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En-route charging stations are required to ensure the adoption of Electric Vehicles. However,

careful planning is necessary due to high cost in infrastructure and potential queues, and litera-

ture on charging station competition is scarce. To address this and similar problems, this thesis

proposes a versatile game-theoretic model for investor competition, where competing firm in-

vestors aim to maximise individual net profit by choosing locations, capacities, prices and the

speed of service at their firms. On the other hand, self-interested customers aim to minimise

the expected cost of acquiring the service firms sell. This includes a cost to access each firm,

the fee for the service and an expected cost due to congestion at the firm. In addition, extra-

neous competition outside the investor system is considered as an option for customers. The

solution combines analytical and algorithmic techniques to obtain subgame-perfect equilibria,

and enables to assess both qualitative and quantitative aspects of firm competition. The model

is applied to building charging stations for Electric Vehicles, and it is shown theoretically and

empirically that equilibrium charging prices deviate upward of the marginal charging cost due to

the inability to satisfy charging demand immediately, even with vast improvements in charging

technology. Further results show that private investors will prefer to compete on the same route,

because stations on longer routes have to set lower prices at their stations and this consists a

significant disadvantage. Moreover, the more drivers are willing to pay in order to save time

from their journey, the more investors will increase their profits at the expense of drivers. The

inclusion of price choice and extraneous competition reinforces the existence of pure strategy

Nash equilibria in capacity choice, and SPE solutions are highly efficient compared to optimal

firm allocations when it comes to system-wide social welfare. Last, this thesis examines subsi-

dies to stations as incentives to expanding rapid charging stations. Results show that subsidising

the purchase of charging units for stations can have a significant beneficial effect for both EV

drivers and station investors. In contrast, subsidies on the energy price for stations could pro-

vide incentive to investors to reduce capacities and increase prices. Finally, it is shown how the

proposed model can be used to calculate the monetary gain or loss for drivers and investors due

to subsidies, and to determine optimal subsidy levels according to certain requirements.
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Nomenclature

Abbreviations

EV Electric Vehicle

NE Nash equilibrium(a)

PoA Price of Anarchy

SLCOP Station Location, Capacity, charger Output and charging Price decision

SPE(s) Subgame-Perfect Equilibrium(a)

UK United Kingdom

Mathematical Symbols

∗ Used in the power of a symbol to denote that it comes from or is an equilibrium.
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Chapter 1

Introduction

Electric vehicles (EVs) benefit from zero direct emissions. Of course, the electricity they use

comes at the cost of emissions in power generation for the grid. For modern EVs, however, these

indirect emissions are already less per EV than the emissions of a conventional fossil-fueled

vehicle (Holdway et al., 2010). Energy generation from renewable sources, like wind or sunlight,

is becoming increasingly popular and energy production technology is constantly refined. At

the same time, alternative energy sources like solar panels are already widely available at a

consumer level. Consequently, the EV market is likely to benefit increasingly in the coming

years as power generation becomes greener.

For these reasons, the popularisation of EVs has become a long-term goal for some of the more

economically developed countries’ governments. In the UK, a study was commissioned by the

Committee on Climate Change regarding how the de-carbonisation of the vehicle fleet could be

achieved. The Committee’s target is for both pure and hybrid EVs to have a 16% market share

by 2020, a 60% share by 2030 and finally for zero emission EVs to have 100% market share

by 2040, in order for the total de-carbonisation of the fleet to be achieved by 2050. That study

concluded that the EVs’ limitations in range together with long charging times are the main

reasons why they are not yet popular. At the moment the study was carried out, the committee

deemed the charging infrastructure as sufficient for the country’s EV fleet. However, due to

the drivers’ need to drive longer distances, it is believed that investing in more infrastructure

can help break the barrier of the initial adoption of EVs. As a result, developing an extensive,

well-planned network of rapid charging stations would be the best course of action in order

to boost confidence in EVs (Element Energy et al., 2013). Furthermore, despite the fact that

rapid charging is believed to deteriorate battery lifetime more quickly and puts more strain

on the power grid, only rapid charging can effectively extend the range of EVs (Botsford and

Szczepanek, 2009).

The aforementioned concerns about the small range and slow charging times of EVs are well

founded. Top of the line luxury EVs, such as the Tesla model S, are capable of performing trips

of up to 200-260 miles on a single charge, but most affordable EVs like the Nissan Leaf only

1
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have a range of 75-120 miles1. Furthermore, depending on battery capacity, EVs can take up

to 4-12 hours to recharge in slow charging stations, while charging at rapid charging stations

can be as fast as 30 minutes for an 80% charge2. Moreover, other studies are in agreement with

the need for expanding en-route charging networks, as providing more charging infrastructure

is also believed to be more cost efficient than investing in bigger batteries (Morrow et al., 2008).

In the UK, there currently exists a network of rapid charging stations3 but the vast majority are

slow park ’n charge stations (3-7kW output). Most rapid charging stations (30kW output or

more) are focused at the highway arteries of the North-South route, and are typically of small

capacity4. They mostly feature up to three charging units, which means only very few vehicles

can recharge at a station every half an hour -which is the time needed to fill the battery to a

sufficient level with a typical 50kW DC charger. This situation can lead to long queues if the

traffic flow toward stations increases, which in turn can be detrimental to total travel time to

reach a destination.

Thus, expanding this en-route rapid charging network is very important to popularising EVs and

to increasing their effective trip range. However, arbitrary expansion could prove catastrophic

to some private investors. At the same time, maintaining reasonable driver convenience by

minimising queuing times is going to be challenging as EVs become increasingly popular and

the charging market is privatised. As a result, such an undertaking necessitates planning the

locations and capacities of charging stations, which in turn is a problem contingent on both the

convenience of EV drivers and the cost for charging station owners.

Having established the necessity for planning en-route rapid charging stations, by taking into

account the general constraints of EV driver convenience and investor profit, in Section 1.1 the

research problem this thesis will discuss will be defined in more detail.

1.1 Research Problem

An expansion of the rapid charging station network can be achieved by increasing the capacity

of existing stations, by building new ones or by both. Consequently, questions arise concerning

the locations stations should be built at, their capacity and charging prices as well as what type of

charging units they should use. Furthermore, questions arise on whether existing stations should

be expanded, retained or even abandoned. In addition, considering private investors includes

answering substantive questions such as what incentives can be given to private investors, what

forms of subsidies can be effective and how much should stations be subsidised by, and how

much drivers are going to pay for recharging. Addressing these questions is going to be the

basis of this work. This problem will be referred to as the “Station Location, Capacity, charger
1According to the U.S. Department of Energy database: https://www.fueleconomy.gov
2According to ChargingPoint: http://thechargingpoint.azurewebsites.net/
3See https://www.nextgreencar.com/electric-cars/charging-points/
4Number of charging units
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Output and charging Price decision problem”, in short SLCOP from now on. As was identified

in the Introduction earlier, this problem consists of two main aspects; that of driver convenience

and that of profit maximisation for station owners.

Let us now briefly examine the SLCOP problem from the EV drivers’ point of view. It is

reasonable to consider that drivers are selfish in the sense that they generally wish to spend

the minimum amount of time traveling. At the same time, drivers also wish to refuel paying

the least amount of money possible. However, drivers usually are not myopically biased toward

achieving the very minimum travel time or the very minimum refueling price, but it is reasonable

to assess that a trade-off between travel time and monetary costs is involved when deciding their

journey. That is especially expected to be so in the case of EV drivers, who in addition to travel

time and refuelling cost also have to take into account potential queues at charging stations and

waiting time for recharging. Drivers can obtain such information either through a navigation

device that communicates station information, or they can learn it empirically through using the

road network. Then it is evident that as long as an EV driver needs to recharge, station choice

depends on expected travel times for the routes that lead to the desired destination, the potential

choices of other EV drivers, station locations and capacities5, recharging fees and charging unit

specifications.

With regard to charging stations, owners are expected to behave selfishly in the sense that their

actions are motivated by individual profit. When the owner is a private investor, it is reasonable

to consider that they would not want to sacrifice any portion of their profit, so as another could

enlarge theirs. Additionally, whereas the state may open stations that are not economically

viable for a variety of reasons, it makes no sense for private investors to do so. A high-level

viewpoint on charging station profit reveals that profit depends on the number of vehicles that

recharge at a station, the charging fee at the station, and the cost for the station to recharge each

EV. Since a station’s profit is reliant on EV traffic flow through the station, in conjunction with

the EV driver behaviour analysed above, then station profit additionally depends on the location,

capacity and the power output of charging units at the station. Thus expected profit depends on

the potential decisions of EV drivers, the location, capacity and charging unit output at the

station, the charging fee at the station, as well as the locations, capacities, outputs and fees of

other competing stations. Finally, each station has a building cost which is particular to that

station’s location, capacity and the type of charging units. As a direct consequence, the problem

of station location and capacity decision is, in the end, a problem of net profit maximisation

from the station owners’ point of view (Jia et al., 2012; Sadeghi-Barzani et al., 2014).

Another observation at this point is that the routing problem for the drivers is actually in conflict

with station owners’ interests. This happens because reducing travel costs (in time and money)

for the drivers, is also contingent on reducing the length of potential queues and charging prices

at the stations. As a result, in order for drivers to be accommodated, owners have to invest in

increasing their stations’ capacities to a level that guarantees desirable queuing times. Investors

could expand their stations arbitrarily or by trial and error seeing how driver flows are influenced,
5i.e. the number of charging units at stations
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but this would be a lengthy and costly procedure. Instead, it would be best to suggest a solution

to investors that takes all the aforementioned factors into account, and which investors have

incentive to follow.

To summarise, an EV driver’s station choice partly depends on the capacities and prices at sta-

tions, because a lower queuing time combined with low charging cost will make the station

more desirable. At the same time a station investor’s business plan is then dependent on drivers’

choices, as profit is directly influenced by them. Thus, questions arise about the best course of

action for station investors, so that profit is guaranteed and drivers’ needs are taken into account.

To this end, our research problem is to find a solution for determining station locations, capac-

ities, charging unit power outputs and prices, so that the station owners’ profits are maximised,

while at the same time travel costs (time cost and monetary cost) for EV drivers are minimal.

The SLCOP problem was defined here explicitly, however it can be similar to various firm com-

petition scenarios where investors can set locations, the number of servers and the speed of

service, as well as prices. That is true as long as customers choose which firm to obtain the

service from, based on some cost expectancy that depends on customer congestion at firms. The

SLCOP problem is, for example similar to network pricing problems such as the one presented

in Hayrapetyan et al. (2007), albeit more complex. An example that shows many similarities is

selling cloud services especially in a Platforms as a Service (PaaS) context. There, providers

offer developing tools to customers who build services and deploy them through the provider’s

cloud. It becomes apparent that the performance of these services may depend on the number of

other services the provider hosts, and customers may be faced with similar issues when choos-

ing a provider for their service. Furthermore, Software as a Service (SaaS) cloud providers offer

different software packages to customers who use them through the cloud, and the performance

of these packages may again depend on the number of customers who use them. Choosing an

Internet provider can also be formulated similarly, where customers may experience reduced

connection speed and latency due to congestion at peak hours, and providers can set their ser-

vice’s price, as well as make various decisions on infrastructure. A final example can be invest-

ing in coffee shops, where the investor can choose better infrastructure and/or more experienced

staff to improve service, and the customer may have to wait in line to get served during peak

hours (e.g. when going to work).

1.2 Research Objectives

In the context of EV charging, the research problem is motivated by the hypothesis that if we

optimise competing charging station locations, capacities and prices by including consideration

for how drivers choose routes, then the welfare of drivers should improve. At the same time,

it should also result in an economically sustainable station network with predictable profit for

investors. The goal is to achieve the best of both worlds, as maximising profit or minimising

travel costs individually can have severe consequences for investors and drivers.
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As we will see in Chapter 2, the vast majority of literature related to EV charging station al-

location optimisation deals with state monopolies and offers little insight into the practical and

theoretical aspects of charging station competition. Although the public sector does indeed op-

erate a large number of charging points, even today a large portion of the charging station market

is private, especially when it comes to rapid charging. With the energy market becoming more

and more competitive, it is unreasonable to consider that there can exist a public monopoly in

EV charging, in developed free markets. Thus an important motive for and objective of this

work is to delve more deeply into charging station competition, and analyse quantitative and

qualitative characteristics and idiosyncrasies that may emerge.

A further objective of this work will be to examine how incentives to private investors can

improve the quality of the road network for EV drivers. It is not uncommon in many market

sectors, such as the energy sector, for governments to subsidise goods and services, either to

improve their quality or to guarantee their delivery. Thus it would be interesting to know what

forms of subsidies can help drivers and investors, and to develop a methodology for evaluating

those subsidies.

The above notions, in conjunction with the problem in Section 1.1, lead to the research question

of determining the optimal locations, capacities, charging unit power outputs and prices of

charging stations, so that competing station investors can maximise their profit at the same

time the drivers minimise their travel costs, while still operating within their selfish interests.

The objectives, therefore, consist not only of finding a final solution to the research problem,

but also of analysing the complex behaviour of the customer-investor system in the process of

designing a solution.

1.3 Research Requirements

In order to solve the SLCOP and similar problems, and to achieve the objectives set previously,

the behaviour of customers and firm investors must be considered. This means that any solution

must include the economic and behavioural aspects of customers and investors, as well as some

more specific, derived requirements which emerge from the research problem in Section 1.1.

The requirements for solving the category of problems similar to the SLCOP are the following:

1. Customers are self-interested and choose the firm which minimises their expected cost of

acquiring the service. This includes a cost to access the firm, the fee for being served, as

well as the expected queuing (or congestion) cost at the firm.

2. We need to consider expected queuing at firms, which depends on the number of cus-

tomers arriving at each firm, and the number and type of servers at the firm.

3. Expected queuing cost thus indicates that a customer’s choice of firm depends on other

customers’ potential choices.
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4. Firm investors are self-interested and their choices are motivated by maximising long-term

expected profit.

5. A firm’s long-term expected profit depends on the potential decisions of customers, the

number and type of servers, the fee for the service and, finally the firm’s building cost.

6. The building cost of a firm depends on its location, and the number and type of servers.

7. Firm investors can choose different locations, numbers and types of servers, and prices at

their firms.

A characteristic of the model, which as we will see later on, is that it is computationally complex

when it comes to investor choices. It is not unusual to make simplifying assumptions in complex

models, and it will be done so. It will be challenging, however, to make simplifications that will

not obstruct the research objectives that were set in Section 1.2 and that will not prevent from

reaching a useful solution.

1.4 Research Contributions

To address the problem identified in Section 1.1, this thesis proposes a general model for firm

competition that utilises game theory. A three-stage extensive-form game is defined, each stage

of which addresses a component of the SLCOP problem as it was defined in Section 1.1. In this

game, customers and firm investors behave selfishly and their desires are modelled using utility

theory. A non-coordination scenario for the customers’ choice of firm is considered to be repre-

sented by mixed strategy Nash equilibria. Furthermore, the Nash equilibrium of the investors’

decisions is also considered, and solutions are obtained by combining the mixed strategy Nash

equilibrium for the customers and the pure strategy Nash equilibria for investors through the

concept of Subgame-Perfect Equilibrium (SPE).

The idea behind this is that a SPE will provide a solution that represents the best customers

and investors can do while operating within their selfish interests. Consequently investors have

incentive to follow a SPE solution. This process may result in more than one subgame-perfect

equilibria. Choosing a final solution out of those can be done according to the requirements of

the planner (government, private trust). For example, one can choose that equilibrium which

maximises the customers’ welfare. The model is evaluated, in the context of the SLCOP prob-

lem, using mostly duopoly examples which are straightforward to manipulate and to interpret

behaviourally. However, the model can be used in a larger scale and also to represent other firm

competition scenarios where customer and investor behaviour can be abstracted similarly.

This approach advances the state of the art in firm competition and charging station allocation

optimisation in the following ways:
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1. This work expands upon current literature in firm competition to highlight interesting

properties theoretically and empirically. Toward this, a game-theoretic model that models

both customer and firm investor behaviour is utilised. The model is the first to combine

aspects that include stochastic queuing times, prices, the number of servers and the speed

of each server, locations, building and operational costs, investor competition and extrane-

ous competition. In the model, investors can own several firms that sell the same product

or service, and make several decisions about their firms. Customers, choose which firm

to obtain the service from based on the expected cost of acquiring the service, which in

turn depends on customer congestion at firms. The model is solved through a combi-

nation of theoretical and algorithmic techniques to obtain subgame-perfect equilibria in

investor and customer choices. The model is novel in that it combines several aspects

from network pricing games, Stackelberg games and spatial competition. It is shown that

subgame-perfect equilibria are highly efficient solutions for the social welfare of firms

and customers, compared to optimal firm allocations, showing worst-case efficiency of

93% within reasonable competition constraints.

2. The model is applied in representing a more abstract form of the electric vehicle charging

station location, capacity, charging unit power output and charging price decision prob-

lem. This models the interdependency between EV driver and station investor choices,

that exists through prices and queues at stations. Current literature in charging station

allocation generally disregards competition and the market dynamics of the SLCOP prob-

lem, with many models considering static traffic flows from conventional vehicle data, or

disregarding queues and/or prices. It is shown in this thesis that the more EV drivers are

willing to pay in order to save time, the more station investors will take advantage of them

and increase profit at the drivers’ expense. Furthermore, it is also shown that the more EV

drivers are inclined toward using their EVs, the more station investors will take advantage

of them.

3. Existing literature that considers charging prices generally sets them at marginal cost, un-

der the framework of a state monopoly. Literature on firm competition shows that service

prices may deviate from the marginal charging cost due to goods differentiation. This

work confirms this finding theoretically and empirically through product heterogeneity

that is induced by different costs to access firms. This implicitly means that investors

would rather compete on the same than different locations. However, this work also finds

that in the SLCOP and similar problems prices will be higher from the marginal cost due

to the fact that demand may not be satisfied at once. For example, in the case of the

SLCOP problem immediate demand satisfaction requires charging units with extremely

high power output.

4. This thesis shows empirically that subsidising the building costs for charging units at

stations has a significant beneficial effect for drivers and stations. On the other hand, sub-

sidising the price of electricity for stations can cause private investors to decrease capacity

and increase prices. Furthermore, subsidising investors to build on disadvantageous routes
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can have a harmful effect to other investors. Last, it is shown that with the proposed model

it is possible to determine the monetary gain due to the subsidy for stations and drivers,

and to calculate optimal subsidies according to a variety of criteria.

1.5 Thesis Outline

The remainder of this thesis is organised as follows:

- Chapter 2 examines literature related to charging station allocation optimisation, charg-

ing station and more general firm competition, and electric vehicle driver behaviour. In

addition, an overview relevant game-theoretic concepts is provided.

- Chapter 3 presents the formal model for this work. Firm investor and customer choices

are modelled as normal-form games. These are combined into a three-stage extensive

form game where investors first choose locations, capacities and the speed of service for

their firms, then investors choose prices at their firms, and last customers choose among

firms stochastically based on these. The game is solved by backward induction in order

to obtain subgame-perfect equilibria. The Chapter also presents a theoretical evaluation

of the model, and performance metrics are defined.

- Chapter 4 evaluates the customers’ model and the investors’ choice of capacity empiri-

cally, in the context of EV charging station capacity competition.

- Chapter 5 extends the empirical analysis to pricing competition, in the context of the

SLCOP problem, to confirm the behaviour shown in the theoretical analysis of Chapter

3, and to extract new qualitative properties of investor competition. Furthermore, the

possibility that only an uncertain portion of demand may be satisfied is evaluated, and it

is shown that the model is robust against reasonable variations in important parameters.

Moreover subgame-perfect equilibria are found to be highly efficient for system-wide

utility compared to optimal charging station allocations.

- Chapter 6 presents an evaluation of the location and speed of service choices investors

make, defines metrics for evaluating the efficiency of subsidies to investors, and the model

is used to examine the effectiveness of subsidies toward the purchase of charging units,

and toward the cost of electricity for private EV charging stations.

- Chapter 7 presents an overview of the conclusions that have been reached throughout the

thesis and proposes future improvements.



Chapter 2

Background

In this chapter we will discuss current literature that is relevant to the SLCOP problem which

we analysed in the previous chapter. In addition, this chapter provides some background in

game theory that is necessary to understand and discuss this work. More specifically, Section

2.1 provides an overview of solutions for charging station monopolies and Section 2.2 discusses

additional monopolies with consideration for power requirements. Section 2.3 provides back-

ground in game theory concepts relevant to this work. Next, relevant competitive market models

are presented in Section 2.4, while EV driver behaviour is discussed in Section 2.5. Last, Sec-

tion 2.6 provides an overview of some alternatives to rapid charging, and Section 2.7 concludes

this chapter with a short summary.

2.1 Monopolistic Models

Literature relevant to the general charging station allocation optimisation problem mainly fo-

cuses on allocating stations in monopolistic markets. While there are vast amounts of papers

that delve into charging station monopolies, these will not all be presented as they do not di-

rectly relate to the research problem this thesis examines. The papers that will be reviewed in

this section, therefore, are characteristic of the assumptions made in monopolies. Allocation is

done according to various criteria, but generally few papers address some form of the economic

aspect of expanding charging station networks, and even fewer consider some form of profit or

queues.

One work that examines the profit of stations is presented by Jia et al. (2012), who introduce

a model that optimises the number, locations and capacities of charging stations in order to

minimise the overall investment and operational cost. In their model, they use real-world con-

ventional vehicle data to determine how much time vehicles remain stationary and they define

the “vehicle hours” unit, which is the product of the number of vehicles and their corresponding

time of stay at one place. It is assumed that the larger the vehicle hours at one place, the larger

9
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the demand for charging will be in that place. They abstract the road network into a graph and

vehicle hours from neighbouring places are aggregated into the corresponding node of the graph

to determine charging demand. Furthermore, they consider the cost of a station’s construction

and operation, by taking into account the aforementioned demand, and also consider the cost

of charging for drivers. They define a mixed-integer quadratic programming problem with an

objective function that aims to minimise the integrated cost of investment and operation. Driver

behavioural patterns are taken into account for generating vehicle routes (traffic flows) utilising

a shortest path algorithm. Finally, although it is assumed that vehicle hours is an indicative

measure of charge demand, it is not clear what the unit exactly represents given that real-world

vehicle data are utilised and that drivers in reality may spend time in one place for a variety of

reasons (e.g. traffic).

Their approach to economic modeling though is consistent with the approach of Sadeghi-Barzani

et al. (2014), who emphasise that rapid charging is critical to the success of EVs. They consider

the development and electrification cost of stations, which they formulate similarly to the previ-

ous approach. Additionally, the cost of power losses in the grid due to EVs charging is also taken

into account. A mixed-integer non-linear problem is formulated, with the aim of minimising the

aforementioned costs, which the authors solve with the help of a genetic algorithm. Both these

papers presented above focus purely on the economic aspect of the station allocation problem

for a monopoly. Although these model a problem quite different from the SLCOP (Section 1.1),

some economic aspects presented such as a linear cost with respect to stations’ capacities, and

the costs of power losses are useful to take into account given the requirements that were set in

Section 1.3.

In addition to station development cost, Hess et al. (2012) consider the routing problem for the

EVs. In their model, vehicles travel until they detect a low battery state. Meanwhile, they receive

advertisements of stations via ad-hoc or cellular networks, and they divert to the closest stations

when needed. The economic aspect is also modeled, by considering finite resources, building

cost and capacity as well, but this does not include a profit model. Genetic programming is

used to obtain a set of feasible solutions for station locations and capacities, by minimising the

stations’ development cost as well as average trip time for drivers. By doing so, the aspect of

driver happiness is also addressed. Although parameters such as vehicle routes, travel time and

capacities are taken into account, drivers still divert to the closest station without considering

queues. Furthermore, initial route planning does not consider the fact that vehicles will need

to recharge, thus vehicle routes depend solely on the destination. An additional approach that

examines the routing problem is presented by Worley et al. (2012), who propose a model for

finding an optimal set of routes and station locations for commercial goods delivery vehicles.

In this model, vehicles originating from one depot (which is always a charging station) must

satisfy all the delivery demands without travelling more than their range without recharging. In

their model they define driver convenience in terms of cost in utility and they also consider the

cost of recharging and the investment cost. They find an optimal solution to their problem via an

objective function, that minimises the sum of travel costs, recharging costs and costs of locating
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charging stations. This model, however, refers to a version of the problem that is more similar

to the travelling salesman problem, rather than a generalised, real-world transportation network

with a large volume of vehicles. As a result, queuing is not present as a concept here either

and instead focus is shifted toward the reduction of total delivery costs for the courier company,

which also owns the stations. Finally, the goal of the drivers is to go through pre-determined

delivery way-points and consequently routes are largely pre-determined by the deliveries they

have to fulfill, something which results in station locations adjusting to vehicle routes, rather

than route selection adjusting as well.

Lam et al. (2014) introduce population coverage, in addition to considering routing. Their

project’s aim is for the stations to achieve maximum population coverage, while at the same time

routes are served more efficiently. They formulate the problem on the basis of charge demand at

the nodes of their undirected graph and additionally include traffic conditions and queues. They

formulate a mixed-integer linear programming problem and also propose a greedy algorithm as

an alternative. The optimisation is based on station coverage and the convenience of drivers.

However, because the driver convenience aspect is examined on a minimum distance travelled

basis, queues do not influence the decision of drivers, but rather only influence the location

and capacity for the stations. Similarly, Wang et al. (2010a) propose a model with the aim of

maximising population coverage, in which they account for factors such as the distribution of

charging demand, municipal planning, the power grid and energy consumption. Their algorithm

is based on charging demand priority and the usage of existing gas stations. If demand in an area

is high and there is a gas station nearby, that station is utilised. However, there is no concept of

driver convenience present, apart from serving an area’s population adequately. Additionally, in

these two last examples no economy is taken into account.

To include both some form of economy and driver convenience, Wang and Wang (2010b) pro-

pose a solution which includes with the dual objectives of minimising locating cost and max-

imising population coverage. The model takes into account only the traffic flows of the shortest

paths between cities for intercity journeys and assumes the capacity of stations is unlimited.

Furthermore, it is assumed that the cost of locating stations is the same for every station. Their

algorithm balances location cost against population coverage, so again traffic flows do not adapt

to the positions of stations, but only the stations adapt to the given flows. In this approach,

considering only the shortest path routes is restrictive in the sense that it discards the concept

of potential combinations of non-shortest path choices that may, however, result in lower travel

time. The observation on static traffic flows is characteristic in the work of Hiwatari et al. (2011),

in which a road traffic simulator is presented with the goal of analysing the layout of charging

infrastructure. Their goal is to reduce the number of EVs running out of power. Traffic data is

used from house surveys in Japan and trips are generated according to this data. Their model

takes into account many temporal variables such as consumption rate and charge, as well as

station capacities. The idea behind their approach is that stations should be located in locations

where many EVs run out of power. The model consists of the EV layer and the station layer.

Initially, an arbitrary number of stations is chosen and are spread uniformly over the area under
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examination. The locations of the stations are then transferred to the EV layer, the simulations

are carried out and the locations where EVs have run out of power are transferred to the station

layer. Finally, the stations are rearranged according to the locations where EVs ran out of power

and their capacity is optimised. In the station layer, stations are free-floating positively charged

particles and EVs static negatively charged particles. The stations are rearranged autonomously

this way due to the attraction force between stations and EVs and the repulsion force between

stations. They show that the percentage of EVs running out of power is reduced successively

and significantly as the process is iterated.

All these approaches consider monopolistic markets but this thesis argues that monopoly in EV

charging is not realistic in developed free markets and that it is of interest to examine charging

station competition. Moreover, while some economic aspects are included, these are not enough

to capture the interactions between private station investors. Finally, we saw that some works

consider EV driver convenience, but this is largely defined as the ability of stations to capture

incoming static traffic, and not traffic that dynamically changes due to the presence of stations.

2.2 Power Distribution Models

In the previous section we reviewed literature that includes some form of the economic aspect

or the driver convenience aspect of the charging station allocation problem. In addition to these,

other researchers design monopolistic models from an engineering perspective. Such is the work

of Ge et al. (2011), whose aim is to allocate stations and capacities in such a way that the users’

cost of power losses on the way to the station is minimised. They calculate charge demand nodes

from real-world traffic data and choose the best location for a station within a given zone. In their

model, they utilise variables such as capacity, travel time and mileage. The location of a station

is optimised so that the sum of the distances of a station from all demand nodes within the zone,

is minimal. A solution even more focused on the engineering aspect of building infrastructure is

proposed by Yao et al. (2014), who propose a model that considers static, fixed traffic flows. The

aim of their project is to minimise annual investment cost and energy losses, while maximising

annual traffic captured by the charging stations. In their model, they consider slow charging

stations as the main means of charging and rapid charging stations as a complementary means.

The model is complex and takes into account variables like capacity and investment cost, as

well as ones related to power distribution systems. Additionally, it considers the amount of

traffic flow captured by the stations as a measure of convenience for the drivers, but does not

consider queuing. The authors then define three sub-problems for optimisation which are cost

minimisation, energy loss minimisation and the maximisation of traffic captured. The model

is solved by an evolutionary algorithm that seeks non-dominated solutions, but no details are

provided on the genetic algorithm itself, or the decision process.

Additionally, Liu et al. (2013) consider multiple factors such as power losses in the network,

building and operational costs, avoiding wasting resources (power) and also technical variables
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for the power distribution system such as transformer capacitor limits and voltage limits at power

buses. They optimise investment cost for the charging stations and the viability of the power

distribution system. As such, the model neither examines the EV routing problem, nor considers

the stations’ profit. An extension of this approach by Wang et al. (2013) adds more technical

information on power distribution systems, and additionally introduces the concept of driver

convenience into this model by aiming to maximise the traffic flow captured by the stations.

Still, traffic flow is static as in Yao et al. (2014), thus vehicle routes do not change due to the

presence of stations. They construct a robust multi-objective planning algorithm that converges

fast and provides Pareto-optimal solutions, with convergence occurring when all routes’ traffic

flows are served sufficiently. Due to the focus on power distribution, these two attempts do not

consider station capacity constraints, or queuing.

Although the power delivery problem for charging stations is interesting and significant, it is

complex in its own right. The SLCOP problem is significantly complex already as we will see

in later chapters. As a result, incorporating even more parameters that relate to power delivery

would over-complicate the model which would make interpreting results confusing, and would

divert attention to matters that are irrelevant to the points this thesis is trying to make.

2.3 Background in Game Theory

This section provides some necessary background information in game theory, with respect to

the work presented in this thesis. The goal of this discussion is to familiarise the reader with

concepts utilised in this work, and to discuss concepts in Game Theory that might be relevant.

This background will be provided in the form of more intuitive and informal definitions1. The

provided definitions follow closely the intuitive definitions given by Shoham and Leyton-Brown

(2009), Fudenberg and Tirole (1991) and Nisan et al. (2007).

As was discussed in Section 1.4, the model that will be presented in this thesis is entirely based

on game theory. For the purpose of this work, noncooperative game theory is utilised, which

models mathematically the beliefs, preferences and possible actions of self-interested individ-

uals with the goal of studying the interactions between them. We will call these individuals

players from now on. A self-interested player is not necessarily one who strives to undermine

others, but is rather a player who has a clear picture of desirable states of the world (interests)

and strives to bring about these interests. In order to model the players’ preferences over the

available actions, utility theory is used. This theory makes several assumptions with regard to

individuals. Among these, it is assumed that people act as if they behaved according to a utility

function that ranks their preferences, and they try to maximise the expected values of this utility

function. A further important assumption utility theory makes is that individuals are rational,

that is there exists no circularity among an individual’s preferences. If an individual prefers
1Formal definitions will be presented in later chapters throughout the model, where appropriate.
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action A over action B and action B over action C, then it must be that the individual prefers

action A over action C.

Under these assumptions, it is straightforward for a player to act optimally even under uncer-

tainty, as long as the outcomes of actions and the likelihood of those outcomes are known to the

player. However, taking an optimal action becomes more complicated when there are several

utility maximising players whose actions affect the other players’ utilities. Such is the case in

this work, where several customers and firm investors strive to minimise service costs and max-

imise profit respectively. In order to model these strategic interactions between players, several

games in normal form will be utilised. A normal form game is a representation of every player’s

utility for every possible state of the world, and it is assumed that the state of the world depends

solely on the actions of the finite set of participating players. The goal of using such games

is to determine Nash equilibrium (NE) states that may exist. In a Nash equilibrium state, every

player’s chosen action is a best response to the other players’ actions thus no player has incentive

to deviate unilaterally from the equilibrium strategy. We will utilise pure strategy Nash equilib-

ria in which players myopically choose and play the single action that maximises their utility

given the other players’ actions. Mixed strategy Nash equilibria will also be used, where play-

ers choose over available actions with the probability distribution that maximises their expected

utility given the other players’ mixed strategies. For example, the customers’ choice of firms is

represented with a normal form game where we seek mixed strategy NE in firm choices. The

firm investors’ capacity choice is modelled with another normal form game where pure strategy

NE in capacities are sought.

Normal-form games operate under the assumption that players all make their choices at the

same time. But these are only static representations of otherwise interactive real-world situa-

tions. In this work, players are first separated into two groups; EV drivers and station investors.

