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OPTIMAL PRELTMINARY PROPELLER DESIGN
USING NONLINEAR CONSTRAINED MATHEMATICAL PROGRAMMING TECHNIQUE

ABSTRACT

Presented i3 a nonlinear constrained optimization technique
applied to optimal propeller design at the preliminary design
stage. The optimization method used is Sequential Unconstrained

Minimization Technique - SUMT, which can treat - equality and
inequality, or only inequality constraints, Both approaches are
shown, Application is given for Wageningen B-zeries and

Gawn series propellers. The problem is solved on an Apple II
microcomputer, One of the advantages of treating the constrained
problem is that the user's knowledge about propellers is not
essential, the process is automatie. More realistic propellers
are found when design constraints such as Dnax* Nmine and/or
Ae/Ao_ ., are.applied. Treating blade area ratfo as an indepen-
dent variable shows that, for some cases, higher BAR may be a
better choice than lower BAR value.
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1. INTRODUCTION

The objective is to present a possible technique for choosing the
optimal propeller characteristiecs with the help of a micro-
computer. The paper does not give full theoretical explanations,
but shows the results obtained when a constrained nonllinear
programming method is applied to the propeller preoblems,

Since the presentation of B-series propeller results Iin the
polynomial form (initially im [1] and in the final form in [21,
almost all open-water propeller design computer programs have
used them., 7Tt is not only that the Wageningen B-series polya
nomials are attractive for - computer applications, but the
results obtained are reasonably correct, Therefore , these
polynomials form the basis for the optimization process,

The method presented has been developed from the following
previous. attempts at propeller performance optimization:

Triantafyollou in [31, and similarly Bernitsas and Ray in [4] and
[5], treat the choice of optimal propeller characteristics as an
unconstrained mathematical programming preblem, With the help of
classical optimization technique of Lagrange multipliers, and
after the elimination of the single multiplier as it was not of
any practical interest, two equations with two unknowns (J and
P/D) were derived, This yielded a single stationary point which
glves the maximum propeller efficiency'qo. Cavitation was not
considered. Therefore, iterations were necessary before a final
result was obtained (the same as would be done 1f the calecula-
tions were carried out by hand). '

Markussen (6] incorporated a cavitation equation prior to
treating the optimal propeller design problem with the help of
Lagrangian multipliers, After the elimination of multipliers,
three simultaneocus equations in three unknown variables, namely,
blade area ratio - BAR or Ae/Ao, piteh ratio -« P/D, and advance
coefficient - J, followed. This was solved with the iterative
process of Newton-Raphson, For constant BAR this technique re-
duces to the same as given in [3] and [4% and 5],

It should be noted that 1in both cases the unconstrained
optimization technique was used, i.e. there were no boundaries on
the main variables J, P/D, and Ae/Ao. Therefore they could have
"any values between -oo and +o00 although feasible boundaries or

censtraints, naturally, do exist. Practically, 1t follows that

the above apprecaches are useful only 1f the optimal solution is
somewhere inside the boundaries, whieh is, unfertunately, not
known in advance. This further means that the process of choos-
ing an optimal propeller must be controlled throughout,



Incorporating the following constraints:
0<J<JKT=0
0.5<P/D<1.u
0.3<Ae/00<1,05

which are valid for the Wageningen B-series, and i{if the same
method of Lagrange multipliers was used, it would be necessary to
intreduce slack variables and solve 16 equations with 1 unknown
values, although only three are of practical interest, The other
poessibility is the elimination of the econstraints by the
transformation of the variables, This would simplify the problem
(reduce the number of coenstraints te be considered), but usually
complicates it by introduecing extra lecal minima [71.

These were the reasons for the application of the most compli-
cated mathematical programming technique - neoenlinear constrained
optimization, whiech in this particular case gave very
satisfactory results,

Since the published propeller pelynomials are used extensively,
they will be briefly explained. The nonlinaar optimization tech-
nique used, and the application of the eptimization on the
prepeller design problems are given, The results included show
that it 1is not always necessarily true that the propellers with
the lowest BAR are most efficient.

