenation of feature maps increases the complexity of the network by a

high factor, which is mainly dependent on the number of layers per resolution

rather than raw depth.

Most CNNs architectures are tested on image classification problems on benchmark

datasets. However, these networks have been successfully applied to other computer

vision problems. Some applications include: biometrics, such as face identification [122],

which can now be performed on smartphones with a high accuracy; semantic segmen-

tation [137], for example, segmenting objects or roads, which has helped to develop

self-driving vehicles; medical imaging analysis [62, 130, 88, 24], in order to assist spe-

cialists in the read of scans.

Dilated CNNs. Traditional Convolutional layers apply the operation on adjacent

pixels. This enables the network to find spatial patterns with a fixed size. In or-

der to extract bigger spatial patterns, the networks tend to downsample the images.

We defined the convolution operator (using squared filters) in section 2.2 as yij =∑k
a=0

∑k
b=0w

t
abx(i+a)(j+b), adding dilation increases the steps a and b by the dilation fac-

tor (d). The dilated convolutional operation then becomes yij =
∑k

a=0

∑k
b=0w

t
abx(i+a∗d)(j+b∗d).

For example, applying a convolution with kernel size of k× k on the original image will

find patterns with scale k×k, however, applying the same operation on the downsampled

image (downsample by 2) would extract patterns at 2k × 2k. This is useful to extract

information at multiple scales, but there is a decay of information when applying this

operation due to compression loss.

In order to overcome this, the community tends to use Dilated Convolutions. Figure

2.5 compares dilated and non dilated architectures, and shows the dimensionality of the

features at every stage. It essentially contains the same amount of parameters as the

16 Chapter 2 Deep Learning

traditional convolution, with the difference that the kernel uses a receptive field with

gaps accordingly to the size of the dilation. Increasing the dilation enables the network

to see ‘bigger’ receptive fields and avoids the need to downsample the image. This,

however, generates an increase in the memory required for training since the spatial size

of the features are the same as the original image across the entire network. Yu et al.

[133] explores the effectiveness of dilated CNNs for the tasks of object localization, image

classification, and semantic segmentation. They directly show that dilated networks can

outperform its non-dilated counterparts on specific tasks where spatial information is

crucial. Such idea has been successfully applied in medical image segmentation [130, 88,

24].

Figure 2.5: Comparison between CNNs, dilated (bottom) and traditional (top). d
represents degree of dilation, c number of initial channels, w and h width and height
respectively. Commonly used approach downsamples the features after several convolu-
tions. Spatial size is preserved for the Dilated CNN. Figure extracted from the Dilated

Residual Networks paper [133].

2.2.1 Transfer Learning

When data collection or availability becomes a problem, transfer learning can allow us to

boost the performance by preliminary learning a feature extractor from a similar problem

domain, often referred to as base or source dataset (large dataset). The dataset to apply

transfer learning to is often addressed as target dataset (smaller dataset). Torrey and

Shavlik [124] discuss several transfer learning techniques without using deep networks.

These methods can be listed as follows:

Inductive transfer. The technique involves adjusting the inductive bias of the model

trained on the base dataset. Thus, narrowing the hypothesis space, limiting the possible

models, or remove search steps when transferring the model. In addition, inductive trans-

fer also covers transferring Bayesian models. Multiple approaches have been explored

Chapter 2 Deep Learning 17

to transfer Bayesian learning methods. The traditional method involves computing the

prior distribution on the source dataset, to then be considered in the Bayesian model

developed for the target dataset [22, 85]. Another inductive transfer method includes

hierarchical learning. In this case, models from multiple simple tasks are combined to

generalize better in a more complex task. For example, Taylor et al. [123] propose a

hierarchical learning based on tasks difficulty. Each task is scored and sorted based on

difficulty. The model then learns ‘easy’ tasks first to obtain better results in the most

complex task.

Transfer in Reinforcement Learning. In this case, an agent is in charged of per-

forming actions given the state of the environment [115, 135]. These actions can alter

the current state and obtain rewards. The global idea involves learning a policy to per-

form actions and maximize the cumulative reward. These models may require several

iterations before learning a reasonable policy; hence, transfer learning in this setting

is applied to mostly decrease the number of iterations required. These algorithms can

be divided into: starting point methods, which involve training a model using a base

dataset and using it as starting point for the target task; imitation methods, which al-

low the target model to use the policy learnt from the source dataset, which ultimately

affects the updates on the target policy; hierarchical methods, which use the tasks on

the base dataset as a building block for learning the target’s policy.

In Deep Learning, transfer learning is applied by learning a deep network on the base

dataset to then reuse the feature extractor as initialiser to train on the target dataset.

For example, a common approach to transfer learning involves learning a deep network

from simulated (generated) data before training on fixed real data [112]. This enables

faster convergence and better generalization, and as we know simulated data is labelled

for free. In the past, the idea of transferring the feature extractor using unsupervised

learning methods was explored, for example, sharing a bag of visual words [12, 99]. It

is important to mention that in all transfer learning tasks, the base dataset has to have

similarities with the target dataset, otherwise transferring features will not boost the

learning of the target dataset [65].

Several problems in computer vision are constrained by the amount of data. In order to

tackle this issue, the community has adopted a transfer learning procedure to first learn a

discriminative representation from a large scale dataset [103, 83, 62] . The methodology

for transfer learning is divided into two stages, the first stage uses a base or source

dataset and the second stage the dataset of interest or target dataset. Firstly, any

CNN architecture is trained on the base dataset, typically ImageNet due to its sparsity

(given the amount of labels) and size. Generalizing on ImageNet yields to a robust

feature extractor, thus, features that can generalize to 1000 classes classification problem

can potentially be used to generalize in other datasets with similar properties. The

second stage propagates the images through the pre-trained feature extractor in order to

generate robust feature vectors for the target dataset. The features can then be classified

18 Chapter 2 Deep Learning

using any machine learning algorithm. Commonly, MLPs are selected as classifier to

make the network differentiable and allow fine-tuning of the complete network after

training the classifier.

Given both base and target datasets, transfer learning problems can be split in two

scenarios. The first problem includes having different inputs, often just a different di-

mensionality (it could be the case where input images are fundamentally different), which

is tackled by resizing and cropping. Secondly, targets are different in both datasets. In

Deep Learning for computer vision, both scenarios are typically presented; hence labels

and feature space are different. The problem is then summarized to empirically quan-

tify to which extend both statements are true. This is done by executing the transfer

learning algorithm and measuring generalization on the target dataset.

Kim et al. [62] use a “bridge” dataset to co-adapt the pre-trained network to a similar

space as the target dataset. For example, training on ImageNet to then fine-tune on

X-Ray images, to then transfer the features to prostate cancer detection using X-Rays

imaging. Yosinski et al. [132] explores transfer learning in depth by analysing the features

at multiple stages of the feature extractor. Transfer learning has also been applied as an

encoder decoder structure, where the pre-trained network is fixed as starting encoder.

Besides image classification from a large scale dataset to a smaller target dataset, the

community has used pre-trained networks for other useful applications. One widely ex-

plored application has been semantic segmentation, which uses a pre-trained networks

to compute representative feature maps of the images to segment [137, 103, 101]. These

segmentation networks typically are divided into two stages; an encoding part to cap-

ture representative information from the input image (transferred representations); and,

a decoding stage to target the segmentation mask. Moreover, image style transfer tech-

niques aim to use sparse representations to capture the semantics of a “style” image and

transfer it to a content image, thus generating an image that combines both content and

style [35, 34]. In biometrics, transferred representations can be used as starting points

to learn further more discriminative soft-biometric feature vectors [84].

These methods fpr transfering features are also applicable in other deep learning fields.

For example, in Natural Language Processing, transfer learning has been applied to

create a multi-lingual translation machine [58]. This methodology takes advantage of

datasets with big corpora (e.g English documents) to learn better representations for a

different language with less data.

2.2.2 Metrics performance

In computer vision, the type of metric is dependent on the problem to be tackled and the

dataset. For classification tasks the community typically uses top-1 and top-5 accuracy,

where top-1 compares ground truth with most likely class prediction; and top-5 compares

Chapter 2 Deep Learning 19

against the five predictions with the highest probability. When considering imbalance

datasets, typically two methodologies are applied to measure performance. The first

approach is to use weighted F1 score, which considers the class imbalanced. This metric

is further explored in Chapter 6. The second approach includes using a mean-per-class

metric, where predictions are normalized accordingly to the number of samples per class.

If the imbalance of the dataset is not considered, the results can be misleading and a

biased or overfitted network might be overlooked.

Besides these metrics, we often utilise the loss value (of both training and validation set)

as training indicator. Again, the loss function to use depends entirely on the nature of

the problem. For classification tasks, cross-entropy or mean squared error are often the

functions of choice [67, 114, 45]. For object localization, mean Average Precision (mAP)

has been widely applied to evaluate models. It computes the average of the precisions at

different recall values, in other words, it considers the predicted position of objects and

the overlapping area to determine whether the object was detected correctly. In addition,

Lin et al. [76] present Focal Loss, which aims to learn more from hard examples and

avoids the model from overfitting on easy negatives. State-of-the-art image generation

is evaluated using an inception model (GoogLeNet) to do inference on the generated

images [7]. If the generated image fools GoogLeNet, an accumulator is increased; thus,

providing accuracy numbers based on how many times GoogLeNet was fooled by the

generator.

The loss function is selected depending on the nature of the targets. In multi-label

classification tasks the community often uses Cross-Entropy loss. This function can be

expressed as −
∑L

c=1 yo,c log(ŷo,c), where c is the class index, L the number of classes,

o the observation index, y represents the target, and ŷ the prediction. Using this loss

function for classification tasks has shown speed ups in comparison to other losses, such

as Mean Squared Error.

2.2.3 Datasets

State-of-the-art models are developed and tested on benchmark datasets. The following

datasets are widely used by the computer vision community to test classification models:

2.2.3.1 MNIST

MNIST is a well known hand written digit recognition dataset [72]. The data is splitted

into 60k images for the training set, and 5k images for the test set. The images are

binary (one channel per image), with a size of 28 × 28. Typically, this dataset is easy

to learn and it is used to generate early results. The labels are balanced and labelled

from zero to nine. A random subset of images from MNIST can be is shown on the left

of Figure 2.6.

20 Chapter 2 Deep Learning

Figure 2.6: Nine samples from two datasets. Left) MNIST Right) CIFAR. The images
were resized for proper visualization.

2.2.3.2 CIFAR-10/100

Tiny image classification dataset containing 60k images [66]. There are three datasets

extracted from CIFAR, they contain similar images and targets are 10, 20 or 100 labels.

These targets describe different objects, such as animals and vehicles. The input images

are RGB of size 32 × 32. Figure 2.6 shows random input samples from the CIFAR-10

dataset. In comparison with MNIST, this dataset is more complex given that the labels

are more sparse and less representative of the label.

2.2.3.3 ImageNet

Large scale image classification dataset containing 1.3M images for training and 0.1M

for testing [109]. In contrast with previously visited datasets, ImageNet contains RGB

images with multiple size from a range between 100 and 500 pixels per dimension. This

dataset is widely used in transfer learning given that it contains 1000 classes and models

can learn very robust representations. By generalizing on ImageNet, the network can

learn to generalize on similar domains to image classification. The metrics used are top-5

and top-1 accuracy to quantify performance on this dataset. Human performance on this

dataset oscillates around 5 ± 1% top-5 accuracy [46]. A random set of images selected

from ImageNet are shown in Figure 2.7. Since the ImageNet dataset was released, deep

networks have taken over the state-of-the-art. Figure 2.8 shows the performance of deep

architectures chronologically.

Chapter 2 Deep Learning 21

Figure 2.7: Thirty-two random samples from the ImageNet dataset. The images were
resized for illustration purposes. Note that the images do not have the same size.

Figure 2.8: Results for the ImageNet large scale object detection competition on
chronological order. Deep Learning was first applied on 2012. The error has drastically

decreased since then given improvements on Deep Learning architectures.

2.3 Limitations of Deep Learning in Computer Vision

Even though deep learning has generated outstanding performance in computer vision

tasks, training networks can be a complex and inflexible procedure. Some drawbacks of

deep learning are listed as follows:

22 Chapter 2 Deep Learning

• Time complexity. Training on the required amount of data can be computa-

tionally expensive due to the cost of propagating high dimensional inputs through

the network.

• Space complexity. The number of parameters of the network increases with

depth. Hence, the depth of the network is limited by the hardware. Compressing,

pruning, and binarizing the weights have been proposed to decrease the number

of parameters of the network [100, 42]. In addition, training these models re-

quires to store the feature maps at every stage of the network, which can be very

computational expensive when the images are high resolution.

• Vanishing gradient problem. Explored in detail in Chapter 4, it affects the

learning capabilities of early layers. Ideally, one would expect that by solving the

vanishing gradient problem, the performance should remain stable when appending

new layers to the architecture.

• Appending new targets. For some applications, it is imperative to preserve the

robustness of the network while learning a new label. This is particularly useful in

areas like biometrics, on which new subjects may be appended to the database at

any point. A commonly used approach involves using weak flexible algorithms (e.g.

KNN) with DL pre-trained features [122]. This would allow to use the flexibility

(of adding new labels) of the algorithm with robust deep representations.

• Data size. Networks tend to overfit when insufficient data is provided, this applies

to any deep network. Transfer Learning, as described previously in this chapter,

it is a solution that works in some cases when the base and target datasets have a

similar structure. Traditional approaches still outperform deep learning when the

amount of data is limited, thus, making deep learning inapplicable. In some cases

augmenting the data can help to generate more variants of the training dataset

and simulate an increase in the data size [67].

2.4 Deep Learning for Signal Processing

Multiple studies related to time series and speech have taken over the state-of-the-

art using deep learning. Signals have similar properties as images which enables the

community to share DL architectures between image and signal processing. Moreover,

the convolutional operator in computer vision includes a spatial component, while in this

section we elaborate around convolutions in the temporal domain (1D convolutions). The

filters are optimized to learn patterns between adjacent time components as opposed to

spatial patterns.

Chapter 2 Deep Learning 23

ResNets and its derivatives have an equivalent architecture in the temporal domain [30].

However, there has been recent improvements with WaveNet [64] style nets, which in-

clude dilated temporal convolutions and multi-activation layers. The dilated convolu-

tional operator in signal processing is equivalent to performing a convolution at a lower

sampling frequency, allowing the network to find longer term patterns with the same

number of parameters. The dilated convolution operation in this setting is further dis-

cussed in Chapter 6. Kingma et al. [64] applies deep dilated networks with double

activation on multiple speech problems, such as speech recognition, text-to-speech, and

speech enhancement.

Traditional approaches to solve signal processing problems include classifying bespoke

features, such as Mel-frequency Cepstral Coefficients (MFCC), statistical features (me-

dian, mean, area under the signal), often including derivatives of these features. In

addition, traditional machine learning algorithms, including Support Vector Machines

(SVMs) and Random Forest, have been applied to separate these handcrafted features

[56]. In Chapter 6 we explore a Human Activity Recognition (HAR) problem. HAR

uses multi-sensor data that can be addressed as time series classification [138].

Networks in signal processing also make use of the convolutional operator, however it

differs in dimensionality with the operation applicable to computer vision. The convo-

lution is unidimensional and aims to extract temporal patterns. For this reason it is

frequently referred as temporal convolution. Figure 2.9 illustrates the temporal convo-

lution operator, the filters Cj are convolved with the input series to generate F feature

maps (feature signals).

Figure 2.9: Temporal convolution with D signals, window size of T , and F features.
The figure was adapted from [89].

24 Chapter 2 Deep Learning

2.5 Time Series Classification

In this task the aim is to predict a label given some time dependent variables. For

example in forecasting, the goal is to successfully predict when an event is going to

happen given historical temporal data. Before Deep Learning, the state-of-the-art in

time series classification involved nearest neighbour (k-NN) and Dynamic Time Warping

(DTW) [8]. They key idea was generating invariant features which would be dependent

on the domain, e.g. invariant to warping. These robust features were robust enough

to be successfully classified by a simple KNN algorithm with a domain specific distant

measurement [8].

State-of-the-art models use feature learning instead of handcrafted domain specific fea-

tures. Wang et al. [127] perform preliminary tests on MLPs, and CNNs on 44 benchmark

datasets, and concluded that both architectures can provide competitive results. We be-

lieve CNNs should outperform MLPs in time series analysis, given that MLPs are not

desing to extract discriminative features across the time axis. Moreover, the receptive

field of CNNs is very limited, hence, dilated kernels enables them to find long term de-

pendencies that can potentially be weakly captured by the MLP. At this point, LSTMs

have shown better performance for this classification task [38].

Recently MLPs and LSTMs have been shown to be outperformed by Deep CNNs on for

time series classification [6]. Borovykh et al. [10] explore more complex CNN structures

and show state-of-the-art performance on predicting sequences.

2.6 Summary

In this chapter we discussed the literature necessary to fully comprehend the next chap-

ters. We discuss early approaches using neural networks as well as the training method-

ology carried out to learn meaningful representations. The chapter starts exploring the

single unit neural networks (perceptron), and further elaborate on state-of-the-art deep

models. In Section 2.1 we list, explain, and revise important deep learning concepts.

We then discuss Deep Learning in the computer vision setting, thus, revising modern

models and architectures applied on image classification tasks. Figure 2.8 illustrates

chronologically the performance of these state-of-the-art models. In addition, we work

around the limitations of deep learning, such as data availability, and some approaches

to overcome these limitations (e.g Transfer Learning). We briefly explore deep learning

for signal processing. Specifically, we review time series classification, which will be

further discussed and applied in Chapter 6.

Chapter 3

Layer wise training

In Chapter 2 we discussed the literature on deep learning. In addition, we covered

several disadvantages of fixed end to end training. We believe layer-wise training can

alleviate some of these disadvantages. Improvements are obtained as a consequence of

directly tackling the vanishing gradient problem, as well as better adaptability due to

the growing structure. Chapter 4 covers our layer by layer training algorithm which

generates complexity improvements of the network.

In this chapter we explore the literature on layer by layer training of neural networks,

from early approaches on stacking perceptrons, to more recent developments in image

generation.

3.1 Cascade Correlation

Fahlman and Lebiere [28] present an algorithm to iteratively train network of percep-

trons. This cascade architecture appends one unit (perceptron) per iteration. On each

iteration a new unit is learnt, while previously learnt units remain frozen. Once the

unit is appended to the system, the algorithm aims to maximize the magnitude of the

correlation between the most recent unit’s output and the residual error signal of the

network (see S in Equation 3.1). Considering Equation 3.1, Cascade Correlation aims

to maximize S given the error signal Eo, the features Vp (also referred to as patterns).

Ēo and V̄ represent the average over all units.

S =
∑
o

|
∑
p

(Vp − V̄)(Ep,o − Ēo) | (3.1)

Details of the algorithm may vary depending on the application. In the particular case

of study, Fahlman and Lebiere [28] applied Cascade Correlation to a two spiral problem,

25

26 Chapter 3 Layer wise training

which consists of 194 inputs with binary labels. The algorithm then can be written as

the following sequence of steps:

• The first iteration starts with a single neuron network. This small network is

trained until the error function plateaus

• Create several candidate units, and evaluate the performance of the network given

these candidates.

• Select the candidate with the maximum covariance between the unit’s output

Eo and the features already learnt V . Once the candidate unit is selected, it is

appended to the network and its parameters are frozen.

• Repeat the process of appending new units until the stopping criteria is reached

(e.g maximum number of iterations, or validation error cannot be improved).

Figure 3.1: Cascade Correlation Diagram. One unit has already been trained, boxes
connections are frozen, X connections belong to the current iteration and are trainable.

Figure adapted from the original paper [28]

This idea was one of the first approaches to “layer by layer” training. The units are

densely connected, which can be seen as appending residual connections between the

newly appended unit and previously learnt features. Unravelling a ResNet generates

a similar structure as Figure 3.1, which suggests the Cascade Correlation makes use

of residual connections during training [125]. In addition, Fahlman and Lebiere [28]

boosted Cascade Correlation’s performance by applying an early version of dropout to

deactivate frozen (already learnt) units during training, except that the already learnt

perceptrons are fixed, hence the vanishing gradient is irrelevant. The candidate units

may contain different activation functions. However, in the original paper they only use

pools of units with same activation function. They do mention the possibility of mixing

activation function in the network. Figure 3.1 shows the connectivity of the algorithm

for a Cascade Correlation network with one frozen unit.

Chapter 3 Layer wise training 27

One of the achievements of this algorithm is to adaptively find the architecture of the

network and its connectivity pattern. By applying this type of layer-wise technique, one

may specify a stopping criterion to determine when to stop appending new units. This

is beneficial given that it reduces the amount of empirical tuning required to find the

optimal minimum in the error function. This method enables the possibility of training

deeper networks with limited resources, since the features can be cached at any point

in time given that the rest of the network is constant. At the end, the structure allow

us to have a trade of between time and space, which can be tuned accordingly to the

available resources. The Cascade Correlation algorithm was tested on the two spiral and

the n-input parity problem.

Inspired by this algorithm, we developed the Cascade Learning algorithm, which aims

to generalize advantages of Cascade Correlation to modern Deep Learning. This novel

algorithm is further explained on Chapter 4.

3.2 Adaptive architectures

In this section we briefly discuss a couple of adaptive architectures that followed up

Cascade Correlation. These models were developed prior deep learning.

