ISSN 0140-3818
SSSU Report No. 20

4 h
UNIVERSITY

OF
SOUTHAMPTON

DEPARTMENT OF SHIP SCIENCE

FACULTY OF ENGINEERING

AND APPLIED SCIENCE

(//”ﬁA MODIFIED LIFTING LINE ANALYSIS FOR SEMI-BALAQEEE\\

SHIP SKEG-RUDDERS

By A.F. Molland, Ph.D.
April 1985

\\\\‘_éhip Science Reporf No. 20 4‘¢///




A MODIFIED LIFTING LINE ANALYSTS FOR
SEMI-BALANCED SHIP SKEG-RUDDERS

A,F, MOLLAND

1985

Ship Science Report No, 20



SUMMARY

A modified 1lifting line theory is
developed which supports the form of skeg-rudder
experimental free-stream data obtained previously, and

forming the subject of separate feports;

It is demonstrated that satisfactory
predictions of the form of the spanwise loadings for
different skeg and rudder angles can be made using lifting
line theory with the effect of the skeg being incorporated
as local incidence reduction and the effects of the
mid-span and tip trailing vortices being incorporated as
twist corrections to the local incidence, The correct
magnitude of the distributions is obtained by applying
suitable empirical corrections, Chordwise centre of

pressure is derived empirically,

It is concluded that whilst the theoretical
approach is relatively simple and requires empirical
correction, it gives very realistic predictions of skeg-
rudder performance characteristics,

The theory is used to provide a limited
extension to the experimental data, Predictions using
the modified theory show that, for fixed aspect ratio
and taper ratio, changes in the skeg depth have the largest
influence on the production of 1ift whereas changes in
the skeg chord and sweep mainly affect the stock position

and the required balance area,
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1, - INTRODUCTION

Extensive experimental results of tests to
determine the free-stream characteristics of semi-balanced

ship skeg-rudders are. reported in Refs.1, 2, 3 and &4,

A theory has been developed (Ref.5) to provide
some theoretical evidence for the form of the experimental data,

and to allow an extension of the experimental results,

| In the theoretical analysis, 1ifting line theory,
modified to inélude the specific features of the skeg rudder
and to account for the differences between theory and experiment,
is used to predict the spanwise load distributions, Chordwise
centre of pressure is derived from the application, across the

span, of local centres of pressure from section and experimental
. data,

-

. Sections 2 ~ 13 of this report describe the
develépment of the basic theory; its modifications and
empirical corrections., ' '

) Section 14 descpibes the use of the modified
theory and empirical relationships to carry out a small '
parametric study in which variations in aspect ratio and skeg

'size are investigated,



2, ANALYSIS METHOD

Ship rudders may be considered as lifting.
surfaces of relatively low aspect ratio with applications

lying mainly in the effective aspect ratio range of 3 to 4,

Such a relafively low aspecf ratio range
poses problems in respect of the choice of a suitable type
of theory; for example, Robinson and Laurmann {Ref,6 )
. describe various theories and conclude that experience has
shown that 1lifting line theory remains applicable for aspect
ratios as low as h, whilst very low aspect ratio theory, such
as that due to Jones, provides écceptable results for wings
vhose aspect ratio does not exceed-1,5, For the aspect ratio
range lying between these two theories vortex lattice lifting
surface theory would be expected to yield more realistic

results for all-movable control surfaces.

However, the experimental data obtained for
skeg rudders with square tips have indicated particular
physical properties which need to be inéorporated in any
theoretical analysis, These amount to early separation aft
of the skeg (which is influenced by gap flow), a strong tip
vortex (which has a marked influence on the spanwise
distribution of load near the tip), and a vortex at the

. break between the skeg and all-movable parts,

Whilst lifting surface theory has the
advantage of providing chordwise as well as spanwise loadings
. and hence centres of pressure, and has been successfully
applied to rudders with relatively small'(and unstalled)
flaps, the theory would require extensive
modifications to incorporate the particular physical features
exhiibited by the skeg rudder., On the other hand simple
lifting line theory lends itself better to the incorporation
of the skeg rudder features, and is more amenable to
empirical corrections, although it should be borne in mind
that the theory would be applied at or just below its

generally accepted lower aspect ratio limit,



Taking into account the limitations of the
various theories, the overall physical characteristics of
the skeg rudder, and the fact that the priﬁary objectives
of a theoretical analysis were to support and extend the
earlier experimental work, it was decided to pursue a
lifting line analysis incorporating empirical modifications

as necessary.

The overall approach, thérefore, has been to
determine the spanwise load distributions from a modified
Llifting line analysis and to apply, across the span, local
chordwise ceptrqs of pressu;e from section and experimental
data, The analysis for total CPE was limited to the movable
rudder alone, as this value is the one which is of principal
interest in respect of rudder torques; the integration for
total values, therefore, required estimates of the proportion
of the total chord load carried by the movable -(flap) part
aft of the skeg, together ﬁith the chordwise centre of

. pressure in way of skeg for the movable (flap) part,



3. OUTLINE OF THE LIFTING LINE ANALYSIS

General :

The method used for deriving the basic
spanwise load distribution is generally along the lines
of that due to Glauert (Ref,7 ). In the present analysis
the skeg rTuddex is considered as a special case of a
twisted aerofoil, In this case Glauert shows theoretically
that the 1lift curve slope is independent of the twist,
Ideally, therefore, it would be assumed that the effect of
the skeg would be to change the angle of incidence {measured
from the no-lift angle) and to leave the slope of the 1ift
curve unaltered., From the results given in Fig,d , where
the experimental data from Refs, 1 and 2 Thave been re-
plotted for constant values of §, these aééumptions are
seen to be acceptable for small angles and where no
separation occurs aft of the skeg, Fig.1 also indicates
that it is not unreasonable to take a similar approach for
the ¢ range where early separation aft of the skeg has
"occurred although, in this case, some (constant) modification
to the 1lift curve slope has taken place and requires

incorporation in the analysis,

The rudder’ geometry used in the analysis is
given in Fig. 2. The effect of the reflection plane is
.represented by an image rudder and vortex system, The rudder
is assumed to have a total span, including its image, of 2S5

and a taper ratio (CT/CR) = T,

The rudder is considered as being replaced by
a lifting line of length 25, The co-ordinate y is replaced.
by the angle 6 defined as :

vy = =5, coseg

let k = 1=-T, or T = 1=k, (hence CT = CR(1—k))

Area A (2~-x).s.Cp
2

E
and Aspect Ratio AR = ) = hsc

E R

=



At any point on the rudder, c = CR(I-kcose) and, at any
point, the incidence of the skeg rudder, considered as
a lifting line will be :

G=0 =Y eee (1)
vhere O = incidence of the movable rudder part
Y = decrease in incidence over the skeg part,

at some rudder angle a, to produce the

same all~movable value, as shown in Fig.3 .

i.e, d= a = f(e).y(5,a)

where f(8) = O from 6= 0 to & = ¢

1 from 8= ¢ to @ = /2

and Y (6,a) can be derived from theoretical and experimental
data with no separation on the flap and from experimental

data when gap flow and separation are present, ’

The derivation and use of suitable values
of ¥ is discussed in Section 5,

The circulation [ at a point 6 on the rudder

may be expressed as a Fourier series :
F =4 Vv L An sin no - eee(2)
and since the planform is symmetrical about the mid point

{nt/2), only odd values of n will occur in the series,

The induced velocity w at a point ¢ is given
(Ref, 7) by :

V L n An sin ne (3)

w = sins®

The section experiences a 1lift force
corresponding to two-dimensional motion at the effective
angle of incidence (& - w/V) where W/V is the induced

downwash angle,

Local 1ift coefficient C; = m(& - w/v) eoo ()

where m is the two-dimensional 1ift curve slope, allowing

for thickness and viscosity effects,



Hence at any point [

Q 'Ulr'*

7
L.c.V
2

= E.Q.V(a— (.U/V) ---(5)

Incorporating the value of induced velocity from
equation (3) '

= E.c.v(a_ZnAnsin ne) .e.(6)
2 sino

equating (2) and (6)

m

Us v £ An sin ne = E_(:.\f(a__, Ln An sin ne)

siné

m C_(1-k cos@) ] s
T An sin n6 = R (a_ZnAns:.nne)

8s sine
LAn sin ne _ W - LIn An sin ne
(1-k cose) sine
m C
R
h = —=
where |L 35
3 . sine 5 . _ .
An sin ne, 1k coso + fin An sin ne = A sined
sin® o
or Z[An sin ne(un + m)] = |L.0l, Sin® eeol?)