2. POLYHOMIAL EXPRESSIONS OF PROPELLER SERIES

Wageningen B-series propeller polynomial expressions for thrust
and torque goefficients. for two to seven blades and Reynolds
number 2<10", were published by Osterveld and Oossanen in [2].
The pelynomials were given in the following form:

Kp= 2Co (03 (P/D)(Re/ o) V()Y
Kg= 2 Co()S(P/DI (Ae/n0)U( )Y

The coefficients are given in tabular form and hold good for.
blade thickness ratio (t/chL753=f(Z.Ae/Ao). Correction for Rey-
nclds number effect is given as KpsKg=f(J,P/D,Ae/A0,Z,l0g(Rn)).
The effect of change in blade thickness can be taken into account
with the correction of Rn. However, from the diagrams in [2] it
can be seen that the effect of Reynolds number 13 not
significant., That is, the correction of KT and Ko may be omitted
in the preliminary design stage, Similarly, Figure 1, taken from
(8], shows the effect of 1007 thickness change on the propeller
efficlency Mo and pitch.
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It should be noted that with the help of regression analysis the
fairing of the B-screw series test results has been completed and
that the area of applicability extended,

The Gawn three bladed series was presented in paper [9] in the
polynoemial form in an identical way to the B-series, Regression
was used only to calculate the difference in K and X, between B-
series and Gawn series. That ‘is the reason the terms of the
polynomials are the same, but of different magnitude, It 1s
stated in [9] that the applicability of Gawn polynomials is in
the range
3<CZ<Y

0.6<P/D<1.6
0.5<Ae/A0< 1.1

Correction for change of Reynolds number or thickness ratio is
not mentioned in the above paper.

The same confidence should not be given to the Gawn poclynomials
as to the B-series polynomials., The extreme values Shoculd be
avolded, particularly for low J values, Taking inte acccocunt that
this 13 the only analytical representation of the segmental
section Gawn series, the pelynomials are very helpful, particu-
larly since large scale Gawn diagrams are not widely available,

3. OPTIMIZATION

Every design problem may be considered as optimization. However,:
cptimization as a mathematical programming technique 1is
relatively new, and is still developing, Optimization routines
are essential parts of many computer programs, Specifically CAD,
They are used in almost every branch of science, from engineering .
to chemistry and economics, :



Many bcoccocks have dealt with this subject, some of which are given
in references [10] to [141],

There are several classifications of optimization, for example:
- linear vs nonlinear problemnm

- constralned vs unconstrained problem

- ocne variable vs n-varlable problen

- continuous vs discrete function

- search vs gradlent methods,

The problem in hand is nonlinear, with equality and inequality
constraints, multivariable, and continuoua. A gradient method was
chosen since textbooks dealing with optimization recommend them as
more effliclent, However, search methods, particularly Hook and

Jeeves, are widely used by engineers even when the function is .

continuous, Perhaps this is because they are easier to understand
and therefore to program,

Search methods do not need partial derivatives, but since less

information is given, more function evaluations are necessary.

It 1s likely that the effort involved in evaluating the expres-~i
sions for first partial derivatives will pay off in the effi--:

ciency and reliability. Tn the propeller problem case, although

only three variables are present, the polynomials are relatively

long, so the number of function revaluations should be minimized.

Since It was thought ¢that more complicated problems could be
solved with the same optimization routine, a more powerful
method was the obvious chelice,

One of the metheds which can cope with the abeve problems, and-

which can be utilized on the microcomputer, 1is Sequential -

Unconstralned Minimization Technique -~ SUMT. Developed in the

sixties by Fiacco and MecCormieck, 1t {38 referenced in most books:

dealing with optimization methods. SUMT is today considered as
an "old fashioned" method, but, as i3 cited in [13] "recently de=-

veloped methods tend to be so complex that it is unlikely that
the typical user will have the time or inclination to write his"

own computer program",

Taking all this into censideration, plus additional reasons
outside the scope of this paper (for example the various

published test cases solved with various optimization methods)f__iV‘

the SUMT was chosen and will be briefly explained in the next
section, '

3.1. Sequential Unconstrained Minimization Technique - SUMT

SUMT 1is a penalty functicen method, 1i.e, it is necessary to
transform a censtrained problem 1into an unconstrained one which
gives the same solution., When the constraint is viclated a high
value is given to the original objective function by a penalty
term. If the constrained problem is to minimise f{X), then a



transformed unconstrained function to be minimized would be

f¥(X)=f(X)+P(X), where P(X)isthe penalty term., The penalty term has .
a speclial form which enables it to have a high value when one of -

the constraints is violated.