3.2.1 Resource-Allocating Networks (RAN)

Platt [96] proposes RAN, which is an adaptive architecture that aims to append a

new computational unit whenever a new pattern is presented in the data. It resembles

a Radial Basis Function network (RBF), with the main difference that each stage is

trained sequentially in a layer-wise fashion. The model starts with no hidden units and

grows iteratively depending on the novelty of an observation. The output of a RAN is a

linear combination of the hidden units responses. Equation 3.2 shows the mechanics to

evaluate a RAN, where K is the current number of patterns, αk for k = 1 to K are the

weights of the layer (α0 is the bias), and φk represents the response of the hidden unit k

given the input x. The responses can be obtained by measuring the distance between the

existing patters uk and the input data (see Equation 3.3). The network decides to store

a new pattern uK+1 depending on its novelty, which can be computed by evaluating

two conditions. These conditions are dependent on thresholds εn (scale of resolution

in input space) and emin (minimum error to be achieved): (a) ||xn − unr|| > εn, input

vector has to be far away from the existing patterns; (b) en = yn − f(xn) > emin, error

between outputs and targets has to be more than the predefined error threshold. When

these conditions are not met, the network uses Leas Mean Squares (LMS) [128] gradient

descent to update the coefficients αk and the stored patterns uk and it does not append

a new unit to the model. These models showed efficiency and adaptability for the time

series prediction task.

28 Chapter 3 Layer wise training

f(x) = α0 +
K∑
k=1

αkφk(x) (3.2)

φk(x) = exp
(
− 1

σ2k
||x− uk||2

)
(3.3)

Kadirkamanathan and Niranjan [60] propose RAN-EKF, which is an enhanced version

of the original RAN. The main contribution is the application of the extended Kalman

filter to update the weights instead of using LMS. The resulting network holds fewer

parameters, can obtain better performance when applied to a time series prediction

problem, and requires less time to converge.

3.2.2 Adaptive-Network-Based Fuzzy Inference (ANFIS)

Jang [57] proposes an adaptive architecture based on fuzzy inference that work as high-

level reasoning mechanisms. It also includes a neural network component that incorpo-

rate low-level reasoning. It sequentially tunes fuzzy if-then rules stated by human ex-

pertise. These rules are tuned using the learnable units, and they describe input-output

behaviour of the complex data. They directly compare their approach with Cascade

Correlation [28] even though is not an incremental adaptive architecture. Instead, it

starts with a fixed structure and it adapts based on a hybrid learning rule. Thus, this

model progressively removes units, which can be seen as a reverse layer-wise (unit-wise)

algorithm. For the purpose of this thesis, fuzzy logic is not considered. State-of-the-

art deep networks are more alike the networks generated by the Cascade Correlation

algorithm.

3.3 Deep Belief Networks (DBNs)

Hinton et al. [48] introduced a methodology to train deep multi-layer perceptrons. The

algorithm can be summarized in two stages: the first stage of unsupervised adaptation

of the weights using Restricted Boltzmann Machines (RBMs) [2] also referred in the

literature as autoencoders; and a second stage to fine-tuning in a supervised fashion to

co-adapt the features to the target class. The algorithm does not include an adaptation

criterion to determine how many layers to use. Instead, it requires the structure of the

network to be known before executing the algorithm.

Unsupervised pre-training. In this first stage, the algorithm initialises one hidden

layer h1 and aims to model the raw input to satisfying xi = h
(1)
i . For the next stage,

h
(1)
i is considered the visible layer and its parameters are frozen until the last stage of

the algorithm. For the next layer the “new data” is gathered by propagating the inputs

Chapter 3 Layer wise training 29

through the frozen layer, thus obtaining a new input matrix h
(1)
i , hence the pseudo-

inputs would consist of features that approximations of the input data. Then the next

layer is trained using the same methodology to obtain a layer that satisfies h
(2)
i = h

(1)
i .

The stacking process is iteratively repeated until reaching the desired number of layers.

Each iteration can be seen as learning one autoencoder.

Fine-tuning. Once all the layers have been pre-trained, all the parameters are enabled

to minimize the error function between inputs and targets on the bottom of the network.

The minimization of the negative log likelihood is performed using supervised gradient

descent. This stage is often regularized using dropout and weight decay.

This algorithm enabled the training of deep networks without massively overfitting the

training data, and allowed neural networks to catch up with other machine learning

approaches. Bengio et al. [9] further explores these networks using empirical analysis.

They concluded that a greedy layer wise training mostly helps optimization by initialising

weights in a region near a good local minimum. In addition, they briefly explored a

supervised greedy layer wise algorithm, however, their conclusion suggests that a semi-

supervise layer-wise strategy can yield better performance of the overall DBN.

3.3.1 Convolutional DBNs (CDBN)

Similarly, Lee et al. [73] present an algorithm to sequentially pre-train CNNs using

convolutional RBMs. Once the feature extractor is trained, it computes an SVM to

classify these features. They showed how the features were learnt hierarchically and

generate more complex feature extractor on deep layers. In addition, they demonstrate

the effectiveness of max pooling to downsample the feature maps. Even though this

approach is mostly unsupervised, Convolutional DBNs (CDBN) perform better when

there is more labelled data, and yields competitive results when the data is limited.

3.4 Layer-wise training using kernel similarity

Kulkarni and Karande [68] present an algorithm to sequentially train layers of per-

ceptrons. The algorithm aims to maximize the distance between features of different

classes, and minimize the distance between features belonging to the same class. On

every iteration there is a new set of inputs propagated to the next layer defined as

Xk = tanh(Dk−1Wk), where Xk is the feature matrix at stage k, and Wk the weights of

the same stage. Before every gradient update, the algorithm also normalizes the features

to have zero mean and unit l2 norm. They showed comparable performance with tra-

ditional end to end training of MLPs on MNIST and CIFAR-10 datasets. In addition,

they performed a kernel analysis of these networks and showed better feature encoding

30 Chapter 3 Layer wise training

than early approaches. Given that they train a layer at the time, this algorithm is less

computationally demanding than the alternatives.

3.5 AdaNet

Adaptive Structural Learning (AdaNet) progressively grows the size of the network.

Cortes et al. [20] explore this idea for Deep MLPs, and show a theoretical proof of

convergence. The algorithm starts by randomly generating several candidate structures

(subnetworks; not necessarily single layers), training such candidates using traditional

Stochastic Gradient Descent (SGD), and evaluating the given candidates. It then selects

the candidate that produces the smallest loss, appends it to the network and discards

the others. For the remaining iterations it performs a similar procedure: randomizing

candidates, training, evaluating, selecting. As opposed to DBNs, the connectivity in this

case is also randomized. It does not necessarily stack the subnetworks at the last stage of

the current network, instead, it can be the case where the randomized candidate connects

side by side with the existing units. The algorithm continues until the last iteration has

been reached or none of the candidates contribute to decreasing the loss. This pool of

subnetworks idea was explored first in the Cascade Correlation algorithm [28]. One of

the main advantages is the easy parallelisation of the training of subnetworks. Algorithm

3.5 summarizes these steps in pseudocode. The algorithm was compared with traditional

training of MLPs on paired subsets of CIFAR-10 (several binary classification problems).

The learnt topology of the network using AdaNet provides better performance than those

trained using grid search. Moreover, using grid search to find the ‘ideal’ topology of the

network can be computationally demanding. Finally, this idea can be generalized to

more complex architectures, such as CNNs and RNNs.

3.6 Progressive Generative Adversarial Networks (PGGANs)

Most recently, Karras et al. [61] trains generative model for super-resolution image

generation. PGGAN starts with tiny images and progressively stack convolutional layers

to both the generator (network in charge of generating the image) and discriminator

(network to evaluate the quality of the generated image) to smoothly adapt the network

to a higher resolution. In early resolutions, the generation of images is more stable due

to less class information and fewer modes [93]. Figure 3.2 shows the progressive growth

of the model, starting with a resolution of 8×8, and converging to a resolution of 1024×
1024. In other words, the model first learns large-scale structure (e.g context) to then

focus the attention on a greater level of detail. Training early iterations (low resolution

generation) is a simpler problem than training at full resolution (e.g 1024× 1024). This

was demonstrated given that the quality of the generated images decreases with smaller

Chapter 3 Layer wise training 31

Algorithm 1 Pseudocode of AdaNet with two candidates. ft represents the network at
step t, w parameters of the network, Ft loss of the network, and ht selected candidate
at step t. The pseudocode was adapted from the original paper [20].

procedure AdaNet(X,Y, T) . input data and number of iterations
2: f0 = 0 . Initialise model

for t = 0 : T do . Iterate from 0 to T
4: h, h′ ← GetRandomSubnetworks(ft1) . Initialise candidates

w ← minimize(Ft(w, h)) . SGD with first candidate
6: w′ ← minimize(Ft(w, h

′)) . SGD with second candidate
if Ft(w, h) ≤ Ft(w

′, h′) then . Select candidate
8: ht ← h

else
10: ht ← h′

end if
12: if F (wt−1) + w∗ < F (wt−1) then . Update net or stop if no improvement

ft−1 ← ft + w∗ht
14: else

return ft−1
16: end if

end for
18: return fT

end procedure

resolutions [93]. This layer wise training also provides time complexity advantages of

up to 2-6 times, since most iterations are executed at low resolution. As a result, the

algorithm is capable of generating images at 10242 resolution. They also proposed a

methodology to enable better convergence of the network by minimizing the conflict

between generator and discriminator. As opposed to the other layer-wise algorithms, a

progressive GAN grows the depth of both encoder and decoder of the generator, which

can be seen as the network progressively getting deeper at a higher rate.

Figure 3.2: Diagram illustrating the progressive growth of GANs. Both generator
and discriminator grow and duplicates resolution with each iteration. It starts with
small 8× 8 resolution, and finishes with 1024× 1024. Image adapted from the original

paper [61].

32 Chapter 3 Layer wise training

The PGGANs were tested on CELEBA-HQ dataset, which is a high resolution version of

CELEBA [77]. This dataset was developed due to the size of the spatial dimensions of the

CELEBA datasets, and to fix inconsistencies that would induce noise into the network,

such as images containing more than one face. Additionally, the images were modified

to improve the overall quality. These modifications include a convolutional autoencoder

to remove JPEG artifacts in images [81], and an adversarial network trained to increase

the resolution of the image by 4. The faces are then cropped from the enhanced images.

This process was applied on all 202599 images. The dataset generation procedure also

included quantifying the image quality for the whole dataset and selecting the best 3000.

3.7 Summary

Through the chapter, we covered the literature on layer by layer training. Layer by layer

training has been applied and studied in the past. The main advantages of such train-

ing may include memory and time complexity (e.g Cascade Correlation, AdaNet), and

performance improvements (e.g DBNs, PGGANs). In addition, these layer-wise mod-

els often include adaptive hyperparameters, which reduces the effect of poorly choosing

these hyperparameters. The Chapter starts from early approaches applied to percep-

trons, and follows by more complex generative architectures. Some approaches include

unsupervised learning, such as RBMs and autoencoders. In the following chapter we

present our own supervised layer-wise algorithm with similar advantageous properties.

Chapter 4

Cascade Learning Architecture

for Deep Convolutional Neural

Networks

In this chapter, we propose a novel approach for efficient training of deep neural networks

in a bottom-up fashion using a layered structure. Our algorithm, which we refer to as

Deep Cascade Learning, is motivated by the Cascade Correlation approach of Fahlman

and Lebiere [28] who introduced it in the context of perceptrons and is further explained

in Chapter 3. We demonstrate our algorithm on networks of convolutional layers, though

its applicability is more general and can potentially be extended to other feedforward

architectures. In later chapters we evaluate this framework on two more settings, a

multi-sensor data problem, and in transfer learning.

Training of deep networks in a cascade directly circumvents the well-known vanishing

gradient problem by ensuring that the output is always close to the layer being trained.

We present empirical evaluations comparing our deep cascade training with standard

end to end training using back propagation of two convolutional neural network ar-

chitectures on benchmark image classification tasks (CIFAR-10 and CIFAR-100). In

addition, we show that our intuitions about gradient magnitudes are correct and then

investigate the features learned by the approach. We find that better, domain-specific,

feature representations are learned in early layers when compared to what is learned in

end to end training. Domain specific features at early layers might no be necessary to

obtain good generalisation of the overall model, however, this is useful for tasks were

early representations are used or transferred. The increase in robustness of the features

at early stages is partially attributable to the vanishing gradient problem which inhibits

early layer filters from changing significantly from their initial values. While both net-

works perform similarly overall, recognition accuracy increases progressively with each

added layer, with discriminative features learnt in every stage of the network, whereas

33

34 Chapter 4 Cascade Learning Architecture for Deep Convolutional Neural Networks

in end to end training, no such systematic feature representation was observed. We also

show that such cascade training has significant computational and memory advantages

over end to end training, and can be used as a pre-training algorithm to obtain better

performance.

The reminder of the chapter is organized as follows. Section 4.1 explains the Cascade

Learning algorithm and analyses its advantages. Section 4.2 shows the results and discus-

sion of two experiments performed on two architectures. Finally, Section 4.3 summarizes

the findings, contributions, and potential further directions.

4.1 The Deep Cascade Learning Algorithm

In this section we describe the proposed Deep Cascade Learning algorithm and discuss

the computational advantages of training in a layer-wise manner. All the code used to

generate the results in this manuscript can be found in the GitHub repository available

at http://github.com/EnriqueSMarquez/CascadeLearning.

4.1.1 Algorithm description

As opposed to the cascade correlation algorithm, which sequentially trains perceptrons,

in Deep Cascade Learning we cascade layers of units. The proposed algorithm allows us

to train deep networks in a cascade-like, or bottom up layer-by-layer, manner. For the

purposes of this Chapter, we focus on convolutional neural networks architectures. The

deep cascade learning algorithm splits the network into its layers and trains each layer

one by one until all the layers in the input architecture have been trained, however,

if no architecture is given, one can use the cascade learning to train as many layers

as desired (e.g. until the validation error stabilizes). This training procedure allows

us to counter the vanishing gradient problem by forcing the network to learn features

correlated with the output on each and every layer. The training procedure can be

generalized as “several” single layer convolutional neural networks (sub-networks) that

interconnect and can be trained one at a time from the bottom up (see Figure 4.1). The

idea of incorporating more output heads is not new for the community, several layer-

wise algorithms take into consideration the use of output blocks at different stages of

the network. GoogLeNet [120] also makes use of multiple output heads, with the main

difference that the whole network is trained in an end to end fashion.

The algorithm takes as inputs the hyper-parameters of the training algorithm (e.g. op-

timizer, loss, epochs) and the model to train. Pseudocode of the Cascade Learning

procedure can be found in Algorithm 2, and will be referred to in further explanations

of the algorithm. Learning starts by taking the first layer of the model and connecting

it to the output with an ‘output block’ (line 9), which might be several dense layers

http://github.com/EnriqueSMarquez/CascadeLearning

Chapter 4 Cascade Learning Architecture for Deep Convolutional Neural Networks 35

Figure 4.1: Overview of Deep Cascade Learning on a convolutional network with n

layers. Inputi is the tensor generated by propagating the images through the layers
up to and including Convi − 1. Training proceeds layer by layer; at each stage using
convolutional layer outputs as inputs to train the next layer. The features are flattened
before feeding them to the classification stage. In contrast with the cascade correlation
algorithm, the output block is discarded at the end of the iteration (see Algorithm 2),
and typically it contains a set of fully connected layers with non-linearities and dropout.

connected to the output [67, 114], or, as it is sometimes shown in the literature, an

average pooling layer and the output layer with an activation function [116]. The out-

put block specifications are chosen based on the task and architecture to use. Training

using standard backpropagation then commences (using the pre-supplied parameters;

see the loop in line 11) to learn weights for the first model layer (and the weights for

the output block). Once the weights of the first layer have converged, the second layer

can be learned by connecting it to an output block (with the same form as for the first

layer, but potentially different dimensionality), and training it against the outputs with

pseudo-inputs created by forward propagating the actual inputs through the (fixed) first

layer. This process can then repeat until all layers have been learned. At each stage

the pseudo-inputs are generated by propagating the actual inputs forward through all

the previously trained layers. It should be noted that once a layers’ weights have been

learned, they are fixed for the training of all subsequent layers. Figure 4.1 gives a

graphical overview of the entire process.

Most hyper-parameters in the algorithm remain the same across each layer, however we

have found it beneficial to dynamically increase the number of learning epochs as we get

deeper into the network. Additionally, we start training the initial layers with orders of

magnitude fewer epochs than we would if training end to end. The rationale for this

is that each sub-network fits the data faster than the end to end model and we do not

want to overfit the data, specially at in the lower layers. Overfitting in the lower layers

36 Chapter 4 Cascade Learning Architecture for Deep Convolutional Neural Networks

Algorithm 2 Pseudocode of Cascade Learning adapted from the Cascade Correlation
algorithm [25]. Training is performed in batches, hence every epoch is performed by
doing backpropagation through all the batches of the data.

procedure Cascade Learning(layers, η, epochs, epochsUpdate, out)
2: Inputs layers : model layers parameters (loss function, activation, regulariza-

tion, number of filters, size of filters, stride)
η : Learning rate

4: epochs : starting number of epochs
k : epochs update constant

6: out : output block specifications
Output W : L layers with wl trained weights per layer

8: for layerl = 1 : L do . Cascading through trainable layers
Init layerl and connect output block

10: il ← epochs+ k × layerl
for i = 0; i++; i < il do . Loop through data il times

12: wnew
l ← wold

l − η∇J(wl) . Update weights of layer l by gradient descent
if V alidation error plateaus then

14: η ← η/10 . Change learning rate if update criteria is satisfied
end if

16: end for
Disconnect output block and get new inputs

18: end for
end procedure

would severely hamper the generalisation ability of later layers. In our experiments we

have found that the number of epochs required to fit the data is dependent on the layer

index, if a layer requires i(epochs), the subsequent layer should require i(epochs) +k, where

k is a constant whose value is set dependent on the dataset. This hyperparameter (k)

can be chosen empirically by executing the algorithm in a small subset of the data.

A particular advantage of such cascaded training is that the backward propagated gra-

dient is not diminished by hidden layers as happens in the end to end training. This is

because every trainable layer is immediately adjacent to the output block. In essence,

this should help the network obtain more robust representations at every layer. In

Section 4.2 we demonstrate this by comparing confusion matrices at different layers of

networks trained using Deep Cascade Learning and standard end to end backpropaga-

tion. The other advantage, as we demonstrate in the following subsections, is that the

complexity of learning is reduced over end to end learning, both in terms of training

time and memory.

4.1.2 Cascade Learning as supervised pre-training algorithm

A particular appeal of deep neural networks is pre-training the weights to obtain a

better initialization, and further achieve a better minimum. Starting from the work of

Hinton et. al on Deep Belief Networks [48], unsupervised learning has been considered

Chapter 4 Cascade Learning Architecture for Deep Convolutional Neural Networks 37

in the past as effective pre-training, initializing the weights which are then improved in

a supervised learning setting. While this was a great motivation, recent architectures

[46, 45, 70], however, have ignored this and focused on pure supervised learning with

random initialization.

Deep Cascade Learning can be used to initialize the filters in a CNN and diminish the

impact of the vanishing gradient problem. After the weights have been pre-trained using

Deep Cascade Learning, the network is tuned using traditional end to end training (both

stages are supervised). When applying this procedure it is imperative to re-initialize the

output block after pre-training the network, otherwise the network would rapidly reach

the sub-optimal minimum obtained by the cascade learning. This does not provide

better performance in terms of accuracy. In later sections we discuss how this technique

may lead the network to better generalization.

4.1.3 Time Complexity

In a convolutional neural network the time complexity of the convolutional layers is:

O

(
d∑

l=1

nl−1 s
2
l nl m

2
l i

)
, (4.1)

where i is the number of training iterations, l is the layer index, d is the number of

layers, n is the number of filters, s and m is the size of the input and output (spatial

size) respectively1 [43].

Training a convolutional neural network using the Deep Cascade Learning algorithm

changes the time complexity as follows:

O

(
d∑

l=1

nl−1 s
2
l nl m

2
l il

)
, (4.2)

where il represents the number of training iterations for the l-th layer. The main differ-

ence between the equations is the number of epochs for every layer, in Equation 4.1 i is

constant while in Equation 4.2 depends on the layer index. Note in this analysis, we have

purposefully ignored the cost of performing the forward passes to compute the pseudo-

inputs as this is essentially ‘free’ if the algorithm is implemented in two threads (see

below). The number of iterations in the cascade algorithm depends on the dataset and

the model architecture. The algorithm proportionally increases the number of epochs

on every iteration since the early layers must not be overfit, while later layers should be

1Note that this is the time complexity of a single forward pass; training increases this by a constant
factor of about 3.

38 Chapter 4 Cascade Learning Architecture for Deep Convolutional Neural Networks

trained to more closely fit the data. In practice, as shown in the simulations (Section

4.2), one can choose each il such that i1 << i and iL ≤ i, and obtain almost equivalent

performance to the end to end trained network in a much shorter period of time. If∑d
l=1 il = i, the time complexity of both training algorithms is the same, noting that

improvements coming from caching the pseudo-inputs are not considered.

There are two main ways of implementing the algorithm. The best and most efficient

approach is by saving the pseudo-inputs on disk once they have been computed; in order

to compute the pseudo-inputs for the next layer one only has to forward propagate the

cached pseudo-inputs through a single layer. An alternate, naive, approach would be to

implement the algorithm using two threads (or two GPUs), with one thread using the

already trained layers to generate the pseudo-inputs on demand, and the other thread

training the current layer. The disadvantage of this is that it would require the input

to be forward propagated on each iteration. The first approach can further decrease the

runtime of the algorithm and the memory required to train the model at the expense of

disk space used for storing cached pseudo-inputs.