It is reasonable to assume that EV drivers make their decisions after investors have announced

their choices (or rather after stations are at an operational state). Then again, station investors

do not decide simultaneously on all matters, but first consider some locations and investment

levels (capacities), then consider prices and so on. All these different levels of decision-making

are thus considered as independent normal-form games2. To represent this dynamic interaction

between different decision levels, a game in extensive form is used, which consists of indepen-

dent normal-form games, or subgames, that are played one after the other. At each stage of this

extensive-form game, players are able to observe the initialisation and events that transpire in

previous stages, that is they have perfect information.

This existence of perfect information enables the utilisation of the subgame perfect equilibrium

(SPE) concept which is a generalisation of Nash equilibrium, and which suggests that the equi-

librium outcome of a sequential extensive-form game consists, in fact, of the individual Nash

equilibria of its subgames. Speaking about the individual Nash equilibria of the subgames, there

are a few additional concepts in Game Theory that might be relevant.
2Within each game players still decide synchronously.
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2.3.1 Potential games

The concept of potential games is worth discussing in the context of this work. Potential games

are games in which a global function, called the potential function, is used to express the in-

centive of all players to alter strategies. In the context of this work, the customers’ firm choice

game (Section 3.1) is indeed a potential game, and specifically a congestion game. In more

detail, congestion games are a class of games where the utility of using a resource decreases

as the number of players who choose the same resource increases (Shoham and Leyton-Brown,

2009). This is similar to the setting for EV drivers presented in Section 1.1, where the more the

EVs that travel to the same station, the higher queuing time may be. A major advantage poten-

tial games offer is that pure strategy Nash equilibria, which are guaranteed to exist in potential

games, are actually local optima of the potential function and are therefore relatively straight-

forward to locate. However, when it comes to customer choices mixed strategy Nash equilibria

are of more interest for the purpose of this thesis, as in the SLCOP and similar problems there

is no apparent customer coordination mechanism which would justify customers playing pure

strategies. Additionally, the existence of many pure NE is problematic as to their interpreta-

tion. These issues are discussed in more detail in Sections 2.5 and 3.1.1. Regarding the firms’

choice of capacities, locations and speed of service (Section 3.3), it is shown in Section 3.5.2

that there are cases where pure strategy Nash equilibria do not exist, and therefore it cannot be

a potential game. As for the pure Nash equilibrium in firms’ prices (Section 3.2), the possibility

of a potential game was explored, but the prices game was not found to belong to any of several

known forms of potential games. Furthermore, the analysis in Section 3.5.1, shows that there is

a unique equilibrium in prices which is found analytically in a straightforward way, therefore a

potential game would not contribute in terms of ease to locate the solution.

2.3.2 Network pricing games

Network pricing games are a category of games that are more relevant to this work. An advanced

version of a network pricing game is presented by Hayrapetyan et al. (2007), where a set of

network managers compete for users who want to use a network, by selecting prices for their

service. This is similar to the SLCOP problem and Internet-based services competition identified

in 1.1. The authors find that a single pure strategy equilibrium in prices exists, and is efficient for

system-wide social welfare. To measure social welfare, they assume that the quality of service

for the user depends on congestion at the network, and social welfare is defined as the sum of

providers’ profits minus the cost due to congestion for users. Although this network pricing

game is closely related to the work in this thesis, the model that is proposed in this thesis goes

above and beyond in many aspects. First, this work presents a more complex firm model where

investors can also choose locations, service rates (capacity), and the speed of service for their

firms in addition to prices. Secondly, Hayrapetyan et al. (2007) do not consider an explicit

customer model, but pose assumptions on customers instead. These are that customers will

choose the firm which minimises the sum of service latency and purchase price, and that demand
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decreases with disutility. Furthermore, they assume deterministic concave demand which is

suitable to model services with a comparable alternative that users will switch to if the price

of the service is too high. This thesis takes these a step further, with a full customer model

where customers choose firms stochastically based on the expected cost to acquire the service.

This includes prices and expected congestion at firms, and customers have an alternative option

outside the firm system allowing for uncertain demand satisfaction based on expected congestion

at the alternative option. This results in subgame-perfect equilibria in firm locations, capacities,

service speeds, prices and customer firm choices which this thesis shows to be very highly

efficient for system-wide social welfare compared to optimal firm allocations.

2.3.3 Mechanism design

This thesis involves evaluating subsidies to investors as incentives for improving the service for

the customers. One branch of game theory that could be used to address this is mechanism

design. In games of mechanism design, there is a set of players one of whom is the principal

player. Other players report their type, that is their preferences or information on the product

they sell, to the principal player. The principal has already decided on a mechanism that maps

types to outcomes, and the players receive the outcome according to that mechanism (Shoham

and Leyton-Brown, 2009). Mechanism design offers an interesting framework for subsidies, in

particular because it allows to examine truthfulness in reporting to the principal, and because it

works by starting from the desired outcome. A work that examines subsidies using mechanism

design is of Sorana (2000), where the authors present a mechanism for subsidising telecommu-

nications providers to serve high-cost areas with affordable rates. They show that in many cases

auctioning mechanisms are more efficient than traditional subsidy schemes, however they also

show that auction mechanisms are particularly vulnerable to collusion among bidders in certain

settings.

A similar mechanism could be assumed here to guarantee certain qualities of the subsidies,

such as that the subsidies end up to the firms who need them the most, or are distributed so

that customer costs are minimised. However, there are two issues regarding mechanism design

in relation to this work. First, this thesis is not involved with efficient subsidy distribution so

as to design mechanisms for subsidy allocation, but is rather more involved with qualitative

characteristics of the subsidies themselves. For example is a particular type of subsidy useful

or not? What happens when we subsidise only one investor? These are questions that are

straightforward to examine using the model presented in this thesis, and mechanism design

would over-complicate the interpretation of some aspects. For instance, investors in this thesis

are assumed to have unlimited budget, so it is difficult to design and interpret a mechanism for

just distribution. Secondly, although this thesis will also include determining the performance

of subsidies, applying mechanism design is problematic in that a game of mechanism design

requires private information. However, decisions in this work are made in stages, and while

within each stage private information exists, there needs to exist perfect information among
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stages; that is, information is propagated from one stage to the next in order to obtain subgame-

perfect equilibria. These issues highlight that mechanism design is not directly compatible with

the methodology followed here, and designing mechanisms for subsidy distribution would be a

vast, complex undertaking in its own right should the constraints set in this thesis be maintained.

2.4 Competitive Models and Firm Competition

In Sections 2.1 and 2.2 we reviewed work that captures some form of the aspects of the SLCOP

problem we defined in Section 1.1, albeit for charging station monopolies. Here, examples that

explicitly include some form of firm competition, which are more closely related to the work in

this thesis, will be presented.

In order to better understand firm competition, it is instructive to first discuss some classical

models of firm competition, such as Cournot competition and Bertrand competition. In short,

Cournot competition assumes that two competing firms sell a homogeneous product to cus-

tomers at fixed prices. The firms decide their production output simultaneously, knowing the

prices they and the opponent will set for given outputs. Cournot competition is not particularly

interesting for the purpose of this work, as we will see later in Section 3.5.1 that the product

firms sell in this work is, in fact, heterogeneous and in addition firms should compete in prices

as well. Of more interest is Bertrand competition, that addresses pricing competition. In the

Bertrand model, it is assumed that two firms are able to satisfy all demand for a homogeneous

good immediately, and customers are assumed to buy the good from the firm that offers the

lowest price. Interestingly, the Nash equilibrium in prices in Bertrand competition is for both

firms to offer the good at marginal cost (Mas-Colell et al., 1995; Singh and Vives, 1984). Let

us now move on to more advanced forms of competition. Toward this, Section 2.4.1 presents

some approaches to charging station competition, Section 2.4.2 presents archetypical spatial

competition, and Section 2.4.3 discusses sequential competition which is of more interest for

this thesis.

2.4.1 Charging station competition

In the context of charging stations, Escudero-Garzás and Seco-Granados (2012) analyse a charg-

ing station oligopoly based on Bertrand competition. In this game-theoretic model, two com-

peting station owners with set locations decide on their prices given the other owner’s strategy.

The model operates under the fundamental assumption behind Bertrand models; that demand

is satisfied immediately. As such, station capacity is defined in terms of total electric current

the stations can provide and queues are not a component of this model. However, they relax

Bertrand’s assumption on goods’ homogeneity, based on the idea that a given amount of energy

at a given price may hold different value for drivers who are further away, or who do not want

to recharge. They show empirically that this relaxation causes prices to deviate upwards from
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the Bertrand result (marginal cost), sometimes significantly. In contrast, this thesis argues that

due to power grid limitations and/or high investment cost, peak charging demand may not be

satisfied at once. This is not only because of queues but also because recharging an EV still

takes some measurable time even without queues. Furthermore, this thesis confirms that goods

heterogeneity causes prices to deviate from marginal cost, and enhances this by showing theo-

retically that another important reason why equilibrium prices will be higher than marginal cost,

is the fact that demand cannot be satisfied at once in the SLCOP and similar problems.

Competitive pricing is also addressed in Gerding et al. (2013), where authors present a solution

for competing charging station pricing in a two-sided market. Via this market, EV drivers can

make advance reservations in charging stations. Drivers are buyers who arrive at the market

dynamically over time. They report their preferences for time slots and charging locations, with

the goal of reserving a time slot for charging their EV at an available station. Charging stations

that participate in the market report their availability and charging costs. Both drivers and sta-

tions are rational, profit-maximising entities. The authors apply online mechanism design, in

order to develop a mechanism for pricing in which drivers have no incentive to misreport their

preference or delay their reservations to exploit the mechanism. Furthermore, they explore a

number of payment mechanisms on the charging station side and evaluate their mechanism in

two realistic scenarios; en route charging and park ’n charge. Through the concept of reser-

vations, the authors manage to eliminate the problems relevant to queuing. Consequently the

drivers’ routing choices are primarily focused on shorter travel time, which includes charging

time. Using principled equilibrium analysis, they show that in the case of en route charging

their proposed Reverse Vickrey learning and Posted Price learning mechanisms achieve 90-95%

efficiency of optimal, while at the same time the Reverse Vickrey learning mechanism achieves

a stable deficit in the region of 18% in buyer welfare compared to optimal welfare. This work

is significantly different from the work presented here for a variety of reasons. First, in the

above paper it is assumed that stations exist in predetermined locations and feature predeter-

mined capacities. In contrast, in this work stations compete in locations, capacities and charging

unit output in addition to prices. Second, the above work considers dynamic arrivals at stations

where drivers have a reservation and thus there are no queues. This thesis focuses on peak EV

traffic that arrives at stations at once, which results in oversaturated queues.

2.4.2 Spatial competition

This thesis further involves location competition among firms. Important classical models in this

field include Hotelling (1929)’s spatial competition model of homogeneous firms, the correction

on Nash equilibria in Hotelling competition by Osborne and Pitchik (1987) and spatial com-

petition with heterogeneous firms proposed by Vogel (2008). Spatial competition is involved

with the location choice of firms in a given uniform area, like a marketplace, over which cus-

tomers are evenly spread. Firms can locate anywhere within that space and, depending on the

position and product of firms, those that are closer to each other will compete more intensely
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for customers, thus owners may choose to place their firm away from or close to competition.

Although the firms’ location choice in the model presented in this thesis is a form of spatial

competition, it is not a typical example. The concept of location in this thesis is more abstract

and refers to different access costs incurred to customers in order to reach firms. This may as

well be translated as spatial competition within the same uniform space, or may refer to firm

allocation in non-uniform space. This thesis will be more involved with the latter. For example,

this work is more interested in allocating charging stations across different routes, rather than

fine-tuning locations within the same route. This abstraction helps reduce complexity, because

spatial competition within the same uniform space would necessitate introducing too many new

parameters in certain problems such as the SLCOP (such as distance from power substations),

which would make the model more complex and difficult to evaluate. Furthermore, different

costs for accessing different firms, that is goods heterogeneity, is not used in typical spatial

competition and in addition typical models do not consider queuing.

2.4.3 Sequential competition

More advanced price competition with queues, has been proposed by Sattinger (2002) who fol-

lowed a game-theoretic approach to model competing firms’ pricing decisions when customers

have to wait to be served. This may resemble our research problem more at first glance. How-

ever, it is fundamentally different in that (1) customer flows to firms are deterministic, (2) service

rate is always greater than the arrival rate, (3) each firm has only one server. In contrast, in our

case customer flows to firms are stochastic, we are especially interested in the situation where

queues are oversaturated, and firms can serve multiple customers synchronously. Indeed, the

model presented in this thesis resembles a Stackelberg game where players compete by moving

sequentially. This is similar to the situation described in Section 2.3, where different groups

of players decide sequentially over different matters. However, the problem negotiated in this

thesis is much more complex and features several sequential stages, where decisions within

each stage are made simultaneously. To address a sequence of actions in the context of firm

competition, the Stackelberg leadership model has been proposed in which one firm acts as a

leader and moves first, and the remaining firms follow in sequence, and the problem is solved

using subgame-perfect equilibria (von Stackelberg, 2010). Although today the term ‘Stack-

elberg game’ is used generically to denote various sequential models, traditional Stackelberg

competition is different than the work presented in this thesis. Stackelberg competition refers to

competition in production output, and assumes there is a known price function which depends

on the firms’ production outputs, that is it is a refinement of Cournot competition. In contrast,

firms in this thesis compete on several levels, including service rate, service speed, locations and

prices. Furthermore, firms are assumed here to move simultaneously for certain decisions; the

sequence of actions separates decisions regarding service rate and infrastructural decisions from

price decisions, and from customer decisions.
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Further sequential competition more similar to the work in this thesis includes the work of

Deneckere and Peck (1995), who propose a model for firm competition in which firms first de-

cide production capacities and prices simultaneously, and then customers choose firms based

on these. It is possible that an uncertain portion of customers may not be served in the end

(rationing), if the number of customers arriving at the firm is larger than the production capacity

of the firm. Deneckere and Peck (1995) make several interesting deductions on firm compe-

tition. They identify discontinuous jumps in demand, as the main reason why equilibria may

not exist in models of many competing firms. They note further that the possibility of demand

being only partially satisfied helps eliminate discontinuities in demand. In addition, they prove

that when demand is uncertain a pure strategy equilibrium in investment levels and prices exists,

if the number of competing firms is sufficiently large. This indicates that a stochastic model

for customer choices may reinforce the existence of any pure strategy Nash equilibria in the

work presented here, and the possibility of demand not being satisfied completely can also be

taken into account to reinforce existence. Furthermore, they find that under their setting prices

will be higher than the marginal cost for firms. However, there also exist major differences

with the model this thesis proposes. First, in this thesis prices are decided in a separate stage

than capacities. This allows for theoretical analysis on the prices equilibrium, which shows that

when customers have to wait to get served, prices are indeed higher than the marginal cost as

Deneckere and Peck (1995) find, but they converge to the marginal cost as the service speed im-

proves. Second, the problem this thesis examines is focused in situations where customers queue

up at firms to receive the service, and thus incur an expected cost due to congestion at the firm

(e.g. a time cost in waiting at charging stations, or reduced quality when using online services).

Customers then select firms based on the expected cost of acquiring the service. Therefore ex-

cess customers are not rationed as in Deneckere and Peck (1995). Instead, an alternative option

is given to customers outside the competing firm system and rationing is determined by the ex-

pected cost of choosing the outside option and the choices of firms, which allows for uncertain

demand satisfaction.

2.5 Customer Behaviour

In the context of the SLCOP, so far we have reviewed literature that may include some aspect

of convenience for EV drivers, but this was carried out in an indirect way, since queues are

largely disregarded and traffic flows to stations are generic in most models. In this section, work

that addresses the EV routing problem more explicitly, with consideration on how stations may

affect EV drivers’ choices will be examined. EV drivers

In the context of EV driver route selection, congestion games are utilised by Malandrino et al.

(2015), who present a solution for addressing EV drivers’ assistance in route choice when in

need of recharging. In that work, it is assumed that a central navigation service collects data

regarding vehicles’ positions, speed and heading, as well as data like the occupancy at battery

switching stations and their expected times to serve the driver. Drivers can use an intelligent
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transportation system (ITS) to request route advice from the central navigation service when they

are low on battery or when they want to recharge. This approach is based on the assumption that

the central service has all available information from all vehicles on the road, which guarantees

that there is no better alternative to the proposed route, thus the driver has incentive to follow

the proposed pure strategy Nash equilibrium.

EV driver coordination can be achieved by using an ITS, but in general it is more realistic

to assume that drivers follow a stochastic strategy, as is the case in other work. For example

de Weerdt et al. (2013, 2016) introduce an intention-aware routing system (IARS) for electric

vehicles. In their model, drivers determine their routes so that the expected journey time is

minimised. They do so by taking into account other drivers’ intentions, which are used to com-

pute predicted queuing times at charging stations. The authors stress that taking into account

these intentions is important, because electric vehicles that have to recharge en-route may en-

counter significant queuing times if many other vehicles choose the same station. The IARS

is simulated with real-world data on charging station locations, travel times, road networks and

journeys, and it is shown that the routing algorithm achieves over 80% improvement in waiting

times at charging stations, and more than 50% reduction in journey times.

In the context of charging station allocation a stochastic approach to driver decisions is imple-

mented by Xiong et al. (2015) and Xiong et al. (2017). The authors study the charging station

placement problem with the goal of minimising charging cost, by taking into consideration the

EV drivers’ strategic behaviour, the impact of drivers’ choices on traffic conditions and the ser-

vice quality of charging stations. They formulate an optimisation problem with the government

acting as a market regulator in order to minimise social cost. In their game-theoretic driver

model, drivers play mixed strategies meaning that they choose over the set of available routes

and recharging options with a probability distribution. They calculate the Nash equilibrium for

the drivers, for the sets of parameters to be explored (station capacities, locations) and then they

choose the parameter set for stations which minimises the social cost for drivers. Social cost for

the drivers considers time costs such as queuing time and traffic congestion. Finally, they use a

brute force approach to solving the problem and also develop a heuristic to approximate the op-

timal solution more quickly. However, two integral assumptions in this model are that (1) there

exists a monopoly in charging stations and (2) the fee that drivers pay for recharging is fixed.

In contrast, this thesis proposes a model where several self-interested investors are competing

with each other, which affects both the optimal prices and capacities, as well as the choice of

charging units and locations.

Last, Anshelevich and Ukkusuri (2009), emphasise that in both transportation and communica-

tion networks there exist selfish flows. In their approach, every agent sending a flow over the

network desires to get it to its destination as soon as possible. The drivers play pure strategies

and the authors consider the concept of dynamic flow or flow over time. They examine the

Nash equilibria in both time-dependent and non time-dependent network routing problems. Fi-

nally, they use the price of anarchy concept, which measures efficiency loss due to the selfish

behaviour of a system’s agents, to measure the quality of the Nash equilibrium solutions, where
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they exist, in comparison with the best possible solution. While the concept of pure strategies

for drivers is not as interesting for modelling drivers in this thesis, the concept of the price of

anarchy, on the other hand can be utilised to measure the efficiency of solutions for investors

and customers.

2.6 Alternatives to Rapid Charging

A popular alternative to rapid charging in research, that has also been utilised in small scale in

the real world is battery switching. Works such as Wang et al. (2011), Jamian et al. (2014) and

several more, examine the concept of stations that, instead of recharging EVs directly, switch

the battery of the EV with a pre-charged one. The station then charges the empty battery after

the vehicle leaves. The claimed advantages of this approach are that this concept can save space

at the stations which they could use to install large, complex charging systems that improve

charging efficiency and extend battery lifetimes. The most important advantage, however, is

that it can dramatically reduce the time a vehicle needs to stay at a station. These approaches

are less complex than traditional station allocation problems, something that allows for better

economic modeling and optimising net income. However, Avci et al. (2014) argue that battery

switching is an environmentally unfriendly concept, in addition to the fact that it introduces high

cost and risk for investors. This is because investors need to purchase different types of batteries

in large numbers, in addition to building charging infrastructure. Furthermore, it is arguable

that when switching demand is high this necessitates large numbers of pre-charged batteries,

something which defeats the concept of slowly charging empty batteries at the stations’ leisure

with lower cost. Finally, this approach has been applied to a small extent in the real-world (e.g.

Better Place), and has already failed for the reasons stated above, so it is not straightforward at

all how battery switching can be applied in large scale3.

Li et al. (2010) propose a different concept, that of Nomadic Portable Charging stations (PCSs).

This idea relies on an operational centre, which sends trucks that drop PCSs in areas where

charging demand is high. In order to determine the high-demand areas, real-time traffic and

charge demand are evaluated by the centre. A reward function is defined for each vehicle in

a one-dimensional line, which is then expanded to two dimensions. At each potential high-

demand set of coordinates, the reward functions of all the vehicles are aggregated, which results

in ranking each set of coordinates according to charging demand. PCSs are then sent to the areas

where demand is high so that EVs can charge off them. The authors study this model in a single

highway scenario and show that the capacity of the PCSs is an important factor for queuing

time. This research proposes an interesting concept, but does not produce results that justify

considering portable charging stations. It is argued, that the cost of rapid-charging infrastructure

is already significant, even without considering PCSs. Furthermore, deployment of PCSs that
3Some more information on this can be found in:

https://www.nytimes.com/2013/06/02/automobiles/fallout-from-failure-of-battery-swap-plan.html
https://www.fastcompany.com/3028159/a-broken-place-better-place
https://www.theguardian.com/environment/2013/mar/05/better-place-wrong-electric-car-startup
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multiple EVs can charge from requires parking spaces at regular intervals in highways, space

that could be used to expand a proper rapid charging station. Finally, the use of PCSs induces

further power losses that make charging even more expensive, because it necessitates charging

PCSs that in turn charge EVs.

Finally, Chen et al. (2013) propose in their paper a solution strictly for slow charging stations.

Here, household survey data is used to determine vehicle parking locations and the durations

of all trips away from home. In order to identify optimal charging station locations they utilise

parking demand, interpreted from that data. The goal of this approach is to identify station

locations which are within walking distance of the drivers’ ultimate destination. Their model

takes into account budget constraints, but assumes infinite capacity, thus queues are also not

present here. Consequently, the authors form a mixed-integer optimisation problem in which

the objective function aims to reduce the total access cost as a function of walking distance

between the station and the actual destination. Although slow charging stations are undoubtedly

useful for situations such as recharging while at work or while shopping, as it was argued in

Chapter 1 slow charging cannot extend the effective range of EVs, and cannot resolve range

problems the way en-route rapid charging can.

2.7 Summary

In this chapter we have reviewed several existing approaches in solving variants of the SLCOP

problem we defined in Section 1.1. The approaches we presented, generally offer different view-

points on the typical EV rapid charging problem, with a few considering alternative solutions

rather than rapid charging. As it is apparent, some researchers consider the economic aspect of

the SLCOP problem, while others focus on power distribution or population coverage. Although

a large charging station market is a strong future possibility, very few approaches attempt to put

all the necessary pieces together in order to study charging station investor competition, even at

an abstract level.

In regards to economic modelling, of interest are the approaches of Jia et al. (2012); Sadeghi-

Barzani et al. (2014), who formulate the cost of building charging stations as linear with respect

to capacity. This formulation is in accordance with our requirements 6 and 7, that we set in

Section 1.3, which require for the building cost and profit to depend on capacity. In general,

however, the current literature cannot address our research problem as it was set in Section

1.1. This happens because current literature mostly takes into account static, given traffic flows,

which are derived from real-world conventional vehicle data. In itself using real-world data is

not restrictive for our purpose. What is restrictive is the fact that these flows do not change

when the station network’s layout changes. According to the point of view this thesis presents,

flows towards charging stations change because of expected queues at stations, something which

is reflected in requirements 1,2,3 and 6. In consequence, we cannot apply the solutions that

consider static flows or disregard queues to our research problem.
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Whereas some papers do consider the routing problem for the EVs, interdependency between

EV drivers’ and station owners’ decisions cannot be derived from those models. In Hess et al.

(2012), although routing is done with the goal of minimising travel time, queuing times are not

taken into account when vehicles decide their routes, nor when they choose where to charge en

route. Similarly, Worley et al. (2012) also do not consider queuing because it is not a significant

factor in the goods delivery problem they examine. Their vehicles’ routes are also predetermined

to a large extent by the deliveries they have to make. Additionally, Lam et al. (2014) consider

routing with minimum distance travelled being the measure of driver happiness, a concept which

is de facto incompatible with queuing times. Queues are addressed in de Weerdt et al. (2016)

where authors examine the general EV routing problem under uncertainty. In addition they are

addressed by Xiong et al. (2015) and Xiong et al. (2017) who also consider stochastic behaviour

for EV drivers, to accommodate queuing times and traffic congestion. However, drivers are

indifferent to prices and there is no competitive aspect for the stations. Nevertheless, the idea of

a stochastic model for EV driver route choice is in accordance with requirements 1, 2, 3 and 6

in Section 1.3.

Finally, economic sustainability in the EV charging problem is in general disregarded. Exam-

ples that examine competitive pricing are scarce, because the overwhelming majority of liter-

ature assumes monopoly in EV charging. One such example of competing stations was the

work of Gerding et al. (2013), where they present a competitive market for EV drivers and sta-

tion owners. However, in their approach they devise a reservation-based model that eliminates

the concept of queuing which this thesis perceives as important. A further competitive pricing

example was shown by Escudero-Garzás and Seco-Granados (2012), but that model assumed

immediate satisfaction of demand which is unreasonable to consider at the current level of tech-

nology. In contrast, it is shown in this thesis that the fact that demand cannot be immediately

satisfied has a significant effect on charging prices. Hayrapetyan et al. (2007) provide a solu-

tion for equilibrium prices in a network pricing game, and although similar to the SLCOP, that

problem is simpler and only involves pricing. Nevertheless, it will be useful to build upon it as

it poses several assumptions such as customer homogeneity and an alternative substitute service

for customers, which are in line with the SLCOP problem as perceived in this thesis.



Chapter 3

Model for Firm Competition

This chapter will present and discuss the model this thesis proposes, for addressing the SLCOP

(Section 1.1) and similar problems. Before presenting the model, it is necessary to first reflect

on how customers and firm investors may interact in the real world. First of all, a customer

who is planning on acquiring a service will consider firms which are known to provide the

desired service. Secondly, a course of action where investors announce that a firm is open,

and then decide on the number of servers watching how many customers ask for the service,

or one in which service prices are determined before the magnitude of investment is decided

would be rather unusual. A more reasonable course of action for the investor is to first build,

or rather establish a firm of a certain non-zero capacity to provide the service, then decide the

fee for providing the service, and then accept customers into the firm. This reasoning can be

distilled into a sequence of actions performed by investors and customers. More specifically, the

sequence that will be considered here is that firm investors first decide on their firms’ locations,

number of servers and speed of service. Then, they decide on prices, and finally customers

choose stochastically among firms based on these. To denote the number of servers in each firm,

the term ’capacity’ will be used from now on. Furthermore, the ’speed of service’ is used in the

context where each investor can choose among different types of servers that can influence the

speed of delivery of the service to the customer, once the customer is first in line.

To model this sequence of actions by investors and customers, a three-stage extensive-form game

is used, which is suitable for modelling temporal or sequential actions performed by individuals.

At every stage of the extensive-form game, players are able to observe the outcomes of the

previous stages and the initialisation. The stages of this extensive form game can be seen in

Figure 3.1. Each of the stages is itself defined as normal-form game, that is a game in which

all players decide simultaneously. Subgame-perfect equilibrium solutions to the extensive form

game are found by backward induction, hence in what follows the stages are presented in the

order they are solved. Most formal and intuitive definitions in this chapter follow closely those

given by Shoham and Leyton-Brown (2009) and Nisan et al. (2007). Any other source will be

stated clearly where appropriate.

25
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Figure 3.1: The three stages of the extensive-form game.
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Stage 1

Firm investors announce firm locations, capacities 
and server types.

Customers announce probabilities of firm choice.

Stage 3

Stage 2

Firm investors announce retail prices.

The rest of this chapter is structured as follows. The customers’ model for choosing firms

is presented in Section 3.1, the investors’ price choice model follows in Section 3.2, and the

investors’ choice of locations, capacities and the speed of service is explained in Section 3.3.

More information on the extensive form game, the solution concept and algorithm used to solve

the extensive-form game is presented in Section 3.4. Last, Section 3.5 discusses some general

theoretical findings, in particular with relation to equilibrium prices and capacities at firms, and

Section 3.6 sets metrics for measuring the efficiency of the model.

3.1 Stage 3: Customers Choose Firms

In order to model how customers behave, some context needs to be defined first. It is assumed

for the purpose of this thesis that all customers need to buy the same service from firms that offer

it. Each firm offers only the particular service under examination, and congestion at firms with

many customers means a customer may experience delay in obtaining the service due to having

to wait in a queue. Alternatively, the quality of the service itself may degrade due to congestion

(e.g. Internet). Nevertheless, the customer cannot switch firms, that is the customer is committed

upon choosing a firm, to receive the service from that firm only. Furthermore, customers may

have an alternative option, that is an alternative service that can satisfy the customers’ needs

which is provided by a provider extraneous to the firm investor system under examination. For

simplicity, it will be assumed that all customers are alike, that is the cost for different customers

to access the same firm is equal, and customers value their time identically.

A very complex customer model would be more difficult to integrate into the already complex

competition for the investors that will be presented later on, and this is mainly for two reasons.

Firstly, it would increase computational complexity significantly. Secondly, it would introduce

too many parameters that would make game-theoretic analysis very difficult and fragile, rais-

ing questions on where the valuations for these parameters come from. For these reasons, it is
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common to make such assumptions in game-theoretic models and this is true even for simpler

firm competition models than the one this thesis presents. For example, Escudero-Garzás and

Seco-Granados (2012) make similar assumptions on EV driver homogeneity. Hayrapetyan et al.

(2007) also assume homogeneous customers in network pricing games, which are simpler com-

petitive models than the model in this thesis, where customers’ routes have the same start and

destination points. More general firm competition models as in the work of Hotelling (1929),

Osborne and Pitchik (1987) and Sattinger (2002) in addition assume homogeneous firms. Some

other models, for example Xiong et al. (2017), consider more complex customer behaviour, but

in turn simplify by considering firm monopoly, set prices and set locations for firms. It would be

prudent to reduce complexity here, rather than to simplify firm competition, as a very realistic

customer model would add little to the points this thesis attempts to make. With this context in

mind, Section 3.1.1 presents a normal-form game as model for customer choices, Section 3.1.2

discusses Nash equilibrium with focus on the particular model presented, Section 3.1.3 defines

customer utility and expected utility, and Section 3.1.4 discusses the outside option for cus-

tomers. Last, the solution to the customers’ equilibrium and boundary conditions are explained

in 3.1.5.

3.1.1 Normal-form n-player customers’ game

Normal form games are fundamental to strategic interaction in game theory, and are ideal to help

pursue the aims of this work straightforwardly. In the case where the states of the world depend

solely on the players’ combined actions, as is the case here, a game in normal form amounts to

a representation of every player’s utility for every state of the world.

In this game, a finite number of customers simultaneously choose among several firms. This

models a particular time of day when demand for the desired service is high, and congestion

at firms can occur. Firms can be at different locations, with different capacities (i.e. number

of servers) and prices, and different firms can have different types of servers, affecting the cus-

tomers’ utility. Because this model does not include consideration for traffic on the way to the

firm, customers that are indifferent to the modelled service are irrelevant.

Definition 3.1 (Customers’ game). More formally, this game is defined as a tuple 〈N,A, u(·)〉,
where N is the finite set of n customers (players) (n ∈ N, n > 1). Let Ai = {1, . . . ,m} be

the finite set of m actions (firm choices) available to customer i. Then, A = A1 × . . . × An is

the set of action profiles. Each vector a = 〈a1, . . . , an〉 of the Cartesian product A is an action

profile which contains all the actions ai played by each customer i in that action profile. Last,

u(·) = 〈u1(·), . . . , un(·)〉 is itself a n-tuple of customer utilities, where ui(·) : A 7→ R is a

real-valued utility (or payoff) function for customer i.

To promote the discussion on how the customers’ behaviour can be evaluated in game-theoretic

terms, it is instructive to define some concepts with regard to the choice of firm customers may

make.
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Definition 3.2 (Pure strategy). We call a strategy of selecting a single action and playing it a pure

strategy; a choice of pure strategy for each player is called a pure strategy profile. Consequently,

a pure strategy profile in our case is essentially an action profile a ∈ A as it was defined in

Definition 3.1.

The concept of Nash equilibrium (NE) intuitively proposes that in some games there exist strat-

egy profiles, in which no player has incentive to deviate from the chosen strategy. In the case

examined here, if customers play only pure strategies, and depending on the specific setting

of the game, there may exist some symmetric pure strategy profiles which are Nash equilibria,

in which all customers choose the same firm. Such a situation can arise, for example, when

one firm is very close to customers and the utility for customer i of choosing that firm is better

than choosing any other firm, even if everyone else went to the same firm as i. Furthermore,

there may exist some pure strategy profiles which are asymmetric Nash equilibria, in which

customers choose different firms. Depending on the parameters of the game such as number

of firms, number of customers, and so on, there may be many symmetric or asymmetric pure

strategy equilibria.

Therefore, the potential existence of many pure strategy NE and especially asymmetric ones,

raises the question of how the observer determines which equilibrium customers will reach.

