
Talbot–Lau effect beyond the point-particle approximation

Alessio Belenchia,1, ∗ Giulio Gasbarri,2, ∗ Rainer Kaltenbaek,3, 4 Hendrik Ulbricht,2 and Mauro Paternostro1

1Centre for Theoretical Atomic, Molecular, and Optical Physics,
School of Mathematics and Physics, Queen’s University, Belfast BT7 1NN, United Kingdom

2Department of Physics and Astronomy, University of Southampton, SO17 1BJ, UK
3Faculty of Mathematics and Physics, University of Ljubljana, Jadranska ulica 19, 1000 Ljubljana, Slovenia

4Institute for Quantum Optics and Quantum Information Vienna,
Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria

Recent progress in matter-wave interferometry aims to directly probe the quantum properties
of matter on ever increasing scales. However, in order to perform interferometric experiments
with massive mesoscopic objects, taking into account the constraints on the experimental set-ups,
the point-like particle approximation needs to be cast aside. In this work, we consider near-field
interferometry based on the Talbot effects with a single optical grating for large spherical particles
beyond the point-particle approximation. We account for the suppression of the coherent grating
effect and, at the same time, the enhancement of the decoherence effects due to scattering and
absorption of grating photons.

I. INTRODUCTION

The experimental observation of quantum superposi-
tions at the macroscopic level has proven a tall order
due mainly to quantum decoherence effects. In this con-
text, matter-wave interferometry, which directly probes
the superposition principle of quantum mechanics, offers
the possibility to test quantum mechanics and modifi-
cation thereof with increasingly larger objects [1]. This
paves the way to the characterization of the quantum-
classical transition and potentially the investigation of
possible modifications of quantum mechanics [2–6] and
the assessment of quantum spacetime effects [6, 7].

Near-field interferometry with optical gratings [8–10],
instead of material ones, is of particular interest for ex-
ploring the limits of quantum mechanics. In combina-
tion with current levitation and cooling techniques, it
is the core of recent proposals for observing quantum
superposition of increasingly large systems, most promi-
nently macro-molecules [11–14] and nano-spheres [5, 6].
However, all the current proposals employing near-field
interferometry with optical gratings work in a regime
where the system of interest has a linear dimension much
smaller than the grating laser’s wavelength, i.e., when
Rayleigh approximation holds true. Thus, in view of ap-
plying this technique to larger and larger objects it is
crucial to sidestep the point-like approximation and ac-
count for the reduced coherent effect of the grating in
combination with its enhanced decoherence effects.

In this work we make a step in this direction by apply-
ing the formalism developed in Ref. [15] to account for
the decoherence effect due to scattered grating photons
on spherical particles. The reduced coherent effect of the
grating is also considered, and the effect of absorbed pho-
tons is touched upon. We give some examples of inter-
ference patterns and quantum visibilities when realistic
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experimental parameters are considered.
The remainder of this paper is organized as follow. In

section II we briefly review the Talbot–Lau effect for op-
tical grating and give the expressions for the interference
pattern and Talbot coefficients which determine it. In
Sec. III, we discuss the reduced coherent effect of the
grating when the Rayleigh approximation is not valid.
In Sec. IV, we introduce decoherence effects due to scat-
tering of grating photons off spherical particles. Further-
more, we consider how to include the effect of absorption
in the picture, whilst the fact that a fully fledged quan-
tum formalism for this is currently not available. Finally,
we discuss how to obtain the classical limit and its rele-
vance to the problem at hand. In Sec. V, some example
of interference patterns are shown which highlight the ef-
fects of misusing Rayleigh approximation. We conclude
this work in Sec. VI with a discussion of the results and
future perspectives.

II. TALBOT–LAU EFFECT FOR OPTICAL
GRATINGS

Here, we shall provide a concise review of the Talbot
effect for matter-wave interferometry in the eikonal ap-
proximation. A more in-depth analysis can be found in
Ref. [16–19].

The dynamics of a polarizable quantum particle in-
teracting with an electromagnetic standing wave in the
interaction picture is described by the master equation

∂tρt = − i
~

[V (r̂t, t), ρt] + Lt(ρt), (1)

where V (r̂t, t) is the interaction potential and Lt = Lsca+
Labs is the dissipative term taking into account the effects
due to scattering (Lsca) and absorption (Labs) of grating
photons.

As a full quantum description of matter-light interac-
tion encompassing both scattering and absorption mech-
anisms is currently lacking, we make use of the results in
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FIG. 1. Optical standing wave grating. The figure shows the
coordinate convention that we are using, in which z is the rel-
evant direction in the longitudinal eikonal approximation. We
consider a standing wave linearly polarized in the x direction
which gives rise to a grating of period d = λ/2.

Ref. [15] to describe both the coherent effects of the grat-
ing and the decoherence due to photon scattering, while
making use of semiclassical arguments [17, 18], to include
decoherence effects due to absorption. This results in the
interaction potential

V (r̂t, t) = −ε0ε
R
c

4

∫
Vn(r̂t)

dr|Esw(r)|2, (2)

where ε0 is the vacuum permittivity, εRc is the real part of
εc = 3(ε− 1)/(ε+ 2) with ε the relative permittivity, and
Esw(r) is the electric field of the standing wave. The in-
tegral is extended over the volume Vn(r̂) of the dielectric
particle. We will give explicit forms for the scattering
and absorption decoherence terms described by Lsca(ρ),
Labs(ρ) in Sec. III [cf. Eqs. (23) and (35), respectively].