4.1.4 Space complexity

When considering the space complexity and memory usage of a network, we have to

consider both the number of parameters of the model, and also the amount of data that

needs to be in memory in order to perform training of those parameters. In standard

end to end backpropagation, intermediary results (e.g. response maps from convolutional

layers and vectors from dense layers) need to be stored for an iteration of backpropaga-

tion. With modern hardware and optimisers (based on variants of mini-batch stochastic

gradient descent) we usually consider batches of data being used for the training, so the

amount of intermediary data at each layer is multiplied by the batch size.

Aside from offline storage for caching pseudo-inputs and storing trained weights, the

cascade algorithm only requires that the weights of a single model layer, the output

block weights, and the pseudo-inputs of the current training batch are stored in RAM

(on the CPU or GPU) at any one time. This potentially allows memory to be used much

more effectively and allows models to be trained whose weights exceed the amount of

available memory, however this is drastically affected by the choice of output block

architecture, and also the depth and overall architecture of the network in question.

To explore this further, consider the parameter and data complexity of a VGG-style [114]

network of different depths (this model is explained in detail in Chapter 2. Assume that

we can grow the depth in the same way as going between the VGG-16 and VGG-19

models in the original paper by [114] (note we are considering Model D in the original

paper to be VGG-16 and Model E to be VGG-19), whereby to generate the next deeper

architecture we add an additional convolutional layer to the last three blocks of similarly

Chapter 4 Cascade Learning Architecture for Deep Convolutional Neural Networks 39

model parameters data storage total

VGG-16 13.9M 32K 14.2M
VGG-19 19.1M 338K 19.5M
VGG-22 24.5M 364K 24.8M
VGG-25 29.8M 391K 30.2M
VGG-28 35.1M 418K 35.5M

Table 4.1: Storage required of end to end training of various depths of VGG style
networks. The number of parameters increases with depth. The data storage units of

the training depends on the computational precision.

trainable layer # parameters data storage total

1 33.6M 69K 33.7M
2 8.6M 132K 8.6M

Pooling

3 16.9M 50K 17.0M
4 4.5M 66K 4.6M

Pooling

5 8.8M 25K 8.8M
6 2.8M 25K 2.9M

. . .

Table 4.2: Storage required of cascade training of various layers of a VGG style
network. The number of parameters decreases with depth. The data storage units of

the training depends on the computational precision.

sized convolutions. This process allows us to define models VGG-22, VGG-25, VGG-

28, etc. The number of parameters and training memory complexity of these models

is shown in Table 4.1. Results in this table were computed on the assumption of a

batch size of 1, input size of 32× 32, and the output block (last 3 fully-connected/dense

layers) consisting of 512, 256 and 10 units respectively. The remainder of the model

matches the description in the original paper [114], with blocks of 64, 128, 256, and 512

convolutional filters with a spatial size of 3 × 3 and the relevant max-pooling between

blocks. For simplicity, we assume the convolutional filters are zero-padded so the size of

the input does not diminish.

The key point to note from Table 4.1 is that as the model gets bigger, the amount

of memory required, both for parameters and for data storage, of end to end training

increases linearly. With our proposed cascade learning approach, this is not the case;

the total memory requirements is purely a function of the most complex cascaded sub-

network (network trained in one iteration of the cascade learning). In the case of all the

above VGG-style networks, this happens very early on in the cascading process. More

specifically this happens when cascading the second layer, as can be seen in Table 4.2.

The Table illustrates that after the second layer (or more concretely after the first max-

pooling) the storage requirements of subsequent iterations of cascading reduces. The

assumption in computing the numbers in this table is that the output blocks mirrored

those of the end to end training and had 512, 256 and 10 units respectively.

40 Chapter 4 Cascade Learning Architecture for Deep Convolutional Neural Networks

If we consider Tables 4.1 and 4.2 together, we can see with the architectures in question

that for smaller networks the end to end training will use less memory (although it is

slower), whilst for deeper networks the cascading algorithm will require less peak memory

and providing training time reductions. Given that the bulk of the space complexity for

cascading comes as a result of the potentially massive number of trainable parameters

in connecting the feature maps from the early convolutional layers to the first layer of

output block, an obvious question is could we change the output block specification to

reduce the space complexity for these layers? Experiments described in Section 4.2.1.1

explore the effect of reduced complexity output blocks on overall network classification

performance.

4.2 Experiments

Our first experiment is performed on a less complex backpropagation problem and not

on a CNN as explained in Section 4.1. We decided to execute this experiment to quickly

determine the efficiency of Deep Cascade Learning. In this case we have chosen a

small three hidden layer Multi-Layer Perceptron (MLP) applied to the flattened MNIST

dataset. The results show that this algorithm is feasible and can obtain competitive

generalization in early stages of the network with small improvements. This was a

preliminary experiment, details can be found in the github repository.

To demonstrate the effectiveness of the Deep Cascade Learning algorithm, we apply it to

two widely known architectures: a ‘VGG-style’ network [114], and the ‘All CNN’ [116].

We have chosen these architectures for several reasons. Firstly, they are still extensively

used in the computer vision community, and secondly, they inspired state-of-the-art

architectures, such as ResNets [45] and FractalNets [70]. Explicitly, the VGG net shows

how small filters (3 × 3) can capture patterns at different scales. This is enabled by

downsampling the images multiple times after sets of convolutions. The All CNN gave

the idea of performing the subsampling with an extra convolutional layer rather than a

pooling layer, and performs the classification using global average pooling and a dense

layer to diminish the complexity of the network. The representations learned in each

layer through end to end training are compared to the ones generated by Deep Cascade

Learning. We compare our algorithm with an end to end model. The end to end model

is trained using the standard procedure, and then we use the already learnt filters to

train classifiers at every stage of the network (note that these filters are fixed given that

they were learnt using end to end training). The training parameters of the models

remain as similar as possible to make a fair comparison.

The learning rates in both experiments are diminished when the validation error plateaus.

We evaluate the validation error after each epoch to determine whether the learning rate

should be changed. More specifically, we use a mean-window approach that computes

Chapter 4 Cascade Learning Architecture for Deep Convolutional Neural Networks 41

Figure 4.2: Time and depth comparison between Deep Cascade Learning, end to end,
and pretrained using Deep Cascade Learning (see section 4.2.2.2 for details and results
on pretraining using cascade learning). Multiple VGG networks were executed within
a range of, (left) starting number of epochs (10-100) , (right) depth (3,6,9). Black
pentagons represent runs executing the naive approach for both Cascade Learning and
the pretraining stage. Solid blue dots represent optimal run, which caches the pseudo-

inputs after every iteration.

the average of the last five epochs and the last ten epochs, and if the difference is nega-

tive then the learning rate is decreased by a factor of ten. The size of the window was

tuned for the cascade learning only; if this approach is used in other training procedures

it might be necessary to increase the size of the window.

The increase in the number of epochs in the cascade algorithm varies depending on

the dataset. We performed experiments with an initial number of epochs ranging from

ten to one hundred without any real change in the overall result, hence ten epochs as

starting point is the most convenient. In all the experiments presented here, every layer

iteration initialises a new output block, which in this case consists of two dense layers

with ReLU activation [90]. The number of neurons in the first layer will depend on the

dimensionality of the input vector, it may vary between 64 to 512 units, the second layer

42 Chapter 4 Cascade Learning Architecture for Deep Convolutional Neural Networks

contains half as many units as in the first layer. The final layer uses softmax activation

and 10 or 100 units depending on the dataset, which results into an output block with

three learnable fully connected layers. We did not observe major improvements by

connecting a more complex output block, we illustrate this in Table 4.3.

4.2.1 Datasets

We have performed experiments using the CIFAR-10 and CIFAR-100 [66] image classifi-

cation datasets, which have 10 and 100 target labels respectively. Both datasets contain

60k RGB 32 × 32 images split in three sets: 45k images for training, 5k images for

validation, and 10k images for testing. In our experiments the datasets were normalized

and whitened [67], however we performed no further data augmentation, following the

procedure in AlexNet [67] and the Stochastic Depth paper [52].

4.2.1.1 CIFAR-10

VGG-style networks

We performed empirical evaluations on the weight decay and learning rate for Deep Cas-

cade Learning. We took into consideration the fact that sub-models are single convolu-

tional layer, which tend to easily overfit the data. Hence, tuning these two parameters

was crucial to ensure convergence. In addition, we applied stochastic gradient descent

with a starting learning rate of 0.01, and weight decay of 0.001. These values might

still be suboptimal and further tuning could slightly improve performance. Our VGG

implementation model contains six convolutional layers, starting with 128 3 × 3 filters

and duplicating them after a MaxPooling layer. The initial weights remained the same

in the networks trained by the two approaches to make the convergence comparable.

Space complexity and output block specifications. In order to test the memory

complexity of this network we must take into account the output block specification.

Specifically, we must consider the first fully connected layer, which in most networks

contains the largest number of trainable parameters, particularly when connected to an

early convolutional layer (see Section 4.1.4). On the first iteration of cascade learning,

the output is 128×32×32, hence, the number of neurons (n) in the first fully connected

layer must be small enough to avoid running out of memory but without jeopardising ro-

bustness in terms of predictive accuracy. We have performed an evaluation by cascading

this architecture with output blocks with a range of different parameter complexities.

Table 4.3 shows the number of parameters of every layer as well as the performance for

output blocks with first fully connected layer sizes of n = {64, 128, 256, 512}. In terms of

parameters, cascade learning for early iterations can require more space than the entire

Chapter 4 Cascade Learning Architecture for Deep Convolutional Neural Networks 43

Training First output block unit count
Regime. Iter. 64 128 256 512

param. acc. param. acc. param. acc. param. acc.

CL

1 8.4e6 0.63 1.7e7 0.64 3.4e7 0.66 6.7e7 0.66
2 8.5e6 0.69 1.7e7 0.72 3.4e7 0.72 6.7e7 0.73
3 2.5e6 0.77 4.4e6 0.78 8.6e6 0.79 1.7e7 0.80
4 4.5e6 0.80 8.7e6 0.81 1.7e7 0.81 3.4e7 0.81
5 4.8e6 0.82 9.0e6 0.83 1.7e7 0.83 3.4e7 0.83
6 1.6e6 0.83 2.7e6 0.84 4.8e6 0.84 9.1e6 0.84

End to end 2.8e6 0.86 3.9e6 0.87 6.0e6 0.87 1.0e7 0.87

Table 4.3: Number of parameters comparison using different output block specifica-
tions. Shows the effect of using between 64 and 512 units in the first fully connected
layer (which is most correlated with the complexity). (Left) number of parameters,
(Right) validation accuracy. Bottom row shows the parameters complexity of the end
to end model. The increase in memory complexity on early stages can be naively re-
duced by decreasing the number of units of the fully connected layers. Potentially,
memory reduction techniques on the first fully connected layer are applicable at early

stages of the network. Later layers are less complex.

end to end network unless the overall model is deep. The impact of this disadvantage

can be overcome by choosing a smaller n, and as shown in Table 4.3, the decrease of

accuracy need not be particularly high when compared to the reduction in parameters

and saving of memory.

As shown in Table 4.3, reducing the number of units can efficiently diminish the pa-

rameters of the network. However, we argue that in cases where the input image is

massive, more advanced algorithms to counter the exploding number of parameters are

applicable, such as Tensorizing Neural Networks [92] and Hashed Nets [14]. Based on

the findings of these papers, applying those types of transformations to the first fully

connected layer should not affect the results.

Training time complexity and relationship with depth and starting number

of epochs. Equation 4.2 is dependent on the starting number of epochs il and its

proportionality with depth. In Figure 4.2 we explored the effect of the time complexity

by these two variables. To reproduce the left figure, several networks were cascaded

with il = [10, 30, 50, 70, 100]. The overall required time is not drastically affected by

il. For this particular experiment if il > 50, each iteration is more likely to be stopped

early due to overfitting. The right figure shows the results on a similar experiment with

varying network depth (d = [3, 6, 9]). Cascading shallow networks outperforms end to

end training in terms of time. The epochs update constant (k in Algorithm 2) should

be minimized on deeper networks to avoid an excessive overall number of epochs. Both

figures show the importance of caching the pseudo-inputs, the black pentagons (naive

run) are shifted to the right in relation to solid blue dots (enhanced run).

44 Chapter 4 Cascade Learning Architecture for Deep Convolutional Neural Networks

Figure 4.3: Comparison of confusion matrices in a VGG network trained using the
cascade algorithm and the end to end training on CIFAR-10. First two layers of the
end to end training do not show correlation with the output. While accuracy increases
proportionally with the number of layer using the cascade learning, showing more stable

features at every stage of the network.

Figure 4.3 shows confusion matrices from both algorithms across the classifiers trained

on each layer. In this experiment we found that the features learnt using the cascade

algorithm are less noisy, and more correlated with the output in most stages of the

network. The results of the experiment show that the features learnt using the end to

end training in the first and second layer are not correlated with the output; in this

case the trained output block classifier always makes the same prediction. The third

layer starts building the robustness of the features with an accuracy of 67.2%, and the

peak is reached in the last layer with 85.6%. In contrast, with the cascade learning,

discriminative features are learnt on every layer of the network. At the third layer,

classes such as air plane and ship are strongly correlated with the features generated in

both cases. The end to end training mostly fails to generalize correctly in classes related

to animals.

Figure 4.4: Comparison of confusion matrices in a The All CNN network trained
using the cascade algorithm and the end to end training on CIFAR-10. Features learnt

by cascading the layers are less noisy, and more stable.

On every iteration of the cascade algorithm, the sub-networks have a tendency to overfit

the data. However, this is not entirely a problem since we only keep the convolutional

layer for the overall model, which can be seen as pruning the model and ultimately

Chapter 4 Cascade Learning Architecture for Deep Convolutional Neural Networks 45

Figure 4.5: Visualization of the filters learnt in the first layer in both algorithms,
(top) cascade learning, (bottom) end to end training. Each patch corresponds to one
3 × 3 filter. Filters learnt using the Deep Cascade Learning show different, and more

clear, representations .

reducing overfitting of the overall model. This also avoids generating overfitted pseudo-

inputs for the next iteration, hence disconnecting the dense layers works as a matter of

regularisation.

One of the ways of determining if the vanishing gradient problem has been somehow

diminished is by observing the filters/weights on the first layer (the one most affected

by this issue). If the magnitude of the gradient in the first layer is small, then the

filters do not change much from their initialized values. Figure 4.5 shows the filters

learnt using both algorithms. The cascade algorithm learnt a range of different filters

with different orientation and frequency responses, while using an end to end training the

filters learnt are more redundant. Some filters in the end to end training are overlapping,

this generates a problem since the information that is being captured is redundant.

It is naive to assume the problem is alleviated because the filters on the cascade learning

are further apart from the initial filters. Hence, to complement the visualization of the

filters, we calculated the magnitude of the gradient after every mini-batch forward pass

on both cascade learning and end to end and plotted the results on Figure 4.6. For the

end to end training, the gradient was computed at every convolutional layer for all the

epochs. For the Deep Cascade Learning, the gradients were calculated on every iteration

46 Chapter 4 Cascade Learning Architecture for Deep Convolutional Neural Networks

Figure 4.6: Magnitude of the gradient after every mini-batch forward pass on the
convolutional layers of the end to end training (bottom), and the concatenated gradients
of every Deep Cascade Learning (top) iteration. Vertical lines represent the start of a
new iteration. Curves were smoothed by averaging the gradients (of every batch) on

every epoch.

on the core correspondent convolutional layer. The curves are generated by averaging

the mini-batch gradients in each epoch.

In contrast with Deep Cascade Learning, the magnitudes of the gradients in end to end

training, on early layers, are substantially smaller than those on deeper layers. Overall,

the gradients are higher for the Deep Cascade Learning. In addition, it requires fewer

epochs with high updates on the weights to quickly fit the data on every iteration. With

end to end training the opposite occurs; it requires more epochs (because of the small

updates) to fit the data.

4.2.2 The All CNN

This architecture contains only convolutional layers, the downsampling is performed

by using a convolutional layer with stride of 2 rather than a pooling operation. It

Chapter 4 Cascade Learning Architecture for Deep Convolutional Neural Networks 47

also performs the classification by downsampling the image until the dimensionality

of the output matches the targets. The All CNN paper [116] describes three model

architectures. We have performed our experiments using model C (deepest model in

[116]) which contains seven core convolutional layers, and four 1×1 convolutional layers

to perform the classification with an average pooling and softmax layers as the output

block. In the case where the output block contains an average pooling and a softmax

activation, each layer would learn the filters required to classify the data and not to

generate discriminative features. Hence, to make a fair comparison of the filters we have

changed the output block of the All CNN to three dense layers with softmax activation

at the end. In the All CNN report [116] it is stated that changing the output block may

result in a decrease in performance, however in this study we aim to widely compare

both algorithms at every stage, rather than just final classification result. The number of

parameters used when cascading this architecture varies between 2.7∗106 and 0.33∗106;

on the other hand the end to end training requires us to store 1.3 ∗ 106 parameters.

The All CNN, using an end to end training, learns better representations on early layers

than the VGG style net. The first convolutional layer achieves a performance of approx-

imately 20% by learning three classes at most. This can be observed in the confusion

matrix in Figure 4.4. In contrast with end to end training, the accuracy when cascading

this architecture progressively increases with iterations, learning discriminative repre-

sentations at every stage of the network going from 65% to 83.4%. It is important to

note that, during end to end training, layer five did not learn representative features.

However, this mysterious behaviour did not disturbed the accuracy on deeper layers.

Figure 4.7 compares the performance of both algorithms on each layer. The accuracy

in the cascade learning increases with the number of layers. In addition, the variance

of the performance is very low in comparison with the end to end. This is because it

forces the network to learn similar filters in every run, decreasing the impact of a poor

initialisation.

We have found that for a given iteration more than 50 epochs are not necessary to

achieve a reasonable level of accuracy without overfitting the data. Additionally, we

also tested the time complexity of this model within a range of starting epochs (similar

experiment in previous section). These experiments went from 10 starting epochs to 50

(epochs increase by ten on every iteration with a ceiling on 50). The elapsed time for

the All CNN model C is reduced by ∼ 2.5 regardless of the starting number of epochs.

4.2.2.1 CIFAR-100

Similarly to the previous experiments, we have tested how the cascade algorithm behaves

with a one-hundred class problem using the CIFAR-100 data set [66]. The experimental

48 Chapter 4 Cascade Learning Architecture for Deep Convolutional Neural Networks

Figure 4.7: Performance on every layer on both architectures, (top) VGG, (bottom)
The All CNN. Cascade learning has a lower variance making the initialization less
relevant to the classification at each layer. It also shows a progressive increase in the

performance without the fluctuations presented in the end to end training.

settings remain the same as the previous section, and the main change to the model is

that the output layer now has 100 units to match the number of classes.

In a VGG-style network, the comparison between both algorithms is similar to a ten

class problem. In end to end training, the first two layers do not learn meaningful repre-

sentations, and each layer learns better features using the cascade algorithm. However,

the end to end training performs better by approximately 1% on the final classification.

In The All CNN Network, the features learnt in the end to end model remained more

stable than in CIFAR-10. Similarly to the previous experiment, the first four layers

were outperformed by the cascaded model. However, the end to end model had better

performance over by 3% and 6% on the last layers.

Chapter 4 Cascade Learning Architecture for Deep Convolutional Neural Networks 49

1 2 3 4 5 6 7 Fine-Tune

VGG
CL 0.35 0.39 0.50 0.50 0.53 0.59 - 0.63
E-E 0.01 0.03 0.22 0.14 0.35 0.60 -

The
All CNN

CL 0.31 0.39 0.47 0.46 0.49 0.54 0.52 0.67
E-E 0.03 0.05 0.03 0.41 0.54 0.61 0.62

Table 4.4: Comparison of accuracy per layer using the cascade algorithm and end to
end training on CIFAR-100 in both architectures. Using the cascade learning outper-
forms almost all the layers in a VGG network, and almost achieves the same accuracy
in the final stage. The All CNN with an end to end training outperforms in the final
classification, however the first three layers do not learn strong correlations like when

using the cascade learning.

0 50 100 150 200 250
EPOCHS

0.4

0.5

0.6

0.7

0.8

0.9

AC
CU

RA
CY

Cascade Training
End-to-End
Pretrained

0 50 100 150 200 250 300 350
EPOCHS

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AC
CU

RA
CY

Cascade Training
End-to-End
Pretrained

Figure 4.8: Performance comparison on CIFAR-10 between pre-trained network and
random initialization, (left) VGG, (right) The All CNN. The step bumps in the Cascade
learning are generated due to the start of a new iteration or changes in the learning

rate.

50 Chapter 4 Cascade Learning Architecture for Deep Convolutional Neural Networks

The results on a 100 class problem are arguably the same as in a ten class one. It is

noted that The All CNN Network, when trained end to end, can outperform the cascade

algorithm in the final classification but not in the early layers. In the VGG style network,

Deep Cascade Learning build more robust features in all the layers, except for the last

layer which had a difference of 1%. Table 4.4 shows a summary of the results on every

layer for both algorithms. Early robust representations are useful to perform early and

“quick” inference. In addition, these early layers may contain more information (given

the better performance) that can potentially be used to transfer features. However, it

does not improve accuracy in deeper stages. We can argue that this comes as a result

of early overfiting of Deep Cascade Learning due to domain specificity at early layers. I

4.2.2.2 Pre-training with cascade learning

In the experimental work described so far, the main advantages of cascade learning come

from: (a) reduced computation, albeit at the loss of test accuracy in comparison to end

to end training; and (b) a better representation at intermediate layers (multiple early

classifiers, and potentially transfer learning). We next sought to explore if the repre-

sentations learned by the computationally efficient cascading approach could form good

initialisation of end to end trained networks and achieve performance improvements.