More importantly, how can customers actually reach a particular pure strategy NE? The answer

is that in order for customers to reach a pure strategy Nash equilibrium, they must know all

relevant parameters at each firm, including the amount of congestion. However, in order to

determine congestion at firms, it must be known what the choices of other customers are. In

normal form games players are assumed to choose simultaneously, or at least to not be able

to observe the other players’ choices. Such a representation was chosen because it reflects

a realistic situation for customers, and is in accordance with the problem definition that was

provided in Section 1.1. According to that, customers may not have a clear picture1 on what

the utility for choosing a firm may be, because of potential queues/congestion. In order for

customers to reach a pure strategy NE in this setting where congestion is uncertain, there must

exist some form of indirect coordination. This could be done through using an intelligent central

service that collects information on customers and calculates optimal choices, as was the case

in Malandrino et al. (2015), but it is arguable whether this is feasible and whether players have

incentive to follow the suggestions of the service2. To address these issues, employing mixed

strategies for customer choices provides a more suitable representation of the research problem

in Section 1.1, given also that a customer may not necessarily make the same choice of firm

each time the service is needed.

Definition 3.3 (Mixed strategy). We call the strategy of randomising over the set of available

actions according to a probability distribution a mixed strategy; a choice of mixed strategy by
1While it may be acceptable in simple games with few players (like the prisoner’s dilemma) that a player can

reason deterministically given known utilities, this is not straightforward at all when the player must decide and
calculate the utility in a game with many players.

2For example Malandrino et al. (2015) assume de facto that drivers will not perceive as better an alternative choice
than the one proposed, so drivers will follow the suggestion.
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all players is called a mixed strategy profile. Let Π (Ai) be the set of all probability distributions

over all firm options in Ai. Then the set of mixed strategies for customer i is Si = Π (Ai).

S = S1× . . .×Sn is called the set of mixed strategy profiles. Each vector s = 〈s1, . . . , sn〉 ∈ S
is a mixed strategy profile which contains the mixed strategies si = {s1i , . . . , smi } played by

each player in that mixed strategy profile. sji ∈ [0, 1] denotes the probability that customer i

chooses firm j ∈ Ai. At the same time, all the probabilities over firm choices in player i’s

mixed strategy si must add up to 1. That is: ∀i :
∑

j∈Ai s
j
i = 1.

Utilising mixed strategies is based on the idea that customers may be able to gain some informa-

tion through experience. Moreover, while an infallible central service that collects data from all

customers may not be feasible, it is not unrealistic to consider that a device or other service (e.g.

TomTom or Google) may be able to provide information on firms. This information can include

capacities, locations, service times and prices. Such a device may also be able to provide in-

formation on expected congestion at firms, or propose firm choices based on queue expectancy

that may not necessarily be optimal for the customer. Utilising such information, customers

may then be able to make stochastic decisions on where to receive the desired service from,

randomising their choices each time based on the expected utility for choosing a firm. Before

discussingthe utility and expected utility for choosing a firm, however, it is instructive to first

discuss about mixed strategy Nash equilibria in this game.

3.1.2 Mixed strategy Nash equilibrium

Mixed strategy Nash equilibria, like the pure strategy equilibria that were analysed earlier, may

also be symmetric or asymmetric. In symmetric mixed NE, customers choose from available

firms with the same probability distribution, whereas in asymmetric mixed NE they may choose

with different distributions. Calculating all asymmetric mixed equilibria, however, is problem-

atic with respect to their use. This is so because the intended use is to calculate customer flows

to firms that can later be utilised to find equilibria in firm investor choices. The potential ex-

istence of many equilibria in firm investor choices for just one mixed strategy equilibrium of

the customers raises the question of which mixed NE will be reached by the customers. Using

asymmetric mixed NE may therefore result in over complicating the model computationally and

will make extracting theoretical deductions on firm competition difficult. Of more use for the

purpose of this thesis are symmetric mixed NE, which offer closed form solutions that can be

calculated in a straightforward way, and which can be approximated in polynomial time if need

be (Daskalakis and Papadimitriou, 2007). Therefore, to guarantee a symmetric mixed NE and

extract theoretical properties in a general setting that can encompass various problems, the as-

sumption that all customers are identical was made to make this game symmetric for customers.

It is worth noting at this point that this will not affect the qualitative properties of firm com-

petition and the analysis this thesis will make. Furthermore, although symmetry is assumed to

promote theoretical and qualitative analysis, it is not a necessity when applying the model quan-

titatively on specific problems. For example, one could utilise the concept of anonymous games
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to still guarantee a symmetric mixed NE for customers in a problem-specific application. This

would allow for some customer heterogeneity in a way that customers still only care about how

many go where, rather than who goes where (Daskalakis and Papadimitriou, 2007). In the case

of EV drivers, this could mean that drivers can have different starting and destination points,

but still need to recharge by the same amount and have the same type of vehicle to guarantee

a symmetric equilibrium. Alternatively, one could consider true customer heterogeneity in all

aspects, and determine asymmetric mixed NE for more applied use of the model.

As was mentioned, customer i will play a mixed strategy si in mixed strategy profile s. Given

that i is uncertain about what other customers might do, the choice of mixed strategy si will be

reliant on the expected utility for i of playing in mixed strategy profile s. If ui (·) is the utility

for i of playing in action profile a ∈ A, then the expected utility for i of playing in s, given that

customers will choose firms with the probability distributions in s is E[ui (·) |s].

Definition 3.4 (Mixed strategy Nash equilibrium). In a mixed strategy profile s = (si, s−i), let

si be a strategy of customer i and s−i be a strategy of all customers except for i. A strategy

profile s∗ =
(
s∗i , s

∗
−i
)
∈ S is a Nash equilibrium, if no unilateral deviation in strategy by any

single customer is profitable for that customer. Let s′ =
(
s′i, s

∗
−i
)

be a mixed strategy profile,

in which all other customers except for i play the same strategy as in s∗, but customer i plays a

different strategy s′i than the one he/she plays in s∗. Then s∗ is a Nash equilibrium if:

∀i, si ∈ Si : E[ui (·) |s∗] ≥ E[ui (·) |
(
s′i, s

∗
−i
)
]

Having established the existence of a symmetric mixed strategy Nash equilibrium for the cus-

tomers’ game, in the next section the utility and expected utility of firm choice, as well as the

expected utility of playing in a mixed strategy will be discussed and defined more explicitly.

3.1.3 Utility and expected utility of firm choice

It is now time to introduce the utility function of a customer. Given that customers choose

firms simultaneously, it can be deduced that customers do not know at which place of a firm’s

queue they will arrive, or alternatively how much congestion they will encounter. Therefore,

it is reasonable to assume that a customer can arrive at any place in the queue with the same

probability. Under this assumption, customer i that chooses firm j will experience an average

delay due to congestion:

Q (x) =

x∑
κ=0

⌊
κ

cj

⌋
x+ 1

Rj (3.1)

where x is the number of other customers that choose firm j, cj ∈ N+ is the number of servers

(capacity) at firm j and Rj ∈ R+ is the time it takes to serve a single customer at that firm.

However, this does not provide a closed form solution that we can later use in investor competi-

tion. The floor function in Equation (3.1) can be also written as b κcj c = κ
cj
− { κcj }, where { κcj }
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is the fractional part of κ
cj

. Queuing time can then be approximated by discarding the fractional

part { κcj } which results in:

Q (x) =
x

2cj
Rj (3.2)

This produces a slight overestimate in queuing time, especially when capacity at firms is small.

It is a slight deviation from true queuing time, but it will retain the customers’ behaviour when

choosing firms.

As was mentioned in Section 1.1, customers should be able to make trade-offs between monetary

costs and other costs. To achieve this it will be useful, if possible, to consider all costs in the

same scale. This work examines the particular case where other costs are paid in time, and to

that end the value of time parameter is utilised. The value of time represents how much money an

individual is willing to pay in order to save a given amount of time. Multiplying time costs with

this value thus gives a monetary evaluation of the timme costs for the customer. Government

agencies that study, for example, transportation problems determine values of time for different

types of individuals and modes of transport. Calculating the value of time is a complicated issue

in econometrics and takes into account multiple factors and sources of data (Department for

Transport, 2015), thus is beyond the scope of this thesis. If non-monetary costs represent some

other quantity, this can represent the value of that quantity for the customer.

In addition to the fee for the service fj ∈ R+ to be paid at firm j, the customer may also incur

a cost tj ∈ R+ to access the firm. This can, for example, represent travel time to reach the firm,

or access costs such as a membership fee, line installation costs for a new Internet line and so

on, or even combinations of such congestion-independent costs. Moreover, the customer will

also incur cost Q(x) due to congestion at the firm. This, as defined in Equation (3.2), depends

on how many other customers chose the same firm. Finally, given identical customers, a further

cost Rj may be incurred when customers queue up at firms to receive a service, which is the

time customer i needs to get served once first in line. Assuming all these costs, apart from fj ,

are time costs, they need to be multiplied by a value of time vd ∈ R+. Given these, the utility

for customer i of choosing firm j, given that x other customers choose the same firm is defined

as:

uji (x) = −vd(tj +
x

2cj
Rj +Rj)− fj (3.3)

Note that the goal of customers is to minimise costs. For convenience, all costs have been

defined as negative in order to define a utility function which should now be maximised.

In this game it has been assumed that identical customers make stochastic decisions and this

results in the existence of a symmetric mixed strategy equilibrium. To determine this equilib-

rium, it is necessary to determine the expected utility of choosing a firm, given that customer

i is uncertain what other customers might do. This expected utility is reliant on the potential

unordered combinations of customers’ actions, and specifically on the potential combinations of



32 Chapter 3 Model for Firm Competition

n − 1 customers choosing the same firm j as customer i with probability sj−i, or not choosing

that firm with probability 1 − sj−i. From equation (3.3), the utility for customer i of choosing

firm j given the other players’ actions is already known. After trivial binomial transformations,

the expected utility for player i of choosing firm j, given that the other customers will play

mixed strategy s−i is:

E[uji (x) |s−i] = −vd

(
tj +

sj−i (n− 1)

2cj
Rj +Rj

)
− fj (3.4)

Now that utility and expected utility of choosing a firm have been defined, it is time to define

the expected utility for customer i of playing in mixed strategy profile s.

Definition 3.5 (Expected utility of mixed strategy). In order to determine the expected utility for

customer i of playing mixed strategy si in mixed strategy profile s, the probability of reaching

each outcome given the strategy profile must be calculated. Then, the expected utility is the

weighed arithmetic mean of the payoffs of all outcomes, where each outcome is weighed by its

probability. Given the customers’ game that has been defined, the expected utility E[ui (x) |s]
for player i, of playing in mixed strategy profile s = 〈s1, . . . , sn〉 is:

E[ui (x) |s] =

m∑
j=1

sjiE[uji (x) |s−i] (3.5)

where E[uji (x) |s−i] is the expected utility for choosing a firm in equation (3.4).

3.1.4 Introducing an outside option for customers

So far it has been assumed that customers have no other option than to buy the service from one

of the firms that offer it. While this will allow for investor competition, it will not put compe-

tition into perspective with reality. This may result in investors choosing arbitrarily high prices

and low capacities when the number of investors is small enough to allow for big profit mar-

gins. That is investors may compete by undercutting prices to expand their customer base rather

than by offering better service. To control this behaviour and to promote a selection of more

realistic prices and capacities by investors, an outside option is introduced for the customers.

This outside option can be considered as an alternative means of acquiring the service, or an

alternative service altogether. The customers’ model remains conceptually the same as already

explained so far, only now customers can also opt to use the outside option. This enables to

examine scenarios in which an uncertain portion of demand may be satisfied, and according to

Deneckere and Peck (1995) the inclusion of this possibility is expected to enhance the existence

of pure strategy equilibria in capacities for investors.

The game’s definition in Section 3.1.1 remains unchanged. The outside option is considered as

the mth action available to customers in their action set Ai. The utility for customer i of using
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the outside option, when x other customers also make the same choice is defined as:

umi (x) = −vm · tm − x ·D − fm (3.6)

where vm ∈ R+ is the value of time for using the outside option, tm ∈ R+ is the cost to access

the outside option, and fm ∈ R is the monetary cost of using the outside option. Note that the

value of time, depending on what the outside option exactly represents, may not necessarily be

the same as the value of time for the service firms offer. For example a train passenger would

value time differently than a driver, and a passenger in an EV would also value time differently

than the person driving it (Department for Transport, 2015). As before, the value of time can

instead represent the value of any other quantity costs may represent.

The parameter D is used to express the customer’s disappointment at not using the desired

service. The logic is that customers expect services offered by firms to be usable, and would

rather not substitute the service with an alternative. Therefore, a further cost in disappointment

is incurred upon substitution of the service by the outside option. This disappointment becomes

even greater with an increasing number of other customers who also have to use the outside

option. Therefore, if we treat D as a parameter to calibrate the model, we can select a value

which will yield a desired or reasonable satisfaction of demand by the firms, depending on

the situation modelled. This will be explained in more detail with a more specific example in

Section 5.2.1. The expected utility for customer i of using the outside option given that an

uncertain number of other customers will make the same choice is calculated using the same

logic as for choosing a firm in equation (3.4). Given that the outside option is the mth option

available to customer i, this makes the expected utility for customer i of choosing action j:

E[uji (x) |s−i] =


−vd

(
tj +

sj−i (n− 1)
2cj

Rj +Rj

)
− fj , j ≤ m− 1

−vmtm − sm−i (n− 1)D − fm , j = m

(3.7)

3.1.5 Equilibrium solution and boundary conditions

The goal of this approach is to find a closed-form solution for the symmetric mixed Nash equi-

librium in customers’ game. According to Definition 3.3 in Section 3.1.2, in mixed Nash equi-

librium customers must have no incentive to deviate from the chosen mixed strategy. Intuitively,

in order for this to be true, it must be that for customer i, choosing an action j yields the same

expected utility as choosing any other action. In addition, because the equilibrium is symmetric,

not only all customers other than i choose action j with the same probability sj−i, but customer

i also chooses that action with the same probability as the other customers; that is sji = sj−i.

Consequently, in order to determine the mixed strategy Nash equilibrium s∗, the mixed strategy

s∗i which customer i will employ in equilibrium must be calculated. This amounts to solving the
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following m×m system of linear equations:

E[u1i (x) |s∗−i] = E[u2i (x) |s∗−i]

. . .

E[um−1i (x) |s∗−i] = E[umi (x) |s∗−i]

s∗j−i + . . .+ s∗m−i = 1

(3.8)

Of course, the solution is subject to boundary conditions for the probabilities. In order to obtain

a more clear picture on what these boundary conditions mean for the customer, it is instructive

to solve a simple instantiation of the customers’ game with two firms and no outside option; firm

1 and firm 2. How the customers’ equilibrium is found is shown analytically in Appendix A.1.

Assuming service time Rj is the same at both firms for simplicity, the customers’ equilibrium

probabilities of firm choice in this case are:

s1∗i =
c1vdR(n− 1) + 2c1c2vd(t2 − t1) + 2c1c2(f2 − f1)

vd(n− 1)(c1 + c2)R

s2∗i =
c2vdR(n− 1) + 2c1c2vd(t1 − t2) + 2c1c2(f1 − f2)

vd(n− 1)(c1 + c2)R

vd, c1, c2 > 0 n > 1

(3.9)

Let us now explore the boundaries for these probabilities. First, in order to have s1∗i < 0 since

the denominator of s1∗i in equation (3.9) is always positive, it must be:

s1∗i < 0⇔

c1vdR(n− 1) + 2c1c2vd(t2 − t1) + 2c1c2(f2 − f1) < 0⇔

vd
(n− 1)

2c2
R+ vdt2 − vdt1 + f2 − f1 < 0⇔

−vdt1 − f1 < −vdt2 − vd
(n− 1)

2c2
R− f2 ⇔

−vdt1 − vdR− f1 < −vdt2 − vd
(n− 1)

2c2
R− vdR− f2 ⇔

−vd(t1 +R)− f1 < −vd
(
t2 +

n− 1

2c2
R+R

)
− f2 ⇔

Replacing from eq. (3.3) u1i (0) < u2i (n− 1).

This means that s1∗i < 0 when the utility for customer i of going to firm 1 with no congestion,

is smaller than the utility of going to firm 2, even if all n − 1 other customers went to 2 as

well. In that case, i will simply play the pure strategy of going to firm 2. For larger numbers

of firms, the result is that the utility for going to the firm with negative probability is smaller

than the utility of visiting all other firms together, even if n − 1 customers also visited all the

other firms. For example for three firms where firm 1 yields a negative probability, it is u1i (0) <
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u2i (n− 1) + u3i (n− 1). In that case, the firm whose probability is negative, is conceptually out

of the competition and there is no way a customer would choose it. The probability of choosing

such a firm should then be set to zero and the equilibrium must be recalculated. Now when

a probability is greater than 1, this simply means that the probability for some other action or

actions is negative. More information on how this is actually handled can be found in Section

3.4.2.

3.2 Stage 2: Investors Choose Prices

This section will introduce the crucial aspect of firm investor pricing competition, as the second

stage of the extensive form game (seen in Figure 3.1 at the start of this chapter). In order to

delve into the model, some context needs to be defined first. This stage assumes that investors

have already played the first stage of the extensive form game. Furthermore, each investor may

own multiple firms that offer the same service, but can own at most one firm at each available

location. It is further assumed that peak congestion at firms can occur a given number of times

per day and that when peak traffic arrives at the firms, queues are empty. Last, in the previous

section j was used to denote one of the options available to customers. To avoid more confusing

notation, j will be used here to denote a firm an investor may own in a particular location. Given

these, the formal model for the investors’ price choices follows in Section 3.2.1, the utility and

expected utility for firms and investors is defined in Section 3.2.2, and the pure strategy Nash

equilibrium in prices is discussed in Section 3.2.3.

3.2.1 Normal-form z-player investors’ price game

The firm investors’ price choice is modelled as a normal-form subgame, in which a finite number

of firm investors compete with each other in order to maximise their individual net profit by

simultaneously selecting prices for their firms. They do so given that out of n customers, an

uncertain portion will visit each firm, and given that investors have already chosen locations,

capacities and the speed of service at their firms.

Definition 3.6. This subgame is defined as a tuple 〈I, F, r(·)〉, where I is the finite set of z

firm investors. Let L = {l1, · · · , lµ} be the finite set of locations available to investors and

F 0
k = (−∞,+∞) be the infinite set of price options available to investor k. Then, Fk = (l1 ×
F 0
k )×(l2×F 0

k )×· · ·×(lµ×F 0
k ) is the set of actions3 available to investor k. F = F1× . . .×Fz

is the set of pure strategy profiles and f = 〈f1L, . . . , fzL〉 ∈ F is a pure strategy profile. Thus

pure strategy fkL contains the prices fkj investor k chose for each location j ∈ L in pure strategy

profile f . Finally, r(·) = 〈r1(·), . . . , rz(·)〉 is the z-tuple of utilities for the investors.

It can be argued at this stage that maybe mixed strategies should be considered, because investors

in reality may adjust their firms’ prices each day. However, these will not offer much insight
3Investor k will choose from an infinite amount of real-valued price options for each of the firms k owns.
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with regard to firm competition. In addition, whereas adjusting prices may be a reality, doing

so randomly does not make much sense for the following two reasons. The fact that investment

levels have already been decided in the first stage of the extensive form game indicates that an

investor has a clear picture of the costs that need to be overcome. Moreover, investors would be

able to observe competitors’ prices in the previous day easily, given that the number of direct

competitors is rather unlikely to be large enough to render observation difficult or partial.

Having defined the game for investor pricing competition, the next section discusses firm and

investor utility and expected utility.

3.2.2 Firm and investor utility and expected utility

A firm’s utility is introduced as the net profit of the firm. That is the normalised earnings minus

the costs. If x customers go to firm j that investor k owns, the utility for firm j is defined as:

rkj (f) = x(fkj − hkj ) · w − bkj ckj − okj (3.10)

where hkj is the cost for the firm to serve each customer, bkj is the cost of one server, and ckj
(capacity) is the number of servers at the firm. In order to prevent investors from arbitrarily

building firms, the parameter okj is utilised as an one-time building cost for firm j. The parameter

w is used to normalise earnings for a given time frame (e.g. 1 year), assuming peak congestion

can occur a given number of times in a day and that the firm’s customer base consists of peak

traffic and some traffic throughout the rest of the day. Note that further costs can be integrated

into firm utility. For example, if there are other daily costs, these have to be subtracted from

utility and weighed by another normalisation parameter that reflects the correct time-frame. For

example if the model is to be run for a time-frame of 1 year, where each day peak traffic occurs

6 times, then w = 365 ∗ 6, and the weight for daily costs should be 365. Maintenance costs can

be considered this way, or they can be integrated directly into the cost of building a server bkj for

the whole year or time-frame under examination.

Given that n customers are going to select firms in mixed strategy profile s, the expected traffic

flow toward firm j of investor k then is sjki n which is, in fact, a function of the prices of all m

options available to customers. Then the expected utility for firm j of setting price fkj in pure

strategy profile f , given that customers are going to choose in mixed strategy s, is:

E[rkj (f)|s] =

s
jk
i (f) · n · (fkj − hkj )w − bkj ckj − okj , ckj > 0

0 , ckj = 0
(3.11)

Note that when ckj = 0, sjki (f) is not defined as was seen in Equation (3.9). In that case,

expected utility is explicitly set to 0 to reflect a state where the firm is not open therefore there

is no profit or loss. Then, the expected utility for investor k of playing in pure strategy profile
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f is the sum of the expected utilities of all potential firms investor k can own across available

locations.

E[rk(f)|s] =
∑
j∈L

E[rkj (f)|s] (3.12)

3.2.3 Pure strategy Nash equilibrium in prices

In this game, as was explained in Section 3.2.1, pure strategies will be considered. Further-

more, pure strategy Nash equilibria will be useful in finding deterministic solutions investors

can actually use4 and understand, and thus have incentive to follow.

Definition 3.7 (Pure strategy NE in prices). In a pure strategy profile f = (fkL, f
−k
L ), let fkL

be a strategy of investor k and f−kL be a strategy of all players except for k. A strategy profile

f∗ = (fk∗L , f−k∗L ) ∈ F is a Nash equilibrium, if no unilateral deviation in strategy by any single

player is profitable for that player. Let f ′ = (fk′L , f
−k∗
L ) be a pure strategy profile, in which

all other investors except for k play the same strategy as in f∗, but player k plays a different

strategy fk′L than the one played in f∗. Then f∗ is a Nash equilibrium if:

∀k, fkL ∈ Fk : E[rk((fk∗L , f−k∗L ))|s] ≥ E[rk((fk′L , f
−k∗
L ))|s]

In pricing competition as it has been defined here, it is expected that pure strategy Nash equilibria

do exist. Whereas the set of an investor’s price options been defined as (−∞,+∞), it is not

difficult to imagine that there can exist two numbers P1, P2 far enough apart so that (P1, P2)

includes all realistic price options investors might consider5. In such a case where the action

set is infinitely large but compact, Glicksberg (1952) notes that pure strategy equilibria are

guaranteed to exist if additionally the utility function is continuous. Conceptually, negative

prices would mean that an investor would pay customers to visit the firm. Such a strategy,

considering the bigger picture of the extensive form game, is always dominated by the strategy of

not opening the firm at all in the first place, regardless of how much the investor pays customers.

Now let us discuss how the pure strategy NE in prices is found. Utilising the concept of back-

ward induction to solve the three stages shown in Figure 3.1, the first step toward finding equilib-

rium prices is to determine the equilibrium probabilities customers choose firms with. Accord-

ing to Definition 3.7 that was given previously, investors should not have incentive to deviate

from the equilibrium strategy. More intuitively, this means that in equilibrium each investor’s

price choices are a best response to the other investors’ best responses; that is each investor’s

price choices provide the maximum utility given the other investors’ prices (Fudenberg and

Tirole, 1991). This translates to solving the following zµ× zµ linear system:

∀k ∈ I : ∀j ∈ L :
∂E[rk(f∗)|s∗]

∂fk∗j
= 0 (3.13)

4For example the model can be rerun every day to adjust prices taking new information into account.
5i.e. price options that are not infinitely far away from the equilibrium price
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3.3 Stage 1: Investors Choose Location, Capacity and Service Speed

This section explains the first stage of the extensive-form game in Figure 3.1. This models the

situation in which several investors are called to decide simultaneously on their firms’ locations,

capacities and speed of service. By speed of service, it is meant that the investor makes a choice

other than the number of servers (capacity), which will influence the time needed to deliver the

service to the customer. In order to consider these choices, it is necessary to determine how an

investor would reason about building a firm. First of all, an investor would consider building one

or multiple firms at locations that have potential for economic profit. Given a set of locations

for consideration (or other options that influence the cost to access the firm), the investor would

reason on building a number of firms in the available locations, choosing locations, capacities

and the speed of service in an effort to maximise net profit.

At the same time, these three choices of location, capacity and speed of service are considered in

the same stage, as these are related to each other more directly in problems such as the SLCOP

that was explained in Section 1.1. The assumptions on investors are the same as in Section 3.2,

with the addition of the assumption that an investor will choose the same speed of service across

all the owned firms. This is done to keep the problem more tractable computationally, and is

not expected to affect the findings of this work. Last, the term ’location’ can obviously refer to

the actual physical location of a firm, which will determine the cost for customers to access the

firm and the cost for the investor to establish the firm at that location. However, conceptually

it can be used to represent other decisions related to the access cost to the firm or the cost

of building a firm, when the customer is indifferent to where the firm is physically located.

For example, when choosing an Internet provider the customer rarely is interested on where

the providers’ physical headquarters are. More interesting information may include the cost

to obtain an Internet line, and perhaps the distance to the providers’ multiplexers (DSLAMs).

When offering online applications, a choice of host by the firm may be an important factor that

may influence the customer’s experience, as well as the cost of providing the application for the

firm, and so on.

With these in mind, the game where investors choose locations, capacities and the speed of ser-

vice is defined in Section 3.3.1. Utility, expected utility and Nash equilibrium are then discussed

in Section 3.3.2.

3.3.1 Normal-form z-player firm investors’ location, capacity and speed of ser-
vice game

As in the price choice game (Section 3.2.1), a normal-form game is utilised to model the strategic

interaction among a finite number of investors who simultaneously choose locations, capacities

and the speed of service for their firms. Each investor can have at most one firm in each location
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Definition 3.8 (Investors’ location, capacity and speed of service game). This sub-game is de-

fined as a tuple 〈I, C, r(·)〉, where I is the set of z investors. Let C0
k = [0,Θ] ( N be the finite

set of capacity choices available to investor k andG be the finite set of options that can influence

the speed of delivering the service under consideration. If L = {l1, · · · , lµ} is the finite set of

locations available to investors, then Ck = ((l1 × C0
k) × (l2 × C0

k) × · · · × (lµ × C0
k)) × G is

the set of actions6 available to investor k. Then, C = C1 × . . . × Cz is the set of pure strategy

profiles and each vector c = 〈c1L, . . . , czL〉 ∈ C is a pure strategy profile. So pure strategy ckL
contains the capacities ckj investor k chose for each location j ∈ L, and the speed of service

choice gk in pure strategy profile c. Finally, r(·) = 〈r1(·), . . . , rz(·)〉 is the z-tuple of investor

utilities.

In this game, pure strategies will be assumed. The potential existence of many symmetric or

asymmetric pure strategy NE in this game is something that will offer better insight into firm

competition. In the customers’ game, in Section 3.1, it was argued that customers have difficulty

reasoning about pure strategies because although they may have information on firms, they

cannot have absolute and accurate information on congestion at firms. Consequently, they may

randomise their choices each day. It can be argued that the situation for investors is not much

different in the sense that station investors also cannot observe the other players’ actions, since

they play simultaneously. However, in reality an investor’s behaviour is expected to show long-

term commitment, especially when it comes to deciding capacities which in many cases may

dictate the magnitude of the investment to a large extent. Moreover, investors should have a

clear picture on how much they are willing to invest given some expectation for traffic. Because

of these reasons, pure strategies are a good representation of investor behaviour that can be used

to extract more concrete results on firm competition.

Having established that firm investors play pure strategies, it is time to discuss the utility and

expected utility of firms and investors in the next section.

3.3.2 Utility, expected utility and Nash equilibrium

A firm’s utility and expected utility are the same as in Section 3.2.2, only now conceptually they

are considered functions of pure strategy profile c instead of f . Therefore, the expected utility

of firm j investor k owns is:

E[rkj (c)|s] =

s
jk
i (c) · n · (fkj − hkj )w − bkj ckj − okj , ckj > 0

0 , ckj = 0
(3.14)

where the cost of serving a customer hkj and the cost of adding a server bkj may or may not

depend on the chosen location, and the cost of establishing the firm okj is directly associated

6the investor will choose a capacity in C0
k for each of the µ locations and a speed of service to use across all

his/her firms.
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with the chosen location. The expected utility of investor k then is:

E[rk(c)|s] =
∑
j∈L

E[rkj (c)|s] (3.15)

The pure NE in locations, capacities, and speed of service is defined similarly as in Definition

3.7 for prices, only now investors play in pure strategy profile c, and utilities are considered

functions of c. Pure strategy Nash equilibria do not always exist in finite non-cooperative games.

It is worth noting at this point that nonexistence has not been encountered in comprehensive

explorations of the full model. Specific cases of non-existence in reduced versions of the model

will be discussed in Section 3.5.2. The pure strategy NE in locations, capacities and speed

of service is solved with an algorithmic approach, and this together with a discussion on the

solution concepts used is discussed in the following section.

3.4 Solving the Model

This section explains how the three normal form games presented in this chapter are combined

into an extensive form game, and how solutions to this extensive form game are found. Toward

this, Section 3.4.1 discusses the extensive form game and the concept of subgame-perfect equi-

librium and Section 3.4.2 presents the solution concept and algorithm for solving the extensive

form game.

3.4.1 Subgame-perfect equilibrium (SPE)

Extensive form games are finite representations that, in contrast to normal form games, do not

mandate players to be acting simultaneously. As was mentioned in the beginning of this chapter,

the model presented here considers three stages; first, investors decide on their firms’ locations,

capacities and speed of service. Then investors decide on prices at their firms. Last, customers

choose among firms. These three stages were formalised into three separate normal-form games

in which players within the same game act simultaneously. Now, these games will be considered

as subgames of a higher level extensive-form game in which the firm investors’ location, capac-

ity and speed of service game (Section 3.3) takes place first, the investors’ price choice game

(Section 3.2) takes place second given the outcome of the previous game, and the customers’

firm choice game (Section 3.1) takes place last, given the outcomes of the previous two. It is

also assumed that players at each stage are able to observe the initialisation of the first stage.

Because customers in the third stage are able to observe the outcomes of the first and second

stages, investors in the second stage are able to observe the outcome of the first stage, and at

all stages players can observe the initialisation of the first stage, players in this extensive form

game have perfect information. This enables using the concept of subgame-perfect equilibrium

(SPE) to obtain a solution. This makes solving the model more efficient computationally, since
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rather than computing all the possible permutations of strategies by investors and customers,

choices in previous stages are taken for granted. The concept of SPE intuitively proposes that

when players have perfect information, the Nash equilibria of the extensive form game consist of

the individual Nash equilibria of its subgames. More specifically, if investors choose locations,

capacities and speed of service in pure strategy NE c∗ and choose prices in NE f∗ given c∗,

and customers choose firms with a mixed strategy NE s∗ given c∗ and f∗, then this combination

of c∗ and f∗ investor choices, and s∗ customer choices is a subgame-perfect equilibrium of the

extensive form game. In the next section, the solution concept for solving SPE in this game, as

well the algorithm used are explained.

3.4.2 Solution concept and algorithm

A common solution concept used in solving subgame-perfect equilibria is backward induction.

Backward induction follows a bottom-to-top approach in solving the model, that is in this par-

ticular instance the customers’ game is solved first. The result is then assumed to solve the

investors’ NE in price choices, and last both these results are assumed in solving the investors’

NE in locations, capacities and speed of service. This concept is implemented in Algorithm 1

seen on the next page, which combines analytical and algorithmic techniques and will now be

explained.

As discussed in Section 3.1.5, calculating the symmetric mixed NE for the customers is straight-

forward. This is done analytically (line 8, Algorithm 1) by obtaining a closed-form solution for

equilibrium probabilities. This requires solving a m ×m system of linear equations, which is

easy to solve symbolically7 for probabilities.

Having obtained the closed-form solution for customers’ probabilities the next step is to find

the pure strategy NE in prices (line 9, Algorithm 1). To do this, the customers’ probabilities

are replaced in firms’ expected utilities (equation (3.11)), and then the system in equation (3.13)

is solved again symbolically. The pure NE in prices, although linear with respect to firms’

prices, is more difficult to compute symbolically. That is because it is non-linear with respect to

capacities. More on the complexity of the NE in prices will follow in Section 5.1.1. It is worth

noting at this point that the investor’s expected utility of equation (3.12) is now governed by the

same conditions as the customers’ equilibrium is, due to substitution. This means that it is not

defined for a capacity of zero (i.e. not opening a firm in that location), and thus the firm’s utility

for zero capacity has to be explicitly set to 0. In the case where all firms have zero capacity

and there is no outside option for customers, the utility for investors is explicitly set to −∞, to

ensure that there is at least one firm open to serve the customers.

Next, the pure strategy NE in locations, capacities and speed of service is solved and subgame-

perfect equilibria are obtained. Pure strategy NE are generally complex to compute exhaustively.
7i.e. by not replacing any parameters in the customer’s utility and using a symbolic solver such as Matlab’s

solve() function.
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Algorithm 1 Algorithm for obtaining SPE of the extensive-form game. An Iterated best re-
sponse (IBR) is employed in solving the investors’ location, capacity and speed of service game.