If only inequality constraints are present c,(X)30, 1=1,2,... m,
the transformed unconstrained function may be like this:

¥R, X)=f(X)+R1/ ey (X)) ].

If c;(X)>0 and R are sufficlently small, then f£¥(R,X)mf(X)., -
However, 1f c;(X)<0 than a penalty term will be relatively high,: '’

and the unconstrained optimization routine will move the solution .. - =

in a feasible direction., SUMT actually solves the sequences of

the unconstrained problem f¥(R,X), for a sequence of R valuesfﬁ'fé:

which tend to zero. More about SUMT can be found in [15].

For practical solution of the propeller optimization problem a
routine given in Reference [12] was adapted te handle the

equality as well as inequality constraints, The flow chart for .
SUMT is given in Flgure 2,

Flow Chart for SUMT

Start with a
- feasible point x,

Find minimum of
f"lX.Rkl,

Y

Terminate

Setk=k+1

SetR , 4 =R /Cq

Take x=x qp 25
new starting point

i

Figure 2

In the SUMT routine the unconstrained minimization is handled by
the Davidgn-Fletcher-Powell technique which i1s a gradient based
method, To ensure that the search is always in the feasible
region a step length L i3 divided by a constant CL until the new
point 1s inside the boundaries,



Prew Poid + (L/CL){search directicn},

The minimizations in each sequence (for R=const.) are carried out
until (f¥* 4 - f* ew /f 14 € Eq. Complete procedure terminates
when Ry, ¢ E,., Other termination criteria may be chosen if de~
sired,.

Obviously, the whole procedure is to some extent dependent on R,
Cge L. €, E5, and E,.

After carrying out a certain number of unconsttrained
minimlzations. since sequences of X and f*converge to x and
respectively, the result obtained so far can be used to
glmate the minimum of the constrained problem by applying -
extrapolation. The extrapolation routine enables the iterations
to be stopped {(for example if calculating time i3 critical) and
to improve the result so far cbhtalned,

SUMT's main disadvantage is the fact that as R k—— 0 . it becomes
inereasingly difficult to solve the unconstrained minimization
problem, Therefore, the SUMT should be considered as an
approximate method. But, as cited in [11] "the simplicity of the
penalty methods will continue to attract the unsophisticated
user", i

R, PRELTIMINARY PROPELLER DESIGN

8.1 Solution by Hand

In order to demonstrate the formulation of the preliminary
propeller design problem, a solutien by hand will be shown
first, There are several apprcaches to the problem and the one
chesen 18 the same as in References [4 and 5],

The basi= for this approach are the KT—KQ-J charts for all four
main options given in Table 1,

Option Given values Caleulated values
{input) (output) o
1 Ry, D, V Mot (.P/D. Ao/ g M)
2 Pgs D, V ot s (10P/D.Ae/ R o)
3 Re. N, V Dopt+ (J,P/D,AC/A 0T
i Py, N, V Dobts (J.P/D AG/AC.MQ)

Table 1




"Later it will be shown that other possible optiens may be derived
from these four, Since fundamentally, solution of the four problems is
the same, although the reasons for using each of them are
obviously different, they will be treated together.

For the sake of demonstration the example gliven in (4 and 5] will

be presented here, The same example will be used throughout 1this’

paper,
Elimination of the unknown variables from
KT=Rt/9(1-t)N2D”, K0=(Pd-qr)/?2ﬁn3n5. J=V{1-w)/N-D

is shown in Table 2, Graphical representation is given in the
Figure 3.