The weights are initialised randomly. Then the procedure is divided into two stages:

firstly, we apply DCL to the from the bottom to the top of the network. We then

sequentially connect all the layers to obtain a full model. In the subsequent stage, the

network is fine-tuned using a backpropagation and stochastic gradient descent, similarly

to the end to end training. We applied this technique to both VGG style network and

The All CNN. For more details on the architectures refer to Section 4.2.1.1.

Figure 4.8 shows the difference in performance given random and cascade learning ini-

tialisation. The learning curves in the figure are for the VGG and The All CNN archi-

tectures trained on CIFAR-10. The improvements in testing accuracy varies between ∼2

to ∼ 3% for the experiments developed in this section. However, the most interesting

property comes as a consequence of the variation of the resulting weights after executing

the Deep Cascade Learning. As shown in the previous section, this variation is signifi-

cantly smaller in contrast with its end to end counterpart. Hence, the results obtained

after pre-initializing the network are more stable and less affected by poor initialization.

Results on Figure 4.2 show that even including the time of the tuning training stage,

the time complexity can be reduced if the correct parameters for the cascade learning

are chosen. It is important to mention that end to end training typically requires up to

250 epochs, while the tuning stage may only require a small fraction since the training

is stopped when the training accuracy reaches ∼ 0.999.

Chapter 4 Cascade Learning Architecture for Deep Convolutional Neural Networks 51

The filters generated by Deep Cascade Learning are arguably overfitted (first layer typi-

cally achieves ∼ 60% on unseen data and ∼ 95% on training data) as opposed to the end

to end training, on which the filters are more likely to be close to their initialisation. By

pre-training with cascade learning, the network learns filters that are in between both

scenarios (under and overfitness), this behaviour can be spotted on Figure 4.9.

Figure 4.9: Filters on first layer for at different stages of the procedure on the VGG
network defined in the previous section. (top-left) initial random weights, (top-right)
end to end, (bottom-left) cascaded, (bottom-right) end to end trained network initial-

ized by cascade learning. The images were normalised and resized accordingly.

Figure 4.10 shows the test accuracy during training of a cascaded pre-trained VGG

model on CIFAR-100.

Figure 4.10: Performance comparison between pretrained network and random ini-
tialization on CIFAR-100 using a VGG network.

52 Chapter 4 Cascade Learning Architecture for Deep Convolutional Neural Networks

4.3 Summary

In this Chapter we have proposed a new supervised learning algorithm to train deep

neural networks. We validate our technique by studying an image classification problem

on two widely used network architectures. The vanishing gradient problem is diminished

by our Deep Cascade Learning. This is as a result of decreasing intermediate layers of

every submodel, which ultimately allocates output blocks adjacent to the layer to train.

it is focused on learning more robust features and filters in early layers of the network. In

addition, the time complexity is reduced because it no longer needs to forward propagate

the data through the already trained layers on every epoch. In our experiments the

memory complexity is decreased by more than three times for the VGG style network

and four times for The All CNN. Standard end to end training has a high variance in

the performance, meaning that the initialization plays an important role in ensuring a

good minimum is reached by each layer. Deep Cascade Learning generates a more stable

output on every stage by learning similar representations at every run. In addition, the

Deep Cascade Learning algorithm has been demonstrated to scale to 10 and 100 class

problems, and shows improvements in the features that are learnt across the stages of

the network. Using this algorithm allows us to train deeper networks without the need

to store the entire network in memory.

As a summary of the findings of Deep Cascade Learning, we can conclude:

• Memory and training time reductions. Saving the pseudo-inputs of already trained

early layers can decrease memory and time during training. This avoid the need

of forward propagating across already trained layers.

• Early classifiers contain important information about the data and can be used to

make early predictions. Potentially, an ensemble model can be created by stacking

predictions at of all this multi-scaled classifiers.

• Given that early layers can also be used to perform a classification, early layers

could be included in the transfer learning field. This can potentially lead to more

transferable networks, where early layers might hold more information about the

target domain. This would not be the case for the end to end training.

• It has to be mentioned that this algorithm has been tested on very closely related

datasets. This gives us an intuition of its applicability, but it does not mean that

it is scalable to every machine learning field. We encourage the community to

make use of Deep Cascade Learning (or supervised greedy layer wise algorithms)

on multiple machine learning tasks. This could lead to increased scalability of

Deep Cascade Learning applications.

Chapter 4 Cascade Learning Architecture for Deep Convolutional Neural Networks 53

It should be noted that our algorithm is not aimed at obtaining better performance

than standard approaches, but with significant reduction in the memory and time re-

quirements. We have shown that if improvements in generalization are expected, this

algorithm can be used as a pre-training algorithm technique.

There are many questions that are still yet to be answered. How deep can this algorithm

go without losing robustness? We believe that if the performance cannot be improved by

appending a new convolutional layer, l, it should at least be as good as in the previous

layer, l − 1, by learning filters that directly map the input to the output (filters with

1 in the centre, and zero in the borders). This might not happen because the layer

might quickly find a local minimum. This could be avoided with a different type of

initialization; most probably one specialised for this algorithm. In Deep ResNets [45],

the accuracy diminished when they went beyond 1200 layers, and hence the vanishing

gradient problem was not entirely circumvented. We believe this algorithm might be able

to go deeper without losing performance by partially overcoming the vanishing gradient

problem, learning “mapping” filters to maintain the features sparseness, and learn a

bigger set of high level features. In addition, Deep Cascade Learning has the potential

to find the number of layers required to fit a certain problem (adaptive architecture),

similarly to the Cascade Correlation [28], Infinite Restricted Boltzmann Machine [21],

and AdaNet [20].

Chapter 5

Cascade Transfer Learning

In Chapter 2 we discussed transfer learning as an approach to applying deep learning

when data availability is limited. In addition, Chapter 3 explores layer-wise training

methods for non transfer learning problems. In this chapter we discuss a novel approach

to transfer features from one dataset to another. This transfer learning technique shares

several similarities with the Deep Cascade Learning (see Chapter 4). Typically, transfer

learning is applied by using the feature extractor at the last stage of the pre-trained

network. This is assuming that the latest feature in the network holds the most in-

formation. We propose a framework to gradually learn transferable features across the

network. In addition, this approach also provides an insight to where in the network

features are most transferable to the target dataset. This can lead to a more efficient

and less complex network in comparison with traditional deep transfer learning.

The code used to generate the results of this Chapter can be found in http://github.

com/EnriqueSMarquez/CascadeTransferLearning

5.1 Background

Transfer learning has been explored to share features extractors across similar, yet dif-

ferent domains [22, 85]. The methodology commonly uses two datasets, a base dataset,

typically a balanced dataset (in order to obtain less biased machine learning algorithms)

with a large amount of data; and a target dataset, which may contain less data and

different labels. It is motivated by the robustness of the feature extractor, and the idea

that filters are reusable on objects with shared properties. Kim et al. [62] proposes a

framework to transfer features when the base and target datasets are not in a similar

space. Their framework uses a bridge dataset to adapt the feature extractor to a closer

space to the target dataset. This avoids losing generalization due to domain specificity.

55

http://github.com/EnriqueSMarquez/CascadeTransferLearning
http://github.com/EnriqueSMarquez/CascadeTransferLearning

56 Chapter 5 Cascade Transfer Learning

This is applicable when the base dataset is very different from the target dataset. Appli-

cations of transfer learning include, medical imaging [62], soft-biometric [83], semantic

segmentation [103], and were further discussed on Chapter 2.

Yosinski et al. [132] measures feature transferability between subsets of ImageNet [109].

As opposed to the typical approach where features are transferred at the last stage of the

network, they chopped the network at every stage and trained a dense layer to quantify

the robustness of the features as the network gets deeper. Therefore, measuring the

transferability of the features at every stage of the network. They concluded that fine-

tuning recovers co-adapted interactions between layers. Fine-tuning is a crucial step to

better transfer features regardless of the layer of the network on which it was chopped.

Kornblith et al. [65] tested 13 state-of-the-art models on 12 datasets. In their experimen-

tal setup they re-trained the last layer (classifier), and fine-tuned the feature extractor.

They concluded that better feature extractors for ImageNet yield better results on tar-

get datasets. This result is intuitive since the 12 datasets used have similarities to

ImageNet’s labels, hence, the generalization on the target dataset is proportional to

ImageNet.

5.2 Cascading pre-trained networks

In this section we propose a new algorithm that we call Cascade Transfer Learning

(CTL). We explain the algorithm, its complexity, and properties.

The CTL algorithm starts from the pre-trained network just like traditional transfer

learning. It then sequentially trains hidden layers of the network. Every iteration

requires an initialised classifier, hence, CTL outputs as many classifiers as layers trained

(iterations). This helps early layers to adapt to the target domain instead of fully

preserving the representations learnt through the base dataset. In addition, CTL aims

to determine at which stage the network comprises the most information about the

target domain. In our CTL executions, we start the algorithm at mid-stages of the

network to avoid losing key coarse representations of the base dataset. In addition,

the algorithm reuses early layers features (already trained features) by appending skip

connections from these stages to the layer to train. The rational behind these decisions

are explained in later sections when we explore the hyperparameters of this algorithm.

In Figure 5.1 we show the steps required to perform CTL. The diagram makes use of

a five layer ResNet (as illustration) and shows the flow of CTL. The algorithm starts

at the third residual block, and propagating one extra residual connection. On the first

stage, the model is trained end to end on the base dataset, in order to obtain the feature

extractor to transfer. Afterwards, CTL starts by training a module of the pre-trained

model, the algorithm can potentially start at any stage of the network. We evaluate the

Chapter 5 Cascade Transfer Learning 57

influence of the starting layer in later sections. On each iteration, the algorithm trains a

pre-trained residual block and discards/stores classifiers from previous iterations. These

extra residuals allow the network to progressively adapt each layer to the target domain

while preserving the synergy between the layers. This can be achieved by avoiding

overfitting early layers. A discussion on how to tackle overfitting of cascaded models

can be found in Chapter 4.

The algorithm has several similarities with Deep Cascade Learning. Firstly, it adapts

the pre-trained network layer by layer and freezes already trained layers. The cost of

propagating the inputs through already trained layers is equivalent to one forward pass

through the cascaded layers. If certain accuracy needs to be achieved while minimizing

resources, the algorithm can be stopped at any given stage of the network. CTL also uses

the same framework as Deep Cascade Learning, with the difference that the network

is initialised using pre-trained weights instead of random initialisation. Additionally,

techniques that are applicable within the CTL algorithm are also applicable to Deep

Cascade Learning. For example, the dimensionality reduction block to decrease the

number of parameters on each iteration could be applied in Deep Cascade Learning.

Ĥi = ReLU(wt
iHi + bi) (5.1)

y = Softmax
(
wt

cl

∑
i

Ĥi + bcl

)
(5.2)

We explored multiple approaches to combining the residual connections. Our first ap-

proach would concatenate the feature vectors from the residual connections and trains

the classifier on this complex feature, however, this leads to a linear increase in the num-

ber of parameters of the classifier. Figure 5.2 shows the chosen connectivity diagram

for one iteration of CTL, where Hn represents the features at stage n. To overcome the

dimensionality issue, we pool the features and connect a linear layer with an activation

function to reduce the dimensionality and match Hn. We then add these features to

obtain a single feature vector per input, which is later classified using an MLP with

softmax activation. If the network already contains residual connections, we start prop-

agating from Hn−2 to avoid redundancy in the features. Equations 5.1 and 5.2 illustrate

the logic to generate Hi, this dimensionality reduction/matching layer can be multi-

ple dense layers, or a single dense layer. Each branch contains its own classifier with

parameters wi (linear weights), bi (bias) and its evaluated using a ReLU activation.

The prediction y outputs a probability vector, and wcl, bcl the parameters of the clas-

sifier. In our experiments we have found that the dimensionality of Hi can be further

reduced by connecting a 1 × 1 convolutional layer before pooling. This does not affect

the performance of CTL.

58 Chapter 5 Cascade Transfer Learning

(a)

(b)

(c)

(d)

Figure 5.1: Diagram illustrating the steps of CTL. For simplicity, the diagram uses a
ResNet with five residual blocks, the algorithm starts at layer two, and on each iterations
in connects an extra residual. On the first stage of CTL (a), the chosen architecture is
trained end to end on the base dataset, thus, resulting in a model with learnt weights
on the base dataset. Then it iteratively cascades modules of the pre-trained model
while freezing previously cascaded layers (b), (c), and (d). Dashed boxes represent
frozen modules. On each iteration the classifier can be stored for later predictions or

discarded.

5.2.1 Algorithm Complexity

On each iteration the model trains a single classifier and residual block. The largest

fraction of the parameters reside in the classifier and fully connected layers. Their

complexity depends on the dimensionality of the features.

Following [82], the algorithm can be implemented in two ways depending on the hard-

ware, implementation, and framework flexibility. Naively, one can have the whole net-

work loaded on the device (typically GPU) and fix the required layers. Thus, there is

an additional cost of having the need to propagate through the network, however, the

gradients do not have to be stored. This implementation is more flexible and allows

Chapter 5 Cascade Transfer Learning 59

Figure 5.2: Model for iteration n of CTL including two residual connections. Hn

represents the hidden state at stage n. Previous hidden states are connected to learnable
MLPs to match the dimensionality Hn. The resulting vectors are then added together
to hold a single feature vector. The last stage takes this vector and classifies it using
a linear layer with softmax activation. The features can be spatially pooled before
each MLP to further reduce the complexity of the algorithm. The layers or blocks are

already pre-trained on the base dataset.

us to test different executions. The optimal algorithm caches the feature vectors at the

required stages and only loads the model and classifier that are trained on that iteration,

hence, the cost is reduced to only that of propagating through a residual block and its

classifier.

Depending on the implementation, the memory complexity of CTL can be minimized

to a fraction of its fine-tuned counterpart. Additionally, every classifier is trained to

generalize on the target domain. This generalization is increased as the network adapts

more layers. We can use early classifiers to do inference on ‘easy” (or far apart from the

boundaries) inputs and discard the need of propagating until the last layer. This can be

applied to minimize the hardware cost if false positives are not crucial.

The time complexity depends on the number of epochs required to fit the dataset for

both fine-tune network and CTL. Thus, we explore this empirically on later sections.

5.3 Algorithm Hyperparameters

Besides the training and network variables (e.g. learning rate, number of filters, mo-

mentum, weight decay), CTL contains two hyperparameters:

• The starting stage. The algorithm may start at any stage of the network, from layer

0 to layer n. However, as mentioned in the previous section, in our experiments

we concluded that cascading early layers can disturb the hierarchical structure

between layers. This ultimately affects the convergence of the network by forget-

ting important early representations. Yosinski et al. [132] further discusses this

behaviour and concludes that this issue can be alleviated by fine-tuning the model.

60 Chapter 5 Cascade Transfer Learning

However, our algorithm aims to avoid the need of fine-tuning the model. Taking

this into account, we start the algorithm half-way through the network.

• Residuals from previous layers. Potentially one could connect a residual connection

from every previous layer. This can increase the number of parameters drastically

as well as adding redundancy to the resulting feature vector.

We present a study on the influence of these hyperparameter in later sections.

5.4 Using early classifiers for resource efficiency

Resource efficient recognition has been widely addressed by the computer vision com-

munity. Jones and Viola [59] proposed an algorithm to efficiently discard false positives

using weak early classifiers. The idea was further explored using deep networks in the

Multi-Scale resource efficient network [50]. This network can classify ‘easy’ images at

early stages, and more complex images on later layers. The classifier to use directly

depends on a fixed uncertainty threshold, which is fixed by the programmer depending

on the performance of each classifiers.

Similarly, Cascade Transfer Learning learns a classifier per stage. We can stop the

inference if a prediction holds a greater probability than the fixed threshold. This

leads to a resource efficient network where inputs may not propagate through the entire

network, but exit at early stages.

5.5 Experimental Setup

In this section we discuss the datasets, models, and methodology applied on this chapter.

It is worth mentioning that the chosen datasets do not have enough images to train deep

networks from scratch, as doing so quickly overfits the data.

5.5.1 Datasets

Kornblith et al. [65] presents results of applying transfer learning on several datasets. For

simplicity, we only chose three of these datasets. The datasets were randomly selected

from [65] taking under consideration that one of the datasets had to be far apart from

the base dataset. The chosen datasets are described as follows:

• Caltech-102 [29]. Includes a total of 9144 images with 102 categories, such as

faces, animals, food, and vehicles. The dataset contains 40 to 800 images per

Chapter 5 Cascade Transfer Learning 61

class. There are no training or test set defined, hence in order to obtain similar

datasets as the literature, we show results on this dataset by performing 3-fold

cross-validation five times (defined as Repeated Stratified Crossvalidation). Split-

ting the data using this methodology yields training and test sets with 3060 and

6084 images respectively. Each fold of the evaluation method is balanced to de-

crease the variance of training. Considering the imbalance in classes, we test using

mean-per-class accuracy as otherwise the results are misleading.

• Flowers-102 [91]. Contains 102 classes of commonly encountered flowers in the

United Kingdom. Each label holds from 40 to 258 images. Nilsback and Zisser-

man [91] includes one split for test, training, and validation set. Similarly to the

Caltech-101 dataset, we tested using a mean-per-class accuracy metric to take into

account the imbalance of the dataset.

• Describable Texture Dataset (DTD) [16]. Consists of 5640 images with 47

labels inspired by human perception. The dataset is perfectly balanced with 120

images per class. Cimpoi et al. [16] include ten splits for training and test set. In

our experiments on this dataset, we train and test using all ten splits and average

the performance to obtain a more general metric. This dataset is less similar to

ImageNet which makes the transferred features less robust for the target dataset.

5.5.2 Models

Kornblith et al. [65] tested several pre-trained models and measured their feature trans-

ferability. We chose to test our algorithm on ResNets, given that their conclusions are

that ResNets are the best feature extractors to apply transfer learning on [65]. They

compare ResNets with several other architectures that are capable of obtaining a better

ImageNet top-1 accuracy. However, features learnt with ResNets include better trans-

ferability given that they outperform the remainder of the models on most of the studied

datasets [65]. Their conclusion was merely empirical and, even though was tested on

several datasets, can still be a biased conclusion. We can make use of their conclusion

given that we are using the same datasets.

We directly compare traditional transfer learning with CTL. Each iteration of CTL

trains one residual block. More specifically, we selected the pre-trained networks as

ResNet-34, ResNet-50, and ResNet-102 trained on ImageNet. This decision was made

out of simplicity, since these three networks can be fine-tuned in a single graphics card

(NVIDIA GTX 1080 used for experiments), whilst any deeper network requires at least

two devices to fine-tune.

ResNet-34 uses a basic residual block structure with two convolutional layer with a

kernel size of 3. In contrast, ResNets-50/101 require a bottleneck structure to reduce the

dimensionality of the block. The bottleneck residual block includes three convolutional

62 Chapter 5 Cascade Transfer Learning

layers, the first one with 1 × 1 convolutions and a decrease of the number of filter by

4. The second layer is a traditional 3 × 3 convolution similar to the ones used in the

basic block. Finally, the third layer expands back the number of filters by 4 with a

1 × 1 convolution. This technique is applied to reduce the complexity of the network

and enables the possibility of going deeper without drastically affect the number of

parameters.

The data to train on the base dataset is normalized, and the parameters (mean and

standard deviation) are stored. When transfer learning is applied, the data of the target

dataset is normalized accordingly to the normalization parameters used to pre-train the

network. If this normalization is not applied, the feature space of the target dataset

will be shifted from the ImageNet feature space, which will induce bias on the features.

Moreover, this normalization can be seen as reducing the covariance shift of the input

data from the target dataset to the base dataset.

5.6 Measuring transferability

In this section we compare our Cascade Transfer Learning algorithm with two commonly

used approaches for transfer learning: fine-tuning, by training the last classifier for

several epochs followed by unfreezing the encoder to tune the filters to the target domain.

By fine-tuning, ResNets have shown state-of-the-art results on transferring features. For

each dataset we tune the hyper parameters using the train and validation set. We then

execute runs with tuned hyperparameters on both training and validation set. The

testing is performed after the network has been trained, therefore we do not include

any early stopping. We believe that by sequentially decreasing the learning rate, the

network converges to a minimum and the accuracy on unseen data does not decrease.

Therefore, exiting this local minimum is not feasible for the model due the learning rate

at this point being is too small.

Both fine-tuning and CTL algorithms are trained using Stochastic Gradient Descent

(SGD) with momentum. Following the literature [65, 132], we constrain the cross-

entropy loss function with weight decay of 10e-4. For the fine-tuning case we trained the

classifier for 50 epochs, dropping the learning rate by a factor of ten at 30 and 45 epochs,

and trained the entire network for an additional 30 epochs with a similar learning rate

schedule at 15 and 25 epochs. Subsequently, we train each sub-network of the CTL for

30 epochs each, and decrease them by the same factor at 15 and 24 epochs. We did not

observe improvements when applying data augmentation to any of the datasets, hence,

all our results are shown without further augmenting the data. The batch size for all

the experiments is 32. These training hyperparameters were either empirically tuned or

taken from the literature of the pre-trained networks, more importantly, they remain

the same on both experiments to make a fair comparison.

Chapter 5 Cascade Transfer Learning 63

0 50 100 150 200 250
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

calltech
flowers
texture

0 10 20 30 40 50
Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

calltech
flowers
texture

Figure 5.3: Accuracy comparison for ResNets-34/50/101 tested on the datasets of
study. Top curves represent CTL, bottom curves traditional fine-tuning transfer learn-

ing.