1: procedure FIND SPES

2: K ← Repeats threshold
3: X← {} . Set of all SPEs found
4: I ← set of z investors
5: Θ← set of µ locations
6: G← set of charger type options
7: T ← capacity limit
8: s∗ ← solve system (3.8) symbolically
9: f∗ ← solve system (3.13) symbolically given s∗

10: for threshold= 1→ K do
11: currentCapacityState← randomise {c11, . . . , c1µ, . . . , cz1, . . . , czµ}
12: currentSpeedState← randomise {g1, . . . , gk}
13: O ← shuffle(I) . Randomise investor order
14: repeat
15: previousCapacityState← currentCapacityState
16: previousChargerState← currentChargerState
17: for k = 1→ z do
18: player ← O(k)
19: currentCapacityState, currentChargerState←

arg max
ckL∈Ck

E[rk(ckL, c
−k
L )|s∗, f∗]

20: end for
21: until previousCapacityState=currentCapacityState and

previousChargerState=currentChargerState . SPE found
22: c∗ ← (currentCapacityState, currentChargerState)
23: X← X ∪{{s∗, f∗, c∗}}
24: end for
25: end procedure

A classic method of locating pure NE is using utility matrices, and checking for every strategy

profile whether any investor can deviate. This is a simple procedure that, however, can be com-

putationally intensive. In this particular case, we have z investors each of whom has Θ + 1

capacity options for each of the µ available locations. In addition there are ψ service speed op-

tions available to each investor. Meaning each investor’s utility function is a (Θ + 1)µzψz table.

Going through each of the strategy profiles and checking whether any investor can deviate re-

quiresO(z2(Θ+1)µzψz) time. While this approach may be adequate for very small instances of

the investors’ game, a better approach for larger problems is to utilise an Iterated Best Response

(IBR) algorithm. Instead of calculating all the utilities, investors are initialised in a random state

and take turns playing their best strategy given the other players’ strategies. This way, in each

iteration of the algorithm it is only necessary to calculate the utilities of the current player for a

given state the other players are in, and this reduces computational time significantly.

The IBR algorithm (lines 11-23, Algorithm 1) will now be explained. First, a random capacity
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for each location, and a random speed of service are initialised for each investor (lines 11 and

12). Then, investors participate in rounds deciding their capacities and speed of service one

after the other in a random order. After the playing order has been randomised (line 13), rounds

are repeated (line 14). A round consists of each investor in the playing order looking at the

other investors’ capacities, speed of service, and prices, and choosing the capacity and speed of

service combination that maximises the expected utility (lines 17-20). This leads to a new pure

strategy profile for the next investor to take into account. Locating a pure strategy equilibrium

in locations, capacities and speed of service (lines 21,22) is based on the idea that a new round

begins with the pure strategy profile that resulted from the previous round. Then, if a full round

passes without change in that pure strategy profile, no investor has incentive to deviate and thus

the pure strategy profile investors started the round with is a pure strategy NE.

Note that in the maximisation process for the investor (line 19), prices are actually calculated

numerically first. Then, these prices are used to calculate the customers’ probabilities numeri-

cally. If the probabilities for some firms are negative, this falls under the conditions explained

in Section 3.1.5. There are two ways to handle this situation, which have been found to be

equivalent. One way is to remove the firms with negative probabilities (they are dominated by

the other firms) from the customers’ equilibrium system resulting in a reduced system. Then,

the reduced system must be recalculated, as must be the new equilibrium in prices. This need

not be done every time; all reduced permutations of the customers’ and prices equilibria can be

calculated symbolically before starting the IBR8. The second method is to fetch the numerical

probabilities, set those which are negative to zero, and normalise each probability by dividing

with the sum of the new probabilities.

Reduced versions of the problem in which locations and the speed of service for each investor

are set can be further reduced by employing hill-climbing or simulated annealing algorithms.

However, this is problematic for multiple locations and service speeds, because these introduce

local maxima in investor utilities9. This could be overcome by running multiple hill-climbers in

parallel for each investor, but it is doubtful whether this can provide any benefits given that the

IBR is quite efficient even for large problems.

Last, it must be noted that the IBR algorithm can locate only one SPE with a given instantiation

and playing order. To locate all possible equilibria, the IBR is repeated several times (line 10),

and each time the resulting SPE is added to the set of SPEs if not present (line 23). Determining

the number of repetitions needed is discussed in detail in Section 5.1.1.
8e.g. if there are 3 locations with 2 investors, that is 6 potential firms. Then solve symbolically also for 5, 4, 3,

and 2 firms
9e.g. how do you transition from a state where the investor has a firm in one location, to a state where the investor

switches location?
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3.5 Analysis and Observations

This section will expand on some interesting theoretical aspects of firm competition as it has

been defined in this chapter. Specifically, Section 3.5.1 will analyse theoretically the equilibrium

in prices, and Section 3.5.2 will provide insights into the existence of pure strategy equilibria at

stage 1 (see Section 3.3) of the extensive form game.

3.5.1 Prices equilibrium analysis

Having defined the pure NE in prices and a way to solve it in the Section 3.2.3, there are some

noteworthy findings the analytical solution to equilibrium prices reveals. For demonstration

purposes, simple notation as in Section 3.1 will be used. This assumes each investor has only 1

firm, therefore the terms ’Firm j’ and ’Investor j’ are equivalent.

Theorem 3.9. Let ({Firm 1, F irm 2}, {F1, F2}, {r1(f), r2(f)}) be a two-investor instance

of the investors’ price game that was defined in Section 3.2.1, where investors have already

chosen locations, capacities and the speed of service. Without loss of generality, it is assumed

for simplicity that each investor has only one firm, that the cost of serving customers is the

same for both firms (h1 = h2 = h), and that the speed of service is the same in both firms

(R1 = R2 = R). Last, it is assumed that there is no outside option for customers. Then this

game has a unique Nash equilibrium in prices f∗ = (f∗1 , f
∗
2 ):

f∗1 = h− 1

3
vd(t1 − t2) +Rvd(n− 1)

2c1 + c2
6c1c2

f∗2 = h− 1

3
vd(t2 − t1) +Rvd(n− 1)

c1 + 2c2
6c1c2

vd, c1, c2 > 0 n > 1

(3.16)

in which charging prices will deviate from the marginal charging cost10 h due to the inability

to satisfy charging demand immediately, and due to goods differentiation different firm access

costs impose.

It is noted at this point that immediate demand satisfaction is not necessarily related with the

capacity of firms. In services which take some time to deliver, such as charging an EV, mak-

ing a coffee, or downloading an application, it is understandable that demand may be de facto

impossible to satisfy immediately, even if firms have enough servers to alleviate congestion.

Additionally, this service time may be significant in some services. For example, it would take

a charger with an output of about 2000kW to recharge a small EV such as the Nissan Leaf with

a 24kW battery in time that is comparable with refuelling a conventional vehicle, and it would

take even higher power output for charging times to be accepted as almost immediate.
10i.e. Bertrand equilibrium
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Proof. For proving Theorem 3.9, the two-firm example that was solved in Section 3.1.5 is useful.

The next step is to substitute the probabilities of equation (3.9) into investor expected utilities

given by equation (3.12), and solve the price equilibrium from equation (3.13). This part is

relatively long and is presented in Appendix A.2, but results in the equilibrium prices shown in

equation (3.14).

It is evident from equation (3.14) that prices in equilibrium deviate upward of the marginal cost

h because of the Rvd(n − 1)2c1 + c2
6c1c2

and Rvd(n − 1)c1 + 2c2
6c1c2

terms. There also is some

fluctuation in prices due to product differentiation different firm access costs impose, making

the product of firms heterogeneous through the vd(t1 − t2) and vd(t2 − t1) terms. A firm with

a lower access cost has an advantage in the ability to ask a higher fee, while a firm with a higher

access cost has to reduce price to remain competitive. It must be noted here that this fluctuation

may, in theory, result in price lower than h for a very disadvantaged firm (i.e. investor tries to

minimise losses). However, in the greater extensive form game this strategy is always strictly

dominated by not opening the firm at all in that location if it is doomed to constant loss, as we

will see later in Section 5.1. Finally, from equation (3.16) it is straightforward to deduce that:

lim
R→0

f∗1 = h− 1

3
vd(t1 − t2)

lim
R→0

f∗2 = h− 1

3
vd(t2 − t1)

This means that in the case where firms have the same access cost and thus sell a homogeneous

product (i.e. t1 = t2), equilibrium prices converge asymptotically to the marginal cost h with

an increasing speed of service (decreasing service time R), something which is in line with the

outcome of Bertrand competition.

3.5.2 On the existence of pure NE in capacities

Let us consider a reduced version of the model in which two investors can own only up to one

firm each, and locations, the speed of service and prices are set. In addition, there is no outside

option for customers. Investors will first choose capacities, and then customers will choose

firms. As discussed in Section 3.4.2, firm expected utility in Equation 3.11 is not defined for

capacities of 0 due to substituting probability when solving with backward induction. A capacity

of 0 is used to conceptually represent the situation where the investor chooses to not open a firm,

and expected utility for that location is explicitly set to 0. In addition, a state where no firms are

open is not desirable when there is no outside option for customers. Therefore, in the special

case where one investor plays a capacity cj = 0 while the other investor has also chosen a zero

capacity, the utility for firm j is set to -∞. This introduces an inconsistency in utility which

raises the following interesting situation.

Even in the case where all parameters for investors are the same (i.e. the problem is symmetric

for investors), investors may play different capacities because capacities are discrete. Let us
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now consider the same setting, where in addition the fee fj and the cost of providing the service

hj are the same for all firms. Because all customers must and will buy the service, there is

a constant amount of total gross profit to be made by the firms, which is the buying power of

customers:

p = (fj − hj)nw (3.17)

Then, the expected utility for firm j is:

E[rk(c)|s] = sjip− bjcj − oj (3.18)

Taking into account the probabilities, a small utility matrix for this scenario is shown in Table

3.1 below. For simplicity, the cost oj is omitted. The left utility in each cell belongs to Firm 1,

and the right utility in the cell belongs to Firm 2.

Table 3.1: 3x3 Matrix: Investors’ capacity game.

Firm 1

Firm 2
cj 0 1 2
0 −∞,−∞ 0, p− b2 0, p− 2b2
1 p− b1, 0 1/2p− b1, 1/2p− b2 1/3p− b1, 2/3p− 2b2
2 p− 2b1, 0 2/3p− 2b1, 1/3p− b2 1/2p− 2b1, 1/2p− 2b2

Now imagine that building cost is so high that firm utility is always negative. Let us say that the

total profit that can be made is p = 3, while the building cost for a charging unit is b1 = b2 = 4.

Then, the utility matrix becomes the matrix in Table 3.2. In this situation, if Firm 1 plays a

capacity of 0, then Firm 2’s best strategy is to play 1 despite incurring losses. If Firm 1 plays

any other strategy, Firm 2’s best strategy is to remain closed. The situation is the same for

Firm 1, which leads to the existence of two asymmetric Nash equilibria (c1 = 0, c2 = 1) and

(c1 = 1, c2 = 0). If both investors were allowed to not open, the equilibrium in this case

would be (c1 = 0, c2 = 0). So this equilibrium is artificially imposed by the assumption that

customers have to recharge, and the investors do not have real incentive to open a firm leading

to this irrational behaviour that a firm might be open even though it may be recording net loss.

Let us now define this situation more generally.

Table 3.2: 3x3 Matrix: Investors’ capacity game with p = 3 and b1 = b2 = 4. Maxima
are indicated in bold numbers

Firm 1

Firm 2
cj 0 1 2
0 −∞,−∞ 0, -1 0,−5
1 -1, 0 −2.5,−2.5 −3,−6
2 −5, 0 −6,−3 −6.5,−6.5
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Theorem 3.10. When each of m investors can own only up to one firm, there is no outside

option for customers, and the problem of choosing capacities at firms is symmetric with respect

to prices, service times and access costs, then investor j has real incentive to open a firm in

strategy profile c only when:

bj <
fj − hj

cj +
∑
−j∈I

c−j
nw − oj

cj
(3.19)

where −j indicates an investor other than j.

Proof. When the problem is symmetric for investors with respect to the costs that customers are

interested in, that is when the access cost tj , service fee fj and service time Rj are the same

across all firms, then it is straightforward to deduce from equation (3.4) that the customers’

equilibrium in equation (3.8) reduces to:

s1i
c1

=
s2i
c2

= . . . =
smi
cm

s1i + s2i + . . .+ smi = 1

(3.20)

In turn, solving the system of (3.20) is fairly simple and reveals that for m firms, the probability

of going to firm j is:

sji =
cj

c1 + . . .+ cm
=

cj

cj +
∑
−j∈I

c−j
(3.21)

Then in order for the investor of firm j to have real incentive to open the firm in strategy profile

c (i.e. positive expected net profit) it must be:

E[rk(c)|s] > 0⇔

replacing from (3.14) and (3.15) 0 < sji (fj − hj)nw − bjcj − oj ⇔

from (3.21) bjcj <
cj

cj +
∑
−j∈I

c−j
(fj − hj)nw − oj ⇔

bj <
fj − hj

cj +
∑
−j∈I

c−j
nw − oj

cj

which is the outcome in equation 3.19.

This behaviour is not really an issue, as the situation where no firm is open is of little significance

when customers do not have an outside option, and represents a rather unrealistic situation.

In addition, the inclusion of the outside option relaxes the assumption that demand must be

satisfied.
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Moving on to examine what happens when firms’ utilities are not always negative, a glance back

at equation (3.21) shows that the probability of going to firm j increases at a reducing rate for

a unilateral increase in capacity by that firm, and at the same time that probability has an upper

bound of 1. This means that there is an upper bound in expected gross profit for each firm which,

to pick up from the previous examples, would be p (equation (3.17). Looking at Equation (3.18),

−bjcj decreases linearly with an increasing capacity. Therefore, when expected gross profit sjip

is added, this will introduce an upper bound in firm utility. As an investor will consider selecting

capacity from 0 to some larger number Θ, utility will increase from 0 to a positive peak for some

capacity, after which it will start decreasing. This is a good indication that equilibria might exist

as investors will always have a maximum in expected utility, given the other investor’s strategies.

Let us assume now, still keeping in mind identical parameters for investors, that the total profit

that can be made is p = 15 and the building cost for both investors to build each server is

b1 = b2 = 2. A utility matrix for this case is shown in Table 3.3 below (again ignoring oj).

Table 3.3: 4x4 Matrix: Investors’ capacity game with p = 15 and b1 = b2 = 2.
Maxima are indicated in bold.

Firm 1

Firm 2
cj 0 1 2 3
0 −∞,−∞ 0, 13 0, 1 0, 9
1 13, 0 5.5, 5.5 3, 6 1.75, 5.25
2 11, 0 6, 3 3.5, 3.5 2, 3
3 9, 0 5.25, 1.75 3, 2 1.5, 1.5

Here, if Firm 1 plays 0, Firm 2’s best strategy is to play 1, if Firm 1 plays 1, Firm 2’s action

that maximises utility is playing 2. For a strategy c1 = 2, Firm 2’s best strategy is to play 2, and

if Firm 1 plays 3, Firm 1’s best action is playing 2. The situation is mirrored for Firm 1, and

this indicates a pure strategy Nash equilibrium (c1 = 2, c2 = 2). While in symmetric scenarios

equilibria have been always found to exist in this model, there can be situations in which Nash

equilibria do not exist. Non-existence in the presented model is attributed to severe differences

between parameters for the investors. If, for example, the building cost is disproportionately

low for one investor, the other investor may end up getting negative utilities for most capacity

choices. This forces the maxima of that player toward the edge of the matrix, and the two

investors’ maxima can never coincide in the same strategy profile. Such a situation is displayed

in the next table, Table 3.4, which shows the utilities when total possible profit is p = 15,

building cost for Firm 1 is b1 = 2 but for Firm 2 it is b2 = 7.

Notice how the maxima of Firm 2 have now clustered at the left of the matrix, while the situation

for Firm 1 is unchanged utility-wise, compared to the previous example of Table 3.3. This, of

course, does not mean that capacity choice does not have an impact on the other player. If we

follow the line of a strategy of Firm 1, Firm 1’s utilities do change as Firm 2 increases capacity,

as this changes the probability of customers choosing Firm 2. It means, however, that building

cost for one player does not affect the utility of the other player directly, but it does so through a

different choice in capacity Firm 2 will make. This is expected, as a disadvantaged investor with

higher building costs cannot do anything to counter that in this form of the game where prices
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Table 3.4: 5x5 Matrix: Investors’ capacity game with p = 15, b1 = 2, b2 = 7. Maxima
are indicated in bold.

Firm 1

Firm 2
cj 0 1 2 3 4
0 −∞,−∞ 0, 8 0, 1 0,−6 0,−13
1 13, 0 5.5, 0.5 3,−4 1.75,−9.75 1,−16
2 11, 0 6,−2 3.5,−6.5 2,−12 1,−18
3 9, 0 5.25,−3.25 3,−8 1.5,−13.5 0.43,−19.4
4 7, 0 4,−4 2,−9 0.57,−14.6 −0.5,−20.5

are set, such as reduce price to attract more customers. Therefore, customers will select firms

with the same probabilities for a particular capacity combination, regardless of the building costs

to which customers are indifferent. For similar reasons, equilibria may also not exist when firm

prices are vastly different. However, in that case customers do reason about prices, so Firm 1’s

utility is expected to be affected when the price of Firm 2 changes with a given combination of

capacities. Let us now define equilibrium existence with regard to building costs more generally.

Theorem 3.11. When investor j can own only up to one firm, there is no outside option for

customers, and the problem of choosing capacities at firms is symmetric with respect to prices,

service times and access costs, then in order for strategy profile c∗ to be a pure strategy Nash

equilibrium it must be that:

∀j ∈ I :

(fj − hj)nw
∑
−j∈I

c∗−jc∗j +
∑
−j∈I

c∗−j

2

+ c∗j +
∑
−j∈I

c∗−j

≤bj ≤

(fj − hj)nw
∑
−j∈I

c∗−jc∗j +
∑
−j∈I

c∗−j

2

−

c∗j +
∑
−j∈I

c∗−j


and

fj >

bj
∑
−j∈I

c∗−j

nw
+hj , cj , c∗−j > 0, n > 1

(3.22)

where −j indicates an investor/firm other than j.

Proof. Let us assume, for now, that the capacities domain is continuous. From equation (3.18),

if we replace sji from equation (3.21), we have that expected utility for firm j in strategy profile

c is:

E[rk(c)|s] =
cjp

cj +
∑
−j∈I

c−j
− bjcj − oj =

 p

cj +
∑
−j∈I

c−j
− bj

 cj − oj (3.23)
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In Appendix A.3 it is proven that firm j’s expected utility in equation 3.23 has one critical point

in (0,Θ) provided that fj >

bj
∑
−j∈I

c∗−j

nw + hj , and is concave down in (0,Θ).

According to Definition 3.7 where we defined pure NE in prices, extending it to capacities

means that when investors are in pure strategy NE c∗, the utility for investor j is at least as good

as the utility if j alone deviated from c∗ and played a different strategy. It has already been

shown that the utility for investor j in this case is concave down and can have only one critical

point in (0,Θ) for any given capacity combination by the other investors. Remembering that

capacity in our problem is actually a natural number, if cj is j’s current capacity and it is not a

maximum, then a deviation by either +1 or −1 must yield better utility given utility is concave

down with only one critical point (i.e. we can hill-climb utility). Alternatively, when investors

are in equilibrium c∗, then a deviation from c∗j by +α ∈ {−1, 1} must yield at most the utility

that equilibrium does:

∀j ∈ I : E[rk((c∗j , c
∗
−j))|s] ≥ E[rk((c∗j + α, c∗−j)|s]⇔

bjα ≥ p

α
∑
−j∈I

c∗−jc∗j +
∑
−j∈I

c∗−j

2

+ α

c∗j +
∑
−j∈I

c∗−j


Full expansion in Appendix A.4.

When α = 1 it must be:

bj ≥ p

∑
−j∈I

c∗−jc∗j +
∑
−j∈I

c∗−j

2

+ c∗j +
∑
−j∈I

c∗−j

and when α = −1 it must be:

bj ≤ p

∑
−j∈I

c∗−jc∗j +
∑
−j∈I

c∗−j

2

−

c∗j +
∑
−j∈I

c∗−j


Finally, in order to guarantee equilibrium, utility in c∗ must be at least as good as in a deviation

a = −1, and a deviation a = 1, thus we need to consider these two conditions together. In

addition, it must be taken into account that a maximum in firm utility exists in (0,Θ) only when
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the price is not very low. Hence replacing p from equation (3.17), it must be that:

∀j ∈ I :

(fj − hj)nw
∑
−j∈I

c∗−jc∗j +
∑
−j∈I

c∗−j

2

+ c∗j +
∑
−j∈I

c∗−j

≤bj ≤

(fj − hj)nw
∑
−j∈I

c∗−jc∗j +
∑
−j∈I

c∗−j

2

−

c∗j +
∑
−j∈I

c∗−j


and

fj >

bj
∑
−j∈I

c∗−j

nw
+hj , c∗j , c

∗
−j > 0, n > 1

(3.24)

3.6 Welfare and Efficiency Metrics

When demand must absolutely be satisfied and customers do not have any other choice than to

purchase the product/service, it is self-evident that it is not possible to measure efficiency for

firms, because the optimal strategy would be to set capacity at 1 and an infinite price (or at some

artificial price limit). However, the inclusion of an outside option for customers makes it now

possible to measure the efficiency of SPEs for firm investors. In order to measure this efficiency,

or rather inefficiency, of subgame-perfect equilibria the concept of the Price of Anarchy (PoA)

will be used. The PoA concept intuitively proposes that the selfish behaviour of players, steers

them away from making decisions that are optimal for the community. The inefficiency of equi-

libria, therefore, can be measured by comparing the worst-case social welfare in equilibrium,

with the maximum social welfare that can be obtained (Anshelevich and Ukkusuri, 2009).

Definition 3.12 (Price of Anarchy for investors). Let X = {{c∗, f∗, s∗}1, . . . , {c∗, f∗, s∗}λ}
be the set of all λ subgame-perfect equilibria in investor capacities and prices, and customer

choices. Then, the worst-case social welfare for investors is defined as the sum of investor

utilities in subgame-perfect equilibrium ρ in which the sum of utilities is minimum:

WelfareSPE = min
{c∗,f∗,s∗}ρ∈X

∑
j∈I

E[rj(c∗, f∗)|s∗]

It is assumed that the maximum social welfare that investors can obtain is the social welfare

when a central agency dictates the players’ strategies so that the sum of utilities is optimised

(centralised optimum). Therefore, the maximum social welfare that can be obtained is defined

as the combination of capacities and prices which maximises the sum of utilities of the investors,
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given customers will play in mixed strategy Nash equilibrium s∗:

Welfaremax = max
c∈C,f∈F

∑
j∈I

E[rj(c, f)|s∗]

Then, the price of anarchy for investors is defined as the ratio of the maximum social welfare,

over the worst-case social welfare in SPE:

PoA =

max
c∈C,f∈F

∑
j∈I

E[rj(c, f)|s∗]

min
{c∗,f∗,s∗}ρ∈X

∑
j∈I

E[rj(c∗, f∗)|s∗]
(3.25)

This gives us a measure of efficiency for investors, but does not clarify the picture for customers.

A similar concept could be applied for customers, however it is not clear how centralised cus-

tomer coordination and a comparison against it could be interpreted meaningfully, given it may

be unrealistic in many applications and given this thesis does not attempt to compare routing

policies for customers. A more meaningful measure of efficiency is to measure system-wide

efficiency given that customers will play in mixed strategy NE.

Definition 3.13 (System-wide SPE efficiency). Let X = {{c∗, f∗, s∗}1, . . . , {c∗, f∗, s∗}λ}
be the set of all λ subgame-perfect equilibria in investor capacities and prices, and customer

choices. System-wide social welfare is defined as the sum of the utilities of all players, and the

worst-case system-wide social welfare is defined as the sum of utilities in the SPE where the

sum of utilities is minimum:

Social WelfareSPE = min
{c∗,f∗,s∗}ρ∈X

∑
j∈I

E[rj(c∗, f∗)|s∗] + nwE[ui(x)|s∗, f∗, c∗]


Notice that the utility for all customers is actually the expected utility of the mixed strategy

for customer i (Equation (3.5)), multiplied by the number of customers n and the profit scaling

factor w. Now the maximum social welfare is defined as the the maximum sum of utilities of all

players across capacity and price strategies:

Social Welfaremax = max
c∈C,f∈F

∑
j∈I

E[rj(c, f)|s∗] + nwE[ui(x)|s∗, f, c]


Finally, the ratio we are interested in is the Social Welfare Ratio (SWR):

SWR =

max
c∈C,f∈F

∑
j∈I

E[rj(c, f)|s∗] + nwE[ui(x)|s∗, f, c]


min

{c∗,f∗,s∗}ρ∈X

∑
j∈I

E[rj(c∗, f∗)|s∗] + nwE[ui(x)|s∗, f∗, c∗]


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This will provide a useful measure of efficiency given that the goal of the model is to examine

strategies for investors. SWR follows a similar logic as the Price of Anarchy, and social welfare

in Hayrapetyan et al. (2007). However, because in this model both investors and customers make

decisions, SWR here considers that customers will always play in mixed NE, and compares

against the firm allocation which maximises social welfare, which is a meaningful metric. For

the true system-wide Price of Anarchy, customers should follow a centralised optimal routing

policy in finding Social Welfaremax, but this has little value given this thesis does not compare

routing policies for customers.





Chapter 4

Basic EV Driver and Station Investor
Behaviour

With this chapter, the application of the model for firm competition that Chapter 3 proposed will

begin on the SLCOP problem (Section 1.1). Applying the model will generally be carried out

in steps of increasing complexity, so as to promote empirical discussion on the various aspects

of charging station investor behaviour, as well as EV driver behaviour. Hence, this chapter will

mostly involve a duopoly example, that is a two-station setting where each charging station

belongs to a different investor, and where EV charging demand must be satisfied, that is there

is no outside option for EV drivers. Furthermore, it is considered that prices, locations and

the speed of service are set, that is investors only decide on capacities for their stations, and

then drivers choose stations. With these in mind, Section 4.1 discusses the model in relation to

the SLCOP problem, Section 4.2 evaluates the EV drivers’ behaviour when choosing stations,

and Section 4.3 presents an empirical evaluation of charging station investor behaviour when

choosing capacities.

4.1 Context and Parameters of the SLCOP

In order to determine and model how EV drivers behave, some context regarding EV usage

needs to be defined. First of all, it is assumed for the purpose of this thesis that drivers drive

pure electric vehicles, that is vehicles that are solely powered by electricity. Whereas hybrid EVs

which combine internal combustion engines with electric motors exist today, these are generally

indifferent to en-route charging. Hybrid EVs have small batteries and are ideal for using the

electric motor for short intra-city trips, like going to work, where speed is lower and distances

are relatively short. However, hybrid EVs generally have to rely on the internal combustion

engine for higher speeds and travelling longer distances. This means that hybrid EV drivers can

use the electric motor to complete short trips, or longer trips in combination with the combustion

motor, without being constrained by the available battery charge as pure EV drivers are. Hybrid

55
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EVs additionally regenerate charge from using the combustion engine, and after completing the

trip they can replenish battery charge at leisure and low cost in slow park ’n charge stations.

Thus, it is unreasonable to consider that a hybrid EV driver would regularly stop to recharge

at en-route rapid charging stations at higher cost and with the additional potential of having to

wait in a queue. As regards pure EV drivers now, a realistic context for using en-route charging

stations extensively is for inter-city trips, as for shorter trips drivers can again recharge slowly

while at work or at home during the night. Thus in order to analyse the effects of potential

queues it will be considered in this work that EV drivers go on trips that they cannot complete

even with a full battery.

Furthermore, it will be assumed that all EV drivers drive the same type of pure EV, that they

recharge the battery for its full capacity in charging stations, and that they always have enough

charge to reach the chosen station. Last, it will be assumed that all EV drivers perform the

same trip, that is they have the same starting and destination points, as network users do in

Hayrapetyan et al. (2007). These assumptions guarantee that the game of choosing stations

is symmetric for drivers, and thus a symmetric mixed NE, which can help promote analysis,

exists. However, any asymmetric mixed NE can be considered in the model, but considering

those would further complicate the model and would add little to the findings of this thesis.

In relation to parameters in the customers’ firm choice game (Section 3.1) in the SLCOP do-

main (Section 1.1), the access cost tj is used to represent the travel time needed to reach the

destination, if station j is chosen to recharge at. The speed of service Rj is the time station j

needs to recharge one EV driver, the fee fj will be the fee for recharging at station j, and cj is

the station’s capacity (number of charging units). The value of time vd is the value of time for

driving an EV.

With regard to charging stations, as stated earlier a two-station example will be considered,

where hj now represents the cost of electricity for station j to recharge an EV, bj is the cost of

installing one charging unit, and oj is an one-time building cost for station j.

A more detailed explanation of parameter choices will now follow. First, it is assumed that

drivers drive the Nissan Leaf EV with a 24kW battery configuration. The charging efficiency of

charging units is set to 85% which is consistent with the chosen model and rapid DC charging

units (Channegowda et al., 2016). This results in an energy requirement of E = 28.24kW for a

unit to fully recharge the battery. Charging unit power output is set to 50kW which is a common

output for rapid DC chargers (Channegowda et al., 2016). For simplicity, it is assumed that the

output of charging units is linear over time, and this makes the charging time required to fully

charge the Leaf’s battery roughly 33 minutes and 40 seconds. In the model, however, time will

be represented in half-hours which makes charging time R = 1.1294 half-hours. For a more

realistic setting that will be useful in later chapters, it is assumed that EV drivers perform the

trip from Central Southampton to Central London. This trip’s usual length is 80 miles, which at

an average speed of 60mph is travelled in 10/3 half-hours and which is a realistic value without

traffic. The value of time given the trip length and mode of transport has been determined
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to be vd = 12.56 £/half-hour from the tables that the UK Department for Transport provides

(Department for Transport, 2015).

The building cost for each charging unit is set to b1 = b2 = £36000. Rapid charging unit

installation costs can vary, but these values were realistic to consider for 50kW rapid DC charg-

ing units at the time of the experiments, including a cycle of yearly maintenance (U.S. Dept.

of Energy, 2015). One-time building cost for each station is set to o1 = o2 = £30000. The

magnitude of this cost is not particularly important, but the parameter is introduced to prevent

investors from building arbitrarily on all locations later on. With regard to the price station in-

vestors buy electricity at, this is set to £0.1/kWh. Electricity prices fluctuate from day to day,

but this was a realistic commercial price at the time of the experiments. Then, given an energy

requirement of E = 28.24kW to recharge each EV, the cost of recharging each EV for station

investors is h1 = h2 = £2.8235. The number of drivers is set to n = 30.

In order to normalise profits in proportion to the cost of building, the parameter w is utilised.

Normalisation is necessary, because when utility for investors is always negative for positive

capacities, then the maximum strategy for each investor would be to not open the station. In

order to normalise profits, it will be assumed that the extensive form game represents a situation

where a peak traffic of n drivers arrives at stations at once. This peak traffic can occur three

times a day and encounters an empty queue. The station’s daily income consists of the profit

from recharging EVs during these three peak traffic occurrences, plus the income from the rest

of the day when traffic is more scarce. Income throughout the rest of the day is assumed to be

equal to the income in peak hours and the game is played with a horizon of 1 year, that is 365

days, for profit. This makes profit normalisation w = 365 ∗ 6 ∗ 1 = 2190.

These settings will represent reference settings, but many will be varied in the course of the

experiments. It will be stated clearly where appropriate which parameters deviate from these

reference settings.

4.2 Evaluation of the EV Drivers’ Equilibrium

This section presents an empirical evaluation of the EV drivers’ model that was shown in Section

3.1. One goal is of course to determine whether the model behaves within reason. A second goal

for the evaluation is to determine potential weaknesses that will have to be addressed.

For the purpose of the experiments, it is assumed that EV drivers are called to select between

two existing charging stations unless otherwise stated. The parameters that are of interest for

studying the mixed NE include station capacities and prices, route travel times, charging times,

the number of drivers playing the EV drivers’ game, the value of time for drivers, and last

the number of stations. Each experiment will involve varying a parameter while keeping other

parameters constant.
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Given the reference settings outlined in Section 4.1, first the EV drivers’ equilibrium will be

evaluated with relation to station capacities and charging unit power output in Section 4.2.1.

Next, an evaluation with regard to charging fees at stations will be presented in Section 4.2.2.

Last, sensitivity to other parameters will be discussed in Section 4.2.3.

4.2.1 Station capacities and charger output

The first experiment that will be discussed is varying the two stations’ capacities. For this

setting, it is assumed that both stations are on the same route (t1 = t2) and charge the same

fee for recharging EVs (f1 = f2). The number of drivers who play the station choice game is

n = 32. Looking back at Equation (3.21), this means that the equilibrium probability of driver i

going to station 1 in this case is s1∗i = c1
c1 + c2

and for going to station 2 is s2∗i = c2
c1 + c2

. The

point that should be taken from this observation is that regardless of how high capacities are,

there will always be some probability of going to a station no matter how high the capacity of

the other station. Of course, if one station is closed (cj = 0) a driver would play a pure strategy

of going to the other station. This behaviour is induced by the approximation that was done in

expected queuing time in Equation (3.2) which leaves some residual average expected queuing

time no matter how high capacity is.
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Figure 4.1: Expected queuing time in mixed strategy NE (left) and expected utility of
playing in mixed strategy NE (right) for varying station capacities.

