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Electro-optical sampling has been recently used to perform spectrally-resolved measurements
of electromagnetic vacuum fluctuations and it has been predicted it could be used to probe the
population of virtual photons predicted to exist in the ground state of an ultrastrongly light-matter
coupled system. In order to understand which information on the ground state of an interacting
system can be acquired thanks to this technique, in this paper we will develop the quantum theory of
electro-optical sampling in arbitrary dispersive dielectrics. Our theory shows that a measure of the
time correlations of the vacuum fluctuations effectively implements an ellipsometry measurement
on the quantum vacuum, allowing to access the frequency-dependent dielectric function without the
need of any resonant incoming photon. We discuss consequences of these results on the possibility
to use electro-optical sampling to access the virtual photon population.

INTRODUCTION

The Heisenberg uncertainty principle constrains an os-
cillator in its ground state to have a finite kinetic en-
ergy. In the context of quantum electrodynamics this
leads to the picture of an empty space populated by
random fluctuations of quantum nature. The effect of
quantum vacuum fluctuations (QVF) can be most easily
recognised in any spontaneous radiation process. Send-
ing excited atoms flying in a photonic cavity and using
sub-wavelength imaging to pinpoint the location of pho-
ton emission, the spatial distribution of QVF was thus
directly measured [1]. A different approach relies on the
nonlinear effect QVF can have upon light propagating
into a medium. A detection scheme based on electro-
optical sampling has been successfully used to measure
both the intensity of the electric field in the vacuum [2–
5] and its time- and space-dependent correlation function
[6].

Such a technique could a priori reveal itself a useful
tool to investigate the ground state properties of inter-
acting systems, but to which point it can be used to
probe the structure of the quantum vacuum is presently
unknown. In particular in Ref. [6] it is suggested that
spectrally-resolved electro-optical sampling of QVF could
provide a first direct evidence of the presence of virtual
photons in the ground state of a system in the ultrastrong
light-matter coupling regime [7, 8]. In this regime the
strength of the light-matter interaction is large enough
to hybridise the uncoupled electromagnetic vacuum |0〉
with excited states, leading to a novel coupled polari-
tonic ground state |P 〉. The form of such a coupled
ground state was initially calculated analytically in Ref.
[9], showing it has the form of a two-modes squeezed vac-
uum, containing a population of virtual photons. Those
virtual photons, localised in proximity of the quantum
emitter [10, 11], can become real and be radiated when
the system parameters are modulated in time [12–17], an
effect reminiscent of the Dynamical Casimir effect [18].
Notwithstanding a remarkable interest, both theoretical
[19–23] and experimental [24–30] in the physics and phe-

nomenology of the ultrastrong coupling regime, for the
moment no direct evidence of the virtual photons has
been obtained.

In order to clarify which features of the quantum vac-
uum can be measured using electro-optical sampling,
and in particular if we can use it to directly measure
ground state virtual photons, in this paper we will de-
velop the quantum theory of spectrally-resolved electro-
optical sampling of QVF in dispersive linear materials.
Using such a theory we will be able to demonstrate that
the time-dependent correlation function of the QVF, once
normalised over the free-space vacuum value, provides ac-
cess to the spectrally-resolved dielectric function. On one
hand this implies such a technique can be used to per-
form ellipsometry characterisation of linear optical prop-
erties without the need of a resonant probe beam. On
the other hand, the fact that all the quantities accessible
with such a measurement can generally also be accessed
by linear-optical techniques, raises doubts on the possi-
bility of using it as a direct test for the presence of virtual
photons.

ELECTRO-OPTICAL SAMPLING OF QVF

Electro-optical sampling consists in mixing an intense,
linearly polarised, sub-cycle probe pulse with a weak field
perpendicular to it, allowing to observe the rotation in-
duced by the weak field on the polarization of the probe.
We will consider an orthogonal axis system as in Fig. 1,
in which x is the direction of beam propagation and the
probe is polarised along z, and considering the nonlinear
crystal to be oriented such that the quantity measured is
the y component of the electric field. The operator cor-
responding to such a measurement is the electro-optical
operator [2].

Ŝeo(t) =
∑
k

√
C~Ωk
2ε0εrV

[
âkR(Ωk)e−iΩkt − h.c.