In our experiments we found that using two residuals from previous layers (layers Hn−3

and Hn−2) are enough to boost the performance of CTL. In addition, the learning rate is

divided by ten for the residual block in comparison to the classifier. This is because we

want the algorithm to quickly learn the classification while gradually learning a better

representation for the target dataset on early stages of the network. We have found that

if any given iteration of CTL is executed with high learning rate, the robustness of the

transferred features may be distorted, which leads to a drastic decrease in performance.

Table 5.6 compares our transfer learning algorithm with traditional fine-tuning. These

results are generated by applying cross-validation across the dataset. For the Caltech

dataset, we applied a balanced cross-validation to avoid generating splits with imbal-

anced classes. We applied 3-fold cross-validation five times in order to preserve the

number of samples ratio (training 25% and testing 75%) and generate a similar dataset

size that matches the literature. This yields a training set of 2040 images and a test

set of 6149 images. The Flowers-102 dataset provides specific validation and test splits.

Hence, we tuned the network using the both training and validation set, to then retrain

on both datasets and evaluate on the given test set. This procedure was performed

several times and the results were averaged. For the remaining texture dataset, we

64 Chapter 5 Cascade Transfer Learning

Caltech Flowers Texture

CL F-T CL F-T CL F-T

ResNet-34 0.90 0.89/0.92 0.89 0.88/0.93 0.67 0.63/0.7
ResNet-50 0.91 0.89/0.92 0.91 0.90/0.93 0.71 0.67/0.72
ResNet-101 0.92 0.90/0.93 0.91 0.90/0.93 0.71 0.66/0.72

Table 5.1: Performance comparison on test data of Cascade Transfer Learning and
fine-tuning Transfer Learning. Fine-tuning involves two stages, left column shows per-
formance of training the last classifier with the rest of the network frozen, right columns
shows after the network weights are tuned. The results are generated by applying cross-

validation

cross-validated using all ten given splits of the dataset. We then again, averaged the

results to obtain a more general performance.

It can be seen that CTL achieves competitive (within the standard deviation of the

models) results in comparison to fine-tuning the transferred network in an end to end

fashion. More importantly, our algorithm benefits from deeper networks without ad-

ditional memory requirements, this is further investigated in section 5.8. In addition,

results on the Texture dataset suggests that CTL is more successful on those target

datasets that are more different from the base dataset. The average performance vari-

ance is very small for both algorithms, we believe this is because there is not much

randomness in the algorithm since the initial weights are always the same.

Figure 5.3 shows the performance of ResNet-50 trained using CTL and fine-tuning at ev-

ery epoch. We can observe that early classifiers can converge to a competitive accuracy.

The use of residual connections allows learning better representations at every stage.

These plots suggest that a deeper feature does not necessarily mean a more transferable

feature. Hence, residual connections allow to propagate the transferability of the fea-

tures with each cascade iteration. Several experiments were performed without residual

connections, however, they were not as successful due to losing coarse representations.

In Figure 5.4 we can spot the decrease in performance when not appending residual

connections between cascaded layers. Considering Figure 5.3, we can also observe that

for all the datasets maximum performance might not be achieved at the last stage of

the network. Thus, CTL can find at which stage the features are best transferred. For

the specific datasets of study, the CTL trained models generalized better at stage 9,

8, 7 for Caltech-102, Flowers-102 and DTD respectively. The incremental performance

across layers is not observed when alone tuning a classifier at every stage of the net-

work. Yosinski et al. [132] discusses this behaviour, and they concluded that it is due to

representation specificity and fragile co-adaptation of features.

Chapter 5 Cascade Transfer Learning 65

5.7 Effect of the number of residuals & starting stage

In this section we evaluate how the hyperparameters of the algorithm affects its conver-

gence. The training parameters remained the same as in section 5.6. We did not perform

cross-validation due to the high time complexity of the experiment, which would require

15 crossvalidation runs over a parameters space of 6 on 3 datasets (15×6×3 = 270runs).

The following results are on validation data alone.

5.7.1 Number of residuals

For this experiment we fixed the starting stage at half of the network depth. We then

proceeded to execute CTL on ResNet-50 with different number of residuals and quanti-

fied performance at every iteration of CTL. It is worth mentioning that incorporating a

new residual requires a new MLP, which can increase the number of parameters.

The number of residuals is crucial to preserve the feature robustness across every layer.

Therefore, adding residuals avoids forgetting information from the base dataset. Figure

5.4 shows performance of training several ResNet-50’s with numbers of residuals from

0 to 6 on the datasets of study. The plots illustrate that worse performance is always

achieved when not including any additional residuals in the output block. In addi-

tion, appending many residuals yields a decrease in the performance for those datasets

more similar to ImageNet (Caltech-101 and Flowers-101), while different datasets (Tex-

ture) can benefit from the early coarse representations propagated through the residuals.

Given this analysis we can conclude that two residuals are sufficient to achieve good gen-

eralization without exponentially increasing the number of parameters.

As with the plots showed in previous sections, Figure 5.4 illustrates that greater gener-

alization may be achieved in mid-stages of the network and not from the bottom (last

stage) of the network. The red dots represent the performance at the last residual block

(n = 16), and they are sometimes outperformed by orange dots, which represent the

same metric at residual block 15 (n− 1).

5.7.2 Starting stage

The CTL algorithm can potentially be started at any stage of the network. We believe

that preserving early coarse representations is crucial to maximize the robustness of the

feature vectors. In this experiment we fixed the number of residuals to 2 and used the

same training methodology as in section 5.6. We then proceed to execute multiple runs

with different starting stages, from stage 3 to the last stage (16).

Without residuals, starting the algorithm at early stages generates a decrease in per-

formance. However, we can help the network avoid losing key coarse representations

66 Chapter 5 Cascade Transfer Learning

0 1 2 3 4 5 6
Number of residuals

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Calltech

0 1 2 3 4 5 6
Number of residuals

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Ac
cu

ra
cy

Flowers

0 1 2 3 4 5 6
Number of residuals

0.64

0.66

0.68

0.70

0.72

Ac
cu

ra
cy

Texture

Figure 5.4: Performance of CTL at multiple starting stages for three datasets. Each
box represents the performance of the network given the number of residuals, the colour
dots is peak performance at a particular iteration. Black dots represent iteration zero,

red dots last iteration, the rest are mid stages classifiers.

by appending the residual connections. In Figure 5.5 we can see that the performance

slightly decreases when starting the algorithm a very late stages regardless of the start-

ing stage. However, since the training cost remains stable across every iteration of the

algorithm, starting it early generates more classifiers that can be used to make early

predictions without additional memory cost. It can also be spotted that the network

progressively builds better generalization, and the best performance is not necessarily

achieved at the last stage of the network. This is highly applicable for target datasets

that are very different from the base dataset.

Depending on the number of desired classifiers the algorithm can be started at any stage.

Chapter 5 Cascade Transfer Learning 67

3 4 5 6 7 8 9 10 11 12 13 14 15 16
Starting stage

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Calltech

3
4
5
6
7
8
9
10
11
12
13
14
15
16

3 4 5 6 7 8 9 10 11 12 13 14 15 16
Starting stage

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Flowers

3
4
5
6
7
8
9
10
11
12
13
14
15
16

3 4 5 6 7 8 9 10 11 12 13 14 15 16
Starting stage

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Texture

3
4
5
6
7
8
9
10
11
12
13
14
15
16

Figure 5.5: Performance comparison for multiple CTL runs with different starting
stages for three datasets. The parameter was changed from third stage to last stage.

Dots represent performance at every classifier of the algorithm.

We have to consider the minimum accuracy required for the transfer learning problem

as well as the availability of the hardware.

5.8 Performance versus memory

In this section we evaluate the performance yielded by CTL and fine-tuning in contrast

to the required memory for training. We assume a batch size of one for this analysis.

68 Chapter 5 Cascade Transfer Learning

The training memory required for deep networks includes the number of parameters,

forward and backward intermediate variables (values and gradients), and the input stor-

age. We did not consider the input storage since it is the same for all the networks,

hence, it is a constant that does not affect the comparison. Although, we do consider

the dimensionality of the input since it affects the memory required to train the model.

Models include a first convolutional layer with no residual connections that also has to

be considered in the complexity calculations. For simplicity, we do not include the biases

in our calculations.

The memory requirements of a residual network depends on the type of residual block.

As mentioned in section 5.5.2, we use two types of residual blocks. The chosen residual

block is associated with the architecture.

In Figure 5.6 we show both residual blocks, in any case a convolutional layer is followed

by batch normalization. We assume Hi−1 has dimensions of (Ci−1,W,H) (number of

input features, and spatial dimensions). A short description of these blocks as follows:

Basic Block. It uses two convolutions with kernel size of 3, the number of feature maps

(Ci) is preserved across the residual block. Hi and Hi−1 must have the same dimension-

ality to enable the element-wise addition, if this is not the case, Hi−1 is downsampled

using an extra convolutional layer. The shape of the weights of each convolutional

layer is then (Ci, 3, 3, Ci). Batch normalization includes two learnable weights (mean

and standard deviation) with the same size as the number of channel (Ci). The vari-

ables and gradients to save are dependent on the spatial size. In this case the spatial

dimensions is preserved, hence, both convolutional layers have the same size for the

forward and backwards variables. The shape of the output of both convolutions is then

(Ci,W,H), also, the batch normalization includes variables and gradient of the same

size as Ci. Equation 5.3 shows the memory complexity of the basic residual block, were

Pi represents the number of parameters, and Mi the memory requirements for forward

and backward pass.

Pi = 2(9C2
i + Ci) Mi = 4(CiWH + Ci) (5.3)

Bottleneck block. This architecture uses three convolutional layers, the 1 × 1 con-

volutions are used to increase or decrease the number of feature maps. It has similar

properties as the Basic Block, such as Hi−1 must be equal to Hi and there is a batch

normalization operation after every convolution. Hi−1 contains αCi feature maps, were

α is the expansion factor of the residual block. The weights shape of the 1 × 1 con-

volutions are (Ci, 1, 1, Ci/α) and (αCi, 1, 1, Ci). Similarly, the main convolution holds

weights of shape (Ci, 3, 3, Ci). The batch normalization parameters are 2Ci for the first

two convolutions, and 2αCi for the last convolutional layer. The propagation shape of

Chapter 5 Cascade Transfer Learning 69

Figure 5.6: Residual blocks used in ResNet-34 (left) and ResNet-50/101 (right). Hi−1

represents the feature maps from the previous residual block, Ci the number of channels
of the residual block, Hi output feature maps. Image adapter from the original Residual

Networks study [45]

the features across the block is then, (Ci,W,H), (Ci,W,H), and (αCi,W,H). Equation

5.4 illustrates the parameters and variables complexity of this type of residual block.

Pi = 2αC2
i + 9C2

i + 4Ci + 2αCi Mi = 4(CiWH) + 2αCiWH + 8Ci + 4αCi (5.4)

In order to calculate the whole complexity of the feature extractor, we have to add the

complexity of all the residual block P =
∑n

i Pi and M =
∑n

i Mi. We then have to

quantify the memory requirements of the fully connected layers. For the fine-tuning

case there is a single fully connected layer. CTL includes additional linear layers but

the feature extractor complexity is reduced to P = Pi and M = Mi were i is the

stage or iteration of CTL. A given linear layer has wlHl−1 parameters and wl storage

requirements during training, were wl is the number of units, and Hl−1 the input vector

size.

We quantify the memory requirements of applying transfer learning using CTL and

traditional approach. Figure 5.7 compares both approaches in terms of memory and

performance. As observed in the figure, blue symbols are shifted to the left with respect

with the red ones. Thus, meaning that CTL models only use a fraction of the mem-

ory regardless of the depth of the chosen architecture. On the other hand, traditional

transfer learning requires more memory as the network gets deeper whilst yielding small

improvements over CTL.

70 Chapter 5 Cascade Transfer Learning

800 1000 1200 1400 1600 1800 2000
Training Memory (MB)

0.70

0.75

0.80

0.85

0.90

0.95
Ac

cu
ra

cy

FT ResNet-34
FT ResNet-50
FT ResNet-101
CTL ResNet-34
CTL ResNet-50
CTL ResNet-101

Figure 5.7: Memory and performance comparison between Cascade Transfer Learning
and fine-tuning transfer learning. Scatter x’s represent Caltech dataset, • Flowers
dataset, 4 texture dataset. CTL yields competitive performance while drastically
reducing the memory. We show the maximum memory required during the algorithm,
some stages may use less memory. Red symbols are results of fine-tuning, blue symbols

CTL.

Potentially, this algorithm can be adapted to make use of three datasets (base, bridge,

and target) [62]. Given the memory advantages, one could parallelise the three stages

approach and tune each layer from the (1) base dataset to the (2) bridge dataset to the

(3) target dataset. This approach could allow training on the target dataset essentially

cost free.

5.9 Summary

In this chapter we present a novel transfer learning algorithm using layer wise training.

The algorithm aims to adapt early layers to the target domain by using a layer-wise

training, which can be executed from mid-stages of the network. By applying this,

the pre-trained network smoothly decreases the specificity of the network on the base

dataset. This method can achieve competitive performance while using just a fraction

of memory. In addition, it can determine the best stage to transfer features to the target

dataset. We show empirically that if the target dataset is distant from the base dataset,

coarse (early) representations may be more useful as starting point to transfer features.

The algorithm has implementation and execution similarities with Deep Cascade Learn-

ing. As discussed in Chapter 4, this layer-wise methodology may be affected by overfit-

ting due to training simpler models iteratively. However, in the case of CTL, overfitting

would mean forgetting the feature extractor from the base dataset as opposed to Deep

Cascade Learning, where overfitting would lead to greater bias in the model. We believe

Chapter 5 Cascade Transfer Learning 71

preserving the co-adaptation of the layers is more important than fitting the target data

at early stages. Hence, underfitted early layers (to the target domain) are acceptable

and do not drastically affect the outcome of the algorithm. In this context the term

“underfitting” means not forgetting the base representation.

The connectivity pattern of the training algorithms contains residual connections from

early stages to avoid losing the hierarchical structure of the deep network. We show

competitive results on three different datasets and on three Residual Networks. More

importantly, the algorithm drastically decreases the memory required to train the net-

work in comparison to traditional fine-tuning. The influence of the hyperparameters of

the algorithm are quantified in section 5.3.

Chapter 6

Cascade Learning for Human

Activity Recognition

Deep Learning for Human Activity Recognition (HAR) has shown impressive perfor-

mance. Several architectures have been proposed to tackle this classification problem.

In this Chapter we explore the applicability of Deep Cascade Learning (see Chapter 4

to this sensor problem, as well as its scalability to Temporal Residual Networks. The

models used in this Chapter are discussed in later sections.

We consider ResNets and Dilated ResNets for this task. Dilation in the model aims to

increase the network’s ability to look into the past. We took these networks and applied

the Deep Cascade Learning algorithm (see Chapter 4), and directly compared their

performance with traditional end-to-end training of the chosen models. The success of

these experiments expands the repository of networks on which Deep Cascade Learning

can be applied to. We further explore the robustness of the end-to-end models by

comparing them with state-of-the-art results, and performing noise and subject-wise

cross-validation analyses.

One of the main goals of HAR includes having these networks in small devices (e.g

smartphones) to perform inference in real time. Therefore, anticipating the users of

certain incidents or monitoring diseases. In most cases, these devices are memory limited

and require reduction methods to fit into the device. While cloud computing might be a

solution, it can be affected by a poor connection and may generate delays in the inference

of the model. Besides inference, this models are often online trained while data is being

gathered. Hence, for some applications this models have to be trained in the mobile

devices. Thus, Deep Cascade Learning applied to HAR networks can further reduce the

training time as well as the resulting model’s complexity (using early classifiers). One

potential application would be stacking new layers as data is gathered, whilst using the

latest fully trained classifier for the required inferences.

73

74 Chapter 6 Cascade Learning for Human Activity Recognition

The contributions of this chapter include:

• We show that Deep Cascade Learning can be applied to 1D ResNet and 1D Dilated

ResNet. Thus, with our methodology models can be trained using a fraction of

the memory required to train the end to end network.

• We demonstrate through several experiments that a generic convolutional archi-

tecture (Residual Networks referred to as ResNets), outperforms recurrent archi-

tectures on this problem. Our results are confirmed on three datasets with greatly

varying activities. ResNets consistently performs as well as or better than all other

architectures, without including future data.

• We propose the use of ResNet on activities with short duration, and Dilated

ResNets on more stationary activities.

• Both architectures show a tolerance to missing values. We evaluated our models

with multiple levels of missing data. By using a simple linear interpolation on

the missing values, the models preserve their performance when there is a modest

amount of missing values in the data.

We discuss deep learning approaches involving Convolutional and Recurrent Networks to

classify activities from sensor data. The state-of-the-art includes bi-directional LSTMs,

and Deep Convolutional Recurrent Networks. However, in this chapter we emphasise

the fact that long term dependencies in activity recognition might not be the best idea,

since human activities are mostly periodical and do not hold long term patterns. In

addition, we show how Deep Cascade Learning may reduce the memory requirements of

the model as well as provide an insight on the depth of the network.

6.1 Human Activity Recognition

Nowadays, smart devices are used on daily basis. These devices often contain several

sensors, such as accelerometers and gyroscopes. Recording this data and extracting

important information is crucial to solve HAR related problems [31].

Datasets in this field are often captured using smart devices, such as smart phones or

smart watches. These recordings contain multiple time series belonging to multiple-

sensors (e.g 3D accelerometer, or 3D gyroscopes). Thus, these datasets can be seen as a

multivariate time series analysis problem, where the target would be dependent on the

dataset labels.

In this chapter we explore a multivariate time series classification problem referred to as

HAR. Inputs are the multidimensional sensor data, and the targets contain the activity

that is currently been taken by the subject. These activities may vary depending on the

Chapter 6 Cascade Learning for Human Activity Recognition 75

dataset of study, some contain multiple labels (e.g walking, running, standing), while

others contain less descriptive binary labels (e.g. Freeze of the gait on subjects suffering

from Parkinson’s disease).

Early approaches followed a common pipeline: extracting features (e.g Fourier or statis-

tical features); preprocessing those features; and using any standard classification device

to find patterns that correlate the features with the class activity [11, 69]. Features were

computed on segments of the signals, which were gathered by applying a sliding window.

The features were often stacked with their derivatives [69]. Roggen et al. [105] explore

the use of Support Vector Machines (SVMs), Random Forest, Gaussian Mixture Models

(GMM), and Hidden Markov Models (HMM) as classifiers. These algorithms were then

applied to multiple datasets and explored in detail [94, 11].

Two main issues are encountered when applying this pipeline: (a) computing hand-

crafted features can be computationally expensive, and may not be applicable to real-

time problems; (b) various activities require, in most cases, different features [54], which

can become a problem when performing a first weak classification to determine which

features to compute.

The HAR community has recently investigated the use of deep learning for classifying

activities. One of the first deep learning approaches to HAR used Deep Belief Net-

works [48] as auto-encoders to compute the features [97]. However, this model was still

outperformed by a traditional approach using Principal Component Analysis (PCA)

with statistical hand-crafted features. More recently, the HAR community has been

applying two types of deep architectures, Convolutional Neural Networks (CNNs) and

Recurrent Neural Networks (RNNs). Hammerla et al. [41] explore several deep learning

networks and provide results of, MLPs, CNNs, and Long Short Term Memory networks

(LSTMs), which are a specific type of RNN. All the networks perform relatively well on

at least one dataset, although, none of them generalized over multiple types of activi-

ties. Ordóñez and Roggen [95] present a deep convolutional recurrent network, which is

divided in two stages: a convolutional stage to extract the features from the raw data,

and a recurrent stage to learn time patterns across these features. Other recurrent neu-

ral network approaches include Ensemble of LSTMs [40], and Binarized Bidirectional

LSTMs [26].

Hammerla et al. [41] showed CNNs outperformed LSTMs on the PAMAP2 [102] dataset,

which contains more periodic activities were long-term dependencies are not relevant.

The DeepConvLSTM approach [95] obtains state-of-the-art results on the Opportu-

nity [104] dataset, and has similar results to bidirectional LSTMs [41, 26].

Recent work has shown impressive results using ResNets on multiple sequence modeling

problems [6]. Bai et al. [6] present results on sequence modeling tasks with RNNs and

CNNs with dilated convolutions and residual connections; they concluded that CNNs

are more effective across diverse sequence modelling tasks. Based on this premise, we

76 Chapter 6 Cascade Learning for Human Activity Recognition

present experiments involving deep residual CNNs to observe their generalization in

comparison to LSTMs for HAR tasks.

6.2 Deep Learning for Human Activity Recognition

As reviewed on Chapter 2 of this thesis, Deep Learning has outperformed all other ap-

proaches in several core machine learning applications, including computer vision [13,

136], signal processing [64], and time series analysis [127]. The main idea of training

deep networks facilitates learning complex features at multiple stages of the network

from the raw data. In other words, deep networks learn the features and the classi-

fier simultaneously, as opposed to early approaches where hand-crafted features were

computed to then be classified.

HAR is a multivariate time-series classification problem which has been approached

using multiple deep learning architectures. We consider deep convolutional networks

with residual connections and show that this architecture can outperform all previous

proposed models [41, 40, 95]. Particularly, we show that improvements over recurrent

models for this sequential task.

We study the case of three datasets, PAMAP2 [102], DaphNet Gait Freeze [4], and

Opportunity [104]. We present state-of-the-art results on ResNets and Dilated ResNets,

as well as a study on the effect of noise and frequency on these networks. All code

used to generate these results can be found at http://github.com/EnriqueSMarquez/

HumanActivityRecognition.