Figure 4.1a shows the expected queuing time in NE, that is the sum of average expected queuing

times for each station weighed by the respective probability of station choice. The aforemen-

tioned residue can be observed, as expected queuing time never really reaches zero even when

c1 + c2 > n = 32.
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Figure 4.2: Probabilities of choosing station 1 (left) and station 2 (right) with varying
station capacities.

0

0.5

1

0

10 0510152020

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.3: Intersection of probabilities of
choosing stations in NE for varying station ca-
pacities

This is an issue when reporting queuing time

because the number is not entirely accurate,

but in general the resulting behaviour is not

problematic for the following reasons. First,

conceptually the idea that some probability

exists of selecting a station no matter the

other stations’ capacities is not necessarily

inconsistent with how drivers act in reality.

Second, despite the discrepancy behaviour is

maintained. That is when stations have the

same capacity there is the same probability

of choosing each (0.5), and probabilities are

proportionally correct for different capacities,

when total capacity is less than the number of

drivers. Last, we will see this in later chap-

ters but it is very unlikely that investors will

build so much capacity given realistic station

parameters.

Moving on to the expected utility of playing

in mixed strategy NE, which can be found in Figure 4.1b we can observe that expected utility

increases in a manner identical to how expected queuing time decreases with increasing capaci-

ties. This is expected as station capacities influence the driver’s expected utility through queuing

time. With regard to the probabilities of station choice, if we overstep and differentiate them as
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if they were continuous, the rate of change s1∗i (c1)
′

= c2
(c1 + c2)

2 indicates the probability of

choosing station 1 given the capacity of station 2 (c2) should show a declining rate of increase

with an increasing capacity c1, something which is shown in Figure 4.2a. In the same figure it is

also noted that the probability of choosing station 1 increases with an increasing capacity c1 and

decreases with an increasing capacity c2 which is reasonable behaviour. The opposite should be

true for station 2 and this is indeed observed in Figure 4.2b. In addition, in Figure 4.3 that shows

the intersection of the aforementioned probabilities it can be observed that when stations have

the same capacity drivers will select each station with the same probability (0.5).
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Figure 4.4: Expected queuing time in mixed strategy NE (left) and expected utility of
playing in mixed strategy NE (right) for varying charger outputs.

By setting capacities at c1 = c2 = 7 and varying the charging units’ power output, similar

EV driver behaviour is obtained. The charging units’ output Oj influences charging time Rj
at station j. More specifically, charging time is defined as the ratio of the energy needed to

recharge an EV over the charging output at station j, times two because the time measure is

half-hours. That is Rj = 2E/Oj . Taking into account different charging speeds at each station

changes the equilibrium probabilities of (3.9) slightly to:

s1∗i =
c1vdR2(n− 1) + 2c1c2vd(R2 −R1) + 2c1c2vd(t2 − t1) + 2c1c2(f2 − f1)

vd(n− 1)(c1R2 + c2R1)

s2∗i =
c2vdR1(n− 1) + 2c1c2vd(R1 −R2) + 2c1c2vd(t1 − t2) + 2c1c2(f1 − f2)

vd(n− 1)(c1R2 + c2R1)

vd, c1, c2 > 0 n > 1

The expected queuing time (Figure 4.4a) and expected utility for driver i (Figure 4.4b) show

similar characteristics to those for varying capacities, and this is expected as charging time Rj
influences the driver’s utility for choosing a station in a very similar way.
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4.2.2 Fees at charging stations
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Figure 4.5: Probabilities of choosing station 1 (left) and station 2 (right) in mixed
strategy NE for varying prices.
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Figure 4.6: Intersection of non-bounded prob-
abilities of choosing stations in NE for varying
station fees

Having explored station capacities and charg-

ing times, it is now time to explore the other

crucial parameter of the EV drivers’ station

choice and that is station prices. In order

to do so, capacity in both stations is set at

c1 = c2 = 7 while the number of drivers is

set to n = 30 and the fees for both stations

are varied. By differentiating the probabil-

ity of going to each station (Equation (3.9))

with respect to that station’s fee, it is straight-

forward to deduce that the rates at which the

probabilities change are:

s1∗i (f1)
′ = − 2c1c2

vd(n− 1)(c1 + c2)R

s2∗i (f2)
′ = − 2c1c2

vd(n− 1)(c1 + c2)R

From these, it is expected that the probabil-

ity of going to a station will decrease linearly

with an increasing fee in that station and this

behaviour can be observed in Figure 4.5a for
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station 1 and Figure 4.5b for station 2. Another difference here is that with varying fees it is pos-

sible for the probabilities of station choice to go out of bounds. This behaviour can be observed

in Figure 4.6 and is corrected by applying boundary conditions in the manner and logic that was

explained in Section 3.1.5. Overall, the behaviour of drivers is reasonable in that they select

stations with the same probability when they offer the same charging price, while a unilateral

increase in price from a station results in a reduced probability of going to that station.

With regard to queuing time, we can see in Figure 4.7a that queuing time remains constant with

an increasing price for both stations, when stations offer the same price, which is reasonable

since in that case drivers select either station with the same probability. If one station unilaterally

increases price, this will cause drivers to choose the other station with a higher probability,

and this probability increases the higher the price increase. This results in the behaviour of

Figure 4.7a which resembles a second degree polynomial with respect to a station’s price given

a constant price of the other station. This is reasonable behaviour given that the average expected

queuing time driver iwill experience for choosing station 1 is s1−i(n−1)R/2c1 and for choosing

station 2 is s2−i(n− 1)R/2c2. Then, the average expected queuing time in mixed strategy NE is

s1∗i (s1∗−i(n − 1)R/2c1) + s2∗i (s2∗−i(n − 1)R/2c2). In the symmetric mixed strategy NE driver i

chooses station j with the same probability as other drivers, that is sj∗i = sj∗−i which results in

average expected queuing time for playing in mixed strategy NE being:

(s1∗i )2(n− 1)R/2c1 + (s2∗i )2(n− 1)R/2c2

Both probabilities are linear functions with respect to a station’s price thus the result is, of

course, a second degree polynomial given the strategy of the other station.

0 10 20 30 40 50

30

35

40

45

50

55

60

65

70

(a)

01020304050

0

50

-130

-120

-110

-100

-90

-80

-70

-120

-115

-110

-105

-100

-95

-90

-85

-80

-75

(b)

Figure 4.7: Expected queuing time in mixed strategy NE (left) and expected utility of
playing in mixed strategy NE (right) for varying station prices.
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As regards driver i’s expected utility for playing in mixed strategy NE, this decreases linearly

with increasing prices. This might seem odd at first given that expected queuing follows a second

degree polynomial as was discussed above. However, the driver’s expected utility in mixed NE

also contains the expected price term s1∗i f1 + s2∗i f2. Expected price is also a second degree

polynomial with respect to each station’s price, only this time concave down. This results in

the drivers’ utility being always linear with respect to a station’s price, given the other station’s

price (this is proven in Appendix A.5), which produces the flat plate seen in Figure 4.7b. Notice

that in both expected utility and expected queuing time there are two flat ‘wings’ in areas when

a station has a very high price and the other station has a very low price. This is a result of the

probability going to the station with the high price reaching 0 as seen in Figure 4.5.

4.2.3 Other parameters

Having explored the main parameters that stations can determine to influence driver decisions,

other parameters will be discussed more generally. Regarding travel times, these are explored

by setting n = 30 drivers, capacities c1 = c2 = 7 and charging fees at f1 = f2 = £10. It

is assumed that one station exists in each of two routes and the travel times for those routes

are varied. Results are very similar in this experiment to those that were discussed for varying

prices.
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Figure 4.8: Expected queuing time in mixed strategy NE (left) and expected utility of
playing in mixed strategy NE (right) for route travel times.

Expected queuing time shown in Figure 4.8a is again a second degree polynomial to the station’s

route travel time, and so is expected travel time s1∗i t1 + s2∗i t2. Therefore, drivers show similar

behaviour to that for varying prices that were discussed in the previous section. This results in

a linear decrease in expected utility (Figure 4.8b) with an increasing travel time for one station,
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given the the travel time of the other station. Again, there is a change in the slope of expected

utility when travel times are such that all drivers go to one station.

To explore the number of drivers n, station capacities are set to c1 = c2 = 7 as in the previous

experiment, while the number of drivers is varied. Given that the probabilities of station choice

do not change, expected queuing time increases linearly with an increasing number of drivers

(Figure 4.9a) while the expected utility of playing in mixed strategy NE decreases in a similar

manner due to an increase in queuing times (Figure 4.9b).
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Figure 4.9: Expected queuing time in mixed strategy NE (left) and expected utility of
playing in mixed strategy NE (right) for a varying number of drivers.

Utilising the same setting and additionally considering n = 30 drivers, the value of time vd is

explored. At this stage, the value of time does not really affect driver behaviour and its purpose

is for station investors to later get a more realistic perspective on prices. It is expected that an

increasing value of time will scale time costs upward in a linear fashion, and indeed it is so as

seen in Figure 4.10, since utility decreases in a linear fashion for an increasing value of time.

Last, it is time to discuss the computational complexity of the mixed strategy NE in station

choices. The symmetric equilibrium is linear with respect to most parameters, except for station

capacities which are to the power −1. It is thus fairly easy to solve the system of Equation (3.8)

using a symbolic solver, that is without replacing any parameter. Even so, some parameters for

which the numbers are known already can be replaced which makes solving even quicker. For

the purpose of this thesis, Matlab’s symbolic toolkit was used and the process was run on a single

core of a quad-core Intel i7-4790k at 4.8GHz. The run times for an increasing number of stations

can be seen in Figure 4.10b. For this experiment, the solution for each number of stations was

iterated 500 times and the times were averaged. As expected the increase in computational time

is linear. Small problems of 2-7 stations can be solved under 100ms and even 20 stations take

about 210ms to solve. Consequently, the symmetric mixed NE in drivers’ station choices is not
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Figure 4.10: Expected utility for a varying value of time (left) and mixed strategy NE
complexity (right).

expected to pose any problems computationally throughout the rest of this work. Now that the

parameters of the EV drivers’ station choice have been explored, the station investors’ capacity

choice will be evaluated in the following section.

4.3 Evaluation of the Stations’ Equilibrium in Capacities

This section will discuss findings that concern the station investors’ pure strategy Nash equilib-

rium in capacities as part of a SPE solution. The evaluation follows the general idea that two

station investors consider building one station each, either at the same or at different locations.

Scenarios in which respective parameters are the same for both investors will be called sym-

metric scenarios, and scenarios in which some parameters differ for each investor will be called

asymmetric scenarios. Parameter settings will follow the reference settings in Section 4.1, and

deviations from these will be clarified.

The initial hypothesis, given the game defined in Section 3.3, is that investors should generally

play symmetric pure strategy NE in symmetric scenarios and asymmetric pure strategy NE in

asymmetric scenarios. That is, in symmetric scenarios investors should make the same capacity

choice while in asymmetric scenarios stations should choose different capacities. Second, it is

likely that pure strategy Nash equilibria may not exist in some cases and this has to be investi-

gated in more detail. Toward this Section 3.5.2 already presented a thorough discussion on some

qualitative aspects of the station investors’ capacity game. Next, Section 4.3.1 evaluates SPEs

with regard to building costs for stations, while in Section 4.3.2 SPEs are evaluated for variation
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in charging fees. Last, Section 4.3.3 discusses other parameters that affect station choices less

directly.

So far, capacity competition was analysed in Section 3.5.2 using arbitrary costs and profit to

show some theoretical results on equilibrium existence that are of note, and to avoid looking

at confusing utility matrices. With the reference settings of Section 4.1, and prices set to f1 =

f2 = 10, there is one SPE in which investors play capacities (c1 = 3, c1 = 3) (see Figure 4.13a),

and drivers select either station with 0.5 probability.

4.3.1 Building cost

First, equilibria will be analysed with regard to building cost. For the experiment that follows,

the charging units’ building cost for station 2 is kept at b2 = £36000 while the cost for station

1, b1, is varied. To show more detailed plots in how the equilibria are affected, it was chosen to

present this experiment for n = 100 drivers.
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Figure 4.11: Pure strategy equilibria in capacities (left) and station utility (right) for a
varying building cost in station 1.

Equilibria in capacities in general were found to exist, except in very few cases such as for

b1 = £51000. Looking at the equilibrium capacities in Figure 4.11a, the capacity of station 1,

c1, decreases as the building cost b1 increases and shows a light exponential decay. This type of

decay in this case means that an investor is more inclined toward reducing capacity, because of

an increase in building cost, when building cost is small. Station 2, on the other hand who buys

charging units at a constant price will generally keep the same capacity. There is an increase

as the capacity of station 1 gets closer, and this is reasonable because when the capacities are

closer an increase by station 2 will yield a good increase in the probability of choosing station

2.
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Figure 4.12: Investment cost for station 1 (left) and Expected queuing time and utility
for drivers (right) for a varying building cost in station 1.

As c1 decreases further below c2, station 2 also reduces capacity to c2 = 10 as station 1 is

much less competitive at a high b1. Station 1’s utility (Figure 4.11b) shows a similar exponential

decay as c1, while the utility of station 2 increases due to an increase in EV traffic toward station

2. There is a jump in utility loss for station 1 at b1 = £26000, which is the same point at

which station 2 increases capacity to c2 = 11. Aggregate station utility reduces slightly after

b1 = £26000 and increases again after b1 = £56000. This is expected as now station 2

invests more in that interval, and station 1 also invests more to remain competitive as seen in

Figure 4.12a. Finally the situation for the drivers is shown in Figure 4.12b, and expected queuing

time for the drivers generally increases linearly for an increasing cost b1, while expected utility

decreases at the same rate, as queuing time is the only factor for driver utility that changes in

this experiment. Utility and queuing time are, of course unaffected when an increase in building

cost does not motivate a change in capacities.

The building cost is now explored by varying the cost for both investors (b1 = b2). The number

of drivers is set to n = 30 for this experiment. Station capacities in Figure 4.13a show a steep

exponential decay with an increasing building cost, and both stations play the same strategy

in NE as expected since parameters are the same for both stations. Note that the strategy for

b1 = b2 = £1000 has been omitted to increase the detail shown in the figure, but it is

(c1 = 60, c2 = 60).

It is noted that because of the approximation in queuing time stations here can play capacities

that exceed the number of drivers, as expected queuing time never becomes exactly zero. It is

reasonable to assume that capacity competition would end when both stations’ capacities would

equal to n. This is not so much of an issue in this case, because it happens when building costs
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Figure 4.13: Pure strategy equilibria in capacities (left) and station utility (right) for a
varying building cost in both stations.

are extremely low (i.e. £1000−£2500) which exaggerates the problem as an investor can invest

only a very small fraction of income to shift the probability of drivers coming to their station.
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Figure 4.14: Expected queuing time and driver
utility for a varying building cost in both sta-
tions.

Station utility in Figure 4.13b is shown only

for one station as they are identical, and

shows that investors generally try to main-

tain net profit by adjusting capacities. To-

ward higher building cost, for example af-

ter 25000, utility decreases linearly with an

increasing building cost which is reasonable

as investors maintain capacities for some in-

terval of increase, until they adjust capac-

ity down and utility increases, following the

same trend again. With regard to driver util-

ity and expected queuing time shown in Fig-

ure 4.14, these are quasi-linear with respect to

building cost. This is not unexpected, given

that it was shown earlier in Section 4.2 that

queuing time increases exponentially with in-

creasing capacities, but in this case capacities

decay exponentially so the result is expected

to be much closer to linear. It is also noted

that building cost intervals for which utility and queuing time remain unaffected, coincide with

those in which capacities remain unaffected. Last, in both the experiments with building cost,
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evidence was not found to suggest that building cost might affect the complexity of calculating

the Nash equilibrium in capacities.

4.3.2 Charging fees

Similar experiments were carried out with varying fees, where other parameters are identical for

both investors. In the experiment that follows, the fee of station 1 is varied, while the fee of

station 2 is set to f2 = £20, and the number of drivers to n = 30. Varying one fee shows again

that equilibria may not exist for some particular fee combinations. As a result, data for some

points are missing from the plots and also it is not possible to examine a very wide difference in

fees.
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Figure 4.15: Pure strategy equilibria in capacities (left) and station utility (right) for a
varying charging fee at station 1.

With regard to station capacities, Figure 4.15a shows that station 1, which offers a lower fee

initially, starts with a lower capacity in NE. This is expected as f1 is very low, so increasing

capacity to attract more drivers cannot outweigh the cost of investment. As f1 increases up to

f1 = £19 capacity increases almost linearly, which is reasonable as the profit margin for station

1 becomes higher and this motivates an increase in investment to attract more customers. At

the same time, station 2 also increases capacity to remain competitive. When the fees are about

equal around £20, stations play similar or the same capacity, but from f1 = £22 forward station

1 reduces capacity again.

The competition leads station 2 to increase capacity even further, and when f1 is higher than f2,

station 2 offers both a lower fee and a higher capacity which station 1 cannot keep up with. This

is also reflected in station utilities in Figure 4.15b, where station 1 has an advantage in utility

for a slightly lower fee than f2 = £20 but starts losing utility from f1 = £21 onward. At that
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point, the cost saved from keeping capacity at c1 = 27 outweighs the profit gained if station 1

increased capacity. This leads to reduced profit which reduces even further and causes station 1

to start decreasing capacity. In Figure 4.15a it is noted that for f1 = 1, 2, 3 the equilibrium is for

station 1 to be closed, as these prices are below or at the charging cost h and result in negative

utility for station 1. In that case, station 2 has no incentive to increase capacity and plays c2 = 1.
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Figure 4.16: Expected queuing time and driver
utility for a varying fee at station 1.

Expected queuing time and the utility for

drivers are shown in Figure 4.16. Expected

queuing time improves as f1 increases, and

this is in line with the earlier finding that

both investors increase capacity. However,

there is a turning point for queuing time at

f1 = £23 and from f1 = 24 queuing time

increases again. At that point, drivers prefer

going to station 2 and the tradeoff for getting

a lower price is higher queuing time due to

more drivers going to station 2, despite the

fact that c2 > c1. Utility for drivers shows

similar behaviour, increasing initially, but has

a maximum value at f1 = 16 despite an in-

crease in capacity by station 1 at f1 = £17.

From there it starts decreasing again due to

increasing prices that outweigh any gains in

queuing time.
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Figure 4.17: Pure strategy equilibria in capacities (left) and station utility (right) for a
varying charging fee at both stations.



Chapter 4 Basic EV Driver and Station Investor Behaviour 71

Now charging fees are varied at the same time (f1 = f2), while the number of drivers is set to

n = 30. Equilibrium capacities in Figure 4.17a show a linear increase, with a linear increase in

station utility shown in Figure 4.17b. This is sensible, as increasing prices produces increasing

profit margins for stations, which means investors are now able to increase capacity in order to

attract more customers for a wider range of strategies of the other player. We note that utility

initially is negative and this is the result of the example behaviour in Table 3.2. For those prices

(1, 2, 3, 4), utility is negative which results in two asymmetric equilibria in which one station is

closed. Expected queuing time (Figure 4.18a) decreases exponentially for increasing fees, as is

expected from a linear increase in capacities. While queuing time moves asymptotically toward

0, driver utility (Figure 4.18a) increases exponentially initially, but has a maximum value for

f1 = f2 = 15. After that point it decreases quasi-linearly with increasing fees which is expected

given that improvements in queuing time are minimal as fees increase.
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Figure 4.18: Expected queuing time and driver utility (left), and complexity of equilib-
rium in capacities (right) for a varying charging fee at both stations.

With regard to complexity, there is not enough evidence in the case of only varying f1 to show

there is a correlation between the capacities’ equilibrium complexity and increasing fees. How-

ever, in the case where both fees are varied there is a much clearer picture which is shown in

Figure 4.18b. For very low fees, the equilibrium is easier to find while there is a jump in com-

putational time around f1 = f2 = 10. A reason for this is that when fees are very low, utilities

can be negative for a wider range of capacities. If we visualise a utility matrix for very low

fees, a very large portion of the matrix will feature only negative utilities for a station given

the other station’s strategy. This happens because for a high capacity by one investor the other

investor cannot divert enough drivers to pay even for a capacity of 1. Therefore, positive utilities

are focused toward the top-left part of the matrix. At the same time, a random initialisation of

the IBR algorithm is very likely to initialise stations in such a part where utilities will only be

negative no matter the strategy. Thus the first investor will maximise by playing a capacity of 0,
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and given that the next investor will play a capacity of 1, which sets investors close to where the

equilibrium will be in only two iterations. On the other hand, investors will need more iterations

to get close to the equilibrium when prices are high.

Other than the increase in computational time initially, it becomes slightly easier afterward to

find the equilibrium for increasing prices beyond f1 = f2 = £10, but not significantly easier.

As prices are higher, profit margins for the investors also increase which means that it is less

likely for the maximum for an investor to move for a small change in capacity by the other

investor. This reduces the number of iterations needed to find the equilibrium slightly, but not

significantly so. Having examined building costs and charging fees, in the next section other

parameters which do not influence stations’ decisions as directly are examined.

4.3.3 Other parameters

This section will explain what happens to the stations’ equilibrium in capacities with variations

in the number of drivers, the number of stations, travel times, charging unit power output and

the value of time.

Starting with varying the number of drivers, fees for this experiment were set to f1 = f2 =

£20. Capacities in Figure 4.19a show a linear increase, while stations for n = 2 drivers play

an asymmetric equilibrium (c1 = 1, c2 = 0). The reverse is also an equilibrium, but is not

shown here for clarity. The stations’ utilities (Figure 4.19b) also show a linear increase with an

increasing number of drivers, which is reasonable since fees are constant.
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Figure 4.19: Capacities (left) and station utility (right) in subgame-perfect equilibrium
for a varying number of drivers.
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Figure 4.20: Expected queuing time and driver utility (left), and computational com-
plexity (right) in subgame-perfect equilibrium for a varying number of drivers.

Expected queuing time (Figure 4.20a) increases exponentially with the number of drivers, which

is expected for an almost linear increase in capacities by stations. Driver utility in the same fig-

ure decreases exponentially at a similar rate with the increase in queuing time. It is noted that

utilities and queuing time seem to be varying ‘discontinuously’ for slightly less or slightly more

drivers. This behaviour is expected and the reason for that is that investors do not change capac-

ities for every increase in the number of drivers. This can be seen in Figure 4.19a where stations

keep the same capacities usually for 2 points on the plot. Each point represents an increase of

2 drivers from the previous1, which means that stations increase capacity approximately every

4 additional drivers. This causes utility and queuing time for neighbouring points in the plot to

vary more significantly, as when capacity increases utility improves, and when capacity is the

same utility decreases.

The complexity of computing the equilibrium in Figure 4.20b with the IBR algorithm shows

similar characteristics to that for varying station fees that was shown in Figure 4.18b for similar

reasons, as the number of drivers also scales profits upward and makes investors’ maxima more

concrete, which helps reduce the iterations needed.

With regard to travel times, a symmetric increase in travel times (i.e. t1 = t2 = 2) will not

affect the equilibrium for the stations at all because, as it was shown in Figure 4.8a in Section

4.2.3, this situation does not affect the drivers’ probabilities of station choice and drivers select

stations with the same probability. An increase in travel times does scale driver utility down, but

there is nothing to add in this scenario to what was explained in Section 4.2.3. An asymmetric

increase in travel time for one station does, however, affect the probabilities of station choice.

Unfortunately there exist many cases when travel times are different where equilibria do not
1It was not possible to show plots for an increase by 1 driver each time and keep plots coherent.
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exist, and so coherent plots are not possible. This issue is resolved with the introduction of

prices in Chapter 5, but for now different travel times enable asymmetric equilibria. More

specifically, the investor whose station is in an advantageous route (e.g. t1 < t2) will play a

higher capacity (c1 > c2) than the investor in the longer route, and this is expected as the station

in the long route needs a much higher capacity to attract the same number of drivers, something

that is very costly.

On the same note, a symmetric increase in charger output will only scale driver utilities but will

not affect station choice for the drivers and shows identical characteristics to the ones discussed

in Section 4.2.1. An asymmetric increase, though, yields some interesting results that will now

be discussed. In this experiment, the number of drivers is set to n = 30 and prices are at

f1 = f2 = £20. The charging units’ output in station 1 (O1) is varied while in station 2 output

is kept at a constant O2 = 50kW for each charging unit.
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Figure 4.21: Equilibrium capacities (left), and station utility (right) in subgame-perfect
equilibrium for a charging unit output at station 1.

As seen in Figure 4.21a, the investor of station 1 is at a disadvantage when O1 is lower than

O2 = 50kW , and plays lower capacities than station 2. It might seem logical at this point that

the reasonable thing to do would be for station 1 to play a higher capacity to try to counter the

disadvantage. Then again, if we reason about station 2, station 2 can also increase capacity and

it is certain that an increase by station 2 will attract more drivers than an increase from station 1

will, given station 2 offers better charging time. Therefore, station 1 is at quite a disadvantage

and ends up playing a low capacity.

This situation at first leads to station 2 absorbing most of the drivers, having more capacity and

better charging units; in Figure 4.21b we can see that aggregate station profit forO1 = 29, 30kW

mostly consists of station 2’s profit, while station 1’s profit is marginal. As O1 increases, the

situation improves for station 1 who increases capacity, and at 36kW station 2 also increases
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capacity to remain competitive. The utility of station 1 increases and the utility of station 2

decreases at approximately the same rate, while aggregate station utility decreases up to 50kW .

This is logical given that investors invest more and more in capacity for the same number of

drivers. Stations play a symmetric equilibrium when O1 is near 50kW , and at exactly 50kW

stations have the same utility which is expected. However, whenO1 is higher thanO2 = 50kW ,

station 2 gradually reduces capacity as an increasing portion of drivers is lost to station 1.
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Figure 4.22: Expected queuing time and driver utility for a varying charger output
at station 1 (left), and computational complexity of the capacities equilibrium for an
increasing number of stations (right).

Expected queuing time for the drivers shown in Figure 4.22a decreases rapidly with an increase

in O1. This is reasonable given that station 1 charges EVs increasingly faster, and average

capacity improves until the two stations have similar outputs. Then, after O1 = 53kW station 2

decreases capacity significantly and queuing time increases again despite a decrease in charging

time at station 1. This is an expected outcome as the capacity of station 1 remains constant,

while increasingly more drivers go to station 1, and the improvement in output is not enough yet

to alleviate queues. Driver utility consequently improves and then decreases at the same rates.

Moving on to the value of time parameter vd, this does not affect station choices at this stage

other than scaling driver utility up or down. This parameter is expected to matter later on in

improvements introduced in Chapter 5 and will be analysed there.

Last, to investigate the complexity of locating an equilibrium in capacities, a symmetric scenario

is run for an increasing number of stations. The experiment is run 1000 times for each number

of stations and the result is averaged. Figure 4.22b shows these results, where it is observed that

the complexity of finding the equilibrium with the IBR algorithm increases exponentially with

the number of stations, something that is expected given that the strategy space also increases

exponentially with the number of stations. That being said, it is much better than the complexity
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of finding it traditionally. The game’s complexity is affected only by station capacities and the

size of the strategy set of the players. In the two-station examples here, the capacity limit was set

to Θ = 100 thus players consider 101 capacities. This means that if we use a traditional matrix

method for finding the equilibrium, it would be necessary to maximise utility for each investor

101 times. In each maximisation step the investor considers 101 capacities, which means we

would need to calculate 101 × 101 utilities times 2 investors. On the other hand, the IBR finds

most equlibria doing only 7− 8 maximisations for two stations, that is 8× 101 utilities which is

significantly better. Even with 20 stations, computational time is under 1s which indicates that

the model up to now is not significantly complex computationally.



Chapter 5

Competitive Pricing and Extraneous
Competition

This chapter will expand on EV charging station competition, by examining the choice of prices

station investors make, in addition to the capacity choice discussed in Chapter 4. Furthermore,

extraneous competition will be considered in the form of an alternative option for drivers, out-

side the station investor system. The empirical evaluation with regard to competitive pricing is

presented in Section 5.1, and the outside option is discussed in Section 5.2.

5.1 Evaluation of SPE Including Prices

In this section, the competitive pricing model for investors, which was presented in Section 3.2,

will be evaluated. It will be done so in the context of the SLCOP problem, where charging

station investors select capacities and then prices for their stations, and then EV drivers choose

stations based on these. The theoretical analysis performed in Section 3.5.1 has shown that

when the stations’ capacities are taken for granted and when stations are on the same route,

equilibrium prices will converge asymptotically to the cost for stations to recharge each EV, h,

with an increasing charging unit output. However, it is not yet as clear what will happen when

stations are in addition allowed to decide capacities. In addition, when stations are in different

routes Equation (3.16) indicates that a station in a longer route will have to offer a lower price

than a station in a shorter route for the same capacities, and it is interesting to study the behaviour

of pricing in that case.

The empirical evaluation that will follow will enrich these theoretical findings by considering

the station investors’ price game as part of a SPE solution for station capacities and prices, and

driver station choices. As in Chapter 4, symmetric and asymmetric two-station scenarios will

be utilised. Determining the parameter values for the model follows the same logic explained

in 4.1 which, to reiterate, results in the following reference settings. The value of time is set

77



78 Chapter 5 Competitive Pricing and Extraneous Competition

Table 5.1: Capacities for an increasing number of stations in SPE

m c1 c2 c3 c4 c5 c6 c7

2 1 1 − − − − −
3 4 4 4 − − − −
4 4 4 4 4 − − −
5 3 3 3 4 3 − −
6 3 3 3 3 3 3 −
7 3 3 3 3 3 3 0

to vd = £15.6/half-hour, the number of drivers to n = 30, charging unit building costs will

be b1 = b2 = 36000, and one-time building costs to o1 = o2 = £30000. Travel times will

be t1 = t2 = 3 + 1/3 half-hours, charging unit power output is 50kW with 85% efficiency,

which sets charging time at R1 = R2 = 1.1294 half-hours assuming linear power output over

time. The price stations buy electricity at is £0.1/kWh which means that the cost for stations to

recharge each EV is h = £2.8235. Last, profit normalisation is w = 2190. Any deviation these

values will be clearly stated.

5.1.1 General observations

Under the settings outlined earlier in a two-station scenario, the SPE is for the two investors to

play capacities (c1 = 1, c2 = 1) and fees (f1 = £208.512, f2 = £208.512). This seems odd

at first, but is not particularly so. Now stations have the option to set prices and capacities. If

we take into account that all drivers have to recharge somewhere, it is reasonable that investors

minimise the cost of investment and set prices so as to maximise profit. It just goes to show

that with the reference settings there is not enough competition in a two-station scenario to force

investors to increase capacity. Profit margins in this case are very high and stations can compete

by undercutting prices alone. Increasing the number of stations to 3 introduces more competition

which shrinks profit margins and forces investors to consider capacities as well.

Equilibrium capacities for a symmetric scenario with the reference settings are shown in Table

5.1 for an increasing number of stations, and equilibrium prices are shown in Table 5.2. It is

evident then by looking at those tables, that as more competition is introduced stations compete

more on the choice of capacity as well, and that more competition also leads to better prices and

service for drivers. That is up to a market of 6 independent stations, as from 7 stations and on it

is an equilibrium for only 6 of the stations to be open. However, in that case, all combinations of

6 stations being open (or z− 6 stations being closed) are equilibria, as the reference settings are

symmetric for investors (e.g. for 7 stations there are 7 equilibria, for 8 stations 28 and so on).

A noteworthy finding at this point, if we look at the row for 5 stations in Tables 5.1 and 5.2, is that

the fourth station has different capacity and price than the other stations. With the inclusion of
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Table 5.2: Prices for an increasing number of stations in SPE

m f1 f2 f3 f4 f5 f6 f7

2 £208.51 £208.51 − − − − −
3 £28.53 £28.53 £28.53 − − − −
4 £19.96 £19.96 £19.96 £19.96 − − −
5 £18.82 £18.82 £18.82 £19.39 £18.82 − −
6 £16.53 £16.53 £16.53 £16.53 £16.53 £16.53 −
7 £16.53 £16.53 £16.53 £16.53 £16.53 £16.53 −

a choice in charging price, and the discontinuity in the capacities domain, it is now possible for

investors to reach asymmetric equilibria even in problems where the parameters are the same for

all stations. These asymmetric equilibria, again because the scenario is symmetric for investors,

will be many. In this particular case for 5 stations, it is also an asymmetric equilibrium for any

other investor to choose a capacity of 4 and a price of £19.39, that is there exist 5 asymmetric

equilibria, while a symmetric equilibrium for investors does not exist. In the case where there

are many equilibria, graphs from now on will show the asymmetric equilibrium which yields

the lowest utility for firms, as this is considered the measure for efficiency (see Section 3.6).

Furthermore, in the case where the equilibrium is asymmetric, and the scenario is symmetric for

investors, only the equilibrium where firm 1 has the highest capacity will be shown.