The net effect of the optical grating on the matter-wave
density matrix is then given by

ρ→ T e
∫ τint
0 dτLτ (ρ) (3)

where the super-operator Lt is defined through Lt(ρ) =
− i

~ [V (x̂, t), ρt] + Lt(ρt), τint is the interaction time, and
T denotes the time ordering operator. Note that, in the
case of pulsed-light grating, the interaction time is deter-
mined by the duration of the pulse.

By assuming a waist of the standing wave that is much
bigger than the matter-wave profile, and an interaction
time (τint) that is negligible compared to the characteris-
tic time of spreading of the matter waves, we can rely on
the longitudinal eikonal approximation [19] to reduce the
problem to an effective one-dimensional dynamics along
the direction of propagation of the standing-wave prop-
agation [cf. Fig. 1 for the coordinates setting]. This
approximation allows us to rewrite Eq. (3) as

ρ(z, z′)→ R(z, z′)T (z, z′)ρ(z, z′), (4)

where ρ(z, z′) = 〈z| ρ |z′〉 is the matter-wave density ma-
trix in position representation, and we have introduced

the phase-modification mask

T (z, z′) = t(z)t∗(z′) = e−
i
~
∫ t
0
dτ [V (z,τ)−V (z′,τ)] (5)

with V (z, t) the classical interaction potential, and a de-
coherence mask

R (z, z′) = e
∫ τint
0 dτLt(z,z′) = Rsca(z, z′)Rabs(z, z

′). (6)

In order to make the description more transparent, it
is convenient to rewrite Eq. (4) in a phase-space picture.
We thus introduce the Wigner function associated with
ρ defined as

w(z, p) =
1

2π~

∫
ds e

i
~ps 〈z − s/2| ρ |z + s/2〉 , (7)

with z and p the position and momentum coordinates in
phase space. The effect of the grating in Eq. (4) is then

described by the action of a convolution kernel T̃ (z, p−q)
on the Wigner function of the system [16], that is

w′(z, p) =

∫
dq T̃ (z, p− q)w(z, q). (8)

The convolution kernel can be written explicitly as

T̃ (z, p) =

∫
dqR(z, p− q)Tcoh(z, q), (9)

where

Tcoh(z, p) =
1

2π~

∫
ds e

ips
~ t
(
z − s

2

)
t∗
(
z +

s

2

)
(10)

describes the coherent effect of the grating on the matter-
wave, and

R(z, p) =
1

2π~

∫
ds e

ips
~ R

(
z − s

2
, z +

s

2

)
(11)

accounts for the incoherent effects of the grating. Ex-
ploiting the periodicity of the grating, the transmission
function [Eq. (5)] and decoherence mask [Eq. (6)] can be
written in Fourier series as

t(z)=

∞∑
n=−∞

bne
2πinz
d ,

R
(
z−s

2
, z+

s

2

)
=

∞∑
n=−∞

Rn

( s
d

)
e

2πinz
d , (12)

where d is the grating period, bn = 1
d

∫ d
−d dz e

2πinz
d t(z),

and

Rn

( s
d

)
=

1

d

∫ d

−d
dze

2πinz
d R

(
z − s

2
, z +

s

2

)
. (13)

Finally, using Eq. (12) the convolution kernel takes the
form

T̃ (z, p) =
1

2π~
∑
n

e
2πinz
d

∫
ds e

i
~psB̃n

( s
d

)
(14)
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where

B̃n

( s
d

)
=
∑
j

Bn−j

( s
d

)
Rj

( s
d

)
. (15)

The B̃n’s are known as Talbot coefficients and character-
ize the fringe pattern due to quantum matter-wave inter-
ference1. These coefficients are conveniently expressed in
Eq. (15) in terms of the Fourier coefficients of the deco-
herence mask function Rn and of the transmission func-
tion bn. The latter are indeed contained in the Talbot
coefficients Bn

Bn

( s
d

)
=
∑
k

bkb
∗
k−ne

iπ(n−2k)s
d , (16)

which describe only the coherent grating effect.

III. COHERENT GRATING FOR LARGE
SPHERES

The periodic modulation of the phase of the matter-
wave quantum state of a polarizable particle operated
by the optical grating is at the basis of the Talbot ef-
fect. We consider the case in which the grating is re-
alised by retro-reflection of a laser pulse off a mirror.
This produces a linearly polarized standing wave field
E(r) = E0 êxf(x, y) cos(kz), where f(x, y) is the trans-
verse mode profile and êx is the polarization unit vector.
In the following, we assume that the dimension of the
particle is much smaller than the waist of the laser in
the transverse directions. This allows us to neglect the
transverse mode profile, and thus take f(x, y) ' 1.

The use of short laser pulses to generate the optical
grating [18] justifies the eikonal approximation used to
determine the coherent phase modulation and allows us
to neglect any transverse force. Thus, we concentrate
only on the reduced one-dimensional state of the matter-
wave along the standing-wave axis, i.e., we work in logi-
tudinal eikonal approximation. It should be noted that,
set-ups with laser pulses have been used in [21] and advo-
cated for ground and space based experiments aiming to
use massive objects [5, 6]. On the contrary, the use of a
continuous laser for the grating introduces limitations on
the speed of the particles which need to traverse the grat-
ing fast enough for the eikonal approximation to be valid.
See [19] for how to go beyond the eikonal approximation.