Option 1 Option 2 Option 3 Option A .
2 4 . 2 By 5 2 w1 5y5
KTIJzzﬁtl[g(lft)(1-u)2V2D21 Kq’Jaﬁfaﬂr’T?zﬂ(‘-“’3v3° 1| kgt emen® lpU-t) (1= VY] | Ko/a®aPyq n®/ L2l 1-w) V]
conat, conat. const, co?i?t.

Exanple from [8 and S) €, =0.6% \I’ILG::O.B L/B=T7.,2% B/T=2.5 L=40D"=122m .
Rt=61900 1b # 275345 N DHP=3182PPd=2820kH Nz77RPH D218'=% _ uBSUn
w:0,252 te0.155 1'lr=1.018 Aefl°=ﬂ.65 Z:5 Vs16kn
Ky = 0.278-92 Kg u 0,0641-43 f Ky = 0.360104" Xy = 0.0822-43
Table 2
The intersection of the Kt or Kq curve with the parabola at each
P/D value gives a corresponding value of « The value of P/D that

gives the maximum Mo defines the optimal propeller.

h 2. Hatﬁematical Programming Formulation

Mathematical programming formulation for the preliminary
propeller design problem would bhe:

maximize m =(J-Kp)/(27-Kg) where Kq,Kq=f(J,P/D,Re/ho,2),

Rn=2x10%,  t/e=f(Ae/ho,Z)

subject to: Equality constraint K, = C+JP where
& for optien 1
Ko if R, 13 given 3 - 2
= T t = M
Ke {K if P, is given and P 4 - 3
Q d 5 ]

Tnequality constraints (range constraints)
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It should be noted that in the "soclution by hand" Ae/Ac=const,
which 1s a special case of the above problem,’

The mathematical formulatioen which is more convenient for SUMT
application should be:

FORMULATION A

minimize f(x1.X2,X3) T - Tlo = “(J.KT)/(2'R‘.KQ)

subject to: Tnequality constraints

J 30 1
Ke 20 2
P/D-0.5 3 O 3
1.4-P/D 2 O 4
2-J > 0 5
Ae/Ao-0.3 > O 6
1.05-Ae/A0 2 0 7
Equality constraint

Ko = C-3P - 8

Inequality constraints 1 and 2 are necessary for feasible
sclutions; 3 and 4 are range constraints, Tf Ae/Ao=const,
(special case) these four statements would be sufficient. However

certaln starting point values in combination with relatively high'"

R could preduce J=9, although inequality constraints 1 and 2 were
noet violated, That 13 the reason for constraint 5 which assumes
that for B-serles J<(2, Constraints 6 and T are range constraints
for the general propeller optimization problem,.

Pifferent formulation would follow 1f the equality constraint is
treated asaninequality constraint, Mathematically this would be:
Ko - €42 3y 0

- Ko + C-3P 3 0.
This approach is only of a theoretical value and cannot bhe
applied to SUMT, However, from the naval architect's point of
view, the optimal propeller cannot produce greater thrust than is
needed, otherwise it would not be coptimal,

Therefore the relation Kc-CJp)O will practieally always bde
satisfled as Kc-CJp=O. Figure 4 includes the curve KTo t (KT when
No=Mmay) and the parabola K.=CJP, To the left side of the
intersection between these, the propeller efficiency T, 18 larger
than it would be 1f it was necessary to satisfy the relation
KC=CJP. On the right side of the intersection, whieh 4is of
practical interest, the largest value of Mo will be obtained only
when K =CJP. This is similar for Kg,,¢-

The left side 1s not of practical interest, since if Kc=CJp were
satisfied, o would be on the right side of Mmax for each P/D



value, Therefore, although the prohlem is stated as KC-CJP)O.
-practically it would always be satisfied as Kc—CJp=0. To ensure
solution is valied for all cases {(not only for the sake of.
optimization but from the naval architect's point of view) the
gradient bq/BJ should be positive.