]
, (1)
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FIG. 1. Sketch of the electro-optical sampling measurement
considered in this paper. Two linearly polarised sub-cycle
probe pulses ~Ep(t) propagate in a nonlinear crystal with a
delay τ . Due to the nonlinearity each pulse interacts with the
QVF of the field in the orthogonal polarization ~Ev(t).

where the sum is over all the y-polarised paraxial modes
of wavevector k and frequency Ωk = ck√

εr
, with annihila-

tion operator âk, and R(Ω) is a low-pass filter, dependent
on the phase-matching condition of the nonlinear process
and proportional to the spectral autocorrelation function
of the probe beam. The relative dielectric permittivity
of the nonlinear crystal is εr and h.c. stands for Hermitic
conjugate. The volume V = LS in Eq. (1) depends
on the transversal surface of the probe beam (S) and
the paraxial quantisation length (L), and C is a function
depending both on the probe beam and on the electro-
optical crystal used. In the ground state the expectation
value of Ŝeo(t) vanishes, and information has thus to be
extracted by its higher order moments. If the measure is
repeated after a short delay τ , such a technique can then
give us access to the time-dependent correlation function

Ĝeo(τ) = − 1

2C

{
Ŝeo(t+ τ), Ŝeo(t)

}
, (2)

where {·, ·} indicates the anticommutator. Its expecta-
tion value in the electromagnetic vacuum âk |0〉 = 0 reads

〈0| Ĝeo(τ) |0〉 =
∑
k

~Ωk
2ε0εrV

|R(Ωk)|2 cos(Ωkτ),

(3)

and its spectral representation, supposing a macroscopic
crystal, can be calculated by integrating over the contin-
uum of paraxial modes as

〈0| Ĝeo(ω) |0〉 =
~|ω|

4ε0
√
εrcS

|R(ω)|2, (4)

which is the quantity measured in Ref. [6], while its
frequency integral, corresponding to setting τ = 0 in Eq.

(3), was initially measured in Ref. [3] using a single probe
pulse.

QVF IN DISPERSIVE MEDIA

We will now consider the case of a linear, local di-
electric material characterised by an arbitrary dielectric
function ε(ω). The polaritonic formalism we will use can
be extended to both lossy [31] and inhomogeneous [32] di-
electrics, allowing to describe various resonator technolo-
gies [33], but in order to keep the notation as simple and
clear as possible, we will focus here on a homogeneous
and lossless material, with ε(ω) symmetric and real over
the whole real axis. We notice that in Ref. [31] it was
demonstrated that losses have anyway a limited impact
on the structure of the ground state in linear dielectric
systems. Although our analytical results are derived for
a generic dielectric function, for the sake of definiteness
we will use as an example the case of a single optically ac-
tive Lorentz oscillator of frequency ωx and vacuum Rabi
frequency g

εL(ω) = εr

(
1− 4g2

ω2 − ω2
x

)
. (5)
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FIG. 2. (a) Dispersion of the upper (blue) and lower (red) po-
laritonic branches obtained with the Lorentz dielectric func-
tion in Eq. (5), for g = 0.5ωx. The diagonal dashed black line
denotes the bare photonic mode Ωk. (b) The green line repre-
sents the normalised result of the electro-optical measurement
at the polaritonic frequencies, from Eq. (17). The vertical
dotted black line represents the uncoupled (g = 0) value. The
polariton spectrum presents a gap ωg between the bare fre-

quency ωx and the renormalised frequency
√
ω2
x + 4g2, shown

as dash-dotted black lines.

A linear dielectric can be described by a quadratic
bosonic Hamiltonian, and it can thus be diagonalised in
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terms of a set of free polaritonic modes [34]

Ĥ =
∑
k,µ

~ωk,µp†k,µpk,µ, (6)

which satisfy bosonic commutation relations[
pk,µ, p

†
k′,µ′

]
= δk,k′δµ,µ′ , (7)

where [·, ·] indicates the commutator. The index µ runs
over all the polaritonic branches at a fixed wavevector,
whose number depends on the exact form of ε(ω). In the
case of the Lorentz dielectric function in Eq. (5), µ = ±
indexes the two polaritonic branches, whose dispersion
ωk,± are shown in Fig. 2(a). We notice here that the
coupling opens a polaritonic gap in the system spectrum,
where no propagative modes exist.