This fundamental equation must be satisfied
at all points on the rudder between O and T/2, From the
form of this equation and @ = 0 -y it is possible to
separate the contributions of the all-movable and skeg parts
in the form :

an(&) = [an(a) = by(Y)] .. (8)

fl

pV[4s Vv T An sin ne]
L p s v? [ZAn sin ne)

Local 1lift L = pV[

Il



hence the local 1lift coefficient C L/Zpc v2
= §§ LAn sin ne

= CR(1-k?iose)Z(an(a),- b,(y)) sin ne ... (9)

(also, overall c =1IAR(a1(a) - b1(Y)) although in the
analysis, overall CL is derived from a spanwise integration

of local CL)

and local induced drag coefficient Cp. = CLA% ces(10)

Number of Control Points (n) chosen along Rudder :

The fundamental equation (7) has to be
satisfied at all points along the rudder, A large number
of control points is desirable since the analysis has to
include the facility to vary G along the rudder (with a
discontinuity at the end of the skeg), and to superimpose
vortices at the tip and at the Break between skeg and all-
movable parts (see later), Several values of n were tested
for the wvarious required values of aspect and taper ratio,

- In order
to obtain a suitable spacing of étations near mid span (in
order that different skeg depths could be investigated) n
was chosen as 20,

The spacing near mid span allowed skeg depth/
span ratios of 0,36, 0,43, 0.50, 0.57 and 0,63 to be
investigated (Fig.4 )., This approach does not, of course,
represent a discontinuity of incidence at the skeg to all-
“movable break but corresponds to a continuous change of
incidence over a small region of the order of 6% to 7% of

sSpan,



k. MODIFICATIONS AND ADDITIONS TO THE
BASIC LIFTING LINE THEORY

_ Modifications and additions to the baéic
theory are required due to the particular physical properties
of the skeg rudders bging modelled, as mentioned earlier,
These entail incorporating downwash contributions from the
superimposed tip and mid-span trailing vortices and any
empirical corrections necessary to take account of the
+ differences between theoretical 1ift curve slopes and

those derived from experiment,

' | Vortex Model

The idealised vortex model assumed for the

analysis is shown in Fig, 5 and comprises ¢

(a) A basic trailing vortex sheet due to the lifting

line ™

(b) A superimposed trailing tip vortex with a solid
core, whose strength is assumed to be a function
of &, T and AR,

(c) A superimposed trailing vortex, with a solid
core, at the break between the skeg and all-movable
parts, whose strength is assumed to be a function
of & and &,

The bound vorticity associated with () anda
(c) is assumed to be concentrated on the lifting line.
Further comments on assumptions (b) and (c) are given laterxr

in Section 6, .

The general forms of the expected
distributions of downwash due to these three component

parts are shown diagrammatically in Fig, 6,
4,2 Incorporation of Superimposed Vortices
in the Analysis

Lifting line theory requires that at any

section, equation (4)



C, = m(a - w/v)
= m(CL— ai)
where ai is the downwash angle due to the wvortex sheet,

It is inditially assumed that the influence
of the additional trailing vortices is to superimpose a

downwash or upwash &, on that due to the vortex sheet,

T

e;g. when the local modification o,, leads to an increase

T
1in CL H

cLzm(&-(ai.-aIT)) eae(11)

(- o) cee(12)

where ai1 = ai - O,. and represents the net downwash

T ‘
including the effect of the superimposed vortices,

Since the. correction ,, cannot be retained

T
directly as a downwash correction in the lifting line

" equations, equation (11) is re-written in the form :
cL=m(a+aT) -ai) eee(13)

and for the solution of the fundamental equation (7) the
correction is treated, in effect, as equivalent local twist
GT applied to the local angle of attack, The values derived
for QT(B) for the two vortices, and used in the analysis, are

given in Section 6,

4.3 Corrections to Theoretical Lift and Drag Values

As would be ‘expected for relatively low
aspect ratios, the lifting line analysis results in 1lift
curve slopes in excess of experimentally derived values,

The basic analysis, in effect, derives what may be assumed
to be a 'mean' induced downwash in the neighbourhood of the
rudder, and neglects any change in downwash along the chord.
Also, the flow is in all places assumed parallel to the
X-Axis, whereas cross flow will occur near areas of rapid
pressure change, such as near the tip, These influences

become more important with increase in chord relative to span



(i.e. decrease in AR). In the present analysis it is
assumed that the flow remains parallel to the X~Axis and
L predicted by the 1ifting

line analysis is caused by an increase in the 'mean' downwash.

that the required decrease in C

Basic 1lift curve slopes for the-all—ﬁovable'
case were derived from the lifting line analysisrfor taper
ratios of 0,60, 0,80 and 1.0 and aspect ratios 2, 3 and U4,
Equivalent all-movable slopes were derived from published
. experimental data, and the results for the 'gaps open' case

of the present work,

This leads tb a correction to the 1lifting

line rTesult of the form :

Clo = Cpi-a(4AR) C ees{1h)

where CLt is the theoretical 1ift coefficient from lifting
line theory A

CLc is the corrected 1lift coefficient.

a is the ratio of the experimental to the

theoretical and is a function of aspect ratio.

It is assumed that the form of the spanwise
distribution of 1lift remains the same but that its magnitude
across the span is reduced by the factor a, Although this
approach is approximate, comparisons with the experimental
results of Ref, 8 for the all-movable case of AR = 3.4, for
example, indicate that lifting line predictions modified by
this method lead to spanwise distributions which are very
satisfactory for the purposes of the present investigation.
The values derived for factor a, and used in the analysis,

are given in Section 7.

Correction to Downwash :

Assuming that the decrease in theoretical
C; is caused by an increase in 'mean' downwash, and the
general form of equations(4) and (12) are preserved, then

equation (12) can be written as :

10



Cro=m(a-a.,) eea(15)

where aiZ is the final net downwash including the effects of
the -superimposed vortices and the empirical correction to
1ift,

_ A, is used to compute the induced drag, and
the local induced drag coefficient can now be written as :

C = C

Di. <

Le* 12 ees (17)
Values for the profile drag coefficient
CDp for the flapped (skeg) and all-movable parts may be

derived from suitable experimental data, hence the local

drag coefficient C_. may be derived as :

D

c C. + C_. ...(18)

D~ “Dp T “Di
and local normal force coefficient :

Cy =Cpec0s® + Cpsind eee(19)
The local normal force coefficients are used
in the subsequent derivation of the chordwise and spanwise
centres of pressure, An outline of the derivation of

suitable values for C is given in Section 8,

Dp

S5e DERIVATION OF SKEG INCIDENCE REDUCTION, Y
Suitable ¥ values for Rudder No.,1 were

derived for each rudder and skeg angle, by adjusting y in

the modified lifting line analysis until satisfactory

11



agreement with the spanwise distribution derived from the
pressure measurements was achieved, Rudder No.1 had an

average effective flap ratio of 0,70.