12

13
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Y

- Figure A

Mathematical formulation, with the constraints of the inequality
type, follows: :

FORMULATION B

minimize f(x1.x2.x3) = - Tlo = -(J‘KT)/(EE'KQ)

subject to inequality constraints only

R4
o
~N AN TN -

Formulation B is generally sufficient with only the first GT}f_
constraints, The 7th constraint, which is usually nonactive, 18 - .:

added since it may be of practical interest to restrict the "
maximum value of J.

This apprecach is completely opposite te " that - in references [31, .:
{4 and 5], and [6]. There the constraints were conly of. the .

12



equality type, whilst in Formulation B, they are only of the
inequality type. In Formulation A the constraints are of
inequality and equality type,

h.3. SUMT Transformation

Transformation of the constrained problem given in Formulation A,
to the unconstrained form, applicable to SUMT is: . :

K 1 | I 1 ! |
PRX) = el SRy . . . .
W Kg 5Ky T PD-05 T T4-PID 2-J Aetho-03 105 - Aclho
— _J
FIX) P, X)

1 p.2
s— (K, - CJ")
”—R C

P

Pértial derivatives necessary for the D-F-P gradient method
follow:

¥,y Ya
o) K1 g 83 QTR S .
H) M Ko W 2 ! :
a .
atx) , _(_J 3Fp e “*r e : 2
3 P/ID 27 KQ2
dKy dKg o
———Kq
dtx) 4 dheihs @ TaAele )
dAeinc 2R K2 3
Q H
. 3Ky
AL P I ¥ ] o :
E  — Em -——
3 2 k? Tz ‘
am
aﬁm’= (awn . L 1 | 5
dP/D Ki2  eo-0s2  (1a-piD)2
bK'{
APIXt dAerro ! ' )
: - . - 6
dAelho K12 (Aeifo - 0312 (105 - Aeiho)?
dP,(X] K -1
21 e c P
a1 " iKe 3J ’ ’
AP, [X) dK .
2 Caqk L egP c
spp - YK = O 3Ey 8
3Ppx) K = ¢ 3K, ' 9
SAcino 2! 'aAafA—o

13



The above transformation which is used throughout this paper, is
most widely used and i3 sometimes called SUMT-1967 version. Other
transformations may be used, one of them SUMT-1970, which:
generally did not seem to be any better than the original '_ -

transformation, For SUMT-1970 the unconstrained function is of
this form:

K
MR, X) = - “zJTr"'Rg" =R(In121 « In(Ky] « (nIP/D~05)+ In{14 - P/D}+ In(2=J}s In{Ae/Aa-03) + [nf1,05 - Ae/Ao])

VR IK, = C2P)2

Obviously, the first partial derivatives are somewhat simpler in’
this case.

Transformation of the constrained preoblem given in the
Formulation B would he:

"(R X)'——J—.EL,R‘_L__. ‘ - 1 +* I + ! s ! + ! l '
CTTT M Ky J PID-05 14-P/D AefAo-03 1.05-Ae/do Kg-CuP 2-J o
— N _ ) 5 ;
(X} PIX)

1 .
Here the first three derivatives would be the same as in the
previous case (Formulation A) but instead of derivatives 4 to 9
only three new partiazl derivatives follow:

K p-1
€ _ pC
deixt , 0, 33 F L y
6.1 J2 (KC - C‘Jplz {2 - J]2
. K
3Pixy ! 1 . _BFID . .
aP/D (PrD-052  (14~PD2 1Ko —CuP)
: Ik,

L t.d I ! _ ! . dAelho 6
dAebo  [Ae/ho- 0312 (105 - Aeldo)® (K- )2

This is much simpler and 1less 1liable to ill-conditioning when ..