The bare photonic operators can then be written as
linear superpositions of the polaritonic ones

âk =
∑
µ

[
X̄k,µp̂k,µ − Zk,µp̂†k,µ

]
, (8)

where the bosonicity of the polariton and photon opera-
tors imposes the normalization condition on the Hopfield
coefficients ∑

µ

(
|Xk,µ|2 − |Zk,µ|2

)
= 1, (9)

which also obey gauge invariance conditions

Ωk (Xk,µ + Zk,µ) = ωk,µ (Xk,µ − Zk,µ) . (10)

The operator describing the y-polarised component of
the paraxial electromagnetic field can now be written in
terms of the polaritonic operators as

Ev(t) =
∑
k,µ

√
−~Ωk
2ε0V

[(
X̄k,µ + Z̄k,µ

)
p̂k,µe

−iωk,µt − h.c.
]
.

(11)

From Eq. (11), performing flux quantization, we can read
directly the polaritonic group velocity [35]

vgk,µ =
dωk,µ
dk

= cε(ωk,µ) (Xk,µ + Zk,µ)
2
. (12)

As clearly shown by the theory of open quantum sys-
tems in the ultrastrong coupling regime [36–38], polari-
tons probe the electromagnetic environment at their own
frequency. Plugging Eq. (8) and Eq. (12) in Eq. (1), the
electro-optical operator can then be written in terms of
polaritonic modes

Ŝeo(t) =
∑
k,µ

√
C~Ωkv

g
k,µ

2ε0ε(ωk,µ)cV

[
p̂k,µR(ωk,µ)e−iωk,µt − h.c.

]
.

(13)

The time-resolved correlation function in the coupled po-
laritonic ground state p̂k,µ |P 〉 = 0 thus reads

〈P | Ĝeo(τ) |P 〉 =
∑
k,µ

~Ωkv
g
k,µ

2ε0ε(ωk,µ)cV
|R(ωk,µ)|2 cos(ωk,µτ).

(14)

We finally obtain the general expression for the spectral
components of the correlation function

〈P | Ĝeo(ω) |P 〉 =
∑
k,µ

π~Ωkv
g
k,µ

2ε0ε(ωk,µ)cV
|R(ωk,µ)|2

× [δ(ω − ωk,µ) + δ(ω + ωk,µ)] . (15)

In the case of a macroscopic crystal we can transform the
sum over the paraxial modes in Eq. (15) and perform the
integral, leading to

〈P | Ĝeo(ω) |P 〉 =
~|ω|

4ε0
√
ε(ω)cS

|R(ω)|2I (ω) , (16)

where I (·) is the indicator function over the polaritonic
spectrum, equal to zero at the frequencies in which the
polaritonic spectrum is gapped. In the absence of prop-
agative modes, the expected intensity of the QVF van-
ishes. Comparing Eq. (16) to Eq. (4) we realise they are
in the same form, once the proper dispersive dielectric
function from ε(ω) is used

〈P | Ĝeo(ω) |P 〉
〈0| Ĝeo(ω) |0〉

=

√
εr
ε(ω)

I(ω). (17)

A spectrally-resolved measurement of QVF through
electro-optical sampling, once normalised over the vac-
uum value, thus provides the frequency-dependent di-
electric function of the material, effectively implementing
an ellipsometry measurement over the quantum vacuum.
Note that at the frequencies ω at which polariton modes
exist and thus I(ω) = 1, the system admits propagative
solutions, ε(ω) > 0, and the square root in Eq. (17) is
real. Equivalent conclusions can be drawn in the case of
a discrete spectrum, even though in this case Eq. (17) is
not well defined, due to the different frequencies of the
discrete modes in vacuum and in the dielectric. In Fig.
2(b) we plot the quantity in the right hand side of Eq.
(17) for the Lorentz dielectric function in Eq. (5).