The Yy values so obtained are shown in Fig, 10,

and suitable equations representing these results are :

up to separation aft of the skeg :

v = 0.235 ...(20)
after separation :
‘ Y =0,30= 3+ 0,396 eee(21)

In order to confirm these values, and to
provide more general data for different flap sizes, the
derivation of Y wvalues from altermative sources was

investigated,

Considering, firstly, angles up to the onset
of flap separation the theoretical results of Ref,9 were
investigated and suitably adapted; in this reference Glauert
applies thin aerofoil theqry to a two-dimensional flapped
foil,

In the notation of the present work

3C, 3¢,
CL = [53“5 -+ 66 6}

[ac chi? 6] | ..;(22)

55 (@ =0) + 355

Since, in the unseparated range, lines of constant 6 to a
base of & will be parallel and ¥ will be independent of

&, ¥ can be obtained direct from the result at CL = 0,
Hence replacing o by Y at‘CL =0
" L(y-5)= - LL0
3p 06
and Y 26(1 - Q“E) -00(23)
- 0b
where g% is commonly termed the flap effective-

ness ratio,

12



Glauert derived the theoretical expression

3 . 2=t fc) 2 f[c " Coy
56 = 1 = 7cos Ef + . /'Ef(‘ - Ef)

/@(1 - %) v sin™'/ Ce
[ o C C

Due to wviscous effects and section thickness,

ceo(2)

2
- i1

experimental values will be smaller than theocretical values.,
.Much data is brought together (including Refs, 12 and 13) in
- Ref,10 to demonstrate this,

A mean line of Yy = 0,236, equation (20),
satisfactorily represents the correlation between the
lifting line amnalysis and the pressure measurements of the
present work, The effective flap ratio gf of Rudder No,1
is 0,7 and, based on this, the Glauert theoretical result

requires modification to :
0B - 2 [0 48'/Ef 1 - gfﬁ + s'n-1/ Ce 2
65 Ltn b _C ( c ) 1 S oco( 5)

This represents a decrease in the theoretical effectiveness

Qs

ratio of approximately 15%,

The relationship for Y (for angles up to the

onset of separation) thus becomes:

v = 6[1 - % (0.48/%‘(1 - 25 + sin-1/?i‘)] : ees(26)

This result allows the influence of flap chord

size to be incorporated in the analysis,

It can be noted that this change in Y with
change in flap size is supported by the trend of the results
from Refs.12 and 13 shown in Fig.7 and discussed later,
Thin aerofoil theory suggests that the flap effectiveness
ratio should be independent of aspect ratio, Experimental
and theoretical results reproduced in Ref,10 confirm that .
only very small variations occur for aspect ratios down to
about 2, Consequently, up to the onset of separation, it is

-assumed that Yy is independent of aspect ratio and that

.33



equation (26) is suitable for the aspect ratio range

considered in the present investigation,

Extensive published experimental data are
available for small flaps and flap angles., The need for
data for large flap sizes (60% ~ 75% chord) and large flap
deflections (up to 35° leading to separation on the flap)
severely limited the published data suitable for the present

investigation,

Detailed experimental measurements are,
however, available from Refs.11, 12 and 13 for flaﬁ sizes
of 30%, 50% and 80% choxd, énd these were used to assess Y
values up to and after the onset of separation on the flap,
The results are for flapped foils with sealed gaps in two-
dimensional flow, Such foils do display separation aft of
the hinge and discontinuities in their 1ift curves, as is
shown in Fig, 7 although its onset occurs at higher 6
angles than with gaps open,

Cy curves for constant 6 to a base of «
derived from Refs.12 and 13 are shown in Fig, 8 (for clarity,
the results for the 30% flap have been omitted from the
graph). Values of Vv obtained from this graph are shown in
Fig, 10, Because there is é small decrease in the normal
force curve slope after separation has occurred (compared
with the all-movable case, as is seen in Fig.8.) the ¥y
values after separation show some dependence on ., as is
demonstrated in Fig, 10, Up.to the onset of separation the

.Y values are independent of 0, as would be expected,

It should be noted that only normal force
‘coefficients'(CN) were presented in these reports, drag not
having been measured, Approximate estimates of CL were made
allowing for a profile drag coefficient of 0,02 for the all-
movable case (5:: 0) and up to 0.07.with separation on the
flap at large angles of attack, These estimates indicated

negligible change in Y up to & = 20° and up to 1° increase

in Y at & = 30°,

The Y values derived from Refs,12 and 13 show

14



very similar trends to thoge derived by correlation of the
lifting line theory with the pressure measurements, although
after separation they are up to 1° lower. The experimental
values are for sealed gaps and for a more realistic .
comparison some assessment of the influence of open gaps

is required, Several papers report ad hoc tests on the
effects of gaps, but only Ref.1h could be found which
investigated systematically the influence of gap size for

a plain flap. Whilst the flap was only 30% chord the data

do offer some guidance on these effects, Gap influence on

Y is shown in Fig.9 and it is seen that with open gaps,

and with separation on the flap the normal force is decreased
and Y is increased by between 1° and 1%0, the smaller changes

in ¥ occurring at fhe larger O values,

It would, therefore, be expected that the
effect of gaps, and the effect of the CN'«G présentation
discussed earlier, would be to raise the results of the gap
closed data in Fig,10 to a little above the pressure
correlated results as given by equation (21), The final
slopes of the corrected data sets will also be close to
that contained in equation (21). It is considered that the
foregoing reasonipg Jjustifies the basis of equation (21)

and the order of magnitude of the values obtained,

Ref,14 indicates that up to separation the
influence of the gap is relatively small and in the context

of the present discussion can be neglected,

Figs.7 and 8 also illustrate the order of
difference in normél force and hence Y between the 50% and
80% flap cases, Before separation the normal'fqrce produced
by the 80% case is larger than the 50% case; this results in
Y increasing with decrease in flap ratio which is also
supported by the results of modified thin aerofoil theory,
equation (26). After separation the normal force produced
by the 80% case falls below the 50% case until, at a higher
angle of attack, it become; larger again, Hence over most
of the separated working rénge ¥ is larger for the 80% case,

i.,e. the opposite effect to pre-separation with y now

15



increasing with increase in flap ratio. (It should be noted
that this reversal of the normal force curves occurs only
in the 50% - 80% flap range, the 30% flap case being
significantly lower than éither.of these curves, as shown
in Fig.7 ).

For structural and balance reasons, realistic
-skeg rudders are unlikely to have an effective Cf/c outside
the range 0,60 to 0.75. Over this range the change in Y
is no more than 0.5° and is, therefore, small relative t{o
the total y values for the flap separated conditions. |
However, for completeness, and to obtain the relative
effects of change in flap size, an approximate correction
is applied to equation (21) to reflect this effect., The,
proposed correction is +0.4(gf - 0,7)(28 = §) which tends
to mero as Cf/c->0.7 and the sign of the correction changes
at 0= 28° which is the approximate angle at which the
normal force curve for the 80% flap again crosses the 50%
flap curve (as shown in Fig, 7 ). The effect 6f this
correction on the basicrcf/c = 0,7 line is illustrated
(for a = 30°%) in Fig, 10, '

Thus, after the onset of separation the value

of ¥ used in the analysis is expressed as follows :
Y = (0.30~ 3 + 0.396) + 0.4 (Zf - 0.7) (28 - 6) .. (27)

No data could be found, for large flap sizes,
to determine the influence of aspect ratio on Yy in the
separated condition., As already discussed, Y is independent
of aspect ratio pre~separation and it is also assumed that
this is the case after separation, 1t should be added that
if the curves of Cy for constant 6 in Fig,8 are decreased
due to aspect ratio, and it is assumed that the decrease is
in the same proportion as that for the all-movable (b= 0)
-case (which would not seem unreasonable), then Yy for the
separated cases also would remain unchanged for changes in
aspect ratio, After the onset of separation, therefore, it

is assumed that Yy is independent of aspect ratio and that

equation (27) is suitable for the relatively limited aspect

16



ratio range considered in the present investigation,

In Section 9 it is determined that the
onset of separation can be satisfactorily represented by
equation (37) :

Osep = U4 + O, 4(B + 15)