Rk"o' However, the choice of the starting point, which must -be.
inside the boundaries, is more difficult to determine, '

4.4, Practical Application

The above approach enables practical bounds or constraints to be

applied to propeller design problems, From the naval architect's .. .
point of view this can be very useful and simple: ' L

14



- Maximum allocwable propeller diameter, when choosing optimal
propeller diameter (options 3 and #), may be incorporated to give
a new constraint (instead of ccnstraint 1) as Imin2V(1-w)/ND, . ..
- Minimum allowable RPM (options 1 and 2) may be incorporated te
Blve a new constraint (instead of constraint 5 in Formulation A.
and 7 in Formulsdtion B) as JmaxSVQli- w)/NmidD‘
- Minimum allowable blade area may be taken into account with the
help of Keller's cavitation criteria (transformation as given 1in o
[6]1) with the change of the constraints6 and 4 in formulations A '~
and B respectively, as Ae/fo,y,3B(Ky 7324k, where :

B = [(1.340.32)V,21/(py-py) = censt,
0 for fast twin-screw ship

Kk = 0.1 for other twin-screw ship

: 0.2 for single-screw ship

(in [6] the above relation was treated as an equality constraint),

Other constraints may easily be changed as well. For example, the
ratioc of P/Dmax or Ae/Ao max Mmay be restrained for
technelogicall —manufacturing reasons, or 1if the propellers from

stock are considered, etec,

The general flow chart for preliminary propeller design is giveﬁ?

in Figure 5,

5. RESULTS

The same input data as for the "hand sclutien method" i{s used
throughout,

In Table 3 the results obtalned for all 4 options are given,
Defaulted constraints were used.

Table % shows the iterations for option 1.

Table 5 shows the result obtained for option 3, whilst Table 6

gives the results cobtained with the Wolfson Unit Program [16} as
a comparison,

Table 7 is similar to Table 5, but for option 2.

Table 8 shows the results when D=const. and N=const. for option
3. This is cbtained with the constraint Dmax\S 16 m, {.e. J30.93.°
It can be seen that for 72=2 to A4, Ry RKT is the thrust
obtainable with a particular prOpeller. Therefore, the results
are correct only for Z=5, 6, and 7. In other words, propellers
with 2, 3, and 4 blades cannot provide the necessary thrust for
the 16kn vessel with Dpay$5.16m and N=77 RPM,
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Option 1 [Option 7 [Optlion 2 [Optlon 4
J 0.e617 | 0.8682 | 0.a302 | 0.8315 |g|Rr,=0.1
P/D 1.1805 1.1850 1.0882 1.0865 Z| Cr=10
Ag/A 0.6398 0.6432 0.6792 0.6589 5| L=2
Mo=T(X) |~0.6849 |-0.6868 |-0.6909 |-0.6016 [=|cC =2
£7(R, X) -0.6849 |-0.6867 .|-0.6909 |-0.6915 vl €5 =1E-05
81 Ey
E2=1 E-08
J 0.8617 0.8679 0.8302 0.8316 c
P/D 1.1805 1.1852 1.0882 1.0872 Zl 3y =0.3%
Ao/ Ag 0.6398 0.6432 0.6792 0.6574 " (P/8)0=0.8
g 0.6849 0.6866 0.6909 0.6915 S (Ag/A ) 0.4
D m 5.4864 5.4064 5,7789 5.7691 = A
N RPM 78.141 77.580 77.000 77.000 w| 2=5
No. of _
iterat. 22 ‘ 22 27 23
Table 3
Opﬁoni
R Tterat. J P/D Aeflo qoz—f(X) £*(R,X)
0.1 0 0.3 0.8 n.u 0.3812 2.2486
3 0.7801 1.1462 | 0.7638 n.6513 1.1791
0.01 y 0.7182 1.0657 | 0.6725 0.6406 | -0.8131
7 0.8u28 1.1206 | 0.6652 0.6901 -0.5016
1£~03 8 0.8417 | 1.1193 | 0.6638 0.6899 | -n.6658
11 0.8565 1.1578 | 0.6437 . 0.6880 | -0.6677
1E-0Y 12 0,8575 1.1598 | 0.6486 0.6880 | ~0.6814
14 0.8613 1.1756 | 0.6409 0.6859 { -0.6836
1£-065 15 0.8631 1.179n | n.6un1 D.6RE0 | —0.6842
16 0.8622 1.1801 0.6401 0.6853 | -0,6849
1E-06 | 17 0.8622 | 1.1802 | 0.6399 n.6853 | -0.6847
18 n.8618 1.1804% | 0.6399 0.6850 | -0.6850
1E-07 19 0.8619 1.1804 | 0.6399 0.6850 | -0.6819
20 0.8617 1.1805 | 0.6399 0.6850 | -0.6849
1E-08 | 21 0.8617 1.1805 | 0.6398 0.6850 | -0.6849
22 0.8617 1.1805 | 0.6398 0.6849 | -0.68149
Extrap| - 0.8617 1.1805 | 0.6398 0.6849 -
Table X