1 In order to arrive at the full-fledged interference pattern, the
evolution in phase space of the Wigner function from the source
to the grating and from after the grating to the detection stage
has to be obtained. Once the final Wigner function is given, the
interference pattern can be straightforwardly derived noting that
the position probability density function is just a marginal of the
Wigner pseudo-probability. See e.g. [20]

A. Polarizable point-like particles

Let us start by reviewing well-known results on the ef-
fect of the optical grating for particles in the Rayleigh
regime. Given k = 2π/λ, the wave-number of the stand-
ing wave, and the radius R of the particle, the condition
for the particle to be in Rayleigh regime reads kR � 1.
In this regime, the dipole interaction potential due to the
standing wave E is given by

V (z, t) = −1

4
Re(χ)|E(z, t)|2, (17)

where the polarizability χ is

χ = 4πε0R
3 ε(ω)− 1

ε(ω) + 2
= ε0εcV. (18)

In the last expression the relative permittivity ε is the
square of the complex refractive index n(ω) of the parti-
cle’s material, V = 4πR3/3 is the volume of the particle,
and we define εc = 3(ε − 1)/(ε + 2). When the polariz-
able point-particle interacts with the standing wave grat-
ing, and ignoring for the moment incoherent effects, its
quantum state (reduced on the longitudinal direction)
evolves unitarily as 〈z|ψ〉 → exp(iφ0 cos2 kz)〈z|ψ〉, where
the eikonal phase factor φ0 is obtained from integrating
the dipole potential over the laser pulse duration [5]

φ(z) =
1

~

∫
τ

dtV (z, t) = φ0 cos2 kz. (19)

In particular, we have that φ0 can be expressed in terms
of the material polarizzability as well as the laser param-
eters as

φ0 =
2Re(χ)EL
~cε0aL

, (20)

where EL is the pulse energy and aL is the spot area of
the laser.

B. Coherent grating for large particles

Having briefly reviewed the point-particle case, we
move now to consider spherical particles for which kR &
1. We follow Ref. [18], where the coherent effect of optical
standing-wave gratings on extended spherical particles is
analyzed. The expressions that we obtain in the follow-
ing will allow us to construct the Talbot coefficients in
the general case where incoherent effects are relevant.

When the point-like particle approximation ceases to
hold, a general treatment of light-matter interaction is in
order since the particle can no longer be approximated by
an electric dipole, and higher-order multi-poles ought to
be considered. For homogeneous spherical particles, Mie
scattering theory [22–24] is appropriate. In fact, such
theory offers exact solutions to Maxwell equations for
light scattering from spherical objects. In order to derive
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the optical potential we look at the longitudinal light-
induced force on the dielectric sphere. Note that, as re-
marked in Ref. [18], transverse forces and corrections due
to finite mode waist can be neglected owing to the short
laser pulses that we are considering. The light-induced
forces acting on the dielectric particle can be obtained by
integrating the electromagnetic stress-energy tensor over

a spherical surface surrounding the particle. We follow
Ref. [25], where a series-expansion expression of the net
radiation-force on a spherical particle of arbitrary size il-
luminated by a monochromatic light is obtained (see also
Ref. [18]). We report here the expression for the longitu-
dinal force on a dielectric sphere in vacuum in which we
are interested

Fz(z)

I0k−2c−1
= −(kR)4

∞∑
`=1

∑
m=±1

Im

[
`(`+ 2)

√
(`−m+ 1)(`+m+ 1)

(2`+ 3)(2`+ 1)

× (2a`+1,ma
∗
`m + a`+1,mA

∗
`m +A`+1,ma

∗
`m + 2b`+1,mb

∗
`m + b`+1,mB

∗
`m +B`+1,mb

∗
`m)

+m(2a`,mb
∗
`m + a`,mB

∗
`m +A`,mb

∗
`m)

]
,

(21)

where I0 = cε0|E0|2/2 is the intensity parameter of the
incident light. This series contains several coefficients
– a`,m, b`,m, A`,m, B`,m– that are derived starting from
Mie scattering theory and that we report in Appendix A
for ease of exposition. As the longitudinal force due the
linearly polarized standing-wave E is of the form Fz(z) =
−F0 sin 2kz, the eikonal phase φ0 can be written as

φ0 =
8F0EL

~cε0aLk|E0|2
. (22)

In order to determine F0, and thus φ0, we can just eval-
uate Eq. (21) at z = −λ/8. Fig. 2 shows an example
of its behaviour for a Si sphere at λ = 354nm with the
bulk refractive index n = 5.656 + i2.952 (as tabulated
in Ref. [26]). As expected, the Rayleigh prediction (red
dashed line) stops being valid for kR & 1 and F0 stops
growing with the volume of the sphere, showcasing an

FIG. 2. (Colors online) F0 (in units of I0/(ck
2)) as function of

the size parameter kR for a Silicon (Si) sphere at λ = 354nm,
where the bulk refractive index [26] is n = 5.656+i 2.952. The
solid green line is the result of Mie theory. The dashed red
line is the prediction resulting from Rayleigh approximation.

oscillatory behaviour. While a physical intuition behind
this behaviour is provided in Ref. [18], here we focus on
the fact that, at the values of kR corresponding to the
nodes of the oscillations, the phase grating will be com-
pletely absent. This suggests that care should be used
when deciding the size of large particles, so as to maxi-
mize the grating effects and avoid regions where the grat-
ing effect disappears. Moreover, one should bear in mind
that the grating effect of the optical standing wave is
greatly reduced for large particles with respect to the
prediction of Rayleigh theory.