6, ASSUMPTIONS FOR THE DOWNWASH INDUCED BY
THE SUPERIMPOSED VORTICES

6,1 General

In order to provide general guidance on the
form of the downwash modifications, and hence the equivalent
twist to be applied to the lifting line equations, the
superimposed vortex systems are assumed to be idealised as
single trailing vortices with solid cores, An outline of the

assumptions made leading up to this idealisation is given, -

At the rudder tip a vertical vortex sheet
is'generated which increases in length with increase in
incidence, The development of such a sheet has been
described, for example, by Kiichemann, Ref,15, The tip vortex
sheet might be expected, and is hence assumed, to roll up
into a conical vortex, which in turn is assumed to be re-
placed by a concentrated 'vortex!' (which increases in
streﬁgth downstream from its apex), Such a replacement has,
for example, been made by Cheng, Ref,16, and others, in the
development of delta wing theory, Cheng pointé out that this
solution also exhibits certain general characteristics of

edge separation observed at low speed for low AR aerofoils,

The mid vortex is initiated as a vertical
vortex sheet springing from the abrupt discontinuity between
the skeg and all-movable pgrts near the leading edge; this

may be considered as a 'partespan vortex' in the terminology

17



of Ref,15 and thought of as a continuation of the bound |
vortices which do not travel outboard., The mid vortex is
also assumed to roll up and be replaced by a concentrated

conical vortex,

In the analysis, each vortex is then
considered as being represented by a single trailing vortex .
of constant "mean! strength in the neighbourhood of the
rudder, Thus the downwash induced by each trailing vortex
is initially assumed to have the general form of the normal
velocity distribution for a vortex with a solid core. The
strength of the tip vortex is assumed to be a function of
incidence, tip chord (hence taper ratio) and aspect ratio,
whilst that of the mid-vortex is assumed to be a function

of incidence,

The'spanwise pressure distributions are used
to locate the position of fhe vortices and their approximate
'mean' core sizes, and no éttempt is made to theoretically
predict these properties., The actual downwash distributions
were obtained by suitably adjusting the superimposed twist
in the basic analysis until the form of the distribution of

load agreed with the experimental results,

6,2 Tip Trailing Vortex

The induced downwash (applied to equation (7)

as equivalent twist) is assumed to be of the form :
Qpy = 'f[H1(e),a,AR,T]

where H1(e) is the general form of the variation of downwash
across the span at a particular incidence, aspect ratio and

taper ratio,

It is assumed that the influence of the tip
vortex is responsible for the non-linear component of 1lift
normally exhibited by low aspect ratio lifting surfaces, as

was concluded by Kiichemann, Refs.15 and 17,

Based on the results in Refs.18, ‘19 and others,

it is reasoned in Ref, 17 that the non-linear increment of

18



1lift decreases with increasing aspect ratio and increases
with increasing taper'ratio, and is approximately a quadratic

function of incidence.

The non-linear component has been derived
semi-empirically as being a function of az by several
investigators, such as Refsfzo and 21, These are generally
based on the hypothesis of Betz, Ref, 22 in which the non-
linear (a ) component arises from cross flow and is a
. function of a cross flow drag coeff101ent; in this approxima-
tion the non=linear increment is assumed to be uniformly
distributed over the planform, In the present analysis the
non-linear component is assumed to be due to the tip vortex,

as mentioned earlier,

Ref,20 assumes the non-linear component to be
proportional to 1/AR, which tends to zero as AR tends to
infinity as is expected experimentally, The procedure

adopted . in Ref,19 also amounts to an inverse function of AR,

From an investigation of the cross flow drag
coefficient values in Ref.20 the non-~linear component is

found to be proportional to T; this is also implied in Ref, 19,

Based on the above comments it would appear
reasonable, for the purposes of the present investigétion,
to assume the tip vortex strength and hence the induced
normal velocity to be a function of (a2T/AR).

The final distribution of H,(e), following
adjustment by trial in order to bring the form of the
distribution of load into line with the experimental resuits,
is shown in Fig.11. The downwash distribution is seen to be
asymmetrical which may be partly due to the downstream growth'
of the vortex in the neighbourhood of the rudder, with the
outboard side of the vortex being always approximately aligned
with the tip. Also, the influence of taper was required to

1.5 in order to reflect the changes derived

be increased to T
from the experiments (inclqding the all-movable case),
Empirical constants were introduced simply to correlate the

magnitude of the load with experiment at the datum angle,
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The resulting equation used in the analysis
for the downwash induced by the tip vortex is :
1
OL2 3 5

apq(e) = H{(e) Y5 AR G0 h65

2 1,5 -
H, () Lz — - 0.645 .o (28)

I

AR

Fig. 11 and equation (28) indicate that the

. requirements of the methed have led to extremely high values
‘ofaqq(e) at large angles of attack and, consequently, unreal
values of required twist near the tip. Thus, although the
method of applying the vortex induced downwash angle as
twist may be acceptable in providing the correct spanwise
load distribution, the 'twist' so required cannot be .

considered as, or equated to, real or physical twist,

6,3 Mid Span Trailing Vortex

The induced downwash (applied to equation (7)

as equivalent twist) is assumed to be of the form :
app = [ [Hy(e),a,8]

where Hz(e) is the general form of the variation of downwash

across the span at a particular incidence,

The vortex is fed with fluid over a relatively
- short distance and its starting point will be approximately
fixed, Inspection of the experimental spanwise distributions
suggested that the overall vortex effect is approximately
proportional to incidence, Since the vortex is generated by
flow through the horizontal gap, as well as the basic
pressure differential due to the discontinuity between the
skeg and all-movable parts, the growth of the vortex
strength will be dependent on 0 as well as the difference

in incidence (§) between the skeg and all-movable parts.

After some initial comparisons with the
experimental results it was assumed that the vortex strength

0.5 50 5)

and induced normal velocity is a function of (a
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Since the difference between & and 0 is the skeg angle B
which may be up to, say, 109 it is apparent that changes in
the proportion of dependencé on & or O will not have a large
effect on the final result; for @ = 00,(1 will, of cdurse,

be equal to 0 for all a values,

The final distribution of H2(6), following
adjustment by trial in order to bring the form of the
distribution of load into line with the experimental results,
. is shown in Fig,11, The required downwash distribution was
found to be approximately 5Ymmetrica1, but its position set
towards the root; this may be due to the spanwise pressure
gradient (e.g. see Ref, 3) '

' causmng the vortex to be swept into a region of
lower pressure as it moves aft across the chord. A constant
is introduced to correlate the magnitude of the load with

experiment at the datum angle. ' ~

The resulting equation used in the analysis

for the downwash induced by the mid-span vortex is :

apo(e) = Hy(e).a?*2.6%77.2 .ee(29)

Te . DERIVATION OF LIFT CURVE SLOPE CORRECTION
FACTOR, a :

All-movable 1lift curve slopes were derived
from the iifting line amalysis for taper ratios of 0,60,
0.80 and 1,0 and aspect ratios of 2, 3 and 4. A two-
dimensional section slope (m) of 5.5 was assumed in the
analysis, this being derived from Ref,23 as applicable for
a section thickness ratio of 20% with L.E. roughness, The
1ift curve slope values for taper ratio 0.6 are shown in

Fig,12, and these are adequately represented by the equation :

=
dx |4 o
This satisfies the conditions that dC /d —~0 and 5.5 as

AR »0 and o respectively.

21
® 57.3(1.14% + 2/aR) _...(30)
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For comparison, the theoretical 1lift curve

slope for elliptical planform is also given in Fig.12,

Lifting line theory predicts a small increase
in slope with decrease in taper ratio, Published experimental
all-movable data such as that in Ref 20 and for the all-
movable rudders in Ref,1 also indicate only small changes
in 1lift curve slope with change in taper, but in the opposite
direction to that predicted by lifting line theory, The
influence of taper ratio (T) from lifting line theory for
the basic all-movable sldﬁe was, therefore, removed by a

suitable empirical correction of the form T0'1/0.95.

A mean curve representing the experimental
data with smooth L,E, from Refs 20 & 24 is given in Fig.12,
and a suitable fit to this curve is :

Te :
[dCL 951

do 57.3(1 + 3/AR) ees{31)

a=0

The equifalent all-movable !'gaps-sealed! case
for the present work with aspect ratio 3 and L.E, roughness
was tested, resulting in a 1ift curve slope of 0,048 (Ref,1),

Since the loss in 1ift curve |
slope is principally due to the influence of thickness and
L.E, roughness on section‘slope, a suiltable relationship can

be a modified form of equation (31) resulting in :

1 - n .
[dCle = 75 A R (32)
a=0

Ta 57.3(1 + 3/AR)
In this case dC/da -—-5.5 as AR — oo

Preliminary use of equation (32) as a
correction in the analysis led to insufficient decrease in
the theoretical 1lift values, and it was, therefore,
considered necessary to take account of the influence of

gaps on the all-movable configuration.