6.2.1 Long-short Term Memory Networks (LSTM)

We briefly revisit LSTMs in this section, for a fuller picture refer back to Chapter 2.

Ordinary Feed-Forward neural networks are not designed to capture time dependencies.

However, Recurrent Networks (RNNs), such as, LSTM networks have shown capabilities

to capture these patterns across the time axis [49, 119].

RNNs have been applied on HAR datasets to obtain state-of-the-art results [40, 41].

However, we believe LSTMs are not necessary since activities are typically periodical,

hence, there is not much use for long term dependencies. In addition, bidirectional

LSTMs have been applied using ‘future’ data, which limits their usage to offline analysis

and no real-time applications [26].

http://github.com/EnriqueSMarquez/HumanActivityRecognition
http://github.com/EnriqueSMarquez/HumanActivityRecognition

Chapter 6 Cascade Learning for Human Activity Recognition 77

6.2.2 Convolutional Neural Networks (CNNs)

We extensively review CNNs in Chapter 2 for Computer Vision. Most recently, Deep

CNNs have been introduced to temporal domains by applying 1D Convolutions, and

evaluating these features using non-linear functions. This has been applied in many

fields, such as Speech Recognition [111], Speech Enhancement [32], and Speech genera-

tion [3].

6.2.2.1 Temporal Convolution

The Temporal Convolution is explained in Chapter 2. In this section we elaborate more

about the temporal convolution for sensor data. Given an input multi-sensor (multi-

variate time series) x with C channels, a biased temporal convolution between x and a

set of unidimensional kernels ki ε Kj with shape [H, 1,Kj] is defined as:

x̂t,j =
C∑
i=0

H∑
h=0

kixt+h,i + bi (6.1)

where x̂t,j represents the output feature j at time t, and bi the bias of kernel ki. The

steps of t will depend on the stride of the convolution.

Figure 6.1 illustrates a temporal convolution with one filter over the multi-sensor signal.

Equation 6.1 shows the mathematical operator of convolving a multi-variate signal with

the kernel Kj . These kernels are convolved with several time series (multiple sensors) to

obtain a set of resulting feature maps. Typically on CNNs, the operation is followed by a

non-linear activation function. The nature of the convolutional operation decreases the

dimensionality of the signal, hence, inputs are padded to preserve this dimensionality.

The kernels (also referred as filters) ki are trainable and optimized to generate robust

and invariant features.

Shallow Temporal CNNs have been applied for HAR on multiple datasets. Moya Rueda

et al. [89] present a CNN with 2 convolutional layers with a range of hyperparamters.

Similarly, Hammerla et al. [41] applies 2 and 3 layer networks to multiple datasets. Both

approaches use max-pooling operations after convolving to downsample the features.

6.2.2.2 Residual Networks

ResNets with 2D Convolutions are explained on Chapter 1. In this section we further

discuss these networks. The main difference includes a change in the type of convolu-

tion. Instead of using spatial convolutions for images, we use temporal convolutions as

explained on section 6.2.2.1.

78 Chapter 6 Cascade Learning for Human Activity Recognition

Figure 6.1: Temporal Convolution on multivariate time series, window size T and
kernel size [H, 1, i]. Kj is a multidimensional kernel, which can be seen as multiple 1D
kernels. Each kernel is convolved (∗ sign) with one time series from the input. The
resulting individual feature maps are added together to generate a single feature. The
output may be further evaluated using an activation function. We illustrate the case of

one kernel, typically this process happens several times to generate j feature maps.

Figure 6.2: Residual Network with N1 +N2 layers, representing first and second res-
olution of the network respectively. The input x is fed into a convolutional layer C,
which is the fed into the Residual Blocks. Each block contains two temporal convolu-
tions (illustrated by C block), two channel-wise Batch Normalization (BN), and ReLU
layers (ReLU). The input is added to the output of the ResBlock (circle with plus sign).
The features of the last ResBlock is then fed into a classifier, typically a fully connected

layer.

State-of-the-art sequence modelling problems using Temporal ResNets include, Time-

Series classification [127], and Text classification [19]. Given these improvements in the

field using ResNets, we chose to apply these models for HAR.

Figure 6.2 shows a typical ResNet graph with two resolutions. Each box in the diagram

illustrates sequentially connected ResBlocks with same resolution. The input is the

multi-sensor data, and outputs the activity classification using a fully connected layer.

Potentially, these networks can be used to generate a temporal stream of classification

with only past data. The first stage contains the same resolution as the input, it is then

halved after N1 ResBlocks. A typical ResNet may contain more than two resolutions.

In contrast with previous CNNs applied to HAR, ResNets do not contain pooling lay-

ers. Instead, any downsampling is performed by a strided convolution when required.

Dropout is not applied at any stage of the network following the literature of Residual

Networks [45, 47].

Chapter 6 Cascade Learning for Human Activity Recognition 79

6.2.2.3 Dilated Networks

A dilated convolution uses the same kernel size as a non-dilated convolution, but the ker-

nel is spaced accordingly to a constant value, which is often referred as degree of dilation

(d). By applying temporal dilation to CNNs, the network is capable of finding patterns

across longer time steps. Larger dilation correlates with finding longer (time-wise) pat-

terns. In addition, dilated CNNs preserve the dimensionality of the data, which generates

no compression losses. Instead of decreasing the resolution, dilated networks increase

the dilation (d) of the convolutional layers at multiple stages. Figure 6.3 illustrates the

difference between both operators. Residual Networks with dilated convolutions have

been proposed in multiple computer vision and speech settings [e.g. 133, 64]. Dilated

convolutions in this setting are beneficial to capture longer temporal patters. Thus,

enabling better learning of long and not fully periodic activities.

Figure 6.3: Illustration of the dynamics of convolution and dilated convolution opera-
tors. (Left) Typical Convolution (d = 1) (Right) Dilated Convolution (d = 2). Vertical
axis represent multiple time-steps (t1 − t7), horizontal axis sequential iterations of the

operator (1− 3), black boxes display the receptive field.

6.3 Datasets

We selected three HAR datasets widely used by the community, and with very differ-

ent classes to see how our model generalize to multiple activities. Each dataset has

different motivations and different activities. The protocols for the data acquisition

vary for each dataset, thus the sampling frequency, number of subjects and data points

vary accordingly. The evaluation was always performed on unseen data, and its evalu-

ation methodology may change across datasets to make results comparable to previous

approaches in the field.

All the data used to generate results in this study were downloaded from the UCI

repository [23].

80 Chapter 6 Cascade Learning for Human Activity Recognition

6.3.1 Opportunity

The Opportunity dataset [104] contains labeled activities from recordings taken from on-

body sensors. The data is collected from 4 subjects using Inertial Measurement Units

(IMUs) at 30Hz. Each subject has five files representing different runs. The recordings

contain kitchen related activities as labels, such as: Open Door, Open Dishwasher, and

Close Door. The fixed evaluation set used in some experiments was selected using the

protocol in [89] [95]. The resulting dataset contains 79 dimensions when concatenating

all the sensor data, corresponding to 79 one dimensional time series of the 79 sensors.

For most experiments we used run 2 from subject 1 as validation set, and runs 4 and 5

from subject 2 and 3 as test set as per the related literature [41, 26, 40].

6.3.2 PAMAP2

Similarly to the Opportunity dataset, PAMAP2 [102] consists of labelled activities

among nine participants. Each subject carried out twelve prolonged activities daily

activities such as standing and walking, and more complex activities such as Nordic

Walking and Vacuum Cleaning. The sensors used to collect the data were IMUs con-

taining accelerometers, gyroscopes, and magnetometers. In addition to the IMUs, the

data also contains heart rate and temperature recordings. The data was collected at

100Hz with a total of 52 dimensions. We excluded subject nine due to the reduced

recording time in comparison with the rest of the participants. The fixed evaluation set

was selected following the protocol in Moya Rueda et al. [89] and Hammerla et al. [41],

which uses subjects 5 and 6, as validation and test sets respectively.

6.3.3 Daphnet Gait

The Daphnet Gait Freeze dataset [4] is as binary classification problem. The data

was recorded on ten subjects diagnosed with Parkinson’s Disease, and was labelled

accordingly to whether the subject was suffering from “Freeze of the gait incident”. The

labels are Freeze and not Freeze . The subjects performed activities with high likelihood

of inducing freezing of gait (a motor complication in initiate movements). The sensors

were placed on the ankle, above the knee and on the chest. The data was recorded at

60Hz and contains a total of 9 dimensions. We evaluated this dataset using subject 9 as

validation set, and subject 2 as our test set [41].

6.4 Experimental setup

We test 1D Dilated and non-Dilated ResNets on the datasets presented in section 6.3.

In our experiments we present results on fixed evaluation sets chosen from the literature

Chapter 6 Cascade Learning for Human Activity Recognition 81

to compare our models with the state-of-the-art. The second experiment includes per-

forming cross-validation across subjects (leave-one-person-out [126]) to further compare

both models. We also test our models on downsampled data to visualize the effect of

the sampling frequency on the performance.

Both architectures have the same structure, three downsampling/change in dilation,

with 3, 4, 4, 5 ResBlocks for the first, second, third and forth resolution respectively.

Each ResBlock consist of 2 convolutional layers, hence, the models contain 33 layers

including the classification stage (MLP). We tested multiple ResBlocks arrays, such as

Pre-activation and Bottleneck, but found no improvements over the Basic Block. The

first convolution has 64 filters, and is duplicated after every downsampling/change in

dilation. The kernel size was empirically tuned to 15, and inputs to the convolutions

were always padded to preserve dimensionality. The output layer contains one fully

connected layer with softmax activation, and the number of output units depend on

the dataset. All the networks were trained for 400 epochs, using Stochastic Gradient

Descent with a learning rate schedule, momentum of 0.9, and cross entropy loss. The

learning rate starts at a high value to ‘warm up’ the network (0.1) and is dropped by a

factor of 10 on epochs 3, 100 and 200. The network is regularized using weight decay

with a value of 10e− 4. The input shape to the network is (B, T, L) were B represents

the batch size set to 32, T the number of channels (dimensions), and L the window size

(length of the sequence).

The evaluation was performed following [41]. In order to make the results comparable

with the literature, we used weighted f1 score (Eq. 6.2) for the Opportunity dataset.

For the remaining two datasets we used mean f1 score (Eq. 6.3). In both equations, 6.2

and 6.3, precc, recallc, and Nc represent the precision, recall and number of data points

of a given class c. Ntotal is the number of samples in the dataset.

Fw = 2
∑
c

Nc

Ntotal

precc × recallc
precc + recallc

(6.2)
Fm =

2

‖c‖
∑
c

precc × recallc
precc + recallc

(6.3)

6.5 Results

In this section we discuss and execute some experiments. A short description of these

experiments is presented as follows:

• Deep Cascade Learning. We explore the applicability of Deep Cascade Learning on

1D ResNets using sensor data. In addition, we quantify and compare the memory

reduction obtained by applying our algorithm to these models.

82 Chapter 6 Cascade Learning for Human Activity Recognition

• Comparison with state-of-the-art. We compare both ResNets with current state-

of-the-art models. In addition, we quantify the performance variance and show

mean, standard deviation and best across 20 training runs.

• Subject wise cross-validation. This experiment provides a better insight on how

well these models generalize across multiple subjects. It is particularly interesting

given the nature of the applications of HAR, one would be interested in a machine

that can be applied to any subject.

• Sampling Frequency effect on Temporal ResNets. We test how sensor data with

different frequency may affect these residual models. This is performed by down-

sampling the data several times and see if the models can still capture meaningful

representations.

• Noise tolerance. Sensor data might be affected by failures in the hardware. These

failures are often presented as missing values. Hence, this experiment enable us to

observe if a simple interpolation of the data can be used to append missing values

while not drastically losing performance of the models.

6.5.1 Cascading ResNets for HAR

In this section we evaluate the performance of Deep Cascade Learning applied to these

models. In Chapter 4 we present an algorithm for layer-wise training on 2D CNNs.

Similarly, we quantify the performance of applying such algorithm to 1D ResNets and 1D

Dilated ResNets. The success of this experiment suggests that Deep Cascade Learning

can scale to 1D CNNs and potentially to any type of differentiable neural network.

Table 6.1 shows results of applying cascade learning on both ResNet architectures on

the test sets for the datasets of study. To maximize the performance, these networks are

better trained in an end to end fashion, however, when cascading it yields competitive

results against the state of the art (Table 6.2). When cascading these deep networks,

the performance is very stable after approximately residual block seven (it may vary

depending on the run). We know Deep Cascade Learning can be affected by overfitting

if not tuned carefully. Moreover, cascading is not fully taking advantage of deep repre-

sentations while still providing competitive results. We believe Deep Cascade Learning

is more affected by imbalance datasets and lack of data, given that these data properties

also induce overfitting. A biased dataset can lead to a model being more likely to make

the same prediction, which can be seen as overfitting. As explored in Chapter 4, early

iterations of Cascade Learning might overfit. Thus, we applied greater weight decay

(10e− 3) and just allowed each submodel to see the data five times. Even by applying

this regularization scheme, the models still fit the data on mid stages of the network, and

performance does not improve on deeper iterations of the training algorithm. We did

not fully tune the Cascaded model, further improvements might be achieved by better

Chapter 6 Cascade Learning for Human Activity Recognition 83

PAMAP2 DaphNet Opportunity

ResNet 0.90 (0.91) ± 0.01 0.75 (0.83) ± 0.04 0.91 (0.91) ± 0.00

Dilated ResNet 0.90 (0.91) ± 0.02 0.72 (0.77) ± 0.03 0.91 (0.91) ± 0.01

Table 6.1: Results on Cascading ResNets and Dilated ResNets on HAR data. It reads
mean (best) ± std across 10 runs using the fixed training, validation, and test datasets

provided by the literature.

regularizing and tuning this algorithm the HAR task. Most hyperparameters stayed the

same to provide a fair comparison against their end to end counterparts.

Memory Complexity. In order to quantify the memory complexity advantages of

cascaded 1D CNNs, we calculate the end to end and cascade memory requirements for

training. The calculations remain similar as in Chapter 5 Section 5.8. The main dif-

ference is that kernels are 1D, features are 2D (width, channels), and dilated networks

do not perform downsampling. For each dataset, calculations may vary due to different

shape in the data (window size, number of sensors, number of labels). We show average

memory across all datasets to simplify the results. The end to end training requires

approximately 1.55 Gb of space to train a standard ResNet with the hyperparameters

specified in Section 6.5.2. While cascading only requires 0.25 Gb, which represents a

memory reduction of ∼ 6 times. On the other hand, dilated ResNets use slightly more

memory in both cases, 1.60 Gb and 0.27 Gb for end to end and cascading respectively.

Notice that for cascaded networks we show space and memory complexity for the itera-

tions with greater cost.

6.5.2 Comparison with state-of-the-art

In this section we compare Temporal ResNets with previous deep learning approaches on

the datasets of study. Specifically, we directly compare with the following architectures:

• Ensemble LSTMs [40]: merges multiple LSTMs with a fused training algorithm

to generate a single system. Averaging networks with similar methodologies have

always shown improvements.

• DeepConvLSTM [95]: combines a CNN to generate abstract features with an

LSTM to find time patterns on these features.

• Binarized-BLSTM [26]: binarization of a bi-directional LSTM. Binarizing the

weights and activations compresses the network to fit into devices easier.

• CNN [41]: shallow three layer CNN with max pooling operators and hyperbolic

tangent activation.

• LSTM-F and LSTM-S [41]: recurrent networks where the time steps of the input

data is either concatenated (model F), or fed as a sequence (model S).

84 Chapter 6 Cascade Learning for Human Activity Recognition

• b-LSTM-S [41]: bidirectional sequence LSTM.

In Table 6.2 the results on each dataset for both architectures are presented as average,

best, and standard deviation of the test f1, mean (best) ± std.

Overall, our models generalize better if consider the mean performance of all three

datasets. By having good initialization, the models can outperform LSTMs by 4 and 5

% without including any future data.

6.5.2.1 PAMAP2

ResNets on average perform similarly to previously published networks. Its best val-

idation f1 performs slightly better than the CNN trained on [41]. It also has a low

standard deviation which suggests that the network is not affected by the randomness

of the training algorithm. The Dilated ResNet can potentially perform better than

any other network. This is due to the activity types of the PAMAP2 dataset. Dilated

ResNets are better are classifying prolonged activities. Figure 6.4 shows how the ResNet

misclassifies sitting with standing more times than the Dilated ResNet.

We can observe in Table 6.2 that both architectures perform better than the CNN and

LSTM-F in Hammerla et al. [41]. The best results can be obtained using Dilated ResNet.

The Binarized-BLSTM uses future data and does not necessarily perform better, which

gives an advantage to our models when it comes to applications and deployment.

6.5.2.2 DaphNet

Both models can indeed outperform LSTMs for these periodic movements, and on aver-

age the ResNet performs 1% better than LSTM-S. The variance of the Dilated ResNet

is high, but it can converge into a network with very high f1 score (0.82) in comparison

with the literature. For this dataset, ResNets are more likely to provide better and

stable results.

6.5.2.3 Opportunity

Due to the short activities presented in the Opportunity dataset, Dilated ResNets do

not perform as well as ResNets, however, they still provide competitive results. ResNets

on the other hand are more suitable and generate better results than b-LSTM-S by 1.3%

at best. The models are almost invariant to poor initialization and randomness on this

dataset. They obtain a variance of 0.0075 on average.

We downsampled the signals to approximately 30 Hz and segmented them using a sliding

window approach. The size of the segments are 5.12 sec, 1.5 sec, and 1.5 sec for PAMAP2,

Chapter 6 Cascade Learning for Human Activity Recognition 85

PAMAP2 Daphnet Opportunity Mean Std

Metric Fm Fm Fw - -

Ensemble LSTMs [40] 0.854 - - - -

DeepConvLSTM [95] - - 0.917 - -

Binarized-BLSTM [26] 0.93 - - - -

CNN [41] 0.937 0.684 0.894 0.84 0.14

LSTM-F [41] 0.929 0.673 0.908 0.84 0.14

LSTM-S [41] 0.882 0.76 0.912 0.85 0.08

b-LSTM-S [41] 0.868 0.741 0.927 0.85 0.10

ResNet 0.93 (0.94) ± 0.01 0.77 (0.83) ± 0.03 0.92 (0.94) ± 0.008 0.87 (0.90) 0.08

Dilated ResNet 0.92 (0.95) ± 0.02 0.73 (0.82) ± 0.10 0.90 (0.91) ± 0.007 0.85 (0.89) 0.06

Table 6.2: Comparison with state-of-the-art for ResNet and Dilated ResNet using
end to end training. The results were generated using 20 runs and by selecting the best
validation f1 as stopping criteria. The notation is mean (best) ± std across all the runs.

Figure 6.4: Normalized confusion matrices for the PAMAP2 dataset for (left) ResNet
(right) Dilated ResNet. ResNet is more likely to misclassify sitting with standing, while

the Dilated ResNet mostly misclassifies vacuum cleaning and sitting with ironing.

DaphNet, and Opportunity respectively, and sampled with an overlap of 50%. The

networks were run 20 times to measure convergence and effect of initialization, and were

stopped when the validation f1 plateaued or dropped.

6.5.3 Subject wise cross-validation

We further compare our models by cross-validating across subjects. We aim to see how

well these models generalize among subjects, as well as maximizing the amount of data

by using the default frequency.

Table 6.3 shows results leaving one person out as validation set. The ResNet performs

1.4% better if we consider the mean difference between datasets. The dilated ResNet

has a higher standard deviation, it generalizes worse across multiple subjects, although,

still providing competitive results.

86 Chapter 6 Cascade Learning for Human Activity Recognition

Dilated ResNet ResNet
Subject PAMAP2 (Fm) Daphnet (Fm) Opp (Fw) PAMAP2 (Fm) Daphnet (Fm) Opp (Fw)

1 0.92 0.72 0.84 0.93 0.72 0.87
2 0.89 0.72 0.78 0.92 0.75 0.90
3 0.95 0.72 0.77 0.95 0.74 0.76
4 0.95 1.0 0.82 0.96 0.99 0.82
5 0.93 0.66 0.95 0.63
6 0.92 0.64 0.95 0.65
7 0.98 0.69 0.98 0.66
8 0.72 0.65 0.64 0.67
9 0.78 0.78
10 1.0 1.0

Mean 0.933 0.758 0.803 0.944 0.759 0.835
Std 0.03 0.134 0.03 0.02 0.134 0.059

Table 6.3: Subject cross-validation results for all three datasets using the Dilated
ResNet and ResNet models. The values are maximum validation accuracy achieved

during training leaving one person out of the training data.

6.5.4 Sampling Frequency effect on Temporal ResNets

Temporal Dilated ResNets emulate looking at the data at multiple frequencies, for ex-

ample when d = 2, the network looks at the signal with half its frequency. Hence, we

execute some experiments to see how the speed of the sensors may affect these net-

works. For this experiment, we only use the PAMAP2 dataset since it contains a higher

frequency than the rest and can be downsampled several times. We have to also take

into account that, downsampling the data generates fewer samples to train the network

and this may affect the generalization performance. The downsampling was done by

linearly skipping some values in the data. Each network was run four times to measure

its invariance. The window size was always fixed to 5.2 seconds. However, we did not

increase the number of parameters of the network. We anticipate linear results if the

ratio kernel size
number of samples is preserved.

Figure 6.5 shows the performance of our networks on multiple frequencies for the PAMAP2

dataset. When drastically downsampling the data, dilated convolutions can generalize

better. This is seen in the performance between 10 Hz to 17 Hz. In any other case,

the ResNet seems to be performing best. The variance of the ResNet is doubled on the

dilated version. It also explains why the best results may be generated using dilation.