Another interesting point to consider here is the sen-
sitivity of F0 to changes in the refractive index. In-
deed, it appears that the behaviour of F0 against kR,
can change significantly under variations of the refrac-
tive index. Fig. 3 shows the effect of a ±5% variation in
the value of the refractive index for fused silica at 200nm.
Fluctuations in the real part of n can lead to quantita-
tively significant changes: the relative error in F0 at the
maxima can be as large as 10% and even larger at the
nodes. On the other hand, analogous inaccuracies on the
imaginary part of n lead to less important effects.

We can conclude that, when doing Talbot-Lau interfer-
ometry with large spherical particles, the refractive index
needs to be carefully estimated. Thus, the use of the bulk
material refractive index could be a too gross approxima-
tion to the sphere refractive index. This point deserves
to be accounted for when planning for experimental re-
alizations.

IV. INCOHERENT EFFECTS

A. Scattering

In order to describe the incoherent effects due to scat-
tering of standing wave photons we rely on the theory de-
veloped in [27] for light-matter interaction in Mie regime.
According to [27], the effect of the scattering is described,
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FIG. 3. (Color online) F0 (in units of I0/(ck
2)) as a function

of the size parameter kR for a fuse silica (SiO2) sphere at
λ = 200nm, where the bulk refractive index has been roughly
estimated as n = 1.3 + i 0.8 from tables in the supplementary
material of [5]. The black dashed line is F0 at n = 1.3 +
i 0.8. The green region represent the result of a ±5% error
on the real part of the refractive index. Inset: the red region
represents the result of a ±5% error on the imaginary part of
the refractive index.

under the assumption that the laser waist is much bigger
than the size of the particle, by the action of the Lindblad
super-operator

Lsca(ρ) = |α(t)|2
∫
dkδ(ωk − ω0)

×
(
2Tk,c(r̂)ρT ∗k,c(r̂)−

{
|Tk,c(r̂)|2, ρ

})
,

(23)

where the collisional operators are defined as

Tk,c(r̂) =
ic2

2πω

∫
dk′ 〈k′|c〉f(k,k′)e−i(k−k

′)·r̂ (24)

with f(k,k′) the Mie scattering amplitude and |c〉
the mode function of the standing wave, i.e., 〈r|c〉 =
1/
√
V0 f(x, y) cos(kz) (V0 is the mode volume of the

standing wave). Assuming the free evolution is negligible

during the interaction time, and working in longitudinal
eikonal approximation, the effect on the matter-wave due
to the scattering of grating photons is described by the
action of the scattering mask Rsca(z, z′) = e

∫
dτLsca(z,z

′)

in position representation, where

Lsca(z, z′) = |α(t)|2
∫
dkδ(ωk − ω0)

[
2Tk,c(z)T ∗k,c(z′)

−|Tk,c(z)|2 − |Tk,c(z′)|2
]
.

(25)
In our case, the standing wave is described in good ap-
proximation by E(r) ∼ E0êx cos(kz). Thus, using the
mode function 〈z|c〉 = 1/

√
V0 cos(kz), one can show that

Tk,c(z) =

√
2π3

V0

(
T ∗k0,k(z) + T ∗−k0,k(z)

)
. (26)

Substituting z → z− = z − s/2 and z′ → z+ = z + s/2,
and with the help of the above equation, we have

Lsca (z−, z+) =
|α|2πc
V0

[∫
dΩ|f(k, kn)|2

(
e−i(1−nz)ks−1

)
+

∫
dΩf∗(k, kn)f(−k, kn)e−i2kz

(
eiknzs − cos(ks)

)
+

∫
dΩf∗(−k, kn)f(k, kn)ei2kz

(
eiknzs − cos(ks)

)
+

∫
dΩ|f(−k, kn)|2

(
ei(1+nz)ks − 1

)]
.

(27)
We notice that the spherical symmetry of the nano-
particle reflects in the following symmetry of the scatter-
ing amplitude2 f(−k, kn) = f(k,−kn). Exploiting the
symmetry, and through lengthy but otherwise straight-
forward algebra, we finally get

Rsca (z−, z+) = exp(F + a cos(2kz) + ib sin(2kz)) (28)

where

a =
2πc

V0

∫
dτ |α(τ)|2

∫
dΩ Re

(
f∗(k, kn)f(−k, kn)

)
[cos(knzs)− cos(ks)],

b =
2πc

V0

∫
dτ |α(τ)|2

∫
dΩ Im

(
f∗(k, kn)f(−k, kn)

)
sin(knzs),

F =
2πc

V0

∫
dτ |α(τ)|2

∫
dΩ |f(k, kn)|2[cos((1− nz)ks)− 1]. (29)

2 Note that, in Rayleigh approximation a further symmetry ap-
pears because the particle is treated as point-like. In partic-
ular, f(−k, kn) = f(k, kn). Employing this symmetry, it is
straightforward to obtain the Rayleigh scattering expressions
from Eq. (27) [18].

Note that
∫
dτ |α(τ)|2 can be expressed in terms of the

laser pulse parameters as
∫
dτ |α(τ)|2 = 4V0EL/(~cω aL).

We can now compute the Fourier coefficients of the
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scattering mask Rsca(z, z′) which enters in the Talbot
coefficients of Eq. (15)

Rn

( s
d

)
=

1

d

∫ d/2

−d/2
dzei2π

nz
d ea cos( 2πz

d )+ib sin( 2πz
d )+F

= eF
(
a− b
a+ b

)n/2
In(sign(a− b)

√
a2 − b2).