Option 3

Z=2 Z=3 I=1 7Z=5 Z=6 =7
J 0.7092 0.7763 0.7999 0.8302 0.8578 0n930H
P/D 0.8616 0.9816 1.0287 1.0882 1.142% 1.3429
Ae/Ao 0.3001_ 0.3003 0.5308 0.6792 0.7223 1.0499
Mo 0.8150 0.7269 0.6937 0.6009 0.6859 0.6817
Dm 6.7648 6.1804 5.9976 5.7789 5.5927 5.156%
Iterat, 29 35 20 27 25 34
Table 5
'Option 3
D [m]/PID/rln
;i I=2 Z+3 7=1 1:5 Z:6 a7
0,30l 6.7175/0.877/0.771
0.25 €.135/8.998/0.72R
0.40 5.877/1.062/0,691
0.55] 5.709/1,102/0. 689
0.50| 6.214/0.985/70,. 753 5.390/1.222/0.676

0.55 6.139/0,983/0.692 5, U65/1,183/0,.E70
0.60 ) 5.690/1.118/0,694

D.€5 5.893/1.072/0.678 5.671/1,112/0,685

0.70 6§.027/1,029/0,690

5.390/1.215/0.671

18

6.75 5. 6&0/1.073/0.689
0.80 5.57871,15370,.685
_0.B5 5.207/1,2B8/0.817
6.50 § B02/1,096/0,675 -
.95 5 46571.20670 677
1.00
1,05
Tabte 6
Option 2
=2 2=3 i=h Z=5 ;226 =7
J 0.6250 0.7402 0.9521 0.8679 0.9112 0.9878
P/D 0.8513 1.0053 1.4003 1.1852 1.2474 1.45000
Ae/Ao 0.3000 0.3000 0,2997 0D.6432 0.7398 1.0501
Mo 0.7588 0.7072 0.6931 0.6866 0.6871 0.6904
N RPM 107.725 90.959 70.723 77.580 73.891 68.166
Tterat, 37 29 33 22 22 34
Table T




Z=2 7=3 Z=h 7=5 Z=6 7=7
J 0.9300 0.9300 0.9300 0.9308 0.9300 0.9361 F1-TE -05
P/D 1.40000 1.01006G j.48000 1.3946 1.3478 1,.3609 F?—‘lF 07
Ae/A 1.0501 1,0“53 1.0181 0,2035 0.7170 1.0087 J > 0.93
Mo 0.6992 1 0.A607 | 0,.6U432 |0.6689 [0.6695 |0.6818 | N=77 RPM P
D m |5.1587 |5.1588 [ 5.1586 [ 5.1541 |5.1587 | 5.1251 Va=6.16 m/s SRR
RKr 262752 | 268144 | 275125 | 275902 | 275833 | 275296 Rt:2753u5 N -

Table 8§

Table 9 shows the result fer identical conditions as in Table 8, ., -."°
but with SUMT-1970 transformation., The difference in Ae/ Ao for'"“'“”
Z=5 was checked for various L values., From this it was concluded

that SUMT-1970 was more sensitive to L values than SUMT-1967.
Further work showed that in this particular case Mo 1is not ° -
sensitive to Ae/fo variation. '

. 2=5% Z=6 Z=T7
d 0.9300 0.9300 q.93ﬂ3 E1=1E-05
P/D 1.3840 1.3478 T.3551 E2=1E—08 : i
Ae/A0 0.3899 0.7114 1.0497 J > 0.93 _
Mo ' 0.6688 N.6694 0.6817 N=7T7 RPM i
D m 5.1586 5.1585 5.1350 Va=6.16 m/s .
RKT 275345 275345 275345 Rt=2753"5 N

Table 9

For Gawn propeller series the results are given in the Table 10.