An all-movable 'gaps open' case had been
tested (Ref,1) and this led to a further reduction in
lift curve slope compared with the 'gaps-sealed! case,
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It is likely that
this loss is due primarily to the horizontal gap and the gap
around the pintle, Since such effects will not directly
' modify the two-dimensional section slope it is assumed, for

the purposes of the analysis, that this loss is in effect
accounted for by a further relative increase in downwash,
This assumption is in fact hot unreasonable when it can be
deduced from Ref,1 that the drag of the 'gaps-open' case
for o up to about 16° is CL2 dependent and the CD/CL2 slope
is increased by the AR decrease predicted by the loss in

1lift curve slope, suggesting that the increase in C_ over

D
the gaps sealed case is mainly induced, and hence downwash
depéndent. Hence a suitable curve passing through the 'gaps-—
cpen' result in Fig,12 was assumed to be :
dac

L = LI ]
[a‘a‘ 57.3(1 + 3.9/AR) (33)

a=0

This, therefore, assumes these particular
losses to be principally-aspect ratio dependent over the
aspect ratio range considered and retains the condition
that dCL/da—>5.5 as AR —>.co

An altermative approach, for example, would
have been to change the numerator in equation (32) to 1,5m.
The reasoning leading up to equation (33) would; however,
seom to be more plausible, hence that line was adopted, It
should also be noted that over fhe asﬁect ratio limits
(approximately 2 to ) under.consideration the alternative

approaches yield very similar net corrections to the theory,

Hence the overall correction to the basic
1lift curve slope from lifting line theory is assumed to be
of the form :

! 1,751
I 57.3(1_+ 3.9/AR)
T 0,95 . 2T
57.3(1.14 + 2/AR)
0.1 |
_ T 0.875 (1.14 x AR + 2) (34)
0.95 * ~ (AR + 3.9) °c
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8. PROFILE DRAG, C
Dp

The present investigation required profile
drag data for thick sections with a large flap both at low
anglés of attack and over the flap stalled range of angles,
A search of related published papers did not reveal suitable
profile drag data which also included the flap stalled
condition, The required iﬁformation was, fherefore, extracted

from the experimental results of the present work, Refs,1 & 2,

The drag data was, for Rudder No.1, plotted
to a base of CL2 as shown in Fig.13;' the skeg rudder results,
of course, represent the drag of a combination of
approximately half all-movable and half skeg (or L.E, flap)
parts, Similar plots for Rudder Nos.,2 and 3 displayed thg

same general characteristics,

The all-movable data exhibit expected trends, .
and the profile drag for the all-movable part can be assumed

to be represented by the equation

ch = 0,017 + 0,12 cL5 ees(35)

the second term resulting from the development of separation

at higher angles of attack,

For small CL values and all 8 values CDp for
the skeg plus all-movable combination is seen to be about .
0,02, but at the onset of séparation aft of the skeg there
is a sudden rise to a much.higher value, With increasing
"incidence CD is, oger a short range, again seen to be
proportional to CL 3 thereafter, the curve begins to rise,

rising steeply as higher 1lift values are developed;

Up to separation C for the skeg part is
assumed to be 0,02 for all skeg angles (s).

_ ' After the onset of separation aft of the skeg,
CDp for the rudder plus skeg is assumed to be represented by

an equation of the form

Cpp = Jf(s)+.?{(§3,cL5)
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in which the first function represents the CDp value
immediately after the onset of separation and the second
function represents the further increase in CDP at high C
values., A suitable relationship for the skeg plus all-
movable case, which fits the data, is of the form :
'ch = [0.11 - {—:—EE%TY
B +15

L

. 5
+ |(1 - %%)x 0.12 ¢

_ +1 B 5
Cpp = 011 = fg%ﬁiggﬁ + [1 - 36] x 0,12 ¢

Since, for this purpose, it can be assumed
that the skeg part and the all-movable part each constitutes
approximately half of the .total area} then removing the all-
movable contribution results.in the following equation for

the skeg portion alone

_ B+15 _ jL] § 5 ‘
“pp = ©-203 = 5(g425) * [1 15 | * 012 67 ... (36)

In Section 9 it is found that the rapid
increase in drag values can be satisfactorily represented

by equation (38)

1]

a

5+ 0,4 (B+15)

9, ANGLE OF ATTACK FOR ONSET OF SEPARATION

The experimental results indicate that gap flow promotes
separation aft of the skeg and this process takes place over
an angle of attack range of two to five degrees., The precise
angle at which the onset of complete separation occurs is
not clear, although the discontinuities in the 1lift and drag

curves give a broad indication,

The angles at which the discontinuity in the
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1ift curve occurred were derived from the experimental data,
The mean values obtained are shown in Fig:ﬂi which
indicates that the onset of separation can be satisfactorlly

represented by :

Usep = L 4 0-’4 (B+15) . 000(37)

“+

The experimental data. indicate
that there is a small delay in the effect of separation on
the drag curve, It was, therefore, assumed that the rapid

-increase in drag values occurs at :
a= 5+ 0.k (B+15) , c..(38)

It should be noted that these formulae
represent é prediction of a suitéb1e‘1océtion of the dise
continuity in the 1lift and drag curves rather than a precise
indication of either the start of gap flow or the onset of
complete separatibn aft of the skeg, although they can be
taken as a realistic estimate'of_the latter,

The angles at which the discontinuitles in
the normal force curves occur for the two-dimensional '
flapped data of - Refs.12 and 13 are also shown in Fig.l4.

' These results demonstrate a similar trend to the present

. work, Whilst a larger delay in the separation for. the gaps
sealed condition of these results might'have been expected,
this has been offset by the effects of the larger load
Produced by the 2-D section at a given angle of attack, Due
to the relatively small influence of flap size indicated by
this data, corrections to equations (37) and (38) for the

effect of flap size were not considered necessary,

10; PROPORTION OF LOAD CARRIED BY THE MOVABLE PART
AFT OF SKEG '

The detailed pressure measurements which were
carried out provided (1oca11y) the ratio of flap load to
total load for Rudder No,1, which had an average effective
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flap ratio of 0,70; mean values of these results are shown
Plotted in Fig,15, The data indicate that the proportion

of the load carried by the movable part, CNm/C does not

Nt?
lend itself to a simple mathematical formulation, due
mainly to dissimilar conditions for negative skeg angles,
Equations were, therefore, fitted to the curves for each

g value,

Refs,12 and 13 were investigated to provide
. further data for the influence of flap size on CNm/Nt'

The results derived from these references indicated similar
trends with change in § as those shown in Fig,15, but
finding a suitable method of incorporating the influence

of flap size on CNm/CNt proved difficult. The general form
of the pressure distribution for the flapped foil did,
however, lead to an approximate but suitable correction
method. Namely, the typical pressure distribution is
considered as being made up of two component parts, forward
and aft of the hinge, and to have the simplified (dotted)
distribution shown in Fig,16, On this assumption the ratio :
flap load/total load would be cf/(z-cf) for a total chord of
unity, '

Based on this reasoning the 50% and 80% chord
values of CNm/cNt from Refs, 12 and 13 were plotted to a base
of (cf/(z-cf); these results indicated that, at a particular
angle of attack, the data could be satisfactorily represented
by the relationship : -

Ce

* (2=C

CNm/CNt = const, f)

where the constant had a ﬁalue ranging from approximately
0.8 at .6 = 5° and 10° up to unity at § = 30°,

This property is applied as a correction to
the results of Fig, 15 by assuming that, at a particular
angle of attack :

e

CNm/CNt X &5:623] eee(39)

The correction to the equations in Fig.15
(which are for an effective flap ratio of 0.7) therefore
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becomes

for

hence

c (2-c_)
Nm y i
m/ Ot [C_N: ]0 7 " (Z'Cf)} [ Ce }o 7
= 0.7 s = 0,538
el (2-cf) 0.7 ’

CNm Cf

CNt} 0.7  (1.076 - 0,538 x€,)

...(Ao)

Whilst this correction is approximate, the

investigation of the results of Refs,12 and 13 indicated that

it reflects expected trends very well, It is, therefore, not

expected to introduce significant errors in the relatively

- limited range of flap size (between, say, 60% and 75% chord)

~likely to occur in a parametric study of skeg size,

11,

11,1

CENTRE OF PRESSURE

Spanwise CPs

This is obtained directly from a spanwise

numerical integration of the lecad distribution,

11,2

Chordwise CPcf for Skeg {or flapped) part

The results of the preséure{measurements,
Réf.B, indicated that the local CPc values are

generally similar to those to be expected in two-dimensional
flow (Fig. 7). ' '

Mean values of CPcy for the movable part (flap)

were obtained from the pressure measurements for

Rudder No.1, This rudder has an average effective flap ratio

Of 0. 70.