With regard to the complexity of computing the equilibrium in prices symbolically, this increases

slowly with the number of stations but may show an upper limit of 7-8 stations depending

on the methodology followed. The derivatives of station utilities include m capacity terms,

each of which include a station’s capacity cj to the power m − 1, O(mcm−1j ). In the case of

an analytical solution, this is solved immediately after the equilibrium for drivers (after line 8

in Algorithm 1 in Section 3.4.2). However, for larger settings it is also possible to solve the

prices equilibrium entirely numerically, by replacing all variables into station utilities each time

an investor calculates the utility for a given strategy and solving the prices equilibrium there.

This calculation takes about 0.05s for 12 stations and needs to be performed Θ times1 each

time an investor maximises utility given the strategy of the other investors. If we look back at

Figure 4.22b in Section 4.3.3, the IBR needs about 65 iterations to find the capacities equilibrium

for 12 stations. This means that to find a SPE by calculating the prices equilibrium numerically

for 12 stations with a capacity limit of Θ = 10, we need on average 0.05 × 10 × 65 ≈ 33s.

Assuming a further 120 repetitions of the IBR to find all equilibria, we need 33s×120 = 66min.,

without any parallelisation. While this is not very quick, it is reasonable time for a problem

which is not time critical. The equilibrium in prices, which could be said to be time critical (i.e.

investors adjust prices each day given capacities and expected traffic) is very quick to compute

numerically for specific settings.
1For a capacity of 0 the analytical solution is not defined and utility is hard-coded to 0
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If we want to ensure that we find all or most equilibria through the experiments, the following

methodology is to be followed. First, the threshold K in Algorithm 1, which sets the number of

repetitions for the IBR algorithm (each repetition locates one SPE), is to be set at a high value,

for example K = 1000, to find all equilibria. Alternatively, many short runs can help determine

the actual number of equilibria. From there, it has been determined empirically that if ψ is the

actual number of equilibria in the game, a value K = 10ψ is a value that guarantees finding

all equilibria. For example a two-station scenario that is presented later in Section 5.2.3 has

been used. When one-time building costs are the same and equal to £30000, the game has four

equilibria. When the building cost for the first firm is then increased to o1 = £350000, the

game has five equilibria. This game is run in each of the two settings for an increasing number

of repetitions K, 100 times for each K. Two metrics are recorded in this experiment. The first

is the accuracy of the algorithm, that is the proportion of equilibria it finds compared to the true

number of equilibria. The second is the success rate of the algorithm, that is for each K (across

its 100 instances) the number of times all equilibria were found is recorded, and the success rate

tells us how likely it is for the algorithm to find all equilibria at that K. The accuracy of the IBR

is seen in Figure 5.1a, and the success rate in Figure 5.1b. We note that both show logarithmic

increase with an increasing number of repetitions, therefore for very large generic problems that

can have many equilibria, it may be good enough to set a K which guarantees a success rate

smaller than 1.
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Figure 5.1: Accuracy (left), and success rate (right) of the IBR Algorithm in finding
equilibria for an increasing number of repetitions.

One issue that exists so far is that it is not possible to measure the efficiency of the investors’

equlibrium. That is so, because the optimum centralised strategy for investors would always be

for one station to be open, setting the maximum allowed price or an infinite price. This renders

measuring efficiency in terms of the utility obtained in SPE versus the optimum utility that can
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be obtained pointless. With these in mind, the next section will present an evaluation of SPEs

with regard to building costs.

5.1.2 Building cost

When it comes to the cost of building capacity, a symmetric increase in building costs will

not cause any change in the equilibrium for 2 stations, as the capacities equilibrium is already

(c1 = 1, c2 = 1). The only effect in that case is that when building cost is very high stations

will go to an equilibrium in capacities of (c1 = 1, c2 = 0) and the reverse, as was explained

in Section 4.3.1. This raises an interesting question of what the price is in that case. Because

the model does not utilise a limit in prices, the price in that case for the open station should

be infinite. If a prices limit is utilised, then the utility for that investor will have a maximum

value at the highest allowed price, since drivers do not have any other option. This behaviour is

relatively problematic, but is resolved with the inclusion of an outside option for customers.

Prices in SPE are not affected in a two-station symmetric scenario where building cost is varied,

because as we saw in Equation (3.16) the equilibrium in prices is indifferent to station building

costs. Thus prices are not affected directly by the building cost of charging units. However,

they are affected indirectly through the capacity choice the stations will make under different

building costs.
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Figure 5.2: Capacities (left) and prices (right) at stations for a varying building cost in
a 3-station symmetric scenario.

More interesting is to examine a 3-station symmetric scenario, where competition on investment

levels is more intense. The building cost for all investors is varied by the same amount (b1 =

b2 = b3). This scenario shows that capacities (Figure 5.2a) decrease exponentially with an
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increasing building cost and this behaviour is in line with the finding in Figure 4.11a in Section

4.3.1 where increasing building cost with set prices showed similar behaviour.

However, now that investors can decide prices, we notice that investors are more inclined to

maintain capacity and adjust it less often, since they now also increase prices quasi-linearly

(shown in Figure 5.2b) when they adjust capacity. It is noted that investors now may reach

asymmetric equilibria despite all parameters being equal for all investors. These asymmetric

equilibria in the symmetric scenario come in triads for 3 stations, that is each asymmetric com-

bination of prices and capacities that is a SPE, is also a SPE if different investors play these

strategies. These are omitted here for clarity. With increasing building cost, investors will either

reduce capacity and increase price, or maintain both capacity and price. This behaviour is ex-

pected, as it was discussed in the previous section that for a given capacity combination building

cost does not affect the equilibrium price. Finally it is observed that when investors have dif-

ferent capacities, investors with the lower capacity ask for a lower charging fee, while investors

with higher capacity ask for a higher fee. This results from the fact that investors respond to

the behaviour of EV drivers by lowering price for a lower capacity to attract more drivers, in an

attempt to minimise losses in utility.
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Figure 5.3: Expected queuing time and driver utility (left), and station utilities (right)
for a varying building cost in a 3-station symmetric scenario.

With regard to drivers, expected queuing time shows a quasi-linear growth in Figure 5.3a while

driver expected utility decreases also quasi-linearly and this reasonable as prices and expected

queuing time show similar growth rates. Last, in Figure 5.3b, it is worth noting that despite

the fact that investors generally invest more with an increasing building cost2, station utility

improves as prices become quite high and EV drivers will definitely recharge. It is now time
2e.g. for a cost of £4000 per unit each investor invests 12×£4000 = £48000 while for a cost of £40000 each

investor invests 4×£40000 = £160000
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to examine the charging units’ power output in the next section which yields some interesting

results.

5.1.3 Charging unit power output

It was shown in Theorem 3.9 in Section 3.5.1 that if we take stations’ capacities for granted,

an increasing power output (lower service time) makes the equilibrium in prices converge to

marginal charging cost h. This is set to h = £2.8235 in these experiments and is the cost of

electricity for stations to recharge each EV. Intuitively, this means that drivers will have to pay

more because it is not possible to satisfy charging demand immediately (i.e. to charge an EV

instantly). However, the prices equilibrium is indifferent to building costs thereby making the

matter of what happens now that stations can decide prices and capacities interesting.

The experiment that will follow utilises a two-station symmetric scenario where the output of

charging units in both stations is increased identically. We expect from the findings so far that

in this case stations will play capacities at 1. With regard to charging fees, when these were

explored in Section 4.3.2, it was found that when stations were forced to have a very low fee

that is not enough to cover up for expenses, they may actually end up having negative utility in

equlibrium and this was imposed by the requirement for at least one station to be open. Now

that stations decide prices, this behaviour is not expected to show here. Playing a price lower

than the costs for a capacity of 1 will always be dominated by playing a capacity of 0 and ending

up with 0 utility, in which case the other player will play 1 and ‘set’ an infinite price.

Regarding marginal cost, now that investors choose both capacities and prices, this is not only

the cost of electricity but also the cost of infrastructure. If the cost of infrastructure is shared

among all drivers who will recharge at stations and is added to h, this should give us the marginal

cost that equilibrium prices should converge to with an increasing output. Taking into account

the normalised number of drivers for profits, in this symmetric scenario it would be H = h +
c1b1 + c2b2 + o1 + o2

nw .

With the reference settings and given we expect stations to play capacities of 1 this is H =

2.8235 + 2 · 36000 + 60000
30 · 2190 = 2.8235 + 2.0091 = 4.8326. Results show that stations will

indeed play capacities of 1 as expected. Equilibrium prices in Figure 5.4a converge to the

charging costH of charging each EV, and decay exponentially with an increasing charger output.

Alternatively, reading the plot from right to left, it means that prices are expected to divert

upward of the marginal charging cost H with exponential growth as the output of charging units

decreases. Note that the plot shows the expected charging price, but that is equal to each of

the stations’ prices, since stations play the same price and thus drivers select stations with 0.5

probability each. The minimum price shown in the plot is £4.84 for an output of 5100kW/hour.

More detailed results show that stations will play a minimum price of £4.8327 for an output

of 5118.838kW , after which an increase by 0.0001kW will result in one or the other station

closing.
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Figure 5.4: Equilibrium prices (left), and station utility (right) for a symmetric increase
in the output of charging units in a 2-station symmetric scenario

Station utility (Figure 5.4b shows for one station, but they are the same) also decreases exponen-

tially and approaches 0. Driver expected utility in Figure 5.5a shows steep logarithmic increase,

which is expected given that queues and prices decrease exponentially. In Figure 5.5b we can

additionally observe the equilibrium prices for a symmetric increase in output, when station 1

is placed on a more favourable route (t1 = 3, t2 = 3 + 1/3). Station 1 who has an advantage
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Figure 5.5: Driver expected utility (left) for a symmetric increase in the output of charg-
ing units in a 2-station symmetric scenario. Also equilibrium prices for an increasing
output when stations are placed on different routes.
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offers a higher charging fee than station 2, and this is expected from the analysis in Section

3.5.1. We notice that prices show similar exponential decay, but never quite reach H . This is

because for station 2 the strategy of undercutting price is dominated earlier by a capacity choice

of 0, because a large portion of drivers chooses to go to station 1. After that there is only one

asymmetric equilibrium of station 1 being open.

5.1.4 Travel times

This section will analyse the SPE in capacities, prices and driver station choice with regard

to travel times of the routes stations are placed at. A symmetric increase in travel times will

not affect station choices when all other parameters are the same for both stations. This is

expected as in that case drivers will select stations with 0.5 probability anyway, regardless of

the magnitude of travel time. More interesting is the case where stations are placed at different

routes. To experiment on this, a two-station scenario is considered where all parameters except

for travel times are the same for both stations. Travel time for station 2 is kept at a constant

t2 = 3 + 1/3, while t1 is varied, and results are examined in relation to the ratio of travel times

t1/t2.
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Figure 5.6: Equilibrium prices (left) and station utility (right) for a varying t1/t2 ratio.

The first conclusion that should be noted here is that the inclusion of the equilibrium in prices

eliminates the issue of the existence of the equilibrium in capacities that was identified in the

previous chapter. However, for two stations investors still both play a capacity of 1. Equilibrium

prices in Figure 5.6a show that station 1 starts from a higher price than station 2, which is in line

with the findings in Section 3.5.1 that a firm with an advantageous access cost can set a higher

price in equilibrium than other investors. The price of station 1 decreases linearly as t1 increases,

while station 2’s price increases at the same rate. At t1 = t2 (t1/t2 = 1), both stations play
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Figure 5.7: Equilibrium price and driver expected utility (left) and expected queuing
time (right) for a varying t1/t2 ratio.

a symmetric SPE, that is the same capacities and prices. Station utility (Figure 5.6b) increases

linearly for station 1, and decreases linearly for station 2, while aggregate station utility improves

slowly with an increasing t1.

Expected queuing time in Figure 5.7b shows a second order polynomial behaviour, where it

decreases steeply with an increasing t1 when t1/t2 < 1, and then increases steeply when t1/t2 >

1. This is in line with customer behaviour as it was found in Section 4.2.3 Figure 4.8a, and is

reasonable given that stations will not alter capacities in this experiment. Consequently, when t1
is very small drivers select station 1 with a high probability which increases queues dramatically,

and the same happens with station 2 when t1 is very high. The rate of decrease and increase,

however, is far less steep than the one shown in Figure 4.8a which is a positive sign that the

stations’ adjustments in prices result in a lower rate of change in probabilities as t1 increases.

This is confirmed also by the expected utility for drivers in Figure 5.7a, which now shows a slow

linear decrease at approximately the same rate expected price (also in Figure 5.7a) increases,

rather than the steeper linear descent that was shown in Figure 4.8b for a varying travel time at

station 1.

5.1.5 Value of time and number of drivers

So far, building costs, charging unit output and travel times have been examined. In the previous

chapter, the value of time was treated as a minor parameter given that stations could not alter

prices, so the value of time had no effect. However, now that investors can also choose prices

the value of time needs to be examined more closely. The fact that with two stations under the

reference settings the SPE results in capacities of 1, so far has not been an issue when examining
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Figure 5.8: Equilibrium capacities (left) and station utility (right) for a varying value
of time, in a three-station symmetric scenario.

some parameters; on the contrary it shows more clearly what is happening with equilibrium

prices. However, for examining the value of time a three-station example will be utilised. That

is so because the magnitude of equilibrium prices is expected to depend on the value of time

as is evident from Equation 3.16, which in turn is expected to affect equilibrium capacities

significantly. Consequently, it would be better to utilise a scenario which promotes competition

in capacities.
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Figure 5.9: Equilibrium prices (left) and expected queuing time and driver utility (right)
for a varying value of time, in a three-station symmetric scenario.
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Utilising the reference settings, a symmetric scenario with 3 stations where the value of time vd
is varied is now presented. Capacities in Figure 5.8a increase almost linearly with an increasing

value of time, but investors are less inclined to increase capacity as the value rises. Prices in

Figure 5.9a show an almost linear increase in general and there are asymmetric equilibria in

many cases. An interesting point to make is that stations that increase capacity sometimes also

increase price at the same time (e.g. station 1 increases both at vd = 9.75). The value of time

is, in essence, a value that helps drivers weigh time costs with monetary costs. The result is that

the more drivers are willing to spend for travelling quicker, they will indeed travel quicker and

pay more in doing so.

The station investors, however, take advantage of this behaviour. This can be seen by the fact that

whereas expected queuing time (Figure 5.9b) decreases at a mild exponential rate, albeit with

large plateaus where there is no impovement, driver utility (in Figure 5.9b again) also decreases

at steep linear rate. At the same time, station aggregate3 utility in Figure 5.8b also generally

increases linearly. Of course, when stations increase capacity there is a drop in utility but this is

slowly recompensed by increasing prices as vd increases, when stations do not change capacity.

Therefore, it is safe to conclude at this point that generally the more drivers are willing to pay to

save time, they will do so at an increasingly high cost.

To investigate this more thoroughly, the slope of the drivers’ utility loss is calculated. Given

that loss in utility is fairly linear, this should provide an adequate approximation. Two points in

drivers’ expected utility are (1.25,−25.46) and (29.75,−203.3). This results in a slope of -6.24

which means drivers lose 6.24 utility for each increase in value of time by 1.
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Figure 5.10: Rate of loss in drivers’ expected
utility due to increasing charging fees.

Figures here are shown in increments of 0.5,

so to put them on the same scale, 3.12 utility

is lost every 0.5 increment. This, however in-

cludes losses due to changes in fees, changes

in queuing time, and changes due to scaling

constant time costs with an increasing value

of time. The expected queuing time is shown

here in minutes, but is actually calculated in

half-hours and is represented in half-hours in

driver utility. Expected queuing cost every 0.5

increment is then subtracted from the next in-

crement. These are multiplied by the corre-

sponding value of time. Then, if we subtract

these from the rate of loss we get the rate of

utility loss taking into account improvements

due to less queuing, scaled with the correct

value of time for each increment. However,

this still includes loss in utility due to scaling
3It was chosen to show only the aggregate utility because stations’ utilities are very similar.
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the constant costs in travel time and charging time due to an increasing value of time. Travel

time and charging time are 3+1/3 and 1.1294 in half-hours, this means that drivers lose 4.4627

every increment of 1 for the value of time, or 2.2313 every 0.5 increment of vd, which is also

subtracted from the rate of loss. This results in the rate of loss due to changes in charging fees,

which can be seen in Figure 5.10 and shows how much utility is gained or lost for every 0.5 in-

crement of vd due to charging fees, accounting for improvements in queuing time. While there

are some significant gains in utility when queues improve, in general there is a significant loss

in utility due to consistently increasing fees. Thus the original assessment was correct in that

drivers keep losing utility from increasing fees despite improvements in queuing time, which

explains the fact that the station investors generally increase profit with an increasing value of

time.
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Figure 5.11: Equilibrium prices (left) and station utility (right) for a varying number of
drivers.

The last parameter that will be examined is the number of drivers. This is done in a two-station

setting, with reference settings and varying the number of drivers. SPE capacities are still at 1

for both stations regardless of the number of drivers, which will provide a more clear picture of

equilibrium prices. From Figure 5.11a we note that charging prices4 increase linearly with the

number of drivers and this is expected from Equation (3.16) for a constant capacity and constant

charging time. Station utility (Figure 5.11b) shows an exponential increase, which is logical

given that the increasing number of drivers is multiplied with an increasing price. Expected

queuing time (Figure 5.12) shows a linear increase, and expected utility for driver i shows a

linear decrease. Expected queuing time has been defined as linear with respect to the number of

drivers, and driver utility is the added cost of prices and queuing which are both linear, so by all

means the model behaves as expected in this experiment.
4Only shown for one station, the other plays the same price.
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Figure 5.12: Expected queuing time and driver utility for a varying number of drivers.

5.2 Evaluation of SPE With Extraneous Competition

Up to now, evaluation has been carried out under the assumption that demand for the product

(in this case charging demand) must be satisfied in its entirety. The addition of an outside

option for customers in Section 3.1.4 relaxes this assumption. This is expected to change the

station investors’ competition, who now have to compete with a third party to maximise profit

in addition to competing with other investors. That being said, investors do not really compete

on the same level with the outside option as with other investors, as the provider of the outside

option does not participate in investment level or pricing competition. However, it is interesting

to examine competition in the new setting, where now an uncertain portion of demand will be

satisfied.

To reiterate, the reference settings that have been used so far are as follows. The value of time

for driving is set to vd = £15.6/half-hour, the number of drivers to n = 30, charging unit

building costs are set to b1 = b2 = £36000, and one-time building costs to o1 = o2 = £30000.

Travel times will be t1 = t2 = 3 + 1/3 half-hours, charger output is 50kW with 85% efficiency

which sets charging time at R1 = R2 = 1.1294 half-hours. The price stations buy electricity at

is £0.1/kWh and the cost for stations to recharge each EV is h = £2.8235.

In the SLCOP problem that is being used as a paradigm in this thesis, it was chosen that the out-

side option represent a train option that drivers will also consider when deciding on their journey.

Keeping in mind that the general setting considered is a trip from central Southampton to central

London, this would be a realistic alternative for drivers who commute between these two areas.

The value of time for taking the train has been determined to be vT = £18.1/half-hour for the

chosen trip’s length and mode of transport (Department for Transport, 2015). The time needed

to travel with the train is set to tT = 4 half-hours, that is 2 hours, and it includes 20 minutes
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to commute to and from origin and destination train stations. This is a realistic value for some-

one performing the chosen trip. Finally, the fee for the journey with the train has been set to

fT = £21.9 which was a realistic ticket price when the experiments were carried out. It has

been determined that a value of D = 0.95 will provide a satisfactory level of service by stations

given these settings, and this will be further explained in the next section.

Table 5.3: Subgame-perfect equilibria with reference settings

c∗1 c∗2 f∗1 f∗2 s1∗i s2∗i

9 6 £24.80 £23.10 0.57 0.43

6 9 £23.10 £24.80 0.43 0.57

8 7 £24.08 £23.52 0.52 0.48

7 8 £23.52 £24.08 0.48 0.52

Given these settings, in a symmetric two-station scenario there are four subgame-perfect equi-

libria that are asymmetric for station investors. These are shown in Table 5.3. Because the

scenario is symmetric for station investors, if a strategy where station 1 plays different capacity

and price than station 2 is an equilibrium, then the same strategies are an equilibrium when sta-

tion 2 plays the strategy station 1 played and vice versa. It is noted also that a higher capacity at

a station is accompanied by a higher charging price, while a lower capacity also yields a lower

charging price. This behaviour is expected from Equation (3.16) in Section 3.5.1 where we see

that a station’s capacity is more important in that station’s equilibrium price. This results in a

lower price for a station with lower capacity. These two different combinations that result in four

SPEs yield different utilities for station investors and in this case the sum of utilities is smaller

for the equilibria in the last two rows than for the SPEs in the top two rows. For the purpose of

presenting results in symmetric scenarios, the worst equilibria for stations will be presented on

plots (explained in Section 3.6). Because such asymmetric equilibria always come in pairs in

two-station symmetric scenarios, only the equilibrium where station 1 plays the higher capacity

will be shown. With these in mind, customer disappointment D is explained in detail in the next

section.

5.2.1 Determining a value for customer disappointment D

The parameterD was used in Section 3.1.4 to model the customers’ disappointment at not using

the service firms offer, and now the logic behind this will be further explained. In the SLCOP

problem, the option for drivers to not use the stations has been introduced in the form of a train

option. In reality, however, firms consider a variety of factors when setting prices and deciding

the magnitude of investment. Although realistic settings for the train have been set, the idea

that charging demand may not be satisfied entirely necessitates that station investors have a

perspective on what level of service would be satisfactory.
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Intuitively, when EV drivers are more disappointed for not using the EV, this should make them

more inclined toward using it and a higher value of D should result in more drivers using their
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Figure 5.13: Equilibrium capacities (left) and prices (right) for a varying dissatisfac-
tion.

EVs. Technically, by looking at Equations (3.7) and (3.8) it is straightforward to deduce that for

constant capacities and prices at stations, an increasing D will turn more drivers toward using

their EVs. That is so because in NE the expected utilities for each action available to driver

i are equal and a lower utility for using the train will result in the equilibrium probabilities

for choosing stations to increase. Thus D could be also seen as the drivers’ dissatisfaction

with having to use the train. However, station investors can take action whereas the train does

not actively compete with stations in prices or investment levels. Hence it is expected that an

increasing D will effectively set a worse benchmark for stations, and a decreasing D a better

one. The analysis on the value of time in Section 5.1.5 showed that stations will increasingly

take advantage of an opportunity to increase profits the greater the opportunity is, at the expense

of the drivers. An increasing D that makes drivers more averse to the train provides such an

opportunity, thereby station services are expected to show increasing deterioration the more

drivers are inclined to use their EVs.

An exploration of D reveals that indeed investors reduce capacity (Figure 5.13a) and increase

prices in Figure 5.13b with an increasing D. This increases queuing time and decreases the util-

ity for drivers (both in Figure 5.14a), while the utility for the stations in Figure 5.14b increases as

they invest less and charge more for their services. At the same time, the probability that drivers

will take the train sTi (Figure 5.15) also rises. This initially seems to pose a causality dilemma

on whether it is D that causes drivers to use the train more and this causes a worse service, or is

it that drivers divert to the train because stations offer a worse service; it tends to be both, but this

dilemma is distracting. In reality, an increasingD biases drivers toward using their EVs more by
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Figure 5.14: Expected queuing time and driver utility (left) and station utility (right)
for a varying level of dissatisfaction D.

setting lower utility for the train. This in turn gives investors headroom to increase prices and de-

crease capacity, and investors act to take advantage of the lower benchmark in utility. In turn, this

causes increasingly more drivers to take the train as services deteriorate. This can be seen in Fig-

ure 5.15 where the probability of taking the train climbs every time investors decrease capacity or
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Figure 5.15: Probability of opting to use the
train sTi for a varying level of dissatisfaction.

increase prices significantly. Then, it slowly

reduces due to that bias even though prices

keep increasing, until the next change in ca-

pacity or major change in prices. This is why

conceptually D is seen as the dissatisfaction

for not using the EV; D will calibrate the

drivers’ inclination to use the EVs, and this

will in turn calibrate the investors’ behaviour

with the outside option as a reference point

to reality. This will make investors consider

more realistic capacities and prices instead of

competing secluded for the sake of competi-

tion. That said, an interesting aspect of the

problem that emerges by looking at these re-

sults is that, just as with the value of time,

the more EV drivers are inclined toward us-

ing their EVs, the more stations will take ad-

vantage of this increasing their utility at the

expense of the drivers. This indicates that the EV drivers’ cost minimisation and the station in-

vestors’ profit maximisation are mutually exclusive concepts, meaning that constant parameter
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allocations which improve the situation for stations, will worsen the utility for drivers and vice

versa. This makes the use of subgame-perfect equilibrium solutions for allocating stations all

the more important compared to single-minded optimisation.

It is still a question, however, what value should be set to D. The point of this approach is

for stations to offer prices and capacities that scale with a realistic economy regardless of the

number of stations that compete with each other. In addition, one of the objectives of allocating

station capacities and prices is for EV drivers to be using their EVs comfortably. With these in

mind, it is necessary to find the point at which the probability of taking the train starts to rise.

Then, a value of D slightly lower than that point is the most suitable. The logic here is that with

good service by stations, no EV driver who wants to perform the trip with the EV should have

to get the train instead. Therefore, setting D to account for this logic will result in capacities

and prices EV drivers are satisfied with. If D is set exactly on that margin, some small increase

in traffic would cause some drivers to take the train, therefore D has to be a little lower so as

to allow for small fluctuations in EV traffic. With the reference settings outlined in the start of

Section 5.2, the margin where the probability of taking the train becomes non-zero is D = 1.25,

so a value of D = 0.95 will be used for n = 30 drivers and this should allow investors some

headroom in competition for reasonable variations of other parameters. The next section will

now examine the robustness of the model for variations in EV traffic to stations.

5.2.2 Fluctuations in traffic toward stations

In the previous section a hypothesis was posed in order to determine the value of parameter D.

It was assessed thatD should be set at a point which allows headroom to stations for fluctuations

in EV traffic, so that the level of service does not steer excess drivers away from stations. This

implicitly poses the hypothesis that an increasing number of drivers will show an increasing

tendency to use the train because the model was calibrated for lower peak traffic. This section

will test this hypothesis by keeping the reference settings in a symmetric two-station scenario,

setting D = 0.95 and varying the number of drivers n.

Results show that SPE capacities in Figure 5.16a and prices (Figure 5.16b) will increase with

an increasing number of drivers which is expected so far, but we notice that the slope of the

quasi-linear increase in capacities decreases at n = 60, while the slope of prices increases at the

same point. At the same time, expected queuing time starts increasing dramatically while driver

utility decreases at a steep rate (both in Figure 5.17a) from n = 60 and on. Station utility in

Figure 5.17b increases linearly, as is expected, up to n = 60 but then shows a slight exponential

increase, as prices increase at a higher rate but the rate of investment slows down.

In Figure 5.18a it is noticed that the probability of using the train sTi rises from n = 44 onward.

Actually, a more detailed look at the data reveals that the rise starts to happen at n = 39 drivers.

Therefore, the hypothesis that an increasing number of drivers will cause drivers to use the train
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Figure 5.16: Equilibrium capacities (left) and prices (right) for a varying number of
drivers.

more if the model is calibrated for less drivers, is correct. In addition, the chosen valueD = 0.95

provides headroom for a 30% increase in peak traffic before drivers start using the train.

It is also noted that the point at which the slopes of capacities, prices and utilities changes

significantly is the point at which the probability of taking the train also starts climbing more

rapidly. This means that D sets a limit beyond which station investors start taking advantage of
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Figure 5.17: Expected queuing time and driver utility (left) and station utility (right)
for a varying number of drivers.
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Figure 5.18: Price of anarchy (PoA) and probability of opting to use the train (sTi )
(left), and Social Welfare Ratio (right) for a varying number of drivers.

drivers increasingly and therefore it was correct to set D a little lower than the margin of taking

the train. This is shown also by the fact that the price of anarchy for stations (Figure 5.18a) is

relatively unaffected around 30 drivers. For n = 30, the price of anarchy is PoA = 1.3 thus the

global centralised optimum allocation is 30% more efficient for stations than the SPE. A ratio

of 1/PoA will show how efficient the SPE is in comparison to the centralised optimum. For

a range of traffic from 20 − 40 drivers, which is a reasonable fluctuation in peak traffic with

n = 30 as a reference point, the worst-case efficiency of the SPE solution is 78.29% ± 3.02%.

For a smaller fluctuation from 25 − 35 drivers it is 79.18% ± 2.22%. Therefore, reasonable

fluctuations in peak traffic do not cause severe behavioural anomalies from investors. Stations

that have played in SPE for n = 30 drivers peak traffic can therefore micro-adjust prices daily

to account for fluctuations, rather than having to build more charging units or to reduce capacity.

This is also reflected in the Social Welfare Ratio (Figure 5.18b) which remains largely unaffected

for small fluctuations in traffic. Moreover, the SWR shows that the SPE solution is very efficient

for system-wide welfare. The optimal solution yields at most 2.4% better system-wide utility

compared to the SPE, up to a peak traffic of 56 drivers, with most cases showing an increase

well under 1%.
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5.2.3 Fluctuations in building costs
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Figure 5.19: Equilibrium capacities (left) and prices (right) for a varying cost of build-
ing charging units.

On a similar note, the model’s robustness toward fluctuations in building costs is examined.

For this, a symmetric experiment with varying cost for building charging units will be used

(b1 = b2). In Figure 5.19a it is observed that capacities decrease with an increasing building

cost while prices (Figure 5.19b) increase. This is in line with the general behaviour that has been

identified so far in Section 5.1.2. This results in increasing queuing time and decreasing utility
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Figure 5.20: Expected queuing time and driver utility (left) and station utility (right)
for a varying cost of building charging units
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for drivers (both in Figure 5.20a). Station utility in Figure 5.20b, however, now shows different

behaviour. For increasing costs up to £41000 station utility increases, as was observed before,

but now beyond that point it generally decreases rapidly. This is explained by the fact that

stations now tend to maintain capacity more beyond £41000, and also do not alter equilibrium

prices as often, which results in decreasing utility with an increasing building cost.
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Figure 5.21: Price of anarchy (PoA) and proba-
bility of opting to use the train (sTi ) for a varying
cost of building charging units.

This behaviour is a result of the fact that be-

yond a building cost of £41000 per charg-

ing unit the probability of taking the train

sTi in Figure 5.21 starts increasing, therefore

stations do not reduce capacity and increase

prices as rapidly as they did without the train

option in Section 5.1.2. This sort of behaviour

is exactly what was intended with introduc-

ing an outside option for drivers; station in-

vestors are more aware of the drivers’ needs

now that drivers do not have to use the sta-

tions. The price of anarchy in Figure 5.21 is

the same PoA = 1.3 for b1 = b2 = 36000

and is largely unaffected by reasonable fluc-

tuations in building cost. For a range be-

tween £31000−£41000 in building cost with

£36000 as a reference point, average worst-

case efficiency of a SPE solution is 77.94%±
1.02% therefore the calibration performed al-

lows for reasonable fluctuations in building costs without investors making spasmodic, unpre-

dictable decisions.

Last, it is noted that despite the fact driver utility is decreasing, queuing time is slowly improv-

ing for very high building costs, and that is because station capacity changes slowly, which in

combination with the rapid increase in sTi means that queues are improving because drivers opt

to use the train more.

As concerns one-time building costs, a symmetric increase in o1 = o2 will not have an effect

up to oj = £396000 in the stations’ equilibrium. That is so because it scales station utilities

similarly. However, at oj = £396500 station utilities will decrease very much and this will

cause one station to close, and the other to maximise against the train with a capacity of 15 and

a charging price of £34.311. An asymmetric increase where only o1 for station 1 is varied while

o2 = £30000, reveals that up to o1 = £204000 nothing changes in SPEs5, even though station

1’s utility decreases.
5Shown in Table 5.3 at the start of Section 5.2
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c∗1 c∗2 f∗1 f∗2

9 6 £24.80 £23.10

6 9 £23.10 £24.80

8 7 £24.08 £23.52

7 8 £23.52 £24.08

0 15 − £34.31

Table 5.4: SPEs for
£205000 ≤ o1 ≤ £374000

c∗1 c∗2 f∗1 f∗2

9 6 £24.80 £23.10

8 7 £24.08 £23.52

7 8 £23.52 £24.08

0 15 − £34.31

Table 5.5: SPEs for
£375000 ≤ o1 ≤ £399000

c∗1 c∗2 f∗1 f∗2

9 6 £24.80 £23.10

8 7 £24.08 £23.52

0 15 − £34.31

Table 5.6: SPEs for £400000 ≤ o1 ≤
£442000

£443000 ≤ o1 ≤ £499000

c∗1 c∗2 f∗1 f∗2
9 6 £24.80 £23.10

0 15 − £34.31

o1 ≥ £500000

c∗1 c∗2 f∗1 f∗2
0 15 − £34.31

Table 5.7: SPEs for o1 ≥ £443000

However, from £205000 it is also an equilibrium for station 1 to be closed (Table 5.4). A further

increase past £375000 (Table 5.5) eliminates the equilibrium where station 1’s capacity is 6, and

a further increase beyond £400000 (Table 5.6) eliminates the SPE where station 1’s capacity

is 7. Last, after £443000 (Table 5.7) the only SPE where station 1 is open is with capacities

(c1 = 9, c2 = 6) and beyond £500000 station 1 will not be open anymore in SPE.