Option 1 Option 3
7=3 Z=1 =3 Z=Nh ) o
(Formulation B) BN
J 0D.8198 | 0.8701 0.8240 | 0.8526 (J)ozo.u '
P/D 1.130% | 1,1889 1.0918 | 1.1332 ; (P/D)O .2
Ae/AO 0.5000 0.5000 N.5000 0.5000 (Ae/l\o)o=0.6
Mo D.69214 | 0.6971 0.700H [ 0.6992 Rqy=0.1
D m 5.4864 | 5.L486H 5.8220 | 5.62T71 Cr=10
N RPM 82.132 | 77.385 77.000 [ 77.000 L=2
Iterat. 32 35 33 32 Cp=2
Table 10

Table 11 shoews the result for Gawn propeller series when the o
diameter is restrained as in the Table 8§.



Z=3 =1
‘ {Formulation B) |

J 06.9300 0.9300 (X)0=0.95: 1. 55 1.00
P/D 1.3491 1.3935 . E4=1E-05; Es=1E- 08 .
Ao/ A, 1.0999 | 0.5000 J'y 0.93

1, 0.6266 | 0.6711 N=77 RPM

D' m 5.1587 5.16586 Va=6.16 m/s

RKT 275755 275603 Ry =275345 N

Table 11

6. CONCLUSTONS AND RECOMMENDATIONS ,

Feur points should be made before any conclusions are drawn:

- The answers are, naturally, dependent on the mathematical models
used wvhich in these cases are based on B-series and Gawn series-
pelynomials,

- In all examples an impractical starting point was chosen to. '

show the ability of SUMT., Usually it is not difficult te choose a
starting point which is closer to the optimum.

~ The calculating time in some cases was relatively long, but a
microcomputer was used, not a mainframe as in [3], (% and 5], and
[6].

- Since the constraints were obeyed, and only a feasible soelution
could be cbtained, the prccess of choosing the coptimal propeller
was automatic, Therefere, the user does not require - -knowledge of
propeller design,

The conclusions felating to the optimization technique applied
are given below:

- Generally, all optimization methods find only the local minima,
However, this disadvantage was not observed here.

- 3UMT's parameters €, C,, E1; and E2 may influence the answer 1f_ff:ﬁfﬂ

they are not chosen with care,.

- Tt would be good practice to follew the fterations; ¢

specifically the difference between f(X) and f*(R,X).
- If the iteration process stops prematurely, a change of some of -
the SUMT's parameters may help. '
- It appears that for the propeller design problem SUMT-1967" =
transformation is more convienient than SUMT-1970, although it may °
be useful to check the answer with theothermethod. ’

- If Formulation B is used (only inequalities) it may beg].,,
difficult te choose the starting peint. At this time a2 separate ~ "~ -

routine for choosing the starting point has not been developed.
However, mathematically 1t is more convinient to have a problem
with inequalities only, rather than inequality and equality’
constraints. :
- Of use to the naval architect, various constraints may be
easily applied,
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Tt should be noted that instead of checking whether aq/BJ is
positive and RKT i3 greater than R,, two new inequality
constraints could be created and adde to the inequalities
already menticned: .

N/ y 0
Ry, =Ry » 0.

However, this was not done at this stage sinece 1t was felt that -

they would complicate the transformed objective funection, and 1in
any case would usually be nen active,

With reference to the propellers, the conclusions are:

- It 13 not necessarily true that the propeller with the lower
BAR is better than the one with higher BAR. This is particularly’
the case for propellers with a higher number of blades. -
~ The widely accepted recommendation to choose the lowest BAR -
possible is only true if BAR obtained from the cavitation
criteria is higher than BAR obtained using the above method.

- Optimum BAR (for Mo optimal) is higher for a greater number of_%-ﬂ,r

blades, -
- In some cases the change of BAR does not significantly
influence the open water propeller efficiency qp.

The above recommendations probably have not been highlighted
enough in books on naval architecture,
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