(30)
We can then use Graf addition theorem to rewrite the
Fourier coefficients as

Rn

( s
d

)
= eF

∑
k

Ik+n(a)Jn(b). (31)

Exploiting this result we can conveniently write the Tal-
bot coefficient, modified by the presence of scattering
mechanisms, as

B̃n

( s
d

)
= eF

∑
k,m

Jn−k(ξcoh)Ik+m(a)Ik(b), (32)

where ξcoh = φ0 sin
(
πs
d

)
, and using again Graf theorem

obtain

B̃
( s
d

)
=
∑
k

Λ
n+k

2 Jk+n

(
sign(ζcoh − a)

√
ζ2coh − a2

)
Jn(b)

(33)
with Λ = eF (ζcoh + a)/(ζcoh − a).

B. Absorption

Apart from the scattering of grating photons, also their
absorption gives rise to an additional incoherent effect.
This effect is relevant unless very low-absorbing material
spheres are employed, and it is amplified by the size of the
spheres. However, while a quantum formalism beyond
the point-particle approximation exists for the descrip-
tion of scattering of grating photons, no such formalism
is available for absorption.

In order to estimate the incoherent effect due to ab-
sorption, we follow here a semiclassical approach, fos-
tered in Ref. [18], which is valid in the Rayleigh regime.
Nonetheless, we will improve on it by considering the ac-
tual number of absorbed photons, which depends on the
Mie absorption cross-section. The result coming from
this analysis only embodies a rough estimate of the real
effect of absorbed photons and, in general, results in a
lower bound on the actual amount of decoherence. We
comment on how to possibly extend this approach at the
end of this Section.

In Ref. [18] a Lindblad (super)-operator describing the
incoherent effect of photon absorption is obtained by
treating absorption as a Poisson process and using the
corresponding noise in a stochastic Schödinger equation
describing the evolution of the state of an absorbing par-
ticle. The end result, after averaging, is a Lindblad-like

equation with jump operators describing the evolution of
the state of the particle every time an absorption event
happens. In order to determine the jump operator char-
acterizing absorption, consider a spherical particle in the
Rayleigh limit with complex polarizability, and the ef-
fect of absorbing a photon from the linearly polizarized
incident light with the mode function f(r)êx. As the
mode function can be expanded on a basis of plane waves
f(r) =

∑
fk exp ik · r, and the absorption of a plane

wave photon amount to a shift in momentum space by
~k, the effect of absorbing a photon from the incident
light transforms a momentum state of the particle as

|p〉 →
∑

fk|p + ~k〉 = f(r)|p〉. (34)

Thus, the effect of the jump operator is given simply by
the scalar mode function. The rate at which the absorp-
tion happens is related to the number of photons in the
light field |α|2 times the single photon absorption rate
cσabs/V0, where σabs is the absorption cross-section and
V0 is the mode volume of the incident light.

For a standing wave, and neglecting the effect on the
transverse motion of the particle, the action of the Lind-
blad operator on the particle’s density matrix reads

Labs(ρ) =
cσabs
V0
|α(t)|2

[
cos(kz)ρ cos(kz)− 1

2
{cos2(kz), ρ}

]
,

(35)
where the time dependence of |α|2 reflects the fact that
we consider a pulse.

In order to better estimate the effects of absorption for
large particles, a first crude approximation is to consider
the same Lindblad super-operator as in Eq. (35) whilst
considering the right absorption cross section as given
by Mie scattering theory. This is given by σabs = σext −
σsca, i.e. the difference between the total extinction cross-
section and the scattering one. Explicitly

σabs =
2π(2n+ 1)

k2

∞∑
n=1

(
Re (an + bn)− |an|2 −

∣∣bn|2 ) ,
(36)

in terms of the Mie coefficients that can be found in Ap-
pendix A.

With these expressions at hand, we can follow again
the steps in Sec. IV A, while including also the absorption
super-operator. The decoherence mask due to absorption
is given by

Rabs(z, z
′) = exp

[
−2n0 sin2

(
k0
z + z′

2

)
sin2

(
k0
z − z′

2

)]
,

(37)

where n0 is the mean number of absorbed photons at the
anti-nodes n0 = 4σabs

hc
EL
aL
λ = I0

cF0
σabsφ0. Note that, by

substituting z → z− and z′ → z+ and including also the
effect of scattering, Eq. (30) is modified to



7

Rn

( s
d

)
=
eF

d

∫ d/2

−d/2
dz e−2πin

z
d ea cos( 2πz

d )−b sin( 2πz
d )−2n0 sin2(π zd ) sin2(πs2d )

=
eF−

cabs
2

d

∫ d/2

−d/2
dze−2πin

z
d e(a+

cabs
2 ) cos( 2πz

d )−b sin( 2πz
d ),

(38)

where cabs = n0(1 − cos(πs/d)). We can now follow ex-
actly the same steps as for the scattering case and end
up with new Talbot coefficients that include absorption

B̃n

( s
d

)
= eF−cabs/2

∞∑
k=−∞

(
ζcoh + a+ cabs/2

ζcoh − a− cabs/2

)n+k
2

Jk(b)

× Jn+k
(

sign(ζcoh − a− cabs/2)
√
ζ2coh − (a+ cabs/2)2

)
.

(39)
It should be noted that, the only difference between the
expressions for absorption presented here and the ones in,
e.g., [18] is in the use of the Mie absorption cross-section.