Although in Ref. [6] only the second-order moment
of Ŝeo(t) was measured, it is a priori possible to ac-
cess higher-order moments by increasing the number of
delayed probe pulses. The expectation value of Ŝeo(t)
vanishes in the ground state. Using the Wick theorem
this implies we can limit ourselves to consider only even-
order moments, whose spectral components are polyno-
mial functions of the ground-state expectation value in
Eq. (16).
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DISCUSSION

We have demonstrated that a measure of the time-
correlations of QVF, once normalised over the uncoupled
free-space vacuum result, provides us access to the same
set of observables which we can measure with a linear op-
tical characterisation of the sample. On one hand this
result demonstrates electro-optical sampling of QVF is a
useful spectroscopic tool. Ellipsometric measurements of
the quantum vacuum, although model-dependent as the
usual ones, allows us to measure the spectrally-resolved
dielectric function without requiring any incoming pho-
ton in the probed frequency range. This offers the pos-
sibility to characterise the optical response of a closed
cavity system, whose perfect mirrors do not allow for
resonant probing.

On the other hand though, the fact the results of the
electro-optical QVF sampling can a priori be predicted
by having access to the dielectric function, puts into
doubts the possibility of using it as a direct experimental
test of the ground state virtual photon population. The
virtual photon population Nk, defined as the number of
photons in the bare mode âk emitted by the system after
a non-adiabatic switch-off of the coupling [12, 39] reads

Nk = 〈P | a†kak |P 〉 =
∑
µ

|Zk,µ|2. (18)

Using Eq. (9) and Eq. (10), we can link Nk to quantities
which can be measured by electro-optical sampling of
QVF through the formula∑

µ

vgk,µ
4c

[
1 +

1

ε(ωk,µ)

]
= Nk +

1

2
, (19)

evocative of the relation between the electric and mag-
netic components of the electromagnetic energy, and its
expression in terms of photonic populations.

Although it could seem that Eq. (19) allows indeed
to measure Nk via QVF electro-optical sampling, a few
remarks are necessary. The first is that the two sides of
Eq. (19) describe different physical measurements per-
formed at different frequencies. The left hand side in fact
relates to fluctuations inside the coupled system, mea-
sured through electro-optical sampling at the polaritonic
frequencies ωk,µ. The right hand side describes instead
photons emitted by the now uncoupled system and mea-
sured with any spectrally-resolved detector at the bare
frequency Ωk.

The second is that there is not a direct functional re-
lation between the measured electro-optical correlations
and the vacuum photon population. They are a priori in-
dependent. In order to write Eq. (19) we need to rely on
our theoretical modeling, linking the two quadratures of
the field through Eq. (10). This is to be expected given
that the measure of a single field quadrature is not equiv-
alent to a measure of the field population. Whether the

magnetic quadrature of the QVF or equivalently their
squeezing can be directly measured, obviating to this
problem, remains an open question. The lack of a direct
relation between the two quantities can also be verified
by the fact that in Ref. [31] it is shown that for a medium
described by Eq. (5), Nk doesn’t present any resonant
behaviour. This is clearly at odd with the results describ-
ing the electro-optical measurement in Fig. 2(b), where a
resonant behaviour can be observed in an interval of the
order of the vacuum Rabi frequency g around the po-
lariton gap. A measurement of the radiation emitted by
non-adiabatic switch-off of the coupling can instead pro-
vide a direct measurement of the quantity in the right
hand side of Eq. (19), although it is true that a measure-
ment of the photon squeezing can be useful also in this
case to provide a direct proof the photons are emitted
through a parametric process [18, 40].

The third remark is that the left hand side of Eq.
(19) contains only quantities which can also be mea-
sured by standard linear spectroscopy. Even though the
QVF measurement can be said to actually probe the vac-
uum field, once its absolute value is fixed in empty space,
further measurements provide as much information as a
linear-optical characterisation, except when such an op-
eration is impossible (e.g., samples without appreciable
photonic losses).

CONCLUSIONS

In this paper we developed the theory of spectrally-
resolved electro-optical sampling of QVF in arbitrary lin-
ear, local dielectric materials. We demonstrated that
such an approach allows us to implement a full linear
optical characterisation of a closed-cavity system, mea-
suring the frequency-dependent dielectric function with-
out requiring any incoming resonant photon. This proves
its usefulness as an alternative spectroscopic tool for the
characterisation of linear dielectrics. Its ability to per-
form investigations on the properties of the interacting
quantum vacuum fundamentally different from those im-
plementable with linear optical techniques remains nev-
ertheless unclear.
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