This behaviour is expected, as one-time building cost does not influence equilibrium prices,

therefore the maxima of stations for capacity combinations remain the same, only the utility

moves up or down the y axis with a decreasing or increasing o1. Hence, as o1 increases SPEs

with lower capacities for the disadvantaged station are eliminated as they turn to yielding nega-

tive utility.

5.2.4 Fluctuations in travel time

When it comes to route travel times, if those are increased symmetrically investors will start

reducing prices. This is expected because the profit margin for investors reduces, as a larger

portion of driver utility consists of travel time costs which investors can do nothing for. In-

vestors thus have to counter this by reducing prices to compete with the train option. Capacities

also decrease as a result of lower income, but a symmetric increase in travel time is not very

interesting itself.

More interesting is the situation where the travel time in only one of the two routes varies.

This is so because small fluctuations in the travel time ratio t1/t2 can conceptually represent
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situations in which the travel time for one route can vary, for example due to traffic congestion

which the model in this thesis does not address explicitly. Therefore, it will be interesting to

see whether a varying travel time ratio will provoke aggressive or more mild adjustments in

capacities and prices. A more mild adjustment in capacities especially will indicate that the

magnitude of investment that has been made using the calibrated model is robust against travel

time fluctuations. Therefore, investors need only micro-adjust prices each day to account for

traffic congestion during peak hours. For the experiment that will follow, the reference settings

at the beginning of Section 5.2 will be used again in a two-station asymmetric scenario where

t2 = 3 + 1/3 while t1 will be varied.

Results show that station 2 will start from a much lower capacity than station 1 (Figure 5.22a)

as it is heavily disadvantaged when t1 is miniscule. At the same time, station 1 who has much

better capacity and is also on a very favourable route to start with, will ask for a very high

charging price (Figure 5.22b).
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Figure 5.22: Equilibrium capacities (left) and prices (right) for a varying travel time at
station 1.

As t1 gets closer to t2 station 1 maintains capacity and reduces the charging price because station

2 becomes more competitive. This also gives room to station 2 to increase capacity and price.

When t1/t2 enters more realistic levels around 1, stations engage in more close competition on

investment levels. At t1/t2 = 0.9 station 1 drops capacity and station 2 increases it, resulting in

station 1 having lower capacity than station 2. It is noted at this point that this is the worst SPE

shown here, but it is also a SPE at t1/t2 = 0.9, 0.925 for both stations to have a capacity of 7,

that is the same capacities as in t1/t2 = 0.875, 0.95, 0.975. As average capacity increases, the

expected queuing time decreases but so does the utility for drivers (both in Figure 5.23a). This

is reasonable, because even though queues improve expected travel time increases considerably

with an increasing t1. Moreover, this will also cause more drivers to shift toward station 2 that
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Figure 5.23: Expected queuing time and driver utility (left) and station utility (right)
for a varying travel time at station 1.

has a longer travel time. Of course, the utility of station 1 in Figure 5.23b decreases rapidly as

the advantage in travel time is lost. This is attributed to an increasing t1 which will turn more

drivers to station 2, and a decreasing price at station 1. At t1/t2 = 1.2, the travel time for station

1 is the same as the travel time for the train. As t1 goes beyond the train’s travel time, station 1

reduces capacity rapidly and station 2 increases capacity rapidly until station 1 cannot compete

any more and does not open at all. Station 2 then maximises against the train. This is logical
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Figure 5.24: Price of anarchy (PoA) and probability of opting to use the train (sTi )
(left), and Social Welfare Ratio for a varying travel time at station 1.
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since now station 1 also loses customers to the train, for which the probability rises as seen in

Figure 5.24a.

With regard to the SPEs’ efficiency, the PoA for stations (Figure 5.24a) does fluctuate but not

overly so. Worst-case efficiency of the SPE is 72.85% ± 3.47% for a ratio range 0.8 − 1.2.

This represents about a +-20 minute fluctuation which is reasonable to consider for two stations

on similar routes, where one route might show traffic congestion. Overall worst-case efficiency

across the whole range 0.05−1.3 (excluding the extrema where station 2 maximises) is 71.1%±
4.7%. Investor behaviour is generally not spasmodic, and in the cases where capacities were

swapped near t1/t2 = 0.9 there also exist SPEs where the investors maintain the capacities.

Consequently, the model is reasonably robust to fluctuations in travel time. As regards system-

wide utility in SPE, the Social Welfare Ratio in Figure 5.18b shows that when the two routes

have comparable travel time SPEs are quite efficient compared to optimal station allocations. For

example, in the travel time ratio range 0.8 − 1.2 the SPE solution is at least 92.85% efficient.

However, for larger travel time differences efficiency reduces significantly, albeit great travel

time differences among routes represent less realistic station competition scenarios.

5.2.5 Charging unit power output

The last experiment that will be presented in this chapter is to explore a symmetric increase in

charging unit output. It was first shown theoretically in Section 3.5.1 that equilibrium charging

prices will converge asymptotically to marginal cost h = 2.8235 as charging demand gets closer

to being satisfied immediately. That cost is the cost of electricity for stations to recharge each EV.

Furthermore, in Section 5.1.3 it was shown empirically that charging prices in SPE will converge

asymptotically to marginal charging cost H = 4.8326, which is h plus the cost of building

the stations shared among the drivers that will recharge (H = h + c1b1 + c2b2 + o1 + o2
nw ).

However, in that experiment competition was not enough for two investors to invest in more

capacity, hence SPE capacities for both stations were at 1.

It is hypothesised now that with the extension to include the outside option the convergence

for very high charging output will also be H . That must be so, as a very high charging output

means that investors will not have incentive to build more capacity, and will still end up playing

capacities of 1. This also means that initially the marginal cost H will be different due to

higher capacities and will start decreasing until the stations play capacities of 1 where it will be

H = 4.8326 again.

Indeed, experiments show that stations start normally with higher capacities (Figure 5.25a) for

low outputs and decrease capacity as the output increases. At 700kW station 2 reduces capacity

to 1, and at 1000kW station 1 also does the same. From there, prices (Figure 5.25b) start an

asymptotic movement toward H = 4.8326. At 13575kW charging prices are at £4.8334 and

immediately after station 2 closes and station 1 maximises price. Note that in the end, it is also

a SPE for station 1 to close and for station 2 to maximise instead.
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Figure 5.25: Equilibrium capacities (left) and prices (right) for an increasing charging
unit power output.

It is worth to mention that the exponential decay of prices shown here is much slower than the

one seen earlier in Section 5.1.3 and prices converge toH at more than double the power output.

This can be attributed to two reasons. First, the stations start from much higher capacities. Until

output is so high that they reach capacities of 1, convergence has not started. Second, the

inclusion of the outside option forces stations to start from lower prices when capacities become

16. This means that investors have a lower profit margin when convergence starts, therefore they

cannot undercut prices as aggressively at first. The PoA (Figure 5.26a) increases exponentially

with an increasing output which is reasonable. As output increases, SPE utility is decreasing

at the exponential rate prices decrease, while stations could increase prices instead now that

charging time is lower. However, because demand gets closer to being satisfied at once, charging

prices become an increasingly deciding factor in the EV drivers’ station choice. Consequently,

investors reduce price because a strategy of price increase can always be responded to by a small

undercut in price by the competitor, which will result in a large shift of drivers to the competitor.

In Bertrand competition, this is exaggerated even further because in addition it is assumed that

all customers will buy from the firm with the lowest price. Nevertheless, even at an output of

2000kW , which is about 20 times better7 than current charging technology, prices are still in

the region of £15 which is three times the marginal charging cost. In the end, this goes to show

that charging prices will be significantly higher than the marginal charging cost H because of

the inability to satisfy charging demand immediately, or almost immediately.

Regarding system-wide utility in SPE, Figure 5.26b shows that SPEs are very efficient regardless

of charging unit power output. Specifically, a centralised allocation for stations has been found
6About £20 here vs. about £208 without the outside option.
7e.g. Tesla’s supercharger has an output of 120kW/hour and is already significantly better than common rapid

chargers.
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Figure 5.26: Price of anarchy (PoA) and probability of opting to use the train (sTi )
(left), and Social Welfare Ratio (right) for a varying charging unit power output

to be at most 3.8% more efficient than SPEs and in conjunction with the PoA for stations in

Figure 5.26a we can conclude that what is lost in efficiency for stations is largely gained by the

drivers. A point of criticism on the methodology followed in this experiment could be that the

cost of charging units is constant. However, an increasing output is intended as a technological

time-line; a reasonable assumption to make is that better technology becomes more accessible in

time. In addition, inflation in cost and in drivers’ buying power is going to be similar. Even then,
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Figure 5.27: Equilibrium capacities (left) and prices (right) for a varying charging unit
output.
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it is certain that prices will converge toward the marginal cost at the time, which is impossible

to estimate given that such high charging unit power outputs are, perhaps, many decades away.

A more microscopic look into the same experiment reveals that we are considerably far away

from a reduction in prices due to quicker satisfaction of demand, even assuming that faster

technology will become more affordable. In fact, if stations are able to purchase charging units

of up to 75kW at the price of 50kW units, prices (Figure 5.27b) will still rise. However, despite

a reduction in capacity (Figure 5.27a) and an increase in prices driver utility (Figure 5.28a)

will keep improving as better technology becomes more available due to a reduction in queuing

times. After prices peak around 75kW they start reducing again while stations lose utility

(shown in Figure 5.28b) that had peaked for 75kW . However, even for a power output of

150kW , prices are still not significantly lower than for 40 − 50kW charging units, and that is

assuming all the units cost the same.
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Figure 5.28: Expected queuing time and driver utility (left) and station utility (right)
for a varying charging unit output.





Chapter 6

Locations, Speed of Service and
Subsidies

This chapter will present further evaluation with regard to the investor location and speed of

service choices, which will follow the SLCOP problem that has been analysed throughout this

thesis. Furthermore, the model will be utilised to examine subsidies to charging station investors

as incentives to expand rapid charging stations. First, Section 6.1 will evaluate the investors’

choice of location and charging unit power output, and subsidies toward charging stations will

be discussed in Section 6.2.

6.1 Evaluation of Competition in Locations and Speed of Service

The inclusion of the ability for investors to choose locations and the speed of service in the

first stage of the extensive-form game which was explained in Section 3.3, first of all increases

the computational complexity of the model significantly. While the customers’ mixed NE in

firm choice is straightforward to calculate, the equilibrium in prices is not as simple. As was

explained in Section 5.1.1, the equilibrium in prices is a problem always linear with respect to the

firms’ fees, but it is polynomial with respect to capacities. Consequently, solving it symbolically

becomes significantly more difficult with an increasing number of stations. Two things are

of note in tackling the complexity of the equilibrium in prices. First, it is necessary to solve

symbolically only once for a particular number of investors and locations, and then it can be

used to explore various instances with the same number of locations and investors. Second, it is

not necessary to solve it symbolically at all, and it can be solved numerically instead every time

an investor evaluates a pure strategy ckL for maximising utility.

This brings us to the actual computational burden, which is the pure strategy NE in capacities,

locations and speed of service. In cases where the number of available server types, and es-

pecially the number of locations is large, the strategy space Ck for the investors becomes very

107
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large. Each investor will reason selecting out of Θ + 1 available capacities for each available

location, and this is multiplied by the size of the server type options G. It is beneficial for the

IBR algorithm to parallelise the calculation of utilities for investor k within the same iteration,

using a numerical solution to the prices equilibrium. This may still, however, require many cal-

culations of the equilibrium in prices. For example, if there are 5 locations available to each of

5 investors, the capacity limit is Θ = 15 and investors have 2 server type options, an investor

will have to calculate (Θ + 1)52 = 2 · 165 = 2097152 utilities each iteration of the IBR, which

requires about 30 hours for one iteration. One straightforward way to reduce this complexity

is to consider a capacity limit that is large enough to contain the Nash equilibrium, but small

enough to provide for better computational time. For example, we saw in Section 5.1.1 and

Table 5.1 that 6 investors will play capacities of 3, therefore a capacity limit of 5 is enough to

contain the equilibrium and at the same time to not push it artificially toward the bottom-right

end of the utility matrix. This would mean the investor would now have to calculate ’only’ 6250

utilities which can be done in about 6 minutes without parallelisation.

Still, computational complexity of the full model is significant even with a careful choice of

Θ, but this is an issue mostly when examining generic problems. In reality, a situation where

a planner would be called to determine SPEs for several investors who all consider building

on all the available locations at the same time is rather unlikely for a variety of reasons. First,

investors are bound to have constraints on locations, budget and server choices for reasons such

as personal preference or a good deal with a supplier and so on. Furthermore, it is still unlikely

that several investors, even with constraints, will have to decide at the same time. For example

physical firms like charging stations can directly compete only with other firms within a certain

range. Therefore, it is unlikely (a) that there will be several investors considering the same

locations and (b) that investors will decide the magnitude of investment at the same time. A

likely real-world use case of this model is when an investor wants to build a firm considering

some locations, but some competition already exists. A more realistic use is also for providing

daily counsel on prices to some investors, something that can be calculated quickly. In the end,

the complexity of this model is an issue when examining large, generic theoretical problems but

these have little to do with realistic use cases.

With these in mind, Section 6.1.1 will present an evaluation of location competition and Section

6.1.2 will discuss competition in the speed of service, in the context of the EV SLCOP problem.

6.1.1 Evaluating location choice

In order to evaluate the investors’ location choices it is instructive to first examine the equilib-

rium in prices for two competing firms, that was found in Theorem 3.9 in Section 3.5.1. This,

of course, assumed that investors can have only one station, and the outside option was not con-

sidered yet, but some qualitative characteristics that can be extracted more easily remain. The
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equilibrium in prices had been found to be:

f∗1 = h− 1

3
vd(t1 − t2) +Rvd(n− 1)

2c1 + c2
6c1c2

f∗2 = h− 1

3
vd(t2 − t1) +Rvd(n− 1)

c1 + 2c2
6c1c2

vd, c1, c2 > 0 n > 1
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Figure 6.1: Equilibrium capacities (left) and prices (right) for a varying t1/t2 ratio,
where investors can build up to one station in each of two routes (l1, l2).

Now if we consider in the context of charging station competition that the two investors have

stations that are located on different routes, it is evident that if t1 is higher, that is if station 1 is

on a longer route, the price at station 1 will be lower than the price at station 2 if capacities are

the same.

This implicitly indicates that investors may be biased toward competing on the same route rather

than different routes when the other parameters for stations are the same. To test this hypothesis,

an experiment is conducted with two investors, Investor 1 and Investor 2 and two different routes,

l1 and l2. Each investor can choose to build up to one station at each route. The travel time for

the first route t1 will be varied, while the travel time for the second route will be constant at

t2 = 3 + 1/3.

Looking at the capacities investors have chosen in SPE (Figure 6.1a) shows that both investors

have chosen to build at route l1 when t1 is smaller than t2. While capacities and prices (Fig-

ure 6.1b) generally decrease for an increasing t1/t2 ratio, it is noted that there are now many

situations where the investors play symmetric equilibria, while sometimes they play asymmetric

equilibria. In the case where they play different strategies, the opposite strategies are also SPEs.
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Now that investors choose to build on the same route the problem becomes symmetric for in-

vestors even when route travel times are different. as the other parameters are the same for both

investors. The investors’ utilities in Figure 6.2 generally decrease with an increasing t1/t2 ratio,

until the point when t1/t2 = 1. At that point, it is an SPE for an investor to play the strategies

shown at any one location, but past 1 both investors choose to build at route l2 as now it is the

shortest route. This confirms the hypothesis that investors will prefer to compete on the same

route for the same parameters, and SPEs where investors build on different routes do not exist

except for when t1 = t2.
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Figure 6.2: Investor utilities for a varying t1/t2
ratio, where investors can build up to one station
in each of two routes (l1, l2).

Variation on the number of drivers n does

not show any indication that it might affect

the choice of location, and so do most other

parameters. The other two parameters that

can affect the choice of location are charg-

ing unit building costs and one-time building

cost. The building cost will not be examined

explicitly here, as it will be examined later

in Section 6.2.2 with subsidies, and the re-

sults are equivalent. With regard to one-time

building cost, this shows very predictable be-

haviour. When this is increased in one route

for both investors it shows identical behaviour

to the above experiment with travel time, that

is as building cost for the faster route in-

creases there is a point where investors both

choose to build at the slower route. When the

building cost varies asymmetrically, for only

one investor in the faster route, that investor

will at some point build on the slower route instead. The second investor has no reason to follow

and remains in the first route. Finally, there have been no cases in which investors build in both

routes, even when one-time building cost is 0. This seems odd at first, but is reasonable given

that a slower route will be accompanied by reduced price and therefore the investor could just

build one more unit at the faster route.

Having shown that investors prefer to compete on the same, rather than different routes, the next

section will evaluate the station investors’ choice in the type of charging units for their stations.

6.1.2 Evaluating the speed of service choice

When it comes to the decision on the speed of service, in the context of the SLCOP this is

assumed to be represented by the choice of charging unit power output, which will influence

service time. Therefore, the cost of building charging units is the obvious candidate to examine.
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Figure 6.3: Equilibrium capacities (left) and prices (right) for a varying cost of the
faster, 80kW charging unit.

For the purpose this experiment, a two-station symmetric scenario will be considered. This

will include two types of charging units; one type are the units that have been used throughout

all the experiments and are part of the reference settings, with a power output of 50kW and

their building cost is set to £36000 for both investors. The other type of units that will be

considered feature an 80kW power output and their cost will be varied symmetrically for both

investors. The building cost of the faster charging units has been explored thoroughly, but for

better presentation of results only costs above £36000 will be shown. The investors’ behaviour

up to that point is fairly similar to other building cost explorations that have been presented

before, and more interesting is the situation where investors switch from one type to the other.

Investors both choose the 80kW charging units (Figure 6.4a) when their cost is comparable, and

continue to do so up to a cost of £92000 where station 1 switches to the slower, 50kW units.

Up to that point, as the building cost increases first station 2 reduces capacity (Figure 6.3a) and

increases price (Figure 6.3b) at £47000, and in response station 1 sets a much higher price now

that it offers better service. At a cost of £52000 station 1 also reduces capacity and both stations

set an even higher price, playing the same strategies until £92000, when station 1 chooses to

use the 50kW charging units. At that point, station 1 also reduces price and station 2 further

increases price, which results in station 1 maintaining utility (Figure 6.4b) and station 2 gaining

utility. It might seem odd at first that station 2 gains utility while increasing price, at the same

time station 1 reduces price considerably.

A more thorough analysis shows that now 52% of drivers will go to station 2 despite station

1 setting a much lower price, because now charging time for driver i at station 2 is about

21 minutes, while at station 1 it is about 34 minutes. As charging unit cost for the fast unit

increases further, station 2 also switches to the more affordable 50kW units. What is note-
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Figure 6.4: Station charging unit type choice (left) and station utility (right) for a vary-
ing cost of the faster, 80kW charging unit.

worthy, however, is that the expected utility for driver i (Figure 6.5) when both stations are

using the 50kW units is highly comparable to the utility before investors switched, and for

quite a wide range of cost of the fast charging unit. Also, queuing time with the faster units
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Figure 6.5: EV driver expected queuing time
and expected utility for a varying cost of the
faster, 80kW charging unit.

is higher from £52000 and on than with the

slower units. This means that investors take

advantage of the faster charging time offered

to driver i in order to build less charging units

and ask for a higher charging price (remem-

ber, charging time for i is not included in ex-

pected queuing time). This is also reflected

in the fact that utility for the stations (Fig-

ure 6.4b) is generally much better with the

fast charging units than with the slower ones

even though they are more expensive, while

utility for drivers is about the same.

That said, it was impossible to determine a

realistic cost for units other than 50kW DC

chargers. Several companies in the UK were

contacted, but none was willing to share in-

formation on costs and maintenance without

a formal request for a study of costs for a par-

ticular location.
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6.2 Subsidising Station Investors

This section will present how the model can be applied to examine subsidies to charging stations

as incentives for rapid-charging station expansion. Subsidising stations can affect utility for

investors and drivers, and provides for an interesting use-case of the model. Two forms of

subsidies that are immediately of interest are subsidies for the cost of installing charging units

and subsidies for the cost of electricity at stations. For the purpose of the experiments presented

here, the reference settings used are as follows.

The value of time for driving is set to vd = £15.6/half-hour, the number of drivers to n = 30,

charging unit building costs are set to b1 = b2 = £36000, and one-time building costs to

o1 = o2 = £30000. Travel times will be t1 = t2 = 3 + 1/3 half-hours, charger output is

50kW with 85% efficiency which sets charging time at R1 = R2 = 1.1294 half-hours. The

price stations buy electricity at is £0.1/kWh and the cost for stations to recharge each EV is

h = £2.8235. Last, the value of time for using the train is set to vT = £18.1/half-hour, the

travel time for the train is tT = 4 half-hours, the fee for the train will be fT = £21.9 and driver

disappointment for not using the EV is D = 0.95. Any deviation from these parameters will be

clarified explicitly.

Before evaluating subsidies, however, some performance metrics will need to be defined first.

Hence, Section 6.2.1 provides a discussion on measuring the subsidies’ performance, and defines

suitable metrics. Then, Section 6.2.2 presents an evaluation of subsidies for installing charging

units. Last, Section 6.2.3 discusses the performance of subsidies toward the cost of electricity at

stations.

6.2.1 Metrics for the performance of subsidies

In order to determine the efficiency of a subsidy, it is necessary to consider both station investors

and drivers. With regard to station investors, the difference between utility with the subsidy and

without the subsidy is divided by the total cost of the subsidy. Since the utility for investors

is net profit, this will essentially show how much money stations gain or lose per pound spent

in subsidies. A useful property of the model is that by using the value of time parameter vd to

convert the time costs in driver i’s utility, the same can be determined for drivers. Then, if the

gain or loss for driver i is multiplied by nw, the same normalisation for station profits, the total

gain for drivers can be examined in the same order of magnitude as the stations’ gain and the

total cost of the subsidy. Finally, adding the total gain for drivers and stations will indicate how

much extra or less money is generated in system-wide utility due to the subsidy.

Definition 6.1 (Efficiency of charging unit subsidy for investors). Let σ denote the amount

that is going to be subsidised for the purchase of each charging unit. If each of z investors

considers building stations at µ locations, the total cost of the subsidy is σ
∑z

k=1

∑µ
j=1 c

k
j .

Then, if Esu[rk(c)|s] is investor k’s utility with the subsidy and E0[r
k(c)|s] is investor k’s utility
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without the subsidy, the efficiency of the subsidy for all investors is:

εI =

z∑
k=1

Esu[rk(c)|s]−
z∑

k=1

E0[r
k(c)|s]

σ

z∑
k=1

µ∑
j=1

ckj

(6.1)

Having defined a measure of efficiency for investors, a measure for drivers is also necessary.

Definition 6.2 (Efficiency of charging unit subsidy for drivers). Let σ denote the amount that

is going to be subsidised for the purchase of each charging unit. If each of z investors consider

building stations at µ locations, the total cost of the subsidy is σ
∑z

k=1

∑µ
j=1 c

k
j . Then, if

Esu[ui(x)|s] is driver i’s expected utility with the subsidy and E0[ui(x)|s] is i’s expected utility

without the subsidy, the efficiency of the subsidy for all drivers is:

εN = nw
Esu[ui(x)|s]− E0[ui(x)|s]

σ

z∑
k=1

µ∑
j=1

ckj

(6.2)

With regard to subsidies for electricity costs at stations, the metrics are slightly different.

Definition 6.3 (Efficiency of electricity cost subsidy for investors). Let σ denote the amount

that is going to be subsidised for each kWh a station consumes. If E is the energy requirement

in kW for a charging station to recharge each EV, then the total cost of the subsidy is the

added normalised cost of all the drivers who have recharged multiplied by the amount of the

subsidy. If sTi is the probability of drivers taking the train, the total cost of the subsidy then is

w(1−sTi )nEσ. Moreover, if Esu[rk(c)|s] is investor k’s utility with the subsidy and E0[r
k(c)|s]

is investor k’s utility without the subsidy, the efficiency of the subsidy for all investors is:

εI =

z∑
k=1

Esu[rk(c)|s]−
z∑

k=1

E0[r
k(c)|s]

w(1− sTi )nEσ
(6.3)

And a redefinition of the metric for drivers is now necessary.

Definition 6.4 (Efficiency of electricity cost subsidy for drivers). Let σ denote the amount that

is going to be subsidised for each kWh a station consumes. If E is the energy requirement

in kW for a charging station to recharge each EV, then the total cost of the subsidy is the

added normalised cost of all the drivers who have recharged multiplied by the amount of the

subsidy. If sTi is the probability of drivers taking the train, the total cost of the subsidy then

is w(1 − sTi )nEσ. Then, if Esu[ui(x)|s] is driver i’s expected utility with the subsidy and

E0[ui(x)|s] is i’s expected utility without the subsidy, the efficiency of the subsidy for all drivers

is:

εN = nw
Esu[ui(x)|s]− E0[ui(x)|s]

(1− sTi )nwEσ
=

Esu[ui(x)|s]− E0[ui(x)|s]
(1− sTi )Eσ

(6.4)
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Note that while the metrics in performance given for drivers in Definitions 6.2 and 6.4 are sound,

in order to be able to say that e.g. £1 is generated for drivers for every pound of the subsidy,

this implicitly requires that the probability of taking the train sTi is zero. This is so because

the expected utility for playing in mixed strategy s may include the weighed utility of using the

train. While driver disappointment D could be broadly considered as a monetary quantity, the

correct equivalent deduction in case some drivers take the train is that 1 utility is generated for

every pound of the subsidy. This will not be a problem here, as the model has been calibrated

so that no drivers want to use the train even before the subsidy.

6.2.2 Subsidising the cost of charging units

Regarding subsidising the cost of charging units, the first experiment that will be carried out

is a two-station symmetric scenario using the reference settings outlined in the start of Section

6.2. Each of two investors can have at most one station on the same route as the other investor,

and the purchase of charging units is subsidused by the amoun σ for both investors. The results

show that SPE capacities (Figure 6.6a) and prices (Figure 6.6b) are unaffected up to a subsidy of

£10500 per charging unit. Consequently, up to that amount driver utility and expected queuing

time (both in Figure 6.7a) are also unaffected, but stations of course gain the subsidy as utility

(Figure 6.7b). Therefore, the subsidy generates £1 for stations for each pound paid in subsidies

(Figure 6.8a), which means that it is completely absorbed by stations. However, from a sub-

sidy amount of £11000 onward stations start increasing capacity and decreasing prices which

shows that the subsidy is beginning to have an effect, as expected queuing time and driver utility

improve.
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Figure 6.6: Equilibrium capacities (left) and prices (right) for an increasing subsidy
per charging unit.
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Figure 6.7: Expected queuing time and driver utility (left), and station utility (right) for
an increasing subsidy per charging unit.

Stations lose utility as the subsidy increases, compared to their peak utility at σ = £10500,

but still have higher utility than without the subsidy. To produce Figure 6.8a, the methodology

and metrics from Section 6.2.1 were used. Thus the gain for all stations is that of Equation

(6.1) and for all drivers that of Equation (6.2). This analysis shows that subsidies for the cost of

charging units can be very effective. This is so because the subsidy gives incentive to investors

to increase capacity which improves queuing times, and at the same time they offer better prices.
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Figure 6.8: Subsidy efficiency (left), and Social Welfare Ratio (right) for an increasing
subsidy per charging unit.
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Therefore, stations gain utility because they do not implement 100% of the subsidy and drivers

gain utility from both improved queuing times and prices, and the subsidy can generate more

than £1 in system-wide utility for each pound spent in the subsidy. At the same time, the

Social Welfare Ratio (Figure 6.8b) shows that although SPE efficiency generally reduces due to

the subsidy, especially when stations are subsidised and do not improve capacity, SPEs remain

highly efficient for the station-driver system showing worst-case efficiency of 97.75% compared

to optimal station allocation.

Additional results for fewer and more drivers in Figure 6.9, withD calibrated accordingly, show

similar qualitative characteristics. In the case of few drivers (Figure 6.9a), drivers benefit much

more than stations and stations can have losses in some cases, but in most cases these are few or

marginally zero. For high peak traffic (Figure 6.9b), the situation is comparable to Figure 6.8a,

only now system-wide utility gain is even greater.
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Figure 6.9: Subsidy efficiency for an increasing subsidy per charging unit, considering
peak traffic of n = 15 drivers (left) and n = 60 drivers (right).

With this methodology, it is straightforward to determine optimal subsidy levels according to

various criteria. For example, for a peak traffic of n = 30 drivers Figure 6.8 shows that the

optimal system-wide utility is generated at a subsidy level σ = £16500 per charging unit where

each pound spent in subsidies generates εI + εN = 1.143 pounds in utility. Peak efficiency for

the drivers is at £23500 and for investors at £15000.

A further experiment is performed with two station investors and two available routes (locations)

l1 and l2. The travel time for route l2 is set to the reference t2 = 3 + 1/3 while for l1 it is set

to a more advantageous t1 = 3. Both stations will be subsidised equally by an amount σ per

charging unit they build, but only for building on the disadvantageous location l2. As is seen in

Figure 6.10a investors initially build stations at l1 when the subsidy is smaller, and are indifferent

to the subsidy up to an amount of σ = £14000 per charging unit. This means that there is no
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subsidy yet from which drivers can benefit. In Figure 6.11 this is represented by a zero ratio

to put the points on the plot, but in reality the efficiency is not defined, as the total cost of the

subsidy is also 0. However, from a subsidy amount σ = £15000 and on, station investors choose

to build on route l2, increasing capacity (Figure 6.10a) and decreasing prices (Figure 6.10b).
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Figure 6.10: Equilibrium capacities (left), and prices (right) for an increasing subsidy
per charging unit only for l2.
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Figure 6.11: Subsidy efficiency for an increas-
ing subsidy per charging unit only for l2.

While prices generally decrease at a slow rate,

at the point where stations choose the slower

route there investors have to reduce price con-

siderably to compete with the train, because

time costs for drivers increase. This means

that whereas drivers gain from the subsidy

(Figure 6.11), compared to unsubsidised sta-

tions in the faster route, stations lose util-

ity. This indicates that subsidising disad-

vantageous routes may be detrimental to in-

vestors. To investigate this further, only In-

vestor 2 is now subsidised for building at the

slower route l2. This can represent a situation

where a station is located already in the faster

of two routes, and the slower route is sub-

sidised to expand service toward that route.

The results show that Investor 1 will reduce

capacity (Figure 6.12a) at a subsidy level of

£14500 induced by an undercut in price (Figure 6.12b) by Investor 2. At σ = £15000 Investor

2 will choose to build at the slower, subsidised route. Investor 1 will remain in the favourable
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Figure 6.12: Equilibrium capacities (left) and prices (right) for an increasing subsidy
per charging unit only for Investor 2 in route l2.

route, but as Investor 2 is now subsidised at increasing levels Investor 1 has to reduce price to re-

main competitive. This is followed by a further decrease in Investor 1’s capacity as more drivers

shift toward Investor 2 who increases capacity for an increasing subsidy level. This behaviour

results in considerable gain in utility for drivers (Figure 6.13b) for each pound of the subsidy,

but Investor 1 suffers severely. This can be seen by the fact that although Investor 2 gains util-

ity (Figure 6.13a), Investor 1 loses considerable utility which results in the overall effect of the
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Figure 6.13: Station utility (left), and efficiency of the subsidy (right) for an increasing
subsidy per charging unit only for Investor 2 in route l2.
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subsidy (Figure 6.13b) being loss for stations. Toward very high subsidy levels, the subsidy

produces a slight positive effect for stations, but this is only heavily favourable for Investor 2,

while Investor 1 has lost considerable profits. In the end, subsidising investors or routes asym-

metrically has to be carried out with caution because as we saw it can put both investors at a

disadvantage, or provide a heavy disadvantage to pre-existing stations.

6.2.3 Subsidising the cost of electricity for stations

The other type of subsidy that is now going to be examined is subsidising the cost of electricity

for stations. This will be examined as a subsidy toward the price stations purchase each kWh of

electrical power. The first experiment will be a symmetric scenario with the reference settings,

where two stations on the same route are subsidised. Results show that very small subsidies can

result in an improvement for drivers and stations, but the subsidy is generally absorbed by sta-

tions mostly (Figure 6.13) who also increase profits at the expense of drivers. At a subsidy level

of £0.012 (12% of the reference price of £0.1/kWh), station 1 reduces capacity (Figure 6.14a)

to 7 and both stations increase prices (Figure 6.14b). Furthermore, at 0.018 there is an increase

in average capacity back to the initial levels, but this is followed by a spike in expected price

(Figure 6.14b). Because station 2 now has a lower capacity but a much lower price, drivers

prefer station 2 which increases expected queuing time (Figure 6.15a). Further on, stations ad-

just capacity to 7 something that increases queuing time even more, and although prices reduce

linearly with an increasing subsidy, drivers are not able to gain the lost utility back until almost

the entire price per kWh is subsidised. Station utilities (Figure 6.15b) show that station utility

increases in general, something that is also reflected at a good gain ratio in Figure 6.16a for

stations.
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Figure 6.14: Equilibrium capacities (left) and prices (right) for an increasing subsidy
per kWh of electrical power used.
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Figure 6.15: Expected queuing time and driver utility (left), and station utility (right)
for an increasing subsidy per kWh of electrical power used.