The performance drops at high frequencies even though at this stage there is more data

available. This negative slope in Figure 6.5 can be rectified by increasing the kernel size,

which will increase the receptive field and look at more samples at a given time.

6.5.5 Noise tolerance

For this experiment we used same metrics and networks to those trained for Section

6.5.2 results. Ponce et al. [98] studies a methodology to measure noise robustness of

Chapter 6 Cascade Learning for Human Activity Recognition 87

Figure 6.5: Performance on test data of PAMAP2 at multiple frequencies on four
runs each. The shade of the curves represent the variance of the models and the scatter

dots the best achieved performance.

machine learning algorithms for HAR datasets. We simulated random missing values

on the test data on the range 1-99 % of missing values. We chose this scheme due to its

likelihood in HAR applications (failing of sensors lead to missing data points), and it is

considered a noise insertion method.

Before feeding the inputs to the network, the missing values were imputed using a simple

linear interpolation. In our experiments we computed the performance of 20 networks

per dataset, and obtained values for mean, standard deviation and best performance.

The networks were trained on the default clean data.

Figure 6.6 illustrates the performance of the networks for the given range of missing

values. The networks trained on PAMAP2 and DaphNet are more affected by noise

given than these datasets contain downsampled prolonged activities. On these two

datasets it is more likely to randomly add missing values to important features, while

in the Opportunity dataset, due to its imbalance, most of the inputs are false positives

that can be easily approximated with the interpolation scheme. The dilated model

approximately doubles the variance across all the datasets of the ResNet with a mean

value of 0.089. When initial conditions are best, both models perform similarly given

the noise range. Due to simplicity, we did not include the variance of the models in

Figure 6.6.

88 Chapter 6 Cascade Learning for Human Activity Recognition

Figure 6.6: Missing values tolerance for both models on three datasets. Red curves
represent mean performance for Dilated ResNet, blue curves ResNet. Opportunity

(solid), PAMAP2 (dashed), DaphNet (dashed and dotted).

6.5.6 Discussion

In section 6.5 we illustrate the performance of ResNets and Dilated ResNets in com-

parison with other architectures, especially LSTMs. There are several advantages of

our models over the literature: (a) Higher f1 score on the tested datasets, (b) CNNs are

easier to interpret since the weights and features can be visualized for multiple activities,

(c) Binarization of LSTMs is a way of compressing the network weights, however, CNNs

can be not only binarized but also pruned [42] to potentially fit into small devices (e.g

smartphones, Rasberry pis), (d) some models in the literature are bidirectional and uses

future data, while CNNs are trained only on the past sequence, (e) our models do not

use pooling or dropout in contrast with the literature, making the feature extractor fully

convolutional and potentially transferable among multiple datasets (g) CNNs in the lit-

erature are shallow, using deeper CNNs can provide better results, this is only possible

due to the residual connections, (h) data augmentation can potentially be applied to

CNNs to learn more invariant features, while this is not the case for LSTMs where data

augmentation may generate noise in the model, (i) ResNets can be used to generate a

stream of classification by inputting an entire sequence (without segmenting the signal),

this is particularly useful in real-time applications.

Both architectures outperform the literature in most cases. However, whether to choose

a dilated or a typical ResNet will depend on the dataset. The dilated ResNet is affected

by poor initialization, while its counterpart is more invariant to this randomness. The

model size is the same in both cases, although, the cost of propagating the inputs is

higher for the dilated ResNet due to necessary increase in the padding.

Chapter 6 Cascade Learning for Human Activity Recognition 89

When applying these models to high frequency data, we have seen that it is necessary to

increase the kernel size of the network. By doing this, the memory required to train the

model may increase linearly. Hence, in current work we are exploring the use of deep

cascade learning, a novel architecture suitable for memory efficient training and transfer

learning [82], on HAR.

6.6 Summary

We have Residual Networks for HAR, motivated by speech and computer vision models

and recent work on sequence modelling. The architecture ResNet has been applied to

many computer vision tasks, and the dilated version to speech tasks. We compare both

dilated and not dilated ResNets with state-of-the-art results on the datasets PAMAP2,

DaphNet Gait Freeze, and Opportunity. Our method performs the best in certain cases,

and provides competitive results on average. We argue that LSTMs are more compu-

tational extensive and less robust for these sequence modelling tasks. Especially, when

applying to datasets similar to PAMAP2, with mostly low term dependencies such as

sports, or gait analysis. We illustrate the benefits of downsampling the data to match

the kernel size. In addition, we show that these networks can tolerate certain level

of missing values in the data, however, further work includes improving this tolerance

through augmentation.

Additionally, we explore applying Deep Cascade Learning on 1D ResNets and 1D Dilated

ResNets. We quantify the reduction of memory requirements by applying our layer-wise

algorithm. More importantly, given the imbalance, the nature of the datasets, and the

number of hyperparameters, empirical tuning can become computationally extensive.

Hence, DCL can provide insights on depth and number of required iterations to find a

better minimum. Cascaded ResNets also take advantage from less convergence variance,

and thus, have less likelihood for converging into a poor minimum. Finally, when these

cascaded networks are stored in any smart device, early classifiers can be used to make

early predictions and avoid the need of continuing the forward propagation, ultimately

providing faster inference given a performance threshold. However, in terms of perfor-

mance, end to end training seems to obtain better results than DCL when applied to

ResNets.

Further studies include, testing dilation on the width axis of the network while keeping

the residual connection, reflected as an inception module [120] with multiple dilations

instead of kernel sizes. The datasets used on this manuscript did not contain high

heterogeneity or proportion of missing data/features. To further measure its robustness

is ideal to compare it using the Heterogeneity Human Activity Recognition (HHAR)

dataset, which records data with different devices holding more similarities to the data

gathered for applications. However, models applied to this dataset, such as Deep Sense

90 Chapter 6 Cascade Learning for Human Activity Recognition

[131] are not directly comparable since it uses Fourier features (following Stisen et al.

[118]) as input to the CNN. In addition, our models have shown learning transferability

properties in multiple deep learning fields.

Chapter 7

Conclusions & Future Work

This work has demonstrated that by constructing a cascade architecture which trains a

neural network in a layer-wise fashion, we can achieve significant reduction in compu-

tational complexity at the expense of small decrease in performance. We have shown

this on several benchmark problems related to computer vision, signal processing, and

transfer learning applied to computer vision. Thus, Deep Cascade Learning enables the

users to train very deep networks with no additional hardware requirements. A short

description of each chapter contributions and findings are presented as follows:

Chapter 2 & 3 reviews deep learning for both computer vision and signal process-

ing. We review the literature from early approaches on learning deep representations to

state-of-the-art architectures and algorithms. Specifically, we discuss deep learning from

early MLPs and perceptrons to the main breakthrough of AlexNet on training very deep

networks on large scale datasets. This was possible due to advancements in hardware

and the availability of the data. We then explore the literature on layer wise training

and most successful attempts to iteratively and hierarchically train these networks. Most

importantly, we focus on Fahlman’s Cascade Correlation algorithm, which was the first

unit wise training algorithm. Surprisingly our review discovers that, the Cascade Cor-

relation algorithm shares many properties with the state-of-the-art methodology, such

as dropout and residual connections.

Chapter 4 presents a greddy supervised layer wise training algorithm, which we named

Deep Cascade Learning (DCL). The algorithm was successfully tested on two bench-

mark image classification datasets with 10 and 100 classes. The models used in this

chapter include VGG and The All CNN networks. DCL is supervised and provides time

and memory complexity reduction, which is due to a decrease in the overall number of

epochs with no additional propagation through already trained layers. This method is

inspired by and shares similar properties with Fahlman’s Cascade Correlation. However,

it is applied to a different scale to modern deep learning architectures. An additional

motivation is the fact that DCL directly tackles the vanishing gradient problem. We

91

92 Chapter 7 Conclusions & Future Work

quantify the effect of vanishing gradient problem by computing the magnitude of the

gradients at every stage of the network. Our findings are corroborated by several exper-

iments and analysis which directly compares Deep Cascade Learning with traditional

end to end training: (a) Memory complexity comparison, including discussions on opti-

mal and naive implementations; (b) Quantifying time complexity for both algorithms;

(c) Feature convergence, showing that Cascade Learning is more likely to converge to

the same minimum, which decreases the impact of poor initialisation; (d) Magnitude

of gradients analysis, to observe if there is indeed a increase in the magnitude of the

gradients at early stages; (e) Performance improvements when initialising with Cascade

Learning and Fine-Tuning the whole network.

Chapter 5 presents an extension of Deep Cascade Learning algorithm applied to trans-

fer learning, which we refer to as Cascade Transfer learning (CTL). We explore this

transfer learning methodology on three target datasets and used pre-trained Residual

Networks on ImageNet. CTL uses the same implementation as Cascade Learning and

shares similar advantages. Very deep pre-trained networks can be computational expen-

sive, and it may require more than one device to fine tune the network. Our approach

allows us to train these models without additional hardware. Additionally, the algo-

rithm is capable of determining at which stage of the network the features are better

transferred to the target dataset. The early classifiers can be stored and used to make

predictions on ‘easy’ inputs, avoiding the need to continue propagating through the

network. We list the experiments performed on this Chapter as follows: (a) Compar-

ison with state-of-the-art transfer learning: we compare against Fine-Tuning transfer

learning, which is known to be a very effective approach to transfer features; (b) The

algorithm contains two hyperparameters: we quantify the effect the number of resid-

uals and starting stage concluding that two residuals and starting at mid-stage of the

network is sufficient to properly cascade the networks of study; (c) Memory complex-

ity analysis: we show that our algorithm requires just a fraction of the memory while

achieving competitive performance against fine-tuning transfer learning. The results of

these experiments suggest that CTL can be executed with less complexity requirements

than other transfer learning approaches.

Chapter 6 explores deep learning models for signal processing. In particular, we test

the applicability of Deep Cascade Learning on these temporal models. Human Activity

Recognition (HAR) uses wearable sensor data to classify activities. We show how state-

of-the-art deep learning architectures can yield better performance on this multivariate

time series classification problem. In this chapter we demonstrated two main aspects

of Deep Cascade Learning. Firstly, networks with branches such as residual networks,

can also be cascaded without drastically affecting the performance. Secondly, DCL can

be applied to signal processing models including 1D convolutions while preserving gen-

eralization of deep features. These models also yield similar advantages to cascading

2D CNNs. The experiments involve ResNets and Dilated ResNets on three benchmark

Chapter 7 Conclusions & Future Work 93

datasets with a wide range of different activities. These experiments include: (a) Com-

parison of our models with state-of-the-art results; (b) Subject wise cross-validation as

a better metric for this problem; (c) Experiments to measure tolerance of networks to

frequency and missing values; (d) Performance comparisons between 1D ResNets and

1D Cascaded ResNets for HAR.

In summary, this thesis explores the literature on Deep Learning focused on computer

vision and signal processing. In addition, we developed Deep Cascade Learning, a novel

layer-wise algorithm training deep networks. This algorithm is more memory efficient

than traditional end-to-end training, and can potentially allow to train endlessly deep

networks. Furthermore, we developed Cascade Transfer Learning, which takes Deep

Cascade Learning a step further by applying a similar algorithm to pre-trained models.

In addition, we quantify the performance of Deep Cascade Learning on a multi-sensor

classification problem (Human Activity Recognition). We conclude that Deep Cascade

Learning provides an alternative to traditional end-to-end training, and can further

enable the community to train deep models on small devices. Even though the perfor-

mance of DCL sometimes does not match its traditional end to end counterpart, it still

provides complexity advantages that can be beneficial for applications and deployment

of machine learning models. Our developed algorithms have only been tested in the

computer vision and signal processing field. We encourage the community to try our

methods in other machine learning fields.

Future work

Layer wise training of deep networks offer several advantages. There are still many

ideas to explore around this topic that are applicable to both Deep Cascade Learning

and Cascade Transfer Learning.

The Deep Cascade Learning algorithm requires fine-tuning to match the performance

of end to end. Our key ideas for further exploration on Deep Cascade Learning are the

following:

• One of the issues of our layer-wise methods is overfitting at early layers. Early

stages of the network must hold coarse representations to be able to learn finer

representations at deeper layers. To avoid overfitting, we reduce the number of

times each sub-model sees the data. This is a naive approach that yields good

results. However, further regularization can be implemented to prevent fitting

the training data. From our point of view, several approaches can be taken to

alleviate overfitting at early stages. One could prune after every cascade iteration

and induce regularization by avoiding redundancy of the learnt features, which

ultimately reduces noise at mid stages of the network. Similarly, binarization [100]

94 Chapter 7 Conclusions & Future Work

of already cascaded layer can further regularize the algorithm. Another way of

regularizing would be by normalizing the features after cascading to decrease the

amount by what the hidden features shift around. Since the layer is frozen, we

can propagate all our input data and find normalization parameters after every

iteration. By doing this, we decrease the covariance and avoid specificity of the

features.

• On our layer-wise methods, we have to tune the number of epochs on which the

algorithm is started. Hence, the stopping criteria depends on either the number of

epochs or performance on validation set. We believe a better criteria would take

into consideration how much information has been compressed at each layer, and

give us an insight of whether an improvement can be achieved by appending a new

layer. An approach might potentially include the use of information bottleneck

theory [113]. The algorithm could automatically anticipate when each iteration

should be stopped by maximize the correlation between inputs and outputs. Doing

these analyses can also give us better understanding of DCL and CTL.

• It is worth exploring the limits of depth when applying Deep Cascade Learning.

Knowing that DCL gets less complex as the algorithm progresses, it could poten-

tially be used to train an ‘infinite’ layer network. The result would be an adaptive

architecture that self-tunes certain hyperparameters (e.g. filters width/dimen-

sions, depth, network width) and progressively learns better representations. The

programmer would then be relying less on empirical tuning. The obvious hyper-

parameter to automate when using Deep Cascade Learning would be the depth

of the network, but the principle can also be considered to also learn number of

filters and shape of kernels. In addition, due to the memory reduction, cascade

learning can train wider networks with more number of filters.

• There are some ideas that can make DCL more similar to Cascade Correlation.

Exploring these ideas might enable better learning of our layer-wise algorithm.

These ideas include fully connecting the outputs of Cascade Learning, and applying

dropout on frozen layers. More importantly, Cascade Learning could adapt the

idea of evaluating candidate layers and selecting the most suitable one. Since there

is a decrease in the memory usage, training multiple layers can be parallelised in

a single or multiple devices, and essentially create the ‘pool’ of candidates for free

(time-wise). This would follow both Cascade Correlation [28] and AdaNet [20].

• Classifiers on early stages learn different representations than those on later stages.

Therefore, after finishing the iterations of our layer-wise models, one could explore

methods to combine these classifiers. For example, using a ensemble model to

merge the classifiers, or a voting system to combine the predictions, or boosting.

These could lead to a bigger network with merged representations.

Chapter 7 Conclusions & Future Work 95

• The idea of cascading networks could be scaled to other domains. Specifically, we

are interested on whether Recurrent Networks can be cascaded in a similar way

as CNNs. It is not as straightforward as CNNs since the structure of LSTMs is

not hierarchical, and is dependent on time patterns rather than spatial patterns.

Furthermore, exploring the cascaded features of MLPs is also of interest. The

motivation of only using CNNs on these work comes from the nature of these

networks and its behaviour as feature extractors.

• One interesting idea to explore would be Deep Cascade Learning as online adaptive

model. Since cascaded networks are trained layer by layer, one could adaptively

increase the number of layers as new data is coming. Already learnt classifiers can

be used until new layers have been evaluated, thus, appending to the network new

representations learnt on the ‘recently’ obtained data. This property has numerous

advantages for deployment and execution of live models. So far, the community

addresses this issue by training the network from scratch when is necessary, which

would be more inefficient than our proposed cascaded approach.

• Recent implementations of CTL show that adding residual connections to already

pre-trained nets can boost the co-adaptation of the layers. Hence, we could avoid

the need of fine tuning after cascading to reach a better performance. Exploring

this can further reduce the probability of overfitting at early stages. Ultimately,

this could lead to an enhance of Deep Cascade Learning and further reduce the

required memory to match performance against end to end.

• DCL networks learn better representations at every stage. Therefore, using these

networks as transfer learning devices might be beneficial to learn better represen-

tations of the target domain. These early representations might be more correlated

with the target domain than features extracted from an end to end trained net-

work.

• For HAR, it is worth of exploring if the concept of DCL can be scaled to more

WaveNet [64] like networks with oscillating dilations and multiple output blocks.

This analysis may also include quantifying the performance of DCL given multi-

activation CNNs.

• Finally, further analysing of DCL by applying it on other fields, such as Speech

and Natural Language Processing, can lead to a better understanding of DCL and

can scale up the repositories on which DCL is applicable to.

References

[1] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, and Gerald Penn.

Applying convolutional neural networks concepts to hybrid NN-HMM model for

speech recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2012

IEEE International Conference on, pages 4277–4280. IEEE, 2012.

[2] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algo-

rithm for boltzmann machines. Cognitive science, 9(1):147–169, 1985.

[3] Sercan Ö Arık, Mike Chrzanowski, Adam Coates, Gregory Diamos, Andrew Gib-

iansky, Yongguo Kang, Xian Li, John Miller, Andrew Ng, Jonathan Raiman, et al.

Deep voice: Real-time neural text-to-speech. In International Conference on Ma-

chine Learning, pages 195–204, 2017.

[4] Marc Bachlin, Meir Plotnik, Daniel Roggen, Inbal Maidan, Jeffrey M Hausdorff,

Nir Giladi, and Gerhard Troster. Wearable assistant for parkinsons disease patients

with the freezing of gait symptom. IEEE Transactions on Information Technology

in Biomedicine, 14(2):436–446, 2010.

[5] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic

convolutional and recurrent networks for sequence modeling. arXiv preprint

arXiv:1803.01271, 2018.

[6] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic

convolutional and recurrent networks for sequence modeling. arXiv preprint

arXiv:1803.01271, 2018.

[7] Shane Barratt and Rishi Sharma. A note on the inception score. arXiv preprint

arXiv:1801.01973, 2018.

[8] Gustavo EAPA Batista, Xiaoyue Wang, and Eamonn J Keogh. A complexity-

invariant distance measure for time series. In Proceedings of the 2011 SIAM in-

ternational conference on data mining, pages 699–710. SIAM, 2011.

[9] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-

wise training of deep networks. In Proceedings of the 19th International Conference

on Neural Information Processing Systems, pages 153–160. MIT Press, 2006.

97

98 REFERENCES

[10] Anastasia Borovykh, Sander Bohte, and Cornelis W Oosterlee. Conditional

time series forecasting with convolutional neural networks. arXiv preprint

arXiv:1703.04691, 2017.

[11] Andreas Bulling, Ulf Blanke, and Bernt Schiele. A tutorial on human activity

recognition using body-worn inertial sensors. ACM Computing Surveys (CSUR),

46(3):33, 2014.

[12] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[13] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriving:

Learning affordance for direct perception in autonomous driving. In Proceedings of

the IEEE International Conference on Computer Vision, pages 2722–2730, 2015.

[14] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen.

Compressing neural networks with the hashing trick. In International Conference

on Machine Learning, pages 2285–2294, 2015.

[15] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empir-

ical evaluation of gated recurrent neural networks on sequence modeling. In NIPS

2014 Workshop on Deep Learning, December 2014, 2014.

[16] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. Describing textures

in the wild. In Proceedings of the IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2014.

[17] Dan C Cireşan, Ueli Meier, Jonathan Masci, Luca M Gambardella, and Jürgen

Schmidhuber. High-performance neural networks for visual object classification.

arXiv preprint arXiv:1102.0183, 2011.

[18] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accu-

rate deep network learning by exponential linear units (ELUS). arXiv preprint

arXiv:1511.07289, 2015.

[19] Alexis Conneau, Holger Schwenk, Löıc Barrault, and Yann Lecun. Very deep con-

volutional networks for text classification. In European Chapter of the Association

for Computational Linguistics EACL’17, 2017.

[20] Corinna Cortes, Xavi Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, and Scott

Yang. Adanet: Adaptive structural learning of artificial neural networks. arXiv

preprint arXiv:1607.01097, 2016.

[21] Marc-Alexandre Côté and Hugo Larochelle. An infinite restricted boltzmann ma-

chine. Neural computation, 28:1265–1288, 2016.

[22] Wenyuan Dai, Gui-Rong Xue, Qiang Yang, and Yong Yu. Transferring naive bayes

classifiers for text classification. In Proceedings of the 22nd national conference on

Artificial intelligence-Volume 1, pages 540–545. AAAI Press, 2007.

REFERENCES 99

[23] Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017.

[24] Jose Dolz, Xiaopan Xu, Jerome Rony, Jing Yuan, Yang Liu, Eric Granger, Chris-

tian Desrosiers, Xi Zhang, Ismail Ben Ayed, and Hongbing Lu. Multi-region seg-

mentation of bladder cancer structures in MRI with progressive dilated convolu-

tional networks. arXiv preprint arXiv:1805.10720, 2018.

[25] Richard O Duda, Peter E Hart, and David G Stork. Pattern Classification 2nd

Edition. John Wiley & Sons, 2012.

[26] Marcus Edel and Enrico Köppe. Binarized-blstm-rnn based human activity recog-

nition. In Indoor Positioning and Indoor Navigation (IPIN), 2016 International

Conference on, pages 1–7. IEEE, 2016.

[27] Scott E Fahlman et al. An empirical study of learning speed in back-propagation

networks. 1988.