The treatment of the absorption decoherence is based
on a semiclassical approach in the Rayleigh limit, i.e.,
treating the particle as point-like. While we have refined
the result by using the Mie theory absorption cross sec-
tion, the formalism does not properly account for the
finite size of the particle and the variation of the light
intensity across it. In order to extend the formalism be-
yond the Rayleigh approximation, we look at the non-
conservative part of the classical force acting on a polar-
izable particle of finite size interacting with the electro-
magnetic field

Fnc(r) = −ε0ε
I
c

2

∫
Vn(rt)

dr Im{[∇ · E∗(r)]E(r)}, (40)

where εIc is the imaginary part of εc. The appearance of
a non-conservative force is an artifact of having ignored
the dynamics of the internal degrees of freedom (d.o.f.s)
of the particle. If the latter were to be included, the
complete dynamics would be fully unitary and no non-
conservative force would appear. While, as far as we
know, a full model for dielectric particles is not present,
for a single atom interacting with a single quantized field
mode such a treatment is viable [28, 29] and leads in-
deed to the absorption and scattering of photons by the
atom. Notwithstanding the technical details, from the
form of the non-conservative classical force we could ar-
gue that, replacing ∇·E with the particle charge density
ρq and including its dynamics, a potential term coupling
the incident field with the internal phonons modes would
arise. These terms will be analogous to the coupling be-
tween incident and scattered electric field used in [15],
to derive Eq. (25), with now instead of the scattering
amplitudes the absorption ones. This suggests that the
right form of the absorption term should be similar to
Eq. (27) with the appropriate amplitudes and phononic
mode functions. However, as already mentioned, a mi-
croscopic model for the interaction between the internal
d.o.f.s and light is currently missing.

C. Classical Limit

In near-field matter interferometry, a fringe pattern
may also appear when a classical description of the par-
ticle – in terms of ballistic trajectories – is adopted.
This is due to partial reflection by the light grating [16].
Therefore, a non-vanishing fringe contrast is not sufficient
to prove genuine quantum interference and one would
have to resort to a direct comparison between the quan-
tum and classical models for the dynamics. The clas-
sical behaviour can be obtained as the limiting case of
eqs. (10), (11) for ~→ 0 (applied to a classical probabil-
ity distribution in phase space). Here, we do so for the
coherent and incoherent convolution kernel, for both the
scattering and the absorption case, as the ~→ 0 limit of
the quantum expression.

To show how the limit is performed, it is convenient to
consider first the coherent convolution kernel eq. (10)

Tcoh(z, p) =
1

2π~

∫
ds e

ips
~ e−

i
~
∫ t
0
dτ [V (z−s/2,τ)−V (z+s/2,τ)],

(41)

where we used Eq. (5). We first rescale the integration
variable as s → s~ to have ~ appearing only in the ar-
gument of the exponential, and then Taylor expand the
potential V (z ± s~) to first order in ~. In this way, we
get

Tcoh(z, p) ' 1

2π

∫
ds ei s (p+

∫ t
0
dτ∇V (z,τ))+O(~), (42)

which, upon taking the limit ~→ 0, gives us the classical
convolution kernel

Tclass(z, p) = δ

(
p+

∫
dτ∇V (z, τ)

)
. (43)

Following the same logic, the classical limit of the deco-
herence convolution kernels can be obtained. It should
be noted that, re-scaling s and then expanding around
~ = 0 is equivalent to only performing an expansion
around s = 0 of the argument of the exponential in the
Fourier transform of the kernels.

Consider Eq. (11) with Rsca(z−, z+) given by Eq. (28).
Rescaling the integration variable, the dependence on ~
goes only in the functions a, b, F in Eq. (29). It is crucial
to note at this stage that, for the electromagnetic field,
the identification of |α|2 with the classical intensity I(τ)
over ~ requires to expand the trigonometric functions in
a, b, F to first order in ~, in analogy with the coherent ker-
nel. It is easy to see that the only non-vanishing contri-
bution to the classical decoherence kernel arise from the
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(c)

(a) (b)

FIG. 4. (Color online) Effect of the optical grating, photon scattering, and absorption on the interference pattern in the classical
limit. Here we use the parameters in Table I with m = 106 amu and the corresponding x = kR ∼ 0.098, where the use of
the Rayleigh limit is well justified. Panel (a) shows the classical fringe pattern, when varying the maximum phase modulation
φ0, without decoherence, i.e., what we obtain by taking the classical limit as discussed in the main text. In panel (b), the
decoherence terms due to scattering and absorption are evaluated using the same integral kernels as for the quantum case. This
is what has been advocated previously in the literature (cf. Ref. [17]). Panel (c) shows an instance of the interference patterns
for φ0 = 4. The solid black curve corresponds to panel (a), the blue dashed curve to panel (b), and the red dotted curve is the
quantum interference pattern including decoherence due to scattering and absorption of the grating photons. Due to different
notations, the Rayleigh limit of the Lindblad super-operator in Eq. (27) differs from Eq. (2.24) in Ref. [18] by a factor of 1/4π.

function b. The same argument shows that, the classi-
cal limit of the absorption decoherence kernel in Eq. (37)
vanishes, giving no contribution to the classical dynam-
ics. However, a more refined treatment of absorption
decoherence — along the lines depicted in Sec. IV B —
should give a contribution similar to the one found for

scattering. It is interesting to note that, treating the
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FIG. 5. (Color online) Effect of the coherent grating and photon scattering on the interference pattern in the classical limit.
Here we used the parameter in Table I with a mass m = 108amu that corresponds to a value of x = kR ∼ 0.46, for which the
Rayleigh approximation is not well-justified. The figure shows an instance of the interference patters for φ0 = 2, where only
the decoherence due to scattering of grating photons is considered. The solid black curve corresponds to the classical limit as
obtained in this work. The blue dashed curve corresponds to the classical limit obtained without modifying the incoherent
kernels from the quantum case. The red dotted curve is for the quantum case. Notice the striking difference between the two
classical interference patters, which is larger with respect to the Rayleigh case given the greater effect of scattering decoherence
in the Mie regime.

light-matter interaction in Rayleigh limit would lead to

no decoherent effect for the classical dynamics3 whatso-
ever, in contrast to what has been argued in the existing
literature. This observation could already be relevant for
upcoming experiments working in the Rayleigh approx-
imation, as it would help identify the working point at
which the differences between classical and quantum in-
terference patterns are maximum [cf. Figs. 4 and 5].