Although drivers do gain some utility for a very low subsidy, in general they lose considerable

utility compared to an unsubsidised state. Overall, electricity price subsidies are of very small

magnitude compared to charging unit subsidies, therefore any gains for the drivers, when they do

gain, are minimal. Subsidising electricity cost does reduce system-wide SPE efficiency slightly

(Figure 6.16b), but generally it remains high with SPEs being at least 98.52% efficient compared

to optimal station allocation.
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Figure 6.16: Subsidy efficiency (left), and Social Welfare Ratio (right) for an increasing
subsidy per kWh of electrical power used.
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It is also a question whether it is a sound policy to subsidise almost the entire cost of electricity

for stations, when charging prices are much higher than marginal cost, for a minimal gain by

drivers. Furthermore, the risk that stations might end up lowering overall capacity means that

electricity subsidies can be counter intuitive. Experiments on lower and higher peak traffic

show similar behaviour, and no evidence could be found that subsidising the price stations buy

electricity at could have a consistently positive effect.



Chapter 7

Conclusions and Future Work

This chapter will bring the thesis to a close with a summary of the work presented throughout

the thesis, coalescing the conclusions drawn in Section 7.1, and a brief discussion on future

directions in Section 7.2.

7.1 Conclusions

This thesis has presented and evaluated a model for competing firm investors that takes into

account the behaviour of customers. Customers have been modelled as self-interested agents

who make stochastic choices over available firms, so that the expected cost of acquiring the

desired service is minimised. These costs include the fee for obtaining the service, as well as

expected congestion at firms and firm access costs, and this behaviour addresses Requirement 1

that was set in Section 1.3. In order to determine expected congestion cost at firms, the number

of customers who are expected to choose each firm, as well as the firms’ capacities and service

times are taken into account which addresses Requirements 2 and 3.

Firm investors have also been modelled as self-interested agents who choose locations, capac-

ities the speed of service and prices at their firms, with the goal of maximising expected profit

as was required in Requirement 4. The expected profit for firms takes into account potential

customer decisions, capacities and fees at firms, as well as the cost of building firms which

addresses Requirement 5. As was necessitated by Requirement 6, the building cost of a firm

depends on an one-time building cost the investor pays to build at the selected location, and the

firm’s number and type of servers.

These decisions by investors and customers are made in a series in which investors first decide

locations, capacities and the speed of service. Then, they decide prices and last customers select

firms. This sequence of decisions has been modelled as an extensive form game, which is solved

by obtaining subgame-perfect equilibria through backward induction. That is, it is assumed

that at each stage players are able to observe the initialisation and the events that transpired
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in previous stages. The mixed strategy Nash equilibrium in customers’ choices is then solved

first, then the investors’ pure strategy Nash equilibrium in prices is solved second, and the pure

NE in locations, capacities and speed of service is solved last. A combination of pure strategy

equilibria in investor choices and mixed NE in customer choices obtained this way is a subgame-

perfect equilibrium. This approach is novel in that it combines elements from different domains.

The problem that is solved is, in essence, similar to network pricing games only significantly

more complex (i.e. parameter-wise), and this can help encompass a more wide category of

problems. To do so, elements from spatial competition and Stackelberg games have been utilised

to allow for a solution that allows for concrete theoretical and empirical analysis.

The model is evaluated in the context of competing EV charging station investors. Drivers

behave as expected, choosing stations with the same probability when the parameters for the

stations are the same for all stations. In addition, expected queuing time increases exponentially

with decreasing capacities and this is expected from (3.1). With regard to charging fees, how-

ever, expected queuing time is a second degree polynomial when the charging fee at one station

is unilaterally adjusted. This means that there can be situations in which increasing the fee at

one station may actually result in lower queuing times if the fee in that station was too low. The

drivers’ symmetric mixed strategy NE in station choice shows only linear increase in computa-

tional time with an increasing number of stations, and this is satisfactory given that the intent

was to design a model for customers that will not add a computational hurdle to the complex

firm competition.

With regard to the firms’ pure strategy Nash equilibria in capacities, these have been found to

always exist when the problem for stations is symmetric, that is when respective parameters are

the same for all investors. However, cases of non-existence have also been shown and discussed,

and non-existence generally occurs when some parameters differ greatly from one investor to

the other, that is when one investor is heavily advantaged. Non-existence is, in principle, an

issue but it is expected that the inclusion of the price choice for investors will help alleviate the

problem. When firms can only choose capacities, if all capacity choices for an investor yield

negative utility for a given strategy by the opponent, the disadvantaged investor can do nothing

to alter this situation, and this results in the maxima for investors to never coincide. With the

inclusion of a decision in prices, however, the disadvantaged investor can then undercut price

to draw more drivers toward the station, thus creating maxima in the utility that did not exist

before. Furthermore, it has been shown that the cost of building charging units, as well as

charging fees are significant factors in the investors’ capacity choice. This can prove a major

disadvantage for an investor that cannot get as good a price on charging units as others or cannot

offer competitive fees. Last, the Iterated Best-Response algorithm that was chosen to compute

the investors’ equilibria in capacities converges quickly up to this point, but complexity increases

exponentially with the number of stations. This indicates that computational time may increase

significantly when evaluating location and speed of service choices for investors.

A significant finding regarding equilibrium prices that was shown theoretically in Section 3.5.1

and confirmed empirically in Section 5.1.3, is that competing charging station investors will
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choose charging prices that are considerably higher than the marginal cost for stations to recharge

an EV. This was shown to happen due to the fact that charging demand cannot be satisfied imme-

diately in the EV charging problem, unless charging units with power output in the thousands

of kW are used. The theoretical analysis of equilibrium prices also showed that the fact that

stations may be placed on different routes induces product differentiation through route travel

times. This means that stations in more disadvantageous routes have to ask for a lower charging

fee from EV drivers, and this finding was also confirmed empirically in Section 5.1.3. Finally,

in Section 5.1.5 it was shown that when EV drivers are increasingly willing to pay more in order

to save time from their journey, station investors will also increasingly take advantage of that

behaviour. This leads to a considerable loss in utility for drivers, even though queuing times

improve, due to much higher charging fees.

However, although the inclusion of prices reinforces the existence of subgame-perfect equilibria,

there are some issues that the inclusion of competition in prices introduces. First of all, because

drivers have to recharge it is not possible to measure the efficiency of subgame-perfect equilibria

for investors. This is because the globally optimal strategy for stations is to set capacity at 1

and set infinite prices. Second, if the number of firms is very small, profit margins may be

high enough for investors to compete by undercutting prices alone. This means that very few

investors can set arbitrarily high prices and may not have incentive to increase station capacities.

This again stems from the fact that it is necessary for EV drivers to recharge.

The introduction of an outside option for customers in Section 3.1.4 relaxes the assumption

that demand has to be satisfied and solves the aforementioned problems. It gives a perspective

to investors on what would be acceptable services and forces them to consider realistic prices.

This is done through a parameter that models the customers’ disappointment at not being able

to use the desired service. The logic behind this is that an increasing disappointment reduces the

expected utility for the outside option, therefore makes customers more inclined toward choos-

ing the firms. Just as with the situation when EV drivers are increasingly willing to pay more,

an increasing inclination to use the EV resulted in stations taking advantage and deteriorating

services increasingly. This in turn causes an increasing number of drivers to use the outside

option (in the SLCOP this was represented by a train option). In order to give investors a more

realistic perspective of satisfactory service, therefore, disappointment is set close to the margin

when no driver wants to use the outside option. Empirical results showed that subgame-perfect

equilibria obtained this way are robust against fluctuations in peak EV traffic, building costs

and route travel times. This means that if a subgame-perfect equilibrium is implemented by in-

vestors, fluctuations in EV traffic or travel times can be accounted for by only adjusting prices,

in which case the efficiency of the new SPE is very close to the efficiency of the SPE that was

implemented. Furthermore, SPEs show very good efficiency compared to optimal allocations

when it comes to system-wide social welfare. Specifically, SPEs showed a worst-case efficiency

of 93% in reasonable competition scenarios where stations compete on the same or different

routes whose travel time differs by up to 20%, and in many cases efficiency was much better.
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An empirical evaluation of location and speed of service choices in the context of the SLCOP

confirms that station investors prefer to compete on the same, rather than on different routes

when parameters for investors such as building cost are the same or similar. With regard to

the choice of charging units, it is shown empirically that a choice of more expensive units with

higher power output may, depending on the cost difference from slower units, actually increase

queuing times and prices. This is because investors take advantage of the fact that EVs now

charge more quickly, thus they can reduce the number of charging units and increase price,

since drivers make tradeoffs between time and monetary costs.

Finally, the model was applied to examine the effect of subsidies to charging station investors as

incentives to expand rapid-charging station networks. Toward this, the proposed model allowed

to define subsidy metrics which show how much money is gained or lost for drivers and station

investors, for each pound spent in subsidies. This approach in turn allows to determine optimal

subsidy levels according to criteria such as system-wide gain, gain for drivers or gain for stations.

Empirical results show that subsidies toward the purchase of charging units can be very effective,

with a positive impact on drivers and station investors, and can generate a gain of more than

£1 for stations and drivers together for each pound spent in the subsidy. On the other hand,

subsidising the cost of electricity for stations can be far less effective, as drivers need to pay a

charging fee which is significantly higher than the actual cost of recharging an EV. Furthermore,

subsidising electricity can, in some cases, provide incentive to investors to reduce capacities

and increase prices, producing an adverse effect for drivers. In any case, the efficiency of SPEs

in system-wide social welfare reduces slightly when subsidising stations, but still remains very

high -in many cases over 98% compared to allocations optimal for welfare. Last, it was shown

that subsidising the purchase of charging units for a more disadvantageous route can result

in losses to investors in the case where all investors are subsidised by the same amount. In

addition, when an unfavourable location is subsidised for only one investor, this can introduce

unfair competition and prove catastrophic to other investors that already have stations in more

favourable locations.

Overall, this work has performed extensive analysis on firm competition. The proposed model

combines several aspects of spatial competition, network price games, Stackelberg games to

address problems where customers may experience uncertain congestion at firms. The model

compromises realism in some aspects for abstraction, but this was necessary in order to perform

theoretical, qualitative and quantitative analysis using a single model. The abstraction level of

the model makes it versatile and it has been used to conceptualise a variety of real-world situ-

ations. Specifically, using the theoretical model it was shown that charging prices for EVs will

be significantly higher than the actual cost to recharge EVs because of limitations in charging

technology. Moreover, the model was used to show that within the current technological win-

dow in EV charging, a choice of better charging units by stations can potentially result in worse

queuing times and higher charging prices. Analysis on subsidies produced both qualitative and

quantitative conclusions. For example, it was shown that with the proposed model it is possi-

ble to determine metrics for the efficiency of various forms of subsidies. Using these metric,
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subsidies toward purchasing charging units were found to be very effective. On the other hand,

subsidies for the cost of electricity at stations do not have a significant effect and can even make

the situation worse for drivers, leading to increased prices and queues. In addition, optimal lev-

els for subsidies were determined using the same model. Last, the model can already be used

effectively to consult investors on prices and investment levels given certain constraints and pre-

existing competition. Now that the purpose of theoretical and game-theoretic analysis has been

served, there is room for future extensions which will be discussed in the following section.

7.2 Future Work

An interesting direction for future work is to relax the assumptions that were made in order

to promote theoretical and qualitative analysis which have served their purpose. The customer

flows considered in this thesis are influenced by the presence and characteristics of firms, so

they are a step forward from static traffic flows that many firm competition models consider.

However, the model can be scaled to better fit more realistic, and larger markets. For example,

today the EV charging market is not at a level yet where there are several independent investors

with very few stations each. It is mostly comprised of oligopolies, and until charging technol-

ogy becomes more accessible it is reasonable to assess it may remain so. The model already

considers heterogeneous investors, but to direct this work toward large-scale use in more hetero-

geneous settings, it would be beneficial to also consider heterogeneous customers. This would

not alter most theoretical and empirical findings which are of qualitative nature, but may shift

quantitative results such as optimal subsidy magnitude and provide for more realistic prices and

capacities.

Thus, future work will firstly involve relaxing the assumptions that guarantee symmetric mixed

Nash equilibria. In the context of the SLCOP problem, this will enable considering real-world

data on vehicle trips, road networks and existing stations. This way, asymmetric mixed strategy

Nash equilibria can be examined with drivers that have different utilities, perform different trips

and have different station choices available. While it will not be straightforward to use closed-

form solutions for these in larger settings, it is also possible to simulate more heterogeneous

settings and asymmetric stochastic behaviour, or to use techniques such as evolutionary learning.

Secondly, although the model is a significant advancement in firm competition, the full model is

computationally complex. The increased complexity stems from the fact that investors consider

a range of capacities and server type choices for each of the potential locations, something which

increases exponentially with the number of available locations. Whereas realistic use-cases are

bound to be significantly less complex due to constraints investors may have1, complexity is an

issue that needs to be addressed to promote large-scale application. For example, more efficient

algorithms for pure NE identification can be explored, or pure NE could be approximated.

1i.e. it is unlikely that multiple investors will be called to consider building stations on all the available locations
at the same time, while considering many types of charging units
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Appendix A

Expanded mathematical formulations
and proofs

A.1 Customers’ equilibrium with two firms

According to equation (3.8), finding the equilibrium for customers choosing over two firms

means solving the system:

E[u1i (x) |s∗−i] = E[u2i (x) |s∗−i]

s∗1−i + s∗2−i = 1
(A.1)

For simplicity and without loss of generality we will assume that service time is the same at

both firms and equal to R. By substituting expected utility from (3.4), and by substituting

s∗2−i = 1− s∗1−i, the first equation of system (A.1) becomes:

− vd

(
t1 +

s1−i (n− 1)

2c1
R+R

)
− f1 = −vd

(
t2 +

(
1− s∗1−i

)
(n− 1)

2c2
R+R

)
− f2 ⇔

− vd(t1 +R)− f1 − vd
s1−i (n− 1)

2c1
R = −vd (t2 +R)− f2 − vd

(
1− s∗1−i

)
(n− 1)

2c2
R⇔

− vd(t1 +R)− f1 − vd
s1−i (n− 1)

2c1
R = −vd

(
t2 +R+

(n− 1)

2c2
R

)
− f2 + vd

s∗1−i (n− 1)

2c2
R

⇔ −vd
s∗1−i (n− 1)

2c1
R− vd

s∗1−i (n− 1)

2c2
R = −vd

(
t2 +R+

(n− 1)

2c2
R

)
− f2 + vd(t1 +R)

+ f1 ⇔ −s∗1−ivd
(c1 + c2) (n− 1)

2c1c2
R = −vd

(
(t2 − t1) +

(n− 1)

2c2
R

)
− (f2 − f1)

⇔ s∗1−i
(c1 + c2) (n− 1)

2c1c2
Rvd =

2c2vd (t2 − t1) + vd (n− 1)R+ 2c2 (f2 − f1)
2c2

⇔

s∗1−i =
c1vdR (n− 1) + 2c1c2vd (t2 − t1) + 2c1c2 (f2 − f1)

vd (c1 + c2) (n− 1)R
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Then, for firm 2 the equilibrium probability is:

s∗2−i = 1− s∗1−i = 1− c1vd (n− 1)R+ 2c1c2vd (t2 − t1) + 2c1c2 (f2 − f1)
vd (c1 + c2) (n− 1)R

⇔

s∗2−i =
vd (c1 + c2) (n− 1)R

vd (c1 + c2) (n− 1)R
− c1vd (n− 1)R+ 2c1c2vd (t2 − t1) + 2c1c2 (f2 − f1)

vd (c1 + c2) (n− 1)R
⇔

s∗2−i =
c2vdR(n− 1) + 2c1c2vd(t1 − t2) + 2c1c2(f1 − f2)

vd(n− 1)(c1 + c2)R
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A.2 Two firms’ equilibrium in prices

Simple notation is going to used for this example, as investors are tied to particular locations

therefore j can be used to indicate the investor, the investor’s firm and that particular location.

For firm 1, we use the expected utility from Equation (3.11), and after substituting the probability

from (3.9) this becomes:

E[rkj (f)|s] = nw
c1vdR(n− 1) + 2c1c2vd(t2 − t1) + 2c1c2(f2 − f1)

vdR(n− 1)(c1 + c2)
(f1 − h)− b1c1 − o1

= nw
c1vdR(n− 1) + 2c1c2vd(t2 − t1) + 2c1c2(f2 − f1)

vdR(n− 1)(c1 + c2)
f1−

nw
c1vdR(n− 1) + 2c1c2vd(t2 − t1) + 2c1c2(f2 − f1)

vdR(n− 1)(c1 + c2)
h− b1c1 − o1 (Split 2c1c2(f2 − f1))

= nw
c1vdR(n− 1) + 2c1c2vd(t2 − t1) + 2c1c2f2

vdR(n− 1)(c1 + c2)
f1 −

nw2c1c2
vdR(n− 1)(c1 + c2)

f21−

nw
c1vdR(n− 1) + 2c1c2vd(t2 − t1) + 2c1c2f2

vdR(n− 1)(c1 + c2)
h+

nw2c1c2h

vdR(n− 1)(c1 + c2)
f1 − b1c1 − o1

= − nw2c1c2
vdR(n− 1)(c1 + c2)

f21 + nw
c1vdR(n− 1) + 2c1c2vd(t2 − t1) + 2c1c2(f2 + h)

vdR(n− 1)(c1 + c2)
f1−

nw
c1vdR(n− 1) + 2c1c2vd(t2 − t1) + 2c1c2f2

vdR(n− 1)(c1 + c2)
h− b1c1 − o1

This utility is a second-degree polynomial in f1 and is continuously differentiable in (−∞,+∞).

Firm 1’s partial derivative with respect to f1 then is:

∂E[r1(f)|s∗]
∂f1

=

− nw4c1c2
vdR(n− 1)(c1 + c2)

f1 + nw
c1vdR(n− 1) + 2c1c2vd(t2 − t1) + 2c1c2(f2 + h)

vdR(n− 1)(c1 + c2)

= nw
c1vdR(n− 1)− 2c1c2vd(t1 − t2) + 2c1c2(f2 + h)− 4c1c2f1

vdR(n− 1)(c1 + c2)

Following the same methodology for firm 2, results in the partial derivatives of firms with respect

to their price being:

∂E[r1(f)|s∗]
∂f1

= nw
c1vdR(n− 1)− 2c1c2vd(t1 − t2) + 2c1c2(f2 + h)− 4c1c2f1

vdR(n− 1)(c1 + c2)

∂E[r2(f)|s∗]
∂f2

= nw
c2vdR(n− 1)− 2c1c2vd(t2 − t1) + 2c1c2(f1 + h)− 4c1c2f2

vdR(n− 1)(c1 + c2)

(A.2)

From Equation (A.2) it is straightforward to deduce, by setting the numerator of the derivatives

to 0, that each firm’s utility has exactly one critical point in R which are:

f01 =
2c2h− 2c2vd(t1 − t2) + vdR(n− 1)

4c2
+

1

2
f2

f02 =
2c1h− 2c1vd(t2 − t1) + vdR(n− 1)

4c1
+

1

2
f1

(A.3)
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Now the second partial derivatives of firm utilities are straightforward to find and are:

∂2E[r1(f)|s]
∂f21

= − 4nc1c2w

vdR(n− 1)(c1 + c2)
< 0

∂2E[r2(f)|s
∂f22

= − 4nc1c2w

vdR(n− 1)(c1 + c2)
< 0

(A.4)

Both second partial derivatives in Equation (A.4) are negative for any price in (−∞,+∞),

therefore station utilities are concave down in (−∞,+∞). Moreover, the gradient of sta-

tions’ utilities on the ’f2j ’ term, that can be seen in Equation (A.2), is negative. Therefore

limfj→−∞ E[rj(f)|s∗] = −∞ and limfj→+∞ E[rj(f)|s∗] = −∞. Hence f01 , f
0
2 in Equation

(A.3) are global maxima of firm 1 and 2’s utilities respectively, in (−∞,+∞). Finally, by

setting f2 in Equation A.3 to f02 and f1 in to f01 (maximum given that the other firm is also

going to maximise), we solve the simple linear system and obtain the equilibrium prices shown

in equation (3.16). Of course, the solution is governed by the same boundary conditions as the

probabilities due to substitution, which were explained in Section 3.1.5.
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A.3 Proof for concavity in firm’s expected utility

The first derivative of firm utility from equation 3.23, with respect to cj is:

E[rk(c)|s]′ =


 p

cj +
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c−j
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 cj��
�*0−oj
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cj +
∑
−j∈I
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cj +
∑
−j∈I

c−j
�
��>

0
−bj
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0

p′

cj +
∑
−j∈I

c−j

− p
�
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1cj +
∑
−j∈I

c−j

′
cj +

∑
−j∈I

c−j

2 cj =

p

cj +
∑
−j∈I

c−j
− bj −

cjpcj +
∑
−j∈I

c−j

2 =

cj +
∑
−j∈I

c−j

 p− cjp

cj +
∑
−j∈I

c−j

2 − bj =
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∑
−j∈I

c−jcj +
∑
−j∈I

c−j

2 − bj

(A.5)
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A critical point of firm j’s expected utility is thus one that satisfies:

E[rk(c∗)|s]′ = 0⇔

p
∑
−j∈I

c−jcj +
∑
−j∈I

c−j

2 − bj = 0⇔ p
∑
−j∈I

c−j − bj

cj +
∑
−j∈I

c−j

2

= 0

⇔ p
∑
−j∈I

c−j − bj

c2j + 2cj
∑
−j∈I

c−j +

∑
−j∈I

c−j

2 = 0⇔

p
∑
−j∈I

c−j − bjc2j − 2bj
∑
−j∈I

c−jcj − bj

∑
−j∈I

c−j

2

= 0⇔

bjc
2
j + 2bj

∑
−j∈I

c−jcj + bj

∑
−j∈I

c−j

2

− p
∑
−j∈I

c−j = 0

The discriminant of this second-degree polynomial is:

D =

2bj
∑
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2

− 4(bj)
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−4b2j

∑
−j∈I

c−j

2

+ 4bjp
∑
−j∈I

c−j = 4bjp
∑
−j∈I

c−j > 0

and therefore it has two roots in R:

c1j =

−2bj
∑
−j∈I

c−j +

√
4bjp

∑
−j∈I

c−j

2bj

and

c2j =

−2bj
∑
−j∈I

c−j −
√

4bjp
∑
−j∈I

c−j

2bj
< 0
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Of these, c2j is clearly negative, and therefore outside the (0,Θ) interval we are interested in. In

addition, for c1j to be a valid root, assuming profit p is positive (fj ≥ hj) it must be:

c1j > 0⇔

−2bj
∑
−j∈I

c−j +

√
4bjp

∑
−j∈I

c−j

2bj
> 0⇔ −2bj

∑
−j∈I

c−j +

√
4bjp

∑
−j∈I

c−j > 0⇔

√
4bjp

∑
−j∈I

c−j > 2bj
∑
−j∈I

c−j ⇔ 2
√
p > 2

√
bj
∑
−j∈I

c−j ⇔ p > bj
∑
−j∈I

c−j ⇔

from equation (3.17) (fj − hj)nw > bj
∑
−j∈I

c−j ⇔ fj >

bj
∑
−j∈I

c−j

nw
+ hj

Therefore firm j’s expected utility has one critical point in (0,Θ), provided that

fj >

bj
∑
−j∈I

c−j

nw + hj .

Continuing on from equation (A.5), the second derivative of firm utility is:
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−j∈I

c−j


cj +

∑
−j∈I

c−j

4 < 0 ∀cj ∈ (0,Θ)

Thus equation 3.23 is concave down in (0,Θ), and has a maximum value in (0,Θ) when fj >
bj
∑
−j∈I

c−j

nw + hj .
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A.4 Equilibrium condition expanded formula

∀j ∈ I : E[rk((c∗j , c
∗
−j))|s] ≥ E[rk((c∗j + α, c∗−j)|s]⇔ from (3.18) and (3.21)

c∗j

c∗j +
∑
−j∈I

c∗−j
p− bjc∗j −��oj ≥

c∗j + α

c∗j + α+
∑
−j∈I

c∗−j
p− bj(c∗j + α)−

��
oj ⇔

c∗j

c∗j +
∑
−j∈I

c∗−j
p−
�
��bjc
∗
j ≥

c∗j + α

c∗j + α+
∑
−j∈I

c∗−j
p−
�
��bjc
∗
j − bjα⇔

c∗j

c∗j +
∑
−j∈I

c∗−j
p−

c∗j + α

c∗j + α+
∑
−j∈I

c∗−j
p ≥ −bjα⇔ (×(−1))

c∗j + α

c∗j + α+
∑
−j∈I

c∗−j
p−

c∗j

c∗j +
∑
−j∈I

c∗−j
p ≤ bjα⇔

p

 c∗j + α

c∗j + α+
∑
−j∈I

c∗−j
−

c∗j

c∗j +
∑
−j∈I

c∗−j

 ≤ bjα⇔

bjα ≥ p

(c∗j + α)

c∗j +
∑
−j∈I

c∗−j

− c∗j
c∗j + α+

∑
−j∈I

c∗−j


c∗j + α+

∑
−j∈I

c∗−j

c∗j +
∑
−j∈I

c∗−j

 ⇔

bjα ≥ p
�
�c∗j
2 +

�
��

�
��c∗j

∑
−j∈I

c∗−j +�
�αc∗j + α

∑
−j∈I

c∗−j�
��−c∗j

2
��
�−αc∗j
�
��

�
��−c∗j

∑
−j∈I

c∗−jc∗j +
∑
−j∈I

c∗−j

2

+ α

c∗j +
∑
−j∈I

c∗−j


⇔

bjα ≥ p

α
∑
−j∈I

c∗−jc∗j +
∑
−j∈I

c∗−j

2

+ α

c∗j +
∑
−j∈I

c∗−j


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A.5 EV driver’s expected utility linearity with a two-station exam-
ple

The goal of this section is to show that the driver i’s expected utility for playing in mixed strategy

Nash equilibrium is expected to be linear with respect to one station’s fees given the fee at the

other station. We will assume that drivers are called to choose between two stations, station 1

and station 2 and for simplicity it is assumed that charging time is the same at both stations and

equal to R. The expected utility of the mixed strategy was defined in Equation (3.5), and by

replacing the expected utility of station choice E[uji (x) |s−i] from Equation (3.7) it becomes:

E[ui (x) |s] =
m∑
j=1

sjiE[uji (x) |s−i] =

= s1i

(
−vd

(
t1 + s1−i

n− 1

2c1
R+R

)
− f1

)
+ s2i

(
−vd

(
t2 + s2−i

n− 1

2c2
R+R

)
− f2

)
(A.6)

Given that drivers are going to play in a symmetric mixed strategy Nash equlibrium, then the

probability that driver i will choose route j is equal to the probability other drivers choose route

j, that is sji = sj−i. Also we have that s1i + s2i = 1 ⇔ s2i = 1 − s1i . So, by replacing s1−i = s1i
and s2−i = s2i = 1− s1i , Equation (A.6) becomes:

s1i

(
−vd

(
t1 + s1i

n− 1

2c1
R+R

)
− f1

)
+

+ (1− s1i )
(
−vd

(
t2 + (1− s1i )

n− 1

2c2
R+R

)
− f2

)
=

=− vdt1s1i − vd
n− 1

2c1
R(s1i )

2 − vdRs1i − f1s1i − vdt2(1− s1i )− vd
n− 1

2c2
R(1− s1i )2

− vdR(1− s1i )− f2(1− s1i ) =

=− vdt1s1i − vd
n− 1

2c1
R(s1i )

2 − vdRs1i − f1s1i − vdt2 + vdt2s
1
i − vd

n− 1

2c2
R(1 + (s1i )

2 − 2s1i )

− vdR+ vdRs
1
i − f2 + f2s

1
i =

=− vdt1s1i − vd
n− 1

2c1
R(s1i )

2 −��
��

vdRs
1
i − f1s1i − vdt2 + vdt2s

1
i − vd

n− 1

2c2
R− vd

n− 1

2c2
R(s1i )

2

+ 2vd
n− 1

2c2
Rs1i − vdR+��

��
vdRs

1
i − f2 + f2s

1
i =

=− vd(t1 − t2)s1i − vd(n− 1)R

(
1

2c1
+

1

2c2

)
(s1i )

2 − (f1 − f2)s1i + 2vd
n− 1

2c2
Rs1i − vdR

− f2 − vd
n− 1

2c2
R− vdt1 =
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=− vd(t1 − t2)s1i −
vd(n− 1)(c1 + c2)R

2c1c2
(s1i )

2 − (f1 − f2)s1i + 2vd
n− 1

2c2
Rs1i − vdR

− f2 − vd
n− 1

2c2
R− vdt1

(A.7)

Given that Equation (A.7) is differentiable on the fees in (−∞,+∞), we partially differentiate

for f1 to get the rate of change of expected utility for a varying price from station 1, given

the price of the other station. Of course, the probability s1i is also a function of f1 and thus

continuing from Equation (A.7) this partial derivative is:

=

− vd(t1 − t2)s1i (f1)− vd(n− 1)(c1 + c2)R

2c1c2
(s1i (f1))

2 − (f1 − f2)s1i (f1)

+2vd
n− 1

2c2
Rs1i (f1)−

���
���

���
���

���:0

vdR− f2 − vd
n− 1

2c2
R− vdt1


′

=

=− vd(t1 − t2)s1i
′
(f1)− 2

vd(n− 1)(c1 + c2)R

2c1c2
s1i (f1)s

1
i
′
(f1)−

(
(f1 − f2)s1i (f1)

)′
+ 2vd

n− 1

2c2
Rs1i

′
(f1) =

=− vd(t1 − t2)s1i
′
(f1)− 2

vd(n− 1)(c1 + c2)R

2c1c2
s1i (f1)s

1
i
′
(f1)−

(
s1i (f1) + (f1 − f2)s1i

′
(f1)

)
+ 2vd

n− 1

2c2
Rs1i

′
(f1) =

=− vd(t1 − t2)s1i
′
(f1)− 2

vd(n− 1)(c1 + c2)R

2c1c2
s1i (f1)s

1
i
′
(f1)− s1i (f1)− (f1 − f2)s1i

′
(f1)

+ 2vd
n− 1

2c2
Rs1i

′
(f1).

(A.8)

However, from Equation (3.9), we have for s1i in equilibrium that:

s1i (f1) =
c1vdR(n− 1) + 2c1c2vd(t2 − t1) + 2c1c2(f2 − f1)

vd(n− 1)(c1 + c2)R
⇔

⇔s1i (f1) =
c1vdR(n− 1) + 2c1c2vd(t2 − t1) + 2c1c2f2

vd(n− 1)(c1 + c2)R
− 2c1c2
vd(n− 1)(c1 + c2)R

f1

⇒s1i
′
(f1) =


���

���
���

���
���

���
���:

0

c1vdR(n− 1) + 2c1c2vd(t2 − t1) + 2c1c2f2
vd(n− 1)(c1 + c2)R

− 2c1c2
vd(n− 1)(c1 + c2)R

f1


′
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⇒ s1i
′
(f1) = − 2c1c2

vd(n− 1)(c1 + c2)R
(A.9)

Now, continuing from Equation (A.8) by replacing s1i
′
(f1) from Equation A.9 we have:

− vd(t1 − t2)
(
− 2c1c2
vd(n− 1)(c1 + c2)R

)
��−2
��

���
���

��vd(n− 1)(c1 + c2)R

2c1c2

(
��−
���

���
���

�2c1c2
vd(n− 1)(c1 + c2)R

)
s1i (f1)− s1i (f1)

− (f1 − f2)
(
− 2c1c2
vd(n− 1)(c1 + c2)R

)
+ 2vd

n− 1

��2c2
R

(
− �2c1��c2
vd(n− 1)(c1 + c2)R

)
=− −2c1c2vd(t1 − t2)

vd(n− 1)(c1 + c2)R
+ 2s1i (f1)− s1i (f1)−

−2c1c2(f1 − f2)
vd(n− 1)(c1 + c2)R

− 2c1vd(n− 1)R

vd(n− 1)(c1 + c2)R

=− 2c1c2vd(t2 − t1)
vd(n− 1)(c1 + c2)R

− 2c1c2(f2 − f1)
vd(n− 1)(c1 + c2)R

− 2c1vd(n− 1)R

vd(n− 1)(c1 + c2)R
+ s1i (f1)

=− 2c1c2vd(t2 − t1)
vd(n− 1)(c1 + c2)R

− 2c1c2(f2 − f1)
vd(n− 1)(c1 + c2)R

− c1vd(n− 1)R

vd(n− 1)(c1 + c2)R

− c1vd(n− 1)R

vd(n− 1)(c1 + c2)R
+ s1i (f1)

=− c1vd(n− 1)R+ 2c1c2vd(t2 − t1) + 2c1c2(f2 − f1)
vd(n− 1)(c1 + c2)R

+ s1i (f1)−
c1���

���vd(n− 1)R

���
��vd(n− 1)(c1 + c2)��R

(A.10)

At this point we notice from Equation (3.9) that the large, first, fraction is actually the probability

s1i (f1). Then, Equation (A.10) becomes:

−s1i (f1) + s1i (f1)−
c1

c1 + c2
= − c1

c1 + c2

This is a constant for given capacities, therefore driver i’s expected utility will decrease linearly

with an increasing price at station 1, given the price at station 2, following a − c1
c1 + c2

gradient.

Similarly, the partial derivative of expected utility with respect to f2 is − c2
c1 + c2

and can be

found following similar methodology.
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