[28] Scott E Fahlman and Christian Lebiere. The cascade-correlation learning archi-

tecture. In Advances in Neural Information Processing Systems, pages 524–532,

1990.

[29] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from

few training examples: An incremental Bayesian approach tested on 101 object

categories. Computer vision and Image understanding, 106(1):59–70, 2007.

[30] Christoph Feichtenhofer, Axel Pinz, and Richard P Wildes. Temporal residual

networks for dynamic scene recognition. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4728–4737, 2017.

[31] Thomas Fritz, Elaine M Huang, Gail C Murphy, and Thomas Zimmermann. Per-

suasive technology in the real world: a study of long-term use of activity sensing

devices for fitness. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, pages 487–496. ACM, 2014.

[32] Szu-Wei Fu, Yu Tsao, and Xugang Lu. Snr-aware convolutional neural network

modeling for speech enhancement. In Interspeech, pages 3768–3772, 2016.

[33] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for

a mechanism of pattern recognition unaffected by shift in position. Biological

Cybernetics, 36(4):193–202, 1980. ISSN 1432-0770.

[34] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of

artistic style. arXiv preprint arXiv:1508.06576, 2015.

[35] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer

using convolutional neural networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 2414–2423, 2016.

http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1007/BF00344251
http://dx.doi.org/10.1007/BF00344251

100 REFERENCES

[36] Federico Girosi, Michael Jones, and Tomaso Poggio. Regularization theory and

neural networks architectures. Neural computation, 7(2):219–269, 1995.

[37] Benjamin Graham. Fractional max-pooling. arXiv preprint arXiv:1412.6071, 2014.

[38] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Con-

nectionist temporal classification: labelling unsegmented sequence data with re-

current neural networks. In Proceedings of the 23rd international conference on

Machine learning, pages 369–376. ACM, 2006.

[39] Alex Graves, Marcus Liwicki, Santiago Fernández, Roman Bertolami, Horst

Bunke, and Jürgen Schmidhuber. A novel connectionist system for unconstrained

handwriting recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 31(5):855–868, 2009.

[40] Yu Guan and Thomas Plötz. Ensembles of deep lstm learners for activity recog-

nition using wearables. Proceedings of the ACM on Interactive, Mobile, Wearable

and Ubiquitous Technologies, 1(2):11, 2017.

[41] Nils Y Hammerla, Shane Halloran, and Thomas Plötz. Deep, convolutional, and

recurrent models for human activity recognition using wearables. In Proceedings of

the Twenty-Fifth International Joint Conference on Artificial Intelligence, pages

1533–1540. AAAI Press, 2016.

[42] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep

neural network with pruning, trained quantization and huffman coding. CoRR,

abs/1510.00149, 2, 2015.

[43] K. He and J. Sun. Convolutional neural networks at constrained time cost. In 2015

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

5353–5360, June 2015.

[44] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pool-

ing in deep convolutional networks for visual recognition. In European conference

on computer vision, pages 346–361. Springer, 2014.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. CoRR, abs/1512.03385, 2015.

[46] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rec-

tifiers: Surpassing human-level performance on imagenet classification. In Proceed-

ings of the IEEE International Conference on Computer Vision, pages 1026–1034,

2015.

[47] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings

in deep residual networks. In European Conference on Computer Vision, pages

630–645. Springer, 2016.

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

REFERENCES 101

[48] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm

for deep belief nets. Neural Computation, 18(7):1527–1554, 2006.

[49] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-

putation, 9(8):1735–1780, 1997.

[50] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and

Kilian Weinberger. Multi-scale dense networks for resource efficient image classi-

fication. In International Conference on Learning Representations, 2018.

[51] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q Weinberger.

Densely connected convolutional networks. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 2261–2269. IEEE, 2017.

[52] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep

networks with stochastic depth. CoRR, abs/1603.09382, 2016.

[53] David H Hubel and Torsten N Wiesel. Receptive fields and functional architecture

of monkey striate cortex. The Journal of Physiology, 195(1):215–243, 1968.

[54] Tâm Huynh and Bernt Schiele. Analyzing features for activity recognition. In

Proceedings of the 2005 joint conference on Smart objects and ambient intelligence:

innovative context-aware services: usages and technologies, pages 159–163. ACM,

2005.

[55] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift. In Francis R. Bach and David M.

Blei, editors, ICML, volume 37 of JMLR Workshop and Conference Proceedings,

pages 448–456. JMLR.org, 2015.

[56] Chadawan Ittichaichareon, Siwat Suksri, and Thaweesak Yingthawornsuk. Speech

recognition using mfcc. In International Conference on Computer Graphics, Sim-

ulation and Modeling (ICGSM’2012) July, pages 28–29, 2012.

[57] J-SR Jang. Anfis: adaptive-network-based fuzzy inference system. IEEE transac-

tions on systems, man, and cybernetics, 23(3):665–685, 1993.

[58] Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng

Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, et al.

Google’s multilingual neural machine translation system: enabling zero-shot trans-

lation. arXiv preprint arXiv:1611.04558, 2016.

[59] Michael Jones and Paul Viola. Fast multi-view face detection. Mitsubishi Electric

Research Lab TR-20003-96, 3(14):2, 2003.

[60] V. Kadirkamanathan and M. Niranjan. A function estimation approach to sequen-

tial learning with neural networks. Neural Computation, 5:954–975, 1993.

https://openreview.net/forum?id=Hk2aImxAb
https://openreview.net/forum?id=Hk2aImxAb
http://arxiv.org/abs/1603.09382
http://arxiv.org/abs/1603.09382

102 REFERENCES

[61] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing

of GANs for improved quality, stability, and variation. In International Conference

on Learning Representations, 2018.

[62] Hak Gu Kim, Yeoreum Choi, and Yong Man Ro. Modality-bridge transfer learn-

ing for medical image classification. In Image and Signal Processing, BioMedical

Engineering and Informatics (CISP-BMEI), 2017 10th International Congress on,

pages 1–5. IEEE, 2017.

[63] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[64] Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and

Max Welling. Improved variational inference with inverse autoregressive flow. In

Proceedings of the 30th International Conference on Neural Information Processing

Systems, pages 4743–4751. Curran Associates Inc., 2016.

[65] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models

transfer better? arXiv preprint arXiv:1805.08974, 2018.

[66] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from

tiny images. 2009.

[67] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification

with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bot-

tou, and K. Q. Weinberger, editors, Advances in Neural Information Processing

Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[68] Mandar Kulkarni and Shirish Karande. Layer-wise training of deep networks using

kernel similarity. arXiv preprint arXiv:1703.07115, 2017.

[69] Oscar D Lara, Labrador, and Miguel A. A survey on human activity recognition

using wearable sensors. IEEE Communications Surveys and Tutorials, 15(3):1192–

1209, 2013.

[70] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-

deep neural networks without residuals. arXiv preprint arXiv:1605.07648, 2016.

[71] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to

handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

[72] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[73] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Convolutional

deep belief networks for scalable unsupervised learning of hierarchical represen-

tations. In Proceedings of the 26th annual international conference on machine

learning, pages 609–616. ACM, 2009.

https://openreview.net/forum?id=Hk99zCeAb
https://openreview.net/forum?id=Hk99zCeAb
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://yann.lecun.com/exdb/mnist/

REFERENCES 103

[74] Xiangang Li and Xihong Wu. Constructing long short-term memory based deep

recurrent neural networks for large vocabulary speech recognition. In Acoustics,

Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on,

pages 4520–4524. IEEE, 2015.

[75] Henry W Lin, Max Tegmark, and David Rolnick. Why does deep and cheap

learning work so well? Journal of Statistical Physics, 168(6):1223–1247, 2017.

[76] Tsung-Yi Lin, Priyal Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal

loss for dense object detection. IEEE transactions on pattern analysis and machine

intelligence, 2018.

[77] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face at-

tributes in the wild. In Proceedings of International Conference on Computer

Vision (ICCV), 2015.

[78] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks

for semantic segmentation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 3431–3440, 2015.

[79] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks

for semantic segmentation. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 3431–3440, 2015.

[80] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities

improve neural network acoustic models. In in ICML Workshop on Deep Learning

for Audio, Speech and Language Processing. Citeseer, 2013.

[81] Xiao-Jiao Mao, Chunhua Shen, and Yu-Bin Yang. Image restoration using

convolutional auto-encoders with symmetric skip connections. arXiv preprint

arXiv:1606.08921, 2016.

[82] Enrique S Marquez, Jonathon S Hare, and Mahesan Niranjan. Deep cascade

learning. IEEE Transactions on Neural Networks and Learning Systems, 2018.

[83] Daniel Martinho-Corbishley, Mark Nixon, and John N Carter. Super-fine at-

tributes with crowd prototyping. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2018.

[84] Daniel Martinho-Corbishley, Mark Nixon, and John N Carter. Super-fine at-

tributes with crowd prototyping. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2018.

[85] Zvika Marx, Michael T Rosenstein, Leslie Pack Kaelbling, and Thomas G Diet-

terich. Transfer learning with an ensemble of background tasks.

104 REFERENCES

[86] Grégoire Mesnil, Xiaodong He, Li Deng, and Yoshua Bengio. Investigation of

recurrent-neural-network architectures and learning methods for spoken language

understanding. In INTERSPEECH, pages 3771–3775, 2013.

[87] Marvin Minsky and Seymour Papert. Perceptrons : an introduction to computa-

tional geometry, 1969.

[88] P Moeskops and JPW Pluim. Isointense infant brain MRI segmentation with a

dilated convolutional neural network. In MICCAI Grand Challenge on iSeg-2017:

6-month infant brain MRI Segmentation, 2017.

[89] Fernando Moya Rueda, René Grzeszick, Gernot A Fink, Sascha Feldhorst, and

Michael ten Hompel. Convolutional neural networks for human activity recognition

using body-worn sensors. In Informatics, volume 5, page 26. Multidisciplinary

Digital Publishing Institute, 2018.

[90] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted

boltzmann machines. In Johannes Fürnkranz and Thorsten Joachims, editors,

Proceedings of the 27th International Conference on Machine Learning (ICML-

10), pages 807–814. Omnipress, 2010.

[91] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over

a large number of classes. In Computer Vision, Graphics & Image Processing,

2008. ICVGIP’08. Sixth Indian Conference on, pages 722–729. IEEE, 2008.

[92] Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov.

Tensorizing neural networks. In Advances in Neural Information Processing Sys-

tems, pages 442–450, 2015.

[93] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image

synthesis with auxiliary classifier gans. In International Conference on Machine

Learning, pages 2642–2651, 2017.

[94] Francisco Javier Ordonez, Gwenn Englebienne, Paula De Toledo, Tim

Van Kasteren, Araceli Sanchis, and Ben Krose. In-home activity recognition:

Bayesian inference for hidden markov models. IEEE Pervasive Computing, 13(3):

67–75, 2014.

[95] Francisco Javier Ordóñez and Daniel Roggen. Deep convolutional and lstm recur-

rent neural networks for multimodal wearable activity recognition. Sensors, 16(1):

115, 2016.

[96] John Platt. A resource-allocating network for function interpolation. Neural com-

putation, 3(2):213–225, 1991.

[97] Thomas Plötz, Nils Y Hammerla, and Patrick Olivier. Feature learning for activity

recognition in ubiquitous computing. In IJCAI Proceedings-International Joint

Conference on Artificial Intelligence, volume 22, page 1729, 2011.

http://opac.inria.fr/record=b1080139
http://opac.inria.fr/record=b1080139
http://www.icml2010.org/papers/432.pdf
http://www.icml2010.org/papers/432.pdf

REFERENCES 105

[98] H Ponce, L Miralles-Pechuán, et al. A novel wearable sensor-based human activ-

ity recognition approach using artificial hydrocarbon networks. Sensors (Basel,

Switzerland), 16(7), 2016.

[99] Lorien Y Pratt. Discriminability-based transfer between neural networks. In Ad-

vances in neural information processing systems, pages 204–211, 1993.

[100] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-

net: Imagenet classification using binary convolutional neural networks. arXiv

preprint arXiv:1603.05279, 2016.

[101] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look

once: Unified, real-time object detection. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 779–788, 2016.

[102] Attila Reiss and Didier Stricker. Introducing a new benchmarked dataset for

activity monitoring. In Wearable Computers (ISWC), 2012 16th International

Symposium on, pages 108–109. IEEE, 2012.

[103] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In Advances in neural

information processing systems, pages 91–99, 2015.

[104] Daniel Roggen, Alberto Calatroni, Mirco Rossi, Thomas Holleczek, Kilian Förster,

Gerhard Tröster, Paul Lukowicz, David Bannach, Gerald Pirkl, Alois Ferscha,

et al. Collecting complex activity datasets in highly rich networked sensor en-

vironments. In Networked Sensing Systems (INSS), 2010 Seventh International

Conference on, pages 233–240. IEEE, 2010.

[105] Daniel Roggen, Luis Ponce Cuspinera, Guilherme Pombo, Falah Ali, and Long-

Van Nguyen-Dinh. Limited-memory warping lcss for real-time low-power pattern

recognition in wireless nodes. In European Conference on Wireless Sensor Net-

works, pages 151–167. Springer, 2015.

[106] Frank Rosenblatt. The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological review, 65(6):386, 1958.

[107] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory of

brain mechanisms. Technical report, CORNELL AERONAUTICAL LAB INC

BUFFALO NY, 1961.

[108] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning rep-

resentations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[109] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.

106 REFERENCES

Imagenet large scale visual recognition challenge. International Journal of Com-

puter Vision, 115(3):211–252, 2015.

[110] Jorge Sánchez and Florent Perronnin. High-dimensional signature compression for

large-scale image classification. In CVPR 2011, pages 1665–1672. IEEE, 2011.

[111] Tom Sercu and Vaibhava Goel. Dense prediction on sequences with time-dilated

convolutions for speech recognition. arXiv preprint arXiv:1611.09288, 2016.

[112] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang,

and Russell Webb. Learning from simulated and unsupervised images through

adversarial training. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2107–2116, 2017.

[113] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural

networks via information. arXiv preprint arXiv:1703.00810, 2017.

[114] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. CoRR, abs/1409.1556, 2014.

[115] Satinder Pal Singh. Transfer of learning by composing solutions of elemental

sequential tasks. Machine Learning, 8(3-4):323–339, 1992.

[116] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Ried-

miller. Striving for simplicity: The all convolutional net. CoRR, abs/1412.6806,

2014.

[117] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfit-

ting. The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[118] Allan Stisen, Henrik Blunck, Sourav Bhattacharya, Thor Siiger Prentow,

Mikkel Baun Kjærgaard, Anind Dey, Tobias Sonne, and Mads Møller Jensen.

Smart devices are different: Assessing and mitigatingmobile sensing hetero-

geneities for activity recognition. In Proceedings of the 13th ACM Conference

on Embedded Networked Sensor Systems, pages 127–140. ACM, 2015.

[119] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with

neural networks. In Advances in Neural Information Processing Systems, pages

3104–3112, 2014.

[120] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1–9, 2015.

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1412.6806

REFERENCES 107

[121] Christian Szegedy, Alexander Toshev, and Dumitru Erhan. Deep neural networks

for object detection. In Advances in Neural Information Processing Systems, pages

2553–2561, 2013.

[122] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface:

Closing the gap to human-level performance in face verification. In The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), June 2014.

[123] Matthew E. Taylor, Gregory Kuhlmann, and Peter Stone. Accelerating search

with transferred heuristics. In ICAPS-07 workshop on AI Planning and Learning,

September 2007.

[124] Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of Research on

Machine Learning Applications and Trends: Algorithms, Methods, and Techniques,

pages 242–264. IGI Global, 2010.

[125] Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave

like ensembles of relatively shallow networks. In Advances in Neural Information

Processing Systems, pages 550–558, 2016.

[126] Di Wang, Edwin Candinegara, Junhui Hou, Ah-Hwee Tan, and Chunyan Miao.

Robust human activity recognition using lesser number of wearable sensors. In Se-

curity, Pattern Analysis, and Cybernetics (SPAC), 2017 International Conference

on, pages 290–295. IEEE, 2017.

[127] Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from

scratch with deep neural networks: A strong baseline. In Neural Networks

(IJCNN), 2017 International Joint Conference on, pages 1578–1585. IEEE, 2017.

[128] Bernard Widrow and Samuel D. Stearns. Adaptive Signal Processing. Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 1985. ISBN 0-13-004029-0.

[129] Ronald J Williams and David Zipser. A learning algorithm for continually running

fully recurrent neural networks. Neural computation, 1(2):270–280, 1989.

[130] Jelmer M Wolterink, Tim Leiner, Max A Viergever, and Ivana Išgum. Dilated

convolutional neural networks for cardiovascular mr segmentation in congenital

heart disease. In Reconstruction, Segmentation, and Analysis of Medical Images,

pages 95–102. Springer, 2016.

[131] Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, and Tarek Abdelzaher.

Deepsense: A unified deep learning framework for time-series mobile sensing data

processing. In Proceedings of the 26th International Conference on World Wide

Web, pages 351–360. International World Wide Web Conferences Steering Com-

mittee, 2017.

http://www.cs.utexas.edu/users/ai-lab/?ICAPS07WS-taylor
http://www.cs.utexas.edu/users/ai-lab/?ICAPS07WS-taylor

108 REFERENCES

[132] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are

features in deep neural networks? In Advances in neural information processing

systems, pages 3320–3328, 2014.

[133] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated residual networks.

In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on,

pages 636–644. IEEE, 2017.

[134] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701, 2012.

[135] Yusen Zhan and Mattew E Taylor. Online transfer learning in reinforcement

learning domains. In 2015 AAAI Fall Symposium Series, 2015.

[136] Yan Zhang, Jonathon Hare, and Adam Prgel-Bennett. Learning to count objects

in natural images for visual question answering. In International Conference on

Learning Representations, 2018.

[137] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia.

Pyramid scene parsing network. In Computer Vision and Pattern Recognition

(CVPR), 2017 IEEE Conference on, pages 6230–6239. IEEE, 2017.

[138] Yi Zheng, Qi Liu, Enhong Chen, Yong Ge, and J Leon Zhao. Time series classifi-

cation using multi-channels deep convolutional neural networks. In International

Conference on Web-Age Information Management, pages 298–310. Springer, 2014.

https://openreview.net/forum?id=B12Js_yRb
https://openreview.net/forum?id=B12Js_yRb

	Declaration of Authorship
	Acknowledgements
	1 Context & Contributions
	2 Deep Learning
	2.1 Relevant concepts & state-of-the-art in DL
	2.2 Deep Learning for Computer Vision
	2.2.1 Transfer Learning
	2.2.2 Metrics performance
	2.2.3 Datasets
	2.2.3.1 MNIST
	2.2.3.2 CIFAR-10/100
	2.2.3.3 ImageNet

	2.3 Limitations of Deep Learning in Computer Vision
	2.4 Deep Learning for Signal Processing
	2.5 Time Series Classification
	2.6 Summary

	3 Layer wise training
	3.1 Cascade Correlation
	3.2 Adaptive architectures
	3.2.1 Resource-Allocating Networks (RAN)
	3.2.2 Adaptive-Network-Based Fuzzy Inference (ANFIS)

	3.3 Deep Belief Networks (DBNs)
	3.3.1 Convolutional DBNs (CDBN)

	3.4 Layer-wise training using kernel similarity
	3.5 AdaNet
	3.6 Progressive Generative Adversarial Networks (PGGANs)
	3.7 Summary

	4 Cascade Learning Architecture for Deep Convolutional Neural Networks
	4.1 The Deep Cascade Learning Algorithm
	4.1.1 Algorithm description
	4.1.2 Cascade Learning as supervised pre-training algorithm
	4.1.3 Time Complexity
	4.1.4 Space complexity

	4.2 Experiments
	4.2.1 Datasets
	4.2.1.1 CIFAR-10
	Space complexity and output block specifications.
	Training time complexity and relationship with depth and starting number of epochs.

	4.2.2 The All CNN
	4.2.2.1 CIFAR-100
	4.2.2.2 Pre-training with cascade learning

	4.3 Summary

	5 Cascade Transfer Learning
	5.1 Background
	5.2 Cascading pre-trained networks
	5.2.1 Algorithm Complexity

	5.3 Algorithm Hyperparameters
	5.4 Using early classifiers for resource efficiency
	5.5 Experimental Setup
	5.5.1 Datasets
	5.5.2 Models

	5.6 Measuring transferability
	5.7 Effect of the number of residuals & starting stage
	5.7.1 Number of residuals
	5.7.2 Starting stage

	5.8 Performance versus memory
	5.9 Summary

	6 Cascade Learning for Human Activity Recognition
	6.1 Human Activity Recognition
	6.2 Deep Learning for Human Activity Recognition
	6.2.1 Long-short Term Memory Networks (LSTM)
	6.2.2 Convolutional Neural Networks (CNNs)
	6.2.2.1 Temporal Convolution
	6.2.2.2 Residual Networks
	6.2.2.3 Dilated Networks

	6.3 Datasets
	6.3.1 Opportunity
	6.3.2 PAMAP2
	6.3.3 Daphnet Gait

	6.4 Experimental setup
	6.5 Results
	6.5.1 Cascading ResNets for HAR
	6.5.2 Comparison with state-of-the-art
	6.5.2.1 PAMAP2
	6.5.2.2 DaphNet
	6.5.2.3 Opportunity

	6.5.3 Subject wise cross-validation
	6.5.4 Sampling Frequency effect on Temporal ResNets
	6.5.5 Noise tolerance
	6.5.6 Discussion

	6.6 Summary

	7 Conclusions & Future Work
	References