V. REALISTIC EXAMPLE

We now study the effects of scattering and absorption
of grating photons on the interference pattern. The figure

3 In the Rayleigh approximation, the b term in Eq. (29), is iden-
tically zero due to the symmetry property of the scattering am-
plitude.

of merit embodied by the sinusoidal fringe visibility Vsin
is used here to complement the predictions coming from
the sue of the interference pattern. As outlined in Ref. [5,
18], the interference pattern is often dominated by the
first Fourier amplitude. Thus, the fringe contrast is well
described by [cf. caption of Table I]

Vsin = 2

∣∣∣∣∣B̃1

(
t1t2

tT (t1 + t2)

)∣∣∣∣∣ exp

(
− 2π2σ2

zt
2
2

d2(t1 + t2)2

)
. (44)

Here we focus on the fringe visibility of the quantum in-
terference pattern. We follow a recent proposals for an
experimental realization of matter-wave interferometry
with nano-particles [5] from which the parameters in Ta-
ble I have been drawn. There, silicon (Si) nano-particles
with a mass of 106amu have been considered. For such
a mass, the scattering of grating photons is completely
negligible, while the effect of absorption is not insignif-
icant. Nevertheless, the results obtained from Mie and
the Rayleigh theory for both scattering and absorption
are in good agreement, as it should be expected given the
value x = kR ∼ 0.098 of the parameter controlling the
validity of the point-like approximation.
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Laser: λ = 2d = 354 × 10−9m

ρSi = 2.3290 × 103Kg/m3 T = 20 × 10−3K

Refractive Index at λ: n = 5.656 + i 2.952

Trapping frequency: ν = 200 × 103Hz

Interferometer:

d = 177 × 10−9m t1 = 2tT t2 = 1.6tT

TABLE I. Parameters considered for Si spheres. The other
parameters entering the generalized Talbot coefficients and
the interference pattern can be inferred from the table. In
particular, σz =

√
kBT/(4π2mν2), D = d(t1 + t2)/t1, tT =

d2m/h. The massm of the spheres enters also in the definition
of the sphere radius viaR3 = (3/4π)(m/ρSi), greater the mass
larger its radius.

However, a mass of 108amu makes x = kR ∼ 0.46.
Although this is a modest increase with respect to the
previous case, it turns out that the Rayleigh approxi-
mation is no longer well-justified. Fig. 6 shows the dif-
ference in the predictions obtained using the Rayleigh
approximation versus those arising from Mie theory. It
should be noted that, in Fig. 6 we consider only decoher-
ence effects due to scattering of gratings photons, upon
which we have full control. Thus, no decoherence effect
due to black-body radiation, gas particle collisions, and,
most importantly, absorption of grating photons is con-
sidered in this case. As can be easily seen, the visibility
is strongly affected. Even more significantly, the form
of the interference pattern is significantly modified, the
deformation being even more important at higher values
of the mass parameter.

Finally we note that, while we employ the sinusoidal
visibility to show the results associated with the use of
Mie theory, this is not a very useful indicator when it
comes to comparing the quantum prediction for the in-
terference pattern with the classical shadow pattern. In-
deed, while the quantum visibility could be smaller than
its counterpart corresponding to the classical pattern, the
interference figures could still be clearly distinguishable
due to the position and shape of the oscillatory peaks.
We stress here that better figure of merit should be used
in order to certify the quantumness of an observed inter-
ference pattern.

VI. CONCLUSION AND DISCUSSION

We have addressed the Talbot-Lau effect beyond the
Rayleigh limit, accounting for the suppression of coherent
grating effects due to large-size particless, scattering and
photon absorption.

We have only considered polarizable spherical particles
and neglected their internal degrees of freedom. These

approximations are the usual workhorse in many matter-
wave experiments and allows to neglect decoherence ef-
fects due to coupling between the center-of-mass motion
and other degrees of freedom.

The main results of this work are the expressions
needed to describe the coherent and incoherent effects
– beyond the Rayleigh approximation – due to optical
grating. Nonetheless, the discussion of the classical limit
provides some interesting insight. Indeed, we have shown
that the classical limit of the decoherent effects due to
scattering and absorption of grating photons is qualita-
tively different from the results presents in the current lit-
erature. In particular, it appears that when the Rayleigh
approximation is well justified then, in the classical limit,
no effect due to scattering and absorption survives, leav-
ing only the deflection of ballistic trajectories due to the
standing wave. While relevant for current experimental
proposals, this result has striking consequences also for
future experiments aiming to study large particles super-
positions as it significantly reduces the decoherence sup-
pressing the would-be classical shadow effect from which
the quantum interference pattern needs to be distinguish-
able.