These results are shown in Fig.17 and a suitable

equation which represents this family of curves is :
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CPcpy = 54 - 0.22 (3 - 0.068 ~ 0.16)5 ...(41.)

In order to provide more general data for
varying flap sizes (e.g., to account for any change in flap
size due to change in skeg configuration) the results of
Refs.12 and 13 for 50% and 80% chord flaps were investigated,
The CPcy values with change in 0 and B obtained from these
references showed very similar trends to those of Fig. 17;
there were some differenCQS'in absolute values although this
was to be expected.since the gaps were sealed for these
experiments, and sharp pressure peaks were, therefore,

obtained at the hinge axis,

_ In order to investigate the results for
different flap sizes in a non-~dimensional form the data from
~Refs,12 and 13'were re-analysed in terms of the ratio :
distance of centre of pressure aft of hinge (CPf) divided by
the flap size (Cf). This analysis revealed that there were
insignificant differences in CPy/Cs between the 50% and 80%
chord cases, indicating that the form of the pressure
distribution over the flap at a particular angle of attack
is very similar for different flap sizes, This useful
result allows the basic form of equation (41) to be extended
to allow for any small changes (between, say, 60% -~ '75% chord

flap) likely to occur in a parametric study of skeg size,

Equation {#t) (for an effective flap of 70%

chord) can be non-dimensionalised in terms of flap size as :

[g%f] = 0.343 - 0.00314 (3 = 0,068 ~ 0,15)7 ees(b2)

Hence, assuming CPy/Cs to be independent of

flap size, CPcy for any flap size can be written as :
CP¢ '
CPcy =|:C-—E-:| x Cy + (100 - Cf)
hence :

CPcy = [o.3h3 - 0,00314 (3 - 0,068 = 0.15)5}x Cr + (100 = C¢)
o-o(hj)

(where CPcg and Cy are expressed as a percentage of the
total chord)
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Insufficient published éxperimental data
exists to quantify the influence of aspect ratio on CPc for
aerofoils with large flaps., However, in Ref,25, the theory
of Ref,26 is used to demonétrate the influénbe.of flap size
on CPec (for small angles of attack) and the theory indicates
that in the aspect ratio range 2 to 4 the change in CPc
position for a 70% chord flap is zero and for a 60% chord
flap is 1%, These predicted small changes would account for
the general‘similarities bétween the two-dimensional results
of Refs,12 and 13 used earlier and those of the present work,
In view of the above findihgs, no aspect ratio correction has

been applied to equation (43),

11.3 Chordwise CPc for the All-Movable part

The pressure measurements ( Ref,3. ) indicate
values with a génerally similar magnitude, and movement
with a, to those expected for the aspect ratio tested, e.g.
such as those available in Ref.20 and the tests on simulated
all-movable rudders in ‘Ref,1. It is seen from Fig.jsﬂ_‘
that skeg angle has very little influence on the CPc of the
all-movable part. ’ ' :

These values, together with adjustments to
allow for the small influence of change‘in aspect ratio
(which has been derived from the data in Ref.20 ) are,
therefore, applied to the all~movable part of the rudder.
The relationship obtained from the data in Fig,18 (and its
aspect ratio correction) and applied for local CPc¢ to the

inner part of the all-movable section 6£ the rudder is :

1.4

CPc = 11,7 + 0,184 *" + 0,7(AR=-3) | eoo{llt)

The influence of the tip wvortex is to move
the local chordwise centre of pressure aft, and this was
illustrated in Ref,3 by the pressure distributions near
the tip. The pressure disfributions indicate that fhis_
effect has an influence over the outer 10% (approx) of the
span, and that it displaces the CPc aft by a mean amount of

‘approximately 8,5% for all angles, The local CPc over the
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outer 10% of the span is, therefore, assumed to be of the

form

L

CPe = 20.2 + 0,18+ 4 0,7(AR-3) eas(lt5)

11,4 Corrections to CPc for L.E, Sweep and Taper

In the analysis program the section CPc values
derived in 11.2 and 11.3 are corrected for leading edge
sweep and taper and numerically integrated across the span
to yield (for the movable rudder alone) the mean CPC as a
percentage of the mean chord (c) aft of the L.E, of &,

12, ANALYSIS COMPUTER PROGRAM

The theoretical analysis, embracing the basic
lifting line theory together with the necessary édjustments
and empirical corrections, was incorporated in a computer

program,

For given input values of aspect ratio, taper
ratio, skeg depth/span, leading edge sweep, mean flap size
in way of skeg, skeg angle B and rudder angle ¢ the program
is capable of outputting the spanwise distribution of 1ift
and normal force for the rudder plus skeg, together with its
integration for total forces and spanwise CPs, The total
force on the movable rudder alone is also calculated together

with the chordwise CP& for the movable rudder alone,

A more detailed account of the program is
given in APPENDIX 1,
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13, DISCUSSION OF THE THEORETICAL RESULTS

13,1 n The results of the spanwise load predictions,
together with the experimental results derived from the
pressure measurements, are given in Fig.19,' It is seen that
the correlation between theory and experiment for the overall'
form of the distributions is good., Agreement in magnitude

was achieved by empirical correction,

The results show the skeg incidence reduction
approach to satisfactorily predict the measured changes in

load distribution due to change in skeg angle,

The changes in load near the tip, ﬁith change
in incidehce, show that it is reasonable to assume the tip

vortex effect to be a function of a2,

Because the pressure distributions were
deficient (by up to 5% at 20° and 300) the form of the 1lift
predictions by theory were compared with the normal forces
from pressure measurements, The differences between the'total
normal and 1ift forces amount to about 3% at &« = 10° and 20°
and up to 5% at o = 30° and hence have a small effect on
the. form of the distributions shown in Fig,19, Using this
approach the integration of the theoretical distributions
will, of course, lead to total forces closer to those
obtained by direct force measurement,

19,2 Figs.20(a) to (e) show the results of the
integrations of the spanwise distributions for load and
centre of pressure, superimposed on the direct force measure-—
ments., As would be expected, following the good agreement
with the spanwise distributions, the 1ift predictions are

also satisfactory.

It is worthy of note that, whilst the wvalues
of ¥ were derived by correiating with the pressure measure-
ments for B = 0, :50 (together with other theoretical and
experimental data), the extrapolation of these predictions

‘to p = £10° (Figs.20(a) and (e)) is also very satisfactory,
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The profile:drag was estimated from the
experimental results, Theﬁsatisfactory predictions of total .
drag indicate, therefore, that the induced drag predicted by

the analysis is of the correct order of magnitude.

The CP predictions are generally reasonable,
although CPs is deficient for most skeg angles and CPc is
forward of the results from the dynamometer measurements up
to about o= 15°, '

The CPs values show the correct trends with
changes in incidence and the deficiencies are generally the
same. ag those for the integrated pressure fesults; as -
méntioned - in the discussion of the direct force
and pressure measurements (Refs,3 and 5 ) some error could
in ahy case exist in the CPs values from the dynamometer
measurements at the lower angles of incidence, The
deficiencies in CPs do, however, suggest that too much
emphasis was placed on correlating the theoretical spanwise
distributions with those from the pressure measurements;
for example, better agreement with the CPs values from the
force measurements could have been achieved by using slightly
larger Y values and an increased 1lift curve slope correction

factor.