Our study is motivated by the need to account for in-
creasing sizes of particles in experiments aiming at prob-
ing the quantum-to-classical transition. However, a num-
ber of assumptions were necessary in order to develop
our framework. Two of them are particularly relevant
for future endeavours: spherical symmetry of the par-
ticles, and their homogeneity. While it could still be a
very good approximation, Mie theory is not rigorously
applicable when such assumptions are relaxed. More-
over, additional decoherence effects can arise due to the
coupling between the center of mass and rotational de-
grees of freedom of a non-spherical and/or an-isotropic
object, and by coupling with internal degrees of freedom.
The assessment of such questions will be the focus of our
future investigations.
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Appendix A: Mie Scattering

In this appendix we collect the expressions used in the
main text which derive from Mie scattering theory. We
will not go into the detail of the derivation as we refer
mostly to [18, 24] for an exhaustive treatment. Nonethe-
less, we will spend some word on how we compute the
scattering amplitudes used in section IV.

Mie theory serves to obtain exact solution for the scat-
tering of light off spherical homogeneous particles of arbi-
trary size. In a nutshell, consider a plane electromagnetic

wave E0 impinging on an homogeneous sphere. The lat-
ter will develop an internal field Eint and modify the in-
cident field adding a scattering component, in such a way
that the external field is Eext = E0 +Es. From the sym-
metry of the problem, both the internal, incident, and
scattered field can be expanded in spherical harmonics.
Then, by imposing boundary condition on the trasverse
fields at the sphere surface (plus the fact that the inter-
nal field ought to be finite at r = 0), the scattered field
can be related to the incident one thus obtaining scat-
tering amplitudes and scattering — and absorption —
cross-section(s).

The scattering coefficients, characterizing the scatter-
ing of a plane wave moving along the z-axis and linearly
polarized in the x-direction, are given by

an =

√
εψn(
√
εx)ψ′n(x)− ψn(x)ψ′n(

√
εx)√

εψn(
√
εx)ξ′n(x)− ξn(x)ψ′n(

√
εx)

(A1)

bn =
ψn(
√
εx)ψ′n(x)−

√
εψn(x)ψ′n(

√
εx)

ψn(
√
εx)ξ′n(x)−

√
εξn(x)ψ′n(

√
εx)

. (A2)

where x = kR, and ψn, ξn are Riccati–Bessell functions,
which are often expressed in terms of spherical Bessell j
functions and spherical Henkel h(1) as

ψn(ρ) = ρjn(ρ) (A3)

ξn(ρ) = ρh(1)n (ρ). (A4)

Here, as in the main text, ε is the relative permittivity of
the sphere’s material.

As it should be clear from section IV, in order to de-
termine the scattering amplitudes to obtain the incoher-
ent effect of scattering of grating photons, it is enough
to consider the aforementioned case of an incident plane
wave linearly polarized in the x-direction. The scattered
field is related to the incident one via a vector scattering
amplitudes X

Es ∼
eik·r

kr
XE0.

For spherical particle, the latter can be written in terms
of the scalar scattering amplitude f(k,k′) and the polar-
ization direction of the scattered field ês as

X =

√
S2
2 cos2 φ+ S2

1 sin2 φ ês, (A5)

where θ is the scattering angle and φ is the azimutal
angle with respect to the polarization direction. Thus
the scattering amplitude reads

f(k,k′) =

√
S2
2 cos2 φ+ S2

1 sin2 φ, (A6)

where

S1 =
∑ 2n+ 1

n(n+ 1)
(anπn + bnτn) (A7)

S2 =
∑ 2n+ 1

n(n+ 1)
(anτn + bnπn). (A8)

http://dx.doi.org/ 10.1103/PhysRevA.70.053608
http://dx.doi.org/10.1103/PhysRevA.78.023612
http://dx.doi.org/10.1103/PhysRevB.27.985
http://dx.doi.org/10.1103/PhysRevB.27.985
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The amplitude scattering matrix elements S1,2 are given
in terms of the scattering coefficients (A1) and the an-
gluar functions

πn =
P 1
n

sin θ
= −dPn(cos θ)

dθ

1

sin θ
(A9)

τn =
dP 1

n

dθ
=

d

dθ

(
−dPn(cos θ)

dθ

)
(A10)

where Pn(cos θ) are the Legendre polynomials of degree
n.

Note that, in Rayleigh limit (x � 1) the scattering
coefficients

a1 = − i2x
3

3

ε− 1

ε+ 2
+O(x5)

dominates and the scattering matrix elements become

S
(Ray)
1 =

3

2
a1, S

(Ray)
2 =

3

2
a1 cos θ

and we recover the Rayleigh scattering result

f(k,k′) = S
(Ray)
1 sinχ, (A11)

where χ is the angle between the polarization direction
of the incident light and the scattering direction.

For what concern Eq. (21), we need a slight extension
of Mie theory to account for interaction with standing
waves. The way to obtain the final solution is the same
as depicted before. We refer the reader to [18, 25] for
the details of the calculation. Here we limit ourselves
to report the expressions which appears in (21). The
coefficients A`m=±1, B`m=±1 are given by

A`m =
i`+1

√
4π(2`+ 1)

2α2
√
l(l + 1)

mζ(`+ 1) (A12)

B`m =
i`
√

4π(2`+ 1)

2α2
√
l(l + 1)

ζ(`), (A13)

where ζ(`) = 1
2

[
(−1)` exp(−ikz) + exp(ikz)

]
and z rep-

resents the position of the center of mass of the sphere.
The remaining coefficients a`m, b`m appearing in Eq. (21)
are obtained by combining A`m=±1, B`m=±1 with the
scattering coefficients (A1)

a`m = a`A`m (A14)

b`m = b`B`m. (A15)
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