The empirical CPE€ values also show the correct
general order of travel with change in inéidénce; the forward
position at low incidence was obtained with the pressure
measurements and is likely to be also due to the fairing of
the data of Fig.17. Because the required trends were
reflected reasonably well, no further attempts at modifying

the empirical CP¢ results were pursued,

13.3 Figs.21.(a) and (b) show the predicted
influence of taper ratio compared with the experimental
results, for one skeg angle, Reasonable correlation for

CL and CD was achieved by the empirical corrections applied,
although the wvalues of CL for T = 0.8 were slightly over~
estimated whilst those for T = 1.0 were slightly under-~

estimated,
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The errors in the CP& predictions for small
incidence are generally similar to those for T = 0,6
(Figs.20(a) to (e)) discussed earlier.

Thé large error in the CPs predictions for
Rudder No.2 with T = 0,8 (Fig.21(2)) is due to the high
values derived from the dyﬁamometer‘measurements; This
irregularity (of CPs for Rudder No,2 being greater than
that for Rudder No,3) is discussed in Ref,5.

13.4 It should be noted that the analysis considers
rudder angles up to 300, and no attempt is made to predict
stall,

The analysis was developed for, and is hence
limited to, ranges of skeg angle up to 3100, aspect ratio
2 to 4, taper ratio 0.5 to 1.0, skeg depth 0.36S to 0,63S
and mean movable flap 60% to 75% chord, |

Within the limits comsidered in the present
analysis, the results shown in Figs,19, 20 and 21 demonstrate
that, whilst the theoretical approach used is simple and
heavily modified empiricall}, it gives very realistic

predictions of skeg Tudder performance characteristics.,

13,5 - The scope of the present work did not allow a
full exploration of the possible flexibility of the analysis
method, For example, as a check, removal of the mid-span
vortex and setting Y = 0 in the analysis program leads to
all-movable CL predictions close to the experimental values,
. Also, setting the Y wvalue in the program to that
for no separation aft of the skeg (equation 26) for all
angles of incidence leads to CL predictions close to the

experimental values for sealed vertical gaps,
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14, PARAMETRIC STUDY
14,1 INTRODUCTION

A parametric study was carried out to provide
a limited extension to the experimental data. Predictions
of the changes in performance with changes in the principal
rudder and skeg characteristics were made using the computer
program which incorporated the modified theoretical span

Kloading analysis and empirical formulae,

14,2 SCOPE OF STUDY

The number of possible variations in rudder
characteristics is, in theory, infinite, However, in
practical terms, skeg chord and hence skeg area is to a
certain extent dependent on structural requirements, and
balance area is dependent on both skeg area and sweep, The
chosen variations in the principal characteristics were,
therefore, restricted to realistic limits of these features
(the extent of the theoretical and empirical analysis ‘

was in any case limited to practical boundaries),
Similarly, the study was restricted to repreEentative rudder
and skeg angles of a = 10% and 20° for B= 0°, 150.

The chosen parametric variations shown in
Figs.23 to 26 attempt to give a broad outline of the expected
changes in performance with changes in skeg and rudder
rarticulars, and to highlight the problems faced when
choosing suitable skeg proportions,

The particular notation for the skeg, used in

the presentation, is given in Fig,22, Due to practical
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requirements of thickness and gap, the centreline of the
stock is about 6% aft of the L.E, of the mean effective flap
chord, This criterion was, therefore, used in the development

of the theory and in the theoretical analysis program,

14,3 DISCUSSION OF RESULTS

14,3,1 Figs.23 and 24 show the influence of skeg
depth and movable chord for taper ratios of 0.6 and 0.8

respectively,

It is seen that, for constant Cg, increase
in skeg depth has a detrimental effect on 1lift coefficient,
particularly at the larger angle of attack; for example,
increasing the skeg depth ratio from 0,45 to 0,55 leads
to a 3% loss in lift at 10° and an 8% loss in 1lift at
20°, Differences between the results would be expected'on
account of the dependence of y on a as well as § for the
20° (sepqrated) condition,rwhereas a = 10° represents the
case before separation aft of the skeg., It is also seen
that skeg depth has an influence on CP& (for comstant Cg),
an increase in skeg depth from 0,45 to 0,55 leading to

about 3%E aft movement of CP& for both & = 10° and 20°,

14,3.2 Figs.23 and 24 show that change in the

movable chord size (Cf) has a significant effect on Cp and
cPé at a = 10° where, for S;/s8 = 0.5, an increase in Cg/c

from 0,65 to 0,75 (Fig.23(a)) leads to a 4% increase in

1ift and a 2% aft movement of CPE; at a = 20° the influence

of Cy on CP& is similar to that at 10° but the influence on
CL is very small, The influence on CL is reversed for & .= 10°
and 20° and this is due to the contrary effects on y before

and after separation,
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For both angles of attack the movable chord
size has a marked influence on the stock position, skeg
area and hence balance; for example, in Fig,24(b), a change
in Cg/c from 0,6 to 0,7 leads to a forward movement of stock
of about 10%  compared with é forward movement in CPE of only
about 2%,

14,3,3 In Fig, 25 one value of skeg depth (S1/S = 0,5)
is considered and the influences of Ce/c and sweep are
investigated for & = 20%°, The influence of Ce/c on C; and
CPc is relatively small for the larger angle of attack (as
was concluded from Figs,23(b) and 24(b)) whereas it has a

marked influence on the stock position and balance area,

If it is assumed that CPE is to coincide with
the stock position at 4 = 20° then for a sweep of 0,153 rads
the required balance ratio is approximately 20,5% and
Cf/c = 0,65 whereas for 0,070 rads sweep the required Cf/c
rises to 0,695 and the balance ratio is again about 20, 5%,

Similarly, from Fig.2h(b), if C, is increased
by decreasing skeg depth, and a large disparity between CPé&
and the stock position is to be avoided, the balance ratio
has to be held at approximately 20.5% and Cg/c has to be
increased from about 0,6 at S1/S = 0,63 to about 0.7 at
s1/s = 0,36,

It is thus clearly seen that if an increase
in performance is to be achieved by decreasing skeg depth
then this has to be accompanied by a decrease in skeg chord
(or an increase in L.E, sweép if structural requirements

limit the decrease in skeg chord),

Figs 23 and 2k indicate that skeg depth has a
very small effect on-CPs.

The influence of skeg depth on CD is negligible
at o = 10° although at 20° there was a marked decrease in CD
with increase in skeg depthj this trend is in the same sense

_as CL and, for clarity, CD_has been omitted from the plottings.

37



1g;3,h The CL values for B= i5° are superimposed
on Figs.24(a) and (b) and it is seen that the trends are
°, with the influence of skeg depth being
slightly larger for negatiye skeg angle,

similar to B = 0O

14,3,5 Fig.26 shows that the influence of aspect
rgtio on CL at a particular skeg depth is generally similar
to that expected for all-movable control surfaces, The
' influence of skeg depth on CL is seen to be independent of
aspect ratio, For T#1 and Q, #0, Fig,26 indicates that as
aspect ratio is decreased for constant values of taper ratio,
skeg depth ratio, flap chord ratio and sweep, the skeg area
ratio remains fixed, CP& méves forward by a small amount and
the stock position moves aft by a significant amount; thus,
for constant sweep, an increésa in flap chord ratio (hence:
decrease in skeg area ratio) is required with decrease in

aspect ratio if the torquellever is to remain approximately
constant,

+

14,3,6 Figs.23(a) and 24(a) or 23(b) and 24(b)
indicate that the influence of skeg depth for different

taper ratios is generally similar.

14,3,7 It may be concluded that, for fixed aspect
ratio and taper ratio, the production of sideforce is
significantly influenced by the size of the skeg depth and
movable chord (hence skeg chord) at lower angles of attack

and by the skeg depth at larger angles of attack,

Variation in skeg depth has a marked effect

on balance area and CP¢ at small and large rudder angles,

For a particular skeg depth the movable
chord and sweep have a relatively small influence on CP&
whereas they have a large influence on the stock position and
balance area, hence having-a marked effect on the magnitude .
of torque over the incidence range; careful choice of these
dimensions, in association with a particular skeg depth, is,

therefore, necessary,
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15, CONCLUSIONS

(i) The earlier experimental investigation
demonstrated that a skeg rudder exhibits a number of particular
| characterisfics which affect the prediction or assessment of
its performance; The experimental results, supported by the
present theoretical amnalysis, showed that changes in the skeg
angle, for a particular rudder angle, lead to changes in local
1ift in way of the skeg and at the same time have a significant
effect on the all-movable portion of the rudder, Realistic
predictions of load are, therefore, not likely to be achieved
by assuming the skeg rudder to be made up of separate flapped

and all-movable parts,

(41) The experimental spanwise load distributions
revealed a high loading near the tip and undulations in the
distribution near the break between the skeg and all-movable
parts, It was concluded that both these features were due to
.particular tfailing vortices béing generated at these positibns.
The influence of thé tip vortex is particularly significant and
non-linear, and it is clear that this effect cannot be neglected
if realistic span loads are to be predicted for small aspect

ratio rudders with square tips,

(ii1) The theoretical study demonstrated that
satisfactory predictions of the form of thelspanwise loadings
for different sgeg and rudder angles can bB-made using lifting
line theory, with the effect of the skeg beihg incorporated as
local incidence reduction and the effects of the mid-span and
 tip traiiing-vortices being incorporated as twist corrections
to the local incidence, The correct magnitude of the
distributions was satisfaétorily feprbduced by applying,
spanwise, a single empirical correction based on the ratio of

the experimental and theoretical 1ift curve slopes,

(iv) The theoretical and empirical extensions to

the éxperimental work demonstrated that a decrease in the skeg
depth leads #o an increase in lift production; it follows that
the best hydrodynamic performance will be achieved by
minimising this dimension to the limits of structural require-

ments,
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Decrease in skeg chord'leads to an improve-
ment in 1ift at low angles of attack; however, choice of
this dimension (and sweep) for a particular skeg depth will
depend primarily on achieving a suitable stock position and

balance area,

The_influencp of aspect ratio on skeg rudder
performance was found to be similar to that expected from an

all-movable rudder; and to be independent of skeg depth.

Increase in taper rétio leads to small
improvements'in 1ift at larger angies of attack due primarily
- to the effect of removing area from the less efficient part
of the rudder aft of the skeg to the more efficient 'all-
movable! part of the rudder, This improvement is accompanied
by a small movement of the centre of pressure towards the tip,

with consequent increase in bending moment,



NOTATION

2

CR N N T

=

oA o o
w .

o]
Hy

CPc

CPc

CPcy¢
CPs

Q O

Di

Q Q

9]
=

o]

Nm

Nt

Hq(e)

Hp(e)

Total rudder area {movable rudder plus skeg)
Effective area (2 x A)
Effective aspect ratio

Geometric aspect ratio

Lift curve sldbe correction factor

Coefficients in Fourier series for spanwise
load distribution ‘

Balance area ratio
Chord

Tip chord

Root chord

Mean chord ((CT'+ CR)/2)
Flap chord

Local (or section) centre of pressure chordwise,
%c, measured from L,E,

Total centre of pressure chordwise, %&, measured
from L,E, '

Centre of pressure of flap aft of hinge

Centre of pressure of flap aft of L,E., of chord
Centre of pressure spanwise, %S, measured from root
Drag coefficient (D/%pAVz)

Induced drag coefficient

Profile drag coefficient

Lift coefficient (L/}pAv?)

Total normal force coefficient, normal to
rudder (N/3pAvZ?) = C Cosa + Cp Sina)

Local normal force coefficient on the movable part
of the rudder in way of skeg (based on total chord)

Local total normal force coefficient in way of skeg
Drag force in direétion of air flow

General form of downwash variation induced by
tip vortex

General form of downwash variation induced by
mid-span vortex

Defined as (1-T) in lifting liné analysis
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Skeg Area Ratio (S
Balance Area Ratio(BA)

Total Movable Area

Lift force normal to air flow

Two-dimensional 1ift curve slope

Normal force, normal to centreline of mgvable rudder
Number of controlrpoints in lifting line analysis
Rudder span

Skeg depth

Skeg area rafio

Taper ratio (CT/CR)

Inflow velocity

Distance to centreline of stock from L,E, of
rudder (%c)

Spanwise co-ordinate in lifting line analysis

Rudder angle relative to flow (Fig.3)
Dowvnwash angle

‘Equivalent local twist

Defined as (d~Yy) in lifting line analysis

Approx. angle at which onset of separation occurs
aft of skeg

Skeg angle relative to flow, or ship drift angle
at rudder (Fig.3) ‘

Skeé incidence reduction in lifting line analysis
Circulation

Rudder angle relative to skeg, or ship (Fig,3)

Spanwise co-ordinate in lifﬁing line analysis

Coefficient in lifting line analysis
Kinematic viscosity

Mass density

Value of 6 at end of skeg

Sweep of quarter chord

Sweep of leading edge

Induced normal velocity

Skeg area (assumed to ¢ of stock)
Total Area (movable 4+ skeg )

A =

Movable area forward of ¢ of stock
Total Movable Area

Total area (movable + skeg) -
skeg area (assumed to ¢ of stock)
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APPENDIX 1,

DESCRIPTION OF THE THEORETICAL ANALYSTS COMPUTER PROGRAM

An analysis program was writtem which
incorporated the modified theoretical span loadings
and empirical formulae, The program was written in
Basic and run on a Tektronix 4052 machine,

A prediction assuming no separation aft of
the skeg at larger angles can be made by modifying the
program whereby the 'unseparated' value of Y (eqtn,26)
is applied throughout the incidence range,

An all-movable rudder prediction can be made
by setting the skeg incidence reduction Y and the mid
vortex distribution H2(@) to zero in the program,

A brief outline of the program steps and
a listing of the program are gifan on the following

pages,

k5



Outline of Steps in Analysis Program

AR, T, skeg depth, mean flap chord,
L,E, sweep, & and 8

Required input | (Allowable skeg depth/span ratios:
information | .36, .43, .50, .57, .63 (Fi§.37);
allowable g values: 0, }5, Xio for
[_anvcc).

(H1(8) and H2(9) distributions retained
[_in program as data statements,

[ Derive spanwise control stations o =
[ It/2N, for N = 20, I = 1 to 20,

—Derive number of control stations in
| wvay of skeg for application ofYy,

i |

Recover «., using eqgtns, (28) and (29),
Cale, flap chord ratio across skeg,
Calc, Y using egtns, (26) or (27).

Calc, distribution of (J4 + aT).

[Solve Fourier coeff'ts of eatn.(7).
(20 coeff'ts from 20 values of 6),

Correct Fourier coeff'ts by factor, a,

Derive spanwise stations and multipliers;
rudder treated non-dimensionally in two
parts (skeg section and all-movable
section) in order to facilitate numerical
integration and allow variation in skeg
dep th, .

Calc, span, distri, of 1lift using
corrected Fourier coeff'ts and eqgin,(9).

[Calc, span., distri. of net downwash,
leqtn, (16). '

Calc. span. distri. of Cp, eqtn, (17).

Calc, span, distri, of C
leqtns, (35) and (36).

Calc. span, distri. of C[.

Calc, proﬁ'n of load carried by movable
flap, eqtn, (40).

Calc, span., distri. of CPc, eqtns,(43),
(u4); (hs).

[Numerical integration for total coeff'ts
and centres of pressurej
i.0. CL'.CN' CD' CPs for rudder + skeg,

tFnd CNR’ CPE for movable rudder alone,

Do using

—
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Listing of Analysis Program (cont'd)
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